
HarterSoft –LearnIt Unit 6 Time-Variable Perturbation and Transistion 1

Time-Variable Perturbation

W. G. Harter



©2004 W. G. Harter  Chapter18 Time-Dependent Perturbation 18 2

Chapter 18 treats the case of weak or off-resonant fields for which a perturbation

approach to field-stimulated transitions gives an accurate picture of their dynamics.

Perturbation may be regarded as an iterative process and is simple when only the first

iteration is needed. Several famous results come from such an approximation. These

include Fermi’s Golden Rule, the TRK-oscillator strength-sum rule, and virial identities.

Relations between E•r and A•p approaches are seen, too.
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Chapter 18 Introduction to Time-Variable Perturbation

18.1 Time Dependent Potential
The following is an analysis of time dependent perturbations like E•r in (17.1.20) and more general

perturbations V(t) that are arbitrary functions of time. Perturbation theory attempts to give solutions to the

time Schrodinger equation (17.2.1b) with an explicitly time-dependent (non-autonomous) Hamiltonian.

  H(t) = H0 + V(t)= H0 + HI  (18.1.1a)

A non-autonomous Schrodinger equation is generated by the total Hamiltonian H(t).
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We represent it using a basis {|e1Ò, |e2Ò,..} of eigenstates of the unperturbed part H0 of the Hamiltonian.

 H0|ekÒ = ek|ekÒ= hwk |ekÒ  (18.1.3)

This is the same as (17.2.2) as is the expansion (17.2.5a) repeated here of the initial state in this basis.
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k

k k
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kc (18.1.4)

(a) Perturbation approximations
The next steps involve the art of a particular approximation and differ from the time-independent

formulation of (17.2.5). First, definition (17.2.5b) has variable ck(t) replacing constant ck .

Y t e c ti t
k

k
k

k( ) = ( )-Â w e (18.1.5)

The idea is that a small varying V(t) will cause a slow variation of the otherwise constant |ekÒ-expansion

coefficients ck(t) of the initial state. The comparatively rapid phase oscillation frequencies wk of the

unperturbed e-states are assumed constant; the comparatively slow variation of the state is to be entirely

accounted for by ck(t).

While the |ekÒ and ek are rarely eigenkets or eigenvalues of the total Hamiltonian H0 + HI , they do

constitute a complete set of eigensolutions of the unperturbed Hamiltonian H0 and therefore able to make

an arbitrary state |Y(t) Ò at any time. This approximation does not try to adjust either the eigenvectors or

the eigenvalues to be instantaneous eigensolutions of the total Hamiltonian H(t). That adjustment is entirely

made up by the coefficients ck(t) for which an approximate solution will now be derived.
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Assumed state |Y(t)Ò obeys Schrodinger equation (18.1.1b). The left hand side is a time derivative.
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(18.1.6)

Schrodinger equation (18.1.1) is rewritten in (18.1.7) below. It may be subtracted from (18.1.6) to cancel

the left hand time derivatives and first sum on the right hand side since H0|ekÒ equals hwk |ekÒ by (18.1.3).
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So, the second sum with the ck(t) derivative in (18.1.6) equals the second sum in (18.1.7).
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Using eigenstate orthonormality (·ej|ekÒ=djk) gives a Schrodinger-like equation for coefficients ck(t).
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The equation has oscillatory coupling involving perturbation matrix elements ·ej|V(t)|ekÒ and ei(wj-wk)t.
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Each coupling component has a phase factor oscillating at a beat or transition frequency Wjk=wj-wk..
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The (j,k)-coupling time dependence is a modulation by ·ej|V(t)|ekÒ of the transition beat phasor eiWjk.

