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Unit 6
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In preceding Units 3-5 quantum motion is generated by a constant Hamiltonian H-

matrix or operator H. This Unit 6 introduces Hamiltonian operators H(t)  with explicit

time dependence. For classical Hamiltonians, explicit time dependence requires some

care, and for quantum Hamiltonians, time dependence requires extreme care. The first

examples of time varying quantum perturbations are electromagnetic ones, and they

are compared to corresponding classical Lorentz resonance and oscillator strength.

Some shortcomings of perturbation theoretic approximations are noted and some more

exacting remedies are introduced for two-state systems introduced in Chapter 10 of Unit

4. Two kinds of oscillatory perturbation introduced in Chapter 17, additive or linear and

multiplicative or parametric, are discussed and compared.
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A Resonance Hero – Ken Evenson (1932-2002)

When US soldiers punch up their GPS coordinates they may owe there lives to an under sung

hero who, alongside his colleagues and students, often toiled 18 hour days deep inside labs lit only by the

purest light in the universe.

Let me introduce an “Indiana Jones” of modern physics. While he may never have been called

“Montana Ken,” such a name would describe a real life hero from Bozeman, Montana, whose

accomplishments in many ways surpass the fictional character in Raiders of the Lost Arc and other

cinematic thrillers.

Indeed, there were some exciting real life moments shared by his wife Vera, one together with

Ken in a canoe literally inches from the hundred-foot drop-off of Brazil’s largest waterfall. But, such

outdoor exploits, of which Ken had many, pale in the light of an in-the-lab brilliance and courage that

profoundly enriched the world.

Ken is one of few researchers and perhaps the only physicist to be listed twice in the Guinness

Book of Records. The listing is not for jungle exploits but for his lab’s highest frequency measurement

and their speed of light determination that made it many times more precise. Then the meter-kilogram-

second (mks) system of units underwent a redefinition largely because of Ken’s efforts. Thereafter, the

speed of light c was defined as 299,792,458ms-1. The meter was defined in terms of c, instead of the

other way around since the time precision had thoroughly trumped that of distance. Without such

resonance precision, the Global Positioning System (GPS), the first large-scale wave space-time

coordinate system, would have been impossible.

Ken’s courage and persistence at the Time and Frequency Division of the Boulder Laboratories

in the National Bureau of Standards (now the National Institute of Standards and Technology or NIST)

are legendary as are his railings against boneheaded administrators who seemed bent on thwarting his

best efforts. Undaunted, Ken’s lab painstakingly exploited the resonance properties of metal-insulator

diodes, and succeeded in literally counting the waves of near-infrared radiation and eventually visible

light itself.

Those who knew him will always miss Ken. But, his indelible legacy of persistence lives on as ultra-

precision atomic and molecular wave and pulse quantum optics continue to advance and provide mankind

with heretofore-unimaginable capability.
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Kenneth M. Evenson – 1932-2002
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QM
for

AMOPY
Chapter 17

Classical Electromagnetic

Perturbation

W. G. Harter

The most common perturbation is the electromagnetic field that is a practically ubiquitous

occupant of spacetime. In spite of its overt or covert prevalence in virtually every experiment

in physics, there are important aspects that often are misunderstood or not even discussed at

all. This Chapter 17 introduces classical and semi-classical aspects of electromagnetic

perturbations so they may be properly applied to quantum theory of atomic transitions in

Chapters 18 and 19 and to quantum field theory in later Chapter 22. This includes the tricky

problem of “gauge-boost” transformations and discussions of how linear additive Lorentz

resonant perturbation differs from multiplicative or parametric resonance that underlies time-

dependent quantum theory.
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Unit 5 Time-Variable Perturbation and Transition

Chapter 17 Classical Electromagnetic Perturbation

"Let there be light!" There is no single piece of physics that appears to be more significant than

appearance itself. Without light and optics we are quite literally in total darkness. The same might be said

for our understanding of quantum theory; the most elementary and visualizable quantum waves are

electromagnetic waves. Light waves are indispensable to the development in the first two chapters of this

book. So also have they been since Planck and Einstein wrote the energy-frequency equivalence relation

E=hw and applied it to black-body radiation, photo-electric effects, or optical spectroscopy in general.

Just as classical electrodynamics (CED) of Maxwell, Lorentz, Gibbs, and others is one of the most

significant achievements of the 19-th century, so must also be, for the 20-th century, the development of

quantum electrodynamics (QED) by Feynman, Schwinger, Tomonaga and many others. A prerequisite to

discussing perturbations of quantum systems by light is basic classical and quantum electro-magnetic

interactions. However, such basics are far from trivial, and right away we run into complications!

17.1 Classical Mechanics of Electromagnetic Theory
(a) Classical electromagnetic Lagrangian

Newton’s equations combined with Maxwell’s definitions for electromagnetic fields E and B are first

cast into a Lagrangian form, admittedly an unfamiliar one for many modern students. It starts with a

familiar Lorentz pondermotive form for Newton’s F=Ma= =M M˙ ˙̇v R equation for a mass M of charge e.

M
d

dt
e

v
F (E v B)= = + ¥ (17.1.1)

Velocity is v R= ˙ . First, the electric field E and the magnetic field B are expressed in terms of scalar

potential field F=F(R,t) and a vector potential field A=A(R,t) using conventional Maxwell’s definitions.

E
A

B A= -— - ∂
∂

= — ¥F
t

,        (17.1.2)

Combining the preceding two equations gives

M
d

dt
e

t
e

t

v
F

A
v A

A
v A v A= = -— -

∂
∂

+ ¥ — ¥( )È
ÎÍ

˘
˚̇

= -— -
∂
∂

+ — ∑ - ∑—È
ÎÍ

˘
˚̇

F F ( ) ( ) . (17.1.3)

The objective is to recast F=Ma to a canonical form involving a Lagrangian function L=T-V,

canonical momentum P=∂L/∂v, and Lagrange equations ˙ /P R= ∂ ∂L . (Gradient —  is just ∂ ∂/ R.)

d

dt

L L
L L T V mv V

L∂
∂

=
∂
∂

= — = - = - =
∂
∂v R

P P
v

,  or: ,  where:  and: ˙ ,
1
2

2 (17.1.4)
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A chain rule expansion of vector potential derivative is needed. Note "convection" ( )v A∑—  term.

d

dt x
x

y
y

z
z

t t

A A A A A A
v A=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+ ∑—˙ ˙ ˙ ( )

Combining this with the pondermotive equation (17.1.1) simplifies the F=Ma equation (17.1.3).

