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Unit 5 Periodic Potentials
Unit 4 introduced the Schrodinger time equation with piecewise constant potential barriers and 
wells with their strong distinction between resonance in a continuum and discrete bound 
states. This Unit 5 introduces periodic potential barriers for which these distinctions begin to 
disappear. In the real world every state is a resonance; some are more so but nothing lives 
forever. Symmetry is a key property that encourages high quality resonance because it means 
having two or more parts that are similar or identical and this implies frequencies that are 
similar or identical, the sin qua non for resonance. Examples are given of potential well 
systems with symmetry equal to or greater than that of the Cn sytems of Unit 3 Chapter 9. 
Energy bands and states of periodic potentials are introduced using the ideas of resonant and 
nonresonant eigenchannels introduced in the preceding Chapter 13. Kronig –Penney solutions 
are related to resonance band structure in Chapter 14, to non-commutative symmetry group 
algebra in Chapter 15, and to different flavors of Fourier symmetry analysis in Chapter 16.
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 The preceding Chapter 13 dealt with simple potential well and barrier states in what amounted 
to minimum-security prisons. This Chapter 14 deals with more clever forms of wave 
incarceration involving repeated sets of barriers and quantum wells that resemble the discrete 
CN-symmetric quantum dot structures of Chapters 8 and 9. While the latter had discrete 
spectra, the quantum wells described in this Chapter have a continuous spectrum, but it is 
peppered with resonance bands and wave states quite like the discrete CN-bands. Now the 
distinction becomes blurred between the free and the imprisoned or continuous and discrete; 
theyʼre two sides of the same coin!
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Chapter 14. Multiple Barriers and Resonance Bands

14.1 Waves and Potential Barriers: Crossing Matrices
 A revealing approach to the band theory of solids involves stringing together multiple copies of barriers 
and wells in various symmetric arrays or sequences. In Sec. 13.1 (b) we noted that the crossing matrix for a 
sequence of potential structures is the matrix product of the C-matrices of the component sub-structures. If each 
sub-structure is the same except for its location, then the component C-matrices all have the same form and 
nearly the same numerical values differing only in phase factors here and there.

(a) Well-well
 Consider stringing two identical wells together as in Fig. 14.1.1. 

 

R"eikx+L"e-ikx Reikx+Le-ikx

R2'eix+L2'e-ix
x = b' x = a'

R1'eix+L1'e-ix
x = b x = a

L L
A

           Fig. 14.1.1 C2-symmetric double square well .
Using the preceding C-matrix (13.3.33) in a product yields the desired well-well or (well)2 C-matrix.

    

  

′′R
′′L

⎛

⎝⎜
⎞

⎠⎟
= ′C ⋅C R

L
⎛

⎝⎜
⎞

⎠⎟
=

eikLχ* −ie−ik( ′a + ′b )ξ

ieik( ′a + ′b )ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

eikLχ* −ie−ik(a+b)ξ

ieik(a+b)ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

R
L

⎛

⎝⎜
⎞

⎠⎟

                           =
ei2kLχ*2 + e−i2kAξ2 −iξ e−i2kbχ* + e−i2k ′a χ( )

iξ ei2kbχ + ei2k ′a χ*( ) e−i2kLχ2 + ei2kAξ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

R
L

⎛

⎝⎜
⎞

⎠⎟

 (14.1.1a)

where the following matrix components are defined:

   χ = cos L + i cosh 2α sin L  and:  ξ = sinh 2α sin L     (14.1.1b)
The well-length L and distance or lattice constant A between wells are, respectively, the following.
   L = a - b = a' - b'    and,  A = a - a' = b - b'       (14.1.1c)
The kinetic factors are a repeat of those in (13.3.33c).

  
   
cosh 2α = 1

2

k
+ k


⎛
⎝⎜

⎞
⎠⎟
= 

2 + k2

2k
,      sinh 2α = 1

2

k
− k


⎛
⎝⎜

⎞
⎠⎟
= 

2 − k2

2k
,   (14.1.1d)

 As shown just before equation (13.1.25), a resonance has zero reflection, that is, L"= 0 or 

   
  
0 = ′′L = C21R = iξ ei2kbχ + ei2k ′a χ*( )R .     (14.1.2)

This also implies perfect transmission (|T|=1) with the following inverse transmission ratio.

   1/√|T| =
  

′′R / R = 1= C11 = ei2kLχ*2 + e−i2kAξ2 .     (14.1.3)

For energy below barrier V, this ratio, with ik=-κ, goes to zero for bound states. (Recall Fig. 13.2.2.)
   

  
′′R / R = C11 = e−2κ Lχ*2 + e2κ Aξ2 → 0      (14.1.4)

HarterSoft –LearnIt Unit 5 Periodic Potentials  14-1



2
 For the double well, resonant and bound states come in nearly degenerate pairs. In Fig. 14.1.2 a and b are 
two orthogonal bound state waves for a potential V=-25 of width L=1.5 and separation A=2.0. The ground state 
(a) has energy E(0+) = -23.468 and while the first excited state has energy E(0-) = -23.437 is barely 0.03 above 
the ground state. The probability envelopes for the two states are practically indistinguishable except at the mid-
point between the two wells where the excited state has a node but the ground state does not. This pair is 
analogous to the NH3 inversion doublet discussed in Chapter 10.

     

(a) Symmetric E(0+)

(b) Antisymmetric E(0-)

 Fig. 14.1.2 Lowest inversion-doublet pair in double well . (a) Symmetric, (b) Anti-symmetric

Energy eigenlevels E(1+) = -18.96  and E(1-) = -18.81 are paired, too, into an antisymmetric and symmetric set 
of waves shown in Fig. 14.1.3 a and b. However, now energy difference ΔE=0.15  is not quite so small. 
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(a) Symmetric E(1+)

(b) Antisymmetric E(1-)

 
Fig. 14.1.3 Next lowest inversion-doublet pair in double well . (a) Symmetric, (b) Anti-symmetric

 Each eigenlevel of the single well namely, E(0)= -23.453, E(1)= -18.88 , and so forth, is found to lie 
nearly midway between an inversion doublet pair of the double-well potential. In other words, each pair is 
described by the familiar 2-state bilaterally symmetric B-type Hamiltonian matrix from (10.2.4c).

   
   

1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A B

B A
⎛

⎝⎜
⎞

⎠⎟
 = H −S

−S H
⎛

⎝⎜
⎞

⎠⎟
    (14.1.5)

Here ΔE=2S is the splitting between each pair of double well states having energy E+=H-S or E-=H+S. This 
notation was adapted in the NH3 discussion beginning with (10.3.3).
 The beat dynamics of the waves in Figs. 14.1.2-3 are the same as that which was discussed in Chapter 
10.2b. A mixture of an n+ and n- state (particularly a 50-50 mixture) results in a beat oscillation back and forth at 
the difference or tunneling frequency ΔE/ =2S/. The only difference is that these frequencies can be 
exponentially small for pairs that lie deep down in their respective wells. Then tunneling looks more like a 
diffusive “oozing” process than a resonant process that it must be.
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4
 Resonance states also come in pairs. The transmission spectrum for a pair of nearest grazing resonances in 
Fig. 14.1.4 shows a barely resolved doublet corresponding to resonances  E(4+) = +8.4  and E(4-) = +10.0 . The 
waves shown belong to carefully prepared S-matrix eigenchannel states using the center of symmetry as the 
origin. Note how the symmetric wave piles up more charge on the central barrier than the antisymmetric wave 
which has a node at origin. For a more nearly grazing resonance this charge localization effect is even more 
pronounced, particularly with a narrow central barrier like this potential.
 At higher energy or for thicker separation barriers, the barrier-top resonances such as pictured in Fig. 
13.1.6, will contribute to transmission variation along with the intra-well resonances shown here in Fig. 14.1.4. 
Later on in Sec. 14.2 (c-3), we shall encounter situations where the two occur together. As pointed out in previous 
discussions (For example, recall Fig. 13.1.7.), much of this sharp resonance phenomena owe their existence to 
sharp-walled potentials with flat tops!

 

(a) Symmetric Resonance E(4+)

(b) Antisymmetric Resonance E(4-)

Fig. 14.1.4 Resonance-doublet pair above double well . (a) Symmetric, (b) Anti-symmetric
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(b) Hump-hump
 The same equations (14.1.1) with minor changes apply to a pair of humps shown in Fig. 14.1.5.

 

R"eikx+L"e-ikx Reikx+Le-ikxR2'eix+L2'e-ix

x = b' x = a'

R1'eix+L1'e-ix

x = b x = a
L L

A

  Fig. 14.1.5 C2-symmetric double barrier .

No modification of (14.1.1) is needed as long as the energy E is above the barrier top V.

  

  

′′R
′′L
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=

ei2kLχ*2 + e−i2kAξ2 −iξ e−i2kbχ* + e−i2k ′a χ( )
iξ ei2kbχ + ei2k ′a χ*( ) e−i2kLχ2 + ei2kAξ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

R
L

⎛

⎝⎜
⎞

⎠⎟
  (14.1.6)

However, if E<V, the wavevector  is replaced by iκ, i times an evanescent parameter, and the following matrix 
components are redefined accordingly from those of (14.1.1b),

   χ = cosh κL - i sinh 2β  sinh κL,  and:  ξ = cosh 2β  sinh κL,   (14.1.7)
using barrier parameters in (13.3.34).

  
  
cosh 2β = 1

2
κ
k
+ k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 + k2

2kκ
,      sinh 2β = 1

2
κ
k
− k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 − k2

2kκ
 (14.1.8)

 The main difference between the analysis of two wells and two humps is that the latter has no bound 
states; only resonances. However, the resonances are true trapping resonances in the sense that enormous 
amplification is easy to achieve, so they should be distinguished from the less spectacular Ramsauer-Townsend 
non-trapping resonances described so far. 
 For example, let us use the same depth V=25 and the same dimension b-a' = 1.5 for the interior well of 
Fig. 14.1.5 as was used for the width L=1.5 in the preceding example involving Fig. 14.1.1. The result is an 
enormous resonance shown in Fig. 14.1.6 when the energy is tuned to the lowest peak at E = 1.546. (Note that 
the top-relative energy is -25+1.546 =-23.454; very close to the lowest E value of the single-well bound state or 
the H-value of the double well in the preceding section.)
 The resonance amplitude in the well is amplified by approximately the sum of the magnitudes of the C11 
or C12 components of barrier matrix (13.3.34a) each of which contributes about 32.
   C12 = -i cosh 2β sinh κL = -31.8i   (for k = 6.8, κ = 1.76, L = 0.5 )   
So this resonance ends up with about 64 times the amplitude of the incoming wave or 642=4096 times the 
intensity! By making the barriers thicker or higher we increase this amplification exponentially. (Recall single 
barrier tunneling problem 2.3.)
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 With amplitudes amplified so much you can expect that the sensitivity of the eigenchannel combinations 
will be extreme, too. Such strongly resonant systems are very sensitive to input amplitudes and phases as well as 
to changes in energy.

Fig. 14.1.6 Lowest (E= 1.546) resonance in L=0.5 well between two width=0.5 barriers(V=25) .

 The next lowest resonance at (E= 6.117 or -25+6.117 =-18.883) is shown in Fig. 14.1.7. It is an 
antisymmetric wave with one node in the well. It has less amplification than the monster in Fig. 14.1.6, but still 
amounts to a gain of about 100 in intensity.
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Fig. 14.1.7 Second (E= 6.117) resonance in L=0.5 well between two width=0.5 barriers(V=25) .

HarterSoft –LearnIt Unit 5 Periodic Potentials  14-7



8
(1) C-and-S-Matrix Analytic properties: Resonance Widths and Lifetimes
 Resonances in the preceding Fig. 14.1.6-7 can be made to exponentially approach bound states by raising 
or thickening the barriers. Even the flimsy walls used in the examples are sufficient to give resonance energies 
that approximate with 4-figure accuracy the bound-state energy eigenvalues for the same (height = V =25, width 
= W =1.5) well with infinitely thick walls. (See also Section 14.1(f).)
 We have previously (in (14.1.4) and (13.2.2)) associated bound states with zeros of the ratio R"/R or, 

equivalently, poles of the ratio R/R". Bound states require the amplitude R" of the right moving wave ei(kx - ωt) to 
vanish when the wavevector factor ik becomes a real evanescent parameter -κ to avoid an exponential blow-up of 
e-κx on the left side as x approaches -∞. On the other side, amplitude R of the same wave can be non-zero since e-

κx vanishes automatically on the right hand side as x approaches +∞.
 So zeros of C-matrix component C11, or equivalently, poles of S-matrix component S12 = 1/C11, 
correspond to bound states if the wavevector becomes imaginary. Now we try a very strange but famous trick. We 
suppose that resonances for real k correspond to zeros of C11, or equivalently, poles of S12  somewhere out in the 
complex energy plane but near the real E-axis.
 The reasoning behind what seems, at first, to be crazy, is based on Fourier analysis. So far we haven't 
mixed states belonging to resonances and most of the pictures have been of states with a single energy carefully 
placed smack on top of a resonance peak. But, suppose for a minute that the peak is only the beginning of a huge 
(infinite) S-pole-mountain just below the real E-axis. More to the point, suppose C11 has a zero at complex 
energy  Ωn or complex frequency value Ωn = ωn - i Γn just below the real resonance frequency ωn. In other 
words, let the first Taylor-Laurent series expansion term of C11  be, for some coefficient cn, as follows 
     C11 (ω) =  ( ω− Ωn )/cn =  ( ω− ωn + i Γn )/cn    (14.1.9)
in the neighborhood of Ωn . Then the transmitted output amplitude R of the barrier system has the form  

  
  
Rk(ω ) =

1
C11 ω( ) ′′Rk(ω ) =

cn
ω −Ωn

′′Rk(ω ) =
cn

ω −ωn + iΓn
′′Rk(ω )   (14.1.10)

where we approximate coefficient cn to be a constant in the neighborhood of the n-th resonance root Ωn.
 Suppose now that a continuous combination of near-resonant wave states are mixed together to make a 
non-stationary state whose wavefunction is approximately given by a frequency integral.

  

  

Ψ(x, t) = dω∫ Rk(ω )e
i k x−ω t( ) = dω∫

cnei k x−ω t( )

ω −ωn + iΓn
′′Rk(ω )

          ≅ ′′Rk(ωn )cneik(ωn ) x dω∫
e−iω t

ω −ωn + iΓn

   (14.1.11)

Here we make approximations that you will see often in resonance theory. First, we suppose that the frequency 
distribution of the input amplitude R"k(ω)  is constant in the neighborhood of the resonance so it can go outside 
the integral. That is a good approximation since it could, in fact, be arranged. Next we move cn outside, too, since 
it was previously assumed constant. This approximation depends on the approximate form of the C-matrix being 
what we said it was. (Not always so!)  Finally, the wavevector k(ω) is assumed frozen at the resonance value k
(ωn). This is the most questionable of our approximations, and it will prevent us from seeing the group wave 
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interference outside of the barrier. However, since we are here interested only in rough overall time behavior this 
will be OK for now. Besides, it's the only way we can get a really simple analytic integral.
 The integral itself is now approximated by appealing to Cauchy's integral theorem of complex f(z).

    
   

dz
C
∫

f (z)
z − a

=
0             if a outside of contour C,
2π i f (a)   if a inside of contour C.

⎧
⎨
⎪

⎩⎪
  (14.1.12)

This is sometimes called the residue theorem and gives the value of an integral around a complex counter-
clockwise contour C of a function f(z) (that has no poles inside C ) divided by (z-a). The value is 2πif(a) or else 
zero depending on whether a is enclosed by contour C or not, respectively. 
 The integral (14.1.11) is a real integral but it can be made into a contour integral just like (14.1.12) by 
attaching a non-contributing "return loop" path that goes in ω-regions where the integrand, particularly the 
numerator e-iωt, is practically zero. Such contours are sketched in Fig. 14.1.8. The upper contour is used for past 
time (t<0) because then ω=i(large) gives e-iωt = e(large)t which is negligibly small for negative t. But, for the 
future times (t >0) we have to take the lower contour along which ω = -i(large) so, once again, the phasor values 
e-iωt = e-(large)t are negligible for positive t. Either contour has to be big enough or far enough away from the pole 
to make e-iωt /( ω− Ωn ) have negligible magnitude on its return loop.

 

   
For t<0

Ωn = ωn - iΓn

For t>0

Ωn = ωn - iΓn

-iΓn

ωn ωn
-iΓnRe ω Re ω

Im ω Im ω

 Fig. 14.1.8 Possible contours for resonance wave calculation.

The result of combining (14.1.11) and (14.1.12) is the following decaying (e-Γt e-iωt )oscillation for t > 0.

  
  

Ψ(t) ≅ dω∫
e−iω t

ω −ωn + iΓn
=

0                           for: t<0

−2π i e−i ωn − iΓn( ) t   for: t>0

⎧
⎨
⎪

⎩⎪
  (14.1.13)

The resonance decay rate Γn is just the distance the root of C11 or pole of S12 lies below the real-ω axis. The 
minus sign (on -2πi) is needed since the (t>0) contour goes clockwise or negatively. 
 It should be pointed out that roots of rational functions come in conjugate pairs. So the upper contour will 
also enclose a conjugate pole of the S-matrix component and the integral for past time will not be zero for the 
rational function as it is for our simple model approximation in (14.1.10).

 How do we find the actual root displacement Γn  or, for that matter, the real value ωn  of resonance 
frequency? Finding complex roots of functions like (14.1.7) is not trivial. An easy solution is to simply plot the 
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magnitude |S12 (ω)| =|1/C11 (ω)| for real ω in the vicinity of each resonance and see how closely it fits the model 
Lorentz resonance function arising from the assumed form (14.1.10).

   
  

1
C11 ω( )

2

=
cn

ω −ωn + iΓn

2

=
cn

2

ω −ωn( )2 + Γn
2

   (14.1.10)

If the fit is close, then accurate values for resonance frequency ωn , resonance decay rate Γn, as well as resonance 
peak strength |cn /Γn|2 may be obtained fairly quickly. There is a little trick to this that comes from noting that the 
Lorenztian has half its peak value when ω− ωn = ± Γn . In other words, the decay rate Γn is the Lorenztian Half-
Width at Half-Maximum (HWHM).
 Fig. 14.1.9(a) below shows a pretty close fit of a Lorentzian to a numerical plot (b) of the 13.45 resonance 
which is just above the 6.12 resonance in Fig. 14.1.7. This is a "textbook" resonance except for a slight 
"background" which "lifts" the numerical resonance peak and is due to the potential having thin walls and being 
slightly "transparent" at all frequencies.

 

(a)

(b)

Half Width at Half Maximum
Γn = 0.1

Full Width at Half Maximum
2Γn = 0.2

ωn = 13.45

 Fig. 14.1.9 Will the true Lorenztian please stand up!

 We mentioned previously, that e-3 is nearly 5% so the resonance 95% lifetime is 3/Γn . That's the time it 
would take for a "monster" like Fig. 14.1.6 to drain 95% of its amplitude if it was uniformly excited over its 
spectral band. Half that time, or 3/2Γn is what would be needed to drain 95% of its intensity or probability. The 
probability decay rate 2Γn is the Lorenztian Full-Width at Half-Maximum (FWHM).
 If the Lorentzian fit is not very close, then that says that this simple theory is wrong and some hidden 
mechanisms are present that need further study. The sub-grazing 22.8 resonance just below the V=25 barrier top 
is an example. It appears to be "tipped" like a "hill-billy" living on mountain slope. The slope represents the 
growing transparency as energy approaches the barrier top. Shortly, we will see other examples of failure for 
simple Lorenztian fits such as happens with “clumps” of resonances. The first example in the following section 
deals with a pair of neighboring resonances.
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(d) Hump-hump-hump
 Let a third thin (L=0.5) wall be placed so that two wider (W=1.5) wells lie between three walls of height 
(V=25) as shown in Fig. 14.1.10 below. 

 

L
A

W

 b'  a' b  ax = b" a"

E
V

 Fig. 14.1.10 Triple-barrier double-well potential

 Each of the three barriers each has a C-matrix which enters a product to make the overall C-matrix.

  

  

C3−barrier = ′′C ⋅ ′C ⋅C

=
eikLχ* −ie−ik( ′′a + ′′b )ξ

ieik( ′′a + ′′b )ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

eikLχ* −ie−ik( ′a + ′b )ξ

ieik( ′a + ′b )ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

eikLχ* −ie−ik(a+b)ξ

ieik(a+b)ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                         

(14.1.11a)

Except for the phases k(a"+b") = 2k x ", k(a'+b') = 2k x ', and k(a+b) = 2k x  at barrier centers, the parameters in 
the three matrices are identical. For energy below barrier top (E<V) the parameters are

   χ = cosh κL - i sinh 2β  sinh κL,  and:  ξ = cosh 2β  sinh κL,   (14.1.11b)
using barrier coefficients from (14.1.7).

  
  
cosh 2β = 1

2
κ
k
+ k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 + k2

2kκ
,      sinh 2β = 1

2
κ
k
− k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 − k2

2kκ
 (14.1.11c)

Well wavevector k and barrier evanescence κ are given using rationalized (theorist units) energy ε and potential 
υ.

  
   
k = 2mE

2
= 2ε ,                κ =

2m V − E( )
2

= 2 υ − ε( ).   (14.1.11c)

 The resonance transmission spectrum for the triple-barrier double-well is composed of pairs of peaks with 
each peak resembling a Lorentzian. The first three of these are plotted using scales of decreasing (with energy) 
magnification in Fig. 14.1.11. It is evident that a simple phenomenological modeling of each resonance cannot be 
done with a single Lorentzian but requires at least a double Lorentzian, something like that of a coupled damped 
two-dimensional pendulum system.

  
  
S12 ω( ) = 1

C11 ω( ) =
c(n+ )

ω −ω (n+ ) + iΓ(n+ )
+ c(n− )
ω −ω (n− ) + iΓ(n− )

  (14.1.12)

This model would require six parameters c(n±), ω(n±), and Γ(n±) for each resonance n=0, 1, 2,..., and that's too 
many. (It would be more like quantum chemistry than physics!)
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(0)
Resonance
Doublet

(0)-

(0)+

(1)
Resonance
Doublet

(1)-

(1)+

(2)
Resonance
Doublet

(2)-

(2)+

 Fig. 14.1.11 Lowest three triple-barrier double-well resonance parity doublets
 Instead, C2 symmetry lets us whittle that number down to three: the even and odd doublet frequencies ω(n
+) and ω(n-),which are eigenvalues of a bilateral symmetry (B-type) Hamiltonian (14.1.5).
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   ω(n+) = H(n) - S(n) ,     ω(n-) = H(n) + S(n) ,     
and a single decay rate Γ(n+) =Γ(n)= Γ(n-). The latter gives the Half-Width-at-Half-Maximum (HWHM=Γ(n)) of 
either doublet peak. Fig. 14.1.11 shows that peaks within each pair have nearly the same width but that this width 
grows quasi-exponentially for increasing quantum number n of higher energy doublets. The parameter S(n) is the 
half-splitting (HS = S(n)) of the n-th doublet. It also grows quasi-exponentially with n. 
 Finally, H(n) is the center of gravity (CG = H(n)) of the n-th doublet and evidently it is, once again, 
remarkably close to the bound-state eigenvalue of a well of the same width (W=1.5) and height (V=25) but with 
walls of infinite thickness (L=∞  for the "high-security prison.") even though the walls used here are relatively 
flimsy (L=0.5). The CG of resonance (0) in Fig. 14.1.11 is 
   H(0) = (1.562 + 1.531)/2 = 1.5465    
This is close to the bound state eigenvalue E(0) = 1.547 derived earlier.
 Note that maximum amplitudes of transmission peaks are all 100% (|C11(ω(n±))|=1) for resonances in C2 
symmetric potentials (Prove this!). So amplitude coefficients c(n) are all equal to the decay rate Γ(n) and the c(n
±) parameters are not needed here. 
 Fig. 14.1.11 shows that doublet peak half-width Γ(n)=HWHM grows more rapidly with increasing 
quantum number n than doublet half-splitting S(n)=HS , so that when n=2 or 3 the two peaks are practically 
rubbing shoulders. In other words, the decay or "probability leakage" rate 2Γ(n) increases relative to the 
transition or "quantum beat" frequency 2S(n). Each successively higher doublet resonance, if excited uniformly, 
will behave more and more like a rusty old damped pendulum. Finally, it becomes "over damped" when Γ(n)>S
(n), and the beat oscillation dies before it can complete a single cycle.  
 The beat frequency 2S(n) is determined mainly by the central barrier which, as it becomes thicker, reduces 
coupling between the two wells. If, instead, the central barrier is made thinner and finally removed altogether, the 
doublet splitting 2S(n) increases until it is comparable to the spacing between the neighboring CG=H(n) values. 
Finally, the double-well spectrum becomes that of a single well.
 Plots of (2±) doublet resonance wavefunctions in Fig. 14.1.12 show that the two waves differ appreciably 
only in the middle barrier. The lower energy (2+) channel wave is, at the moment shown,
   Ψ2+(x,0) = C cosh κ+x + i S sinh κ+x.  (  -L/2 < x < L/2)  (14.1.13a)
Its hyperbolic cosine part is much larger than the imaginary hyperbolic sine part.(C>>S) At an equivalent 

moment of time, the (slightly) higher energy (2-) channel wave inside the barrier is, 
   Ψ2-(x,0) = S sinh κ−x - i C cosh κ−x,  (  -L/2 < x < L/2)  (14.1.13b)

with the hyperbolic sine much larger than the imaginary cosine. (S>>C) Ψ2- has a slightly larger κ-value, too, (κ
−> κ+), but that difference is relatively small. To understand (14.1.13) we view each channel wave as 
combinations of their respective eigenchannel waves which were introduced in Sect. 13.3(c).
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(2+) Left-source channel (2-) Left-source channel

2S(2) =
(2+)(2-)
Doublet
Splitting

~cosh κx

~sinh κx

~sinh κx

~-cosh κx

(2+) Resonant eigenchannel (2-) Resonant eigenchannel

E   =   13.2112 E  =  13.6985

E   =   13.2112 E  =  13.6985

Fig. 14.1.12 (n=2) resonant parity doublet. Channel states have100%  transmission. Eigenchannels, none.
 Recall that eigenchannels must be standing waves as shown by (13.3.15a-b). A left-source channel wave 
must be have pure moving wave (coskx+isinkx) in the output (right) channel and therefore be a complex 50-50 
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combination of eigenchannels. However, the interior parts the channel states, (2+) or (2-), are combinations, 
(14.1.13a) or (14.1.13b), respectively, of interior eigenchannel waves which appear to be anything but 50-50, in 
fact one dominates the other as we see now.
 In the preceding resonance example there is a pure moving wave in the input (left) channel since 
transmission happens to be 100%. To have moving waves (coskx+isinkx) on both sides requires equal amounts of 
both symmetric ("cosine-like") and antisymmetric ("sine-like") eigenchannel wave components in the exterior 
region. One of the eigenchannel components will be a resonant eigenchannel with large amplitude in the interior 
(well) region while the other component will be a non-resonant eigenchannel with a small interior amplitude, just 
like equations (14.1.13). 

 The resonant (2+) and (2-) eigenchannels are plotted in the lower portion of Fig. 14.1.12, and clearly 
these account for most of the interior part of (2+) or (2-) channel waves. However, each channel wave has a non-
resonant component that has the opposite symmetry with a small interior contribution as plotted in Fig. 14.1.13. 
The non-resonant plot amplitudes are exaggerated over the resonant ones so the symmetry of small interior 

standing waves are clearly visible. The non-resonant (2+) wave is anti-symmetric and the non-resonant (2-) wave 
is symmetric; opposite to the resonant waves in Fig. 14.1.12. 
 This explains why channel waves are slightly lopsided; the asymmetry of (2+) in Fig. 14.1.11 is not due to 
numerical error. Current flow requires a non-zero phase lag downstream and all the more so if the current is large 
compared to interior amplitudes. The required asymmetry is supplied by a nonresonant part, which, for 100% 
transmission at a resonant energy, has an exterior amplitude equal but 90° out of phase with the resonant part of 
the same energy, but it comes with a small interior wave, too.

