RESONANCE AND REVIVALS I. QUANTUM ROTOR AND INFINITE-WELL DYNAMICS

RESONANCE AND REVIVALS I. QUANTUM ROTOR AND INFINITE-WELL DYNAMICS

RESONANCE AND REVIVALS I. QUANTUM ROTOR AND INFINITE-WELL DYNAMICS

So we thought we'd put this revival business to bed! Then...

```
Some Early History of Quantum Revivals
\begin{tabular}{ll} 
J.H. Eberly et.al. Phys. Rev. A 23,236 (1981) & Laser QuantumCavityDynamic revivals \\
R.S. McDowell, WGH, C.W. Patterson LosAlmos Sci. 3, 38(1982) & Symmetric-top revivals \\
S.I. Vetchinkin, et. al. Chem. Phys. Lett. 215,11 (1993) & 1D \(\infty\)-Square well revivals \\
Aronstein, Stroud, Berry, ..., Schleich,.. (1995-1998) & " " " " " \\
WGH, J. Mol. Spectrosc. 210, 166(2001) & Bohr-rotor revivals "
\end{tabular}
So we thought we'd put this revival business to bed! Then this...
More recent story of Quantum Revivals
Anne B. McCoy Chem. Phys. Lett. 501, 603(2011)...reminds me that Morse potential is integer-analytic.
```

Leads to cool Morse revivals in: Following Talk RJ05 by Li:
Resonance\&Revivals II. MORSE OSCILLATOR AND DOUBLE MORSE WELL DYNAMICS.

So now we're having a revival-revival!

...and, in words by Joannie Mitchell, I find:
"I didn't really know... revivals ... at all."

What do revivals look like? (...in space-time...)

What do revivals look like?
 (...in space-time...)

OK, let's try that again... with
quantum
revivals...

Observable dynamics of N-level-system state $|\Psi\rangle$
Depends on Fourier spectrum of probability distribution $\langle\Psi \mid \Psi\rangle$

$$
|\Psi\rangle=\sum_{n=0}^{N} e^{-i \omega_{n} t} \psi_{n}^{\text {...But individual eigenfrequenci }{ }^{\text {are not directly observable } \ldots} \text {.. }}
$$

Observable dynamics of N-level-system state $|\Psi\rangle$

 Depends on Fourier spectrum of probability distribution $\langle\Psi \mid \Psi\rangle$$$
|\Psi\rangle=\sum_{n=0}^{N} e^{-i \omega_{n} t} \psi_{n}^{\quad . . \text { But individual eigenfrequencies }} \text { are not directly observable... }
$$

$$
\omega_{4}
$$

$$
\langle\Psi|=\sum_{m=0}^{N} e^{+i \omega_{m} t} \psi_{m}^{*} \quad \overline{\omega_{3}}
$$

$$
\frac{\frac{\omega_{2}}{\omega_{1}}}{\frac{\omega_{0}}{2}}
$$

Observable dynamics of N-level-system state $|\Psi\rangle$ Depends on Fourier spectrum of probability distribution $\langle\Psi \mid \Psi\rangle$

$$
\omega_{4}
$$

$$
\langle\Psi|=\sum_{m=0}^{N} e^{+i \omega_{m} t} \psi_{m}^{*} \quad \overline{\omega_{3}}
$$

$$
\frac{\frac{\omega_{2}}{\omega_{1}}}{\frac{\omega_{0}}{2}}
$$

$$
\begin{aligned}
& \left.\begin{array}{rlrl}
\langle\Psi \mid \Psi\rangle & =\sum_{n=0}^{N} e^{i\left(\omega_{m}-\omega_{n}\right) t} \underbrace{\boldsymbol{\psi}_{m}^{*} \psi_{n}} & |\Psi\rangle=\sum_{n=0}^{N} e^{-i \omega_{n} t} \psi_{n} \\
& =\sum_{m, n=0}^{N} e^{i \Delta_{n n} t} & \rho_{m n} & \omega_{0} \omega_{1} \omega_{2} \\
\omega_{3} & \omega_{4} \\
& |\mid l l l l
\end{array} \right\rvert\, \\
& { }^{N} \quad \text {...But individual eigenfrequencies }
\end{aligned}
$$