M
d

dt
e

t
e

d

dt

v
v A

A
v A v A

A
= -— + — ∑ -

∂
∂

- ∑—È
ÎÍ

˘
˚̇

= -— - ∑ -È
ÎÍ

˘
˚̇

F F( ) ( ) ( ) (17.1.5a)

The trick is to let -A be 
∂
∂

- ∑( )
v

v AF . (A and F are velocity independent.) Also, let Mv be
∂
∂

∑
v

v vM

2
.

d

dt
M

d

dt
e e e e

∂
∂

∑ =
∂
∂

- ∑( ) - — - ∑
v

v v
v

v A v A
1
2

F F( ) (17.1.5b)

In this way the canonical electromagnetic Lagrange equations emerge.

d

dt

L d

dt
M e e e e

L∂
∂

=
∂
∂

∑ - - ∑Ê
ËÁ

ˆ
¯̃ = — - ∑ =

∂
∂v v

v v v A v A
R

1
2

( ) ( )F F (17.1.5c)

Here the electromagnetic Lagrangian is

L L t M e t e t= = ∑ - - ∑( )( , ) ( ) ( )R,v v v R, v A R,
1
2

F (17.1.5d)

The canonical electromagnetic momentum is defined according to (17.1.4).

P
v v

v v R, v A R, v A R,=
∂
∂

=
∂
∂

∑ - - ∑( )Ê
ËÁ

ˆ
¯̃

= +
L

M e t e t M e t
1

2
F( ) ( ) ( ) (17.1.5e)

Without the magnetic vector potential A=A(R,t) the Lagrangian has the usual form L= T - V with a electric

(scalar) potential V=eF(R,t) and momentum P reduces to the usual Mv.

However, for non-zero vector potential the -ev.A term acts as a velocity dependent "potential" to

give a screwy canonical momentum P in (17.1.5e). The particle momentum Mv is related to P as follows.

M e tv P A R,= - ( ) (17.1.6)

Canonical momentum P=∂L/∂v boggles Newtonian intuition. But it makes quantum sense! Phase S of a

wave y(x,t)=eiS/h|y(0)| is Hamilton’s Principle Action S=SP=ÚLdt and integral of Poincare’s invariant dS.

 dS = L dt = P•dR - H dt   (17.1.7a)

H is the Hamiltonian. The chain rule implies that P is the gradient of S and H its (-t)-derivative.

 P=∂S/∂R    ,  H=-∂S/∂t   (17.1.7b)

These are the Hamilton-Jacobi equations (5.3.3); a classical "derivation" of quantum operator relations:

 P=(h/i)∂/∂R gives: Py=(P)y=(∂S/∂R)y ,  H=(h i)∂/∂t gives: Hy=(H)y=(-∂S/∂t)y  .

(b) Classical electromagnetic Hamiltonian
The Hamiltonian function is defined by inverting Poincare’s phase invariant as in the following:
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 H dt = P•dR - L dt  or:  H = P• v - L , (17.1.8a)

As before, velocity is v R= ˙ . Inserting the Lagrangian L from (17.1.5d) gives the Hamiltonian H.

     

H L m e t
m

e t e t

m
e t

= ∑ - = +( )∑ - ∑ - - ∑( )Ê
ËÁ

ˆ
¯̃

= ∑ +
Ê
ËÁ

ˆ
¯̃

P v v A R, v v v R, v A R,

v v R,

( ) ( ) ( )

( )

2

2

F

F                                              
Numerically

correct

  (17.1.8b)

The vector potential eA cancels leaving a familiar H=T+V where V is just a scalar potential eF. But, H is an

explicit function H(P,R) of canonical momentum P, not of velocity v like a Lagrangian L(v,R). This formality

is needed to rewrite Lagrange (and Newton) equations as Hamilton’s equations by (17.1.8a).

∂
∂

= -
∂
∂

∂
∂

= -
∂
∂

= -
∂
∂

= -
∂
∂

= = - = =

H L H L H L dH

dt

L

tv
P

v r R P
v

P
P v R

, , ,

, ˙ , ˙

                .

                                              . 

0

0

∂
∂ (17.1.9)

So the H equation (17.1.8b) in v is correct numerically, only. Velocity v by (17.1.6) in terms of momentum P

gives the formally correct electromagnetic Hamiltonian function for charge e of mass M.

H
M

e t e t e t= -( )∑ -( ) +
Ê
ËÁ

ˆ
¯̃

1
2

P A R, P A R, R,( ) ( ) ( )F      
Formally

correct
(17.1.10a)

The result expands into a more complicated but still formally correct Hamiltonian.

H
M

e

M

e

M
e t=

∑
- ∑ + ∑( ) + ∑ +

P P
P A A P A A R,

2 2 2

2
F( ) (17.1.10b)

Hamilton’s equations (17.1.9) then follow. The Ṙ equation just relates Ṙ v=  to P. (Recall (17.1.6).)

v R
P

P A R,
= =

∂
∂

=
-˙ ( )H e t

M
(17.1.10c)

The Ṗ  equation uses 3D-index notation (m=x,y,z) to avoid confusing — ∑( )P A  and ( )P A∑— .

Ṗ
H

x x

P eA

M
e

x

P eA

M
e

A

x
e

xa
a a a a a

= -
∂
∂

= -
∂
∂

-( )
-

∂
∂

=
-( ) ∂

∂
-

∂
∂Â Âm m

m

m m m

m

2

2
F F

(17.1.10d)

We use (17.1.2) to express F in terms of E and A, and (17.1.4) to give P in terms of v.

Mv eA e v
A

x

A

t
Ea a

a

a
a˙ ˙+ =

∂
∂

+
∂
∂

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â m

m

m
(17.1.10e)

Index notation for total time derivative (17.1.4) of A is

Ȧ v
A

x

A

ta
a a= ∂

∂
+ ∂

∂Â m
mm

. (17.1.4)repeated

Finally, an equation for particle momentum is found by combining the preceding two equations.
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Mv e v
A

x
v

A

x
Ea

a

a
a˙ =

∂
∂

-
∂
∂

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â m

m

m
m

m
(17.1.11)

The result cancels out the partial time derivative of the vector potential A and is the same as the simple

Newtonian equations (17.1.1-3). The Lagrangian and Hamiltonian forms have no obvious advantage if you

just need Cartesian equations of motion. But, the Hamiltonian form wins for curved coordinates and for

deducing symmetry and conservation laws. Also, both L and H lead to theoretical insight for relativity,

quantum theory, and other areas where Newtonian theory seems quite clueless. (Recall Sec. 5.3.)

(c) Classical plane wave perturbations
Understanding the electromagnetic perturbation terms A•P or A•A in (17.1.10b) is helped by first

considering an electron or other charge e in a radiation field of a monochromatic plane standing wave.