(2-) Non-resonant eigenchannel(2+) Non-resonant eigenchannel

2S(2) =
(2+)(2-)
Doublet
Splitting

E  =  13.2112 E  =  13.6985

Fig. 14.1.13 (n=2) non-resonant eigenchannel parity doublet. Amplitude is exaggerated over Fig. 14.1.12. 
 Recall that eigenchannels have a full SU(2) freedom. The preceding figures display only the 
eigenchannels referred to origin at the center of C2 symmetry as, for example, in (13.3.39). However, any 
combination of the resonant and non-resonant eigenchannels is an eigenchannel, too, having the same energy but 
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a different reference origin. Experimentally, a range of eigenchannels is obtained by dragging the source or initial 
condition (IC) point along the x-axis for half a wavelength or by scanning the initial R or L phase component 
through π or varying the a-parameter, as in Fig. 13.3.3. Only the waves shown in Fig. 14.1.12 and 13 have a pure 
C2 odd or even (±) parity. Others are "non-descript" symmetry like some examples of (2+) waves shown below.

  

  
Fig. 14.1.14 Generic (2+) eigenchannel wave combinations of indefinite parity. 

 The doublet coupling and splitting parameter S(n) is determined by the middle barrier, but the decay rate 
Γ(n) is determined mostly by the outer walls. Making them thicker on the outside (increasing L without changing 
the middle barrier LM  or the well width W ) makes the resonance peaks thinner and the resonances stronger 
without appreciably altering either the CG or HS values. Infinitely thick exterior walls give singlet-level bound 
states shown in Fig. 14.1.2 and 3. Each one is a resonant eigenchannel wave, the winning partner of a doublet 
level. The losing and forgotten partner is the non-resonant eigenchannel wave which is squeezed out to the 
infinite L. Old states don't die, they just fade away!

(1) Breaking C2 symmetry
 It is important to see how the resonances described so far are sensitive to the presence or lack thereof of 
the bilateral B-type of C2 symmetry. As was pointed out in Sec. 10.3, the reduction of B-type to AB-type and 
finally to asymmetric-diagonal A-type symmetry begins when the diagonal H-matrix components H11=A and 
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H22=D differ by more that the off-diagonal H12=HS=S components. For the lower resonances of the triple-
barrier double-well the S(n)=HS  parameter is tiny so it doesn't take much diagonal asymmetry to wholly upset 
this system and thereby spoil its strong resonances and perfect transmission properties.
 This is what is seen in Fig. 14.1.15. A tiny perturbation or "bump" at the bottom of the left hand well is 
enough to almost completely destroy the giant (n=0) resonances shown on the left side of Fig. 14.1.11 and 
reduces its 100% transmission to less than 1%. However, the higher (n=2) resonance fares better since its 2S(2)
=0.49  parameter is much larger than 2S(0)=0.031, and so it is perturbed into only slightly asymmetric 
combinations. The transmission is still not exactly 100% but still close to it.
 There are many ways to make or break the C2  symmetry. Adjusting the depth or width of one of the wells 
or the thickness or height of one of the outer barriers will have the same effects. So will adding a uniform electric 
field which puts a slope on the entire potential system as shown in Fig. 14.1.16. The latter is an example of the 
electric Stark splitting. Generally this quickly spoils 100% transmission, too.

Fig. 14.1.16 Lower state of Stark split (2+) resonance doublet. 
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Fig. 14.1.15 Small symmetry breaking ruins (n=0) resonance doublet and slightly perturbs (n=2).
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(2) Accidental degeneracy
 If one well is detuned sufficiently it may come back into resonance, but with the next higher level of the 
neighboring well. In the Fig. 14.1.17 the (n=0) state of the left well has been pushed up so it is in resonance with 
the (n=1) wave of the right hand well. This is called an accidental degeneracy even if it is no accident. ( It takes 
some effort to pull this off!) The difficulty with this kind of "accident" is that none of the other levels are likely to 
also have degenerate mates since no over-riding symmetry is present.

Fig. 
14.1.17 Extreme symmetry breaking brings (n=0) resonance up to (n=1).
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(e) Multiple humps or wells
 By increasing the number N of identical potential wells strung together between N+1 barriers, as in Fig. 
14.1.18, we find transmission spectra that begin to resemble band spectra of crystalline solids.

 

L
A

W

 b2  a2 b1  a1      b3 a3

E
V

x = bN+1 aN+1

 Fig. 14.1.18 (N+1)-barrier (N)-well potential

Each of the N+1 barriers has a C-matrix which enters a product to make the overall C-matrix.

     

   

C N +1barrier = C[N +1] ′C ⋅C =

eikLχ* −ie−ik(aN +1+bN +1)ξ

ieik(aN +1+bN +1)ξ e−ikLχ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟


eikLχ* −ie−ik(a2 +b2 )ξ

ieik(a2 +b2 )ξ e−ikLχ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⋅

eikLχ* −ie−ik(a1+b1)ξ

ieik(a1+b1)ξ e−ikLχ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  (14.1.17a)

As in (14.1.11) the parameters for (E<V) are k = √(2E), κ = √(2V-2E), and sinh 2β = (κ2-k2)/(2kκ) ,
   χ = cosh κL - i sinh 2β  sinh κL,  and:  ξ = cosh 2β  sinh κL,   (14.1.17a)
and for (E>V) they are  = √(2E-2V), and cosh 2α = (2+k2)/(2k) from (13.3.33).
   χ = cos L + i cosh 2α  sin L,   and:  ξ = sinh 2α  sin L.    (14.1.17b)

(1) N=3: Coupled pendulum model
 With three barriers the transmission peaks derived from (14.1.17 a and b) for (E<V) come in triplets. The 
lowest triplet and associated channel wavefunctions are shown in Fig. 14.1.19. The triplet eigensolutions can be 
approximated by treating each the three wells as one of three base states {|1〉,|2〉,|3〉} in a three-by-three tunneling 
Hamiltonian eigenvalue equation. It is analogous to three pendulums in a line.

   

  

H εk =
H −S 0
−S H −S
0 −S H

⎛
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⎟
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= εk Ψ    (14.1.18)

We solve this by a trick where (14.1.18) is embedded (twice) in a C8 matrix equation. (Recall Fig. 12.2.6.)
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   (14.1.19)
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(0)
Resonance
Triplet
(0)3

(0)2

(0)1

 Fig. 14.1.19 Lowest  triple-well resonance triplet.

 The trick works because the C8 superset problem has three solutions which make the components 〈0|Ψ〉 
and 〈4|Ψ〉 equal to zero. Then (14.1.18) is solved by the 3-by-3 part of (14.1.19) using the general CN  solutions 
for N=8 from (9.3.5a-e) and discarding five symmetric (cosine-like) eigensolutions. Three sine-like 
eigensolutions from (9.3.5g) for (m=1, 2, 3) remain for which 〈0|Ψ〉=0=〈4|Ψ〉. 
   εm = H - 2 S cos km a = H - 2 S cos (2π m/8)       (14.1.20a)
The km–eigenvectors, listed in (9.3.5b) as ±moving waves, need to be combined into sine waves. 
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+km = 1 eikma e2ikma e3ikma e4ikma e−3ikma e−2ikma e−ikma( ) / 8  (14.1.20b)

 
  
−km = 1 e−ikma e−2ikma e−3ikma e4ikma e3ikma e2ikma eikma( ) / 8  (14.1.20c)

     kma = 2π m / 8 = 0, π / 4, π / 2, 3π / 4, and π    (14.1.20d)

The desired standing sine wave eigenvectors are the difference between the two moving wave states.

 
  

sm = +km − −km( ) / i 2

      = 0 sin kma sin 2kma sin 3kma 0 − sin 3kma − sin 2kma − sin kma( ) / 2

The 3-well resonances use only the components m=1, 2, and 3 of the (renormalized) sine eigenvectors 

 
  
εm = sin kma sin 2kma sin 3kma( ) / 2 = sin π m

4
sin 2π m

4
sin 3π m

4

⎛

⎝⎜
⎞

⎠⎟
/ 2 ,   (14.1.21a)

for m = 1, 2, and 3, which give the three eigensolutions using (14.1.20a).(See also Fig. 14.1.20 below.)
       εm =  H - 2 S cos (π  m/4) .  (14.1.21b)

   

 

ε1 = 1    2     1( ) / 2

ε2 =   1   0  −1( ) / 2

ε3 = 1  − 2   1( ) / 2

  

  

ε1 = H − 2S
ε2 = H

ε3 = H + 2S

   (14.1.21c)

 Using the value of the tunneling or splitting parameter S(0) =0.031/2= 0.0155 from the splitting of the 
double well in Fig. 14.1.11 we can estimate the splitting of the triple-well to be S(0)√2 = 0.0219 for the (0)m 
triplet. This is close to the 0.022 splitting found in the exact calculation plotted in Fig. 14.1.19. A minor swindle 
of a missing factor-of-two is due to our cutting open a CN -loop as discussed later.
 The trick here is to embed a linear N-fold symmetric system (Here N=3.) into a circular 2N+2-fold or C2N

+2 system (Here, an octagonal C8 ring.) and then discard all but the N solutions that are sine-like. This 
approximation depends on the linear N-fold system having exterior amplitudes which are small enough that they 
can be modeled by zeros of the 2N+2-fold sine-wave nodes.(〈0 |Ψ〉 = 0 = 〈N+1|Ψ〉)

 

  

ε3=H+√2 S

ε1=H-√2 S

ε2=H

18

28

38-38

-28

-18

48

08
         Fig. 14.1.20 Approximate "coupled pendula" C8 tunneling model for triple-well resonance triplets.
 So, it shouldn't be surprising that the approximation is best in strong resonance where huge interior 
resonance waves dwarf the exterior (input-output) wavefunctions, but it deteriorates for higher resonances which 
"escape" easily. High-security prisons make this model look better!
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  Compare the (1) doublet parameter S(1) = 0.15/2=0.075 in Fig. 14.1.11 to the (1) triplet splitting of 
6.23-6.12=0.11 in Fig. 14.1.21. This is close to the approximate prediction of √2 (0.75) = 0.106 but, perhaps, not 
quite as close as the comparison between the lower energy (0) resonances made previously.
 However, For the (1)-triplet the most symmetric (1, √2, 1)/2=|(1)1〉 state comes out on top instead of 
being the lowest as in the (0)-triplet while the (1, -√2, 1)/2=|(1)3〉 is lowest. This is as it should be since waves 
with more nodes are always higher energy, so tunneling parameter S(1) the opposite sign of S(0).

  

(1)
Resonance
Triplet
(1)1

(1)2

(1)3
  Fig. 14.1.21 Next lowest  triple-well resonance triplet.
 Another problem with the simple model (14.1.21) is it does not predict splitting asymmetry, that is, that 
ε1-ε2 isn't quite equal to ε2-ε3 . We could say that the evanescence or tunneling parameter S(n) varies with energy 
within each triplet (while changing sign between them), but this sort of "hand-waving" defeats the elegance of the 
model. Sec. 14.2 has some ways to improve multplet or band modeling and explain quantitatively how the 
tunneling and phase vary.
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(2) Forbidden gaps
 With N= 4, 5,... wells or more, the resonances begin to resemble bands of N peaks spaced out more or less 
according to the C2N+2 eigenvalues from (14.1.20a) with allowed m = 1, 2, ...N , only.
   εm = H - 2 S cos km a = H - 2 S cos (2π m/(2N+2))     (14.1.20a)repeated
In between each of these bands of peaks lies a "no-man's-land" of energy values that give a disappointing 
transmission probability which falls off exponentially with the length NA of the potential region. The technical 
name for a "no-man's-land"  is a forbidden energy gap.  
 An example of some pitiful waves trying to penetrate through the first forbidden gap in an N=4 system is 
shown in Fig. 14.1.22. The top wave (Fig. 14.1.22(a)) is only detuned by ΔE=0.1 from the powerful (0) 
resonance band around E=1.547. (Recall Fig. 14.1.11 and 19.) Transmission is essentially zero, but it's enormous 
compared to that of the plot below in which the detuning is doubled to ΔE=0.2. Further detuning attenuates the 
wave so badly that even the first well has no visible life. Dead on arrival!

 

Detuned by 0.1(E=1.44)

Detuned by 0.2(E=1.34)

(a)

(b)

 
Fig. 14.1.22 Examples of waves dying from detuning into a “forbidden gap” below a resonance band.

©2013 W. G. Harter Chapter14 Multiple Barriers & Resonance Bands  14-



(f) Comparing bound versus resonant energies
 Before beginning energy band theory, let us do a precise comparison of bound-state well energy values 
with those of resonance peaks. Consider first the well bound-state eigenvalues in Fig. 14.1.23. The energies are 
listed both from top and bottom while their units are related to standard mks units, or, the more appropriate nano-
technology  Å(eV)s units
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 (“Bound States“)
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-15
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13.13 EU=1eV Low Energy Units
13.13 EU=10meV
1xU = 10nm = 100Å

Fig. 14.1.23 Width W=1.5 Square well with Potential Depth V=15.0EU.

 It is interesting to compare the bound energies to resonance values for wells of the same potential depth 
V=15EU and width W=1.5 nm,  but varying outer wall thickness . Three examples, varying from thin wall 
(L=0.5) to thick wall (L=2.0), are shown in Fig. 14.1.24.
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0

Fig. 14.1.24 Width W=1.5 Resonance wells with Potential Depth V=15.0EU and varying wall thickness.

 The resonance values in Fig. 14.1.24 are quite close approximations to the “exact” bound-state energies in 
Fig. 14.1.23 in each case, and they become closer as the outer walls become thicker. The lower resonance values 
rise slightly as the wall becomes less penetrable, but surprisingly, perhaps, the highest one drops. The variation of 
energy is complicated by the mixing of  resonant and non-resonant eigenchannels. For thick wall and low energy, 
the bound state wave will approach that of the resonant eigenchannel wave while the non-resonant eigenchannel 
wave becomes more and more excluded. However, for thin walls, the overlap between the two increases as 
shown in the discussion of Fig. 14.1.12 and Fig. 14.1.13. Then, their mixing becomes an important part of the 
energy equation.
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 Next we compare the case of double-wells. The bound state double-well eigenvalues for this example are 
dispalayed in Fig. 14.2.25. Note that the doublet centers are quite close to the corresponding singlet values in Fig. 
14.1.23. The separating barrier length is L=0.5 nm.
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Fig. 14.1.25 Double-well bound state doublets.

 In Fig. 14.1.26 below, the doublet bound-state energies above may be compared to resonance values 
arising from identical double wells surrounded by more or less penetrable walls of thickness length L=0.5 nm for 
Fig. 14.1.26a and L=1.0 nm for Fig. 14.1.2b. 
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Fig. 14.1.26 Double-well resonance doublets. (a) Thin outer walls (L=0.5 nm), (b) Thick outer walls (L=1.0 nm), 

 Again, there is a slight downshift of the lower resonances while the highest pair rise slightly. Also, the 
doublet splitting rises more for the highest doublet particularly in the case of thinner walls. Interaction between 
resonant and non-resonant eigenchannels is enhanced by having closely spaced doublet energy values.
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14.2 Allowed bands: Kronig-Penney Conditions
 Forbidden waves like the ones shown in Fig. 14.1.22 get killed because each application of a barrier C-
matrix gives right and left wave amplitudes (R', L') with magnitudes that are products by some factor F with the 
amplitudes (R, L) going into that C-matrix. The result is an unstable geometric or exponential (~eFx) growth or 
decay and that kills transmission or propagation. If a wave in a forbidden energy gap fails to pass a few barriers, 
what chance has it in a real crystal with trillions of such barriers? When a crystal says a wave energy is 
"forbidden" it means it! Fuggedaboutit! Get out'a here! 
 To see what allows wave propagation we focus on one C-matrix factor from the chain (14.1.17).

   

  

′R
′L

⎛

⎝⎜
⎞

⎠⎟
=

eikLχ* −ie−ik(a1+b1)ξ
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⎜
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⎟
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⎞

⎠⎟
    (14.2.1)

The output wave ψ'(x) and input wave ψ(x) are the following by definition. (Recall Fig. 14.1.5.)

   ′ψ (x) = ′R eikx + ′L e−ikx  ,              ψ (x) = R eikx + L e−ikx .     (14.2.2)

Now let's force propagation by demanding that the output wave and its derivative be the same at point x=A = L + 
W after each barrier-well as it was at the starting point x=0. This is a little too strict, but surely if each unit of a 
lattice puts out the same initial conditions for its wave, then the wave can exist everywhere in the whole system 
with the same amplitude. That would be perfectly periodic propagation.
 So our "strictly periodic" demands take the following forms. 

  

  

′ψ (0) =ψ ( A)               implies    ′R + ′L = R eikA + L e−ikA  ,         
d
dx

′ψ (0) = d
dx

ψ ( A)    implies    ′R − ′L = R eikA − L e−ikA  .   
  (14.2.3a)

Solving gives R′=ReikA and L′= L e-ikA . Putting this into C-relation (14.2.1) gives
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 (14.2.3b)

So the following matrix M has only zero eigenvalues.
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⎞

⎠⎟
   (14.2.4a)

Setting its determinant to zero and using unimodularity (|χ|2−ξ2=1) yields the following conditions.

  

  

det M = eikLχ* − eikA( ) e−ikLχ − e−ikA( ) − ξ2      = 0

         = χ
2
− eikLχ*e−ikA − e−ikLχeikA +1− ξ2 = 0

Re eik L− A)( )χ*⎛
⎝

⎞
⎠ = 1= Re eikW χ( )

   (14.2.4b)

where W=A-L is the width of the well and L=A-W is the barrier length. Using (14.1.17a-b) this becomes

  
   

 
( for E >V ) : cos kW cos L − cosh 2α sin kW sin L

( for E <V ) : cos kW coshκ L + sinh 2β sin kW sinhκ L

⎫
⎬
⎪

⎭⎪
= 1   (14.2.5a)
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The last equations are called the Kronig-Penney band conditions. These are plotted in Fig. 14.2.1 for the potential 

with L=0.5, W=1.5. Observed bands are located inside the regions between Re(eikWχ )=±1. Indeed, the 1 in 
(14.2.5a) needs to be relaxed to ±1, or, better, to cos(2πm/N) for CN bands.

Fig. 14.2.1 Kronig-Penney functions and related 3-well-4-barrier triplet resonance bands.
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 It is too strict to demand that the wave recover its original form after each well-barrier. If instead we 
demand ψ recover only after passing N well-barriers for some integer N, then ψ needs to pick up an equal phase φ 
= 2π m/N from each barrier so it recovers after N. This gives the following.

  

   

 

( for E >V ) : cos kW cos L − 2E −V

2 E E −V( )
sin kW sin L

( for E <V ) : cos kW coshκ L + V − 2E

2 E V − E( )
sin kW sinhκ L

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

= cosφ  (14.2.5b)

where rational units are used for energy. 

 
   
φ = m 2π

N
 ,         k = 2E  ,            = 2 E −V( )  ,        κ = 2 V − E( )  .       (14.2.5c)

The values of the phase shift φ = 2π m/N  are indicated as angles from the horizontal in Fig. 14.2.1. The middle 
member of the triplet experiences a phase shift of φ =π/2. 
 An exactly zero phase shift is not possible with a line of wells because the wavefunction needs to taper off 
as it approaches the right or left hand walls of a linear N-well system. Only a circular or periodic (Bohr-like) CN 
ring (discussed next) can afford to have a zero or π phase shift. The tapering can be visualized by imagining an 
enveloping sine wave for each of the N-well multiplets. The longest allowed sine wave has one wave length 
enveloping the entire 2N+2-well double-ring C2N+2 system. That amounts to a half wave over the space occupied 
by N+1 wells, or the smallest possible phase shift of 
        φmin = π /(N+1)         (14.2.6)
That is an angle φmin = π /4  or 45° for the N=3-well system in Fig. 14.2.1. 
 The enveloping sine shapes are seen more clearly as N increases as shown in Fig. 14.2.2 below.

 

      
Fig. 14.2.2 Lowest two members of the (0)-septet resonance band in a linear 7-well system..
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 The highest allowed phase shift is just φmin short of π. An example of such a wave is shown if Fig. 14.2.3 
is the highest energy member of the (0)-octet whose lowest waves are shown above Fig. 14.2.2.

 
 Fig. 14.2.3 Highest member of the (0)-septet resonance band in a linear 7-well system..

 The slope and curvature of the Kronig-Penney (KP) functions inside the limits ±1 determine the band or 
multiplet structure. Only when the KP functions approach straight lines do the simple coupled pendulum model  
formulas (14.1.20) become precise. This happens for the lower resonances of deep wells. But for the upper 
resonances, and certainly for the E-above-V waves, the KP functions undergo ever longer oscillations barely 
exceeding the ±1 limits. At higher E the bands begin to dominate the spectrum while the gaps become narrow, 
quite the opposite of the lower spectral regions where the reverse is true.
 Even in the lower E regions there are observable effects of the curved KP functions some of which were 
mentioned before. One of these is the asymmetry of the multiplet splitting. For the even multplets (0), (2), (4),... 
the KP function curves upward going left to right in Fig. 14.2.1. This will generally make the upper members of 
each multiplet have slightly greater splitting than the lower ones. The odd (1), (3),..multiplets have their order 
reversed since the KP function curves upward right to left so again it is the higher energy multiplet members that 
experience phase and energy enhancement. 

(a) Band structure for large-N periodic lattices
 As more and more identical well-barriers are strung together, the resonance multiplets in the transmission 
spectrum acquire more and more peaks. In the limit of an infinite number of barriers (Perhaps, it is wiser to just 
say many barriers.) a sharp band structure emerges that is characteristic of the shape of the individual well-
barrier. Fig. 14.2.4 shows a summary of the transmission spectra for the W=1.5 well and L=0.5 barrier of height 
V=25 for N=1, 2, 3, 4, and 5 wells such as have been studied in the preceding sections. As N increases the band 
structure begins to emerge from the individual well structure. The forbidden gaps become more forbidden and the 
allowed bands become more allowed. This is particularly noticeable in the energy regions above the barrier where 
the multiplet splitting is large and can be seen filling up the allowed bands as N increases. Recall that the 
minimum phase φmin of (14.2.6) decreases with N so that the outer multiplets can more closely approach the 
Kronig-Penney band edges.
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N=0 N=1 N=2 N=3 N=4 N=5

Fig. 14.2.4 Transmission resonance spectrum becoming more like band structure as N increases.

 The variation of KP band edges with barrier height V is plotted in Fig. 14.2.5 for the W=1.5 well and 
L=0.5 barrier ending with barrier height V=25. This is a plot for the limit of large N and the allowed regions are 
shaded while the forbidden gaps are blank. The KP bands for V=25 from Fig. 14.2.1 are related to the V-plot in 
Fig. 14.2.5. 
 Note that KP band edges pass over the barrier top without any disruption. Without the diagonal line 
representing E = V, it would be practically impossible to tell where the barrier top was located. This is in contrast 
to the disruption we noted in going above the barrier top for a square well as in Fig. 13.2.2. The difference is that 
the latter disruption resulted from going from a discrete bound state system to a wholly different continuum 
topology. Here, the energy is always in a continuum though that continuum is divided into allowed and forbidden 
band regions by the presence of a periodic lattice potential. 
 The lower allowed bands (0), (1), (2),...become extremely narrow as V increases. Deeper wells make the 
tunneling splitting parameters S(0), S(1), S(2),...exponentially small. For large V the lower curves in Fig. 14.2.5 
become lines that approximate the discrete square well eigenvalues of Fig. 13.2.5-6 and approach the infinite-
well energies discussed in Section 12.1a. This is shown more clearly a few pages ahead in Fig. 14.2.7 and Fig. 
14.2.11.

(next page) Fig. 14.2.5 Band structure as V increases for 0<V<25. (W=1.5 well ,L=0.5 barrier) 
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(b) Bohr and Bloch lattices and band structure
 The splitting and crossing of the Kronig-Penney bands can be understood by imagining the N-well lattices 
to be wrapped around a cylinder so that the left hand barrier is identical to the right hand one. Some examples are 
shown in Fig. 14.2.6. If we close a loop with periodic boundary conditions we get a discrete Bohr-like or Bloch-
like spectrum as described in Sec. 9.3. (Recall Fig. 9.3.3.) As N increases the cylinder gets larger so as to 
maintain the dimensions W and L of each well and the barrier, respectively. Also, as N increases, the discrete 
energy level density increases as discrete bands become continuous.

 

N=1
N=2 N=3

N=6

W L

Fig. 14.2.6 Periodic lattices for Bohr-Bloch orbital problem. (W=1.5 well ,L=0.5 barrier) 

 A key unit of distance is the lattice length constant A = L + W. For reasons that will soon be seen, we take 
twice this distance to be a fundamental (υ=1) Bohr wavelength of the N=2 ring. 
       λBohr = 2A = 2W + 2L     (14.2.7)

(This would be exactly one half wavelength per well lattice spacing A.) The resulting Bohr wavevector is  

     
  
kBohr = 2π

λBohr
= π

A
= π

W + L
    (14.2.8)

The energy of such a unit quantum (υ=1) Bohr orbital in the absence of a potential V is (Recall 12.2.11.)
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2M
π 2
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2M
π 2

W + L( )2
   (14.2.9)

 Now we will use 10-8m=10nm = 100  A  units of distance since it is one used in some studies of super-
lattices, that is L = 0.5 will be 50.0  A  and W=1.5 will be 150  A . The resulting lattice spacing constant of A, that is 
200A  A  or 20nm, would give an energy in the milli-electron Volt (meV) range. 

 

   

ε 1
Bohr ( A) = 

2

2M
π 2
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=

1.05 ⋅10−34πJ ⋅ s( )2
2 ⋅9.109 ⋅10−31kg( )

103meV
1.602 ⋅10-19J

1

A ⋅10−8 m( )2
                = 3.76meV

A2
  (A in units of 100 A) 

  (14.2.10a)

 Our favorite lattice constant of A = L + W = 0.5+1.5 = 2.0 or 200  A   gives

    
  
ε 1

Bohr (2)  = 0.94 meV.      (14.2.10b)

Our rational units, for which 2/M = 1, relate to units of meV by a factor 3.76(2/π2) = 0.762 from (14.2.10), that 
is, 10 rational E-units is 7.6meV. In rational E-units the Bohr unit energy for our lattice is 

  
   
ε 1

Bohr ( A)= π 2 / 2
A2

= 4.93
A2

=1.23  (for: A=2 in 100 Aunits)    (14.2.11)

 These unit relations are displayed prominently in Fig. 14.2.7 which shows more detail of the KP band 
picture first plotted in Fig. 14.2.5. Of particular note is the band splitting which occurs at the following quantum 
Bohr energies (in rational units).  