 Vjk(t) = eiWjk ·ej|V(t)|ekÒ= ei(wj-wk)t ·ej|V(t)|ekÒ  (18.1.10c)

The time variation of the state amplitude of general state |Y(t)Ò in (18.1.5) is

 ·ek|Y(t)Ò = e-iwkt ck(t) . (18.1.10d)

Apart from its phase factor, ·ek|Y(t)Ò varies only if the coefficient ck(t) varies and that happens only if the

perturbation V(t) is non-zero. But, no matter what V(t) does, the H0 eigenstates |ekÒ and their eigenvalues

ek= hwk  are assumed constant. Only ck(t) is influenced by V(t).
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(b) Iterative perturbation expansion
To begin solving (18.1.10a) assume the initial state is a pure H0 eigenstate |ekÒ=|e1Ò, that is,

 ck(0)=dk1=ck(0). (18.1.11)

Then coupled equations (18.1.10a) simplify for a short time (t~0). The first approximation is
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The first approximation for each coefficient is given by a single integral of the perturbation component.
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The second approximation to (18.1.10a) uses the first approximation as a starting point.
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Integrating with initial value (18.1.11) gives the second iterate of each coefficient.
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The third approximate iteration is done similarly and so on for each higher one.
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The complexity of each iterative contribution increases rapidly. The situation is reminiscent of the matrix

perturbation expansion outlined in Ch. 3 by equation (3.2.5) . Carrying (18.1.15) out means summing all

possible sequences between two state-1 and state-j while (3.2.5) sums all path sequences between state-1

and itself. For a constant perturbation operator V(t)=V the integrals in (18.1.15) produce energy

denominators which are similar to those in (3.2.5).
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18.2 First-Order Perturbation Theory and Fermi-Golden-Rule
Much of quantum transition theory is based on first order approximations. These are described in

this section in a way that can be compared and improved with better approximations in later Chapters.

(a) First order iteration of dipole approximation
As is the case for matrix perturbation, time dependent perturbation gets the most mileage from its

simplest approximation, the first iteration (18.1.13). Consider a perturbation with a single time Fourier

component: a charge q sitting at point r in an x-polarized plane wave electric field E(t) = exEoei(k•r-w t+f).

  V-(t) = -q E(t)•r = -q r• exEoei(k•r-w t+f)) ~ -qEo e-i(w t-f)r• ex  (18.2.1)

If the charge is an electron (q=-|e|=1.6E-19 C) in an atom whose radius (~0.5 A=0.5E-10m) is ten thousand

times smaller than optical wavelength (0.5mm=0.5E-6m) then it is convenient to invoke the dipole

approximation (mentioned after (17.1.20a)) ignoring the small k-dependency of the plane wave.

 ei(k•r-w t) ~ e-iw  t  (for negligible k•r )  

The dipole approximation reduces the perturbation to an x-operator with an oscillating phase factor.

  V-(t)  ~ -qEo  e-i(w t-f) r• ex   = -qEo  e-i(w t-f) x (18.2.2a)

Let us define a positive frequency V+(t) that is the complex conjugate of V-(t). (Eo is real here.)

  V+(t) ~ -qEo  e+i(w t-f) r• ex  = -qEo  e+i(w t-f) x (18.2.2b)

A real standing cosine potential Vc(t) is a sum of V-(t) and V-(t).

 Vc(t)= [V+(t)+V-(t)]/2 ~ -qEo  r• ex cos(w t-f) = -qEo  x cos(w t-f) (18.2.2c)

A vector potential which would give the same field E=-∂A/∂t is the following. (Recall (17.1.12).)

 A=ex 2|a|sin(kx-w t-f)~ex  2|a| sin(w t-f)= ex |a|(-ie-i(w t-f)+ie+i(w t-f) )

 = ex (ae-iw t+ a*e+iw t )   

E-field magnitude Eo is given in terms of a complex A amplitude a and f is initial cosine phase of E.

Eo=2|a|w where:  a = -i|a| eif , (18.2.3a)

This is for later comparison with quantum fields. The corresponding A•P interaction term would be

 -(q/M)A•P~  2(q/M)|a| sin(w t-f) P• ex = Px (-q/M)(ae-iw t+a*e+iw t ).  (18.2.3b)

Let the E•r interaction Vc(t) be given in terms of a = -i|a| eif .