A e= -( )x a kz t2 sin w (17.1.12a)

The electric E and magnetic B-fields are given by Maxwell’s definitions (17.1.2).

E
A

erad
xt

E kz t E a= - = -( ) =
∂
∂

w w0 0 2cos ,  where: (17.1.12b)

B A k erad
xB kz t B a k= — ¥ = ¥ -( ) =0 0 2cos w ,   where: (17.1.12c)

Let us assume for a moment the scalar potential F associated with the radiation field is zero. This is

a well-known transversality, Coulomb, or transverse gauge convention. It comes at a price: lack of

relativistic covariance associated with arbitrarily zeroing the time-like component F of the 4-vector

potential (Am)=(F, cA). This means zeroing all field divergence where no charge density r =————•Ee0  exists.

—∑ = —∑ =E Arad 0 0  ,         (17.1.13a)

For an arbitrary plane wave A(R,t)=|a|ei(k•R-w t) this means fields A and E are transverse to wavevector k.

k E k A∑ = ∑ =rad 0 0  ,         (17.1.13b)

Transversality (17.1.13.a) conveniently makes the quantum operator P=(h/i)∂/∂R=(h/i)———— on A give zero.

 P•A=0     (17.1.14a)

So, the perturbation terms P•A and A•P both have the same effect even if A is a function of position R.

 P•Ay=A•Py     (17.1.14b)

Transversality sets Frad=0 in a Schrodinger equation for a mass-M-charge-q particle.

i
t

H
q

M
V

i q

M
Vh

h∂y
∂

y y y= =
-( ) + ( )

È

Î
Í
Í

˘

˚
˙
˙

=
— -( ) + ( )

È

Î
Í
Í

˘

˚
˙
˙

P A
R

A
R

2 2

2 2

/
. (17.1.15a)

As noted in Ch.2-3, Schrodinger’s equation is non-relativistic. It expands as follows, using (17.1.14).
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i
t M

i
q

M

q

M
Vh

h h∂y
∂

y=
- —

+ ∑— + ∑ + ( )
È

Î
Í
Í

˘

˚
˙
˙

2 2 2

2 2
A A A R . (17.1.15b)

The residual scalar potential V(R) is meant to account for forces other than the radiation field arising from a

nucleus, atom, molecule, or solid. Its presence further spoils relativistic symmetry.

(d) Change of picture: Boosts and gauge change
The A•P and A•A perturbations in Schrodinger equation (17.1.15b) are regarded as unnecessarily

complicated for non-relativistic atomic physics. Therefore, a change-of-basis transformation is done to

relate momentum P to a p which is Newtonian particle momentum Mv by (17.1.6) or (17.1.10c). A

transformation B is found which adds qA to momentum p = P-qA to give P and vice-versa for B†.

    BpB†=B(P-qA1)B†=P=p+qA1 (17.1.16a)  B†PB=B†(p+qA1)B=p=P-qA1 (17.1.16b)

The B transformation was found by Synder and Richards (1948). We now consider their definition.

  B = e-iqA•r/h   (17.1.16b)

(A classical transformation was given earlier by Marie Geopert-Mayer (1931). e-iqA•r/h was generalized by

Power, et. al. (1976). Later in Sec. (g), B is related to a (A,F)-gauge transformation of Maxwell’s

equations.) Here we explain B in simpler terms: B is a uniform boost by (-qA) of momentum if A is R-

independent, otherwise, it is a non-uniform boost or "squeezing" operator. An up-boost B†= e+iqA•r/h by

(+qA) of coordinate basis {|RÒ..} to {B†|RÒ=|rÒ..} is defined and discussed below.

     Quantum translation operators
To understand quantum translation in space, let’s make an analogy with translation in time that by

Chapter 8 is done by a time evolution operator U(T). Equation (9.2.5c) in Chapter 9 gives U as U(T) = e-

iTH/h where H is the Hamiltonian generator of time translation. By Planck’s axiom E= hw , the energy

operator H relates to frequency (per-second) operator H/h through Planck’s h-constant, and by definition

(9.1.1), U advances time: U(T)y(x,t)= y(x,t+T). Now consider space translation.

By analogy space translation operator T(R) = e-iRP/h should use momentum P to generate

coordinate translation. Momentum operator P relates to wavevector (per-meter) operator K=P/h by

DeBroglie’s relation p= hk. So, does T translate? Is T(R)y(x,t)= y(x-R,t) ?

The quickest test of a translation operator is on a plane wave y(x,t)=ei(kx-w  t) where you see a sign

difference between space (y(x-R,t) is shifted by positive R.) and time. (y(x,t+T) is ahead by positive T.) The
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effect of T(R) = e-iRP/h on ei(kx-w  t) is to apply the P/h=K=k representation e-iRk which shifts by R.

P’s coordinate representation P/h=-i∂x does the same thing, but requires writing out a Taylor series.

  
T( )

!
.../R x e x R

x

R

x
x RiRPy y

∂y
∂

∂ y
∂

y( ) = ( ) = - + - = -( )- h 1
2

2 2

2

A rule emerges: Add R to quantum variable Q by exponential e-iR / hP of its per-Q-operator P times -iR/h. For

example, exponentiated angular momentum S in e-i / hQQ •S rotates by angle Q as in (10.5.25).

      Quantum boost operators
A similar rule gives a momentum shift of P=hK by a boost operator B X X(P) = e = e+iP / h +ik whose effect on

a plane wave yk(x,t)=ei(kx-w  t) is simply B(P)yk(x,t)=eiKxei(kx-w  t) =yk+K(x,t). Now we denote by B the boost

B(-qA)=e-iqA•r/h by momentum –qA. New position ket |rÒ relates to old |RÒ=B|rÒ as follows.

  |rÒ = B†|RÒ  ,      |RÒ = B|rÒ  ,     ·r| = ·R| B  ,     ·R| = ·r| B† . (17.1.17a)

A wavefunction y(R) = ·R|yÒ of any state |yÒ times B = e-iqA•R/h gives wave y(r) = ·r|yÒ in r-basis.

  y(r)=·r|yÒ=·R| B|yÒ=·R| e-iqA•r/h|yÒ=e-iqA•R/hy(R)=yB(R) . (17.1.17b)

Position operator-r values are not affected since B is a momentum boost only and not an x-translation.

  B R B† = r = R (17.1.18a)

The upper case{P,R} and lower case{p,r} notation is used for the original basis and the "reduced-

momentum" basis, respectively. However, spatial coordinate labels R and r may be used interchangeably.

  r|rÒ = r|rÒ      , A(r,t)• r|rÒ  =  A(r,t)•r|rÒ    (17.1.18b)

  r|RÒ = R|RÒ   , A(r,t)• r|RÒ = A(R,t)•R|RÒ    (17.1.18c)

Representation of p in new |rÒ-basis is the same as P in the old |RÒ-basis: an (h/i)-gradient (P=(h/i)∂/∂R).