  
   
ευ

Bohr = υ2( )2 EBohr ( A)=1.23 υ2( )2   (for: A=2 in 100 Aunits) ,  (14.2.12)

Here each non-zero Bohr quantum number υ2 = 1, 2, 3,...., has two curves splitting out from the extreme left 
hand side of the plot. These curves are the Brillouin band boundaries for bands, each of which contains N energy 
states, one state for each well in the ring. The very lowest (υ2=0) curve is the only singlet. The rest are doublet 
pairs which start out as a basic Bohr ±υ2-doublets (14.2.12) for zero potential barrier height (V=0).
 The V-barriers split the Bohr doublets, and for two barriers (N=2) the band boundaries account for the 
entire spectrum of two (N=2) levels in each "band." The shaded bands of Fig. 14.2.7 disappear since a Bohr ring 
cannot have a continuum, and for (N=2) there are no additional discrete levels inside. (Nothing is left of Alice's 
Cheshire cat but its smiles! Two "smiles" are seen in the upper portion of Fig. 14.2.7 which we discuss later.) The 
(N=2) spectrum is entirely composed of single levels which start out on the left hand (V=0 ) side as degenerate 
Bohr pairs (except for the lone Bohr singlet (υ=0)), and only achieve a sort of "re-pairing" for large potential 
barrier height V, on the right hand side of the figure.
 However, lower "re-paired" levels on the right hand side of Fig. 14.2.7 are nearly degenerate. The "re-
pairs" are a lot like the "inversion doublets" in a linear double-well. Folding linear (N=2) wells into the (N=2) 
circular ring potential shown in Fig. 14.2.6 erases the band between the "re-pairs."  Circular Bohr-like N-well 
rings regain linear-well band continua within boundary level pairs as N approaches infinity.
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W=15nm

L=5nm

υ2=2
υ2=1

υ2=0

υ2=3
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υ2=5
Bohr
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Brillouin Band
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Allowed Band (5)

Allowed Band (3)

Band (2)

Band (1)
Band (0) Forbidden Gap (1)

Forbidden Gap (2)

Fig. 14.2.7 Bands vs. V.(W=15nm well ,L=5nm barrier) showing Bohr splitting for (N=2)-ring. 

 Waves in a circular double wells can couple to each other through either barrier. This should make doublet 
splitting of linear double wells (which couple only through their middle barrier) about half that of circular wells. 
The pendulum model (14.1.21) treats a linear double (N=2) well (±)-wave-doublet as the "sine" parts of circular 
(2N+2=6)-well ring waves 16 and 26 , and the splitting is, indeed, half the tunneling parameter S=S(υ).
   ε(m6) = H - S cos 2πm/6= H + (-1)m(1/2)S      for: m6 = 16 or: 26  (14.2.13) 
 This is part of the "minor swindle" alluded to after equation (14.1.21) which can be finally put to rest if 
we consider the circular N=6 potential in Fig. 14.2.6. It is a prototype for the linear N=2 potential and is three 
times as big as the circular N=2 ring potential in Fig. 14.2.6. Hence, the N=6 ring has room for three times as 
many Bohr quantum waves as the N=2 ring, and we need to triple the Bohr quantum numbers listed in Fig. 
14.2.7. Now splittings occur at υ6= 3, 6, 9, 12, 15,.. and correspond to C6  Brillouin Zone band boundaries. Each 
band contains six levels labeled by C6 quantum numbers 06, 16, 26, 36, -26, and -16, deployed according to a 
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hexagonal projection shown in Fig. 9.3.1 of Chapter 9. Levels ±16 are degenerate as are ±26 . In the prototype 
linear N=2 potential we would only keep the sine parts of ±16 and ±26 doublets while discarding the other four. 
So the linear N=2 problem ends up with split doublets like the circular N=2 one, but its doublet splitting is only 
half the Kronig-Penney (KP) band width.
 A main difference between the resonance peak spectra of linear N-well systems and the discrete E-levels 
of prototype circular (2N+2)-well systems is that the latter can use the KP band edges while the former never 
can,... quite. The minimum lattice phase shift of linear wells was φmin = π /(N+1) according to (14.2.6) but a 
circular wave system can have perfectly periodic waves with exactly zero or exactly π phase shift from well to 
well. In fact an even-N circular CN -well system uses all the KP band edges while an odd-N  CN -well system uses 
half the KP band edges, skipping every other one. This is shown in Fig. 14.2.8 by comparing N=3 and N=6 ring 
spectra. 
 The potentials in Fig. 14.2.8 have V reduced from V=25 to V=5 so it is easy to see the splitting of even 
the first (0) band of multiplets. As before in Fig. 14.2.1, the KP function snakes back and forth across the vertical 
"tracks" left by the phase projections cos φ = cos m(2π/N). Intersections of "tracks" with the KP function 
determine the energy eigenvalues of the multiplets in each band (0), (1), (2), ..., and there will be exactly N 
energy states per band.
 One feature present here that was absent from the linear N-well resonances is the double degeneracy of 
every energy level that lies inside the ±1-tracks that define the band edges. This is because right moving waves 
with positive wavevector +kN = +m(2π/N)  are assumed to have the same frequency and phase speed as left-
moving waves with reversed wave vector -kN = -m(2π/N). Each such m-pair leads to a symmetry doublet Em state 
that is labeled Em on the right hand side of the diagrams in Fig. 14.2.8. Pure moving-wave eigenstates are 
impossible for a linear N-well structure; indeed, we tossed out all the "cosine parts" of the circular prototypes in 
the linear-coupled-pendulum model. So, there went the "cosine-half" of each doublet. Circular CN-rings, on the 
other hand, need both sine and cosine parts to make a complete set of U(2) wave states.
 The other "cosine parts" that were discarded from the linear N-well problem are the ones with phase φ = 0 
and φ = ±π which lie right on the cos φ = ±1 tracks that define the band boundaries. These are all singlet (non-
degenerate) standing-wave states labeled as symmetry singlet A1, B1, A2, or B2, states, depending on where they 
fall on the KP diagram, which fixes their wave symmetry as is sketched below.  The letter "A" means "Always-
the-same" from well to well, that is the wave is translationally invariant and looks the same in every well. The 
letter "B" means "Back-and-forth" from well to well, that is, the wave flips phase by π but otherwise looks the 
same in every well. "B" also can mean "Brillouin Band Boundary" since that π-flip is the earmark of the first 
Brillouin boundary state. (Recall (2.8.18).) However, "A" states also serve as band boundaries, for even numbered 
gaps. The subscripts "1" and "2" mean C2 -symmetric and anti-symmetric, respectively, to reflections through the 
center of each well, that is, anti-node and node, respectively. Better subscripts might be the binary "0" and "1" of 
C2 ("odd" and "even") but "1-2" notation has a long group-theoretical history. 
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Fig. 14.2.8 Multiplets for V=5.(W=15nm well ,L=5nm barrier)  for (N=3)-ring and  (N=6)-ring.

 The (N=6)-ring levels are a repeat-after-12 sequence (A1, E1, E2, B1 )-(gap)-(B2, E2, E1, A2 )-(gap) while 
the (N=3)-ring levels repeat-after-6 sequence (A1, E1, )-(gap)-(E1, A2 )-(gap) , a subset of (N=6).
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(c) N=6 ring versus N=3, 2, 1 structures
 Indeed, the (N=6)-well ring energy eigenvalues are exact copies of eigenvalues for N-well rings for all the 
integers N that are factors of the integer N=6, namely, N=3, N=2, and N=1. Add to this the excellent approximate 
spectrum of the linear (N=2)-well system resonance peaks shown in Fig. 14.2.9, and it appears that five different 
eigenvalue problems are treated in a single stroke! 
 As we said before, the circular (N=2)-well spectrum consists of the KP band boundaries alone, but it has a 
particular symmetry sequence (A1, B1 )-(gap)-(B2, A2 )-(gap). Its bands are as empty as its gaps since the (E1, E2) 
pairs of doublets are gone. The circular (N=2)-well waves are virtually identical to the to the linear (N=2)-well 
waves shown in Fig. 14.1.11. The difference is due to coupling being cut in half in the linear case. This is 

reflected in the half-as-big splitting of the (0+, 0-)-(gap)-(1+, 1-)-(gap)- etc. sequence in Fig. 14.1.11 and Fig. 
14.2.9 which is well approximated by the (N=6)-ring levels (E1, E2)-(gap)-(E2, E1)-(gap) except that the levels 
are all singlets as shown in Fig. 14.2.9. ("Sines" only, "cosines" are deleted.) So, finally, the circular (N=2)-
spectrum  (A1, B1 )-(gap)-(B2, A2 )-(gap) is about twice the splitting and encloses linear (N=2)-spectrum 

consisting of inversion doublets (0+, 0-)-(gap)-(1+, 1-)-(gap)- etc. in Fig. 14.1.11 and Fig. 14.2.9.
 There is an apparent symmetry labeling inconsistency between the three types of doublets.
  Circular (N=2)-well spectrum:   (A1, B1 )-(gap)-(B2, A2 )-(gap)   (14.2.14a) 
  Circular (N=6)-well doublets:    (E1, E2)-(gap)-(E2, E1)-(gap)   (14.2.14b)

   Linear (N=2)-well doublets:      (0+, 0-)-(gap)-(1+, 1-)-(gap)...  (14.2.14c)
The third sequence goes (+,-)-(+,-)-... while the first goes (A,B)-(B,A)-...that is, one "zigs" while the other 
"zags."  How can this be, if the waves are, in fact, virtually the same shape and symmetry? 
 To answer this, note that the first labels A and B tell if the wave is even or odd, respectively, to lattice 
translation or a 2π/N-rotation around the z-axis of the N-ring. (N=6 here.) On the other hand, the (+) or (-) labels 
tell if a wave is odd or even, respectively, to reflection through the barrier between the wells or inversion of the 
wells. For even (0), (2), (4),...bands there is no difference between these two definitions of even and odd, but for 
odd (1), (3), (5),...bands, the two are reversed, hence the "zag" in (14.2.14c).Closer examination of the (E1, E2) 
sine-waves reveals that they, too, are symmetric and anti-symmetric to lattice translation like A and B , so 
(14.2.14b) is consistent with the rest of (14.2.14). 

(1) Chiral symmetry breaking
 Cyclic or circular CN  ring symmetry is called DN  or CNv  symmetry if it also has transverse 180° 
rotational symmetry or reflection plane symmetry, in other words, if right and left moving waves have the same 
speeds. The A, B, and E symmetry labels belong to these higher symmetries. However, they are useless if there is 
any chiral or C-type (Zeeman-like) symmetry breaking that distinguishes right from left. Then the Em-doublets 
will be Zeeman or Coriolis-split, and the old (0)N, (1)N, (2)N, .. labels of CN must be used. The effect of this type 
of symmetry breaking on C6 spectra was diagrammed in Fig. 9.3.2 in which the energy hexagon is rotated by an 
amount determined by the relative left-right coupling phase. That same angle of rotation would apply to the phase 
hexagon in Fig. 14.2.8. From this one can calculate the Zeeman splitting of an N-well KP system.
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Fig. 14.2.9 Multiplets for (N=6)-ring and (N=2)-line potential.  (V=5, W=15nm well ,L=5nm barrier) 

 (2) Reflection symmetry breaking
 In Fig. 14.1.15, we showed that tiny amounts of "dirt" or "micro-symmetry breaking" could totally ruin 
any multiplet spectral structure and associated perfect 100% transmission properties. On the other hand, it is 
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possible to obtain quite perfect multiplet structure using "ruined" potentials of the type shown in Fig. 14.2.10 
below. It is only necessary that they be identically "ruined" and spaced.
 Such a potential, if wrapped onto a ring will also show band multiplet structure quite similar to that which 
is exhibited in Figs. 14.2.8-9. Furthermore, the moving wave degeneracy would not be lifted unless there was 
also a chiral or Zeeman-like perturbation as well. This will be discussed further in later chapters.

Fig. 14.2.10 Asymmetric wells of (N=4)-line potential still give 100% transmission if repeated perfectly.

(3) Band "smiles": Where BZ waves can still move
 The crossing and recrossing of KP band boundaries yields a phenomenon that is peculiar to flat-topped or 
flat-bottomed potentials such as we have been treating. Parts of what look like "smiles" are seen in the upper left-
hand side of Fig. 14.2.7. They are more obvious in a more extensive KP band plot in which the well and barrier 
have the same value (L=W=1.0) while V varies, as shown in Fig. 14.2.11 below.
 The crossing points for the "smiles" all fall on energy lines that are perfect squares of even integers in 
Bohr units. These happen to be the energies for an infinite square well whose width W takes up exactly one 
quarter of the Bohr ring circumference. The nearly degenerate multiplet bands are seen to be very slowly 
approaching these asymptotic values.
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Energy Bands vs. Potential Depth (L=10nm, W=10nm)

E = 22 = 4 (Bohr units)

E = 42 = 16 (Bohr units)

E = 82 = 64 (Bohr units)

E = 62 = 36 (Bohr units)

1st B1B2 re-crossing

Fig. 14.2.11 Energy E-bands versus barrier height for equal width wells and barriers.

The resonances above the barrier also correspond to these energies but at finite V as shown in Fig. 13.2.6.
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 The two sides of Fig. 14.2.11 define the energy units for the Bohr problem with no potential (V=0) on the 
left hand side, and the infinite square well (V= ∞) to the extreme right hand side. Either extreme displays a 
quadratic dependence on a quantum number υ which gives the fraction of the maximum wavelength allowed by 
the boundary conditions for either situation.
 For the Bohr limit (V=0) the maximal wavelength takes up N lattice spacings of A= W + L or 

   
  
λ0 υ, N( ) = N W + L( )

υ
,      or:       k0 υ, N( ) = 2π

λ
= 2π

N W + L( )υ   (14.2.15a)

 Here: υ = 1, 2, 3,..., ∞. For the box limit (V= ∞) the maximal wavelength is twice a well length W or 

   
  
λ∞ υ( ) = 2W

υ
,      or:       k∞ υ( ) = 2π

λ
= π

W
υ     (14.2.15b)

The latter is independent of N and barrier length L since the N wells are no longer speaking to each other. Their 
waves are totally confined to their respective maximum-security prison wells W. The resulting energy level 
doublets at V=0 and V=∞ are, respectively, the following

  
  

E0 υ, N( ) = k0
2

2
= 2π 2

N 2 W + L( )2
υ2 ,    (14.2.15c) 

  
E∞ υ( ) = k∞

2

2
= π 2

2W 2
υ2  (14.2.15d)

(Natural energy units are used.) For W = L, as in Fig. 14.2.11, the values are

  
  
E0 υ, N( ) = k0

2

2
= π 2

2N 2W 2
υ2 ,     (14.2.15e) 

  
E∞ υ( ) = k∞

2

2
= π 2

2W 2
υ2  (14.2.15f)

If N=2 (two wells on the ring) and L=1 (100A=1nm) then E0 gives the same Bohr unit (π2/2)/4 = 1.23 (natural 
units) as (14.2.11). So, the lowest doublets at V=0 and V=∞ are the following with υ = 1.

  
  
E0 υ, 2( ) = π 2

8
υ2 ,   (V=0)  (14.2.15g) 

  
E∞ υ( ) = π 2

2
υ2  (V=∞)  (14.2.15h)

That is one Bohr-unit ( 1 Bu=π2/8 nat.u.) on the left of Fig. 14.2.11 and four Bohr-units on the right.
 The infinite-V limit is approached slowly by the energy values. The sine-line solution shows how slowly 
the asymptotic energies are reached as a function of V and υ. Evanescent waves are gradually squeezed out and 
the bound state kW approaches multiples of π. (See exercises.) However, we noted that square well resonance kW 
values occur exactly at multiples of π , since they are not encumbered by evanescence. So, there can be E and V 
values for which barrier-top wavelengths fit L and inside-the-well wavelengths match W. 

  
   
kTOP = 2 E −V( ) = π

L
υTOP ,    and     WELL = 2E = π

W
υWELL .     (14.2.16)

The first non-zero-V solution to the equations (14.2.16) for W = L  (in Bohr-units of Bu=π2/8) is E = 16 Bu and 
V = 12 Bu located at the corner of the first closed "smile" at (V,E) = (12,16) Bu in Fig. 14.2.11. Two 
wavefunctions corresponding to this "accidentally degenerate" solution are shown in Fig. 14.2.12. Their 
symmetries are clearly B1 and B2 as marked. This is a singular case of exactly degenerate Brillouin zone 
boundary states. All the N=2 eigenstates except these are required to be standing waves. But, the B1  and B2  (at 
the degenerate point only) can make U(2) current carrying eigenstates. It is a case where two eigenchannels 
resonate simultaneously. It is quite unusual!
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B1

B2

A2

A1

B1B2

A2

A1

A1

W L W

B2
B2

Fig. 14.2.12 Accidentally degenerate (B1, B2) doublet at V=12 and E=16.

 An expanded view of the E vs.V plot for N=2 is shown in Fig. 14.2.13. It shows where the  B1  and B2  
levels cross in order to recover the "normal" (A1, B1 )-(gap)-(B2, A2 )-(gap) symmetry ordering mentioned 
previously in the discussion of below-barrier levels. Above the barrier, the levels can go wild! (And, they do it 
with a "smile!") In the higher resonance regions they can get "bent" many times. However, as the barrier value V 
grows they all untwist back to "normal" before descending into the wells. Their prison has strict rules of order!
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2

 Fig. 14.2.13  (B1, B2) crossing for:(N=2) at V=12 and E=16, and (N=6)  at V=144 and E=108.

©2013 W. G. Harter Chapter14 Multiple Barriers & Resonance Bands  14-



 The lower half of Fig. 14.2.13 contains a plot of the same B1-B2 level crossing as it appears in the 
spectrum of a hexagonal N=6 Bohr-Bloch lattice of equal square wells. Here, as was done for Fig. 14.2.8, we 
compare the N=6 spectra with that of lesser N which are factors of N=6 such as N = 3, 2, and 1. 
 Note that the B1-B2 waves shown for N=2 in Fig. 14.2.12 are the same for N=6 or any even-N-well ring. 
The only difference is that the B1-B2 waves extend over three times as many lattice-wells since the N=6  ring is 
three times as big as the N=2 ring. That is what makes this kind of symmetry analysis powerful; smaller problems 
are copied into larger ones. Structure of N=6 reappears in N=12, 18, 24,...
 What does change, as we double or triple an N-well, is the number of levels per band, which is always N, 
and the energy scale or Bohr unit, which according to (14.2.15c) shrinks according to inverse N2. Both graphs in 
Fig. 14.2.13 use Bohr energy units exclusively. Each positive energy value that is a perfect square Eυ = υ2 
corresponds to a doublet level at the starting point of zero potential V=0. 
 Band splittings occur only for levels for which υ is a multiple of N/2, that is, at the beginning of Brillouin 
zone band boundaries. For N=6 these occur for υ = 3, 6, 9, ...and so forth, whereas for N=2 they occur at every υ 
= 1, 2, 3, ... (except for υ= 0) and give rise to a sequence (A1, B1 )-(gap)-(B2, A2 )-(gap). For N=2 there are only 
two levels in each band and they are the band boundaries.
 Then as N is tripled from N=2 to N=6 there must appear three times as many energy levels inside each 
band. The four new levels appear as moving-wave doublets E1 and E2, which lie inside the band boundaries and 
cannot cross. That the E-doublets remain band-bound is a consequence of the Kronig-Penney (KP) construction 
shown in Fig. 14.2.8. Moving-wave levels must fall inside the ±1 bounds of the KP functions which define the A-
or-B band boundaries. For N=6, (A1, E1, E2, B1 )-(gap)-(B2, E2, E1, A2 )-(gap) is the ususal ordering but A or B 
pairs may switch places and criss-cross in the "smile" regions.
 If N is tripled from N=2 to N=6 then so are the quantum numbers labeling a particular structure. For N=2, 
the first band splitting happens at υ=1. For N=6, it happens at υ=3. The Bohr-unit energy values for a particular 
criss-crossing or Bohr level splitting involve squares of integer quantum numbers. So the energy for that level 
crossing is higher by a factor of three-squared (32=9). Consequently, all the energy values in the N=6 part of Fig. 
14.2.13 are nine times the corresponding ones in the N=2 version. The B1-B2  splitting that happens at V=12 and 
E=16 for N=2, is scaled up to V=108 and E=144 for N=6.
 It is interesting to see what happens for odd-N ring lattices, particularly, N=1 and N=3. As shown in Fig. 
14.2.8, the trigonal N=3 spectrum is just the hexagonal N=6 structure with "half-a-triangle" consisting of the 
three levels in the E2 doublet and B1 or B2 singlets removed. (Odd-N spectra cannot have B-type band 
boundaries. Why?) So the  B1-B2 crossing and levels leading to it are missing from the N=3 or any other odd-N 
problem. But, there are still plenty of A1-A2 crossings!

(6) Bragg reflection...and non-reflection
 The exact closing of two band boundaries is unusual and has consequences for current transmission 
properties. The usual situation of separated band boundaries precludes eigenstates with energy in the gap between 
bands. However, a non-stationary combination state of, say, a B1B2 pair of states, could have any in-between 
value of energy, and it would beat at a frequency equal to the band-gap energy difference.
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 The resulting beating is called elementary Bragg-reflection. An example is seen in the Fig. 14.2.14 below 
in which a B1B2  combination wave beats or gallops between a left-moving and a right-moving wave while 
pausing briefly as a standing wave between each gallop. When B1B2 levels become degenerate, as in Fig. 
14.2.12, the beating stops and each possible wave combination becomes stationary in current and magnitude.

 

B1
B2

B1
B2

B1
B2

B1
B2

Fig. 14.2.14 Time dependent waves in between a (non-degenerate) B1B2  gap. (Elementary Bragg reflection.)

©2013 W. G. Harter Chapter14 Multiple Barriers & Resonance Bands  14-



Problems for Chapter 14.

x= -0.75 nm x=0.75 nm

V=0.8415 eV

W=1.5 nm W=1.5 nm

x= -1.25 nm x=1.25 nm

(a) (b)

V=0.8415 eVL=0.5 nm

Fig. 1.1
Leapfrogging phases
14.1.1. The eigenchannel phase-shifts for the resonances above the ∞'ly thick walled well (Figure 1.1a above) undergo fairly 
strong variation for grazing resonances. Pick an energy E = .85eV above the barrier and plot the µ-values as you vary the well 
bottom V 0.8eV either way. What values of µ± indicate resonance? (Use sine-line solution to tell when resonance occurs.)

Twin Towers vs. Well
14.1.2. Consider two barriers of height V = -0.8415 eV and width L = 0.5nm separated by a width W = 1.5nm. (See Fig. 1.1b) 
(a) Find or plot peaks of transmission function belonging to all resonance states below the barriers and first two resonance 
states above the barriers. Compare with results of Problem 14.1.1. involving the square well in Fig. 1(a).
(b) Calculate and plot both S-matrix eigenchannel waves for the highest two resonances below the barrier tops and the lowest 
resonance above them. 
(c) Compare symmetry and other properties of "resonant" eigenchannel waves vs. "non-resonant" eigenchannel waves with 
energies in between the resonant transmission peaks.
(c) Pick one resonant case and one non-resonant case and for each combine the eigenchannel states so they make a left-
source-channel wave. Plot your results.

Lorentz Fits
14.1.3. Consider the well of depth V = -1eV and width L = 2.0 in units of distance of 1.23 nm.
(a) Use the sine-line method to characterize the bound states and first two resonance states.
(b) Derive and plot the transmission and inverse transmission functions for the well with walls reduced from ∞ to a thickness 
of 0.5. 
(d) Discuss how the "bound" state eigenvalues and resonance peaks of this well change when the surrounding walls are 
reduced from ∞ to a thickness of 0.5. Compare and discuss.
(c) Try fitting Lorentzian functions to the lowest resonance peaks. Are there some good fits? ..bad fits?

Quality:a most important product
14.1.4. In classical resonance theory the Quality Factor Q=υ0/2Γ is a key figure of merit as is the related angular quality 
q=ω0/2Γ=Q/2π. What do these numbers tell about a resonance?
(First, check and discuss (or correct) the statements after (14.1.8) about resonance amplification being a sum of C11 or C12 
components of barrier matrix (13.3.34a).)
(a) Calculate the number of oscillations or "heart beats" of resonance packet in the time it takes to decay by (14.1.13) by 95% 
(to 5%) of its amplitude. Relate this to q.
(b) Find the relative probabilty loss ΔP/P per cycle (or per radian) and relate to Q (or q). Give estimates for the E=1.5, 6.1, 
and 13.4 resonances in Fig. 14.1.6. 
(c) Compare results of (b) to Lorentzian theory of Fig. 14.1.9. 
Extra credit. (Could be a topic for a paper.)
(d) Does the exact S-matrix for this problem (and others) really have a pole around where we claim it does? (And, does it 
really matter?)

Delta humps vs. stumps
14.2.1. The effect of a Dirac-delta function potential V(x) = δ(x-a) may be derived directly using the analysis of Sec. 13.3 or 
as a limit of very narrow and tall "stump" potential.  
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(a) Derive the C-matrix and S-matrix for a Dirac-delta function potential V(x) = A δ(x-a).
(b) Compare your result to that of a "stump" in the appropriate limit. (Recall Prob. 13.2.1 Stump)
(c) Discuss the S-matrix eigenfunctions for V(x) = (x-a) and k=1, first for a=0, and then for general values of a such as 
a=π/2. Sketch the wavefunctions.
(d) A line of N equally spaced delta humps should yield band-like or cluster spectra. Derive equations analogous to KP Eq. 
(14.2.5b) and solve for lowest couple of bands for N=5. 

Minor Swindle
14.2.2. Consider a line of N identical wells of depth V = 15 ( in theorist's units with m/2=1) and length L = 1.5  separated by 
a barrier of width W=0.5. Relating the tunneling parameter S(0) between N=2 and N=3 involved a minor swindle involving a 
factor of 2 or 1/2. (See right after Eq. (14.1.21). ) Discuss this where appropriate.
(a) Use the coupled pendulum model to approximately predict the form of the generic multiplet structure for the cases N=2, 
N=3 (in text), N=4, and N=5 in terms of H and S parameters. Sketch the wavefunctions for each case of the members of the 
(0) and (1) resonance, that is, the two lowest resonances.
(b) Use the KP equations to obtain a better and more informative approximation to the (0) resonance multiplet band of the 
four cases in part (a). Compare the splitting of all four. 
(c) Use a numerical evaluation or plot of the exact C-matrix calculation such as BandIt for the N=3 case to obtain exact (0) 
resonance peaks. Compare to the results of part (b). What additional information does the C-matrix method give over and 
above the KP method?

Missing Zeros
14.2.3. In Fig. 14.1.21 the lowest (1)3 resonance seems to have 3 nodes in the potential region while the uppermost (1)1 
resonance has 5 nodes. However, the middle (1)2 resonance seems to have only 2 nodes and to disobey Schrodinger's 
theorem that more nodes means more energy.
(a) Is the above counting correct? Discuss and sketch the waves.
(b) Sketch a complete set of S-matrix eigenchannel waves for the (1) resonance triplet.

Open and closed
14.2.4. Consider a familiar square PE with a barrier-well of height V = 15 UserUnits, width W = 1.5nm and barrier thickness 
of L = 0.5nm. Now, we derive and use its KP function to analyze its band structures and resonances. First, plot its KP 
function and bands for 0-1eV.
(a) Locate the resonances of infinite-line super-lattice with 4-wells and 5-barriers.
(b) Locate the eigenvalues of closed-loop super-lattice with 10-wells and 10-barriers.
Use "professional" notation A1, A2, B1, B2, E1, E2, etc. where appropriate to label levels. 

Sluggish Asymptotes
14.2.5. The quasi-degenerate multiplets in the lower right hand side of Fig. 14.2.11 appear to approach the even square 
asymptotes rather sluggishly. Prove that they do in fact approach them and give a simple approximate formula for their 
behavior as a function of barrier height V and well parameters W and L.
(a) Do this first for the case of the Fig. 14.2.11 (W=1=L) and test the formulas.
(b) Do the general formula and test it with Fig. 14.2.7.