Vc(t) ~  -2qw |a| cos(w t-f) r• ex  = -x q ( iw  ae-iw t- iw  a*e+iw t ).  (18.2.4)

Consider now, first-order amplitudes cj(1)(t) from (18.1.13) of eigenstate |ejÒ for a system starting

out in state |e1Ò at t=0 and perturbed by a cosine potential Vc(t) in (18.2.4) above.
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The key quantities are the beats or (j¨1)-transition frequencies Wj1 and(j¨1)-dipole matrix elements rj1.

 Wj1=wj-w1. rj1 = e•·j| r |1Ò   (18.2.5b)

The three components of a dipole are labeled (x,y,z). Each are treated equivalently.  

  xj1= ex•·j| r |1Ò=·j| x |1Ò,  yj1= ey•·j| r |1Ò=·j| y |1Ò,  zj1= ez•·j| r |1Ò=·j| z |1Ò  

Using Vc(t) from (18.2.3) gives the amplitude integral expressions.
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Carrying out the integrals and inserting the amplitude a = -i|a| eif gives the following.  
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It is helpful to rewrite the amplitudes cj(1)(t) as follows (Here: Eo=2|a|w  appears again.)
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using an important spectral amplitude function S(D,t) of an angular frequency detuning parameter D
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S maximizes for D=D≠=0 if w  excites an energy increase (wj>w1) or for DØ=0 if energy drops (wj<w1).

    D≠ =Wj1 - w : (excitation: e1Æej>e1)   DØ = Wj1 + w : (de-excitation: e1Æej<e1) (18.2.5g)
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(b) The spectral intensity function and energy-time uncertainty
It is important to visualize the spectral function S(D,t) since it appears repeatedly in quantum

theory, spectroscopy, acoustics, optics, and practically any subject with oscillation. S(D,t) first appears in

this book in connection with pulse trains in Fig. 5.3.2 and wavepacket revivals in Fig. 12.2.5 to Fig. 12.2.7.

One may view S(D,t) as a function St(D) of frequency D for a fixed time parameter t or vice-versa as

a time function SD(t) for a fixed frequency D. S(D,t)=St(D) is the Fourier D-spectrum of a "box-car" function

x(t) that is constant x(t)=1 between time t=0 and time t=t  but zero (x=0) before or after. S(D,t)=SD(t) is

the zero-frequency spectral component at time t of a pure single frequency D turned on at time t=0.

Amplitude-square |cj(1)(t)|2 is a probability which includes spectral intensity functions I(D,t)

I t S t
t

D D
D

D
, ,

/

/

sin( ) ( ) ( )
( )

= =2
2

2
2

2
. (18.2.6a)

The spectral intensity function I(D,t)  is plotted versus detuning D and time t in Fig. 18.2.1. Its most notable

feature is a peak at zero detuning (D=0) soaring up as the square (I=t2) of time.

lim , lim
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I t

t
t . (18.2.6b)

Off the main peak, at non-zero-D, are lesser 4/D2-high peaks whose 2/D-amplitudes oscillate or "beat" at

frequency D/2. (Note t·D=±3p, ±5p,… peaks of diminishing heights 4/D2=4t2/9p2, 4t2/25p2,… in Fig. 18.2.1)

The central t2-peak is the biggest of these beats, but unlike its companion "beatlets", the (D=0)-peak has

zero beat frequency and infinite amplitude. It just keeps on climbing and never comes back down!

The D/2 frequency of each "beatlet" might be a source of worry since we have noted generally that a

system with two states |e1Ò and |ejÒ with frequency w1 and wj, respectively, would beat at frequency

Wj1=wj-w1=D, not at D/2. But, as should be the case, Wj1=D is the frequency of the probability

 |cj(t)|2~ sin2(tD/2)=(1-cos(tD))/2. (18.2.7)

Meanwhile the amplitude cj(t)~sin(tD/2) has the half-frequency D/2. Recall (2.3.14) for similar situations.