Inserting 1=B†B and using BpB†=P (17.1.16a) and ·R| = ·r| B† (17.1.17a) gives the following.

  py(r) =·r| p|yÒ =·r|B†B p B†B|yÒ =·R| PB|yÒ= PBy(R)  

  py(r) = PyB(R)=Py(r)=(h/i)∂/∂RyB(R)= (h/i)∂/∂ry(r) (17.1.18d)

Here, the notation (17.1.17b) for the boosted wavefunction yB(R)=By(R)=y(r) is used again.

Bookkeeping for Boosts: Operators vs. States
There arise questions about ±signs in B operations. It is important to clarify these for both

operators and states, particularly since they differ. First, our mnemonic labeling of operators is

B

B
p P

BpB p P

B P p

B PB P p

    add  to  to make 

   =

                   

  
cut  from  to make 

       =

means

make igger
qA

qA

means

chop down
qA

qA

" " " (†) "

†

†

†

( )
+ =

Ê

Ë

Á
Á

ˆ

¯

˜
˜

( )
- =

Ê

Ë

Á
Á

ˆ

¯

˜
˜

We may expand the exponential form of B = e-iqA•r/h to check its effect.
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BpB p x p x

p xp px

p x p x p

p

x x† / / / /

/ /

, / ,

=

         

             where: 

         

- +e e iqA iqA

iqA iqA

iqA i

qA
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B has the opposite effect on states or wavefunctions. Look at its effect on a plane wave.

  By yk
iqA x ik x i k qA x

k qAx e e e x( ) = = = ( )- ◊ ◊ -( )◊
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/ /
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h h
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B makes state momentum expectation smaller by the term qA, not bigger. This has to be since a basis

change cannot change matrix elements. What the operator gains the states must lose and vice-versa.
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How one might visualize the various boosting effects is discussed in connection with Fig. 17.1.1.

But, these questions usually boil down to the relativity between states and operators that “analyze” the

states. The fact that what we observe is an interference between the two has been emphasized repeatedly in

Chapter 1 through 15. Newtonian absolutes have no place in modern theory. The relativity of boosts and

momentum seem very confusing from a Newtonian point of view, and the Schrodinger wavefunction y(x)

notation, unlike Dirac’s ·x|yÒ notation, does little to clarify.

However, as shown in Unit 2, the quantum theory and relativity are inseparably mixed in a universe

of waves. To treat either separately, as a Newtonian or Schrodinger paradigm might prefer, is to invite

paradox and confusion. The simplistic Galilean B boosts used here should be replaced by Lorentz

transformations derived in Unit 4 using the s-operator forms developed in Unit 3. However, for now, we

persevere to finish the Schrodinger approach.
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Schrodinger E•r wave equation
Now y (R)-representation (17.1.15) of the electromagnetic Schrodinger equation is transformed to a

y(r)-representation where: y(r)=yB(R)=B y(R)=e-iqA•R/hy(R). We start by acting on (17.1.15) by B .
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Also 1=B†B is inserted so as to use B (P- qA1) B† = P , and PyB(R)=(h/i)∂/∂ry(r).  (17.1.19a)
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r r r r (17.1.19b)

If vector potential A is constant in space and time (a trivial case with zero E-and B-fields) then the B  factor

can pass ∂/∂t to make B ∂y(R)/∂t into ∂y(r)/∂t. Note that (A=0) just gives B=e-iqA•r/h=1.

Consider the simplest non-trivial case: a time dependent A(t) that is constant in space or nearly so.

A e e= -( ) @ -( )x xa kz t a t2 2sin sinw w (17.1.20a)

This is called the long wavelength or dipole approximation in which kz is negligible compared to w t.

(Imagine atomic sized z~0.510 -10m and optical wavelengths l~0.5 10-6m so kz=2p .10-4 is 10,000 times

smaller than w t~2p after one cycle.) Even so, the boost operator B does not commute with ∂/∂t.
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(17.1.20b)

An electric dipole potential -qE•r arises from B ∂y(R)/∂t and Maxwell equation E =-∂A/∂t.(17.1.2)

i
t

t M
V q t th

h∂y
∂

yr
r E r rr,

• ,
( )

=
- —

+ ( ) - ( )
È

Î
Í
Í

˘

˚
˙
˙

( )
2 2

2
(17.1.20c)

Here we assume zero radiation scalar potential (F=0) in Maxwell equation (17.1.2). Nevertheless the

radiation interaction appears as part of a "total" scalar potential U(r) =V(r)- qE•r. This rather special

situation owes its existence to the transversality condition and dipole approximations. This and other issues

concerning A•p versus E•r interactions are discussed next.

(e) Comparing |RÒÒÒÒ and |rÒÒÒÒ = B|RÒÒÒÒ pictures: A•P vs. E•r

Transformation |rÒ = B†|RÒ is more than just a change-of-basis. Since B=e-iqA(t)•r/h is explicitly

time-dependent, this is called a change-of-picture, as in "motion picture." Let us compare the Hamiltonian in

the two pictures. The original |RÒ-picture has a Hamiltonian like the right hand side of (17.1.15).
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The new |rÒ = B†|RÒ-picture has a Hamiltonian like the right hand side of (17.1.20).

H t H H t
M

V q tIr p r p r
p

r E r, , , , •( ) = ( ) + ( ) = + ( )
Ê

Ë
Á

ˆ

¯
˜ + - ( )[ ]0

2

2
       . (17.1.21b)

The time independent H0=T+V-parts look the same except for altering notation (P,R) to (p, r). Both P and

p are represented by a gradient (h/i)— and R equals r, so one might think the H0 in (17.1.21a-b) are equal.

This is one of the worst traps in theoretical physics and leads to the mistake of equating a dipole

potential -qE•r to the interaction -(q/M)A•P+(q2/2M)A•A. Not! Transforming H(p,r) to H(P,R) is done by

B†=eiqA•r/h. B† is a qA-boost of r-space relative to R-space (assuming A is r-independent).

 H(p,r,t) = B†H(P,R,t)B (17.1.21c)

The (-qA)-boost B=e-iqA•r/h was defined by (17.1.16) and (17.1.18). B† is B’s inverse.

 p = B†PB = P-1qA(t), (17.1.21d) ,  r = B†RB = R. (17.1.21e)

Hence, part of H0(p,r,t) winds up in HI(P,R,t), and vice-versa; equating H0(p,r) to H0(P,R) is wrong but

so is equating H0(p,r,t) to B†H0(P,R,t)B. The transformation relation (17.1.21c) only applies to the total

atom-plus-radiation Hamiltonian H=H0+ HI. An attempt to visualize this is shown in Fig. 17.1.1.

