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Rotor revival structure includes anything ∞-well can do….
    …and is easier to explain.

Won’t talk about ∞-well
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Rotor revival structure includes anything ∞-well can do….
    …and is easier to explain.

Some Early History of Quantum Revivals
J.H. Eberly et. al.  Phys. Rev. A 23,236 (1981)                                          Laser QuantumCavityDynamic revivals
R.S. McDowell, WGH, C.W. Patterson LosAlmos Sci. 3, 38(1982)          Symmetric-top revivals
S.I. Vetchinkin, et. al. Chem. Phys. Lett. 215,11 (1993)                            1D ∞-Square well revivals
Aronstein, Stroud, Berry, …, Schleich,..      (1995-1998)                          “            “        “         “
WGH,  J. Mol. Spectrosc.  210, 166 (2001)                                               Bohr-rotor revivals

So we thought we’d put this revival business to bed! Then...

Won’t talk about ∞-well



More recent story of Quantum Revivals
Anne B. McCoy Chem. Phys. Lett. 501, 603(2011)...reminds me that Morse potential is integer-analytic.

Some Early History of Quantum Revivals
J.H. Eberly et. al.  Phys. Rev. A 23,236 (1981)                                          Laser QuantumCavityDynamic revivals
R.S. McDowell, WGH, C.W. Patterson LosAlmos Sci. 3, 38(1982)          Symmetric-top revivals
S.I. Vetchinkin, et. al. Chem. Phys. Lett. 215,11 (1993)                            1D ∞-Square well revivals
Aronstein, Stroud, Berry, …, Schleich,..      (1995-1998)                          “            “        “         “
WGH,  J. Mol. Spectrosc.  210, 166 (2001)                                               Bohr-rotor revivals

So we thought we’d put this revival business to bed! Then this...

Leads to cool Morse revivals in:     Following Talk RJ05 by Li:
Resonance&Revivals II. MORSE OSCILLATOR AND DOUBLE MORSE WELL DYNAMICS.

So now we’re having a revival-revival!

...and, in words by Joannie Mitchell, I find: 
“I didn’t really know... revivals … at all.”



What do revivals look like?
(...in space-time…)





What do revivals look like?
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OK,
let’s try that again...

with
quantum 
revivals...
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Observable dynamics of 2-level-system state 
Fourier spectrum of            has ONE beat frequency 
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2-level-system and C2 symmetry beat dynamics 

symmetric A1

vs.

antisymmetric A2 

C2 Character Table describes eigenstates

1= r0 r = r1

0mod2
1 1

±1mod2 1 −1
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2-level-system and C2 symmetry beat dynamics 

symmetric A1

vs.

antisymmetric A2 

C2 Character Table describes eigenstates

1= r0 r = r1

0mod2
1 1

±1mod2 1 −1

Phasor C2 Characters describe local state beats

Initial sum

1/4-beat

1/2-beat

3/4-beat

C2 Phasor-Character Table



2-level-system and C2 symmetry beat dynamics 

m=+1, 0, -1

C2 Phasor-Character Table



What do revivals look like?
...in per-space-time… 

(…  that is:
frequency       radian/sec.       

vs   
k-vector  km radian/cm)

ωm



N-level-system and revival-beat wave dynamics 
Bm2=B42

Bm2=B32

Bm2=B22

Bm2=B
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Harmonic Oscillator level spectrum contains the Rotor Levels  as a subset

N-level-system and revival-beat wave dynamics 



N-level-system and revival-beat wave dynamics 
(Just 2-levels (0, ±1)  (and some ±2)  excited)



N-level-system and revival-beat wave dynamics 
(Just 2-levels (0, ±1)  (and some ±2)  excited) (4-levels (0, ±1,±2,±3)  (and some ±4)  excited)



N-level-system and revival-beat wave dynamics 
(9 or10-levels (0, ±1, ±2, ±3, ±4,..., ±9, ±10, ±11...)  excited) Zeros (clearly) and “particle-packets” (faintly) have paths 
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D  
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A Lesson in Rational Fractions N/D 
(...that you can take home for your kids!)



Farey Sum 
related to 

vector sum
and

Ford Circles
1/1-circle has

diameter 1
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Cm algebra of revival-phase dynamics 



Cm algebra of revival-phase dynamics 



Summary

Quantum rotor revivals obey wonderfully simple
geometry, number, and group theoretical analysis

and
as the next talk will show... 
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“I still don’t really know... revivals … at all.”
 



Simulation of revival-intensity dynamics 






