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Unit 6
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In preceding Units 3-5 quantum motion is generated by a constant Hamiltonian H-

matrix or operator H. This Unit 6 introduces Hamiltonian operators H(t)  with explicit

time dependence. For classical Hamiltonians, explicit time dependence requires some

care, and for quantum Hamiltonians, time dependence requires extreme care. The first

examples of time varying quantum perturbations are electromagnetic ones, and they

are compared to corresponding classical Lorentz resonance and oscillator strength.

Some shortcomings of perturbation theoretic approximations are noted and some more

exacting remedies are introduced for two-state systems introduced in Chapter 10 of Unit

4. Two kinds of oscillatory perturbation introduced in Chapter 17, additive or linear and

multiplicative or parametric, are discussed and compared.
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A Resonance Hero – Ken Evenson (1932-2002)

When US soldiers punch up their GPS coordinates they may owe there lives to an under sung

hero who, alongside his colleagues and students, often toiled 18 hour days deep inside labs lit only by the

purest light in the universe.

Let me introduce an “Indiana Jones” of modern physics. While he may never have been called

“Montana Ken,” such a name would describe a real life hero from Bozeman, Montana, whose

accomplishments in many ways surpass the fictional character in Raiders of the Lost Arc and other

cinematic thrillers.

Indeed, there were some exciting real life moments shared by his wife Vera, one together with

Ken in a canoe literally inches from the hundred-foot drop-off of Brazil’s largest waterfall. But, such

outdoor exploits, of which Ken had many, pale in the light of an in-the-lab brilliance and courage that

profoundly enriched the world.

Ken is one of few researchers and perhaps the only physicist to be listed twice in the Guinness

Book of Records. The listing is not for jungle exploits but for his lab’s highest frequency measurement

and their speed of light determination that made it many times more precise. Then the meter-kilogram-

second (mks) system of units underwent a redefinition largely because of Ken’s efforts. Thereafter, the

speed of light c was defined as 299,792,458ms-1. The meter was defined in terms of c, instead of the

other way around since the time precision had thoroughly trumped that of distance. Without such

resonance precision, the Global Positioning System (GPS), the first large-scale wave space-time

coordinate system, would have been impossible.

Ken’s courage and persistence at the Time and Frequency Division of the Boulder Laboratories

in the National Bureau of Standards (now the National Institute of Standards and Technology or NIST)

are legendary as are his railings against boneheaded administrators who seemed bent on thwarting his

best efforts. Undaunted, Ken’s lab painstakingly exploited the resonance properties of metal-insulator

diodes, and succeeded in literally counting the waves of near-infrared radiation and eventually visible

light itself.

Those who knew him will always miss Ken. But, his indelible legacy of persistence lives on as ultra-

precision atomic and molecular wave and pulse quantum optics continue to advance and provide mankind

with heretofore-unimaginable capability.
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Kenneth M. Evenson – 1932-2002
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QM
for

AMOPY
Chapter 17

Classical Electromagnetic

Perturbation

W. G. Harter

The most common perturbation is the electromagnetic field that is a practically ubiquitous

occupant of spacetime. In spite of its overt or covert prevalence in virtually every experiment

in physics, there are important aspects that often are misunderstood or not even discussed at

all. This Chapter 17 introduces classical and semi-classical aspects of electromagnetic

perturbations so they may be properly applied to quantum theory of atomic transitions in

Chapters 18 and 19 and to quantum field theory in later Chapter 22. This includes the tricky

problem of “gauge-boost” transformations and discussions of how linear additive Lorentz

resonant perturbation differs from multiplicative or parametric resonance that underlies time-

dependent quantum theory.
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Unit 5 Time-Variable Perturbation and Transition

Chapter 17 Classical Electromagnetic Perturbation

"Let there be light!" There is no single piece of physics that appears to be more significant than

appearance itself. Without light and optics we are quite literally in total darkness. The same might be said

for our understanding of quantum theory; the most elementary and visualizable quantum waves are

electromagnetic waves. Light waves are indispensable to the development in the first two chapters of this

book. So also have they been since Planck and Einstein wrote the energy-frequency equivalence relation

E=hw and applied it to black-body radiation, photo-electric effects, or optical spectroscopy in general.

Just as classical electrodynamics (CED) of Maxwell, Lorentz, Gibbs, and others is one of the most

significant achievements of the 19-th century, so must also be, for the 20-th century, the development of

quantum electrodynamics (QED) by Feynman, Schwinger, Tomonaga and many others. A prerequisite to

discussing perturbations of quantum systems by light is basic classical and quantum electro-magnetic

interactions. However, such basics are far from trivial, and right away we run into complications!

17.1 Classical Mechanics of Electromagnetic Theory
(a) Classical electromagnetic Lagrangian

Newton’s equations combined with Maxwell’s definitions for electromagnetic fields E and B are first

cast into a Lagrangian form, admittedly an unfamiliar one for many modern students. It starts with a

familiar Lorentz pondermotive form for Newton’s F=Ma= =M M˙ ˙̇v R equation for a mass M of charge e.

M
d

dt
e

v
F (E v B)= = + ¥ (17.1.1)

Velocity is v R= ˙ . First, the electric field E and the magnetic field B are expressed in terms of scalar

potential field F=F(R,t) and a vector potential field A=A(R,t) using conventional Maxwell’s definitions.

E
A

B A= -— - ∂
∂

= — ¥F
t

,        (17.1.2)

Combining the preceding two equations gives

M
d

dt
e

t
e

t

v
F

A
v A

A
v A v A= = -— -

∂
∂

+ ¥ — ¥( )È
ÎÍ

˘
˚̇

= -— -
∂
∂

+ — ∑ - ∑—È
ÎÍ

˘
˚̇

F F ( ) ( ) . (17.1.3)

The objective is to recast F=Ma to a canonical form involving a Lagrangian function L=T-V,

canonical momentum P=∂L/∂v, and Lagrange equations ˙ /P R= ∂ ∂L . (Gradient —  is just ∂ ∂/ R.)

d

dt

L L
L L T V mv V

L∂
∂

=
∂
∂

= — = - = - =
∂
∂v R

P P
v

,  or: ,  where:  and: ˙ ,
1
2

2 (17.1.4)
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A chain rule expansion of vector potential derivative is needed. Note "convection" ( )v A∑—  term.

d

dt x
x

y
y

z
z

t t

A A A A A A
v A=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+ ∑—˙ ˙ ˙ ( )

Combining this with the pondermotive equation (17.1.1) simplifies the F=Ma equation (17.1.3).

M
d

dt
e

t
e

d

dt

v
v A

A
v A v A

A
= -— + — ∑ -

∂
∂

- ∑—È
ÎÍ

˘
˚̇

= -— - ∑ -È
ÎÍ

˘
˚̇

F F( ) ( ) ( ) (17.1.5a)

The trick is to let -A be 
∂
∂

- ∑( )
v

v AF . (A and F are velocity independent.) Also, let Mv be
∂
∂

∑
v

v vM

2
.

d

dt
M

d

dt
e e e e

∂
∂

∑ =
∂
∂

- ∑( ) - — - ∑
v

v v
v

v A v A
1
2

F F( ) (17.1.5b)

In this way the canonical electromagnetic Lagrange equations emerge.

d

dt

L d

dt
M e e e e

L∂
∂

=
∂
∂

∑ - - ∑Ê
ËÁ

ˆ
¯̃ = — - ∑ =

∂
∂v v

v v v A v A
R

1
2

( ) ( )F F (17.1.5c)

Here the electromagnetic Lagrangian is

L L t M e t e t= = ∑ - - ∑( )( , ) ( ) ( )R,v v v R, v A R,
1
2

F (17.1.5d)

The canonical electromagnetic momentum is defined according to (17.1.4).

P
v v

v v R, v A R, v A R,=
∂
∂

=
∂
∂

∑ - - ∑( )Ê
ËÁ

ˆ
¯̃

= +
L

M e t e t M e t
1

2
F( ) ( ) ( ) (17.1.5e)

Without the magnetic vector potential A=A(R,t) the Lagrangian has the usual form L= T - V with a electric

(scalar) potential V=eF(R,t) and momentum P reduces to the usual Mv.

However, for non-zero vector potential the -ev.A term acts as a velocity dependent "potential" to

give a screwy canonical momentum P in (17.1.5e). The particle momentum Mv is related to P as follows.

M e tv P A R,= - ( ) (17.1.6)

Canonical momentum P=∂L/∂v boggles Newtonian intuition. But it makes quantum sense! Phase S of a

wave y(x,t)=eiS/h|y(0)| is Hamilton’s Principle Action S=SP=ÚLdt and integral of Poincare’s invariant dS.

 dS = L dt = P•dR - H dt   (17.1.7a)

H is the Hamiltonian. The chain rule implies that P is the gradient of S and H its (-t)-derivative.

 P=∂S/∂R    ,  H=-∂S/∂t   (17.1.7b)

These are the Hamilton-Jacobi equations (5.3.3); a classical "derivation" of quantum operator relations:

 P=(h/i)∂/∂R gives: Py=(P)y=(∂S/∂R)y ,  H=(h i)∂/∂t gives: Hy=(H)y=(-∂S/∂t)y  .

(b) Classical electromagnetic Hamiltonian
The Hamiltonian function is defined by inverting Poincare’s phase invariant as in the following:
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 H dt = P•dR - L dt  or:  H = P• v - L , (17.1.8a)

As before, velocity is v R= ˙ . Inserting the Lagrangian L from (17.1.5d) gives the Hamiltonian H.

     

H L m e t
m

e t e t

m
e t

= ∑ - = +( )∑ - ∑ - - ∑( )Ê
ËÁ

ˆ
¯̃

= ∑ +
Ê
ËÁ

ˆ
¯̃

P v v A R, v v v R, v A R,

v v R,

( ) ( ) ( )

( )

2

2

F

F                                              
Numerically

correct

  (17.1.8b)

The vector potential eA cancels leaving a familiar H=T+V where V is just a scalar potential eF. But, H is an

explicit function H(P,R) of canonical momentum P, not of velocity v like a Lagrangian L(v,R). This formality

is needed to rewrite Lagrange (and Newton) equations as Hamilton’s equations by (17.1.8a).

∂
∂

= -
∂
∂

∂
∂

= -
∂
∂

= -
∂
∂

= -
∂
∂

= = - = =

H L H L H L dH

dt

L

tv
P

v r R P
v

P
P v R

, , ,

, ˙ , ˙

                .

                                              . 

0

0

∂
∂ (17.1.9)

So the H equation (17.1.8b) in v is correct numerically, only. Velocity v by (17.1.6) in terms of momentum P

gives the formally correct electromagnetic Hamiltonian function for charge e of mass M.

H
M

e t e t e t= -( )∑ -( ) +
Ê
ËÁ

ˆ
¯̃

1
2

P A R, P A R, R,( ) ( ) ( )F      
Formally

correct
(17.1.10a)

The result expands into a more complicated but still formally correct Hamiltonian.

H
M

e

M

e

M
e t=

∑
- ∑ + ∑( ) + ∑ +

P P
P A A P A A R,

2 2 2

2
F( ) (17.1.10b)

Hamilton’s equations (17.1.9) then follow. The Ṙ equation just relates Ṙ v=  to P. (Recall (17.1.6).)

v R
P

P A R,
= =

∂
∂

=
-˙ ( )H e t

M
(17.1.10c)

The Ṗ  equation uses 3D-index notation (m=x,y,z) to avoid confusing — ∑( )P A  and ( )P A∑— .

Ṗ
H

x x

P eA

M
e

x

P eA

M
e

A

x
e

xa
a a a a a

= -
∂
∂

= -
∂
∂

-( )
-

∂
∂

=
-( ) ∂

∂
-

∂
∂Â Âm m

m

m m m

m

2

2
F F

(17.1.10d)

We use (17.1.2) to express F in terms of E and A, and (17.1.4) to give P in terms of v.

Mv eA e v
A

x

A

t
Ea a

a

a
a˙ ˙+ =

∂
∂

+
∂
∂

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â m

m

m
(17.1.10e)

Index notation for total time derivative (17.1.4) of A is

Ȧ v
A

x

A

ta
a a= ∂

∂
+ ∂

∂Â m
mm

. (17.1.4)repeated

Finally, an equation for particle momentum is found by combining the preceding two equations.
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Mv e v
A

x
v

A

x
Ea

a

a
a˙ =

∂
∂

-
∂
∂

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â m

m

m
m

m
(17.1.11)

The result cancels out the partial time derivative of the vector potential A and is the same as the simple

Newtonian equations (17.1.1-3). The Lagrangian and Hamiltonian forms have no obvious advantage if you

just need Cartesian equations of motion. But, the Hamiltonian form wins for curved coordinates and for

deducing symmetry and conservation laws. Also, both L and H lead to theoretical insight for relativity,

quantum theory, and other areas where Newtonian theory seems quite clueless. (Recall Sec. 5.3.)

(c) Classical plane wave perturbations
Understanding the electromagnetic perturbation terms A•P or A•A in (17.1.10b) is helped by first

considering an electron or other charge e in a radiation field of a monochromatic plane standing wave.

A e= -( )x a kz t2 sin w (17.1.12a)

The electric E and magnetic B-fields are given by Maxwell’s definitions (17.1.2).

E
A

erad
xt

E kz t E a= - = -( ) =
∂
∂

w w0 0 2cos ,  where: (17.1.12b)

B A k erad
xB kz t B a k= — ¥ = ¥ -( ) =0 0 2cos w ,   where: (17.1.12c)

Let us assume for a moment the scalar potential F associated with the radiation field is zero. This is

a well-known transversality, Coulomb, or transverse gauge convention. It comes at a price: lack of

relativistic covariance associated with arbitrarily zeroing the time-like component F of the 4-vector

potential (Am)=(F, cA). This means zeroing all field divergence where no charge density r =————•Ee0  exists.

—∑ = —∑ =E Arad 0 0  ,         (17.1.13a)

For an arbitrary plane wave A(R,t)=|a|ei(k•R-w t) this means fields A and E are transverse to wavevector k.

k E k A∑ = ∑ =rad 0 0  ,         (17.1.13b)

Transversality (17.1.13.a) conveniently makes the quantum operator P=(h/i)∂/∂R=(h/i)———— on A give zero.

 P•A=0     (17.1.14a)

So, the perturbation terms P•A and A•P both have the same effect even if A is a function of position R.

 P•Ay=A•Py     (17.1.14b)

Transversality sets Frad=0 in a Schrodinger equation for a mass-M-charge-q particle.

i
t

H
q

M
V

i q

M
Vh

h∂y
∂

y y y= =
-( ) + ( )

È

Î
Í
Í

˘

˚
˙
˙

=
— -( ) + ( )

È

Î
Í
Í

˘

˚
˙
˙

P A
R

A
R

2 2

2 2

/
. (17.1.15a)

As noted in Ch.2-3, Schrodinger’s equation is non-relativistic. It expands as follows, using (17.1.14).
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i
t M

i
q

M

q

M
Vh

h h∂y
∂

y=
- —

+ ∑— + ∑ + ( )
È

Î
Í
Í

˘

˚
˙
˙

2 2 2

2 2
A A A R . (17.1.15b)

The residual scalar potential V(R) is meant to account for forces other than the radiation field arising from a

nucleus, atom, molecule, or solid. Its presence further spoils relativistic symmetry.