Infinite or near infinite amplitudes are a bigger source of worry here. No probability value |cj(t)|2

should exceed 100% or unity (cj(t)£1) let alone approach infinity! Indeed, the |cj(1)(t)|2 values are only the

first order approximate iteration (18.2.5). Low-D-high-t amplitudes cj(1)(t) need to be fixed by (at least)

higher order approximations cj(2)(t), cj(3)(t),... in order to make accurate predictions for longer time or finer

detuning frequency D. However, as we’ve noted before, perturbation theory often becomes a doomed

enterprise of dark arts and crafts. An alternative quasi-exact solution will be discussed in Chapter 19.

(Compare Fig. 18.2.1 with a deceptively similar Fig. 19.1.4)
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   t .D =  +2p�
Uncertainty
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 +2p

Fig. 18.2.1 Spectral intensity function I(D,t) for first order iterate.

The zeros of I(D,t) nearest to D=0 are at tD/2=±p and define a time-frequency uncertainty relation

 t·D = (Dt)·(Dw) = ±2p . (18.2.8)

The longer time t=Dt that the perturbation acts, the less the width D=Dw of the main peak. From Planck’s

energy-frequency axiom E=hw  arises the Heisenberg time-energy uncertainty relation

 Dt·DE = ±2ph =±h. (18.2.9)

The longer the time t=Dt allowed for a transition, the smaller the tolerance DE for w-deviation or "non-

conservation" of energy. Extremely short times yield a broad energy spectral peak whose bounding zeros at
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D = ±2p/t will, as time t advances, converge as they follow a pair of hyperbolas asymptotic to the t-axis and

D=0 line in Fig. 18.2.1. The hyperbolas appear to "squeeze" or focus the peak.

The fringe "beatlet" peaks on either side of the main one are left out of this uncertainty relation.

They are a small but non-zero part of the total probability spectrum. However, the fringes are an artifact of

the "sharp-turn-on" of the perturbation V(t) at initial time t=0. They are analogous to the ringing fringes of

the sin(Kcutx)/x wave in Fig. 12.2.2 associated with a sharp cut-off of the energy spectrum. Fringes go away

for more realistic cut-off that are more gradual as was seen by comparing the ringing fringes of a "box-car"

spectrum in Fig. 12.2.7 with a smooth Gaussian spectrum in Fig. 12.2.8 which has no fringes.

(c) Fermi's "Golden Rule"

It is interesting to note that, for short time (t~0) intensity rises as I=t2 for a range of D inside a pair

of uncertainty hyperbolas (-2p/t< D < ±2p/t). All energy states get an initial "t2-jolt" no matter how far

they are detuned from resonance, another artifact of a diabatic or "sudden" turn-on. As shown in Fig.

18.2.2, the t2-rise continues for a decreasing range around D=0 since greater-|D| amplitudes succumb more

quickly to their assigned D-beating. This leaves a decreasing number 2p/t of peak D-values still on a t2-rise.

So I-peak area in Fig. 18.2.2 varies as the product of its squeezing base D=2p/t and soaring height t2

increasing linearly something like 2pt. So does total transition probability S(t) according to famous "golden-

rules" of atomic transitions. Such rules are quantified by investigating the frequency D-integral S(t) of I(D,t).
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The time derivative of the frequency integral S(t) is more calculus-friendly.

d t

dt
d

t t
d

tS D
D

D D

D
D D

D
D

, / /

/
/

sin cos sin( ) ( ) ( )
( )

( )
= =

-•
•

-•
•

Ú Ú
2 22 2

2
22 . (18.2.10b)

This is reduced to contour integrals and evaluated using Cauchy’s theorem f a
i

f z
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. (See exercise.)

d t

dt i
dz

e

z i
dz

e

z

itz

C

itz

C

S D,( )
= - = pÚ Ú

-1 1

1 2

2 . (18.2. 10c)

This gives the mathematical basis for Fermi’s golden rule for constant transition rates.
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Fig. 18.2.2 Time dependence of spectral intensity function and area.