Fig. 17.1.1 compares H(p,r,t) to H(P,R,t) with a 1D-HO potential V(x)=(k/2)x2 and constant E=-Å.

 H(p,r,t)  = p2/2M+ (k/2)r2 - qEr   (17.1.22a)

 H(P,R,t)=(P-qÅt)2/2M+ (k/2)R2  (17.1.22)

A constant (DC) E-field adds a linear potential -qEr=qÅ r to V(r) if A increases at a constant rate Å.

   E=-∂A/∂t = -Å  where:  A=Åt  (17.1.23b)

A positive rate ∂A/∂t = Å means a negative E but a positive slope -qE of the interaction potential line -qEr.

This causes the minimum of total potential U(r) to shift left from r=0 to ro=-qÅ/k as seen in Fig. 17.1.1a.

  MIN U(r) = (k/2) ro2-qEro=-q2E2/2k=-q2Å2/2k  at: ro=qE/k=-qÅ/k  (17.1.24)

The momentum derivative ṗ  for a particle at r=0 shifts from ṗ=0 to ṗ=qE=-qÅ when E is turned on.
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(17.1.25a) (17.1.25b)
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The H(p,r,t) phase space origin also shifts from r=0 to ro=-qÅ/k as shown in Fig. 17.1.1b. Phase

points rotate clockwise as in an Australian "typhoon" around a fixed-point or "eye" at origin (r,p)=(ro,0).

The H(P,R,t) phase space has a similar "typhoon" of clockwise phase (P,R)-point flow.

˙ / ˙
/

/

R
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p

M
qÅ kM P
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R
kR
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R qÅ k
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 at:     

at:           

at:  

(17.1.25c) (17.1.25d)

In contrast to H(p,r,t), the H(P,R,t) "typhoon" is not shifted horizontally but simply drifts upward along

with the r-axis at rate qÅ=-qE relative to R-axis in Fig. 17.1.1c. Momentum-p flow rate ˙ ˙p P qÅ= -   is less

than Ṗ  by the rate qÅ of up-boost qA=qÅt since p is measured relative to the r-axis, but P is relative to R.

   

at:   

at:          

  at:   

˙ ˙
/
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R qÅ k

R

R qÅ k

= - =
-
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=
=
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2

0

0 (17.1.25e)

Note that boost qA=qÅt shifts the "eye" or ( ṗ = 0)-point from R=0 to R=-qÅ/k on the negative r-axis in

Fig. 17.1.1c consistent with the shifted but stationary "eye" on the r-axis in Fig. 17.1.1b. This shows the

subtle nature of the boost transformations (17.1.16), (17.1.18a), and (17.1.21) that relate electromagnetic

Hamiltonian pictures of H(p,r,t) to H(P,R,t). Even for a constant E-field this is not a trivial relation.
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Fig. 17.1.1 (a) H(p,r) with E•r coupling. (b) Phase space. (c) H(P,R)=H(p+qA,R) boosted phase space.
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Linear-plus-constant field geometry: Adding potential parabolas and lines

Perhaps, no other physical process is more important than optical excitation of atoms, molecules,

and solids. All the color you see around you, indeed everything you can see, is due to this process. Whether

this process is described by classical or quantum theory, it is often modeled by a parabolic atomic potential

VA=kx2/2 (linear force FA=-kx) in a linear electric potential field F=-qE x (uniform electric force field

FE=qE). This ideal atom model is Lorentz’s linear or harmonic atomic binding model and the ideal model of

a stimulating electric radiation field is the long wave or dipole field approximation. In Fig. 17.1.2 the

geometry of fields is introduced beginning with two force-vs.-x lines in Fig. 17.1.2(a).

To plot total force, we only have to add two lines, the constant (FE=qE)-line of the electric field and

the sloping (FA=-kx)-line of the atomic restoring force. This is done in Fig. 17.1.2(b) for a negative qE-field

(qE=-0.6) and a positive atomic “spring” constant (k=0.8) to yield a total force (FTotal=-kx+qE)-line.

 FTotal= FA+ FE =-kx+qE=-0.8x-0.6     (A.1)

The equilibrium “resting” point (x=0, FA=0) of the atomic (FA=-kx)-line moves to a new zero point of the

total force (FTotal=-kx+qE)-line at the electric-atom equilibrium point (x=xE, FTotal=0).

 0=FTotal=0 =-kx+qE=-0.8x-0.6   at: x=xE,=qE/k=-0.6/0.8=-0.75  (A.2)

To plot potential VTotal(x) we use parabolic geometry beginning with finding the VTotal-parabola focus

in Fig. 17.1.2(c). The new VTotal-parabola axis is at the xE value indicated by the little circle on the x-axis at

the equilibrium point xE =-3/4 in Fig. 17.1.2(b-c) where the total force goes to zero.

Now imagine a light ray going down the old axis. Angle-f of incidence equals angle+f of OF-line for

the ray reflecting off the parabolic tangent to hit the focus. (Atom force FA and potential VA=kx2/2 are zero

at x=0 where qE-field potential F and slope equal those of VTotal.)

The total atom-plus-field potential VTotal =VA+F is a parabola of the same shape as VA=kx2/2 for the

undisturbed atom, but its axis is over the new xE–point where total force (potential slope) are now zero.

Also, its minimum (zero-slope) point falls to a negative value VTotal(xE) that is zero only for qE=0.

 VTotal(xE) =V(xE)+F(xE) = k xE
2/2-qE xE = -(qE)2/(2k) =-(0.6)2/1.6=-0.225   (A.3)

This new minimum VTotal(xE) and the new potential VTotal(x) are constructed in Fig. 17.1.2(d-f). While

it is perhaps difficult to explain, it is quite easy to do. First the directrix line is found in Fig. 17.1.2(d). It

uses the fact that each point on the directrix lies below the contact point of the tangent normal to a line

connecting that point to the focus as shown in Fig. 17.1.2(e). The normal points or “elbows” of the

tangents all lie on the horizontal tangent to the VTotal(x) parabola’s minimum. This gives an easy tangent-

contact construction of the VTotal(x) parabola seen in Fig. 17.1.2(f).

Alternatively, one may start with the original field-free atomic parabola VA=kx2/2 shown in Fig.