(d) Change of picture: Boosts and gauge change
The A•P and A•A perturbations in Schrodinger equation (17.1.15b) are regarded as unnecessarily

complicated for non-relativistic atomic physics. Therefore, a change-of-basis transformation is done to

relate momentum P to a p which is Newtonian particle momentum Mv by (17.1.6) or (17.1.10c). A

transformation B is found which adds qA to momentum p = P-qA to give P and vice-versa for B†.

    BpB†=B(P-qA1)B†=P=p+qA1 (17.1.16a)  B†PB=B†(p+qA1)B=p=P-qA1 (17.1.16b)

The B transformation was found by Synder and Richards (1948). We now consider their definition.

  B = e-iqA•r/h   (17.1.16b)

(A classical transformation was given earlier by Marie Geopert-Mayer (1931). e-iqA•r/h was generalized by

Power, et. al. (1976). Later in Sec. (g), B is related to a (A,F)-gauge transformation of Maxwell’s

equations.) Here we explain B in simpler terms: B is a uniform boost by (-qA) of momentum if A is R-

independent, otherwise, it is a non-uniform boost or "squeezing" operator. An up-boost B†= e+iqA•r/h by

(+qA) of coordinate basis {|RÒ..} to {B†|RÒ=|rÒ..} is defined and discussed below.

     Quantum translation operators
To understand quantum translation in space, let’s make an analogy with translation in time that by

Chapter 8 is done by a time evolution operator U(T). Equation (9.2.5c) in Chapter 9 gives U as U(T) = e-

iTH/h where H is the Hamiltonian generator of time translation. By Planck’s axiom E= hw , the energy

operator H relates to frequency (per-second) operator H/h through Planck’s h-constant, and by definition

(9.1.1), U advances time: U(T)y(x,t)= y(x,t+T). Now consider space translation.

By analogy space translation operator T(R) = e-iRP/h should use momentum P to generate

coordinate translation. Momentum operator P relates to wavevector (per-meter) operator K=P/h by

DeBroglie’s relation p= hk. So, does T translate? Is T(R)y(x,t)= y(x-R,t) ?

The quickest test of a translation operator is on a plane wave y(x,t)=ei(kx-w  t) where you see a sign

difference between space (y(x-R,t) is shifted by positive R.) and time. (y(x,t+T) is ahead by positive T.) The
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effect of T(R) = e-iRP/h on ei(kx-w  t) is to apply the P/h=K=k representation e-iRk which shifts by R.

P’s coordinate representation P/h=-i∂x does the same thing, but requires writing out a Taylor series.

  
T( )

!
.../R x e x R

x

R

x
x RiRPy y

∂y
∂

∂ y
∂

y( ) = ( ) = - + - = -( )- h 1
2

2 2

2

A rule emerges: Add R to quantum variable Q by exponential e-iR / hP of its per-Q-operator P times -iR/h. For

example, exponentiated angular momentum S in e-i / hQQ •S rotates by angle Q as in (10.5.25).

      Quantum boost operators
A similar rule gives a momentum shift of P=hK by a boost operator B X X(P) = e = e+iP / h +ik whose effect on

a plane wave yk(x,t)=ei(kx-w  t) is simply B(P)yk(x,t)=eiKxei(kx-w  t) =yk+K(x,t). Now we denote by B the boost

B(-qA)=e-iqA•r/h by momentum –qA. New position ket |rÒ relates to old |RÒ=B|rÒ as follows.

  |rÒ = B†|RÒ  ,      |RÒ = B|rÒ  ,     ·r| = ·R| B  ,     ·R| = ·r| B† . (17.1.17a)

A wavefunction y(R) = ·R|yÒ of any state |yÒ times B = e-iqA•R/h gives wave y(r) = ·r|yÒ in r-basis.

  y(r)=·r|yÒ=·R| B|yÒ=·R| e-iqA•r/h|yÒ=e-iqA•R/hy(R)=yB(R) . (17.1.17b)

Position operator-r values are not affected since B is a momentum boost only and not an x-translation.

  B R B† = r = R (17.1.18a)

The upper case{P,R} and lower case{p,r} notation is used for the original basis and the "reduced-

momentum" basis, respectively. However, spatial coordinate labels R and r may be used interchangeably.

  r|rÒ = r|rÒ      , A(r,t)• r|rÒ  =  A(r,t)•r|rÒ    (17.1.18b)

  r|RÒ = R|RÒ   , A(r,t)• r|RÒ = A(R,t)•R|RÒ    (17.1.18c)

Representation of p in new |rÒ-basis is the same as P in the old |RÒ-basis: an (h/i)-gradient (P=(h/i)∂/∂R).

Inserting 1=B†B and using BpB†=P (17.1.16a) and ·R| = ·r| B† (17.1.17a) gives the following.

  py(r) =·r| p|yÒ =·r|B†B p B†B|yÒ =·R| PB|yÒ= PBy(R)  

  py(r) = PyB(R)=Py(r)=(h/i)∂/∂RyB(R)= (h/i)∂/∂ry(r) (17.1.18d)

Here, the notation (17.1.17b) for the boosted wavefunction yB(R)=By(R)=y(r) is used again.

Bookkeeping for Boosts: Operators vs. States
There arise questions about ±signs in B operations. It is important to clarify these for both

operators and states, particularly since they differ. First, our mnemonic labeling of operators is

B

B
p P

BpB p P

B P p

B PB P p

    add  to  to make 

   =

                   

  
cut  from  to make 

       =

means

make igger
qA

qA

means

chop down
qA

qA

" " " (†) "

†

†

†

( )
+ =

Ê

Ë

Á
Á

ˆ

¯

˜
˜

( )
- =

Ê

Ë

Á
Á

ˆ

¯

˜
˜

We may expand the exponential form of B = e-iqA•r/h to check its effect.
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BpB p x p x

p xp px

p x p x p

p

x x† / / / /

/ /

, / ,

=

         

             where: 

         

- +e e iqA iqA

iqA iqA

iqA i

qA
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B has the opposite effect on states or wavefunctions. Look at its effect on a plane wave.

  By yk
iqA x ik x i k qA x

k qAx e e e x( ) = = = ( )- ◊ ◊ -( )◊
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/ /
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h h
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B makes state momentum expectation smaller by the term qA, not bigger. This has to be since a basis

change cannot change matrix elements. What the operator gains the states must lose and vice-versa.
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How one might visualize the various boosting effects is discussed in connection with Fig. 17.1.1.

But, these questions usually boil down to the relativity between states and operators that “analyze” the

states. The fact that what we observe is an interference between the two has been emphasized repeatedly in

Chapter 1 through 15. Newtonian absolutes have no place in modern theory. The relativity of boosts and

momentum seem very confusing from a Newtonian point of view, and the Schrodinger wavefunction y(x)

notation, unlike Dirac’s ·x|yÒ notation, does little to clarify.

However, as shown in Unit 2, the quantum theory and relativity are inseparably mixed in a universe

of waves. To treat either separately, as a Newtonian or Schrodinger paradigm might prefer, is to invite

paradox and confusion. The simplistic Galilean B boosts used here should be replaced by Lorentz

transformations derived in Unit 4 using the s-operator forms developed in Unit 3. However, for now, we

persevere to finish the Schrodinger approach.
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Schrodinger E•r wave equation
Now y (R)-representation (17.1.15) of the electromagnetic Schrodinger equation is transformed to a

y(r)-representation where: y(r)=yB(R)=B y(R)=e-iqA•R/hy(R). We start by acting on (17.1.15) by B .
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Also 1=B†B is inserted so as to use B (P- qA1) B† = P , and PyB(R)=(h/i)∂/∂ry(r).  (17.1.19a)
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r r r r (17.1.19b)

If vector potential A is constant in space and time (a trivial case with zero E-and B-fields) then the B  factor

can pass ∂/∂t to make B ∂y(R)/∂t into ∂y(r)/∂t. Note that (A=0) just gives B=e-iqA•r/h=1.

Consider the simplest non-trivial case: a time dependent A(t) that is constant in space or nearly so.

A e e= -( ) @ -( )x xa kz t a t2 2sin sinw w (17.1.20a)

This is called the long wavelength or dipole approximation in which kz is negligible compared to w t.

(Imagine atomic sized z~0.510 -10m and optical wavelengths l~0.5 10-6m so kz=2p .10-4 is 10,000 times

smaller than w t~2p after one cycle.) Even so, the boost operator B does not commute with ∂/∂t.
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(17.1.20b)

An electric dipole potential -qE•r arises from B ∂y(R)/∂t and Maxwell equation E =-∂A/∂t.(17.1.2)

i
t

t M
V q t th

h∂y
∂

yr
r E r rr,

• ,
( )

=
- —

+ ( ) - ( )
È

Î
Í
Í

˘

˚
˙
˙

( )
2 2

2
(17.1.20c)

Here we assume zero radiation scalar potential (F=0) in Maxwell equation (17.1.2). Nevertheless the

radiation interaction appears as part of a "total" scalar potential U(r) =V(r)- qE•r. This rather special

situation owes its existence to the transversality condition and dipole approximations. This and other issues

concerning A•p versus E•r interactions are discussed next.

(e) Comparing |RÒÒÒÒ and |rÒÒÒÒ = B|RÒÒÒÒ pictures: A•P vs. E•r

Transformation |rÒ = B†|RÒ is more than just a change-of-basis. Since B=e-iqA(t)•r/h is explicitly

time-dependent, this is called a change-of-picture, as in "motion picture." Let us compare the Hamiltonian in

the two pictures. The original |RÒ-picture has a Hamiltonian like the right hand side of (17.1.15).
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The new |rÒ = B†|RÒ-picture has a Hamiltonian like the right hand side of (17.1.20).

H t H H t
M

V q tIr p r p r
p

r E r, , , , •( ) = ( ) + ( ) = + ( )
Ê

Ë
Á

ˆ

¯
˜ + - ( )[ ]0

2

2
       . (17.1.21b)

The time independent H0=T+V-parts look the same except for altering notation (P,R) to (p, r). Both P and

p are represented by a gradient (h/i)— and R equals r, so one might think the H0 in (17.1.21a-b) are equal.

This is one of the worst traps in theoretical physics and leads to the mistake of equating a dipole

potential -qE•r to the interaction -(q/M)A•P+(q2/2M)A•A. Not! Transforming H(p,r) to H(P,R) is done by

B†=eiqA•r/h. B† is a qA-boost of r-space relative to R-space (assuming A is r-independent).

 H(p,r,t) = B†H(P,R,t)B (17.1.21c)

The (-qA)-boost B=e-iqA•r/h was defined by (17.1.16) and (17.1.18). B† is B’s inverse.

 p = B†PB = P-1qA(t), (17.1.21d) ,  r = B†RB = R. (17.1.21e)

Hence, part of H0(p,r,t) winds up in HI(P,R,t), and vice-versa; equating H0(p,r) to H0(P,R) is wrong but

so is equating H0(p,r,t) to B†H0(P,R,t)B. The transformation relation (17.1.21c) only applies to the total

atom-plus-radiation Hamiltonian H=H0+ HI. An attempt to visualize this is shown in Fig. 17.1.1.

Fig. 17.1.1 compares H(p,r,t) to H(P,R,t) with a 1D-HO potential V(x)=(k/2)x2 and constant E=-Å.

 H(p,r,t)  = p2/2M+ (k/2)r2 - qEr   (17.1.22a)

 H(P,R,t)=(P-qÅt)2/2M+ (k/2)R2  (17.1.22)

A constant (DC) E-field adds a linear potential -qEr=qÅ r to V(r) if A increases at a constant rate Å.

   E=-∂A/∂t = -Å  where:  A=Åt  (17.1.23b)

A positive rate ∂A/∂t = Å means a negative E but a positive slope -qE of the interaction potential line -qEr.

This causes the minimum of total potential U(r) to shift left from r=0 to ro=-qÅ/k as seen in Fig. 17.1.1a.

  MIN U(r) = (k/2) ro2-qEro=-q2E2/2k=-q2Å2/2k  at: ro=qE/k=-qÅ/k  (17.1.24)

The momentum derivative ṗ  for a particle at r=0 shifts from ṗ=0 to ṗ=qE=-qÅ when E is turned on.
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(17.1.25a) (17.1.25b)
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The H(p,r,t) phase space origin also shifts from r=0 to ro=-qÅ/k as shown in Fig. 17.1.1b. Phase

points rotate clockwise as in an Australian "typhoon" around a fixed-point or "eye" at origin (r,p)=(ro,0).

The H(P,R,t) phase space has a similar "typhoon" of clockwise phase (P,R)-point flow.

˙ / ˙
/

/

R
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p

M
qÅ kM P
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R
kR
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R qÅ k
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 at:     

at:           

at:  

(17.1.25c) (17.1.25d)

In contrast to H(p,r,t), the H(P,R,t) "typhoon" is not shifted horizontally but simply drifts upward along

with the r-axis at rate qÅ=-qE relative to R-axis in Fig. 17.1.1c. Momentum-p flow rate ˙ ˙p P qÅ= -   is less

than Ṗ  by the rate qÅ of up-boost qA=qÅt since p is measured relative to the r-axis, but P is relative to R.

   

at:   

at:          

  at:   

˙ ˙
/
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R qÅ k

R

R qÅ k

= - =
-
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=
=
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2

0

0 (17.1.25e)

Note that boost qA=qÅt shifts the "eye" or ( ṗ = 0)-point from R=0 to R=-qÅ/k on the negative r-axis in

Fig. 17.1.1c consistent with the shifted but stationary "eye" on the r-axis in Fig. 17.1.1b. This shows the

subtle nature of the boost transformations (17.1.16), (17.1.18a), and (17.1.21) that relate electromagnetic

Hamiltonian pictures of H(p,r,t) to H(P,R,t). Even for a constant E-field this is not a trivial relation.



HarterSoft –LearnIt Unit 6 Time-Variable Perturbation and Transistion 17-11

       

    

r

Dipole
Interaction

Potential
VI(r)=-qE•r

= qÅ•r

PE

DC Deficit

U(ro)=-q2E2/2k

Total Potential
U(r)=V0(r)+VI(r)(a)

(b)

r

p

Zero-Field
Phase Paths

Total-H(p,r) Phase Space

(c)

R

P

Zero-Field
Phase Paths

Total-H(P,R) Phase Space

rFixed point
moving up
at speed qÅ

Stationary
Fixed point

qA=qÅt

p
P=p+qA

Atomic Potential

V0(r)=(k/2)r2

E

DC Displacement
ro=qE/k=-qÅ/k

p•

p•

r•

r•
p•r=0=•

p•r=0=•

p•

r•

p• p•p•

Fig. 17.1.1 (a) H(p,r) with E•r coupling. (b) Phase space. (c) H(P,R)=H(p+qA,R) boosted phase space.
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Linear-plus-constant field geometry: Adding potential parabolas and lines

Perhaps, no other physical process is more important than optical excitation of atoms, molecules,

and solids. All the color you see around you, indeed everything you can see, is due to this process. Whether

this process is described by classical or quantum theory, it is often modeled by a parabolic atomic potential

VA=kx2/2 (linear force FA=-kx) in a linear electric potential field F=-qE x (uniform electric force field

FE=qE). This ideal atom model is Lorentz’s linear or harmonic atomic binding model and the ideal model of

a stimulating electric radiation field is the long wave or dipole field approximation. In Fig. 17.1.2 the

geometry of fields is introduced beginning with two force-vs.-x lines in Fig. 17.1.2(a).