Only one S-term of (18.2.5e) can resonate. The S(D≠,t)-term peaks at w=wj-w1 when D≠=wj-w1-w  is

zero as it must be for upward (wj>w1) transitions. For downward (wj>w1) transitions, the S(DØ,t)-term

peaks at DØ=wj-w1+w =0 or w=w1-wj. The latter follows a golden rule if sum Sj=SjDnj over final states-j

finds uniform energy state density dnj/dD near D ~0. Then total transition rate R is dS(t)/dt=2p  times a

constant which is a product of rj1 and dnj/dD evaluated near the resonant S(0,t) peak at w=W1j=w1-wj.
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Upward rates are golden if perturbation E0(w) has a uniform spectrum near a resonance w=Wj1=wj-w1.
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Rate constancy needs some sort of quasi-continuous spectrum so the many beats will cancel each other and

not contribute spurious coherent oscillation.

Constant rate R means constant drainage out an initial state |e1Ò through matrix element rj1 to a final

state |ejÒ as long as the perturbation is in effect. So if, for example, the rate R is one transition per 106

seconds for each atom, a bottle of N(0)=106 atoms would make a quantum counter go "click.click...click.

click ...click.." at the average rate of one click per second whenever the perturbation is turned on. That is an
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average rate. Don’t try to set a clock using quantum clicks unless you are willing to average over an

enormous number of them. Each click only comes when it’s good and ready to come!

But if the perturbation is left on the click rate must go down as the population ‘dies off.” Only if

one somehow replaces the “live” states will the observed rate remain constant. More precisely, N(0) atoms

in state |e1Ò at t=0 leaves N(t)=N(0)e-Rt atoms in state |e1Ò at time t with an instantaneous "click" rate of

N(t)R=N(0)Re-Rt. A constant relative rate R gives pure e-Rt exponential decay rate in a decay experiment.



HarterSoft –LearnIt Unit 6 Time-Variable Perturbation and Transistion 18-11

18.3 Classical Lorentz vs. Quantum Oscillator response
It is instructive to compare classical and quantum-semi-classical oscillator response to harmonic

perturbation. This tests E•r versus A•p interactions and shows what are the classical correspondences of

amplitude cj(1)(t) and the beat frequency Wj1=wj-w1. We also see how the multiplicative or parametric

resonance of quantum theory yields the additive or linear (Lorentz) resonance of classical oscillation.

 (a) Classical Lorentz response
The following is a classical equation for a charge-q and mass-M harmonic oscillator of natural

frequency w0 stimulated by an E-field of frequency wS.

˙̇ cosx x
qE

M
tS+ = ( )w w0

2 0 (18.3.1a)

The solution to this equation for zero initial position or velocity (x(0) =0= v(0)) is as follows.

 x t
qE

M

t t
classical

S

S
( )

cos cos
=

-
-

0 0

0
2 2

w w
w w

(18.3.1b)

Now this is compared with the corresponding quantum physics of harmonic resonance due to a field

 Vc(t)= -qEo  cos(w t-f) x . (18.2.2b)repeated

(b) First-order semi-classical response

The general perturbed state (18.1.5) is repeated below and expanded to first order for c1(1)(t)=1.

Y t e c t
i t

j
j

j
j( ) = ( )-Â w e (18.1.5)repeated

         ,  where:  @ + ( )
Ê

Ë
ÁÁ

ˆ

¯
˜̃ = -- -

π
Âe e c ti t i t

j j
j

j j
jw e e w w1 1

1
1

1 1
W W (18.3.2)

The first order iterate for a harmonic perturbation of frequency w is given by (18.2.5d) repeated here.
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h
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(18.2.5d)repeated
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r E e ej j
0

2

1 1
h

W W
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(18.3.2)

Then Eo=2|a|w  from (18.2.3b) is used with f=0 to match the E-field of (18.2.2b) to (18.3.1a) above. The

preceding two approximations are now used to estimate the coordinate expectation value ·Y|x|YÒ.
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  ·xÒ=·Y|x|YÒ =
jπ
Â

1

e-iWj1t cj(t) r1j + 
¢π

Â
j 1

e+iWj’1t c*j’(t) r*1j’ = 2Re 
jπ
Â

1

e-iWj1t cj(t) r1j   

where:  ·j|x|1Ò =  rj1 =  r*1j and: Wj1=wj-w1  (18.3.3)