17.1.2(g). Its tangents at x=±1 are parallel to the force plot lines ±FA=-kx for any value of external qE-field

as shown by lines for qE=±k and qE=±k/2. The latter are tangent at x=±1 and provide a contact

construction of VA(x) like the one for VTotal(x) in Fig. 17.1.2(d-f). Then any VTotal(x) parabola is found by

translating the origin of VA(x) along an inverted copy [-VA(x)] of itself as shown in Fig. 17.1.2(h).
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Fig. 17.1.2 Geometry of atomic oscillator potential VTotal(x)=V(x)+F(x) = kx2/2-qE x with uniform

E-field.
 (f) Comparing diabatic with adiabatic: "Catcher-In-the-Eye"

For variable E-fields the preceding pictures can be insightful. Suppose a particle is sitting at r=0

near the bottom of the atomic potential V(r)=(k/2)r2 with the E-field turned off. Now imagine turning on

the E-field in very tiny steps so that the ṗ=qE=-qÅ excursions in (17.1.25a-b) are tiny for each step and so

the shift  ro=qE/k is made arbitrarily high but the particle stays around ro with near-zero ṗ . If you are

clever at catching the particle in the "eye" just when its momentum is turning around, you can make ṗ

exactly zero. Such a "catcher-in-the eye" game can produce large ro with zero ṗ  in just a couple of steps.

Suppose now that a high ro with low ṗ  has been obtained. What happens if suddenly the applied

field goes to zero? Forgetting, for the moment, the resulting transient radiation field, it is clear that the

particle will find itself high up on the zero-E potential, that is, at energy V(ro)=(k/2)ro2 with a low initial

velocity. In about a quarter cycle, all that potential will be converted entirely to kinetic energy! Such an

extreme diabatic transition is quite a contrast to an adiabatic one that would leave the particle back at ro=0

and ṗ=0 after the field was turned off slowly or reduced cleverly by "catcher-in-the-eye" maneuvers.

Oscillating particles may also undergo adiabatic transitions by conserving classical action S= Úpdx.

Adiabatic conservation of classical action implies quantum number conservation or adiabatic following . A

system starting in the n-th state remains in the n-th state even if the states are changing like mad.

In contrast to adiabatic following, resonant excitation changes action and quantum numbers. If a

potential U(r) in Fig. 17.1.1(a) shakes at the natural oscillator frequency, the system will be excited rapidly

to a combination of two or more states. Chapter 18 discusses of this sort of resonant excitation.

(g) Gauge transformation
Consider a non-relativistic electromagnetic Hamiltonian and Schrodinger equation with both a scalar

potential F(R,t) and vector potential A(R,t) operative.
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Isolating time-like parts from space-like parts more closely respects the equation’s relativistic origins.
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Now consider the corresponding equation for a G-gauge-transformed wavefunction

  yG(R) = eiqG(R,t)/h y(R) =Gy(R), (17.1.27)

that is, a wavefunction whose phase has been messed up by an arbitrary gauge function G(R,t).
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Here an inverted version y =G†yG of (17.1.27) is put in for y  and G = eiqG(R,t)/h is applied to the left.
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Gauge transformed wave yG obeys wave equation (17.1.6) with gauge transformed potentials FG and AG.
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The electric and magnetic fields E and B are not affected by a gauge transformation.
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The boost transformation B=e-iqA(t)•r/h in (17.1.16) uses a gauge function G(R,t)=-A(t)•R to cancel

the vector potential with -A=∂G/∂R and add a dipole term -∂G/∂t=∂A/∂t•R =-E•R to the scalar potential F.

Such a simple algebraic result covers up the transformation physics and phase space geometry

described earlier. A gauge transformation is a change-of-basis that is as severe as any can be and should be

treated as such even though, as it is often described, it does not seem to affect fundamental fields E and B,

coordinates R, or momenta P. In fact it does! It is a non-uniform boost in space and time that changes origin

and scale in frequency-wavevector space. The B-transformation is as close to a relativistic Lorentz boost as

is possible in a non-relativistic theory. Changing the space and time wrinkles of waves (their k and w) is the

same as a change of their momentum and energy.

A serious problem here is our abandonment of relativistic symmetry, which occurred in Chapter 7 as

we entered the Schrodinger world. The elegant relation between relativity and quantum theory in Chapters 4

through 6 is, in my mind, so compelling. Dirac once commented, “Nature is a stickler for good form.”

Dirac’s theory of relativistic electron spin (to be explored later) is still as much a monument to good form as

the gauge confusion alluded to above is to the lack thereof.



©2004 W. G. Harter Chapter17 Classical Electromagnetic Perturbation 17- 16
Mechanical analogy for cyclotron motion in magnetic field

A smooth sphere or ball rolling on a horizontal rotating table, as shown in Fig. 17.1.2 obeys

the same equations as a charged particle in a uniform magnetic B field.
              

R

w(t)W(t)

r(t)

r(t)=v(t) F=m v(t)
FxR=I w(t)

Fig. 17.1.2 Mechanical analog of magnetic vxB cyclotron mechanics.

The key to making this device work is to have rolling “stiction” with as little rolling friction as

possible. A plexiglas pool ball on a plexiglas disc attached to a record turntable will suffice. The constraint

relation which demands no slippage of the ball on the table is as follows.

v r R r z= ¥ + ¥ = ¥ + ¥WW ww WW ww ˆR (17.1.28)

Combining with Newton equations for translation and rotation in the Fig. 17.1.2 gives

I m m R˙ ˙ ˙ ˆww = ¥ = ¥ = ¥F R v R v z (17.1.29)

The acceleration a v= ˙  is given by the time derivative of the velocity constraint (17.1.28).

˙ ˙ ˙ ˆ ˙ ˆv r z v z= ¥ + ¥ = ¥ + ¥WW ww WW wwR R (17.1.30a)

Putting in (17.1.29) gives the velocity equation of translational motion on the table.

˙ ˙ ˆ ˆ ˙v v v z z v v= ¥ + ¥( ) ¥ = ¥ -WW WW
1 2

I
m R R

mR

I
(17.1.30b)

This has the form of the cyclotorn orbit equation m ev̇ v B= ¥ .

1
2

+
Ê

Ë
Á

ˆ

¯
˜ = ¥

mR

I
v̇ vWW or: v̇ v B B= ¥ = -

+
Ê

Ë
Á

ˆ

¯
˜

e

m mR

I

     where:   
WW

1
2

(17.1.30c)

A solid ball with inertia I=2/5mR2 leads to an effective cycloton frequency of 2W/7, that is, the ball

will orbit exactly twice for each seven rotations of the table. The actual surface velocity V=WWWWxr of the table

is analogous to a vector potential A=1/2Bxr of a uniform magnetic field.
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17.2 Introduction to Autonomy of Time Dependence
Quantum theory contrasts two kinds of time dependence based on whether the Hamiltonian H has

explicit time dependence or not. An autonomous system with constant H is the ideal case, but many

applications use a time-dependent H(t) to describe non-autonomous systems. We compare the two cases.