To plot total force, we only have to add two lines, the constant (FE=qE)-line of the electric field and

the sloping (FA=-kx)-line of the atomic restoring force. This is done in Fig. 17.1.2(b) for a negative qE-field

(qE=-0.6) and a positive atomic “spring” constant (k=0.8) to yield a total force (FTotal=-kx+qE)-line.

 FTotal= FA+ FE =-kx+qE=-0.8x-0.6     (A.1)

The equilibrium “resting” point (x=0, FA=0) of the atomic (FA=-kx)-line moves to a new zero point of the

total force (FTotal=-kx+qE)-line at the electric-atom equilibrium point (x=xE, FTotal=0).

 0=FTotal=0 =-kx+qE=-0.8x-0.6   at: x=xE,=qE/k=-0.6/0.8=-0.75  (A.2)

To plot potential VTotal(x) we use parabolic geometry beginning with finding the VTotal-parabola focus

in Fig. 17.1.2(c). The new VTotal-parabola axis is at the xE value indicated by the little circle on the x-axis at

the equilibrium point xE =-3/4 in Fig. 17.1.2(b-c) where the total force goes to zero.

Now imagine a light ray going down the old axis. Angle-f of incidence equals angle+f of OF-line for

the ray reflecting off the parabolic tangent to hit the focus. (Atom force FA and potential VA=kx2/2 are zero

at x=0 where qE-field potential F and slope equal those of VTotal.)

The total atom-plus-field potential VTotal =VA+F is a parabola of the same shape as VA=kx2/2 for the

undisturbed atom, but its axis is over the new xE–point where total force (potential slope) are now zero.

Also, its minimum (zero-slope) point falls to a negative value VTotal(xE) that is zero only for qE=0.

 VTotal(xE) =V(xE)+F(xE) = k xE
2/2-qE xE = -(qE)2/(2k) =-(0.6)2/1.6=-0.225   (A.3)

This new minimum VTotal(xE) and the new potential VTotal(x) are constructed in Fig. 17.1.2(d-f). While

it is perhaps difficult to explain, it is quite easy to do. First the directrix line is found in Fig. 17.1.2(d). It

uses the fact that each point on the directrix lies below the contact point of the tangent normal to a line

connecting that point to the focus as shown in Fig. 17.1.2(e). The normal points or “elbows” of the

tangents all lie on the horizontal tangent to the VTotal(x) parabola’s minimum. This gives an easy tangent-

contact construction of the VTotal(x) parabola seen in Fig. 17.1.2(f).

Alternatively, one may start with the original field-free atomic parabola VA=kx2/2 shown in Fig.

17.1.2(g). Its tangents at x=±1 are parallel to the force plot lines ±FA=-kx for any value of external qE-field

as shown by lines for qE=±k and qE=±k/2. The latter are tangent at x=±1 and provide a contact

construction of VA(x) like the one for VTotal(x) in Fig. 17.1.2(d-f). Then any VTotal(x) parabola is found by

translating the origin of VA(x) along an inverted copy [-VA(x)] of itself as shown in Fig. 17.1.2(h).
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Fig. 17.1.2 Geometry of atomic oscillator potential VTotal(x)=V(x)+F(x) = kx2/2-qE x with uniform

E-field.
 (f) Comparing diabatic with adiabatic: "Catcher-In-the-Eye"

For variable E-fields the preceding pictures can be insightful. Suppose a particle is sitting at r=0

near the bottom of the atomic potential V(r)=(k/2)r2 with the E-field turned off. Now imagine turning on

the E-field in very tiny steps so that the ṗ=qE=-qÅ excursions in (17.1.25a-b) are tiny for each step and so

the shift  ro=qE/k is made arbitrarily high but the particle stays around ro with near-zero ṗ . If you are

clever at catching the particle in the "eye" just when its momentum is turning around, you can make ṗ

exactly zero. Such a "catcher-in-the eye" game can produce large ro with zero ṗ  in just a couple of steps.

Suppose now that a high ro with low ṗ  has been obtained. What happens if suddenly the applied

field goes to zero? Forgetting, for the moment, the resulting transient radiation field, it is clear that the

particle will find itself high up on the zero-E potential, that is, at energy V(ro)=(k/2)ro2 with a low initial

velocity. In about a quarter cycle, all that potential will be converted entirely to kinetic energy! Such an

extreme diabatic transition is quite a contrast to an adiabatic one that would leave the particle back at ro=0

and ṗ=0 after the field was turned off slowly or reduced cleverly by "catcher-in-the-eye" maneuvers.

Oscillating particles may also undergo adiabatic transitions by conserving classical action S= Úpdx.

Adiabatic conservation of classical action implies quantum number conservation or adiabatic following . A

system starting in the n-th state remains in the n-th state even if the states are changing like mad.

In contrast to adiabatic following, resonant excitation changes action and quantum numbers. If a

potential U(r) in Fig. 17.1.1(a) shakes at the natural oscillator frequency, the system will be excited rapidly

to a combination of two or more states. Chapter 18 discusses of this sort of resonant excitation.

(g) Gauge transformation
Consider a non-relativistic electromagnetic Hamiltonian and Schrodinger equation with both a scalar

potential F(R,t) and vector potential A(R,t) operative.
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Isolating time-like parts from space-like parts more closely respects the equation’s relativistic origins.
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Now consider the corresponding equation for a G-gauge-transformed wavefunction

  yG(R) = eiqG(R,t)/h y(R) =Gy(R), (17.1.27)

that is, a wavefunction whose phase has been messed up by an arbitrary gauge function G(R,t).
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Here an inverted version y =G†yG of (17.1.27) is put in for y  and G = eiqG(R,t)/h is applied to the left.
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Gauge transformed wave yG obeys wave equation (17.1.6) with gauge transformed potentials FG and AG.
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The electric and magnetic fields E and B are not affected by a gauge transformation.
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The boost transformation B=e-iqA(t)•r/h in (17.1.16) uses a gauge function G(R,t)=-A(t)•R to cancel

the vector potential with -A=∂G/∂R and add a dipole term -∂G/∂t=∂A/∂t•R =-E•R to the scalar potential F.

Such a simple algebraic result covers up the transformation physics and phase space geometry

described earlier. A gauge transformation is a change-of-basis that is as severe as any can be and should be

treated as such even though, as it is often described, it does not seem to affect fundamental fields E and B,

coordinates R, or momenta P. In fact it does! It is a non-uniform boost in space and time that changes origin

and scale in frequency-wavevector space. The B-transformation is as close to a relativistic Lorentz boost as

is possible in a non-relativistic theory. Changing the space and time wrinkles of waves (their k and w) is the

same as a change of their momentum and energy.

A serious problem here is our abandonment of relativistic symmetry, which occurred in Chapter 7 as

we entered the Schrodinger world. The elegant relation between relativity and quantum theory in Chapters 4

through 6 is, in my mind, so compelling. Dirac once commented, “Nature is a stickler for good form.”

Dirac’s theory of relativistic electron spin (to be explored later) is still as much a monument to good form as

the gauge confusion alluded to above is to the lack thereof.
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Mechanical analogy for cyclotron motion in magnetic field

A smooth sphere or ball rolling on a horizontal rotating table, as shown in Fig. 17.1.2 obeys

the same equations as a charged particle in a uniform magnetic B field.
              

R

w(t)W(t)

r(t)

r(t)=v(t) F=m v(t)
FxR=I w(t)

Fig. 17.1.2 Mechanical analog of magnetic vxB cyclotron mechanics.

The key to making this device work is to have rolling “stiction” with as little rolling friction as

possible. A plexiglas pool ball on a plexiglas disc attached to a record turntable will suffice. The constraint

relation which demands no slippage of the ball on the table is as follows.

v r R r z= ¥ + ¥ = ¥ + ¥WW ww WW ww ˆR (17.1.28)

Combining with Newton equations for translation and rotation in the Fig. 17.1.2 gives

I m m R˙ ˙ ˙ ˆww = ¥ = ¥ = ¥F R v R v z (17.1.29)

The acceleration a v= ˙  is given by the time derivative of the velocity constraint (17.1.28).

˙ ˙ ˙ ˆ ˙ ˆv r z v z= ¥ + ¥ = ¥ + ¥WW ww WW wwR R (17.1.30a)

Putting in (17.1.29) gives the velocity equation of translational motion on the table.

˙ ˙ ˆ ˆ ˙v v v z z v v= ¥ + ¥( ) ¥ = ¥ -WW WW
1 2

I
m R R

mR

I
(17.1.30b)

This has the form of the cyclotorn orbit equation m ev̇ v B= ¥ .

1
2

+
Ê

Ë
Á

ˆ

¯
˜ = ¥

mR

I
v̇ vWW or: v̇ v B B= ¥ = -

+
Ê

Ë
Á

ˆ

¯
˜

e

m mR

I

     where:   
WW

1
2

(17.1.30c)

A solid ball with inertia I=2/5mR2 leads to an effective cycloton frequency of 2W/7, that is, the ball

will orbit exactly twice for each seven rotations of the table. The actual surface velocity V=WWWWxr of the table

is analogous to a vector potential A=1/2Bxr of a uniform magnetic field.
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17.2 Introduction to Autonomy of Time Dependence
Quantum theory contrasts two kinds of time dependence based on whether the Hamiltonian H has

explicit time dependence or not. An autonomous system with constant H is the ideal case, but many

applications use a time-dependent H(t) to describe non-autonomous systems. We compare the two cases.

(a) Autonomy: The ideal "hands-off" view
In the preceding chapters, time dependence of a quantum system has been autonomous, that is, it

occurs without any help from the outside world. Time evolution introduced in Chapter 8 involved a

Hamiltonian time evolution generator H which was constant H(t)=H(0). This means the observed time

dependence of a state could be written using an evolution operator U(t) formed by an exponential of H.

 |Y(t)Ò = U(t) |Y(0)Ò = e-iH t/h |Y(0)Ò  (17.2.1a)

This is displayed in equation (9.2.5c) and is equivalent to Schrodinger’s equation (9.2.6a) repeated here.

  
i

t
t th

∂
∂

( ) ( )Y Y= H (17.2.1b)

The physics behind this is as simple as it is beautiful, and it is based upon Planck’s energy-

frequency equivalence E = hw. Each stationary "own-state" or eigenstate |ekÒ of the Hamiltonian H has a

definite "own-energy-frequency" or eigen-energy-frequency ek = hwk .

 H|ekÒ = ek|ekÒ= hwk |ekÒ  (17.2.2)

An eigenstate of constant Hamiltonian is constant. Only its internal clock will secretly "tick" by (17.2.1).

 |ek(t)Ò = e-iek t/h |ek(0)Ò = e-iwk t |ekÒ (17.2.3)

Also constant is the probability P(x,t)= |·x|ek(t)Ò|2 for an eigenstate |ekÒ to end up in any given state |xÒ.

Squaring Y*Y=|Y|2 cancels the single "ticking" phase factor e-iwk t with its conjugate (e-iwk t)*=e+iwk t.

 Pek(x,t)= ·x|ek(t)Ò* ·x|ek(t)Ò = ·x|ekÒ* ·x|ekÒ=Pek(x,0) (17.2.4)

 But, general states |Y(0)Ò must be some combination c1|e1Ò+c2|e2Ò+...of |ekÒ.(The |ekÒ are a complete set.)

Y Y0 0( ) = ( ) =Â Âe e ek
k

k k
k

kc (17.2.5a)

Coefficients ck =  ·ek|Y(0)Ò are constant as time passes, but eigenstates "tick" their phases by (17.2.3).

Y t e ci t
k

k
k

k( ) = -Â w e (17.2.5b)

So if state |Y(0)Ò initially combines two or more eigenstates cj|ejÒ+ck|ekÒ+..., the time dependence of its x-

probability will contain "beats" of amplitude |cj ck |,... at each of the difference frequencies (wj -wk ),....
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L

(17.2.5c)

It is such a combination of beats that determines the time behavior of an autonomous quantum world as a

Fourier sum (or integral) over the system’s spectrum. If you really knew all the spectral amplitude

coefficients cj, ck,... then you can predict the state of an autonomous system forever.

(b) Non-Autonomy: The practical "quantum control" view
There are a couple of real-world problems with the ideal quantum deterministic view of the world.

First of all, the observable "reality" of a state |Y(t)Ò are given by probability values PY(x,t) or expectation

values ·Y(t)| x|Y(t)Ò. So, however well you know a state |Y(t)Ò, it only gives you some raffle-lottery

tickets. A probability PY(x,t)= |·x|Y(t)Ò|2  is just that, odds for an outcome of some more or less clumsy

"measurement" process involving eigenstates {·x|, ·x’|,..} of another "counter" system different and outside

of the one with eigenstates {|e1Ò, |e2Ò,..} being considered. Remember Axioms 1-4 are based on relative

transformation matrix elements {·x|e1Ò, ·x’|e1Ò,..·x|e2Ò, ·x’|e2Ò,..} between two systems.

This then brings up the second problem: A truly autonomous system would be totally isolated and

therefore unavailable for "measurement" or any kind of observation. A total measurement ends autonomy

just as the act of cashing in all of one’s chips ends a game of chance.

One way out of this conundrum is to find ways to "tweak" or perturb a system by time-varying

some part of its Hamiltonian in a way that affects outcome probabilities. A general outcome scenario starts

a system in some initial state |Y(0)Ò and perturbs H to stimulate probability in some final state-|xÒ.

 PY(x,t)= |·x|Y(t)Ò|2 = |·x|U(t,0)|Y(0)Ò|2 , (17.2.6a)

A more usual outcome scenario starts a system in some initial eigenstate-|ek(0)Ò=|ekÒ and perturbs H to

stimulate transition probability Pek(ej,t) to wind up in some other final eigenstate |ejÒ.

 Pek(ej,t)= |·ej|ek(t)Ò|2 = |·ej|U(t,0)|ek(0)Ò|2 (17.2.6b)

For the latter case we turn on the perturbation at time t=0 and then turn it off sometime later so that the

eigenstates of the unperturbed Hamiltonian are meaningful bases for describing the initial and final states.

(c) Diabatic versus adiabatic quantum control
How rapidly we turn on or turn off a perturbation is an important consideration. Sudden or diabatic

changes in H(t) cause wave systems to exhibit complicated "ringing" behavior because oscillators respond

excitedly when spectral bandwidth of a stimulus overlaps their resonant frequencies. In contrast, gradual or

adiabatic variation of H(t) may allow an old eigenstate |ek(0)Ò=|ekÒ of H(0) to gradually morph into a new

eigenstate |ek(t)Ò of H(t) without producing combinations of any other H(t) eigenstates (Such a transition is
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known as adiabatic following.) But, sudden changes (Diabatic means non-adiabatic in modern double-

negative jargon) are so fast the initial state |ek(0)Ò cannot follow. The "surprised" state |ekÒ may be a

combination of two or more new eigenstates |ek(t)Ò, |ek’(t)Ò, |ek"(t)Ò, .. of H(t) so these "beat" against each

other at frequencies wk(t)-wk’(t), wk(t)-wk"t), .. as in (17.2.5c) while the wk(t) also vary with H(t).

The distinction between adiabatic and diabatic applies equally to the space-time or wavevector-

frequency domain. For example, recall how a sharp barrier causes a wiggling transmission spectrum in Fig.

13.1.6 but softening boundaries even a little quenches the wiggles as in Fig. 13.1.7. For another example,

compare Fig. 12.2.7 and 12.2.8. To (over) accommodate long adiabatic turn-on and turn-off times it is often

the formal convention that outcome probabilities like (17.2.6) have the initial time t=0 replaced by t=-•,

and the final time t replaced by t=+•. This is a theorist’s way of taking the sublime to the ridiculous.