We assume a zero initial (ground state-|1Ò) position value. (·1|x|1Ò=0) Also, we neglect second order terms

cj(t)c*j’(t) rj’j in a first order calculation. Putting c1(1)(t) from (18.3.2) in the ·xÒ expression gives
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(18.3.4a)

This resembles the classical response equation (18.3.1b). Sum restriction jπ1 is automatic since W11=0.
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(18.3.4b)

(c) Oscillator strength
Factors of the corresponding xclassical in (18.3.1b) and quantum ·xÒ above are isolated.
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cos cosw

w (18.3.5a)

Each classical response term has a natural frequency w0 that is the Lorentz-atomic-oscillator frequency

  w0 =Wj1=wj-w1. (18.3.5b)

This is the (j¨1)-transition frequency Wj1 or quantum beat. Each is driven by stimulus frequency wS.

  wS=w.   (18.3.5c)

Each Lorentz oscillator responds with a certain (j¨1)-oscillator strength fj1 defined here.

  
 1

1 1
f

r M
j

j j
=

2
2

W
h

(18.3.5d)
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    (1) Harmonic oscillator
The following uses some facts about the quantum 1D-harmonic oscillator which are derived in

Chapter 20.For a harmonic oscillator potential (V(r)=1/2w2r2) the only fj1 arising from the (j=1)-state

|u=0Ò is from (j=2)-state, that is, the first excited state |u=1Ò. The oscillator dipole matrix is derived in

(20.3.8).

r
M Mu uu u

w
d0 1

0 1
0 0

2 2
= = + =x a a†

,

h h

W
   ,  So: fu,0=d u,1  (18.3.6)

Therefore (18.3.5a) for ground state excitation reduces to a single ( f1,0=1)-term (j=1 means u=0 and j=2

means u=1.) equal to the classical response, that is, ·xÒ=xclassical is true exactly.

The quantum result is exactly the classical one despite the fact that it is based on a first order cj(1)(t)

approximation! We know that the cj(1)(t) approximation is wrong near its central peak since it blows up.

How can such an untrustworthy quantum result come up with an exact classical one?

The classical result blows up at resonance (wS=w) but legitimately so. To approximate near-

resonance behavior of any quantum system one needs higher-than-first-order approximations. This is

particularly the case for a harmonic oscillator whose quantum (u+1¨u) transitions all have the same

frequency (w=Wu+1¨u) and therefore are all in resonance at once. After the first excited state |u=1Ò

acquires an amplitude from the ground state |u=0Ò there will begin a transition to |u=2Ò, then |u=3Ò, and so

on, as each (u+1¨u) pair contributes oscillator strength to the ·xÒ-value near resonance (wS=w).

No such problem arises if the stimulus is far enough from resonance. The first order theory accounts

for the beats, which for a cold oscillator, consist solely of the (1¨0) beats plotted in Fig. 18.2.1.

While an oscillator potential 1/2w2r2 restricts oscillator strength to (u+1¨u)-transitions between

neighboring pairs of levels, other potentials V(r) may have strength in general (k¨j)-transitions. If so, the

first order response (18.3.5a) has multiple interfering terms contributing to ·xÒ. Even so, if the stimulus w is

close to a particular resonance Wj1 with a non-zero oscillator strength fj1 (but not close enough to ruin the

first-order approximation) then the fj1-term in the sum will dominate as 1/(Wj12-w12) blows up.

(d) Thomas-Reiche-Kuhn sum and virial identities
It turns out that a sum of oscillator strengths is invariant to choice of potential. The sum is Sjfj1=1

for an oscillator by (18.3.6). The general sum in question is like the one in (18.3.5a) sans xclassical.
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1
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= = =

Â Â Â= =W W* / /h hx x (18.3.7)

An x-matrix element is related to a p-matrix element using commutation [p,x]=h/i with H0=p2/2M+V(x).