(a) Autonomy: The ideal "hands-off" view
In the preceding chapters, time dependence of a quantum system has been autonomous, that is, it

occurs without any help from the outside world. Time evolution introduced in Chapter 8 involved a

Hamiltonian time evolution generator H which was constant H(t)=H(0). This means the observed time

dependence of a state could be written using an evolution operator U(t) formed by an exponential of H.

 |Y(t)Ò = U(t) |Y(0)Ò = e-iH t/h |Y(0)Ò  (17.2.1a)

This is displayed in equation (9.2.5c) and is equivalent to Schrodinger’s equation (9.2.6a) repeated here.

  
i

t
t th

∂
∂

( ) ( )Y Y= H (17.2.1b)

The physics behind this is as simple as it is beautiful, and it is based upon Planck’s energy-

frequency equivalence E = hw. Each stationary "own-state" or eigenstate |ekÒ of the Hamiltonian H has a

definite "own-energy-frequency" or eigen-energy-frequency ek = hwk .

 H|ekÒ = ek|ekÒ= hwk |ekÒ  (17.2.2)

An eigenstate of constant Hamiltonian is constant. Only its internal clock will secretly "tick" by (17.2.1).

 |ek(t)Ò = e-iek t/h |ek(0)Ò = e-iwk t |ekÒ (17.2.3)

Also constant is the probability P(x,t)= |·x|ek(t)Ò|2 for an eigenstate |ekÒ to end up in any given state |xÒ.

Squaring Y*Y=|Y|2 cancels the single "ticking" phase factor e-iwk t with its conjugate (e-iwk t)*=e+iwk t.

 Pek(x,t)= ·x|ek(t)Ò* ·x|ek(t)Ò = ·x|ekÒ* ·x|ekÒ=Pek(x,0) (17.2.4)

 But, general states |Y(0)Ò must be some combination c1|e1Ò+c2|e2Ò+...of |ekÒ.(The |ekÒ are a complete set.)

Y Y0 0( ) = ( ) =Â Âe e ek
k

k k
k

kc (17.2.5a)

Coefficients ck =  ·ek|Y(0)Ò are constant as time passes, but eigenstates "tick" their phases by (17.2.3).

Y t e ci t
k

k
k

k( ) = -Â w e (17.2.5b)

So if state |Y(0)Ò initially combines two or more eigenstates cj|ejÒ+ck|ekÒ+..., the time dependence of its x-

probability will contain "beats" of amplitude |cj ck |,... at each of the difference frequencies (wj -wk ),....
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(17.2.5c)

It is such a combination of beats that determines the time behavior of an autonomous quantum world as a

Fourier sum (or integral) over the system’s spectrum. If you really knew all the spectral amplitude

coefficients cj, ck,... then you can predict the state of an autonomous system forever.

(b) Non-Autonomy: The practical "quantum control" view
There are a couple of real-world problems with the ideal quantum deterministic view of the world.

First of all, the observable "reality" of a state |Y(t)Ò are given by probability values PY(x,t) or expectation

values ·Y(t)| x|Y(t)Ò. So, however well you know a state |Y(t)Ò, it only gives you some raffle-lottery

tickets. A probability PY(x,t)= |·x|Y(t)Ò|2  is just that, odds for an outcome of some more or less clumsy

"measurement" process involving eigenstates {·x|, ·x’|,..} of another "counter" system different and outside

of the one with eigenstates {|e1Ò, |e2Ò,..} being considered. Remember Axioms 1-4 are based on relative

transformation matrix elements {·x|e1Ò, ·x’|e1Ò,..·x|e2Ò, ·x’|e2Ò,..} between two systems.

This then brings up the second problem: A truly autonomous system would be totally isolated and

therefore unavailable for "measurement" or any kind of observation. A total measurement ends autonomy

just as the act of cashing in all of one’s chips ends a game of chance.

One way out of this conundrum is to find ways to "tweak" or perturb a system by time-varying

some part of its Hamiltonian in a way that affects outcome probabilities. A general outcome scenario starts

a system in some initial state |Y(0)Ò and perturbs H to stimulate probability in some final state-|xÒ.

 PY(x,t)= |·x|Y(t)Ò|2 = |·x|U(t,0)|Y(0)Ò|2 , (17.2.6a)

A more usual outcome scenario starts a system in some initial eigenstate-|ek(0)Ò=|ekÒ and perturbs H to

stimulate transition probability Pek(ej,t) to wind up in some other final eigenstate |ejÒ.

 Pek(ej,t)= |·ej|ek(t)Ò|2 = |·ej|U(t,0)|ek(0)Ò|2 (17.2.6b)

For the latter case we turn on the perturbation at time t=0 and then turn it off sometime later so that the

eigenstates of the unperturbed Hamiltonian are meaningful bases for describing the initial and final states.

(c) Diabatic versus adiabatic quantum control
How rapidly we turn on or turn off a perturbation is an important consideration. Sudden or diabatic

changes in H(t) cause wave systems to exhibit complicated "ringing" behavior because oscillators respond

excitedly when spectral bandwidth of a stimulus overlaps their resonant frequencies. In contrast, gradual or

adiabatic variation of H(t) may allow an old eigenstate |ek(0)Ò=|ekÒ of H(0) to gradually morph into a new

eigenstate |ek(t)Ò of H(t) without producing combinations of any other H(t) eigenstates (Such a transition is
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known as adiabatic following.) But, sudden changes (Diabatic means non-adiabatic in modern double-

negative jargon) are so fast the initial state |ek(0)Ò cannot follow. The "surprised" state |ekÒ may be a

combination of two or more new eigenstates |ek(t)Ò, |ek’(t)Ò, |ek"(t)Ò, .. of H(t) so these "beat" against each

other at frequencies wk(t)-wk’(t), wk(t)-wk"t), .. as in (17.2.5c) while the wk(t) also vary with H(t).

The distinction between adiabatic and diabatic applies equally to the space-time or wavevector-

frequency domain. For example, recall how a sharp barrier causes a wiggling transmission spectrum in Fig.

13.1.6 but softening boundaries even a little quenches the wiggles as in Fig. 13.1.7. For another example,

compare Fig. 12.2.7 and 12.2.8. To (over) accommodate long adiabatic turn-on and turn-off times it is often

the formal convention that outcome probabilities like (17.2.6) have the initial time t=0 replaced by t=-•,

and the final time t replaced by t=+•. This is a theorist’s way of taking the sublime to the ridiculous.

Consider an example of a perturbation operator V added to H with a turn-on-turn-off time T.