Consider an example of a perturbation operator V added to H with a turn-on-turn-off time T.

H

H

H V

H

( )

( )

( ) cos /

( )

t

t < 0

t T 0 t T

t > T

= + - p( )( ) £ £
Ï
Ì
Ô

Ó
Ô

0

0 1 2

0

   for 

   for 

   for 

(17.2.7)

If operator V were, itself, a constant operator, then a system starting in an H(0)-eigenstate |ekÒ at t=0,

might, if T was long, always be in a state |ek(t)Ò which was at all times an eigenstate of the current H(t) and

return to the same original eigenstate |ek(T)Ò=|ekÒ after time t=T. For some systems this is possible even if

V is large enough to conduct |ek(t)Ò through a "grand tour" which visits a wide range of the state space.

(d) Which is better? Autonomy or Not
There is something about quantum autonomy that rankles the classicist in all of us. Most of us are,

deep down, control freaks worrying over details as picayune as whether to hyphenate the expression anal-

retentive! So a driverless quantum system seems to demand..., well,... a driver.

Nevertheless, driving a quantum system exactly is not an option. One must question the wisdom of

applying a "hard" and precise classical field E(t) to "soft" and uncertain quantum wavefunctions. After all,

the stuff in a classical field involves, deep down, quantized waves, too. All perturbing fields like E(t) have

underlying quantum uncertainty. The same goes for those “hard” classical potentials V(r) or U(r,t). Pure

quantum theory cannot tolerate absolute certainty and still be consistent. The smallest indivisible unit of

any phase space area is Planck’s coefficient h~10-35Joule seconds. The unit is tiny, but it is not zero.

However, practicality of non-autonomous E(t) wins out if 10-35Joule seconds means much more to

the system in a perturbing field E(t) or potential U(r,t) than it does to the field or potential itself. In other
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words, if a field or potential has gobs of quanta, then it can say, "What are a few quanta to help a

friend?" Such non-autonomy is called semi-classical quantum mechanics: a non-autonomous system uses

Y(x,t) amplitudes to predict each quantum state according to uncertainty relations but demands absolute

certainty of phase and amplitude for classical driving perturbation E(t) or potential U(r,t) in which quanta

are negligible. Semi-classical quantum theory and electrodynamics constitutes much of modern theory.  

Nevertheless, the parts of modern theory that are most prized are the autonomous ones in which the

details of quantum theory are most completely accounted. Quantum electrodynamics (QED) that uses

Dirac’s electron model is one of the most famous examples. Here both the electronic matter and the

electromagnetic field are described in terms of quantum states and operators. No explicit time dependence is

attached to any part. Furthermore, QED is fully relativistic, and so Schrodinger’s equation, which isolates

time as a parameter rather a space-time dimension, must fall by the wayside, as must purely scalar V(r)

potentials. The intimate relation between quantum theory and relativity (shown in Ch. 5) indicates that a

timeless autonomous quantum theory is ultimately what we want.

But, a perennial question remains, "How can a "measurer" be part of its own system?" This

question will bother us for quite some time!
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Problems for Chapter 17.

Newton recovers

17.1.1 Verify that Hamilton’s equations (17.1.10e) yield the Newtonian pondermotive relation (17.1.1).

Euclid recovers

17.2.1 With a ruler and compass construct on graph paper the qE-dipole-shifted atomic k-parabolic

potential for cases with k=2.0 and  (a) qE=0 , (a) qE=1.0 , (a) qE=2.0 , (a) qE=4.0 . You might show in

each how the phase (x,v)-space elliptical paths are located for a mass of M=1.0 and for M= 4.0.

Jailhouse Rock’n Roll

17.2.2 Prisoner-M is in the infinite-well maximum-security prison of Chapter 12 suffering from an

Earthquake (caused perhaps by a heavy-metal rock band) that seems to go on forever. Now the prison floor

tilt angle varies: f= flimit sin(wrockt) giving gravity PE function Vrock’n roll(x) =Mgh. (Let floor height be

defined h=0 at x=0.)

(a) Give the lowest order term in Vrock’n roll(x). Discuss how or when that might be a valid approximation.

(b) If prisoner-M has a charge Q derive his potential in an em-wave Ex = e0 cos (kz-wrockt) whose

polarization is along the cell x-axis. Discuss the conditions for it to have the form desired in part (a).

“Zoom” versus “Catcher in the eye”

17.2.3 Conventional wisdom about potential fields claims that a classical or quantum oscillator will

“follow” a field that takes a long time to “turn on.” Indeed, the phenomena is called “adiabatic following.”

Suppose it takes 1000 oscillator periods to turn on a uniform field that moves an oscillator’s equilibrium

position form r0=0 to r0=1. (See Fig. 17.1.1(a)) Then an oscillator sitting at r0=0 (or oscillating around

r0=0) is expected, after that field is fully turned on, to have “followed” the varying r0 all the way from r0=0

to end up sitting at r0=1 (or oscillating around r0=1) with the same action S pdx= Ú  it had before. Consider

two extreme cases: (a) “Zoom” and (b) “Catcher-in-the eye.”

(a) However, suppose that the field increase occurs so that equilibrium starts at r0=0 and makes tiny jumps

by Dr0=1/1000 each period. Such a field appears to rise slowly but may excite a stationary oscillator to high

action. Discuss this case for an initially stationary oscillator and one that is moving. Draw a space-time plot

of the force, equilibrium r0(t) and the oscillator x(t) for several jumps.
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(b) Suppose that the field increase occurs so that equilibrium starts at r0=0 and makes tiny jumps

by Dr0=1/2000 each 1/2-period.. Discuss this case for an initially stationary oscillator and one that is

moving. Draw a space-time plot of the force, equilibrium r0(t) and the oscillator x(t) for several jumps.

“Ping-pong” versus “pong-pong”

17.2.4 One way to visualize adiabatic-versus-diabatic action variation is to examine a mass bouncing back

and forth between two perfectly elastic ping-pong paddles. In each case we imagine that the left “ping”

paddle is slowly closing in on a fixed right “pong” paddle so that after 1000 or so bounces it reduces the

spacing by one-half. Consider two extreme cases: (a) “Ping-pong” and (b) “Pong-pong.”

(a)  Suppose the “ping” paddle moves in at velocity v0 that is slow compared with the initial bounce

velocity V(0) of the ball. Each collision increases the speed V(t) and momentum p(t)=MV(t) of the ball. How

much?  Meanwhile, distance x(t) that the ball travels between each “ping” and “pong” is slowly being

reduced. Show that the action S pdx= Ú  is nearly constant.

(b)  Suppose the “ping” paddle moves at velocity v0 except that when it hits the ball it stops briefly so each

collision leaves the speed V(t) and momentum p(t)=MV(t) of the ball unchanged in magnitude. Show how the

action S pdx= Ú  varies under these conditions.
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Chapter 18 treats the case of weak or off-resonant fields for which a perturbation

approach to field-stimulated transitions gives an accurate picture of their dynamics.

Perturbation may be regarded as an iterative process and is simple when only the first

iteration is needed. Several famous results come from such an approximation. These

include Fermi’s Golden Rule, the TRK-oscillator strength-sum rule, and virial identities.

Relations between E•r and A•p approaches are seen, too.
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Chapter 18 Introduction to Time-Variable Perturbation

18.1 Time Dependent Potential
The following is an analysis of time dependent perturbations like E•r in (17.1.20) and more general

perturbations V(t) that are arbitrary functions of time. Perturbation theory attempts to give solutions to the

time Schrodinger equation (17.2.1b) with an explicitly time-dependent (non-autonomous) Hamiltonian.

  H(t) = H0 + V(t)= H0 + HI  (18.1.1a)

A non-autonomous Schrodinger equation is generated by the total Hamiltonian H(t).
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t
t t t t th

∂
∂

( ) ( ) ( ) ( )( ) ( )+Y Y Y= = 0H H V (18.1.1b)

We represent it using a basis {|e1Ò, |e2Ò,..} of eigenstates of the unperturbed part H0 of the Hamiltonian.

 H0|ekÒ = ek|ekÒ= hwk |ekÒ  (18.1.3)

This is the same as (17.2.2) as is the expansion (17.2.5a) repeated here of the initial state in this basis.

Y Y0 0( ) = ( ) =Â Âe e ek
k

k k
k

kc (18.1.4)

(a) Perturbation approximations
The next steps involve the art of a particular approximation and differ from the time-independent

formulation of (17.2.5). First, definition (17.2.5b) has variable ck(t) replacing constant ck .

Y t e c ti t
k

k
k

k( ) = ( )-Â w e (18.1.5)

The idea is that a small varying V(t) will cause a slow variation of the otherwise constant |ekÒ-expansion

coefficients ck(t) of the initial state. The comparatively rapid phase oscillation frequencies wk of the

unperturbed e-states are assumed constant; the comparatively slow variation of the state is to be entirely

accounted for by ck(t).

While the |ekÒ and ek are rarely eigenkets or eigenvalues of the total Hamiltonian H0 + HI , they do

constitute a complete set of eigensolutions of the unperturbed Hamiltonian H0 and therefore able to make

an arbitrary state |Y(t) Ò at any time. This approximation does not try to adjust either the eigenvectors or

the eigenvalues to be instantaneous eigensolutions of the total Hamiltonian H(t). That adjustment is entirely

made up by the coefficients ck(t) for which an approximate solution will now be derived.
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Assumed state |Y(t)Ò obeys Schrodinger equation (18.1.1b). The left hand side is a time derivative.

  

i i

i i

i

t
t

t
e c t

e

t
c t e

c t

t

e c t e
c t

t

i t
k

k
k

i t

k
k

k
i t

k
k

k

k
i t

k
k

k
i t

k
k

k

k

k
k

k k

h h

h h

h h

∂
∂

( ) ∂
∂

( )

∂
∂

( ) +
∂ ( )
∂

( ) +
∂ ( )
∂

-

-
-

- -

Â

Â Â

Â Â

Y =

=

=

                 

                 

w

w
w

w w

e

e e

w e e

(18.1.6)

Schrodinger equation (18.1.1) is rewritten in (18.1.7) below. It may be subtracted from (18.1.6) to cancel

the left hand time derivatives and first sum on the right hand side since H0|ekÒ equals hwk |ekÒ by (18.1.3).
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So, the second sum with the ck(t) derivative in (18.1.6) equals the second sum in (18.1.7).
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Using eigenstate orthonormality (·ej|ekÒ=djk) gives a Schrodinger-like equation for coefficients ck(t).
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The equation has oscillatory coupling involving perturbation matrix elements ·ej|V(t)|ekÒ and ei(wj-wk)t.
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Each coupling component has a phase factor oscillating at a beat or transition frequency Wjk=wj-wk..
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The (j,k)-coupling time dependence is a modulation by ·ej|V(t)|ekÒ of the transition beat phasor eiWjk.

 Vjk(t) = eiWjk ·ej|V(t)|ekÒ= ei(wj-wk)t ·ej|V(t)|ekÒ  (18.1.10c)

The time variation of the state amplitude of general state |Y(t)Ò in (18.1.5) is

 ·ek|Y(t)Ò = e-iwkt ck(t) . (18.1.10d)

Apart from its phase factor, ·ek|Y(t)Ò varies only if the coefficient ck(t) varies and that happens only if the

perturbation V(t) is non-zero. But, no matter what V(t) does, the H0 eigenstates |ekÒ and their eigenvalues

ek= hwk  are assumed constant. Only ck(t) is influenced by V(t).
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(b) Iterative perturbation expansion
To begin solving (18.1.10a) assume the initial state is a pure H0 eigenstate |ekÒ=|e1Ò, that is,

 ck(0)=dk1=ck(0). (18.1.11)

Then coupled equations (18.1.10a) simplify for a short time (t~0). The first approximation is
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The first approximation for each coefficient is given by a single integral of the perturbation component.
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The second approximation to (18.1.10a) uses the first approximation as a starting point.
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Integrating with initial value (18.1.11) gives the second iterate of each coefficient.
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(18.1.14b)

The third approximate iteration is done similarly and so on for each higher one.
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(18.1.15)

The complexity of each iterative contribution increases rapidly. The situation is reminiscent of the matrix

perturbation expansion outlined in Ch. 3 by equation (3.2.5) . Carrying (18.1.15) out means summing all

possible sequences between two state-1 and state-j while (3.2.5) sums all path sequences between state-1

and itself. For a constant perturbation operator V(t)=V the integrals in (18.1.15) produce energy

denominators which are similar to those in (3.2.5).
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18.2 First-Order Perturbation Theory and Fermi-Golden-Rule
Much of quantum transition theory is based on first order approximations. These are described in

this section in a way that can be compared and improved with better approximations in later Chapters.

(a) First order iteration of dipole approximation
As is the case for matrix perturbation, time dependent perturbation gets the most mileage from its

simplest approximation, the first iteration (18.1.13). Consider a perturbation with a single time Fourier

component: a charge q sitting at point r in an x-polarized plane wave electric field E(t) = exEoei(k•r-w t+f).

  V-(t) = -q E(t)•r = -q r• exEoei(k•r-w t+f)) ~ -qEo e-i(w t-f)r• ex  (18.2.1)

If the charge is an electron (q=-|e|=1.6E-19 C) in an atom whose radius (~0.5 A=0.5E-10m) is ten thousand

times smaller than optical wavelength (0.5mm=0.5E-6m) then it is convenient to invoke the dipole

approximation (mentioned after (17.1.20a)) ignoring the small k-dependency of the plane wave.

 ei(k•r-w t) ~ e-iw  t  (for negligible k•r )  

The dipole approximation reduces the perturbation to an x-operator with an oscillating phase factor.

  V-(t)  ~ -qEo  e-i(w t-f) r• ex   = -qEo  e-i(w t-f) x (18.2.2a)

Let us define a positive frequency V+(t) that is the complex conjugate of V-(t). (Eo is real here.)

  V+(t) ~ -qEo  e+i(w t-f) r• ex  = -qEo  e+i(w t-f) x (18.2.2b)

A real standing cosine potential Vc(t) is a sum of V-(t) and V-(t).

 Vc(t)= [V+(t)+V-(t)]/2 ~ -qEo  r• ex cos(w t-f) = -qEo  x cos(w t-f) (18.2.2c)

A vector potential which would give the same field E=-∂A/∂t is the following. (Recall (17.1.12).)

 A=ex 2|a|sin(kx-w t-f)~ex  2|a| sin(w t-f)= ex |a|(-ie-i(w t-f)+ie+i(w t-f) )

 = ex (ae-iw t+ a*e+iw t )   

E-field magnitude Eo is given in terms of a complex A amplitude a and f is initial cosine phase of E.

Eo=2|a|w where:  a = -i|a| eif , (18.2.3a)

This is for later comparison with quantum fields. The corresponding A•P interaction term would be

 -(q/M)A•P~  2(q/M)|a| sin(w t-f) P• ex = Px (-q/M)(ae-iw t+a*e+iw t ).  (18.2.3b)

Let the E•r interaction Vc(t) be given in terms of a = -i|a| eif .

Vc(t) ~  -2qw |a| cos(w t-f) r• ex  = -x q ( iw  ae-iw t- iw  a*e+iw t ).  (18.2.4)

Consider now, first-order amplitudes cj(1)(t) from (18.1.13) of eigenstate |ejÒ for a system starting

out in state |e1Ò at t=0 and perturbed by a cosine potential Vc(t) in (18.2.4) above.
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The key quantities are the beats or (j¨1)-transition frequencies Wj1 and(j¨1)-dipole matrix elements rj1.

