

Resonance and Revivals in Quantum Rotors ---Comparing Half-integer Spin and Integer Spin

<u>Alvason Zhenhua Li</u> William Harter

Microelectronics-Photonics Program, Physics Department University of Arkansas, Fayetteville, AR 72701

Outline

Motivation

Integer Spin (Symmetric Rotor)

68th Spectroscopy, June 20, 2013

Motivation

Quantum Rotor

List-plot

Wigner-D Matrix ---- a Rotational Matrix for Any Spin

A. Z. Li, Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors, Ph.D. thesis, University of Arkansas (20134/20

Density-plot

Wigner-D Matrix ---- a Rotational Matrix for Any Spin

A. Z. Li, Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors, Ph.D. thesis, University of Arkansas (2013). 68th Spectroscopy, June 20, 2013

Density-plot Movie

Wigner-D Matrix ---- a Rotational Matrix for Any Spin

Rotor Wave Functions of Integer Spin (Boson) System

$$\left|_{\mathbf{m}_{\mathrm{L}},\mathbf{m}_{\mathrm{B}}}^{\mathbf{j}}\right\rangle = \frac{\mathbf{P}_{\mathbf{m}_{\mathrm{L}},\mathbf{m}_{\mathrm{B}}}^{\mathbf{j}}\left|\mathbf{0},\mathbf{0},\mathbf{0}\right\rangle}{\sqrt{2\mathbf{j}+1}} = \frac{1}{N}\int \mathbf{d}(\alpha,\beta,\gamma) \ \mathbf{D}_{\mathbf{m}_{\mathrm{L}},\mathbf{m}_{\mathrm{B}}}^{\mathbf{j}}^{*}(\alpha,\beta,\gamma) \ \mathbf{R}(\alpha,\beta,\gamma) \left|\mathbf{0},\mathbf{0},\mathbf{0}\right\rangle$$

$$=\frac{\sqrt{2\mathbf{j}+1}}{8\pi^2}\int_0^{2\pi} \mathrm{d}\alpha \int_0^{\pi} \sin\beta \,\mathrm{d}\beta \int_0^{2\pi} \mathrm{d}\gamma \,\mathbf{D}_{\mathbf{m}_{\mathrm{L}},\mathbf{m}_{\mathrm{B}}}^{\mathbf{j}}^*(\alpha,\beta,\gamma) \,|\alpha,\beta,\gamma\rangle \quad (4.8)$$

Half-integer Spinning Rotors exhibit Farey-sum Revivals

Outline

Summary

Unique 4π Rotation

Rotor Wave Functions of Half-Integer Spin (Fermion) System

Rotor Wave Functions of Half-Integer Spin (Fermion) System

Dynamics of Integer Spin (Fermion) System

A. Z. Li, Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors, Ph.D. thesis, University of Arkansas (2013).

Half-integer Spinning Rotors exhibit Farey-sum Revivals

Farey - sum - Rule:
$$\frac{a}{A} \oplus \frac{b}{B} = \frac{a+b}{A+B}$$

The coming next talk will address the curious connection of Farey-sum and Ford-circles

Summary

Both Integer and Half-integer Spinning Rotors exhibit Farey-sum Revivals

