RJ04

RESONANCE AND REVIVALS I. QUANTUM ROTOR AND INFINITE-WELL DYNAMICS

William G. Harter and Alvason Zhenhua Li University of Arkansas - Fayetteville Physics Department and Microelectronics-Photonics Program

+6

RESONANCE AND REVIVALS I. QUANTUM ROTOR AND INFINITE-WELL DYNAMICS

RJ04

William G. Harter and Alvason Zhenhua Li University of Arkansas - Fayetteville Physics Department and Microelectronics-Photonics Program	6
	5
Rotor revival structure includes anything ∞ -well can do	4
and is easier to explain.	 3
$\frac{\pm 2}{m=0}$	 2 n=1

RESONANCE AND REVIVALS I. QUANTUM ROTOR AND INFINITE-WELL DYNAMICS

William G. Harter and Alvason Zhenhua Li University of Arkansas - Fayetteville Physics Department and Microelectronics-Photonics Program

Won't talk about ∞-well

Rotor revival structure includes anything ∞ -well can do.... ...and is easier to explain.

Some Early History of Quantum Revivals

J.H. Eberly *et. al. Phys. Rev.* A 23,236 (1981)
R.S. McDowell, WGH, C.W. Patterson *LosAlmos Sci.* 3, 38(1982)
S.I. Vetchinkin, et. al. *Chem. Phys. Lett.* 215,11 (1993)
Aronstein, Stroud, Berry, ..., Schleich,.. (1995-1998)
WGH, *J. Mol. Spectrosc.* 210, 166 (2001)

Laser QuantumCavityDynamic revivals Symmetric-top revivals 1D ∞-Square well revivals """"""

6

3

2

n=1

Bohr-rotor revivals

So we thought we'd put this revival business to bed! Then...

RJ04

Some Early History of Quantum Revivals

J.H. Eberly *et. al. Phys. Rev.* A 23,236 (1981)
R.S. McDowell, WGH, C.W. Patterson *LosAlmos Sci.* 3, 38(1982)
S.I. Vetchinkin, et. al. *Chem. Phys. Lett.* 215,11 (1993)
Aronstein, Stroud, Berry, ..., Schleich,... (1995-1998)
WGH, *J. Mol. Spectrosc.* 210, 166 (2001)

Laser QuantumCavityDynamic revivals Symmetric-top revivals 1D ∞-Square well revivals """"""

Bohr-rotor revivals

So we thought we'd put this revival business to bed! Then this...

More recent story of Quantum Revivals Anne B. McCoy *Chem. Phys. Lett.* **501**, *603(2011)*...reminds me that Morse potential is integer-analytic.

Leads to cool Morse revivals in: *Following Talk RJ05 by Li:* Resonance&Revivals II. MORSE OSCILLATOR AND DOUBLE MORSE WELL DYNAMICS.

So now we're having a revival-revival!

...and, in words by Joannie Mitchell, I find: "I didn't really know... revivals ... at all." What do revivals look like? (...in space-time...)

Junction 319 & 98 Medart, Florida

+ + +

Rev. Jimmie Dobbs evangelist

7:45 Nightly

Except Sunday

+ + +

of Jacksonville, Fla.

OR PEOPLE OF ALL FAITHS

What do revivals look like? (...in space-time...)

OK, let's try that again... with *quantum* revivals...

$$\Psi \rangle = \sum_{n=0}^{N} e^{-i\omega_n t} \psi_n^{\text{are not directly observable...}}$$

$$|\Psi\rangle = \sum_{n=0}^{N} e^{-i\omega_n t} \psi_n^{\text{are not directly observable...}}$$

$$\left\langle \Psi \right| = \sum_{m=0}^{N} e^{+i\omega_{m}t} \psi_{m}^{*} \qquad \underbrace{ \begin{array}{c} \omega_{3} \\ \omega_{3} \\ \end{array}}_{m=0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \omega_{1} \\ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \end{array}}_{0} \\ \underbrace{ \end{array}}_{0} \\ \underbrace{ \end{array}}_{0} \\ \underbrace{ \begin{array}{c} \omega_{2} \\ \end{array}}_{0} \\ \underbrace{ \end{array}$$

C₂ Character Table describes eigenstates

symmetric A₁

VS.