 Wj1=wj-w1. rj1 = e•·j| r |1Ò   (18.2.5b)

The three components of a dipole are labeled (x,y,z). Each are treated equivalently.  

  xj1= ex•·j| r |1Ò=·j| x |1Ò,  yj1= ey•·j| r |1Ò=·j| y |1Ò,  zj1= ez•·j| r |1Ò=·j| z |1Ò  

Using Vc(t) from (18.2.3) gives the amplitude integral expressions.
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Carrying out the integrals and inserting the amplitude a = -i|a| eif gives the following.  
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It is helpful to rewrite the amplitudes cj(1)(t) as follows (Here: Eo=2|a|w  appears again.)

  
c t

r E
e S t e S tj j

q j i i1 0

2
( ) + ≠ - Ø( ) ( ) + ( )È

ÎÍ
˘
˚̇

= d f f
1

1

h
D D, , , (18.2.5e)

using an important spectral amplitude function S(D,t) of an angular frequency detuning parameter D

S t d
tt i

i t

e
e

D
D

D
D

D
,

/

/

/ sin( ) ( )
= =Ú t t

0

2 2

2
. (18.2.5f)

S maximizes for D=D≠=0 if w  excites an energy increase (wj>w1) or for DØ=0 if energy drops (wj<w1).

    D≠ =Wj1 - w : (excitation: e1Æej>e1)   DØ = Wj1 + w : (de-excitation: e1Æej<e1) (18.2.5g)
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(b) The spectral intensity function and energy-time uncertainty
It is important to visualize the spectral function S(D,t) since it appears repeatedly in quantum

theory, spectroscopy, acoustics, optics, and practically any subject with oscillation. S(D,t) first appears in

this book in connection with pulse trains in Fig. 5.3.2 and wavepacket revivals in Fig. 12.2.5 to Fig. 12.2.7.

One may view S(D,t) as a function St(D) of frequency D for a fixed time parameter t or vice-versa as

a time function SD(t) for a fixed frequency D. S(D,t)=St(D) is the Fourier D-spectrum of a "box-car" function

x(t) that is constant x(t)=1 between time t=0 and time t=t  but zero (x=0) before or after. S(D,t)=SD(t) is

the zero-frequency spectral component at time t of a pure single frequency D turned on at time t=0.

Amplitude-square |cj(1)(t)|2 is a probability which includes spectral intensity functions I(D,t)

I t S t
t

D D
D

D
, ,

/

/

sin( ) ( ) ( )
( )

= =2
2

2
2

2
. (18.2.6a)

The spectral intensity function I(D,t)  is plotted versus detuning D and time t in Fig. 18.2.1. Its most notable

feature is a peak at zero detuning (D=0) soaring up as the square (I=t2) of time.

lim , lim
/

/

sin
D DD

D

D
Æ Æ( ) ( )

( )
= =0 0

2

2
22

2
I t

t
t . (18.2.6b)

Off the main peak, at non-zero-D, are lesser 4/D2-high peaks whose 2/D-amplitudes oscillate or "beat" at

frequency D/2. (Note t·D=±3p, ±5p,… peaks of diminishing heights 4/D2=4t2/9p2, 4t2/25p2,… in Fig. 18.2.1)

The central t2-peak is the biggest of these beats, but unlike its companion "beatlets", the (D=0)-peak has

zero beat frequency and infinite amplitude. It just keeps on climbing and never comes back down!

The D/2 frequency of each "beatlet" might be a source of worry since we have noted generally that a

system with two states |e1Ò and |ejÒ with frequency w1 and wj, respectively, would beat at frequency

Wj1=wj-w1=D, not at D/2. But, as should be the case, Wj1=D is the frequency of the probability

 |cj(t)|2~ sin2(tD/2)=(1-cos(tD))/2. (18.2.7)

Meanwhile the amplitude cj(t)~sin(tD/2) has the half-frequency D/2. Recall (2.3.14) for similar situations.

Infinite or near infinite amplitudes are a bigger source of worry here. No probability value |cj(t)|2

should exceed 100% or unity (cj(t)£1) let alone approach infinity! Indeed, the |cj(1)(t)|2 values are only the

first order approximate iteration (18.2.5). Low-D-high-t amplitudes cj(1)(t) need to be fixed by (at least)

higher order approximations cj(2)(t), cj(3)(t),... in order to make accurate predictions for longer time or finer

detuning frequency D. However, as we’ve noted before, perturbation theory often becomes a doomed

enterprise of dark arts and crafts. An alternative quasi-exact solution will be discussed in Chapter 19.

(Compare Fig. 18.2.1 with a deceptively similar Fig. 19.1.4)
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t=1

t=2

t=3

t=4

Spectral Intensity
I(D,t)=

[sin(tD/2)/(D/2)]2

 -0.8p
 -0.4p

 +0.4p
 +0.8p

   t .D =  +2p�
Uncertainty
hyperbola

 t .D = -2p

�

 t .D = -4p

 t .D = -3p

 +p
 -p -2p

 +2p

Fig. 18.2.1 Spectral intensity function I(D,t) for first order iterate.

The zeros of I(D,t) nearest to D=0 are at tD/2=±p and define a time-frequency uncertainty relation

 t·D = (Dt)·(Dw) = ±2p . (18.2.8)

The longer time t=Dt that the perturbation acts, the less the width D=Dw of the main peak. From Planck’s

energy-frequency axiom E=hw  arises the Heisenberg time-energy uncertainty relation

 Dt·DE = ±2ph =±h. (18.2.9)

The longer the time t=Dt allowed for a transition, the smaller the tolerance DE for w-deviation or "non-

conservation" of energy. Extremely short times yield a broad energy spectral peak whose bounding zeros at
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D = ±2p/t will, as time t advances, converge as they follow a pair of hyperbolas asymptotic to the t-axis and

D=0 line in Fig. 18.2.1. The hyperbolas appear to "squeeze" or focus the peak.

The fringe "beatlet" peaks on either side of the main one are left out of this uncertainty relation.

They are a small but non-zero part of the total probability spectrum. However, the fringes are an artifact of

the "sharp-turn-on" of the perturbation V(t) at initial time t=0. They are analogous to the ringing fringes of

the sin(Kcutx)/x wave in Fig. 12.2.2 associated with a sharp cut-off of the energy spectrum. Fringes go away

for more realistic cut-off that are more gradual as was seen by comparing the ringing fringes of a "box-car"

spectrum in Fig. 12.2.7 with a smooth Gaussian spectrum in Fig. 12.2.8 which has no fringes.

(c) Fermi's "Golden Rule"

It is interesting to note that, for short time (t~0) intensity rises as I=t2 for a range of D inside a pair

of uncertainty hyperbolas (-2p/t< D < ±2p/t). All energy states get an initial "t2-jolt" no matter how far

they are detuned from resonance, another artifact of a diabatic or "sudden" turn-on. As shown in Fig.

18.2.2, the t2-rise continues for a decreasing range around D=0 since greater-|D| amplitudes succumb more

quickly to their assigned D-beating. This leaves a decreasing number 2p/t of peak D-values still on a t2-rise.

So I-peak area in Fig. 18.2.2 varies as the product of its squeezing base D=2p/t and soaring height t2

increasing linearly something like 2pt. So does total transition probability S(t) according to famous "golden-

rules" of atomic transitions. Such rules are quantified by investigating the frequency D-integral S(t) of I(D,t).
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. (18.2.10a)

The time derivative of the frequency integral S(t) is more calculus-friendly.
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This is reduced to contour integrals and evaluated using Cauchy’s theorem f a
i

f z

z a
dz( )

( )=
p -Ú
1

2
. (See exercise.)

d t
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e

z i
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e

z

itz

C

itz

C

S D,( )
= - = pÚ Ú

-1 1

1 2

2 . (18.2. 10c)

This gives the mathematical basis for Fermi’s golden rule for constant transition rates.

S D Dt d S t t( ) ( )= = p ◊
-•
•

Ú ,
2

2 (18.2.10d)
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42

Fig. 18.2.2 Time dependence of spectral intensity function and area.

Only one S-term of (18.2.5e) can resonate. The S(D≠,t)-term peaks at w=wj-w1 when D≠=wj-w1-w  is

zero as it must be for upward (wj>w1) transitions. For downward (wj>w1) transitions, the S(DØ,t)-term

peaks at DØ=wj-w1+w =0 or w=w1-wj. The latter follows a golden rule if sum Sj=SjDnj over final states-j

finds uniform energy state density dnj/dD near D ~0. Then total transition rate R is dS(t)/dt=2p  times a

constant which is a product of rj1 and dnj/dD evaluated near the resonant S(0,t) peak at w=W1j=w1-wj.

R
d

dt
c t

d

dt
d c t

dn

d

r E dn

d

d t

dt
constj

j
j

j q j j= ( ) = ( ) ( )
= ( )( )

-•
• ( )Â Ú =1 2 1 2 0

2

2
D

D D
S1

h
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Upward rates are golden if perturbation E0(w) has a uniform spectrum near a resonance w=Wj1=wj-w1.
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d c t

r E d t

dt
constj j

q j j
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2

2
D
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h
(18.2.11b)

Rate constancy needs some sort of quasi-continuous spectrum so the many beats will cancel each other and

not contribute spurious coherent oscillation.

Constant rate R means constant drainage out an initial state |e1Ò through matrix element rj1 to a final

state |ejÒ as long as the perturbation is in effect. So if, for example, the rate R is one transition per 106

seconds for each atom, a bottle of N(0)=106 atoms would make a quantum counter go "click.click...click.

click ...click.." at the average rate of one click per second whenever the perturbation is turned on. That is an
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average rate. Don’t try to set a clock using quantum clicks unless you are willing to average over an

enormous number of them. Each click only comes when it’s good and ready to come!

But if the perturbation is left on the click rate must go down as the population ‘dies off.” Only if

one somehow replaces the “live” states will the observed rate remain constant. More precisely, N(0) atoms

in state |e1Ò at t=0 leaves N(t)=N(0)e-Rt atoms in state |e1Ò at time t with an instantaneous "click" rate of

N(t)R=N(0)Re-Rt. A constant relative rate R gives pure e-Rt exponential decay rate in a decay experiment.
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18.3 Classical Lorentz vs. Quantum Oscillator response
It is instructive to compare classical and quantum-semi-classical oscillator response to harmonic

perturbation. This tests E•r versus A•p interactions and shows what are the classical correspondences of

amplitude cj(1)(t) and the beat frequency Wj1=wj-w1. We also see how the multiplicative or parametric

resonance of quantum theory yields the additive or linear (Lorentz) resonance of classical oscillation.

 (a) Classical Lorentz response
The following is a classical equation for a charge-q and mass-M harmonic oscillator of natural

frequency w0 stimulated by an E-field of frequency wS.

˙̇ cosx x
qE

M
tS+ = ( )w w0

2 0 (18.3.1a)

The solution to this equation for zero initial position or velocity (x(0) =0= v(0)) is as follows.
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t t
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0
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w w
w w

(18.3.1b)

Now this is compared with the corresponding quantum physics of harmonic resonance due to a field

 Vc(t)= -qEo  cos(w t-f) x . (18.2.2b)repeated

(b) First-order semi-classical response

The general perturbed state (18.1.5) is repeated below and expanded to first order for c1(1)(t)=1.
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The first order iterate for a harmonic perturbation of frequency w is given by (18.2.5d) repeated here.
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Then Eo=2|a|w  from (18.2.3b) is used with f=0 to match the E-field of (18.2.2b) to (18.3.1a) above. The

preceding two approximations are now used to estimate the coordinate expectation value ·Y|x|YÒ.
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  ·xÒ=·Y|x|YÒ =
jπ
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where:  ·j|x|1Ò =  rj1 =  r*1j and: Wj1=wj-w1  (18.3.3)

We assume a zero initial (ground state-|1Ò) position value. (·1|x|1Ò=0) Also, we neglect second order terms

cj(t)c*j’(t) rj’j in a first order calculation. Putting c1(1)(t) from (18.3.2) in the ·xÒ expression gives
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This resembles the classical response equation (18.3.1b). Sum restriction jπ1 is automatic since W11=0.

  

x
q r E e e e ej

j

j
i t i t

j
i t i t

j

j j

=
π

- - -

Â
+( ) -( ) + -( ) -( )

-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

1 1 1

1

1 12
0

1
2 2h

Re
W W

W

W Ww w

w

w w

     
1 1 1

1
=

=
Â

-

-

Ê

Ë
ÁÁ

ˆ

¯
˜̃

2
2

0

1
2 2

W W

W
j j

j

j

j

q r E t t

h

cos cosw

w
(18.3.4b)

(c) Oscillator strength
Factors of the corresponding xclassical in (18.3.1b) and quantum ·xÒ above are isolated.
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Each classical response term has a natural frequency w0 that is the Lorentz-atomic-oscillator frequency

  w0 =Wj1=wj-w1. (18.3.5b)

This is the (j¨1)-transition frequency Wj1 or quantum beat. Each is driven by stimulus frequency wS.

  wS=w.   (18.3.5c)

Each Lorentz oscillator responds with a certain (j¨1)-oscillator strength fj1 defined here.

  
 1

1 1
f

r M
j

j j
=

2
2

W
h

(18.3.5d)
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    (1) Harmonic oscillator
The following uses some facts about the quantum 1D-harmonic oscillator which are derived in

Chapter 20.For a harmonic oscillator potential (V(r)=1/2w2r2) the only fj1 arising from the (j=1)-state

|u=0Ò is from (j=2)-state, that is, the first excited state |u=1Ò. The oscillator dipole matrix is derived in

(20.3.8).

r
M Mu uu u

w
d0 1

0 1
0 0

2 2
= = + =x a a†

,

h h

W
   ,  So: fu,0=d u,1  (18.3.6)

Therefore (18.3.5a) for ground state excitation reduces to a single ( f1,0=1)-term (j=1 means u=0 and j=2

means u=1.) equal to the classical response, that is, ·xÒ=xclassical is true exactly.

The quantum result is exactly the classical one despite the fact that it is based on a first order cj(1)(t)

approximation! We know that the cj(1)(t) approximation is wrong near its central peak since it blows up.

How can such an untrustworthy quantum result come up with an exact classical one?

The classical result blows up at resonance (wS=w) but legitimately so. To approximate near-

resonance behavior of any quantum system one needs higher-than-first-order approximations. This is

particularly the case for a harmonic oscillator whose quantum (u+1¨u) transitions all have the same

frequency (w=Wu+1¨u) and therefore are all in resonance at once. After the first excited state |u=1Ò

acquires an amplitude from the ground state |u=0Ò there will begin a transition to |u=2Ò, then |u=3Ò, and so

on, as each (u+1¨u) pair contributes oscillator strength to the ·xÒ-value near resonance (wS=w).

No such problem arises if the stimulus is far enough from resonance. The first order theory accounts

for the beats, which for a cold oscillator, consist solely of the (1¨0) beats plotted in Fig. 18.2.1.

While an oscillator potential 1/2w2r2 restricts oscillator strength to (u+1¨u)-transitions between

neighboring pairs of levels, other potentials V(r) may have strength in general (k¨j)-transitions. If so, the

first order response (18.3.5a) has multiple interfering terms contributing to ·xÒ. Even so, if the stimulus w is

close to a particular resonance Wj1 with a non-zero oscillator strength fj1 (but not close enough to ruin the

first-order approximation) then the fj1-term in the sum will dominate as 1/(Wj12-w12) blows up.