H

H

H V

H

( )

( )

( ) cos /

( )

t

t < 0

t T 0 t T

t > T

= + - p( )( ) £ £
Ï
Ì
Ô

Ó
Ô

0

0 1 2

0

   for 

   for 

   for 

(17.2.7)

If operator V were, itself, a constant operator, then a system starting in an H(0)-eigenstate |ekÒ at t=0,

might, if T was long, always be in a state |ek(t)Ò which was at all times an eigenstate of the current H(t) and

return to the same original eigenstate |ek(T)Ò=|ekÒ after time t=T. For some systems this is possible even if

V is large enough to conduct |ek(t)Ò through a "grand tour" which visits a wide range of the state space.

(d) Which is better? Autonomy or Not
There is something about quantum autonomy that rankles the classicist in all of us. Most of us are,

deep down, control freaks worrying over details as picayune as whether to hyphenate the expression anal-

retentive! So a driverless quantum system seems to demand..., well,... a driver.

Nevertheless, driving a quantum system exactly is not an option. One must question the wisdom of

applying a "hard" and precise classical field E(t) to "soft" and uncertain quantum wavefunctions. After all,

the stuff in a classical field involves, deep down, quantized waves, too. All perturbing fields like E(t) have

underlying quantum uncertainty. The same goes for those “hard” classical potentials V(r) or U(r,t). Pure

quantum theory cannot tolerate absolute certainty and still be consistent. The smallest indivisible unit of

any phase space area is Planck’s coefficient h~10-35Joule seconds. The unit is tiny, but it is not zero.

However, practicality of non-autonomous E(t) wins out if 10-35Joule seconds means much more to

the system in a perturbing field E(t) or potential U(r,t) than it does to the field or potential itself. In other
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words, if a field or potential has gobs of quanta, then it can say, "What are a few quanta to help a

friend?" Such non-autonomy is called semi-classical quantum mechanics: a non-autonomous system uses

Y(x,t) amplitudes to predict each quantum state according to uncertainty relations but demands absolute

certainty of phase and amplitude for classical driving perturbation E(t) or potential U(r,t) in which quanta

are negligible. Semi-classical quantum theory and electrodynamics constitutes much of modern theory.  

Nevertheless, the parts of modern theory that are most prized are the autonomous ones in which the

details of quantum theory are most completely accounted. Quantum electrodynamics (QED) that uses

Dirac’s electron model is one of the most famous examples. Here both the electronic matter and the

electromagnetic field are described in terms of quantum states and operators. No explicit time dependence is

attached to any part. Furthermore, QED is fully relativistic, and so Schrodinger’s equation, which isolates

time as a parameter rather a space-time dimension, must fall by the wayside, as must purely scalar V(r)

potentials. The intimate relation between quantum theory and relativity (shown in Ch. 5) indicates that a

timeless autonomous quantum theory is ultimately what we want.

But, a perennial question remains, "How can a "measurer" be part of its own system?" This

question will bother us for quite some time!
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Problems for Chapter 17.

Newton recovers

17.1.1 Verify that Hamilton’s equations (17.1.10e) yield the Newtonian pondermotive relation (17.1.1).

Euclid recovers

17.2.1 With a ruler and compass construct on graph paper the qE-dipole-shifted atomic k-parabolic

potential for cases with k=2.0 and  (a) qE=0 , (a) qE=1.0 , (a) qE=2.0 , (a) qE=4.0 . You might show in

each how the phase (x,v)-space elliptical paths are located for a mass of M=1.0 and for M= 4.0.

Jailhouse Rock’n Roll

17.2.2 Prisoner-M is in the infinite-well maximum-security prison of Chapter 12 suffering from an

Earthquake (caused perhaps by a heavy-metal rock band) that seems to go on forever. Now the prison floor

tilt angle varies: f= flimit sin(wrockt) giving gravity PE function Vrock’n roll(x) =Mgh. (Let floor height be

defined h=0 at x=0.)

(a) Give the lowest order term in Vrock’n roll(x). Discuss how or when that might be a valid approximation.

(b) If prisoner-M has a charge Q derive his potential in an em-wave Ex = e0 cos (kz-wrockt) whose

polarization is along the cell x-axis. Discuss the conditions for it to have the form desired in part (a).

“Zoom” versus “Catcher in the eye”

17.2.3 Conventional wisdom about potential fields claims that a classical or quantum oscillator will

“follow” a field that takes a long time to “turn on.” Indeed, the phenomena is called “adiabatic following.”

Suppose it takes 1000 oscillator periods to turn on a uniform field that moves an oscillator’s equilibrium

position form r0=0 to r0=1. (See Fig. 17.1.1(a)) Then an oscillator sitting at r0=0 (or oscillating around

r0=0) is expected, after that field is fully turned on, to have “followed” the varying r0 all the way from r0=0

to end up sitting at r0=1 (or oscillating around r0=1) with the same action S pdx= Ú  it had before. Consider

two extreme cases: (a) “Zoom” and (b) “Catcher-in-the eye.”

(a) However, suppose that the field increase occurs so that equilibrium starts at r0=0 and makes tiny jumps

by Dr0=1/1000 each period. Such a field appears to rise slowly but may excite a stationary oscillator to high

action. Discuss this case for an initially stationary oscillator and one that is moving. Draw a space-time plot

of the force, equilibrium r0(t) and the oscillator x(t) for several jumps.
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(b) Suppose that the field increase occurs so that equilibrium starts at r0=0 and makes tiny jumps

by Dr0=1/2000 each 1/2-period.. Discuss this case for an initially stationary oscillator and one that is

moving. Draw a space-time plot of the force, equilibrium r0(t) and the oscillator x(t) for several jumps.

“Ping-pong” versus “pong-pong”

17.2.4 One way to visualize adiabatic-versus-diabatic action variation is to examine a mass bouncing back

and forth between two perfectly elastic ping-pong paddles. In each case we imagine that the left “ping”

paddle is slowly closing in on a fixed right “pong” paddle so that after 1000 or so bounces it reduces the

spacing by one-half. Consider two extreme cases: (a) “Ping-pong” and (b) “Pong-pong.”

(a)  Suppose the “ping” paddle moves in at velocity v0 that is slow compared with the initial bounce

velocity V(0) of the ball. Each collision increases the speed V(t) and momentum p(t)=MV(t) of the ball. How

much?  Meanwhile, distance x(t) that the ball travels between each “ping” and “pong” is slowly being

reduced. Show that the action S pdx= Ú  is nearly constant.

(b)  Suppose the “ping” paddle moves at velocity v0 except that when it hits the ball it stops briefly so each

collision leaves the speed V(t) and momentum p(t)=MV(t) of the ball unchanged in magnitude. Show how the

action S pdx= Ú  varies under these conditions.