Criss-cross
14.2.6. Consider the location of band "smiles" and crossing points shown in Fig. 14.2.11.
(a) Give a formula for the location of crossing points and a table for the ones in Fig. 14.2.11.  
(b) Tell which symmetries (A1, B1 , B2, A2 ) are involved and track or label their paths to the right side.
(c) Do the general formula and test it with Fig. 14.2.7.
x. (Open ended problem) Suppose that well-to-well phase shift is different for left-moving waves than for right-moving ones 
and was described by a retardation deficit angle σ introduced in Ch. 2 equation (2.8.15). 
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 Review Topics & Formulas for Unit 5
Kronig-Penney band conditions.   

  

   

 

( for E >V ) : cos kW cos L − 2E −V

2 E E −V( )
sin kW sin L

( for E <V ) : cos kW coshκ L + V − 2E

2 E V − E( )
sin kW sinhκ L

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

= cosφ  (14.2.5b)

where rational units are used for energy. 

 
   
φ = m 2π

N
 ,         k = 2E  ,            = 2 E −V( )  ,        κ = 2 V − E( )  .       (14.2.5c)
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Chapter 15

Periodic Point Symmetry

Dn Projection Algebra

W. G. Harter

Symmetry labels A1, B1, A2, … E1, etc. of resonance bands in Chapter 14 belong to DN or CNv 
symmetry groups that are non-Abelian (non-commutative) and require a projection algebra 
beyond that of CN symmetry in Chapter 8. The DN or CNv contain commutative CN subgroups, 
but there are also reflection operators or 180° rotations that, like Hamilton-Pauli reflections, do 
not commute. Non-commutative algebras use maximal sets of commuting operators (MSCO) 
to do their spectral decomposition. Also, they have mutually commuting dual sets of global (or 
“lab-relative”) and local (or “body-relative”) operators. The payoff of the added complexity is an 
even more powerful analytic tool than Abelian symmetry analysis, and it will be used a lot in 
later Chapters. This is a tough chapter but well worth the effort!
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Chapter 15. Periodic Point Symmetry: Dn Projection Algebra

15.1 Dn symmetry: Understanding A1, A2, B1, B2, and Em labels
 Before proceeding, it might help to give a better technical explanation of the symmetry labels A1, A2, B1, 
B2, and Em which are being used. They belong to a famous class of symmetry groups called Dn or dihedral 
polygonal symmetries. Examples of symmetry analysis of N-barrier band structure for N=2,3,…,6  are introduced 
below. While we’re at it, the algebra of general symmetry analysis will be given. Quantum theory is enhanced 
immeasurably and deeply by such group algebra.

(a) D2 symmetry
  D2  might be called "double-two" since it is made by combining two cyclic C2 groups like the CA2 and 
CB2 that were described at length in Sections 10.2. Indeed, D2  is closely related to Hamilton's original quaternion 
group algebra defined by (10.4.6) and (10.5.13). (It's also related to a famous "Star Wars" character R2D2, but 
that's another story.)
 D2  is just the rotational symmetry of the N=2 potential object shown in Fig. 15.1.1 next to a D2  group 
multiplication table. Clearly, this object can be rotated by 180° around its main z-axis without altering the 
workings of waves ringing inside it. This Cz2-symmetry operator Rz is in a subgroup of D2 making the top-left 
quadrant of the table. However and though our Earth-based mind-set may indicate otherwise, there are other 
symmetry operations including a 180° rotation Ry about the y-axis through the center of the potential wells. You 
must forget gravity for a moment and admit that a D2 ring, with a pair of W-wells and L-barriers, works the same 
upside down as right side up.(Turning an electrostatically charged ring over doesn't "dump" its particle out.) It is 
the Ry and Rz-operations that define the labels A1, A2, B1, and B2 , but a third 180° x-rotation through the center 
of the potential barriers, namely,
      Rx = Rz Ry = Ry Rz        (15.1.1)
completes the D2  group multiplication table. D2 is the σ-algebra (10.4.6) without (i) factors. D2 was introduced 
in (8.3.5) as a symmetry of a rectangular q-dot system in Fig. 8.3.2.

 

Rz

Ry
Rx

1 Rz Ry Rx
Rz 1 Rx Ry
Ry Rx 1 Rz
Rx Ry Rz 1

D2

 Fig. 15.1.1  D2 symmetry operations and group multiplication table generated by Cz2 and Cy2.
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2
 One notation for D2 uses the Cartesian or "cross" (×) product to write D2  as follows.
      D2  = Cz2 × Cy2      (15.1.2)
Cross (×) means that every element of D2 is a unique product (like (15.1.1)) of one element of Cz2  with one 
element of Cy2 . This means the product is the same in either order and factors must commute, like (15.1.1). 3-D 
rotations usually do not commute. Orthogonal 180° rotations are an exception. 
 The "cross" or outer (×) product implies that spectral decomposition of the group is a simple outer product 
of the eigenvalues of the factor groups. Starting with two C2 factors having eigenvalue or "character" tables we 
quickly build an eigenvalue or character table for the D2  = Cz2 × Cy2  product.

  

   

C2
z 1 Rz

A 1 1
B 1 −1

  ×   
C2

y 1 R y

(1) 1 1
(2) 1 −1

  =  

C2
z × C2

y 1 ⋅1 Rz ⋅1 1 ⋅R y Rz ⋅R y

A ⋅ (1) 1⋅1 1⋅1 1⋅1 1⋅1
B ⋅ (1) 1⋅1 -1⋅1 1⋅1 -1⋅1
A ⋅ (2) 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1)
B ⋅ (2) 1⋅1 -1⋅1 1⋅ (−1) -1⋅ (−1)

  (15.1.3)

  

   

                                                      =   

D2 1 Rz R y Rx

A1 1 1 1 1

B1 1 -1 1 -1

A2 1 1 −1 −1

B2 1 -1 −1 1

    (15.1.4)

 In the Rz-column of the D2 table you see that A1 and A2 states get +1 while the B1 and B2 states get -1. 
The Rx-column of the D2 table says that A1 and B1 states get +1 while the A2 and B2 states get -1. These are 
exactly the "rules" quoted earlier after (14.2.13) to explain Fig. 14.2.8. The parity in the Rx-column is a product 
of parity in the Rz and Ry columns, so a label to indicate x-parity isn't needed.
 The algebraic reasoning behind the product (15.1.3) uses Axiom-4 completeness and the old "one-equals-
one-times-one" trick first introduced in Chapter 3, equation (3.1.36). Here we multiply the two "ones" provided 

by the separate C2 projectors 
   
PA,B = 1 ±Rz( ) / 2  and 

   
P1,2 = 1 ±R y( ) / 2 . 

  
   
1 ⋅1 = PA +PB( ) ⋅ P1 +P2( ) = PA ⋅P1 +PB ⋅P1 +PA ⋅P2 +PA ⋅P2   (15.1.5a)

Each term gives an orthogonal D2  projector having coefficients of operators as parity values (15.1.3). 

   

   

PA1 ≡ PA ⋅P1 =
1 +Rz( ) ⋅ 1 +R y( )

2 ⋅2
= 1

4
1 +Rz +R y +Rx( )

PB1 ≡ PB ⋅P1 =
1 −Rz( ) ⋅ 1 +R y( )

2 ⋅2
= 1

4
1 −Rz +R y −Rx( )

PA2 ≡ PA ⋅P2 =
1 +Rz( ) ⋅ 1 −R y( )

2 ⋅2
= 1

4
1 +Rz −R y −Rx( )

PB2 ≡ PB ⋅P2 =
1 −Rz( ) ⋅ 1 −R y( )

2 ⋅2
= 1

4
1 −Rz −R y +Rx( )

  (15.1.5b)

Actually, (15.1.3) are coefficients of the projectors in the inverse (spectral decomposition) relations. 
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1   = (+1)PA1 + (+1)PB1 + (+1)PA2 + (+1)PB2    (completeness)

Rz = (+1)PA1 + (−1)PB1 + (+1)PA2 + (−1)PB2

R y = (+1)PA1 + (+1)PB1 + (−1)PA2 + (−1)PB2

Rx = (+1)PA1 + (−1)PB1 + (−1)PA2 + (+1)PB2

 (15.1.5c)

These follow from (assumed) eigen-operator relations

 
  

RzP
A1 = (+1)PA1 ,  RzP

B1 = (−1)PB1 ,  RzP
A2 = (+1)PA2 ,  RzP

B2 = (−1)PB2 ,   

R yP
A1 = (+1)PA1 ,  R yP

B1 = (+1)PB1 ,  R yP
A2 = (−1)PA2 ,  R yP

B2 = (−1)PB2 ,   
 (15.1.5d)

The transformation is real-unitary (orthogonal) so it works either way! The last way of writing the symmetry is 
equivalent to Dirac notational definitions of the D2 symmetry rules. 

 
  

Rz A1 = (+1) A1 ,  Rz B1 = (−1) B1 ,   Rz A2 = (+1) A2 ,  Rz B1 = (−1) B1 ,   

R y A1 = (+1) A1 ,  R y B1 = (+1) B1 ,  R y A2 = (−1) A2 ,  R y A2 = (−1) A2 .   
 (15.1.5e)

States and operators are associated as is done in Chapter 8 equations (8.2.5) or (8.2.10). Here, norm=2.

 
   

A1 = PA1 1 (norm),  B1 = PB1 1 (norm),   A2 = PA2 1 (norm),   B2 = PB2 1 (norm).  (15.1.5f)

The symmetry algebra becomes a conceptual aid and a powerful computational tool as described in Sec. 8.2. For 
example, level crossing such as B1B2 in Fig. 14.2.13, is unlikely unless certain matrix elements of the 
Hamiltonian, such as 〈B1|H|B2〉, vanish identically. As long as the Hamiltonian H commutes with symmetry 
operators (and therefore, symmetry projectors) such vanishing is, indeed, guaranteed.

  
   

B1 band3( ) H B2 band2( ) = B1 P
B1HPB2 B2 = B1 HPB1PB2 B2 ≡ 0   

This is simply a result of projector orthonormality. ( P
αPβ = δα ,βPβ ) It permits the levels belonging to different 

bands and symmetries to cross if their diagonal matrix elements happen to be equal.
 Two Em levels may also have equal (or nearly equal) diagonal matrix elements, particularly for high N 
and m=N/2-1 near a Brillouin zone boundary. In Fig. 14.2.13 two E2 levels pass on either side of  B1B2  crossing. 
Larger-N cases may bring them closer still but they will avoid each other because off-diagonal matrix elements 

  
Em banda( ) H Em bandb( )  are unlikely to be zero just when the diagonals equate. This is Wigner's avoided-

crossing rule: like-symmetries repel much like the diverging hyperbolic "diablo" shown in Fig. 10.3.1. Wigner's 
rule does not preclude crossing of an E1 and an E2 since they are different symmetries, but it discourages same-
symmetry crossings like A1A1, B1B1  or E2E2.. 
 These symmetry statements are not strict "laws" and can be broken if you really work at it by adjusting 
parameters in order to arrive at the center of a "diablo" on the one and only one point that contains a degeneracy. 
Wigner rules are more like "taboos" and, in this sense, not too different from societal taboos which also rule 
about avoiding degeneracy!

(b) D3 symmetry: Non-commutative algebra
  D3 might be called "double-three" since it is made by combining two cyclic groups C2 and C3. However, 
this combination is not; let us repeat: NOT a simple cross product of C2 and C3. Some elements of C2 and C3 do 
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not commute (for example, r i2 ≠ i2 r) and so this D3  group is an example of a non-Abelian or non-commutative 
group. The technology of group algebra takes a pretty big step with non-commutative operations, but it is not 
difficult to obtain a fair understanding of non-Abelian algebra like D3  by using elementary projection operators.

r

i3

i2
i1

i1
D3 1 r2 r i1 i2 i3

r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

r2

r(120°)

 Fig. 15.1.2  D3 symmetry operations and group multiplication table generated by Cz3 and Cy2.

 Non-commutivity of D3 means we cannot write all six of its operators as the usual spectral decomposition 
using six commuting idempotents. Non-Abelian spectral decomposition takes a more general form which will be 
described below. One way to understand this general form is to first build a representation of the D3 operators 
using the C3 plane moving-wave bases. We already know the eigenvalues ε± of the ±120° rotations r or r2. These 
are complex third roots of unity ε± = e±2πi/3 drawn as phasors in the second and third rows of the C3 table of Fig. 
7.3.3 or Fig. 9.4.2.  Recall discussion of (9.4.3). A right-moving wave state is labeled |+13〉 while |-13〉 = |23〉 is a 
left-moving state.

 
   

D±1
E1 r( ) = +13 r +13 +13 r −13

−13 r +13 −13 r −13

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= e−i2π /3 0

0 e+i2π /3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

ε− 0

0 ε+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= DE1† r2( )  (15.1.6)

Rotations r or r2 are invariant to all rotations around the z-axis. Not so for 180° rotations which flip a left-moving 
wave base |+13〉 into a right-moving base |-13〉 and vice-versa. Let sine and cosine parts have nodes and anti-
nodes, respectively, on the x-axis or i3 axis, that is, let: i3 |+13〉 = |-13〉 and i3 |-13〉 = |+13〉.

   
   

D±1
E1 i3( ) = +13 i3 +13 +13 i3 −13

−13 i3 +13 −13 i3 −13

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
    (15.1.7)

Then the other 180° rotations i1 and i2 are represented by DE(i1) and DE(i2) which are matrix products of (15.1.6) 
and (15.1.7) according to the group table in Fig. 15.1.2.
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D±1
E1 i1( ) = D±1

E1 i3( )D±1
E1 r( ) = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
⋅

ε− 0

0 ε+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

0 ε+
ε− 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

D±1
E1 i2( ) = D±1

E1 i3( )D±1
E1 r2( ) = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
⋅

ε+ 0

0 ε−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

0 ε−
ε+ 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

Collecting these matrices gives what is called an irreducible representation (irep)
   
Dc3d3

E1 g( )  of D3. Irreducible 

means not all the matrices can be diagonalized or reduced at once by a single unitary transformation.

  

   

g = 1 r r2 i1 i2 i3

Dc3d3

E1 g( ) = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
ε− 0

0 ε+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ε+ 0

0 ε−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 ε+
ε− 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 ε−
ε+ 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
(15.1.8)

For suppose we make a change-of-basis transformation which diagonalizes i3.

  

   

T ⋅ Dc3d3

E1 i3( ) ⋅T † = 1 / 2 1 / 2
i / 2 −i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅ 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
⋅ 1 / 2 −i / 2

1 / 2 i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                       =                             1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
             = Dx2 y2

E1 i3( )
   (15.1.9)

Then that transformation "undiagonalizes" r and r2 to give the resulting equivalent irep 
   
Dx2 y2

E1 g( )  of D3.

  

   

g = 1 r r2 i1 i2 i3

Dx2 y2

E1 g( ) = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
−1 / 2 − 3 / 2

3 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 / 2 3 / 2

− 3 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 / 2 − 3 / 2

− 3 / 2 1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 / 2 3 / 2

3 / 2 1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(15.1.10)

"Squeezing" one member of a D-set has to make another member "unsqueeze" because they cannot all be 
diagonal or they would fail to satisfy D3's non-commuting group table. Transformations TDT† do not change any 
group multiplication gh=k; if D(g)D(h) = D(k) holds, then certainly TD(g)T† TD(h)T†  = TD(k)T† holds, too. 
So, neither D(g) set, defined for the whole group, is "compressible" or reducible.
 The particular T DT†  transformation (15.1.9) is similar to one derived in (10.2.23) between the circular 
moving wave basis {|R〉,|L〉} and the standing cosine-sine wave or linear polarization basis {|x〉,|y〉}={|c〉,|s〉}. T is 
related to the definition of complex exponentials e±iφ = cos φ ± i sin φ , that is: |±1〉√2 = |c〉 ± i |s〉 = |x〉 ± i |y〉 .

  
  

T = 1 / 2 1 / 2
i / 2 −i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x +13 x −13

y +13 y −13

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x R x L

y R y L

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

c +1 c −1

s +1 s −1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (15.1.11)

T makes the matrices in (15.1.8) come out real in (15.1.10). This shows a feature of non-Abelian Dn-groups not 
present in the commutative Cn-groups; some Dn-representations are multi-dimensional and not uniquely defined; 
any U(2) transformation T gives an equivalent irep like (15.1.8) or (15.1.10).
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6
 Still, a non-commutative group D3 has commutative 1-dimensional representations that "cheat" by being 
unfaithful. Consider a one-by-one matrix DA1(g)=(1) shared by every operator in the group. It is called the scalar 
or A1 representation and is very unfaithful! It represents each product gh=k correctly as DA1(g)DA1(h) = DA1(k) 
by just doing the same dumb product (1)(1)=(1) over and over! Another (not quite so) unfaithful one-by-one 
representation is called the pseudo-scalar or A2 representation. It is listed along with the others in the second line 
of table (15.1.12) below. We will show how to find all such ireps in an orderly and logical way in the Section 
15.2. But for now, let us just study these results. Recall the discussion of S3 permutations in (3.B.13) of Appendix 
3.B. The D3 rotations are S3 tricycles {r=(123), r2=(132)} and D3 flips are S3 bicycles {i1=(23), i2=(13), i3=
(12)}. The A2 representation is permutational parity: (+1) for even permutations and (-1) for the odd ones.

   

g = 1 r r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =

Dx2 y2

E1 g( ) =

1
1

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−1 / 2 − 3 / 2
3 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
1

−1 / 2 3 / 2
− 3 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

−1 / 2 − 3 / 2
− 3 / 2 1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

−1 / 2 3 / 2
3 / 2 1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(15.1.12)

(1) D3 Classes and characters

 Group theory books condense D-tables like the above into χ-tables of matrix traces or characters χ(g)
=TraceD(g) such as the following for D3. Characters are the same for any equivalent set (15.1.8) or (15.1.10) of 
2-by-2 E1 ireps. This is because Trace is invariant to unitary TDT† transformations.

   

   

D3 characters g = 1 r,r2{ } i1, i2 , i3{ }
TraceD A1 g( ) = χ A1 g( ) 1 1 1

TraceD A2 g( ) = χ A2 g( ) 1 1 −1

TraceDx2 y2

E1 g( ) = χ E1 g( ) 2 −1 0

   (15.1.13)

Characters are also the same for "look-alike" elements in subsets{r , r2} of 120° rotations or in the subset {i1 ,i2 , 
i3}of 180° rotations. These subsets are called classes of the group D3, and are collections of operators that are 
equivalent by internal transformation. For example, examination of Fig. 15.1.2 reveals that the i1 axis is just a 
120° rotation of the i3 axis so it must be equivalent through an r transformation.
      i1  = r i3 r -1 = r i3 r2       (15.1.14a)
(Check by D3 group table!) Or,  ±120° rotations r and r2 must be equivalent by an i3 transformation 
      r2 = i3 r i3 -1 = i3 r i3 ,      (15.1.14b)
or by any im-operator that flips the z-axis. So, {r , r2} are in a class by themselves. This concept of class doesn't 
arise in commutative Cn  groups where every operator, like the unit 1 here, is a class by itself.

(2) D3 Regular representation

 In Fig. 15.1.2 group table, operators heading column-n are inverse to the ones heading row-n so it's easy 
to make regular representations. Our first example was for C6 in equation (8.1.5). A 6-by-6 matrix is made for 
each operator by replacing its group-table entry by (1) and elsewhere by a (0) or (.).  (15.1.15a)
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    RG (1) =                            RG (r) =                 RG (r2 ) =                RG (i1) =                  RG (i2 ) =                RG (i3) =        

1

r

r2

i1
i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Regular representations use group-operator-labeled bra-ket bases: |g〉 = g |1〉, and: 〈h| = 〈1| h† = = 〈1| h-1 .

  
   

Rh, f
G (g) = h g f = 1 h†g ⋅ f 1 = δ

h−1gf ,1
= δ

g ,hf −1 =
1  if: g = h ⋅ f −1 

0  if: g ≠ h ⋅ f −1

⎧
⎨
⎪

⎩⎪
 (15.1.15b)

 (3) D3 Reduction and projectors

 The group-based RG has a lot of empty space filled with zeros and looks like it could be reduced. It cannot 
be completely diagonalized for reasons already discussed, but it can be reduced or block-diagonalized to a 
combination of the ireps A1, A2, and E1 listed above. To tell which ones we turn to the traces or characters. First, 
the characters of RG are as follows. (Again, the logic of this follows, shortly!)

    

   

g = 1 r,r2{ } i1, i2 , i3{ }
TraceRG g( ) = 6 0 0

   (15.1.16)

The following combination of A1, A2, and two E1 characters from (15.1.13) give a needed {6, 0, 0} above.

     

   

χ A1 g( ) 1 1 1

+χ A2 g( ) 1 1 −1

+2χ E1 g( ) 4 −2 0

6 0 0

    (15.1.17)

So all six RG matrices are reducible by some T to block-diagonal form with an A1, A2, and two E1 blocks. 

  

   

RP g( ) = TRG g( )T † =

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D11

E1 g( ) D12

E1 g( ) ⋅ ⋅

⋅ ⋅ D21

E1 g( ) D22

E1 g( ) ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D11

E1 g( ) D12

E1 g( )
⋅ ⋅ ⋅ ⋅ D21

E1 g( ) D22

E1 g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (15.1.18)

The reduction is done by finding six "placeholder" operators or generalized projectors Pµmn having the reduced 

representations listed below. These matrices are made by simply replacing each of six distinct 
  
Dmn

µ
g( )  

components in (15.1.18) by a 1. Each “placeholder” Pµmn is labeled by the 
  
Dmn

µ
g( )  it “re-placed.”
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  RP (P A1 ) =                 RP (P A1 ) =                  RP (P11
E1 ) =                   RG (P12

E1 ) =                   RG (P21
E1 ) =                  RG (P22

E1 ) =        

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0 0
⋅ ⋅ ⋅ ⋅ 0 0

,

0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0 0
⋅ ⋅ ⋅ ⋅ 0 0

,

0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 0 ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 0
⋅ ⋅ ⋅ ⋅ 0 0

,

0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0 1 ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0 1
⋅ ⋅ ⋅ ⋅ 0 0

,

0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ 1 0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0 0
⋅ ⋅ ⋅ ⋅ 1 0

,

0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0 0 ⋅ ⋅
⋅ ⋅ 0 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 0 0
⋅ ⋅ ⋅ ⋅ 0 1

             (15.1.19a)
Multiplication rules for "place-holders" are more elementary than the group itself as can be seen by doing matrix 
products of the blocks in (15.1.19a). For example, P12P22 = P12 and P12P12 =0 follow easily.

      

   

0 1
0 0

⎛

⎝⎜
⎞

⎠⎟
⋅ 0 0

0 1
⎛

⎝⎜
⎞

⎠⎟
= 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟
,  0 1

0 0
⎛

⎝⎜
⎞

⎠⎟
⋅ 0 0

1 0
⎛

⎝⎜
⎞

⎠⎟
= 1 0

0 0
⎛

⎝⎜
⎞

⎠⎟
, 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟
⋅ 0 1

0 0
⎛

⎝⎜
⎞

⎠⎟
= 0 0

0 0
⎛

⎝⎜
⎞

⎠⎟
. 

          P12
E1 ⋅   P22

E1    =  P12
E1    ,                      P12

E1 ⋅   P21
E1=  P11

E1(Idempotent),       P12
E1 ⋅   P12

E1    =  0 (Nilpotent)

(15.1.19b)

A product 
  
Pjk
µ Pmn

ν  is zero unless it has equal superscripts (µ=ν) and the middle subscripts (k=n). Then it is just the 

operator 
  
Pjn
µ  made out of whatever is left. It’s a lot simpler than the original group table!

(4) D3 Spectral decomposition: The Wigner-Weyl formula

 All six group operators g expand into six elementary projection operators Pµmn by (15.1.18-19).

  

   

g =
µ
∑

m
∑ Dmn

µ g( )
n
∑ Pmn

µ = D A1 g( )P A1 + D A2 g( )P A2 + D11
E1 g( )P11

E1 + D12
E1 g( )P12

E1

                                                                                         + D21
E1 g( )P21

E1 + D22
E1 g( )P22

E1

   (15.1.20a)

This is the form of a generalized non-commutative spectral decomposition of an entire non-Abelian group. D3's 

decomposition differs from the commutative C6 in (8.2.4a). D3 has two nilpotent projectors PΕ12 and PΕ12  along 
with four ordinary (idempotent) projectors PΑ1 , PΑ2, PΕ11,  and PΕ22 . As we will see, other non-commutative 
groups and algebras have various numbers of these two kinds of P's.
 Nilpotent projectors are necessary to expand operators that do not commute. Commutative groups can be 
reduced to orthogonal idempotents that satisfy simple orthogonality relations given in Ch. 3.
      Pi Pj = δij Pi = Pj Pi .     (3.1.15c)repeated
(15.1.19) replaces this by a generalized projector orthonormality relation for non-commutative projectors. 

     
  
Pjk
µ Pmn

ν = δ µνδkmPjn
µ     (15.1.20b)

For D3 the following projector multiplication table is like a "skeleton" of the group table in Fig. 15.1.2.

     

   

P A1 P A2 P11
E1 P12

E1 P21
E1 P22

E1

P A1 P A1 ⋅ ⋅ ⋅ ⋅ ⋅

P A2 ⋅ P A2 ⋅ ⋅ ⋅ ⋅

P11
E1 ⋅ ⋅ P11

E1 P12
E1 ⋅ ⋅

P21
E1 ⋅ ⋅ P21

E1 P22
E1 ⋅ ⋅

P12
E1 ⋅ ⋅ ⋅ ⋅ P11

E1 P12
E1

P22
E1 ⋅ ⋅ ⋅ ⋅ P21

E1 P22
E1

   (15.1.20c)
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 To obtain generalized projectors the decomposition (15.1.20a) must be inverted. The result which will be 
proved below is the famous Wigner-Weyl projection formula 

     
    
Pmn
µ = 

µ

oG
Dmn

µ*
g( )

g
∑ g     (15.1.20d)

where oG=6 is the order of the group and µ is the µ-irep dimension. (A1 = 1 = A2, and E1 = 2.) Again, these 
numbers vary from group to group. For Abelian groups irep dimension is always one (µ = 1 ).
(5) Right-and-Left Transformation rules
 The spectral decomposition (15.1.20a) is the single most important relation in symmetry analysis of 
quantum mechanics. Its first use is to define left and right transformation of projectors obtained by applying 

spectrally decomposed g  from (15.1.20a) on the left and right side of a projector Pµmn.

 

   

gPmn
µ =

′µ
∑

′m
∑ D ′m ′n

′µ g( )
′n
∑ P ′m ′n

′µ Pmn
µ

          =
′µ

∑
′m

∑ D ′m ′n
′µ g( )

′n
∑ δ ′µ µδ ′n mP ′m n

µ

          =
′m

∑ D ′m m
µ g( ) P ′m n

µ

  

   

Pmn
µ g =

′µ
∑

′m
∑ D ′m ′n

′µ g( )
′n
∑ Pmn

µ P ′m ′n
′µ

          =
′µ

∑
′m

∑ D ′m ′n
′µ g( )

′n
∑ δ ′µ µδn ′m Pm ′n

µ

          =
′n
∑ Dn ′n

µ g( ) Pm ′n
µ

      (15.1.21a)     (15.1.21b)
 The preceding relations become more familiar if expressed using projected bra-kets that are made like the 
group operator bra-kets for the group regular representation RG in (15.1.15). Here the projector representation RP 
based on P-multiplication table (15.1.20c) has its basis defined similarly. (Note: † only flips indices of 
elementary ket-bras, that is, |m〉〈n|† = |n〉〈m| . P-operators do the same: Pmn† = Pnm.)
 

   
Pmn
µ = Pmn

µ 1 / norm,        Pmn
µ = 1 Pmn

µ † / norm = 1 Pnm
µ / norm  (15.1.22)

So the bra-ket g-matrix elements are the ireps D(g) themselves, just where this all started in (15.1.18).

