

Alvason Zhenhua Li
William Harter
Microelectronics-Photonics Program, Physics Department
University of Arkansas, Fayetteville, AR 72701

Outline

68th Spectroscopy, June 20, 2013

Motivation

Quantum Rotor

(b)

$$
\begin{aligned}
& \left.\left.\left\langle{ }_{m}^{j}\right| \mathbf{R}(\alpha \beta \gamma)\right|_{n} ^{j}\right\rangle=D_{m, n}^{j}(\alpha \beta \gamma)=\quad \text { (c) } \\
& \sqrt{(j+n)!(j-n)!} \sqrt{(j+m)!(j-m)!} \frac{\sum_{k}(-1)^{k}\left(\cos \frac{\beta}{2}\right)^{2 j+m-n-2 k}\left(\sin \frac{\beta}{2}\right)^{n-m+2 k} e^{-(m a \alpha+\pi \gamma)}}{(j+m-k)!(n-m+k)!k!(j-n-k)!}
\end{aligned}
$$

List-plot

68th Spectroscopy, June 20, 2013
4
A. Z. Li, Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors, Ph.D. thesis, University of Arkansas (20134!!20

Wigner-D Matrix ---- a Rotational Matrix for Any Spin
A. Z. Li, Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors, Ph.D. thesis, University of Arkansas (2013).

Density-plot

 $\left(\beta=\frac{\pi}{4}\right)$
$\left(\mid D_{m_{r} m \mid}^{j}\right.$ at $\left.\beta=\frac{\pi}{4}\right)$

Density

$\left(\left|D_{m_{r} m}^{j}\right|\right.$ at $\left.\beta=\frac{\pi}{2}\right)$

($\beta=\frac{3 \pi}{8}$)	$\left(\beta=\frac{\pi}{2}\right)$
10.0........ili]ip...	10.......illili
\ldots......ililo.ili.e.	...ilil...ill
\ldots.....ili..il..ili.ili...ip..ili
\ldots....pil...i...i成il	\ldots. ${ }^{\text {ali..i...i...il. }}$
-ili..pir.ip.ipoli	
1.2i.i.il	

Density-plot Movie
Wigner-D Matrix ---- a Rotational Matrix for Any Spin

$J=3$

Rotor Wave Functions of Integer Spin (Boson) System

$$
\begin{array}{r}
\left|{ }_{\mathrm{m}_{\mathrm{L}}, \mathrm{~m}_{\mathrm{B}}}^{\mathbf{j}}\right\rangle=\frac{\mathbf{P}_{\mathrm{m}_{\mathrm{L}}, \mathrm{~m}_{\mathrm{B}}}^{\mathbf{j}}|\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle}{\sqrt{2 \mathbf{j}+\mathbf{1}}}=\frac{\mathbf{1}}{\mathbf{N}} \int \mathbf{d}(\alpha, \beta, \gamma) \mathbf{D}_{\mathbf{m}_{\mathrm{L}}, \mathrm{~m}_{\mathrm{B}}}^{\mathbf{j}}{ }^{*}(\alpha, \beta, \gamma) \mathbf{R}(\alpha, \beta, \gamma)|\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle \\
\quad=\frac{\sqrt{2 \mathbf{j}+\mathbf{1}}}{8 \pi^{2}} \int_{0}^{2 \pi} \mathbf{d} \alpha \int_{0}^{\pi} \sin \beta \mathbf{d} \beta \int_{0}^{2 \pi} \mathbf{d} \gamma \mathbf{D}_{\mathbf{m}_{\mathrm{L}}, \mathrm{~m}_{\mathrm{B}}}^{\mathbf{j}} *(\alpha, \beta, \gamma)|\alpha, \beta, \gamma\rangle \tag{4.8}
\end{array}
$$

$\left(m_{B}=-3\right)$	$\left(m_{B}=-2\right)$

Space-Time-plot

Rotor Wave Packet Propagation of Integer Spin (Boson) System

A. Z. Li, Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors, Ph.D. thesis, University of Arkansas (2013). 68th Spectroscopy, June 20, 2013

Half-integer Spinning Rotors exhibit Farey-sum Revivals

Outline

Amplitude of $\operatorname{Re}[\psi]$

Rotor Wave Functions of Half-Integer Spin (Fermion) System

$\binom{s_{2}==\frac{5}{2}}{m_{2}=\frac{2}{2}}$

($\quad=-\frac{1}{3}$)

$\left(m_{B}=-\frac{1}{2}\right)$
($m_{s}=\frac{1}{2}$)
$\left(m_{B}=\frac{3}{2}\right)$
$\left(m_{B}=\frac{s}{2}\right)$

$\left(m_{B}=\frac{1}{2}\right)$
$\left(m_{B}=\frac{3}{2}\right)$
$\left(m_{B}=\frac{5}{2}\right)$

$\left(m_{B}=-\frac{5}{2}\right)$
$\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ \vdots\end{array}\right)$

$\left(m_{B}=-\frac{3}{2}\right)$
$\left(m_{B}=-\frac{1}{2}\right)$
$\left(m_{B}=\frac{1}{2}\right)$
$\left(m_{B}=\frac{3}{2}\right)$
$\left(m_{B}=\frac{\mathrm{s}}{2}\right)$
$\psi *$

Dynamics of Integer Spin (Fermion) System

Space-Time-plot

A. Z. Li, Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors, Ph.D. thesis, University of Arkansas (2013).

Half-integer Spinning Rotors exhibit Farey-sum Revivals

$$
\text { Farey - sum }- \text { Rule }: \frac{a}{A} \oplus \frac{b}{B}=\frac{a+b}{A+B}
$$

The coming next talk will address the curious connection of Farey-sum and Ford-circles

Summary

Both Integer and Half-integer Spinning Rotors exhibit Farey-sum Revivals