(d) Thomas-Reiche-Kuhn sum and virial identities
It turns out that a sum of oscillator strengths is invariant to choice of potential. The sum is Sjfj1=1

for an oscillator by (18.3.6). The general sum in question is like the one in (18.3.5a) sans xclassical.
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f r r M j j Mj
j

j
j

j j j
j

1
1

1
1

1 1 1
1

2 2 1 1
= = =

Â Â Â= =W W* / /h hx x (18.3.7)

An x-matrix element is related to a p-matrix element using commutation [p,x]=h/i with H0=p2/2M+V(x).

  [H0 , x] = [ p2, x ]/2M = h p/Mi  (18.3.8)

Now the definitions H0|  jÒ =hwjH0|  jÒ and Wj1=wj-w1 are used with this commutation.

  ·j |  p| 1Ò = Mi ·j |  [H0 , x]| 1Ò/h = Mi (wj-w1)·j |  x| 1Ò = MiWj1 rj1   

The resulting replacements

 ·j |  x| 1Ò = ·j |  p| 1Ò/(MiWj1)   or:   ·1|  x| j Ò = ·1|  p| j Ò/(MiW1j) = -·1|  p| j Ò/(MiWj1) (18.3.9)

then yield the Thomas-Reiche-Kuhn sum rule for oscillator strength. This holds for any H0 eigenstate | 1Ò.

f j j i i ij
j j

1
1 1

2 1 1 2 1 1 2 1 1
= =

Â Â= = = -x p xp px/ / /h h h =1 (18.3.10a)

A corollary of the TRK rule is the virial identity that also holds for any H0  eigenstate | mÒ.

 ·m|  xp| mÒ = hi/2 = - ·m|  px| mÒ      (18.3.10b)

The time derivative of the virial matrix element is zero. Schrodinger’s equation ˙ /m i m= - hH  gives

  
0 = = + = - = [ ]∂

∂ t
m m m m m m

i
m m

i
m m

i
m mxp xp xp Hxp xpH H xp˙ ˙ ,

h h h

For a power-law-potential Hamiltonian H=p2/2M+V.xP the commutation reduces as follows.

0
2

2 2
=

È

Î
Í
Í

˘

˚
˙
˙

- ◊[ ] = - ◊
i

m
M

m
i

m V m m
M

m P m V mP P

h h

p
xp x xp

p
x, ,

From this follows a quantum eigenstate virial theorem which is similar to the classical viral theorem.

KE m
M

m
P

m V m
P

PEP= = ◊ =
p

x
2

2 2 2
(18.3.10c)

Interference terms am*an ·m|H|nÒ in ·Y|H|YÒ matrices for mixed state |YÒ=Sam|mÒ give beating ·KE(t)Ò and

·PE(t)Ò which disobey the virial theorem. However, if averages of am*an  may be assumed to be zero for

mπn this leaves only the diagonal probabilities P(n)=an*an=|an|2. Then an averaged virial theorem still

holds for a randomized ensemble of mixed states, and the classical result is recovered.

KE
M

P
V

P
PEP= = ◊ =Y Y Y Y

p
x

2

2 2 2
(18.3.10d)

For the harmonic oscillator (P=2), average kinetic energy ·KEÒ average potential energy ·PEÒ are equal.
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(e) A•P interaction again
One might inquire what the oscillator response ·xÒ would be if the -qA•P/M perturbation from

(17.1.21a) is substituted for the -qE•r interaction of (17.1.21b) used in the preceding equation (18.2.5). We

have been using (18.2.4) which is repeated below. (Recall amplitude definition: w  a = -iw |a| eif  )

     -qE•r~    -2qw |a|r• ex cos(w t-f)     = x q (iw  ae-iw t- iw  a*e+iw t ).  (18.2.4)repeated  

to derive the following dipole interaction matrix element which then was used to calculate response.

     -·j|qE•r|1Ò     =  ·j|x|1Ò q (-iw  ae-iw t+ iw  a*e+iw t ).  (18.3.11)

Instead, for the same electromagnetic field E=-∂A/∂t, consider using the following interaction

 -(q/M)A•P~  2(q/M)|a|P• ex  sin(w t-f)= Px (-q/M)(ae-iw t+a*e+iw t ),  (18.2.3b)repeated

which gives the following dipole interaction matrix element.

 -·j|(q/M)A•P|1Ò =  ·j|Px|1Ò (q/M)(-ae-iw t- a*e+iw t )  (18.3.12a)

The momentum matrix can be related to the position dipole using · j |  p|1Ò =MiWj1· j |  x|1Ò from (18.3.9).

 -·j|(q/M)A•P|1Ò =  ·j|X|1Ò (qiWj1)(-ae-iw t- a*e+iw t )  (18.3.12b)

  =  ·j|X|1Ò q(-iWj1ae-iw t-iWj1a*e+iw t )  (18.3.12c)

Comparison of (18.3.11) to (18.3.12c) reveals a discrepancy in factors of the form ±w /Wj1 and dispels any

notion that -qE•r and -qA•P/M are equal. However, for an excitation resonance (w =Wj1) the first terms

will match and for a de-excitation resonance (w =W1j=-Wj1) the second terms will match. So golden rule

rates, which are insensitive to coherence between the terms, might incorrectly suggest equality of -qE•r and

-qA•P/M. Such a coincidence sets a trap into which many have fallen, but attempts to use -qA•P/M to

derive coherent response fails if the (X,P)-(x,p) transformation (6.2.21) is ignored.

For convenience we collect here a summary of classical dipole fields E=-∂A/∂t:

  E=  2w |a|ex  cos(w t-f) =  (iw  ae-iw t- iw  a*e+iw t )ex   where: w a = -iw |a| eif = -iEo/2 eif   

  A=-2|a|   ex  sin(w t-f) = (     ae-iw t +    a*e+iw t )ex    (18.3.13)

This will be compared to very similar looking expressions for quantum fields in which the amplitudes E,

A, and a are replaced by operators. Sometimes such a replacement is given an oxymoronic label of

second quantization. This is a result of the long history of semi-classical treatments of particles

(quantized nuclei, atoms, molecules, solids, etc.) in fields (classical electromagnetic fields) which has

been so useful. The idea is that a “second coming” is needed to “fix up” the field, too. This is ironic in
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light of the fact that quantum theory owes its very existence to Planck’s hypothesis of electromagnetic

quanta.

As we will see, one needs to regard the particles and field as a single spacetime quantum system.

Classical reductionism goes only so far before it becomes misleading and paradoxical. A first step

toward such a re-en”light”enment is a non-perturbative treatment of a radiation field interacting with just

two levels of an atom, molecule, or a single spin-1/2 of an electron, nucleon, atom, molecule, solid, etc.

In the next section we revisit the ABCD formulation from Chapters 9 and 10 of two-level U(2)

quantum states. The difference now will be that one or more of those A, B, C, or D parameters can

wiggle in time and even be controlled from the outside. Indeed, it’s more semi-classical theory but one

with a twist!
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Problems for Chapter 18.

Golden Cauchy Potato

18.2.1 Use Cauchy’s theorem to verify the Fermi Golden Rule (18.2.10) for constant transition rates. Show

relevant integration contours and explain your steps.

Beat to death

(a) Compare the relative heights of 0th , 1st, 2nd, ….Nth beat probability peaks in Fig. 18.2.1.

(b) Use whatever means to deduce the probability versus time to be under the 0th beat peak in Fig. 18.2.1.

(Only numbers and time t are allowed in your answer!)

(a) Compare the relative probabilities under 0th, 1st, 2nd,3rd  beat peaks in Fig. 18.2.1. How does that relative

distribution vary with time?

Jailhouse Rock’round the Clock

18.3.1 In Problem 18.1.1 (Jailhouse Rock’n Roll) prisoner-M is in the infinite-well maximum security prison

of Chapter 12 suffering from an Earthquake (caused perhaps by a heavy-metal rock band) that seems to go

on forever. M remains in any of its eigenstates only in the absence of perturbations. But now the prison

floor tilt angle varies: f= flimit sin(wrockt) giving Vrock’n roll(x) of Proplem 18.1.1. Use that here.

Discuss transition from the ground state |e1Ò to |emÒ stimulated by frequency wrock of amplitude

flimit =p/10. Consider cases: wrock = e1 (=1 in theorist h=1 units) , 2 e1 , 3 e1 , 4 e1 .

 (a) Using only the first term in Vrock’n roll(x), derive first order transition amplitudes c(1)
m.

(b) Derive the resulting expectation value ·xÒ of position if M is “waked up” from its ground state.

(c) Derive the resulting expectation value ·pÒ of momentum if M is “waked up” from its ground state.

(d) Discuss the Thomas-Reiche-Kuhn sum rule and the Virial Theorem for the prison.
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For two-state systems the perturbation effects due to oscillating components A, B, C,

and D of its Hamiltonian may be described analytically and geometrically. We

comparison of these results with the first-order approximation given in the preceding

Chapter 18. One type of the effects, as applied to transitions of NH3 states introduced

in Chapter 10, are called the AC-Stark shifts. Related effects were studied much

earlier in nuclear magnetic resonance (NMR) and electronic spin resonance (ESR)

systems. The effects in this Chapter are known mostly by the names Rabi-Ramsey-

Schwinger and Feynman-Vernon-Helwarth after two famous papers by these triplets

of authors. Rotation operator and spin vector visualization tools developed in Chapter

10 help to clarify spin resonance and time-dependent “dressed” eigenstates.
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Chapter 19 Time-Variable Perturbation of Two-State Systems

19.1 "Exact" Time Dependent Perturbation

Low order approximations of time-dependent perturbation (TDP) theory is successful beyond what

one has a right to expect. Using the first-order iterate (18.2.5) one may derive much of the basic theory that

is used in modern physics. The constant transition rate is such a well-established result that it is called the

"golden rule." Roughly speaking, TDP gives time behavior as a power series in time and the "golden rule" is

based on the first term. (But, a quasi-continuum of beats has to average to zero!)

The problem with power series is that eventually they blow up. The spectral intensity function

described around Fig. 18.2.1 is such an example in which cj(1)(t) diverges with time t and probability

|cj(1)(t)|2 blows up as t2. One should note some similarity in error growth for cj(n)(t) iteration and a related

failure of matrix perturbation depicted in Fig. 3.2.2 of Chapter 3.

It seems that polynomials are bad descriptors of quantum phenomena which, being fundamentally

wave-like, are better described by sine, cosine, and exponential, that is, by circular and hyperbolic

functions. Polynomial approximation of the two-level hyperbola in Fig. 3.2.2 eventually fails badly.

Here we consider time-dependent perturbation of a two-level system that, like the matrix

perturbation example in Fig. 3.2.2, has an "exact" hyperbolic description. A hyperbolic "avoided crossing"

was described again in Chapter 10 around Fig. 10.3.1 in connection with E-field splitting of ammonia (NH3)

inversion levels. This is known as a DC Stark effect.

This section will be devoted to basically the same problem, but with an oscillatory or AC electric

field. This is known as an AC Stark effect. Here, as in the DC case, it will be seen how an "exact" theory can

be constructed to replace a failing perturbation sequence. Such a replacement is absolutely necessary in the

presence of strong coherent radiation fields of high spectral purity. Then strong quantum beats dominate

and the "golden rule" goes out the window.

Among the first work to describe and demonstrate oscillatory perturbation of two-state systems

was a paper by Rabi, Ramsey, and Schwinger in connection with nuclear magnetic resonance (NMR). The

analogy between spin resonance and resonance of other two-state systems including NH3-inversion was

pointed out in a paper shortly thereafter by Feynman, Vernon, and Helwarth.

The NH3-inversion experiments by Townes’ group was labeled by the acronym MASER

(Microwave Amplification by Stimulated Emission of Radiation). Soon thereafter, the optical transitions

were found to give light amplification by stimulated emission and the LASER was born. The AC Stark

effect and NMR is closely related to much of laser physics and deserves special attention not only for its

historic significance but also for its fundamental quantum theoretical implications.

These implications include resonance effects in other much older 2-state systems such as optical

polarization and galloping wave dynamics introduced in Chapter 4. It is ironic that earliest physical

realizations of U(2) phenomena are the latest to receive modern attention. So-called photonics is both an

ancient and an ultra-modern field!
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(a) Perturbed 2-state systems

The most general 2-state Hamiltonian H=H† has four real parameters A, B, C, and D.

H
A B iC

B iC D
=

-
+

Ê
ËÁ

ˆ
¯̃

(19.1.1)

Chapter 10 discusses three main symmetry types of ABCD-Hamiltonians. First, the AD-type is

asymmetric-diagonal, the B-type has balanced-bilateral symmetry, and the C-type is complex-chiral and

associated with circular polarization, cyclotron resonance, or coriolis forces.

H
A

A

A A

A

A Z

=
-

Ê
ËÁ

ˆ
¯̃

= =

0

0

s s
(19.1.2a)

H
B

B

B B

B

B X

=
Ê
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ˆ
¯̃

= =

0

0

s s
(19.1.2b)

H
iC

iC

C C

C

C Y

=
-Ê

ËÁ
ˆ
¯̃

= =

0

0

s s
(19.1.2c)

(Standard XYZ labels of Pauli operators are included, too.) The general Hamiltonian (19.1.1) combines the

A, B, and C symmetry operators with the U(2)-symmetric unit matrix operator s0=1.

H 1

S S S S S

=
+

+
-

+ +

= +( ) + -( ) + ( ) + ( ) = + ∑

          

   

A D A D
B C

A D A D B C S

A B C

A B C

2 2
2 20 0 0

s s s

W W
(19.1.3a)

Here the spin-1/2 angular momentum operators SN=sN/2 are preferred bases because their coefficients

  W0 = (A+D),    WA = (A-D),    WB = 2B,    WC = 2C.  (19.1.3b)

are angular velocities. The "crank-vector" WWWW=(WA, WB, WC ) determines where and how fast the spin

expectation value ·SÒ precesses (or if it precesses) in (SA, SB, SC )-space due to an ABCD-Hamiltonian H.

The time Schrodinger equation, in units with h=1, is as follows.

  
i

t
i

t
t t

A B iC

B iC D
h
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂
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ˆ
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Y Y
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Y

1

2

1

2
H (19.1.4a)

The solution for constant  A, B, C, and D is by (2.10.20) a t-exponential W0-phase-plus-WWWW-rotation.
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(19.1.4b)
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A similar NMR Hamiltonian for a spin moment m=g S in a B-field (but without an overall phase W0) is

H S=
≠ ≠ ≠ Ø
Ø ≠ Ø Ø

Ê

Ë
Á

ˆ

¯
˜ = - ∑ = - ∑ =

-
+ -

Ê
ËÁ

ˆ
¯̃

H H

H H
m B Bg

g B B iB

B iB B
Z X Y

X Y Z2
(19.1.5a)

(Again, let h=1.) The constant-B solution is just an (S=ssss/2)-vector rotation at a beat frequency W.

Y Y Yt e e
g

i
gig t i

g
t

( ) ( ) ( ) = -
∑Ê
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ˆ
¯̃

- ∑ -
∑

 = = t t 2BB
BB ss

BB BB ss
BB

BBS 0 0
2 2

1cos sin , (19.1.5b)
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The NMR beat frequency W=g|B|h is the length of "crank vector" WWWW=g(BX, BY, BZ ).

W = = + +g g B B BX Y ZBB 2 2 2 (19.1.5c)

This NMR example is essentially the same as the general ABCD-case except it zeros overall phase W0.