	$1 = r^{0}$	$r = r^1$
0 mod 2	1	1
$\pm 1 \mod 2$	1	-1

antisymmetric A₂

C₂ *Phasor*-Character Table

symmetric A₁

VS.

antisymmetric A₂

Phasor C₂ Characters describe local state beats

Initial sum

C₂ *Phasor*-Character Table

C₂ Character Table describes eigenstates

symmetric A₁

VS.

 $\begin{array}{c|c}
1 = r^{0} & r = r^{1} \\
\hline
0 \mod 2 & 1 & 1 \\
\pm 1 \mod 2 & 1 & -1 \\
\end{array}$

antisymmetric A₂

Phasor C₂ Characters describe local state beats

Initial sum

1/4-beat

C₂ *Phasor*-Character Table

C2 Character Table describes eigenstates

symmetric A₁

VS.

	$1 = r^{0}$	$r = r^1$
0 mod 2	1	1
±1mod2	1	-1

•

antisymmetric A₂

Phasor C_2 Characters describe local state beats

C₂ Character Table describes eigenstates

symmetric A₁

VS.

antisymmetric A₂

Phasor C₂ Characters describe local state beats

What do revivals look like? ...in *per*-space-time... (... that is: $frequency \omega_m$ radian/sec. *VS k*-vector k_m radian/cm)

Harmonic Oscillator level spectrum contains the **Rotor Levels** as a <u>subset</u>

(Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)

(Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)

(4-levels $(0, \pm 1, \pm 2, \pm 3)$ (and some ± 4) excited)

Farey Sum algebra of revival-beat wave dynamics Label by *numerators N* and *denominators D* of rational fractions *N/D*

Farey Sum algebra of revival-beat wave dynamics Label by *numerators N* and *denominators D* of rational fractions *N/D*

A Lesson in *Rational Fractions N/D* (...that you can take home for your kids!)

Farey Sum related to vector sum and *Ford Circles* 1/1-circle has diameter *1*

Farey Sum related to vector sum and *Ford Circles*

1/2-circle has diameter $1/2^2 = 1/4$

1/3-circles have diameter $1/3^2 = 1/9$

Farey Sum related to vector sum and *Ford Circles*

1/2-circle has diameter $1/2^2 = 1/4$

1/3-circles have diameter $1/3^2 = 1/9$

n/d-circles have diameter $1/d^2$

Farey Sum related to vector sum and *Ford Circles*

1/2-circle has diameter $1/2^2 = 1/4$

1/3-circles have diameter $1/3^2 = 1/9$

n/d-circles have diameter $1/d^2$

C_m algebra of revival-phase dynamics

Quantum rotor fractional take turns at Cn symmetry

C_m algebra of revival-phase dynamics

Discrete 3-State or Trigonal System (Tesla's 3-Phase AC)

Summary

Quantum rotor revivals obey wonderfully simple geometry, number, and group theoretical analysis and as the next talk will show...

Summary

Quantum rotor revivals obey wonderfully simple geometry, number, and group theoretical analysis and as the next talk will show...

"I still don't really know ... revivals ... at all."

Simulation of revival-intensity dynamics

			3/5	
[Wait][Add)(Go)		4/7	
			5/9	
HH S Period Start=0	10 Color LCD 📄		1 /	0
Period End=60	0_ Psi color		1/	4
Heley Width $\%=4$	5 Peak color 📃			
Excitation=100	10 m/n Label 🛛		4/9	
HHx Left%=0	12 Font Size		3/7	
+++ right%=100	0_Multipole		2/5	
HHn-Mean %=0	60 m-Plot Max		3/8	
H Peak1 x(0)=0.50	⊔m-Boxxar □Fourier Control			3
H Peak2 x(0)=0	🛛 Draw m-Bars 📰			
H Peak2 Y(0)=0	BDraw Ring		3/10 2/7	
2 Opt Wh Gn	10		1/4	
			1/5	
		\sim	116	
			1/0	
			1/8	
			1/9 1/10	
Dm 15.0 D	A.D.			