Observable dynamics of N-level-system state $|\Psi\rangle$
Depends on Fourier spectrum of probability distribution $\langle\Psi \mid \Psi\rangle$

$$
\begin{aligned}
& \begin{aligned}
\langle\Psi \mid \Psi\rangle & =\sum_{n=0}^{N} e^{i\left(\omega_{m}-\omega_{n}\right) t} \underbrace{N} \underbrace{*}_{m, n=0} \psi_{n}^{N} \\
& =\sum_{m}^{i \Delta_{m n} t} e^{\boldsymbol{P}_{m n}}
\end{aligned} \\
& { }^{N} \quad \text {...But individual eigenfrequencies } \\
& |\Psi\rangle=\sum_{n=0}^{N} e^{-i \omega_{n} t} \psi_{n} \text { are not directly observable... } \\
& \langle\Psi|=\sum_{m=0}^{N} e^{+i \omega_{m}{ }^{t}} \boldsymbol{\psi}_{m}^{*} \\
& \omega_{3}
\end{aligned}
$$

Observable dynamics of N-level-system state $|\Psi\rangle$

Depends on Fourier spectrum of probability distribution $\langle\Psi \mid \Psi\rangle$
 $|\Psi\rangle=\sum_{n=0}^{N} e^{-i \omega_{n} t} \psi_{n \ldots \text { only differences } \Delta_{m n}=\left(\omega_{m}-\omega_{n}\right)}^{\begin{array}{c}\text { But individual eigenfrequencies } \\ \text { are not directly observable }\end{array}}$ Δ

Observable dynamics of N-level-system state $|\Psi\rangle$

Depends on Fourier spectrum of probability distribution $\langle\Psi \mid \Psi\rangle$
 $|\Psi\rangle=\sum_{n=0}^{N} e^{-i \omega_{n} t} \boldsymbol{\psi}_{n} \begin{gathered}\text {....only ind diffecerences observable.... } \Delta_{m n} \\ \text { are not ritual eigenfrequencies }\end{gathered}$ $\Delta_{40} \Delta_{41}$

$$
\begin{aligned}
& \mathrm{N}=5 \text { eigenfrequencies } \\
& \text { positive } \Delta_{m>n}=\omega_{m}-\omega_{n} \\
& \text { and : } N(N-1) / 2=10 \\
& \text { negative } \Delta_{m<n}=\omega_{m}-\omega_{n}
\end{aligned}
$$

Observable dynamics of N-level-system state $|\Psi\rangle$

Depends on Fourier spectrum of probability distribution $\langle\Psi \mid \Psi\rangle$

$$
N \quad \text {...But individual eigenfrequencies }
$$

$$
\begin{aligned}
& \begin{aligned}
\langle\Psi \mid \Psi\rangle & =\sum_{n=0}^{N} e^{i\left(\omega_{m}-\omega_{n}\right) t} \underbrace{\psi_{m}^{*} \psi_{n}} \\
& =\sum_{m, n=0}^{N} e^{i \Delta_{m n} t} \rho_{m n}
\end{aligned} \\
& |\Psi\rangle=\sum e^{-i \omega_{n} t} \boldsymbol{\psi} \text { are not directly observable... } \\
& \ldots \text {...only differences } \Delta_{m n}=\left(\omega_{m}-\omega_{n}\right) \\
& \langle\Psi|=\sum_{m=0}^{N} e^{+i \omega_{m} t} \psi_{m}^{*} \quad \omega_{3} \\
& \frac{\frac{\omega_{2}}{\omega_{1}}}{\frac{\omega_{0}}{}} \\
& \begin{array}{l}
\text { Nines: } N(N-1) / 2=10 \\
\text { positive } \Delta_{m>n}=\omega_{m}-\omega_{n} \\
\text { and: } N(N-1) / 2=10 \\
\text { negative } \Delta_{m<n}=\omega_{m}-\omega_{n} \\
\hline \text { beats }\left|\Delta_{m<n}\right|=\left|\omega_{m}-\omega_{n}\right|
\end{array}
\end{aligned}
$$

Observable dynamics of 2 -level-system state $|\Psi\rangle$ Fourier spectrum of $\langle\Psi \mid \Psi\rangle$ has $O N E$ beat frequency $\Delta_{21}=-\Delta_{12}$

$$
\langle\Psi|=\sum_{m=0}^{N} e^{+i \omega_{m} t} \psi_{m}^{*}
$$

$\frac{\omega_{2}}{\omega_{1}}$

$$
|\Psi\rangle=\sum_{n=0}^{N} e^{-i \omega_{n} t} \psi_{n}
$$

$$
\Delta_{21}
$$

$\mathrm{N}=2$ eigenfrequencies gives: $N(N-1) / 2=1$ positive $\Delta_{2>1}=\omega_{2}-\omega_{1}$ and : $N(N-1) / 2=1$
$\frac{\text { negative } \Delta_{1<2}=\omega_{1}-\omega_{2}}{\text { beat }\left|\Delta_{m<n}\right|=\left|\omega_{m}-\omega_{n}\right|}$