  [H0 , x] = [ p2, x ]/2M = h p/Mi  (18.3.8)

Now the definitions H0|  jÒ =hwjH0|  jÒ and Wj1=wj-w1 are used with this commutation.

  ·j |  p| 1Ò = Mi ·j |  [H0 , x]| 1Ò/h = Mi (wj-w1)·j |  x| 1Ò = MiWj1 rj1   

The resulting replacements

 ·j |  x| 1Ò = ·j |  p| 1Ò/(MiWj1)   or:   ·1|  x| j Ò = ·1|  p| j Ò/(MiW1j) = -·1|  p| j Ò/(MiWj1) (18.3.9)

then yield the Thomas-Reiche-Kuhn sum rule for oscillator strength. This holds for any H0 eigenstate | 1Ò.

f j j i i ij
j j

1
1 1

2 1 1 2 1 1 2 1 1
= =

Â Â= = = -x p xp px/ / /h h h =1 (18.3.10a)

A corollary of the TRK rule is the virial identity that also holds for any H0  eigenstate | mÒ.

 ·m|  xp| mÒ = hi/2 = - ·m|  px| mÒ      (18.3.10b)

The time derivative of the virial matrix element is zero. Schrodinger’s equation ˙ /m i m= - hH  gives

  
0 = = + = - = [ ]∂

∂ t
m m m m m m

i
m m

i
m m

i
m mxp xp xp Hxp xpH H xp˙ ˙ ,

h h h

For a power-law-potential Hamiltonian H=p2/2M+V.xP the commutation reduces as follows.
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From this follows a quantum eigenstate virial theorem which is similar to the classical viral theorem.

KE m
M

m
P

m V m
P

PEP= = ◊ =
p

x
2

2 2 2
(18.3.10c)

Interference terms am*an ·m|H|nÒ in ·Y|H|YÒ matrices for mixed state |YÒ=Sam|mÒ give beating ·KE(t)Ò and

·PE(t)Ò which disobey the virial theorem. However, if averages of am*an  may be assumed to be zero for

mπn this leaves only the diagonal probabilities P(n)=an*an=|an|2. Then an averaged virial theorem still

holds for a randomized ensemble of mixed states, and the classical result is recovered.

KE
M

P
V

P
PEP= = ◊ =Y Y Y Y

p
x

2

2 2 2
(18.3.10d)

For the harmonic oscillator (P=2), average kinetic energy ·KEÒ average potential energy ·PEÒ are equal.
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(e) A•P interaction again
One might inquire what the oscillator response ·xÒ would be if the -qA•P/M perturbation from

(17.1.21a) is substituted for the -qE•r interaction of (17.1.21b) used in the preceding equation (18.2.5). We

have been using (18.2.4) which is repeated below. (Recall amplitude definition: w  a = -iw |a| eif  )

     -qE•r~    -2qw |a|r• ex cos(w t-f)     = x q (iw  ae-iw t- iw  a*e+iw t ).  (18.2.4)repeated  

to derive the following dipole interaction matrix element which then was used to calculate response.

     -·j|qE•r|1Ò     =  ·j|x|1Ò q (-iw  ae-iw t+ iw  a*e+iw t ).  (18.3.11)

Instead, for the same electromagnetic field E=-∂A/∂t, consider using the following interaction

 -(q/M)A•P~  2(q/M)|a|P• ex  sin(w t-f)= Px (-q/M)(ae-iw t+a*e+iw t ),  (18.2.3b)repeated

which gives the following dipole interaction matrix element.

 -·j|(q/M)A•P|1Ò =  ·j|Px|1Ò (q/M)(-ae-iw t- a*e+iw t )  (18.3.12a)

The momentum matrix can be related to the position dipole using · j |  p|1Ò =MiWj1· j |  x|1Ò from (18.3.9).