    

P ′′m ′′n
µ g Pmn

µ = 1 P ′′n ′′m
µ gPmn

µ 1 / norm = D ′m m
µ g( )

′m
∑ 1 P ′′n ′′m

µ P ′m n
µ 1 / norm

                        = D ′′m m
µ g( ) 1 P ′′n n

µ 1 / norm = D ′′m m
µ g( )δ ′′n n ,  where: norm( ) = 

µ

oG

  (15.1.23)

Projection norm is the diagonal element 〈1|P|1〉 if PP=P is idempotent and is the coefficient (µ/°G)D(g) in 
(15.1.20d) of unit g=1. Now we derive the P coefficients pµmn(g) of general g in the Weyl expansion

     
  
Pmn
µ = pmn

µ g( )
g
∑ g  .    (15.1.24)

This begins by multiplying P by any operator f in the group as in (15.1.21a)

 
   
f ⋅Pmn

µ = pmn
µ g( )

g
∑ fg = pmn

µ f −1h( )
h
∑ h  , where: h = fg,  or: g = f −1h,   (15.1.25)

Regular representation TraceR(h) is zero except for TraceR(1), which is group-order °G by (15.1.15b).

   
TraceR f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Using (15.1.20a) and TraceR(Pµnm)=δnmµ from (15.1.19a), proves the Weyl expansion (15.1.20d).
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pmn
µ f( ) = 1

oG
TraceR f −1 ⋅Pmn

µ( ) = 1
oG

D ′m m
µ f −1( )

′m
∑ TraceR P ′m n

µ( )
            = 

µ

oG
Dnm

µ f −1( ) = µoG
Dmn

µ* f( )         (QED)
  (15.1.26)

(5) D-Orthonormality

 The ortho-completeness of Cn representations has been noted as being the same as that of Fourier plane 
waves. That is a special case of a more general result that applies to all ireps of groups and algebras. Indeed, it is 
a grand re-statement of Axioms 1-4 in Chapter 2. Replacing a g-operator by a P-operator in (15.1.20a) is legal 
since it is valid for all g and all linear combinations of g's including the P's. 

    
  
P ′m ′n

′µ =
µ
∑

m
∑ Dmn

µ P ′m ′n
′µ( )

n
∑ Pmn

µ     (15.1.27)

This implies that a Dνab of a Pµmn is all zeros except for a single one at a=m and b=n as seen in (15.1.19).
    

  
Dmn

µ P ′m ′n
′µ( ) = δ µ ′µ δm ′m δn ′n      (15.1.28)

Inserting the Wigner-Weyl expansion for P's gives. 

    
    
Dmn

µ  ′µ

oG
D ′m ′n

′µ * g( )
g
∑ g

⎛

⎝
⎜

⎞

⎠
⎟ = δ µ ′µ δm ′m δn ′n    (15.1.29)

Using the linearity of the D-functions (D(g+h) = D(g)+D(h)) gives the grand D-orthonormality relation.

    
    g
∑ Dmn

µ g( )D ′m ′n
′µ * g( ) =

oG
 ′µ

δ µ ′µ δm ′m δn ′n    (15.1.30)

There is a completeness relation to go with this, but that will be left as an exercise to derive.
 Orthogonality and completeness are two sides of the same coin, and it means that one set of ireps is all 
that is needed to make any representation of this group or algebra, provided the ireps are a complete set. All 
representations, however huge, must be reducible to a block diagonal combonation of ireps. 
 For the Abelian symmetries these statements are quite obvious results of Fourier orthogonality and 
completeness, that is, axioms 1-4 applied to the discrete plane wave eigenfunctions  e

ikmxp . At the end of Section 
7.2 we noted the multiple mathematical roles which Fourier kernals eikx play. Add to this the role that Bloch-wave 
phase plays in (8.2.10) in Chapter 8 and the role the complex conjugates  e

−ikmxp  play as irreducible representation 
(9.4.3) in Chapter 9.

    
   
Dkm * r p( ) = e

−ikmxp

However, group ireps most useful roles may be as wavefunctions. This applies particularly to the non-Abelian 
ireps Dµ*mn whose role as wavefunctions is not (yet) quite so famous. But, it will be! 

Throughout the rest of this book there are many examples of theoretical insight and computational power 
provided by ireps in their role as eigensolutions with ready-made completenss, orthonormality, and matrix 
element formulas. Solutions to differential equations like Schrodinger’s may take anywhere from minutes to 
centuries to basis-organize and compute necessary Hamiltonian or transition matrices in their bases. In contrast, 
doing this job using ireps Dµ*mn is a breeze. The catch, of course, is understanding what the ireps Dµ*mn mean 
and how they are made and applied. That is the purpose of the rest of this Chapter!
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15.2 Commuting Observable Sets: Character analysis
 The techniques introduced in the preceding section for dealing with non-commuting algebras are quite a 
bit more complicated than the treatment of commuting groups given earlier. Here we see how the simpler 
techniques of commuting algebra can be used for the more general quantum symmetry problems. The key is to 
find the largest number of mutually commuting operators or what is known as a maximal set of commuting 
observables (MSOCO). Then the simultaneous spectral decomposition of a MSCO yields many useful results 
which provide “shortcut” solutions and diagnostics.

(a) Class algebra and all-commuting operators
 While the D3 group table is non-commutative an algebra based on the class boundaries is always 
commutative. We're referring here to the following construction based on class sums cg.

  

   

1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2

r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

→

c1 = 1 cr = r + r2 ci = i1 + i2 + i3
c1 c1 cr ci

cr cr 2c1 + cr 2ci

ci ci 2ci 3c1 + 3cr

 (15.2.1)

The resulting multiplication table is not that of a group but rather what is loosely called an algebra. But, it is a 
commutative algebra and thus fair game for a complete spectral decomposition into idempotents.
 Each class-sum commutes not only with each other but also with every operator in the entire group 
algebra. In other words the cg's are mutually commuting with respect to themselves and all-commuting with 
respect to the whole group. To show this, do an h-h-1 transformation on a class-sum cg and observe that it is 
unaffected (except by reordering its sum which is inconsequential.) For example, doing r on ci gives ci back.

     r ci r-1 = i2 + i3 + i1 = ci   or:    r ci  = ci r      (15.2.2a)
This shows r commutes with ci. But, it is actually stronger than this. The sum over all group operator 
transformations of any one element g is an integral number υ of its class sums cg , that is,

   
   

hgh−1

h=1

°G
∑ = υgcg  ,           where: υg = °G

°cg
= integer   (15.2.2b)

The notation °cg is the order of class cg, that is its population. It must evenly divide the group order °G.
 Now we turn this around to show that an all-commuting operator C = ΣCg g that is, one that commutes 
with all h in the group, is a combination of class-sums cg. All-commutation (C h = h C) implies

    C =
   

Cgg
g=1

°G
∑ = 1

°G
h Cgg

g=1

°G
∑

⎛
⎝⎜

⎞
⎠⎟

h−1

h=1

°G
∑ = Cg

g=1

°G
∑ υgcg  .           (15.2.2c)

(b) Characters and all-commuting projectors
 The irrep characters are defined as follows according to their trace definition in (15.1.13).
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χµ g( ) = Trace Dµ g( ) = Dmm

µ g( )
m=1

µ
∑     (15.2.3)

Using this definition in the Wigner-Weyl expansion formula (15.1.20d) gives the following operator.

     Pµ =
    

Pmm
µ

m=1

µ
∑ = 

µ

oG
Dmm

µ* g( )
m=1

µ
∑

g
∑ g = 

µ

oG
χµ* g( )

g
∑ g   (15.2.4)

The Pµ is a combination of class-sums and is called the (µ)-th all-commuting idempotent Pµ or class projector.

     Pµ =
    

µχg
µ*

oGclasses cg
∑ cg  ,  where:  χg

µ = χµ g( ) = χµ hgh−1( ) (15.2.5a)

Class invariance of χµ is used. The spectral decomposition (15.1.20a) helps to invert this to the following.

     
   
cg =

o cgχg
µ

µirepsµ
∑  Pµ      (15.2.5b)

 To prove the last result one needs the irrep 
  
Dkq

µ cg( )  of a class-sum. Such a matrix must be all-commuting, 

in particular, it must commute with all projectors, a tough requirement since 
  
Dmn

µ Pqr( )  is all zeros except for a 

single (1) at row-q and column-r.

 
    
Dµ cg( )Dµ Pqr( ) =

m=1

µ
∑ Dkm

µ cg( )Dmn
µ Pqr( ) =

=1

µ
∑ Dk

µ Pqr( )Dn
µ cg( ) = Dµ Pqr( )Dµ cg( )  (15.2.6)

The tough requirement is (15.1.28) and it reduces the all-commuting matrix to a multiple of a unit matrix.

 
    

Dkm
µ cg( )

m=1

µ
∑ δmqδnr = δkq

=1

µ
∑ δr Dn

µ cg( )  implies: Dkq
µ cg( ) = δkq Drr

µ cg( )   k,r = 1...m{ }  (15.2.7a)

Trace
  
Dµ cg( )  is the class order 

 
o cg  times the character 

 
χg
µ . That divided by irrep dimension µ gives 

      
   
Dkq

µ cg( ) = δkq

o cgχg
µ

µ
 .    (15.2.7b)

Inserting this into the Weyl expansion (15.1.20d) proves (15.2.5b). Unit matrix form is what you get for any 

irreducible representation of an all-commuting operator O: Dµ(O) must be a multiple of a unit matrix. This is one 
of Schur's lemmas, and is the basis of a well-known old-fashioned approach to group theory.

(c) Computing characters and dimensions
 Minimal equations of class-sum operators lead directly to the coefficients of Pµ-cg relations (15.2.5) and 
from there to the irep characters 

 
χg
µ  and dimensions µ. For example, the class multiplication table (15.2.1) yields 

the following minimal equations. The roots are eigenvalues (15.2.7) of class sums.
  cr2 - cr -2 1 = 0 = ( cr -2 1)( cr + 1)  ,  ci3 - 9 ci  = 0 = ( ci -3 1)( ci + 3 1)( ci + 0 1) (15.2.8)
Spectral decomposition follows using the projection formula (3.1.15) from Chapter 3.

      Pµ =

  

ci − cε1( )
ε ≠µ
∏

cµ − cε( )
ε ≠µ
∏

     (15.2.9)

Three orthogonal projectors arise as examples of (15.2.5a). The cg-coefficient in Pµ is 
   

µχg
µ*

°G
=
µχg

µ*

6
.
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  P1 =
   

ci + 31( ) ci − 01( )
3+ 3( ) 3− 0( ) =

ci
2 + 3ci

18
= 1

6
c1 +

1
6

cr +
1
6

ci =
1
6

1 + r + r2 + i1 + i2 + i3( )  (15.2.10a)

 P2 =
   

ci − 31( ) ci − 01( )
−3− 3( ) −3− 0( ) =

ci
2 − 3ci

18
= 1

6
c1 +

1
6

cr −
1
6

ci =
1
6

1+ r + r2 − i1 − i2 − i3( )     (15.2.10b)

  P3 =
   

ci + 31( ) ci − 31( )
0 + 3( ) 0 − 3( ) =

ci
2 − 91
18

= 2
3

c1 −
1
3

cr             = 1
3

21 − r − r2( )    (15.2.10c)

The inverse relations (15.2.5b) are easily obtained directly from the roots (15.2.8) themselves.

    c1 =    P1 +   P2  + P3        (15.2.10d)

    cr = 2 P1 + 2 P2  - P3        (15.2.10e)

    ci = 3 P1 -  3 P2        (15.2.10f)

Here the Pµ coefficient in cg is 
  

o cgχg
µ

µ
. If group order °G and class-orders °cg are known then the coefficients can 

be identified. The problem is that we still don't know either character χµg or dimension µ, and they seem 
intertwined in (15.2.5). However, for the unit class g=1, the character is the dimension so

   χµ
1 = µ  = 

    
°G
µχ1

µ*

oG
= °G c1 coefficient inPµ( ) = µ( )2  (15.2.10g)

For D3 this gives 1 = A1 = 1, 2 = A2 = 1, 3 = E1 = 2. The other characters in (15.1.13) follow from (15.2.10 

a-c) or (15.2.10d-f). Since E1 = 2 we know PΕ1  must "split" in two as in (15.2.11) below.
(d) Maximal sets of commuting operators (MSOCO): Rank
 Which are the independent operators in D3  that can be diagonalized at once? The answer is not unique 
since many sets of operators vie to be in a distinguished set called a Maximal Set of Commuting Operators or 
Observables (MSOCO). However, the number of operators is unique and is called the rank of the D3  algebra. 
The rank of D3 turns out to be four.
 A set diagram of D3 is shown in Fig. 15.2.1. It shows the class-sum algebra of all-commuting operators at 
the center of the diagram. Indeed, the all-commuting algebra is called the Center of the algebra. Its dimension 
determines the number of orthogonal irreducible representations (ireps) of the algebra. Here that is three 

corresponding to the ireps A1, A2, and E1 described previously. The three all-commuting projectors P1 = PΑ1 ,  P2 

= PΑ2 , and  P3 = PΕ1  of the center are uniquely defined; no others exist. Clearly they must be part of the MSOCO. 
You might call them "permanent members" of the MSOCO. But, there must be another member, too, since the 
rank of D3 is four.
 The remaining "temporary" member of the rank-4 MSOCO is not uniquely chosen; many possible choices 
exist. One common choice is the operator i3 picked out in Fig. 15.2.1. By choosing this operator to be diagonal 

we select a particular way to "split" the P3 = PΕ1 idempotent and build a particular set of E-ireps given before in 
table (15.1.10). If instead we choose to diagonalize r, then a different set of ireps given before in table (15.1.8) 
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will be made. Note that in either case there are only four members of the MSOCO. In the second case, r2 comes 
with r since the class sum cr = r + r2 is already a permanent member of MSOCO.

 

D3 Algebra

i
1

i
2 i

3

c
1
=1

c
i
= i
1
+ i
2
+i
3

c
r
= r2 + r

D3 Center
(All-commuting

operators)

r2

r

A Maximal Set of Commuting

Operators
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PPA2

PPE

PE
xx yy
PE

PE
11

22
PE

PE
xy yx
PE

PE
12

21
PE

Another

Maximal Set

of Commuting

Operators

 Fig. 15.2.1  D3 Algebra and sub-algebras

(e) Computing irreducible projectors
 The old "one-equals-one-times-one" trick is used to split P3 = PΕ1  in either choice of MSOCO. The two 
idempotents of the i3 operator are C2 projectors that sum to 1 in their completeness relation.
     1 = Px + Py = (1 + i3 )/2 + (1 - i3 )/2      
We multiply this 1 by the 1 resulting from the all-commuting completeness in (15.2.10d).

      1 = c1 =   PΑ1 + PΑ2 + PΕ1        

However, only P3 = PΕ1  splits into the irreducible projectors PExx and PEyy of the irep (15.1.12).

   PΕ1  Px  = Px PΕ1  = (1 + i3 )/2 (21 -r - r2 )/3 = (21 -r - r2 - i1 - i2 + 2i3 )/6 = PExx      (15.2.11a)

   PΕ1  Py  = Py PΕ1  = (1 - i3 )/2 (21 -r - r2 )/3 = (21 -r - r2 + i1 + i2 - 2i3 )/6 = PEyy      (15.2.11b)
 So, the final irreducible rank-four completeness relation for D3 is the following four projectors.

     1 = 1.1 = ( PΑ1 + PΑ2 + PΕ1  ) (Px + Py ) = PΑ1 + PΑ2 + PExx  + PEyy     (15.2.12)
This 1 is to be "wrapped around" any operator g of the D3 algebra to give the following generalized spectral 
decomposition of the form shown in (15.1.20a).

   g = 1.g.1 = ( PΑ1 + PΑ2 + PExx  + PEyy  ).g.( PΑ1 + PΑ2 + PExx  + PEyy  )    (15.2.13)

Because the PΑ1  and  PΑ2  are all-commuting , they leave only two terms.
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    g = 1.g.1 =  g.PΑ1 + g.PΑ2 + PExx .g.PExx  + PExx .g.PEyy     
      + PEyy .g.PExx  + PEyy .g.PEyy      (15.2.14a)
The remaining four terms are the E-projectors multiplied by ireps as seen by comparing (15.1.20a).
   PExx .g.PExx  = DExx(g) PExx  ,     PExx .g.PEyy  = DExy(g) PExy  ,
   PEyy .g.PExx  = DEyx(g) PEyx  ,     PEyy .g.PEyy  = DEyy(g) PEyy  .  (15.2.14b)
 The preceding completes a set of formulas that can be used to derive ab-initio sets of ireps which have 
desired operators diagonalized. This set favors i3 and leads to the set of ireps in (15.1.10), but the other CSOCO 
shown in Fig. 15.2.1 favors r and r2 and leads to the ireps in (15.1.8).
 Let us summarize the first set of six irep projectors which will be used in a band theory model below.

   PΑ1  =  PΑ1 1 PΑ1  =    = (1 + r + r2 + i1 + i2 + i3 )/6   (15.2.15a)

   PΑ2  =  PΑ2 1 PΑ2  =   = (1 + r + r2  - i1  - i2 -  i3 )/6   (15.2.15b)
   PExx  =  PExx 1 PExx  =     = (21 - r - r2 - i1  - i2 + 2i3 )/6  (15.2.15c)
   PEyy  =  PEyy 1 PEyy  =      = (21 - r - r2 + i1 + i2 - 2i3 )/6  (15.2.15d)
   PExy  =  PExx i2 PEyy   = DExy(i2) PExy  = = (01 - r + r2 - i1 + i2 - 0i3 )/4  (15.2.15e)
   PEyx  =  PEyy i2 PExx   = DEyx(i2) PEyx  = = (01+ r -  r2 - i1 + i2 - 0i3 )/4  (15.2.15e)
Notice that an element i2  outside of the CSOCO must be used to get the two non-zero nilpotent projectors  PExy  
and PEyx This is because the idempotents  PExx  and PEyy  from (15.2.11a-b) are orthogonal, and a commuting 
operator would permit the two projectors to annihilate. Then, apart from an overall factor, the result is 
independent of the choice; any operator like r , r2,  i1, or i2 outside of the chosen CSOCO can be used.
 You will notice that the 2-dimensional E-projectors have four values for their double indices xx, xy, yx, 
and yy. The meaning of these is quite a deep subject that we will take up, in part, shortly. They come from the 

splitting (15.2.12) and the "wrap-around" (15.2.13). It should be noted that the scalar PΑ1  and pseudo-scalar PΑ2  
deserve one (and only one) pair of indices, too, which tell which C2 idempotent, Px or Py they contain. Their full 

index notation is as follows. Opposing symmetry partners P
  yy
A1   and P  xx

A2   fail to exist.

    PΑ1  =  PΑ1 Px = P  xx
A1           PΑ2  =  PΑ2 Py = P

  yy
A2     (15.2.15f)

    0 =  PΑ1 Py           0 =  PΑ2 Px    (15.2.15g)
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15.3 Application of irreducible projectors
 So far the regular representation and group basis has been an abstract sort of affair with the group 
operators acting on themselves, a kind of algebraic self-indulgence. However, this facilitates application to a 
variety of physical models. We consider now another one of these coupled-pendulum models of a quantum 
system. This one will have (at least) D3 symmetry but later be one with D6 symmetry.
 Suppose each of three D3 symmetric wells has a wave that can be described by a two component 
oscillation or double-pendulum, making six components in all, as shown in Fig. 15.3.1. Each base state |g〉 has a 
wave located on one or the other side of a well, and is labeled by a D3 symmetry operator g that gives that state 
by rotating an original "first" state |1〉 which is chosen to be located just above the x-axis. 

  

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉 |r2〉

|r〉

i2|1〉=|i2〉
|11〉

i2
i2i3

i1

xx

x

yy

 Fig. 15.3.1  Labeling quantum well base states |g〉 with D3 operations |g〉 = g |1〉 .
 The six wave base states in Fig. 15.3.1 are defined by
   |1〉 = |1〉,     |2〉 = |r 〉,     |3〉 = |r2〉,     |4〉 = |i1〉,     |5〉 = |i2〉,     |6〉 = |i3〉,   
        = 1|1〉,       = r|1〉,          = r2|1〉,        = i1|1〉,        = i2|1〉,        = i3|1〉. (15.3.1) 
In other words, they are meant to be the embodiment of the regular representation bases (15.1.15b). Besides this 
ket set, we suppose a bra set, too, that is just the dagger of the ket set.
   〈1| = 〈1|,     〈2| = 〈r |,     〈3| = 〈r2|,     〈4| = 〈i1 |,     〈5| = 〈i2 |,     〈6| = 〈i3 |,   
        = 〈1|1,        = 〈1|r†,        = 〈1|r2†,      = 〈1|i1†,       = 〈1|i2†,       = 〈1|i3†. (15.3.2) 
Since all regular group representations are real (In fact, they are just 0's with six 1's.) the dagger gives the 
transpose matrix and it only switches r and r2. The other four operators are self-inverse.
   1† = 1,    r† = r2,    r2† = r    i1† = i1,    i2† = i2    i3† = i3      (15.3.3)
The unit bras and kets are identical except for their orientation; kets are columns and bras are rows.
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1 = 1 1 = 1 0 0 0 0 0( )
2 = 1 r2 = 0 1 0 0 0 0( )
3 = 1 r = 0 0 1 0 0 0( )
4 = 1 i1 = 0 0 0 1 0 0( )
5 = 1 i2 = 0 0 0 0 1 0( )
6 = 1 i3 = 0 0 0 0 0 1( )
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(15.3.4)

Given this and the irep P-operators in (15.2.15) the D3-symmetry projected states are obtained easily.
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   (15.3.5a)        (15.3.5b)
Each bra or ket is an operation of P-operator on the "first" state |1〉 . Note use of conjugation:  Pmn† = Pnm. A 
sketch of the resulting wavefunctions is shown in Fig. 15.3.2. 

(a) Global and local symmetry
 Let us carefully examine the symmetry properties of these waves. Notice that the two waves projected 

with the operators PExx  and PExy, as well as the scalar P  xx
A1  are symmetric to 180° rotation i3 around the x-axis. 

We will refer to this as global C2-or i3 -symmetry. Global i3 -symmetry holds if the left-hand or global index is x.
 On the other hand, the two waves projected with the operators PEyx  and PEyy, as well as the pseudo-

scalar P
  yy
A2  are anti-symmetric to 180° rotation i3 around the x-axis. This will be referred to as global C2( i3 )-

anti-symmetry. Global i3 -anti-symmetry means the left-hand or global index is y.

 Now, notice that the two waves projected with the operators PExx  and PEyx, as well as the scalar P  xx
A1  are 

symmetric to 180° rotation around their local iw-axes i1, i2, or i3 , whichever lies in their well. We will call this 
local C2-or iw -symmetry. Local iw -symmetry means the right-hand or local index is x.

 Finally, the two waves projected with the operators PExy  and PEyy, as well as the pseudo-scalar P
  yy
A2  are 

anti-symmetric to 180° rotation around their local iw-axes i1, i2, or i3 through their wells. We will call this local 
C2-or iw anti-symmetry. Local iw anti-symmetry means the right-hand or local index is y.
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 Fig. 15.3.2  Quantum-well states obtained with D3 symmetry projection
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 Fig. 15.3.3  Quantum well states obtained by numerical calculation

 Examples of computer plots of D3 waves are shown in Fig. 15.3.3 where the defining i3 symmetry axis 
lies in the center well. The waves go with the first (A1, E1, )-(gap)-(E1, A2 )-levels in Fig. 14.2.8 (left).
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 Two of the E1 levels belong to degenerate partners of the global D3 symmetry. The lowest partners are 
locally symmetric pair |E1xx〉 and |E1yx〉. The next higher level belongs to the locally anti-symmetric pair of states |
E1xy〉 and |E1yy〉. The Kronig-Penney construction in Fig. 14.2.8 proves this degeneracy, but it is also a general 
consequence of the global D3 symmetry as we will prove later on. 
 The degenerate pairs belong to what are basically x- and y-pairs of vector components. In fact the 
symmetry label E1 has "vector" written all over it. Its C3 ancestors are the 13 and 23 = -13 moving wave states 
from which we built sine and cosine standing-waves. To be precise, they are sine and cosine of one-wave-
modulo-three-wells (±1-mod-3). That is like a two-dimensional (x,y)-vector. Indeed, the ireps (15.1.10) are 
rotation matrices for 120° z-rotations and 180° transverse rotations of x and y unit vectors.

  
   

D xy{ }
E r( ) = x r x x r y

y r x y r y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cos120° − sin120°

sin120° cos120°

⎛

⎝⎜
⎞

⎠⎟
= −1 / 2 − 3 / 2

3 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (15.3.6)

 One should be aware of such elementary derivations of irep matrices and visualize consequences. If you 
now look at the E1 partners in Fig. 15.3.2 you should see the global-x partner |E1xg〉 wave trying to "vector" in the 
x-direction (particularly for the lowest x-partner |E1xx〉) while the global-y partner |E1xg〉 is trying to "vector" in the 
y-direction. If you were to mix either of these with some scalar A1 wave you would see this immediately as the 
combination became a dipole beating oscillation. The x-global partners would radiate plane-x polarization while 
the global y-symmetry partners would radiate y-polarization. This is the mechanism of the dipole transition 
phenomena that is responsible for virtually all the light we see. We would be blind as a bat without E1  or 
"vector" symmetry components like these!
 Symmetry is also connected with wave-node topology. Each of the four levels is associated with a given 
number of wave nodes. There are 0 nodes for scalar singlet  |A1xx〉, 2 nodes for both degenerate partners |E1xx〉 and 
|E1yx〉, 4 nodes for both degenerate partners |E1xy〉 and |E1yy〉, and 6 wave nodes for single |A2 yy〉, the pseudo-scalar 
singlet state. The nodes are not always easy to see and count particularly if they lie in a region where ψ is near 
zero as required by (1,i3)-symmetry in |E1xy〉 and |E1yx〉 . Generally, more nodes means more energy.
 However, suppose we choose a different temporary member of the MSOCO such as the 120° r operator 
on the right of Fig. 15.2.1. Making r diagonal gives the ireps (15.1.8) which include the following diagonal 
matrix. These belong to C-type moving-wave states of left-and-right-circular polarization.