2-level-system and C_{2} symmetry beat dynamics

C_{2} Character Table describes eigenstates

2-level-system and C_{2} symmetry beat dynamics

C_{2} Phasor-Character Table

C_{2} Character Table describes eigenstates

Phasor C_{2} Characters describe local state beats

Initial sum

2-level-system and C_{2} symmetry beat dynamics

C_{2} Phasor-Character Table

antisymmetric A_{2}

	$1=r^{0}$	$r=r^{1}$
$0 \bmod 2$	1	1
$\pm 1 \bmod 2$	1	-1

Phasor C_{2} Characters describe local state beats

Initial sum

1/4-beat

2-level-system and C_{2} symmetry beat dynamics
C_{2} Phasor-Character Table

C_{2} Character Table describes eigenstates
symmetric A_{1}
antisymmetric A_{2}

Phasor C_{2} Characters describe local state beats
Initial sum

1/4-beat

1/2-beat

2-level-system and C_{2} symmetry beat dynamics

C_{2} Phasor-Character Table

Coupled Optical Pendula $E(t)$ even $+45^{\circ}$
王
C_{2}
parity

symmetric A_{1}
VS.
antisymmetric A_{2}

Phasor C_{2} Characters describe local state beats

Initial sum

1/4-beat
1/2-beat

3/4-beat

2-level-system and C_{2} symmetry beat dynamics
C_{2} Phasor-Character Table

Coupled Optical Pendula E(t)

H>

$+\cdots$

What do revivals look like?
...in per-space-time...
(... that is:
frequency $\omega_{m}{ }^{\text {radiansece. }}$
VS
k-vector $\left.k_{m \text { radian/cm }}\right)$

N-level-system and revival-beat wave dynamics

N-level-system and revival-beat wave dynamics

Possible wave velocities for
Quadratic (Bohr-Rotor) Spectrum

$$
\begin{gathered}
\omega_{m}=B m^{2} \\
k_{m}= \pm m
\end{gathered}
$$

$$
V_{\text {phase }}=\frac{\omega_{m}}{k_{m}}=\frac{B m^{2}}{m}
$$

$$
=m B
$$

N-level-system and revival-beat wave dynamics

Possible wave velocities for
Quadratic (Bohr-Rotor) Spectrum

$$
\begin{gathered}
\omega_{m}=B m^{2} \\
k_{m}= \pm m
\end{gathered}
$$

$$
\begin{aligned}
V_{\text {phase }}=\frac{\omega_{m}}{k_{m}}=\frac{B m^{2}}{m} \\
=m B
\end{aligned} \quad \begin{array}{r}
\text { Vgroup }= \\
=(m \pm n) B
\end{array}
$$

N-level-system and revival-beat wave dynamics

Harmonic Oscillator level spectrum contains the Rotor Levels as a subset
N-level-system and revival-beat wave dynamics
(Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)
1/1
$3 / 4$

$1 / 2$
$1 / 4$
N-level-system and revival-beat wave dynamics
(Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)
(4-levels $(0, \pm 1, \pm 2, \pm 3)$ (and some ± 4) excited)

N-level-system and revival-beat wave dynamics

Zeros (clearly) and "particle-packets" (faintly) have paths labeled by fraction sequences like: $\frac{0}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{1}{1}$

Time t e $t / 1$ (9 or10-levels $(0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots, \pm 9, \pm 10, \pm 11 . .$.$) excited)$

Farey Sum algebra of revival-beat wave dynamics Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics Label by numerators N and denominators D of rational fractions N / D

A Lesson in Rational Fractions N/D
 (...that you can take home for your kids!)

Farey Sum related to vector sum and Ford Circles

1/2-circle has diameter $1 / 2^{2}=1 / 4$
$1 / 3$-circles have diameter $1 / 3^{2}=1 / 9$
n / d-circles have diameter $1 / d^{2}$

C_{m} algebra of revival-phase dynamics

Quantum rotor fractional take turns at Cn symmetry

C_{m} algebra of revival-phase dynamics

Discrete 3-State or Trigonal System (Tesla's 3-Phase AC)

Discrete 6-State or Hexagonal System (6-Phase AC)
C_{6} Eigenstate Characters

Summary

Quantum rotor revivals obey wonderfully simple geometry, number, and group theoretical analysis and
as the next talk will show...

Summary

Quantum rotor revivals obey wonderfully simple geometry, number, and group theoretical analysis and as the next talk will show...
"I still don't really know... revivals ... at all."

Simulation of revival-intensity dynamics