 -·j|(q/M)A•P|1Ò =  ·j|X|1Ò (qiWj1)(-ae-iw t- a*e+iw t )  (18.3.12b)

  =  ·j|X|1Ò q(-iWj1ae-iw t-iWj1a*e+iw t )  (18.3.12c)

Comparison of (18.3.11) to (18.3.12c) reveals a discrepancy in factors of the form ±w /Wj1 and dispels any

notion that -qE•r and -qA•P/M are equal. However, for an excitation resonance (w =Wj1) the first terms

will match and for a de-excitation resonance (w =W1j=-Wj1) the second terms will match. So golden rule

rates, which are insensitive to coherence between the terms, might incorrectly suggest equality of -qE•r and

-qA•P/M. Such a coincidence sets a trap into which many have fallen, but attempts to use -qA•P/M to

derive coherent response fails if the (X,P)-(x,p) transformation (6.2.21) is ignored.

For convenience we collect here a summary of classical dipole fields E=-∂A/∂t:

  E=  2w |a|ex  cos(w t-f) =  (iw  ae-iw t- iw  a*e+iw t )ex   where: w a = -iw |a| eif = -iEo/2 eif   

  A=-2|a|   ex  sin(w t-f) = (     ae-iw t +    a*e+iw t )ex    (18.3.13)

This will be compared to very similar looking expressions for quantum fields in which the amplitudes E,

A, and a are replaced by operators. Sometimes such a replacement is given an oxymoronic label of

second quantization. This is a result of the long history of semi-classical treatments of particles

(quantized nuclei, atoms, molecules, solids, etc.) in fields (classical electromagnetic fields) which has

been so useful. The idea is that a “second coming” is needed to “fix up” the field, too. This is ironic in
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light of the fact that quantum theory owes its very existence to Planck’s hypothesis of electromagnetic

quanta.

As we will see, one needs to regard the particles and field as a single spacetime quantum system.

Classical reductionism goes only so far before it becomes misleading and paradoxical. A first step

toward such a re-en”light”enment is a non-perturbative treatment of a radiation field interacting with just

two levels of an atom, molecule, or a single spin-1/2 of an electron, nucleon, atom, molecule, solid, etc.

In the next section we revisit the ABCD formulation from Chapters 9 and 10 of two-level U(2)

quantum states. The difference now will be that one or more of those A, B, C, or D parameters can

wiggle in time and even be controlled from the outside. Indeed, it’s more semi-classical theory but one

with a twist!
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Problems for Chapter 18.

Golden Cauchy Potato

18.2.1 Use Cauchy’s theorem to verify the Fermi Golden Rule (18.2.10) for constant transition rates. Show

relevant integration contours and explain your steps.

Beat to death

(a) Compare the relative heights of 0th , 1st, 2nd, ….Nth beat probability peaks in Fig. 18.2.1.

(b) Use whatever means to deduce the probability versus time to be under the 0th beat peak in Fig. 18.2.1.

(Only numbers and time t are allowed in your answer!)

(a) Compare the relative probabilities under 0th, 1st, 2nd,3rd  beat peaks in Fig. 18.2.1. How does that relative

distribution vary with time?

Jailhouse Rock’round the Clock

18.3.1 In Problem 18.1.1 (Jailhouse Rock’n Roll) prisoner-M is in the infinite-well maximum security prison

of Chapter 12 suffering from an Earthquake (caused perhaps by a heavy-metal rock band) that seems to go

on forever. M remains in any of its eigenstates only in the absence of perturbations. But now the prison

floor tilt angle varies: f= flimit sin(wrockt) giving Vrock’n roll(x) of Proplem 18.1.1. Use that here.

Discuss transition from the ground state |e1Ò to |emÒ stimulated by frequency wrock of amplitude

flimit =p/10. Consider cases: wrock = e1 (=1 in theorist h=1 units) , 2 e1 , 3 e1 , 4 e1 .

 (a) Using only the first term in Vrock’n roll(x), derive first order transition amplitudes c(1)
m.

(b) Derive the resulting expectation value ·xÒ of position if M is “waked up” from its ground state.

(c) Derive the resulting expectation value ·pÒ of momentum if M is “waked up” from its ground state.

(d) Discuss the Thomas-Reiche-Kuhn sum rule and the Virial Theorem for the prison.
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