Solution |Y(t)Ò needs to be upgraded if the parameters {A, B, C, D} or fields (BX,BY,BZ ) are time

dependent. An NMR device fixes a large BZ field to get a microwave level splitting W=gBZ, and oscillates

low-amplitude transverse "tickler" components BX(t) or BY(t) close to the resonance frequency W.

Analogous resonant transitions are stimulated in NH3 by an Ez-field oscillating near the resonance

frequency W=2S~24 GHz of an ammonia inversion as described in Chapter 10. The Hamiltonian matrix

N N N N

N N N N

H pE S

S H pE
up up up dn

dn up dn dn

z

z

H H

H H

Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

- -
- +

Ê
ËÁ

ˆ
¯̃

(19.1.6a)

from (10.3.3) contains on its diagonal the field potential energy -pEz of an "up" Nitrogen atom state |NupÒ

versus +pEz of a "down" Nitrogen atom state |NdnÒ. Inversion tunneling amplitude -S is off-diagonal. The

matrix has the form of an AB-type Hamiltonian. Transforming to a {|+Ò,|-Ò} basis interchanges S and pEz.

+( ) +( ) +( ) -( )
-( ) +( ) -( ) -( )

Ê

ËÁ
ˆ

¯̃
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- -
- +
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ËÁ

ˆ
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H H
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pE H S

N N

N N
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z

up dn

up dn

  where:
/

/

2

2
(19.1.6b)

In an NH3 resonance experiment, the dipole perturbation pEz(t) will be a time-dependent and is precisely

analogous to the BX(t)-component of the NMR "tickler" field, while NH3 eigenstates {|(+)Ò,|(-)Ò} are

precisely analogous to NMR spin-up-z and spin-dn-z eigenstates {|≠Ò,|ØÒ} in the fixed polarizing BZ-field.

(b) Visualizing quasi-spin space: NH3 vs. NMR

Generally, the A-axis a.k.a. Z-axis is the quantization axis of choice. For the NMR problem a

favored-Z convention is forced by a big fixed BZ-field. (A small BX(t) will be wiggled.) For the NH3 problem

we plan to wiggle B=-pEz(t) in (19.1.6b) and not S. (Nature fixes tunneling amplitude S.) NH3 eigenstates

{|(+)Ò,|(-)Ò} will now be associated with spin-up-A and spin-down-A, with field-free eigenvalues A=H-S and

D=H+S, respectively. In going between (19.1.6a and b), A and B are switched.

Do not confuse the z-axis of the NH3 molecule with the A or Z-axis in its quasi-spin (SA, SB, SC )-

space. Nor is the x-axis of the NH3 molecule to be confused with the B or X-axis. But, all three B-field

components (BX(t),BY(t),BZ ) are meaningful real parameters {A=BZ, B=BX(t), C=BY(t), D=-BZ,} of the

NMR Hamiltonian (19.1.5a), while the NH3 inversion Hamiltonian (19.1.6b) has only the z-dipole energy

pEz(t) as a meaningful real field parameter in the set {A=H-S, B=-pEz(t), C=0, D=H+S}.

The dipole balance parameter B quantifies a (-qE•r) coupling between two states |(+)Ò and |(-)Ò.
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  B=-pEz(t)=-·(+)|qzEz(t)|(-)Ò = r cos(w  t)=(r/2)(eiw t + e-iw t) (19.1.7a)

B is gBx(t)/2 for the NMR example. For NH3 it is the interaction strength or Rabi rate parameter r.

  B= r = -pEz(0) (19.1.7b)

B contains the oscillator strength or electric dipole matrix element  

  p=q·(+)|z|(-)Ò,    (19.1.7c)

in product with the field magnitude Ez(0) for which a real monochromatic radiation field is assumed.

  Ez(t) = cos(w  t)=(1/2)(eiw t + e-iw t) . (19.1.7d)  

Below is the exact NH3 inversion-resonance Hamiltonian (19.1.6b) in its Schrodinger equation.
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cos
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 ,      where: (19.1.8a)

The H-crank WWWW-components (19.1.3b) are below. The unperturbed (r=0) case is shown in Fig. 19.1.1b.

  W0 = H ,    WA = e,    WB = r cosw  t,    WC = 0.  (19.1.8b)

The H-crank vector WWWW swings to-and-fro in the AB-plane at constant WA=e as shown later. (Fig. 19.1.2b)

The NH3-electric dipole moment of any state is related to the transverse ·S^Ò-component of the

quasi-spin vector ·SÒ expectation. In NMR, ·m^Ò=g·S^Ò is the magnetic moment transverse to the main

BZ-field. The NH3 dipole ·pzÒ=q·zÒ is a product of p and 2SB=2Rey+*y- using (2.10.8b) and (19.1.7).

p

S p p p

z

B

= = + + -( ) + + -( )
= + - + - = - +

= = + - =

+ - + -

+ -

Y Yp p

p p p

p

z z

z z z

z

y y y y

y y

a b

* *

*Re )

cos sin )

        (using  

        (using (2.10.8b) and 

2

2

(19.1.9a)

Symmetry rules out diagonal z-matrix elements ·+|z|+Ò=0 =·-|z|-Ò. Here is the time derivative of ·pzÒ.
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             (using (2.10.8b) and 

2
2

2

i

S p p pC

(19.1.9b)

Fig. 19.1.1a shows a "real" NMR spin moment m=gS precessing around its W-cranking gBZ-field. Fig.

19.1.1b shows an analogous NH3 quasi-spin S similarly precessing around its A-axis at rate e =2S. The

transverse NMR moment m^ lies in the projection or "shadow" of m in the XY-plane. An analogous NH3

Lorentz phasor vector p^=q(·zÒ,-· ż Ò/e ) rotates in the BC-plane according to (19.1.9) at rate W =2S=e .

This relates the first Euler angle a to an atomic oscillator phase angle f=-a, as shown in Fig. 19.1.1b.
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Z

X

Y

S
m=gS

(a) NMR Spin S and moment m

S^̂
m^̂

gBz=W=e

a=coherence angle

b

  

                

A

B

C

S

(b) NH3 Quasispin S and phasor p^̂

S^̂
 Lorentz phasor p^̂

2S=W=e

a=coherence angle

b

Fig. 19.1.1 W-Cranked polarization and spin vectors for (a) NMR and (b) NH3 inversion resonance.

p^ is a quantum version of the classical Lorentz atomic oscillator phasor p(t)=p(0)e-ie t which has a real

value p(0) cos e t and an imaginary value -p(0) sin e t corresponding to dipole time derivative (dp/dt)/e.

Lorentz oscillators are classical harmonic oscillators and grow to infinity if the driving frequency w

approaches the natural frequency W=e. Not so for the quantum model of a two level atom pictured in Fig.

19.1.1b. The dipole expectation value ·pzÒ=q·zÒ starts at zero for the ground |(+)Ò-eigenstate (b=0) then

grows toward its saturation value of p for a (50-50) state such as a spin-up-B wave (y+, y-)=(1/÷2, 1/÷2)

with spin at b=p/2 . The value p is as large as ·pzÒ can be for the 2-level system.

Saturated (50-50)-states have S-vector normal (b=p/2) to the crank WWWW-vector. This includes the

Nitrogen-up state |NupÒ=(|(+)Ò+|(-)Ò)/÷2 the Nitrogen-down state |NdnÒ=(|(+)Ò-|(-)Ò)/÷2 whose S-vector

is along the ±B-axes, or transition states |±CÒ=(|(+)Ò±i|(-)Ò)/÷2 whose S-vector is along the ±C-axes. An

increase in amount of excited state |(-)Ò above 50-50 decreases the dipole moment in the BC-plane; it is

zero for a pure excited state |(-)Ò or a pure ground state |(+)Ò. Lorentz "phasor space" unbounded and flat,

but a 2-state (|(+)Ò,|(-)Ò) phasor or coherence space is a bounded spherical projection and periodic. The

quantum quasi-spin world, unlike Lorentz’s “flat” classical phasor world, is “round.”

(c) Rotating wave solutions

We first solve a rotating wave approximation to (19.1.8) obtained by dropping eiw t from Ez(t).

i
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Ê
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ˆ
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= =

-

+
+ ≠

- Ø
 ,  where:  ,  and: (19.1.10a)

The H-crank vector WWWW rotates around the Z-axis tracing an inverted cone of altitude e as in Fig. 19.1.2a.

  W0 =H=0, WZ =WA = e,  WX =WB = r cosw  t,  WY =WC = r sinw  t.  (19.1.10b)
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Z
or
A

X or B

Y or C

(a)  Crank vector WW  precesses around Z

wt=frame rotation angle

YRr r

e
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precession rate

  

              

Z

X

Y

(b)  Crank vector WW  swings in XZ plane

r

re

w=

swing rate

Fig. 19.1.2 W-Crank time dependence for (a) Rotating crank approximation (b) Exact planar swing.

This H is like that of an NMR resonance with a fixed Bz field added to a rotating Bx(t) and By(t) field.

  Bz = 2e,    Bx(t) = 2r cosw  t,    By(t) = 2r sinw  t.  (19.1.10c)

For such a B-field (19.1.10a) is an exact equation. In the analogous NH3 equation (19.1.8) only the X-or-B-

component oscillates as shown in Fig. 19.1.2b. But, it turns out that the circular polarized B or WWWW motion

(19.1.10b-c) like Fig. 19.1.2a has much the same effect as a ZX-plane swinging WWWW (19.1.8b) in Fig. 19.1.2b

provided the amplitude Bx  (or Rabi radius r) is much less than the splitting frequency e (r<<e).

To solve (19.1.10a) we boost by rotation RZ[w t] to a rotating frame {XR, YR, ZR,=Z}shown in Fig.

19.1.2a, where the crank vector WWWW would appear to be standing still. This is something like the change-of-

picture boost which zeros the vector potential A in (17.1.16). New R-base states |kÒR are defined first.

 |≠ÒR=RZ[w t]|≠Ò=e-iw t JZ |≠Ò=e-iw t/2 |≠Ò ,  R·≠| = ·≠|R†[w t]=·≠|e+iw t/2 (19.1.11a)

 |ØÒR=RZ[w t]|ØÒ=e-iw t JZ |ØÒ=e+iw t/2 |ØÒ ,  R·Ø| = ·Ø|R†[w t]=·Ø|e-iw t/2 (19.1.11b)

This gives the needed transformation matrix and inverse.

≠ ≠ ≠ Ø

Ø ≠ Ø Ø

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Ê

Ë
Á

ˆ

¯
˜

-

+

R R

R R

i t

i t
e

e

w

w

/

/

2

2
0

0

R R

R R

i t

i t
e

e

≠ ≠ ≠ Ø
Ø ≠ Ø Ø

Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

Ê

Ë
Á

ˆ

¯
˜

+

-

w

w

/

/

2

2
0

0
(19.1.11c)

Then transformed wave amplitudes yR= R†y  and a new Hamiltonian HR = R†H.R follow . 
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(19.1.11d)

The new Hamiltonian HR  does indeed have a constant WWWW-vector and no explicit time dependence.
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But, change-of-picture (19.1.11d) has time dependence so time derivative i∂/∂t yR yields extra terms.
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The original Schrodinger equation i∂/∂t|yÒ=H|yÒ becomes one for |yRÒ=R†[w t]|yRÒ by inserting R†R=1.
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The new HR has extra diagonal terms ±w /2 but off-diagonal time dependence e±iw t of (19.1.10) is gone.
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The crank vector WWWWR in the rotating frame is indeed motionless but has (-w) added to its Z-component.

  WR0 = HR11+HR22,    WZ = HR11-HR22,    WX  = 2ReHR12 ,    WY = 2ImHR12.  

= 0,           = e-w =D,            = r ,       = 0. (19.1.15b)

The resulting crank WWWWR depends on the detuning parameter D=e-w as shown in Fig. 19.1.3. D is

zero at resonance. A zero detuning makes the beat frequency or crank length become a minimum value r.

 W D
D D

D
R r

r  (far from resonance)

r r (close to resonance)
= ± + @

± <<
± <<

Ï
Ì
Ó

2 2    for: 

   for:     
(19.1.15c)

The minimum beat frequency r is called the Rabi frequency and was given (for h=1) by (19.1.7).

  r = -q·(+)|z|(-)ÒEz(0)   (19.1.16)

Two-state quantum resonant beat frequency WR, unlike a classical resonance, approaches r but not zero as

detuning D goes through zero. But, when detuning exceeds r, we recover the classical relation WR=D

between beat rate and natural-minus-stimulus frequency difference D=e-w, as shown in (19.1.15c).
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Fig. 19.1.3 WWWWR-crank turns spin S-up state in rotating frame (a) w<<e (b)w<e (c) Resonance w = e .

Two-state quantum response does not blow up at D=0 like the classical Lorentz oscillator (18.3.1)

or like the first order approximation (18.2.6). As noted after Fig. 19.1.1, maximum dipole response has its

spin S normal to the Z-axis (b=p/2). This happens to an initial ground state (spin-up |≠ÒR) if D lies inside

±r as in Fig. 19.1.3b-c. Time evolution operator UR(t)=e-iHRt is a rotation around crank WWWWR of polar angle

JR for cosJR=D/WR and sinJR=r /WR. Rotation matrix e-iWWWWt •J comes from (10.5.25c) in Ch. 10.
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The excited |ØÒR-state component gives the transition probability from ground |≠ÒR-state as a function of

time t, Rabi amplitude r, and detuning D. For large D it reduces to the spectral intensity value (18.2.6).
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(19.1.18)

A plot of 2-state transition is given in Fig. 19.1.4 to compare with a first order approximation in Fig. 18.2.1.

The Rabi surface in Fig. 19.1.4 below has the same markings as the first-order approximation in Fig. 18.2.1.

Notice the uncertainty hyperbolas that are at the bottom of valleys in Fig. 18.2.1 have been lifted up in Fig.
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19.1.4 by encroaching beatlet peaks that used to surround them. This lifting effect becomes most

pronounced near the resonance origin (D=0) but diminishes in regions far from resonance.

As mentioned before, the first-order approximation is most happy to stay away from resonance

where it unhappily blows up. Fig. 18.2.1 and Fig. 19.1.4 are practically the same everywhere except in the

tiny region blown up in the two figures.
          

t=1

t=2

t=3

t=4

2-Level Rabi Intensity
I(r,D,t)=

   r2sin2(t  (D2+r2)/2)
        (D2+r2)

         (r=2 /5)

 -0.4p
 -0.2p

    D=0
 +0.2p

 +0.4p

                       t .D =  ±2p�
Uncertainty hyperbolas are
forced up encroaching peaks

 t .D = -2p

�

Fig. 19.1.4  Rabi spectral intensity function I(r,D,t) for 2-level rotating wave for r=2p/5.

The most striking contrast between Rabi 2-level I(r,D,t) and the approximate I(D,t) is that the Rabi

(D=0)-peak goes to a maximum value: I(r, D=0, t=p/r)=1 then back to zero at t=2p/r. Meanwhile, the

approximate I(D=0,t)=t2 just goes up!  In other words, after one Rabi period, the transition probability is

back to zero since the spin vector in Fig. 19.1.3c has completed one full revolution. No such return to initial

state is possible in a first (or even 2nd or 3rd ) order polynomial perturbation approximation.
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Rabi 2-level response I(r,D,t) beats faster than I(D,t) near D=0. Beat rate WR (19.1.15c)

depends on stimulus amplitude through Rabi rate r as well as on stimulus frequency w through D=e-w. If r

increases, beats get faster and bigger near D=0 since Rabi-r is both a rate and a radius of WWWWR-cranking. A

top view of I(r,D,t) with twice the rate r (r=4p/5) is shown below in Fig. 19.1.5. Note how the zeros of

I(r,D,t) veer away from uncertainty hyperbolas of I(r,t) and toward a (D=0)-rendezvous at each Rabi

period.