  

   

D 13−13{ }
E r( ) = 13 r 13 13 r 23

23 r 13 23 r 23
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⎟
⎟
⎟
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⎟⎟

Such wave states radiate circularly polarized light when set in combination with scalar waves. 
 Obviously there are many choices for symmetry definition of the E-states, in fact, there is an entire U(2) 
world of possibilities, and most of them are "non-descript" elliptical polarization types. To really be in control of 
quantum dynamics, it  is necessary to be acutely aware of these possibilities. We are now beginning to scratch the 
tip of a giant iceberg of symmetry related tools. The next section describes a "hidden whopper" of symmetry 
algebra. Prepare to stretch your mind a bit for this one!
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(b)  The duality principle: Symmetry operators inside and out
 In a story about Archimedes he is supposed to have said, "Give me a place to stand and I'll move the 
world." This same old idea appears in quantum theory, starting with axioms 1-4. The basic idea is that all 
transformations are relative mappings from one basis to another. Simply put: "It takes two to tango!" Indeed, the 
idea of transformational duality may seem so obvious as to be trite. We tire of hearing the old saw, "Everything is 
relative." In this matter, it is difficult to distinguish the sublime from the trivial.
 However, with regard to symmetry operations, the question of duality is anything but trivial. To 
thoroughly understand symmetry analysis, particularly for non-commuting algebra G, like that of D3, 

    
   
G = 1,...,g,...{ } = D3 = 1,r,r2 , i1, i2 , i3{ } ,   (15.3.7a)

it is necessary to introduce a dual set or group

    
   
G = 1,..., g,...{ } = D3 = 1, r , r2 , i1, i2 , i3{ } ,   (15.3.7b)

of symmetry operators  g  which commute with the g in the original set. 

     g ⋅h = h ⋅g ,    and:   g ⋅h = h ⋅ g  ,  for all g ,  h in G  and  g  ,  h in G.  (15.3.7c)

But, each satisfy the same (generally non-commutative) multiplication rules as the original set.
     g ⋅h = k    implies:  g ⋅h = k   for all g,  h,  k  in G  and  g,  h,  k  in G.   (15.3.7d)

How do we visualize this dual set? Well, first we recall how to visualize "ordinary" sets of operations.
 We might visualize "ordinary" transformation operations like i2 in Fig. 15.3.1 as belonging to a symmetry  
axis or reflection plane embedded in a piece of metal or something solid that represents a potential through which 
some "fluff" called a "wavefunction" is going to wiffle to and fro. A symmetry operation moves "fluff" relative to 
its axis or plane in a precisely defined way, in the case of i2 , by doing a 180° rotation as shown in Fig. 15.3.1. 
The result is a relation between an original state with "fluff" in state |1〉 and a transformed state with the "fluff" 
moved relative to the potential wells to state |i2〉 = i2 |1〉.
 However, this unfairly distinguishes "fluff" from the "metal" which "contains" the rotation axes and the 
potential wells. If quantum theory teaches us anything, it is that all matter is "fluff." That potential ring in Fig. 
15.3.1 could be part of a massive lab bench or just three protons of an H3 molecule, but in either case it is still 
"fluff", too, only the time scale might be different. And, the "real fluff" could as well be a light photon or electron 
or more massive polymer ring or big molecule in the D3 potential.
 The introduction of the dual symmetry operators levels the playing field for the two kinds of "fluff" . 
What matters is only the relative position of one kind of fluff relative to the other. It matters not if we use 
"ordinary" operators like g= i2 to move the "real fluff" up to its new potential well, as shown in Fig. 15.3.4(a), or 
whether a dual operation   g = i2  moves the well the opposite way down to enclose the fluff, as shown in Fig. 

15.3.4(b). "It's all relative!", or, so says what we will call the duality principle 

  
  
g 1 = g = g† 1 = g−1 1   ,   or:   g−1 1 = g† 1 = g−1 = g 1 = g 1 . (15.3.8)

The figure part (b) labeled (after   i2  and set upright) has the same relative state as part (a) labeled (after i2) 
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i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i3 x

y

i1

i2|1〉=|i2〉i2

i1

i3

i3

y

i1

x
i2

i3

y

i1

x

i2

i3

y

i1

x

i2
i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

i3

y

i1

x

i2

i1

i1

i1

( After i1i2
and set
upright)

i3

y

i1

x

i2

|i2〉

|i2〉

|i2
〉

|i2〉

|r2〉

( After i2
and set
upright)

(a)

(b)

(c)

(After i2 )

(After i2 )

( After i2 and
set upright) ( After i1i2 )

|1〉

|1〉

 Fig. 15.3.4 Comparison of (a) ordinary symmetry operations and (b-c) dual operations.

 The outcome of moving furniture one way along a rug is indistinguishable from dragging the rug the 
opposite way if we only observe where the furniture makes dents in the rug. Duality-relativity (15.3.8) reminds 
one of Ernst Mach’s famous principle. Interference between waves is what is observed and what gives reference 
frames including relativity space-time frames in Chapter 4. Waves measure each other.
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 The duality principle does NOT equate dual operator  g  with the inverse g-1= g† of an ordinary operator 

g . This would not give the desired commutation (15.3.7c) between the two sets. It would not even give the same 

group multiplication as in (15.3.7d). Instead, we require that the two operators  g  and g† (or, else,   g
†  and g ) have 

the same effect on one, particular "original" state |1〉. Operators g and their duals  g   belong to completely 

different operator sets (15.3.7a) and (15.3.7b), respectively.
 Still, how do you visualize a dual set of  g  operations? This is often the most difficult part of theory and 

one that can be subject to personal preference. I prefer to visualize the dual operations as being attached to an 
equivalent reference frame connected with the "real fluff" that is the body whose wave dynamics is being studied. 
Now it may seem that something as ephemeral as an electron or photon wave doesn't deserve to have its own 
reference frame, much less, the ability to flip the whole world over its (insubstantial) shoulders. However, in 
order to level the playing field as stated earlier, one should not discriminate against any quantum objects for 
reasons of mass, charge, or any of their intrinsic properties. 
 This point of view makes the dual operations completely equivalent to the "ordinary" ones. When, starting 

from state |1〉 , the electron rotates the potential clockwise by 120° using   g
† = r† = r2  while the electron "stays 

put". Nevertheless, the electron winds up in the same well as it would have if, instead, the potential had flipped 
the electron counter clockwise by 120° using g = r while the potential frame "stays put" or, by duality (15.3.8),

     
  
r2 1 = r† 1 = r = r 1 .     

 However, starting from any other state |t〉 = t |1〉 than |1〉 the effect of   r2  is defined by equivalency since 
an electron referred to address |t〉 has different labels than those labeled by the potential frame.

  
  

r2 t = r† t = r† ⋅ t 1 = r† ⋅ t † 1 = t ⋅ r( )† 1 = t ⋅r 1 = t ⋅r ⋅ t−1t 1

        = t ⋅r ⋅ t−1 t
.  

The resulting general duality-relativity principle is 

     
  
g t = t ⋅g† ⋅ t−1 t = t ⋅g† ⋅ t† t .   (15.3.9)

Again, this does not equate  g  and   t ⋅g
† ⋅ t−1  except for that one state |t〉 . However, this suggests we can also 

visualize the dual operations as moving their axes along with the wave being transformed. 
 This is shown in Fig. 15.3.4(c) which shows the effect of the product   i1 ⋅ i2  on |1〉 . The D3 group table in 

Fig. 3.6.2 lists the product   i1 ⋅ i2 = r  or from (15.3.7d)   i1 ⋅ i2 = r  . The first operation of the product   i1 ⋅ i2  |1〉 to act is 

  i2  since it's facing ket |1〉. The effect of   i2  is shown in Fig. 15.3.4(b). It rotates both the potential and its 

operations   i1  ,   i2 , and   i3   around the   i2  axis relative to the electron wave and its operations   i1  ,   i2 , and   i3   which 

"stay put." But, when the whole system (potential+electron) is set back with the PE frame and ia in an "upright" 
position, then it is the    i1  ,   i2 ,   i3  that appear rotated along with the electron relative to the PE frame.

 Now the second operation of the product   i1 ⋅ i2  |1〉 to act is   i1  since it's facing the ket   i2 |1〉. But, due to the 

effects of the preceding   i2 , the dual operation   i1  now has its axis along the axis of the regular operation   i3   as 
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shown Fig. 15.3.4(b). This checks with (15.3.9). Then the effect of   i1   is to flip the ordinary operations   i1  ,   i2 , 

  i3  , and the potential around the current   i1  -axis while letting the electron wave and its associated dual operations 

  i1 ,   i2 , and   i3   "stay put" as shown in the center of Fig. 15.3.4(c).

 However, you can view this, instead, as the rotation around the current   i1 -axis of the electron wave and its 

associated dual operations   i1  ,   i2 , and   i3  while the ordinary operations   i1  ,   i2 ,   i3  , and the potential are the ones 

that "stay put" as shown by comparing in the extreme right hand sides of Fig. 15.3.4(b) and (c). Since we assume, 
"Everything is relative!", either view is valid.

(c)  Projector duality: Quantum labels inside and out
 The duality principle lends meaning to the two indices (mn) of non-commutative projection   Pmn

µ  operators 

and projected states 
   
Pmn
µ 1 = mn

µ  in Figs. 15.3.2 and 3. To see this, compare the transformation properties of an 

operator g with that of its dual  g . The ordinary g transformation properties (15.3.10a) follow from those of left 

multiplication (15.1.21a). However, since a dual operator  g  commutes with every operator in   Pmn
µ  it slides past 

  Pmn
µ  and, by the duality principle (15.3.8), does conjugated(†) right multiplication (15.1.21b) to give (15.3.10b). 

    

g mn
µ = gPmn

µ 1 N

          =
′m =1

µ
∑ D ′m m

µ g( ) P ′m n
µ 1 N

   

    

g mn
µ = gPmn

µ 1 N = Pmn
µ g 1 N

           = Pmn
µ g† 1 N  

          =
′n =1

µ
∑ Dn ′n

µ g†( ) Pm ′n
µ 1 N  

   
          =

′m =1

µ
∑ D ′m m

µ g( ) ′m n
µ  (15.3.10a)  

   
          =

′n =1

µ
∑ D ′n n

µ* g( ) m ′n
µ  (15.3.10b) 

 A choice of MSOCO that has DE(i3) diagonal lets i3 and its dual   i3  label the quantum symmetry states. 

The ±1 eigenvalues of i3 label the global parity of the states 
   
Pmn
µ 1 = mn

µ  while the ±1 eigenvalues of   i3  label the 

local parity of the same states as seen below and in Fig. 15.3.2. (Here, µ = A1, A2, or E1.)

 

    

i3 mn
µ  = δ ′m m

′m =1

µ
∑ D ′m m

µ i3( ) ′m n
µ

              =
+ m n

µ  for: m=x

- m n
µ  for: m=y

⎧

⎨
⎪

⎩
⎪
⎪

(15.3.10c)  

    

i3 mn
µ  = δ ′n n

′n

µ
∑ D ′n n

µ* i3( ) m ′n
µ

              =
+ m n

µ  for: n=x

- m n
µ  for: n=y

⎧

⎨
⎪

⎩
⎪
⎪

 (15.3.10d)

 (15.3.10) show the left hand (m)-indices label global symmetry of the "potential-relative" operators g while the 
right-hand (n)-indices label local symmetry seen by "wave-relative" dual operators  g .

(d)  Dual regular representation
 The regular representation of a group operator g is defined by (15.1.15b) and is rewritten here.

  
   
Rh, f

G (g) = h g f = 1 h†g ⋅ f 1 = δh=gf =
1  if: h = g ⋅ f  
0  if: h ≠ g ⋅ f

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= δ

f † =h†g
 (15.3.11a)

Commutivity (15.3.7c) and duality principle (15.3.8) gives a regular representation of dual operators  g .
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Rh, f

G (g) = h g f = 1 h†g ⋅ f 1 = 1 h†f ⋅ g 1 = 1 h†f ⋅g† 1 = δ
h† =gf † = δ f =hg (15.3.11b)

This shows that the dual regular representation is just the ordinary one with row-h switched with row-h† and 
column-f switched with column-f†. 

    
   
Rh, f

G (g) = δ
h† =gf † = R

h† , f †
G (g)     (15.3.11c)

For D3, only r and r2 rows and columns switch as the other operators are self-inverse: 1†=1 and ia†=ia. So, 
regular representation (15.1.15) is easily converted to the following representation of dual operators. 
   

   

    RG (1) =                            RG (r ) =                 RG (r2 ) =                RG ( i1) =                  RG ( i2 ) =                RG ( i3) =        

1

r

r2

i1
i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

            (15.3.11d)
Compare the original set (15.1.15) repeated below. Both sets satisfy the same group table. Furthermore, every 
matrix in the dual set (15.3.11d) commutes with each matrix in the "ordinary" set (15.1.15a) as was postulated by 
the duality commutation requirement (15.3.7c).
  

   

    RG (1) =                            RG (r) =                 RG (r2 ) =                RG (i1) =                  RG (i2 ) =                RG (i3) =        

1

r

r2

i1
i2

i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

            (15.1.15a)repeated 

A quick way to see this (short of multiplying every pair twice) is to note that a non-zero matrix element 

  
h r ⋅ i f = h r if  demands   h = i ⋅ f ⋅r†  or  i ⋅ f = h ⋅r  using (15.3.11b). By the same formula, matrix element 

   
h i ⋅ r f = i†h r f  demands   i† ⋅h = f ⋅r†  or  i ⋅ f = h ⋅r  which is the same. Contrast this with matrix element 

  
h r ⋅ i f = h r if  which demands  h = r ⋅ i ⋅ f  , but this is not the same as the requirement for matrix element 

  
h i ⋅r f = h i rf  for which  h = i ⋅r ⋅ f  . (It is the same only if r and i commute.) So, dual operations exist as much 

as the "ordinary" ones. Matrices (15.1.15) and (15.3.11) satisfy duality postulates (15.3.7) and (15.3.8) no matter 
how you visualize the operators.
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15.4  Hamiltonians Composed and Solved by Dual Operators
 The main idea of symmetry operators g is that they commute with a Hamiltonian H.
       g H = H g       (15.4.1)
In our first application of this idea, eigenstates of a T-matrix (8.2.7) and H-matrix (9.3.5) for a C6-symmetric ring 
"gizmo" were found using C6-symmetry projectors. This worked because the matrices H or T= exp(-iHt) were 
combinations of C6-symmetry operators {1, r, ..., r5}. H naturally commuted with operators {1, r, ..., r5} in C6 
because H was a combination H =H1+Sr+Tr2…+S*r5  of them and was therefore subject to spectral 
decomposition (9.3.5d) by C6-projectors. End of story!
 With non-commutative symmetry such as D3, it is not quite as simple, and indeed, the C6- story was 
simplified a bit, too. A D3  Hamiltonian H matrix or a T-matrix cannot be built by combining symmetry operators 
{1,r, r2,i1,i2,i3} from D3 , since some of them (actually most of them) do not commute with one another.
 The trick is to build a D3 Hamiltonian H matrix or a T-matrix by combining dual symmetry operators in 

   
D3 = 1, r , r2 , i1, i2 , i3{ }  since they all commute with "ordinary" symmetry operators in D3 ={1,r,r2,i1,i2,i3}. It is 

only necessary to linearly combine the dual R( g ) matrices from (15.3.11d) to be guaranteed an H-matrix that 

commutes with all the "ordinary" symmetry operators represented by the R(g) matrices in (15.1.15a). This is done 
here.

      H = H 1 + Rr + R*r2 + L i1 + M i2 + S i3     (15.4.2a)

   

   

RG H( ) =

1

r

r2

i1
i2

i3

H R R* L M S
R* H R M S L
R R* H S L M
L M S H R R*

M S L R* H R
S L M R R* H

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

    (15.4.2b)

Each of the resulting parameters H, R, L, M, and S can be visualized as a coupling or tunneling parameter related 
to the symmetry "path" blazed by the operator it multiplies as sketched in Fig. 15.4.1. These are like the paths for 
the C6-symmetric q-dot "gizmo" sketched in Fig. 9.2.1.
 The new thing here is that now some of the motions characterized by the “paths” do not commute with 
other motions since they belong to a non-commutative group D3. D3 is the smallest non-Abelian group. A vast 
majority of all the possible groups are non-Abelian. (The only exceptions are groups of prime order p which are 
necessarily Abelian cyclic groups Cp.) So the analysis being discussed here is for the symmetry situation more 
likely to be encountered. It is also the more interesting one!
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|1〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

L R*

R

S

M

S = 〈i3|H|1〉=S*

H = 〈1 |H|1〉=H*
R = 〈r |H|1〉

L = 〈i1|H|1〉=L*
R*= 〈r2|H|1〉

M = 〈i2|H|1〉=M*

Fig. 15.4.1 Hamiltonian coupling parameters related to D3 labeled wave coordination states.
 The paths blazed by 180° flips i1,i2, and i3  are labeled by coupling parameters L (for "Long"), M (for 
"Medium") and S (for "Short"), respectively. The paths blazed by ±120° rotations r and r2 are labeled R and R*. 
The new idea here is that “path” operations do not always commute.

(a) Reduction of dual operators: Intertwining matrices
 With the Hamiltonian expressed in terms of dual operators, its reduction or diagonalization will follow 
that of the operators from which it is made. The reduction of dual symmetry operators  g  is similar but not quite 

the same as that of the ordinary operators g. Both sets have the same group multiplication, and so dual spectral 

expansions of  g   into   Pmn
µ  use the same irep coefficients Dµ(g) as the ordinary operator expansions (15.1.20).

 
  
g =

µ
∑

m
∑ Dmn

µ g( )
n
∑ Pmn

µ  (15.4.3a)  
    
Pmn
µ = 

µ

oG
Dmn

µ* g( )
g
∑ g  (15.4.3b)

The duality principle (15.3.8) says dual projectors do the same as ordinary ones with 
  
Pmn
µ → Pnm

µ*  .

 
    
Pmn
µ 1 = 

µ

oG
Dmn

µ* g( )
g
∑ g 1 = 

µ

oG
Dmn

µ* g( )
g
∑ g† 1 = 

µ

oG
Dmn

µ* g†( )
g†
∑ g 1 = Pnm

µ* 1    (15.4.3c)

 The regular representation RP( g ) in P-basis is obtained from RP(g) just as RG( g ) gave RP(g) in (15.3.11). 

Roughly speaking, the relation is “star-and-flip” , that is, a dagger †. State-
 
Pmn
µ  switches with state-

  
Pnm
µ* . 

Again, only two bases, 
  
Pxy

E1  and 
  
Pyx

E1 , get switched, but, if the ireps were complex they would have to be 

conjugated (*), too. (
  
Dxy

E1 → Dxy
E1* )  Transformation (15.3.10b) demands this.

 The result is a duality or pair of intertwining matrix representations shown in (15.4.4) below, one set RP

(g) for global operators and one set RP( g ) for local operators. If RP(g) is block-diagonalized then RP( g ) “block-

expands” as in (15.4.4a-b) and vice-versa in (15.4.4c-d).
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RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx

E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx

E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx

E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx

E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 * g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx

E1*
g( ) ⋅ Dxy

E1*
g( ) ⋅

⋅ ⋅ ⋅ Dxx

E1*
g( ) ⋅ Dxy

E1*
g( )

⋅ ⋅ Dyx

E1*
g( ) ⋅ Dyy

E1*
g( ) ⋅

⋅ ⋅ ⋅ Dyx

E1*
g( ) ⋅ Dyy

E1*
g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

    (15.4.4a)       (15.4.4b)

Putting 
  
Pxy

E1  before 
  
Pyx

E1  "quasi-diagonalizes" the dual representation but "expands" the ordinary one.

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pxy

E1     Pyx
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx

E1 g( ) ⋅ Dxy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dxx

E1 ⋅ Dxy

E1

⋅ ⋅ Dyx

E1 g( ) ⋅ Dyy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dyx

E1 ⋅ Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, 

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1           Pyy

A2          Pxx
E1        Pxy

E1           Pyx
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 * g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx

E1*
g( ) Dxy

E1*
g( ) ⋅ ⋅

⋅ ⋅ Dyx

E1*
g( ) Dyy

E1*
g( ) ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx

E1*
g( ) Dxy

E1*
g( )

⋅ ⋅ ⋅ ⋅ Dyx

E1*
g( ) Dyy

E1*
g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

    (15.4.4c)       (15.4.4d)

 Transformations T or  T  reduce the group g-based regular representations (15.1.15) and (15.3.11) down to 
the P-based representations. This is simply the change-of-basis between group defined coordination bases {..|g〉} 

(15.3.4) and 
 

Pmn
µ  bases (15.3.5). To be precise, T is the matrix made of the rows in (15.3.5a) and T† is the matrix 

made of the columns in (15.3.5b).  T  is just T with the fourth (
  
Pxy

E1 ) and fifth (
  
Pyx

E1 ) rows switched.

 In either basis, any two matrices RP(h) and RP( g ) commute with each other for all g and h, as do the 

group-based regular representations RG(h) and RG( g ). Here we verify commutation directly; non-diagonal 2-
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by-2 blocks of one RP must commute with diagonal multiples of the unit matrix in the same matirx blocks of 
their dual counterparts. It is a remarkable structure. Now we put it to work!

(b) Reduction of a Hamiltonian
 From (15.4.4d) comes a reduction of the D3 Hamiltonian matrix (15.4.2b) to the following form.

   

   

                                       Pxx
A1  Pyy

A2   Pxx
E1    Pxy

E1   Pyx
E1   Pyy

E1     

RP H( ) = TRG H( )T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ H A2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ H yx

E1 H yy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ H yx

E1 H yy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (15.4.5a)

Eigenvalues HA1, HA2 or HE1-elements are derived by writing (15.4.2a) using representation (15.4.4d). 

 

   

H A1 = HD A1* 1( ) + RD A1* r( ) + R*D A1* r2( ) + LD A1* i1( ) + MD A1* i2( ) + SD A1* i3( )
        =H  +R+R*+L+M +S

H A2 = HD A2 * 1( ) + RD A2 * r( ) + R*D A2 * r2( ) + LD A2 * i1( ) + MD A2 * i2( ) + SD A2 * i3( )
        =H  +R+R*-L-M -S

Hxx

E1 = HDxx

E1*
1( ) + RDxx

E1*
r( ) + R*Dxx

E1*
r2( ) + LDxx

E1*
i1( ) + MDxx

E1*
i2( ) + SDxx

E1*
i3( )

        =H  - 1
2

R- 1
2

R*- 1
2

L- 1
2

M +S

Hxy

E1 = HDxy

E1*
1( ) + RDxy

E1*
r( ) + R*Dxy

E1*
r2( ) + LDxy

E1*
i1( ) + MDxy

E1*
i2( ) + SDxy

E1*
i3( )

        =0 - 3
2

R+ 3
2

R*- 3
2

L+ 3
2

M +0=H yx

E1*

H yy

E1 = HDyy

E1*
1( ) + RDyy

E1*
r( ) + R*Dyy

E1*
r2( ) + LDyy

E1*
i1( ) + MDyy

E1*
i2( ) + SDyy

E1*
i3( )

        =H  - 1
2

R- 1
2

R*+ 1
2

L+ 1
2

M -S

(15.4.5b)

Evaluation of H-matrix elements requires only the first row 
 
1 H g  of the Hamiltonian matrix (15.4.2).

     
   
Hab

µ
=

g=1

°G
∑ 1 H g Dab

µ*
g( )     (15.4.5c)

This reduction gives the two singlet eigenvalues.  

   H
A1 =H  +2 Re R+L+M +S ,  (15.4.5d)     H

A2 =H  +2 Re R-L-M -S  (15.4.5e)
Then a pair of identical two-by-two matrices may, if L≠M or ImR≠0, still need further diagonalization.

  

  

Hxx

E1 Hxy

E1

H yx

E1 H yy

E1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
H − Re R+S  - L+M

2
− 3 L-M

2
+ i Im R

⎛
⎝⎜

⎞
⎠⎟

− 3 L-M
2

− i Im R
⎛
⎝⎜

⎞
⎠⎟

H − Re R-S  + L+M
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  (15.4.5f)
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(1 ) Non-commutative spectra: Mandatory degeneracy
 This is as far as a non-commutative symmetry analysis can go without further information. Just as the 
regular representation of group cannot be completely diagonalized, so also will a complete analytic 
diagonalization of the general dual operator set be impossible. Unlike the commutative or Abelian C6 
eigenvectors in Ch. 9, the non-commutative E1 symmetry eigenvectors are not set in stone but depend on internal 
coupling parameters. This is an important difference between commutative and non-commutative symmetry 
calculations.
 Another more widely known difference is mandatory degeneracy. No matter what the (real) values of the 
parameters H, ReR, ImR, L, M, and S, the two E1 eigenvalues must remain degenerate because of the two 
identical 2-by-2 matrices (15.4.5f) in the Hamiltonian matrix (15.4.5a). Even if the R parameter is complex the E1 
levels stick together and remain doublets. For C6 symmetry, Zeeman splitting happens if tunneling is complex, 
(Recall discussion of Fig. 9.3.2), but not if D3 (or D6) symmetry is present. (Complex L, M, and S would bust D3 
down to C3 and make a non-conservative H≠H†.) Dual operator analysis proves, en passant, the degeneracy 
theorem: 

        Irreducible G-symmetry representations of dimension µ project eigenstates of at least
     degeneracy µ for all Hamiltonian operators with G symmetry.

(2 ) G*G Super-symmetry

 While µ-symmetry eigenstates cannot have less degeneracy than µ, it is possible to have greater 
degeneracy for some parameter values. A "super" degeneracy arises when a Hamiltonian H commutes with both 
g in its symmetry G and all  g  in its dual symmetry  G , in what is  G × G  symmetry. Such an all-commuting H 

must be a combination of all-commuting projectors Pµ, and each Pµ reduces to µ identical multiples of µ-by-µ 
unit matrices or an (µ)2 degeneracy. This proves a super-degeneracy theorem.
        Irreducible G-symmetry representations of dimension µ project eigenstates of at least
    degeneracy(µ)2 for all Hamiltonian operators with  G × G  symmetry.
 The Hamiltonian (15.4.2) has   D3 × D3  symmetry with equal tunneling parameters (L=M=S) and real 

rotational tunneling (R*=R). Such an H is a combination of classes c1, cr, and ci or PΑ1 , PΑ2, and PΕ1 . Because 
of this, both E1 eigenvalues have to join into a single value (eE1=H-R) with a degeneracy of four.
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(c) U(2) Analysis of local symmetry
 As may be done for any two-state system, a U(2) analysis of the residual Hamiltonian matrix (15.4.5f) 
helps to derive and characterize eigensolutions. Here the complex rotational coupling is written: R=ρ + iI. The 
Hamilton-Jordan-Pauli spin vector expansion (10.1.7) is carried out on the H-matrix.

    

               H /                                   = 1
2

A+ D( )    σ 0   + 2B  SB  + 2C   SC  + A− D( )   SA  

               H /                                           =    Ω0    σ 0   + ΩB   SB + ΩC   SC       + ΩA   SA  

H − ρ+S  - L+M
2

− 3 L-M
2

+ iI
⎛
⎝⎜

⎞
⎠⎟

− 3 L-M
2

− iI
⎛
⎝⎜

⎞
⎠⎟

H − ρ-S  + L+M
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= H − ρ( )1− 3 L-M
2

σ X +   IσY +  2S − L-M
2

σ Z

                                                          =    H − ρ( )  σ 0 − 3 L-M( )SB +2I  SC+ 2S − L-M( )SA

(15.4.6)

 If R coupling is real (I=0) and intra-well coupling S dominates inter-well amplitudes (S>>M>L) then the 
Hamiltonian crank vector Θ=Ωt makes only a small angle ϑ with the A-axis (or Pauli-Z-axis). There can be only 
a tiny sin ϑ component along the B-axis (Pauli-X-axis). With (I=0) there can be no circular or C-axis component 
at all, so azimuth is zero (ϕ=0). Combining equations (10.5.20) and (10.5.25) with (15.4.6) above gives Ω.

  

   


Ω = ΩB ΩC ΩA( ) = Ω sinϑ 0 cosϑ( ) = 3 M -L( ) 0 2S − L− M( )( )
where: Ω = ΩB

2 +ΩA
2 = 2 S2 − S L+ M( ) + M M -L( ) + L2 ≅ 2S

 and:    Ω0 = H − ρ

 (15.4.7)

This means that the H-eigenvectors, which have spin vectors aligned or anti aligned to Ω, are the following 
nearly-spin-up (+A) and nearly-spin-down (-A) states. (Here (10.5.8a) is used with β=ϑ and α=ϕ=0.)

 

  

ε +( ) =
cosϑ

2

sinϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

≅ 1
0

⎛

⎝⎜
⎞

⎠⎟
 ,        ε −( ) =

− sinϑ
2

cosϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

≅ 0
1

⎛

⎝⎜
⎞

⎠⎟
 ,  where:  tanϑ =

3 M − L( )
2S − L − M

<< 1  (15.4.8a)

The corresponding eigenvalues are

 
  
ε +( ) =Ω0 +

Ω
2

≅ H -ρ+S  ,        ε −( ) =Ω0 −
Ω
2

≅ H -ρ-S.    (15.4.8b)

So, the eigenstates are nearly equal to the D3 projected states since H is nearly diagonal.

  

  

ε +( ) = cosϑ
2 mx

E1 + sinϑ
2 my

E1  ,        ε −( ) = − sinϑ
2 mx

E1 + cosϑ
2 my

E1  

         ≅     mx
E1                         ,                 ≅     my

E1     (where: m = x, y)
 (15.4.8c)

 Eigenstates will have local symmetry which approximates that of local x and y components, that is, 
symmetry and anti-symmetry, as seen in Fig. 15.3.3 (sketched in Fig. 15.3.2). Local wave symmetry in each well 
depends on relative strength of the local or "Short" coupling coefficient S versus distant (and presumably weaker) 
coupling connections M ("Medium") and L ("Long") in Fig. 15.4.1.
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 Building a barrier in the middle of the well or reducing the barriers between the wells would change the 
relative magnitudes of these parameters and alter the local symmetry of eigenstates and energy. Local symmetry 
labeled by right indices (n=x,y) in state 

  
Pmn

E1  will vary as the internal locale changes.
 But, global symmetry, the "other side of the coin," is determined by the left indices (m=x,y) in state 

  
Pmn

E1  . Taking linear combinations of eigenstates with different m-values, m=x or m=y, makes a full U(2)-ABC 
range of possibilities from A-type standing waves with global x and y symmetry (as in Figs. 15.3.2 and 15.3.3), or 
else C-type moving waves, or AB-type standing waves that stand partly in and partly out of the barriers, or even 
ABC-type galloping waves. The mandatory global degeneracy of the D3 symmetry demands that this great U(2) 
variety of global wave shapes all have exactly the same energy!
 Dual space eigenvector analysis resolves apparent conflicts between global and local symmetry. In 
particular, the state 

  
Pxy

E1   has symmetric (x) global symmetry but anti-symmetric (y) local symmetry. The state 

  
Pyx

E1   has the same conflict vice-versa. This is a conflict with respect to the well (or barrier) on the x-axis 
because that is the one which has the axis of the global i3 operator that was chosen to be diagonal and therefore i3 
eigen-values determines global symmetry about the x-axis according to (15.3.10c). Having chosen i3 for this job 
automatically makes the dual operator   i3   the one which determines local symmetry according to (15.3.10d) in all 
the wells including the one containing both i3 and   i3 . 
 For the "local-conflict states" 

  
Pxy

E1  or 
  
Pyx

E1  , the wave in the well (or barrier) on the x-axis must be both 
symmetric and anti-symmetric. The only way this can happen is if the wave in this particular well is identically 
zero as in the sketches in Fig. 15.3.2. The wave is "forbidden" to occupy the well in conflict. But, the numerically 
"exact" wavefunctions in Fig. 15.3.3, particularly for the higher energy state 

  
Pxy

E1 , show a small amount of wave 
in the "forbidden" well and in each case it has the "wrong" local symmetry.
 The eigenstates (15.4.8) explain what has happened. A small (sinϑ/2<<1) component with the "wrong" 
symmetry will be present in any state that has the slightest connection to the world outside of the well in 
question. The situation is analogous to the "non-resonant eigenchannels" in Fig. 14.1.13 which always have the 
opposite symmetry of their resonant partners with the same energy. The non-resonant eigenchannel waves have 
relatively small amplitudes inside the regions where their resonant partners are enormous, but then the job of the 
non-resonant state is to maintain a big wave presence outside where the resonant waves are relatively small or, in 
the “bound-state” limit, practically non-existent. 
 In the D3 wells the "wrong" local symmetry components are needed to keep the wave alive inside the 
"conflicting" wells and to "grow-up" and contribute to the required global symmetry outside the well. This 
"wrong-local-symmetry" component becomes dominant as the energy rises or the walls come down and the 
concept of "locality" loses its meaning since waves are no longer so trapped. When the walls are gone only global 
symmetry maintains a physical significance. Nothing is left to define relative location. We'll say it again; local or 
dual symmetry considerations are powerful and anything but trivial!
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15.5 D6 symmetry and Hexagonal Bands
  Hexagonal D6 symmetry is made by combining groups C2 and D3. This is one of those rare and welcome 
cases where such a combination is a cross product: D6  is the product D3 ×C2 of D3 and C2. 
     D6  = D3 ×C2  = {1, r, r2, i1, i2, i3 }×{1, Rz}     (15.5.1a)
The C2 ={1, Rz}group has the 180° z-axis rotation Rz. Both elements of C2 commute with all elements of D3 =
{1, r, r2, i1, i2  i3 }because classical orthogonal 180° rotations commute ( Rz ia = ia  Rz, just like in D2.) as do 
co-axial z-rotations ( Rz rn = rn  Rz). So derivation of D6  group and irep properties is reduced to simple 
multiplication and tabulation. First, we do the × product and identify operations in Fig. 15.5.1. 
   D6  = D3 ×C2  = {1,  r,   r2, i1, i2  i3 , 1.Rz, r.Rz, r2.Rz, i1.Rz, i2.Rz, i3 .Rz}   (15.5.1b)
   D6  = D3 ×C2  = {1, h2, h4, i1, i2  i3 ,  h3,    h5,     h ,      j1,      j2,      j3    }   (15.5.1c)
Recall from the D2. group in Fig. 3.6.1 that a product of two orthogonal 180° rotations like i3 .Rz is another 180° 
rotation, in this case j3, around the axis orthogonal to the other two. Also, the product of ±120° z-rotations r and 
r2 with Rz is another z-rotation by 180°±120°, or a 300° rotation labeled h5 = r.Rz and a 60° rotation labeled h = 
r2.Rz. The latter is the hexagonal generator h of subgroup C6 ={1, h, h2, h3, h4  h5} Note: h3 = Rz and h2 = r.

i1

h(60°)

i3i2

D6
j1 i2

j3 j2

j1
i3

i1 j3j2
j3

h2
h3

h4 h5

h(60°) x

y

z

 Fig. 15.5.1  D6 symmetry operations generated by D3 and C2.

 Fig. 15.5.1 shows that the "old" 180° flip-over rotations {i1, i2, i3 } from D3 now rotate around barrier 
centers while the "new" 180° flip-over rotations {j1, j2, j3 } in D6 rotate around well centers. Again, remember 
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that these do not flip over the potential plot. The potential is an electrostatic or molecular potential and doesn't 
care which way is "up." Wells remain wells, and barriers remain barriers under all D6 operations.
 The cross product of the C2 and D3 characters (15.1.13) lead to a complete set of D6 =D3 ×C2 characters 
just as we get C2 ×C2 = D2  characters from those of two C2 groups in (15.1.4).  

   

D3 1 r,r2{ } i1,i2,i3{ }
χ A1 g( ) 1 1 1

χ A2 g( ) 1 1 −1

χ E1 g( ) 2 −1 0

  ×   
C2

z 1 Rz

( A) 1 1
(B) 1 −1

  =  

D3 ×C2
z 1 r,r2{ } i1,i2,i3{ } 1 ⋅Rz r,r2{ } ⋅Rz i1,i2,i3{ } ⋅Rz

A1 ⋅( A) 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1

A2 ⋅( A) 1⋅1 1⋅1 -1⋅1 1⋅1 1⋅1 -1⋅1

E1 ⋅( A) 2 ⋅1 -1⋅1 0 ⋅1 2 ⋅1 -1⋅1 0 ⋅1

A1 ⋅(B) 1⋅1 1⋅1 1⋅1 1⋅(−1) 1⋅(−1) 1⋅(−1)

A2 ⋅(B) 1⋅1 1⋅1 -1⋅1 1⋅(−1) 1⋅(−1) -1⋅(−1)

E1 ⋅(B) 2 ⋅1 -1⋅1 0 ⋅1 2 ⋅(−1) -1⋅(−1) 0 ⋅(−1)

 

   

                                                      =   

D6 × C2
z 1 h2 ,h4{ } i1, i2 , i3{ } h3 h,h5{ } j1, j2 , j3{ }

A1 1 1 1 1 1 1

A2 1 1 -1 1 1 -1

E2 2 -1 0 2 -1 0

B2 1 1 1 -1 -1 -1

B1 1 1 -1 -1 -1 1

E1 2 -1 0 −2 1 0

   (15.5.2)

 The Cartesian coordinates are arranged so that the 180° i3 axis lies on the x axis and the j3 flip-over axis 
then goes along the y-axis. The three orthogonal 180° rotations h3, j3, and i3 make a D2 subgroup of D6 .
    D2 (x,y,z) = { 1, Rz , Ry , Rx } = { 1, h3, j3, i3}    (15.5.3)
It is these operation that we prefer to "favor" as "chosen" to have diagonal ireps. Also, it is the first two 180° 
rotations, h3 and j3, that are chosen to label "A" or "B-ness" and "1" or "2-ness" of singlet states. 
 Flip j3 is chosen since it's on the y-axis and, as shown in Sec. 10.2c, y-or-C-rotations are the only ones 
that have real rotation matrix representations. (Jordan-Hamilton generator σY is the only pure imaginary σ, so RY
(β) = e-iσYβ/2 is the only real rotation R.) Avoidance of complex parity assignments is behind this convention. So 
A2 and B2 go with (-1) j-eigenvalues in (15.5.2), while A1 and B1 go with (+1) j-eigenvalues. Meanwhile,  A1 and 
A2 go with (+1) h-or h3-eigenvalues, while, B1 and B2 go with (-1) h-or h3-eigenvalues.
 To understand the E1 and E2  labeling (which looks out of place in (15.5.2)) or, for that matter, any Em 
labeling for a general DN irep, we need to look closely at the fundamental generator h for z-rotation by angle 2π/
N (For D6 this angle is 2π/6=60°). All Em ireps have complex conjugate pairs of eigenvalues that are the m-th 
multiples of the first of the N-th roots of unity, that is, the m-th CN character labeled by ±mN=±m-modulo-N in 
the CN tables (N=1, 2,,..., 6) of Fig. 7.3.3. These are the m-th Bohr-Bloch wave function pairs. The first and 
lowest Bohr doublet has to quantum numbers m=±1 of the 2-by-2 irep E1.

     
   

DE1 h( ) = +16 h +16 +16 h −16

−16 h +16 −16 h −16

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= e−i2π /6 0

0 e+i2π /6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

ε−1 0

0 ε+1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= DE1† h−1( )  (15.5.4a)
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For N=6 there is one more 2-by-2 irep of D6  labeled E2 . It belongs to Bohr quantum numbers m=±2.

    
   

DE2 h( ) = +26 h +26 +26 h −26

−26 h +26 −26 h −26

⎛

⎝
⎜
⎜

⎞
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= e−2i2π /6 0

0 e+2i2π /6

⎛
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⎞

⎠
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=

ε−2 0

0 ε+2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= DE2† h−1( )  (15.5.4a)

The trace of E1 and E2  confirms their character values in the {h,h5} column of D6  table (15.5.2).

    
   

Trace DE1 h( ) = ei2π /6 + e−i2π /6  ,   

        = 2cos 2π / 6   = 1= χ E1 h( ).
  (15.5.5a)  

   

Trace DE2 h( ) = ei4π /6 + e−i4π /6

      = 2cos 4π / 6 = −1= χ E2 h( )
  (15.5.5b)

The representation of D6  rotation h for Bohr quantum numbers m=±3 is just -1 . 

     
   

+36 h +36 +36 h −36

−36 h +36 −36 h −36

⎛

⎝
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= e−3i2π /6 0

0 e+3i2π /6

⎛

⎝
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0 −1
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⎝⎜
⎞

⎠⎟
  (15.5.6)

No E3  label is needed for D6  because the C6  waves 36 and -36 are identical C6  labels since ±3 mod 6 =   3. 
For D6  the values m=±3 correspond to 1st Brillouin band boundary B1 and B2 -waves. Recall the B1 and B2  
"band-gap" levels in the N=6 side of Fig. 14.2.8. (See below how 〈36|g|36〉 reduces to B1 and B2.)
 No higher E4 or E5 labels are needed for D6, either. E4 is just E2 and E5 is just E1 since ±4 mod 6 =   2 
and ±5 mod 6 =   1. Em-labeling stops with m just short of half-way to N, and for even-N, the m=N/2 waves are 
B-type "Back-and-forth" waves. (D3 has no B's since N=3 is odd. See N=3 side of Fig. 14.2.8.)
 Once again, we pick which 180° rotation will directly convert a left-moving wave base |+m6〉 into a right-
moving base |-m6〉 and vice-versa. For D6  it’s convenient to let the sine and cosine parts have a node and anti-
node, respectively, on the x-axis or i3 axis, that is, let: i3 |+m6〉 = |−m6〉 and i3 |−m6〉 = |+m6〉.

 
   

DEm i3( ) = +m6 i3 +m6 +m6 i3 −m6

−m6 i3 +m6 −m6 i3 −m6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
 ,    DEm j3( ) = (−1)m DEm i3( )  (15.5.7)

Then other representations of D6 are found by the D3 group table in Fig. 15.1.2 and matrix multiplication of 
(15.5.4) through (15.5.7), or else we use the cross product relation D6  = D3 ×C2  and D3  irreps.
 Circularly polarized moving-wave Em bases{|+m6〉, |−m6〉}are related to real cosine-and-sine (linearly 
polarized) standing wave bases {|cm6〉, |sm6〉}by √2 |±m〉 = |c〉±i|s〉 or e±imφ=cos mφ ± i sin mφ.

  
  

cm6 =   +m6 +  −m6( ) / 2  ,              +m6 = cm6 + i sm6( ) / 2

sm6 =   +m6 −  −m6( ) / i 2,              −m6 = cm6 − i sm6( ) / 2
 (15.5.8)

Then DEm(h) becomes a real rotation matrix while the y-axis 180° flip j3 representation becomes diagonal . 
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E1 h( ) = cm6 h cm6 cm6 h sm6

sm6 h cm6 sm6 h sm6
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⎜
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⎜
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⎟
⎟
⎟
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⎛

⎝
⎜
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⎞

⎠
⎟
⎟
= 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟

     (15.5.9a)      (15.5.9b)
For m=±3, the |±m6〉-bases do not support an irreducible representation. It reduces to B1 and B2 ireps.
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     (15.5.9c)     (15.5.9d)
This is a subtle effect demanded by D6 symmetry: for |m|=3, moving wave {|+m6〉, |−m6〉} bases are forbidden to 
be eigenstates and required to combine into cosine and sine standing wave {|cm6〉, |sm6〉} bases which belong to  
B1 and B2 singlets of differing energies. The E3 , E4 , E5 or higher doublet labels are not used by D6 symmetry. 
Since 4 mod 6=-2, E4 is just E2 , and 5 mod 6=-1 means E5 is E1 .
 All DN  symmetries with even-N will place similar requirements on the quantum states with |m|=N/2 
found at the first Brillouin band boundary. The band sequence for general even-N is as follows
  A1 , E1 , E2 , E3 ,  ..., EN/2-1 , B1 (gap) B2 , EN/2-1 ,..., E3 , E2 , E1 , A2  (gap)...[repeat]  (15.5.10a)
The band sequence for odd-N is about the same but without B-boundaries on the odd-numbered gaps.
  A1 , E1 , E2 , E3 ,  ..., E(N-1)/2  (gap)  E(N-1)/2 ,..., E3 , E2 , E1 , A2  (gap)...[repeat]     (15.5.10b)
This structure is seen in Fig. 14.2.8 and will be encountered again in discussions which follow.
The D6 ireps (15.5.1) are constructed following the cross product structure used in (15.5.2). Note j3.
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            (15.5.10)
 Examples of D6 eigenfunctions for a KP potential of height V=30 Bohr units is shown in Fig. 15.5.2. The 
lower band can be compared to the lower half of the D3 bands shown in Fig. 15.3.3. The E2 waves of D6 are 
similar to the E1 waves of D3, and, of course, the A1 waves are similar, too. Missing from Fig. 15.3.3 are the B1 
waves allowed for D6 in Fig. 15.5.2.
 The second band shown in Fig. 15.5.2 has quite a different look because it lies above the potential 
barriers. The lowest  wave has nearly flat waveforms in the barrier region because it is barely above them. It 
resembles a low-KE "grazing" wave such as was shown back in Fig. 13.1.4(a). Greater freedom to move over the 
barrier causes the local symmetry to become more mixed up as discussed after (15.4.8). 
 As local symmetry loses its definition, the Bohr angular momentum quanta m± regain theirs. The (m=6)-

A2 wave is very nearly a pure m=6 standing wave. For lower states like 0+A1 or 1-E1 the Fourier components 
m=0 and m=1 aren't the only ones in the waves. Clearly, 0+A1  has some 6+A1 mixed into it. Each state may be 
viewed as a Fourier series of Bohr states. We discuss quantum band wave Fourier analysis in the following 
Chapter 16. 
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1±E1(x)

2±E2(a)

3-B1

1±E1(y)

2±E2(b)

5±E1(x)

4±E2(a)

3+B2

6-A2

0+A1

5±E1(y)

4±E2(b)

-y -x

y

x y -y x y -x -y

Fig. 15.5.2 Lowest twelve N=6 KronigPenney eigenfunctions. (Top-to-bottom V=30)
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Problems for Chapter 15.
A Complete Completeness
15.1.1. The D-orthogonality relation (15.1.30) needs a completeness relation to go with it. Can you derive one? If so, do it, or 
else explain why not.

|1〉
x

y

|i3〉
SL

R

R*

M
N

Q

|1〉
x

y

|i3〉

The Square Deal
15.3.1. The analysis of D3 needs to be extended to the group D4 of a tetragonal 4-well ring.
(a) Derive an 8-by-8 D4 group table like Fig. 15.1.2. (Construct an operator/state diagram.) Give a standing wave and moving 
wave irrep analogous to (15.1.8) and (15.1.10) and check it works for some products. 
(b) Derive the D4 class algebra analogous to (15.2.1) and reduce it so a complete D4 character table is found. First, how 
many classes? (It should be more than four.) 
(c) Determine the rank of D4. Write out all the D4 irrep projectors for the standing wave choice of basis that diagonalizes all 
elements of the D2 subgroup from Fig. 15.1.1. Label your D4 results using the standard labels A1, B1, A2,  ...En-1, for D2n 
groups. (Let A(B) parity be +(-) for Rz(90°), and 1(2) parity be +(-) for Rx(180°).)
(d) Use the irrep projectors to produce a complete set of D4 band states and sketch them in a way analogous to Fig. 15.3.2 or 
3. (You may use actual solutions from previous problems.)

   
The Square Deal Continued
15.4.1. Apply analysis of the group D4 of a tetragonal 4-well quantum ring as was done for D3.
(a) Derive  8-by-8 D4 dual regular representations like (15.1.15a) and (15.3.11d) for D3. 
(b) Derive the D4 Hamiltonian analogous to (15.4.2b) based on the Fig. 15.3 above, and reduce to 2-by-2 blocks. 
(c) (Extra Credit optional)   Do a U(2) analysis of the residual 2-by-2 Hamiltonian matrix or matrices.
(d) Give eigensolutions if only S and M are non-zero. Consider S>>M and M>>S.
(e) Give eigensolutions if only S and R=R*  are non-zero. Consider S>>R and R>>S.

         A Super-Degenrate Square Deal 
        15.4.2. Let the Hamiltonain of the tetragonal 4-well quantum ring have symmetry   D4 × D4 .

(a) What form does its Hamiltonian matrix have in the original group basis?
(b) What form do the eigensolutions take? If possible, give answer in closed form.

_____________________________
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Standing Hexes
15.5.1. Consider the real standing-wave ireps of D6 given by (15.5.10). 

(a) Use these to construct a 12-dimensional model set of band eigenstates 
 
Pab

Em  analogous to the D3 model of (15.3.5).

(b) Construct a sketch of them analogous to Fig. 15.3.2. Tell which could be like electric dipoles and which like electric 
quadrupoles if mixed with the A1 ground state. Also, compare them to the numerical plots of Fig. 15.5.2 noting local vs. 
global symmetry.

Moving Hexes
15.5.2. Consider complex moving-wave ireps of D6 . 

(a)  Make a set of complex moving-wave ireps of D6 using the complex D3 irep (15.1.8).
Note, in particular the representations of i3  and j3. Compare them to a convention stated by (15.5.7). Are they the same or 
different? Comment.

(b) Use these to construct a 12-dimensional model set of moving band eigenstates 
 
Pab

Em  analogous to the D3 model of 

(15.3.5).

(c) Using phasor "clocks" or any other diagrammatic ruse, construct a sketch of the 
 
Pab

Em  states.

Coset sets
15.5.3. Consider left cosets of subgroups of D6 as described below.

(a). List the left cosets: l-coset 1= C6, , l-coset 2 =  j3 C6, where C6 ={1, h, h2, h3, h4  h5}. Let the order of operators listed 
in coset 1 determine the listing order in coset 2.
(b). List the E1 and E2 ireps derived in Exercise 15.5.2 in the order of the cosets in 3(a), one coset above the next. Note any 
repetition of matrix structure.
(c) List the left cosets: l-coset 1= C2, , l-coset h =  h C2,, l-coset h2 =  h2 C2, ... l-coset h5 =  h5 C2,, where C2 ={1, j3}. Let 
the order of operators listed in coset 1 determine the listing order in the other cosets.
(d). List the E1 and E2 iireps derived in Exercise 15.5.1 in the order of the cosets in 3(c), one coset above the next. Note any 
repetition of matrix structure.
(d) In either case (a) or (c), are left cosets the same sets as right cosets.
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Chapter 16

Fourier Analysis of 

Periodic Potentials and States

W. G. Harter

Continuously varying periodic potentials V(x)=V(x+a) over an unbounded (-∞<x<∞) continuum 
may be treated using continuum Fourier analysis introduced in Chapter 7. Fourier or k-space 
analysis competes favorably with x-space representations when the potential V(x) varies 
continuously, while the x-space analysis used in Chapters 12 through 14 is better for potentials 
with discontinuos steps. If the x-continuum is bounded or periodic (-π<x<π)  Fourier k-space 
becomes discrete as discussed in Chapter 7. If the x-space is discrete and bounded (x0<xp< 
xN-1)  then so is Fourier k-space as discussed in Chapters 8 and 9. Here the two cases are 
exploited to gain computational power and physical insight into x-space-k-space lattice waves.
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Chapter 16. Fourier Analysis of Periodic Potentials and States

16.1. Fourier Analysis of Mathieu Potential
 The C-matrix and S-matrix analysis of potential barriers and wells is complemented by another theoretical 
technique based on Fourier series. The crossing-C-matrix used in Chapters 13 through 14 are best suited for 
piecewise constant or "square" barriers with long flat wells or barriers that approximate "quantum wells" and 
superlattices. On the other hand, continuously varying potentials such as
     V(x) = V0 cos υx        (16.1.1)
are more easily analyzed using Fourier theory. Indeed, the Schrodinger wave equation for the simple cosine 
potential (16.1.1) is called Mathieu's equation.

    
  

d2ψ
dx2

+ A E −V cos(2x)⎡⎣ ⎤⎦ψ = 0      (16.1.2)

This will be treated first and then compared with other more general potential structures including the Kronig 
Penney square lattices previously discussed.

(a) Mathieu potential and analogous parametric amplification
  The Mathieu equation (16.1.2) is of considerable interest in a wide range of applications. If the 
independent variable is time t , the (16.1.2) becomes an equation for nonlinear resonance or parametric 
amplification. This process has to be understood in a number of classical devices such as the alternating gradient 
synchrotron. It can be compared to ordinary linear resonance by using a simple string and pendulum model 
shown in Fig. 16.1.1. Ordinary resonance corresponds to wiggling the pendulum support horizontally as shown in 
Fig. 16.1.1(a) while parametric resonance corresponds to a vertical wiggle, that is, an oscillating effective gravity 
field such as one might experience riding an Einstein's elevator (or roller-coaster) furiously pumping up and 
down. Let us see how to analyze these motions.

 

X

Y

X-stimulated pendulum:
(Quasi-Linear Resonance)

X

Y

Y-stimulated pendulum:
(Non-Linear Resonance)

φφ



Fig. 16.1.1 Two cases for accelerated pendulum (a) Linear or additive. (b) Nonlinear or multiplicative.

 The classical equation for the motion of a pendulum in an effective   g
eff  field is the following.
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d2φ
dt2

−
gx

eff


cosφ +

gy
eff


sinφ = 0     (16.1.3)

For small angles (cos φ~1 and sin φ~φ ) this reduces as follows for the two cases indicated in Fig. 16.1.1.

    
   

d2φ
dt2

+
gy

eff


φ =

gx
eff


      (16.1.4)

First, x-stimulation by geffx=Axωx2 cos ωx t acts additively to give linear resonance in constant y-gravity g.

    
   

d2φ
dt2

+ g

φ = −

ω x
2 Ax


cos(ω xt)     (16.1.5a)

Second, y-stimulation by geffy=Ayωy2 cos ωy t  acts multiplicatively to give non-linear resonance.

    
   

d2φ
dt2

+ g

−
ω y

2 Ay


cos(ω yt)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ = 0     (16.1.5b)

The latter has the same form as the Schrodinger-Mathieu equation (16.1.2). This shows once again that while 
quantum theory, by itself, is a linear theory, the imposition of outside forces cause a non-linear parametric or 

multiplicative variation of the equation. Doubling the acceleration Ax in (16.1.5a) simply doubles the response φ
(t) to 2φ(t), but a doubling of Ay in (16.1.5b) gives a completely different φ(t). (A solution ψ(x) for a potential V
(x) such as in Fig. 14.2.7 clearly is not 2ψ(x) for a potential 2V(x).)
(1) Mathieu eigensolutions
  We start with the Mathieu equation in either of the following two forms.

   
   
− d2φ

dx2
+V cos(nx)φ = Eφ  ,        D2 + V( ) φ = E φ    (16.1.6)

The (V=0)-eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves.

 
  

x m = φm(x) = e±i mx

2π
,   (16.1.7a)  

  
t ω = φω (t) = e±iω0t

2π
. (16.1.7b)

Bohr-ring eigenvalues as given in Bohr units by (7.1.16) are analogous to the pendulum frequency values

 
   
 E=m2 Bohr units of π22

2MA2

⎛

⎝
⎜

⎞

⎠
⎟  (16.1.7c)  

  
ω0 = g


  (16.1.7d)

The Bohr-ring problem uses periodic boundary conditions by restricting x between 0 and L=2A and demanding 
the wave repeat every L. Doing the same for the pendulum amounts to demanding that the time function repeat 
perfectly after a time T for two wiggles. This leads to quantization conditions for Bohr orbitals and restricts the 
allowed pendulum frequency to harmonics of a fundamental frequency 2π/T. 

     
  
φ(0) = φ(L) ⇒eikL = 1,  or: k= 2πm

L
  (16.1.8a)    

  
φ(0) = φ(T ) ⇒eiω0T = 1,  or: ω0 = 2πm

T
  (16.1.8b)

 If coordinate x is taken as polar angle x=φ , the Bohr orbital angular range limit is 2π. To simplify 
notation we use this limit L=2π=T in both analogies. Then the allowed (V=0)-energies and frequencies are
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E = m2 2

2M

⎛

⎝
⎜

⎞

⎠
⎟ = 0,1,4,9,16... 

2

2M

⎛

⎝
⎜

⎞

⎠
⎟  (16.1.9a)           ω0 = m = 0, ±1, ±2, ±3, ±4,...  (16.1.9b)

This definition uses lattice spacing A=π for the two-well case (N=2) first discussed after Fig. 14.2.8.
The k-space or Fourier representation of the Schrodinger eigenequation is

    
   

j∑ D2 + V( ) k k φ = E j φ ,    (16.1.10a)

where energy E and potential V are given in Bohr units as are the k-space kinetic energy matrix elements

    
   

j D2 k = k2δ j
k .      (16.1.10b) 

Orthonormality relations (7.1.5) to (7.1.10) are used with L=2π. The potential matrix elements use the same units 
and wavefunctions (2.7.7).