Fig. 19.1.5  Top-down view of Rabi spectral intensity function I(r,D,t) for r=4p/5.

As zeros move toward low-D, the probability moves away. Larger and faster beats also appear in

the ±D wings of the spectrum as r is increased. This effect, known as power broadening, changes the

spectral profile (19.1.17) from a narrow inverse-D-square (r2/D2) to a fatter Lorentzian (r2/[D2+r2]).
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The frame {XR, YR, ZR,} of Fig. 19.1.3 rotates at the stimulus frequency w about the (Z=ZR)-axis as

shown in Fig. 19.1.2. So, an XR, spin component or related polarization p^ or m^in Fig. 19.1.2 also has a

w-field-driven rotation. Oscillation or rotation of electric or magnetic moments radiates electromagnetic

waves at the frequency w of the oscillation. w-Radiation from 2-state system rises when the slower WWWWR-

rotation drives the spin vector S away from the ZR-axis in Fig. 19.1.3, but it falls as the same WWWWR brings S

back to the ZR-axis. Neither a pure ground state |(+)Ò or |≠Ò nor a pure excited state |(-)Ò or |ØÒ can radiate.

Radiating moments require state mixture, preferably a saturated 50-50 mixture.

(d) AC Stark levels: Dressed eigenstates
To better understand an increasingly intimate relation between atomic and nuclear moments for two

levels (E≠=0, EØ=he) and its stimulating radiation field ER=hw , let us plot the important frequencies as a

function of detuning D=e-w by the stimulus frequency w off the zero-field transition frequency e. The

simplest of these plots is the zero-coupling case of Fig. 19.1.6a for which the Rabi-rate is zero. (r=0) It is a

45° line representing the laser stimulus crossing horizontal lines representing the two levels 0 and e.
      

D = 0D = e D = -e

e
Detuning

D=e-w

Laser
w

Atom
e=1

(a) r = 0

(w +e)/2

      

Rabi splitting
r = 0.2

(b) r = 0.2

DC
Stark
shift

d(e)/2

w = 0 w = e w = 2e

      
(c) r = 1.0

AC Stark shifts

Beat frequency

WR(D)
D = 0D = e D = -e

d+/2 d-(D)/2

d-/2 d+/2

Fig. 19.1.6  Rotating wave eigenfrequencies versus detuning frequency. Rabi rate r=(a) 0, (b) 0.2, (c) 1.0.

Plotted are eigenvalues of the rotating wave Hamiltonian (19.1.15) plus an overall frequency W0=(e+w)/2.
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(19.1.19)

Eigenvalues of HR+W0 1 are called dressed eigenfrequencies W0 ±WR/2. WR is the crank rate (19.1.15c).

 Whi= W0 + WR/2 = e   +(WR -e + w)/2   = e  +(WR -D)/2  = e   +d- /2  (19.1.20a)

 Wlo= W0 - WR/2 = w   -(WR -e + w)/2  = w  -(WR -D)/2 = w   -d- /2  (19.1.20b)
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Eigenstate |WhiÒ or |WloÒ has spin S aligned or anti-aligned to crank vector WWWWR. (b=JR or b=p+JR)

The polar angle JR of the rotating crank WWWWR is shown in Fig. 19.1.3 with cosJR=D/WR and sinJR=r /WR.

The eigenstate components use cos2JR/2=(1+ D/WR]/2 and sin2JR/2=(1- D/WR]/2 to give AC-Stark states
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where we define the AC-Stark shifts d ± as follows. (See also: Fig. 19.1.6.)

  d -= d(D)    = WR -D = ÷[D2 + r2] -D   (19.1.20e)

  d += d(-D) = WR +D = ÷[D2 + r2] +D   (19.1.20e)

Half shifts d -/2 and d +/2 give the deviation of each eigenfrequency from the zero-field frequencies w or e

as seen in (19.1.20a-b) and Fig. 19.1.6c. The sum of d -/2 and d +/2 is the total splitting WR , their

difference is the detuning D, and the shift product d -d + is the Rabi rate squared.

 d -/2+d +/2 = WR  (19.1.20f)  d -/2-d +/2 = D  (19.1.20g) .d -d +=r2  (19.1.20h)

Finally, note the AC Stark state norm.

 d ±+r2 = (WR±D)2+r2 = 2WR(WR±D) = 2WRd ±    (19.1.20i)

The AC Stark states are also called adiabatic dressed eigenstates because the dipole moment p^ or

m^ oscillation is correlated or "clothed" with that of the stimulating radiation particularly near resonance.

They are the states that arise from a zero-field eigenstate if r or D are turned on slowly (adiabatic).

Consider two AC dressed eigenstate amplitudes in a 50-50 duet at frequencies Whi and Wlo.

 e-iWhit + e-iWlot   = e-i(e + d/2)t + e-i(w - d/2)t  = e-i(e + w)t/2 cos(e-w+d)t/2

     = e-iW0t cosWRt/2

It is an amplitude modulation (AM) of a carrier frequency W0=(e + w)t/2 by a modulation frequency WRt/2

giving two side bands belonging to the two Whi and Wlo curves in Fig. 19.1.6 above and below W0 .

  whigh sideband  = W0 +WR/2 = Whi = e  +d- /2  (19.1.18a)

  wlow sideband  = W0 -WR/2  = Wlo = w  -d- /2    (19.1.18b)

The modulation arises because the radiating dipole p^= p sinJR varies with polar angle JR of spin vector S

as the crank vector WWWWR turns in Fig. 19.1.3. As the S vector rotates from the spin-up ground state (JR=0)

the radiation moment beats up and down. For D=r, a maximum p^=p occurs at JR=p/2 as in Fig. 19.1.3b.

For D~0, angleJR rotates at uniform rate WR~r from 0 to 2p as in Fig. 19.1.3c. Dipole p^ has beat maxima
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at p/2 and 3p/2 and a zero in between at angle JR=p of the excited (spin-down) state. As in the discussion

of (18.210), amplitude beat frequency is WR/2 while intensity (square-amplitude) beats at WR.

A geometric sketch of the spin-crank angle JR and related frequencies WR, d ± and D is given in Fig.

19.1.7. Concentric circles of radii d - and d + define the WWWWR vector by (19.1.20f) and D  by (19.1.20g). The

figure relates angles JR , JR/2, and components (cosJR/2, sinJR/2) of AC states (19.1.20c-d).
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Fig. 19.1.6  AC Stark eigensolution geometry. Rabi rate r=(a) 1.2, (b) 0.4.
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Problems for Chapter 19.

Jailhouse Rock’round the Clock(again)

19.1.1 In Problem 18.3.1 (Jailhouse Rock’n Roll) prisoner-M is in the infinite-well maximum-security

prison of Chapter 12 suffering from an Earthquake (caused perhaps by a heavy-metal rock band) that seems

to go on forever. M remains in any of its eigenstates only in the absence of perturbations. But now the

prison floor tilt angle varies: f= flimit sin(wrockt) giving Vrock’n roll(x) of Problem 18.1.1. Using only the first

term in Vrock’n roll(x), discuss transition from the ground state |e1Ò to |e2Ò stimulated by frequency wrock of

amplitude flimit =p/10. At first assume no other levels participate, then estimate possible “leakage.”.

(a) wrock = e1 (=1 in theorist h=1 units)

(b) wrock = 2e1.

(c) wrock = 3e1..

(d) wrock = 4e1...

In each case plot the resulting Rabi-Spin S-vector and its driving crank WWWW-vector. Indicate on a plot like Fig.

19.1.6 the dressed eigenstates and the maximum transition amplitude.
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Review Topics & Formulas for Unit 6
Lorentz pondermotive form for Newton’s F=Ma= =M M˙ ˙̇v R  equation for a mass M of charge e.

M
d

dt
e

v
F (E v B)= = + ¥ (17.1.1)

Velocity is v R= ˙ . Scalar potential field F=F(R,t) and a vector potential field A=A(R,t) use Maxwell’s.

E
A

B A= -— - ∂
∂

= — ¥F
t

,        (17.1.2)

Canonical electromagnetic Lagrange equations.

d

dt

L d

dt
M e e e e

L∂
∂

=
∂
∂

∑ - - ∑Ê
ËÁ

ˆ
¯̃ = — - ∑ =

∂
∂v v

v v v A v A
R

1
2

( ) ( )F F (17.1.5c)

Here the electromagnetic Lagrangian is

L L t M e t e t= = ∑ - - ∑( )( , ) ( ) ( )R,v v v R, v A R,
1
2

F (17.1.5d)

The canonical electromagnetic momentum is

P
v v

v v R, v A R, v A R,=
∂
∂

=
∂
∂

∑ - - ∑( )Ê
ËÁ

ˆ
¯̃ = +

L
m e t e t m e t

1
2

F( ) ( ) ( ) (17.1.5e)

Electromagnetic Hamiltonian function.

H
M

e t e t e t= -( )∑ -( ) +
Ê
ËÁ

ˆ
¯̃

1
2

P A R, P A R, R,( ) ( ) ( )F      
Formally

correct
(17.1.10a)

H
M

e

M

e

M
e t=

∑
- ∑ + ∑( ) + ∑ +

P P
P A A P A A R,

2 2 2

2
F( ) (17.1.10b)

Schrodinger’s equation is non-relativistic.

  

i
t

H
q

M
V

i q

M
Vh

h∂y
∂

y y y= =
-( ) + ( )

È

Î
Í
Í

˘

˚
˙
˙

=
— -( ) + ( )

È

Î
Í
Í

˘

˚
˙
˙

P A
R

A
R

2 2

2 2

/
. (17.1.15a)

i
t M

i
q

M

q

M
Vh

h h∂y
∂

y=
- —

+ ∑— + ∑ + ( )
È

Î
Í
Í

˘

˚
˙
˙

2 2 2

2 2
A A A R . (17.1.15b)

Boost B(-qA)=e-iqA•r/h by momentum –qA.

BpB†=B(P-qA1)B†=P=p+qA1 (17.1.16a)  B†PB=B†(p+qA1)B=p=P-qA1 (17.1.16b)

New position ket |rÒ relates to old |RÒ=B|rÒ as follows.

  |rÒ = B†|RÒ  ,      |RÒ = B|rÒ  ,     ·r| = ·R| B  ,     ·R| = ·r| B† . (17.1.17a)

A wavefunction y(R) = ·R|yÒ of any state |yÒ times B = e-iqA•R/h gives wave y(r) = ·r|yÒ in r-basis.

  y(r)=·r|yÒ=·R| B|yÒ=·R| e-iqA•r/h|yÒ=e-iqA•R/hy(R)=yB(R) . (17.1.17b)

An electric dipole potential -qE•r arises from B ∂y(R)/∂t and Maxwell equation E =-∂A/∂t.
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i
t

t M
V q t th

h∂y
∂

yr
r E r rr,

• ,
( )

=
- —

+ ( ) - ( )
È

Î
Í
Í

˘

˚
˙
˙

( )
2 2

2
(17.1.20c)

Time-dependent (non-autonomous) Hamiltonian.

  H(t) = H0 + V(t)= H0 + HI  (18.1.1a)

i
t

t t t t th
∂
∂

( ) ( ) ( ) ( )( ) ( )+Y Y Y= = 0H H V (18.1.1b)

Eigenstates of the unperturbed part H0 of the Hamiltonian.

 H0|ekÒ = ek|ekÒ= hwk |ekÒ  (18.1.3)

Y t e c ti t
k

k
k

k( ) = ( )-Â w e (18.1.5)

  

i
c t

t
e t c t V t c t

j i t
j k

k
k jk

k
k

j kh
∂ ( )
∂

( ) ( ) ( ) ( )= =
-( )Â Âw w e eV (18.1.10b)

The (j,k)-coupling time dependence is a modulation by ·ej|V(t)|ekÒ of the transition beat phasor eiWjk.

 Vjk(t) = eiWjk ·ej|V(t)|ekÒ= ei(wj-wk)t ·ej|V(t)|ekÒ  (18.1.10c)

The time variation of the state amplitude of general state |Y(t)Ò in (18.1.5) is

 ·ek|Y(t)Ò = e-iwkt ck(t) . (18.1.10d)

Iterative solution:

 ck(0)=dk1=ck(0). (18.1.11)

c t dt V tj j1

t

j1i
1

1
0

1
1( ) +( ) ( )= Úd
h

(18.1.13)

  

c t dt V t dt V t dt V tj j1

t

j1

t

jk

t

k1
ki i

2
1

0
1 2 2

0
2 1

0
1

1 1 2( ) +( ) ( ) +
( )

( ) ( )= Ú Ú ÚÂd
h h

(18.1.14b)

c t c t dt V t dt V t dt V tj j

t

jk

t

k k

t

k1
k ki

3 2
3 3

0
3 2

0
2 1

0
1

1 3 2( ) ( )
¢ ¢

¢
( ) ( ) +

( )
( ) ( ) ( )= Ú Ú ÚÂ

h ,

(18.1.15)

c t dt V t dt (t )j j 1

t

j
c

1 j 1

t

j 1i i
j1

0 0

1 1( ) + +( ) ( ) · | | Ò= =Ú Úd d e e1 1 1
i c

1e  1

h h

W V (18.2.5a)

The key quantities are the beats or (j¨1)-transition frequencies Wj1 and(j¨1)-dipole matrix elements rj1.

 Wj1=wj-w1. rj1 = e•·j| r |1Ò   (18.2.5b)

It is helpful to rewrite the amplitudes cj(1)(t) as follows (Here: Eo=2|a|w  appears again.)
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q j i i1 0

2
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= d f f
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1

h
D D, , , (18.2.5e)

using an important spectral amplitude function S(D,t) of an angular frequency detuning parameter D

S t d
tt i

i t

e
e

D
D

D
D

D
,

/

/

/ sin( ) ( )
= =Ú t t

0
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. (18.2.5f)

Total transition probability S D D D
D

D
t d S t d

t( ) ( ) ( )
( )

= =
-•
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•

Ú Ú,
/

/

sin2
2

2
2

2
. (18.2.10a)

Fermi’s golden rule for constant transition rates.S D Dt d S t t( ) ( )= = p ◊
-•
•

Ú ,
2

2 (18.2.10d)

Oscillator strength and dipole response
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r M qE
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h

cos cosw

w (18.3.5a)

Lorentz-atomic-oscillator frequency w0 =Wj1=wj-w1. (18.3.5b)

This is the (j¨1)-transition frequency Wj1 or quantum beat driven by stimulus frequency wS=w.

(j¨1)-oscillator strength fj1 
 
 1

1 1
f

r M
j

j j
=

2
2

W
h

(18.3.5d)

Thomas-Reiche-Kuhn sum rule for oscillator strength. This holds for any H0 eigenstate | 1Ò.

f j j i i ij
j j

1
1 1

2 1 1 2 1 1 2 1 1
= =

Â Â= = = -x p xp px/ / /h h h =1 (18.3.10a)

Quantum eigenstate virial theorem that is similar to the classical viral theorem.

KE m
M

m
P

m V m
P

PEP= = ◊ =
p

x
2

2 2 2
(18.3.10c)
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