   

   

j V k = dφ
0

2π
∫

e−i jφ

2π
V cos(Nφ) ei kφ

2π
= dφ

0

2π
∫

e−i j−k( )φ
2π

V e−i Nφ + ei Nφ

2

            = V
2

dφ
0

2π
∫

e−i j−k+N( )φ
2π

+ e−i j−k−N( )φ
2π

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= V
2

δ j
k−N + δ j

k+N( )
 (16.1.10c)

The resulting matrices represent the Mathieu (cosine) potential eigenvalue problem for any number N of wells in 
a ring. We begin with the case of two wells (N=2) as was done in Sec. 14.2 (b). Indeed, the usual form (16.1.2) of 
Mathieu's equation has N=2. General-N cases (16.1.6) are treated later.

(2) (N=2) Double-well potential and two-wiggle repeat
 Matrices (16.1.10) for a potential Vcos(2x) with N=2 wells fall into odd and even cases.

        

    

j D2 + V( ) k =    (for j and k even)              j D2 + V( ) k =    (for j and k odd)

    −6 , −4 , −2 ,  0 ,  2 ,   4 ,   6 ,               −7 , −5 , −3 , −1 ,   1 ,   3 ,   5 ,



62 v
v 42 v

v 22 v
v 0 v

v 22 v
v 42 v

v 62



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  , 



72 v
v 52 v

v 32 v
v 12 v

v 12 v
v 32 v

v 52



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (16.1.11a)

Here the off-diagonal matrix elements are by (16.1.10c). 

      
  
v = V

2
          (16.1.11b)

 The matrices go on forever in each direction. However, the lower eigenvalues Ej may be found by 
truncating them to 2-by-2 , or 3-by-3, ...or the 7-by-7 matrices shown in (16.1.11a) if v=V/2 is small compared to 
the difference j2 -(j±2)2 between the diagonal  j2 values. For example, if v<<|32 - 12|  then the following matrix 
approximates E1± near 12, that is, the lowest odd-k eigenvalues.
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12 v
v 12

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

     (16.1.12a)

    E1- ~ 12 - v ,    E1+ ~ 12 - v.   (16.1.12b)
The lowest even-k eigenvalues are obtained approximately from the eigenvalues of

  

  

1
2

1 0 1
0 2 0
1 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

22 v 0
v 0 v
0 v 22

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 1
0 2 0
1 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

22 v 2 0
v 2 0 0

0 0 22

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (16.1.13a)

   E0 ~ 0 - 2v2/22+. , E2+ ~ 22 + 2v2/22+.. ,  E2- ~ 22 -.. (16.1.13b)
as long as v<<|42-22| allows neglect of the 42 rows. 
 Approximations to eigenvalues and eigenfunctions are given by direct numerical diagonalization of 
truncated matrices like the above. One takes as large a matrix (16.1.11) as needed to get a desired accuracy. (You 
increase |k| by two and see if the resulting changes are less than your tolerance for error.)
 Examples of the N=2 eigenvalues for a positively "biased" cosine potential 
       V(x) = V - V cos 2φ    (0<φ<2π)
are plotted in Fig. 16.1.2. Each potential V(x) is shifted up by the amplitude V of the potential so that as V varies 
the bottom V(0) of the potential function remains at zero energy. This permits immediate comparison of the band 
boundaries of a Mathieu cosine potential with similar band boundaries of a Kronig-Penney square well of the 
same barrier heights which were plotted in Fig. 14.2.11 and 14.2.13. 
 One obvious difference is the absence in the Mathieu levels in Fig. 16.1.2 of band boundary crossing or 
"smiles" seen in the KP levels in Fig. 14.2.11 or B1, B2 crossing seen in 14.2.13. The cosine potential has the 
simplest band structure of any finite periodic potential. The level order A1, B1, B2, A2  is not violated. Instead 
there is an orderly transition between the below-barrier (E<V) "(12)-(21) gap-pairs"  
  (A2, A1 )-(band)-(B1, B2 )-(band) (A2, A1  )-(band)-(B1, B2)-(gap)[repeat]  (16.1.14a)
and the above-barrier (E>V) "(AB)(BA) band-pairs" 
  (A1, B1 )-( gap)-(B2, A2 )-( gap ) (A1, B1 )-( gap )-(B2, A2 )-( gap)[repeat]  (16.1.14b)
That is, at (E=V), the sequence -A1)(B1, B2)(A2  becomes (A1, B1)( B2, A2 ) as shown in Fig. 16.1.2. 
 The first m=±1 (B1, B2) splitting at E=1 is shown more clearly in the blow-up of Fig. 16.1.2. For V<1, the 
energy values closely follow the first-order perturbation approximations (16.1.12b). The m=±2 (A2, A1 ) splitting 
at E = 22 = 4 is second order in V by (16.1.13b). Higher-m Bohr orbital splittings “stick” even more since they go 
as Vn with n>2. In contrast, the KP splittings in Fig. 14.2.13 are first order for m=±1, ±3, ±5,.. because a square 
well U has non-zero Fourier components at odd-m values.
     〈+m|U|−m〉= U, -U/3, U/5, -U/7, … for m=±1, ±3, ±5, ±7,...   
The “smiles” in Fig. 14.2.11 reflect a “twisting” of the odd-m splitting due to the alternating signs of the first-
order splitting which equals the order-m Fourier components. In (16.1.10c), the Mathieu potential cos(Nφ) only 
splits m=±1, but cos(3Nφ) splits m=±3, and cos(5Nφ) splits m=±5, and so on.
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Bohr Units

B1

B2

A2

A1

B2

A1

B1

N=2

B1

B2

A2

A1

B2

A1

B1

A2

B1A1

B2

A2

A2

A1

A2

A1

B1

B2

A2

A1

B1

B2

A2

A1

1st Order

Splitting

Fig. 16.1.2 Mathieu (cosine) potential band boundary levels and N=2 E-spectrum versus potential depth V.

(b) Pendulum parametric resonance analogy: (N=2) Two-wiggle repeat
 A mechanical analogy with pendulum resonance helps visualize Mathieu eigenfunctions. A y-stimulated 
pendulum satisfies a Schrodinger's wave equation (16.1.6) if the independent variables of time t for the pendulum 
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equation (16.1.5) is spatial coordinate x for a Schrodinger wave. We equate the argument ωy t of the cosine 
stimulus to the spatial argument Nx of the Schrodinger cosine potential. 

  
  

ω y t = Nx,   or:   dt = N
ω y

dx,   and:   dt2 = N 2

ω y
2

dx2 .   (16.1.15a)

This converts the y-accelerated pendulum equation (16.1.5) to match a Schrodinger equation 

 
   

d2φ
dx2

+ N 2

ω y
2

g

−
ω y

2 Ay


cos(Nx)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ = 0 = d2φ

dx2
+ N 2

ω y
2

g

−

N 2 Ay


cos(Nx)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ  (16.1.15b)

where pendulum parameters 
   
g,  ,  B,  and ωy   match Schrodinger parameters E, V and N as follows.

  
   

E = N 2

ω y
2

g


, (16.1.15c)    
   
V =

N 2 Ay


.  (16.1.15d)

The pendulum y-stimulus frequency 
 
ωy  and amplitude Ay are as follows, where we may set |g|=1=.

 
  

ω y = N g
E 

= N

E
, (16.1.15e)   

   
Ay = V 

N 2
= V

N 2
  (16.1.15f)

  A y-stimulated pendulum analogy for Schrodinger applies at its lowest point (φ~0) where cos φ ~1 and sin 
φ~φ . It also applies when the pendulum is "up-side-down", that is, near its highest point (φ ∼π ) where cos φ  ~ -1 
and sin φ  ~ π−φ . It's a negative energy (E<0) Schrodinger equation if (g/<0).

   
   

d2φ
dt2

+ − g


N 2

ω y
2
+
ω y

2 Ay


cos(ω yt)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ − π( ) = 0 ,   (where: φ ≅ π)    (16.1.15g)

As we will see, it is possible for the oscillating acceleration to stabilize the pendulum up-side-down! 
 For example, the eigenvalues for V=0.2 or v=0.1 and V=2.0 or v=1.0 are listed below.
  V=0.2 or v=0.1     V=2.0 or v=1.0

   

  

E0 = −0.0050

E1− = 0.8988

E1+ = 1.0987

E2− = 3.9992

E2+ = 4.0042

E3− = 9.0006

E3+ = 9.0006

 (16.1.16a)   

  

E0 = −0.4551

E1− = −0.1102

E1+ = 1.8591

E2− = 3.9170

E2+ = 4.3713

E3− = 9.0477

E3+ = 9.0784

(16.1.16b)

Fig. 16.1.3 is a plot of some (N=2) Em-values versus perturbation amplitude V or wiggle amplitude 4Ay. 
     Ay=V/N2=2v/N2=2v/4    (16.1.20a)
Plugging each Em-value into (16.1.15e) with N=2 gives a corresponding y-pendulum frequency ωy(m) .
     ωy(m) =N/√|E|=2/√|Em|    (16.1.20b)
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  (V= 0.2 or Ay=0.05 and N=2)                     (V= 2.0 or Ay =0.5 and N=2)  

  

  

ω y(0) = 2 / −.0050 = 28.2843

ω
y(1− )

= 2 / .8988 = 2.10959

ω
y(1+ )

= 2 / 1.0987 = 1.90805

ω
y(2− )

= 2 / 3.9992 = 1.00010

ω
y(2+ )

= 2 / 4.0042 = 0.99948

 (16.1.16c)     

  

ω y(0) = 2 / −.4551 = 2.9646

ω
y(1− )

= 2 / −.1102 = 6.02475

ω
y(1+ )

= 2 / 1.8591 = 1.4668

ω
y(2− )

= 2 / 3.9170 = 1.0105

ω
y(2+ )

= 2 / 4.3713 = 0.9566

(16.1.16d)

A low amplitude oscillation (Ay =0.05 or V=0.2) has only one negative Em-value. The high amplitude case (Ay 
=0.5 or V=2.0) has two negative Em-values. From (16.1.15c,g), negative E corresponds to "up-side-down" 
motion that is stable for ωy with E<0 inside (A1,B1) band of the analogous Schrodinger equation.

0+

1+

1-

2+

2-

3+
3-

Stable Inverted

Band(0)

Stable Hanging

Band(1)

1+

2-
2+

3-

0+
1-

Unstable Resonance

Gap (1)

B1

B2

A2

A1

A1

B1

B2

Unstable Resonance

Gap (2)

Stable Hanging

Band(2)

V=2.0 Bands

Fig. 16.1.3 E-Values versus perturbation amplitude V . Gray stability regions shown  for V=2.0 .
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 The ±sign of E is irrelevant for observable quantum dynamics. The plot in Fig. 16.1.2 (analogous to Fig. 
16.1.3) has all potentials positively biased from -V cos(Nx) to V-V cos(Nx) so all E-values come out positive. 
However, for the classical pendulum analogy the sign of E is all-important and an unbiased symmetrically 
oscillating acceleration -Ay cos(Nx) gives two or more negative E-values if Ay is big enough.
 The lowest region of stability lies between the 0+ A1 and 1- B1 E-values. For perturbation amplitude V 
greater than V=1.8 these two E-values lie in the negative-E region and both motions correspond to inverted 
stability. Not until V becomes greater than 15 does another inverted stability region appear as the 1+ B2 and 2- A2 
E-values go negative. (See extreme right hand side of Fig. 16.1.3.) 
 The 0+A1 and 1-B1 motions (y-stimulus frequency ωy(0+) =2.9646 and ωy(1-) =6.02475 from (16.1.16d).) 
are displayed in Fig. 16.1.4 a-b. As discussed in Sec. 3.6, D2 symmetry label A stands for "Always-the-same" 
while B stands for "Back-and-forth". Indices 1(2) denote symmetry (anti-symmetry) relative to a V-well where 
the artificial "g-forces" act most strongly to center the pendulum. For inverted pendula, V-well bottoms occur at 
the top of the roller-coaster ride where its arm gets pulled up against natural gravity g as car accelerates 
downward. 

 

sinφ(t)(a) 0+A1 Mode
Y-acceleration
A(t)=-Ayωy2cosωyt

Ay=0.5

sinφ(t)
Equivalent V-well bottoms

ωy(A1)=2.9646

ωy(B1)=6.02475

Ay=0.5

(b) 1-B1 Mode Equivalent V-well tops

Fig. 16.1.4 Inverted Modes  (a) Symmetric (one sided) 0+A1 mode, (b) Anti-symmetric 1- B1 mode .

 For a normally hanging pendulum the equivalent of a potential V-well happens at the bottom of the roller-
coaster ride where the pendulum arm gets pulled down in concert with natural gravity g as car accelerates 
upward. This is the case for all the stable modes shown in Fig. 16.1.5 below. The 1+B2  mode in part (a) is shown 
at the moment when the pendulum is momentarily floating in "zero-g" as its roller-coaster peaks and centrifugal 
force cancels natural gravity. To see the analogous quantum potentials this figure must be viewed up-side-down.
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(a) 1+B
2
Mode

Ay=0.5

ωy(B2)=1.4668

Equivalent V-well bottoms

Equivalent V-well tops

sinφ(t)

(b) 2-A
2
Mode

ωy(A2)=1.01054

Ay=0.5

(c) 2+A
1
Mode

ωy(A1)=0.9566

Ay=0.5

Fig. 3.7.5 Hanging Modes (a) Anti-symmetric 1+B2 , (b) Anti-symmetric 2
- A2 , (c) Symmetric 2

+ A1 .

sinφ(t)

sinφ(t)

Fig. 16.1.5 Hanging Modes  (a) Anti-symmetric 1+B2 , (b) Anti-symmetric 2- A2 , (c) Symmetric 2+ A1 .

 The first five quantum eigenfunctions of a (+)-biased Mathieu cosine potential V(x)=2-2cos2x are plotted 
at their energy levels in Fig. 16.1.6. Energy is in Bohr units relative to well-bottom so V=2.0 must be subtracted 
to get unbiased E for the classical pendulum model. The lowest two waves (0+A1  and 1- B1) with negative 
energies -0.4551 and -0.1102 have the same shape as the time trajectories of the inverted pendulum modes in Fig. 
16.1.4. The next three eigenfunctions 1+B2 , 2- A2, and 2+ A1  have the shape of the first three hanging modes in 
Fig. 16.1.5. Most notable is the "grazing" eigenfunction 1+B2 that has flattened crests and corresponds to the 
classical "zero-g" pendulum mode in Fig. 16.1.5(a). 
 The quantum waves must have an integral even number of wave nodes or x-axis crossings in the allowed 
interval 0<x<2π. Waves 0+A1  and 1- B1 have zero and two, respectively. Waves 1+B2 , 2- A2, and 2+ A1  have 
two, four, and four nodes, respectively. A Bohr-orbital m± has 2m nodes and this is invariant to the size of V. 
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0+A1

1-B1

1+B2

2+A1

2-A2

V(x)=2.0(1-cos2x)

Fig. 16.1.6 (N=2) Mathieu eigenfunctions for V=2.0.  0+A1 , 1- B1 , 1+B2 , 2- A2 , and 2+ A1.
 However, the classical pendulum model has no such restriction, and this is one reason this analogy is 
conceptually useful. By varying the frequency of the "roller-coaster" we allow the pendulum trajectory to cross 
the axes at any number 0.01, 0.97, 2.35, of times in the time it takes for a pair (N=2) of up-and-down trips by the 
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"roller-coaster." So far, our arbitrary demand (16.1.8b) for periodic behavior has restricted the trajectory to the 
even numbers 0, 2, 2, 4, 4, ... of crossings seen in Fig. 16.1.4 and 16.1.5. 
 Relaxing periodicity restrictions allows crossing rates between 0 and 2 which, according to (16.1.16b,d), 
correspond to energies in the stable inverted Band-(0) between E(0+)= -0.4551 and E(1-)=-0.1102 ("roller-
coaster" frequency between Band(0) boundaries ω(0+)= 2.96 and ω(1-)=6.02), or else crossing rates between 2 
and 4 which correspond to energies in the first stable hanging Band-(1) between E(1+)=1.8591 and E(2-)=3.9170 
("roller-coaster" frequency between Band(1) boundaries ω(1+)= 1.4668 and ω(2-)=1.0105), and so on to higher 
quantum energies (and lower "roller-coaster" frequencies). 
 The first unstable region Gap(1) in Fig. 16.1.3 is due to having no crossing rates between 2 and 2, (or 
quantum numbers between 1 and 1) and Gap(2) in Fig. 16.1.3 arises because no rates exist between 4 and 4, (or 
quantum numbers between 2 and 2) and so on. Kronig-Penney theory in Sec. 14.2 is based on exponential blow-
up behavior in forbidden gaps. Fig. 16.1.7 shows a pendulum at frequency ωy =1.5 in Gap(1) undergoing non-
linear (exponential) resonance. This is called parametric amplification.

    

  Fig. 16.1.7 Resonant modes for a Gap(1) frequency ωy =1.5.

 Low amplitude oscillation (Ay =0.05 or V=0.2) is unusual for the classical analog because the lower band 
boundary is negative (E(0+)= -0.0050) while the upper one is positive (E(1-)=+0.8988) according to (16.1.16) 
leaving E=0 and infinite "roller-coaster" frequency ( ωy=∞ ) inside the band! This inverted pendulum is stable on 
a "roller-coaster" pumping between ωy(0+)= 28.2843 and ∞ , and a hanging pendulum is stable if the frequency 
is between ωy(1-)= 2.10959 and ∞. So either pendulum-up or pendulum-down is stable in the frequency range 
between 28.2843 and ∞. But, such low amplitude can't easily resonate a hanging pendulum. Only Gap(1) 
between E(1-)=+0.8988 and E(1+)=1.0987 (ωy(1-)= 2.10959 and ωy(1+)= 1.90805) is significant.
(c) (N=3) Triple-well potential and three-wiggle repeat
 The periodicity restrictions for the Bohr-Bloch ring potential may be relaxed in discrete steps by 
increasing the number N of potential wells. Increasing N=2 to N=3 raises the number of CN  symmetry classes 
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from two (Odd and Even or 02= 0 mod 2 and 12= 1 mod 2) to three ( 03= 0 mod 3, 13= 1 mod 3, and 23= 2 mod 
3=-13). There are three distinct Hamiltonian matrices in place of the two in (16.1.11a).

    

j D + V( ) k = (for j and k=0 mod 3)              j D + V( ) k =  (for j and k=1 mod 3)              j D + V( ) k =  (for j and k=2 mod 3)

    −9 , −6 , −3 ,  0 ,  3 ,   6 ,   9 ,            −11 , −8 , −5 ,  −2 ,   1 ,   4 ,   7 ,            −7 ,  −4 , −1 ,   2 ,   5 ,   8 ,   11 ,



92 v
v 62 v

v 32 v
v 0 v

v 32 v
v 62 v

v 92



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  , 



112 v
v 82 v

v 52 v
v 22 v

v 12 v
v 42 v

v 72



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 



72 v
v 42 v

v 12 v
v 22 v

v 52 v
v 82 v

v 112



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

(16.1.17)

 This separation due to symmetry happens because the potential equation (16.1.10) cannot couple states |j〉 
and |k〉 unless k and j differ by ±3. The first (03=0 mod 3) matrix is the same as the first (02=even) matrix in 
(16.1.11) multiplied by 32/22=9/4. Its levels will be the (0+A1)-(2-A2)-(2+A1)-(4-A2)-(4+A1)-(6-A2)-..sequence of 
levels seen in Fig. 16.1.2 and 16.1.3 scaled up by 32/22=9/4. It is also the N=1 spectrum scaled up by 32=9 .
 The second (13=1 mod 3) matrix and third (23=2 mod 3) matrix are new and different from the second 
(12=odd) matrix in (16.1.11) so the (1-B1)-(1+B2)-(3-B1)-(3+B2)-..sequence of levels seen before will not appear 
here. In its place will be a doubly degenerate set of levels inside the AB-bands of Fig. 16.1.2. The degeneracy 
occurs because the second (13) and third (23) matrix are identical except for reversed order. In fact this 
degeneracy is a general consequence of D3 symmetry. Recall that D3 symmetry has no B-type ireps but its E1-
irep is 2-by-2.
 Pendulum modes for N=3 repeat with period equal to 3 times the driving "roller-coaster" period 2π/ωy. 
The select values of ωy which cause this are found from the eigenvalues of the Hamiltonian (16.1.17) using the 
same equations (16.1.15) with N=3. This will be done for N=6 below.

(d) (N=6) Hexagonal potential and six-wiggle repeat
 The N=6 spectrum contains both the N=2 and N=3 spectrum. The 06 and 36 matrices are below.

   

    

j D + V( ) k = (for j and k=0 mod 6)              j D + V( ) k =  (for j and k=3 mod 6)         

    −18 , −12 , −6 ,  0 ,   6 ,   12 ,   18 ,               −21 ,  −15 , −9 ,  −3 ,  3 ,   9 ,   15 ,       



182 v
v 122 v

v 62 v
v 0 v

v 62 v
v 122 v

v 182



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  , 



212 v
v 152 v

v 92 v
v 32 v

v 32 v
v 92 v

v 152



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

   (16.1.18)
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The first N=6 (06=0 mod 6) matrix is the same as the first N=2 (02=even) matrix in (16.1.11) multiplied by 
32=9.  The same goes for the second N=6 (36=3 mod 6); it is the second N=2 (12=odd) matrix in (16.1.11) 
multiplied by 9. So the N=6 band boundaries are N=2 levels with a scale-up factor of 9. The resulting D6 levels 
are labeled like the D2 levels in Fig. 16.1.2 and (16.1.14). But, the m± values are three times as large.

   (0+A1  ..(band).. 3- B1) [gap] ( 3+B2 ..(band).. 6- A2) [gap] (6+A1  ..(band)..9- B1) [gap]    
The levels inside the bands are determined by the eigenvalues of the following 16 and 26 matrices.

   

    

j D + V( ) k = (for j and k=1 mod 6)              j D + V( ) k =  (for j and k=2 mod 6)         

    −17 , −11 , −5 ,   1 ,   7 ,   13 ,   19 ,               −16 , −10 , −4 ,  2 ,   8 ,   14 ,   20 ,       



172 v
v 112 v

v 52 v
v 1 v

v 72 v
v 132 v

v 192



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  , 



162 v
v 102 v

v 42 v
v 22 v

v 82 v
v 142 v

v 202



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

   (16.1.19a)

The -16 and -26 matrices are identical to the 16 and 26  matrices, respectively, so all eigenvalues are doubly 
degenerate with ±16 belonging to E1 and ±26 belonging to E2 symmetry ireps of D6. The E2 levels arise from the 
26 matrix which is a copy of the 13 matrix in (16.1.17) multiplied by 22=4. So, the D6 -E2 levels are scaled 
copies of the D3 - E1 levels. But, the E2  states, like the B1 and B2 are not D3 symmetry states. 
 The AB band boundary levels for D2  in Fig. 16.1.2 and 16.1.3 avoid crossing each other except at (V=0) 
(no potential). The same applies to their scaled copies for D6. The E1 and E2 levels also avoid each other. The 
closest approach occurs between the |2〉 and |−4〉 states belonging to a pair of E2 doublets as approximated for low 
ν=V/2 by solving the following submatrix of the Hamiltonian matrix (16.1.19).

    

   

H =



42 ν
ν 22



,               
′E2 ≅ 42 + ν2

42 − 22
= 16 + V 2

48

E2 ≅ 22 − ν2

42 − 22
= 4 − V 2

48

 (16.1.19b)

This |2〉 and |−4〉 pair of E2 hyperbolas are closer and sharper than the |1〉 and |−5〉 pair of E1 levels.

   

   

H =



52 ν
ν 12



,               
′E1 ≅  52 + ν2

52 −12
= 25+ V 2

96

E1 ≅ 12 − ν2

52 −12
= 1− V 2

96

 (16.1.19c)

 The beginning of the D6 spectrum up to m=9 is the following cyclic sequence of bands and gaps.

   (0+A1 , 1±E1 , 2±E2 , 3-B1) [gap] (3+B2 , 4±E2,, 5±E1, 6-A2) [gap] (6+A1 , 7±E1 , 8±E2 , 9-B1) (16.1.20)
Examples of the eigenvalues versus strength V of an unbiased potential Vcos(6x) for a D6 Mathieu potential are 
shown in Fig. 16.1.8. The avoiding hyperbolas of (16.1.19c) are seen for the 1± and 5± levels. 
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Bohr Units
B1

B2

A2

A1

A1

B1

N=6

B2

E1

E2

E1

E2

E1

E2

E2

4±

5±

7±

8±

10±

3±

6±

9±

0+
1±
2±

3+
3-

6+

6-

Fig. 3.7.8 N=6 Mathieu (cosine) potential level spectrum versus potential depth V.

9+

9-

V=15

 Fig. 16.1.8  N=6  Mathieu (cosine) potential level spectrum versus potential depth V
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6-A2

6+A1

3+B2

1±E1(y)

2±E2(b)

3-B1

1±E1(x)

2±E2(a)

0+A1

-y
-x

y

x y
-y

x y -x -y

5±E1(x)
5±E1(y)

4±E2(a) 4±E2(b)

 Fig. 16.1.9 Lowest twelve N=6 Mathieu eigenfunctions for V=15. (Top-to-bottom =30)
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16
 The D6 Mathieu wavefunctions of a steep cosine potential are shown in Fig. 16.1.9. They belong to first 
twelve or thirteen energy values along the V=15 line in Fig. 16.1.8. We compare them to the square-well wave 
functions shown in Fig. 3.6.10 for the Kronig-Peney (KP) potential having the same top-to-bottom depth: V=30.
 The lower band energies for the square-well are a couple of Bohr units lower than those of the cosine-well 
potential because the latter is narrower at the bottom and "squeezes" the waves up. However, the higher band 
energies for the square well are slightly higher because the flat tops raise the potential more than the cosine 
"needles" at the top of the Mathieu potential. The flat tops the square-well make its 3+B2  wave in Fig. 3.6.10 
much flatter than the corresponding Mathieu 3+B2  wave in Fig. 16.1.9. Otherwise, the waves appear remarkably 
similar even in the higher bands. 
 For either potential, the 3-B1 - 3+B2  gap between the bands is much larger than the spread of the lower 

(0+A1 , 1±E1 , 2±E2 , 3-B1) band but comparable to the spread of the higher (3+B2 , 4±E2,, 5±E1, 6-A2) band. The 
jagged break in either Fig. 16.1.9 or Fig. 15.5.2 indicates a gap and change of energy scale. Tunneling or coupling 
is much smaller for waves trapped in potential wells, so band splitting there is less.
 The energy difference of the first gap between 3-B1 and 3+B2  is mostly due to potential energy difference 
between the two waves. Their kinetic energies are the same; they both have three (m=3) wave-node pairs. The 
lower 3-B1  wave is sitting where its anti-nodes are in the low potential wells while its nodes are in the high 
potential barriers. (It's a "well-sitter.") In contrast, the 3+B2  wave is higher because it puts its high probability 
anti-nodes right on top of the barriers and leaves its zero-probability nodes in the wells. (It's a "barrier-sitter.") 
This is a simple explanation of the source of the first-order band-gap energy at the 1st Brillouin band boundary.

 The second gap energy difference between 6-A2 and 6+A1  is more complicated, as are the higher gaps 

such as the next 9-B1 - 9+B2  gap. Again, the kinetic energies of both 6- and 6+ orbitals are the same, but the 
6+A1  wave is not pure m=6. From, Fig. 16.1.9 it is seen that the 6+A1  wave has a significant fraction of m=0 
which makes its amplitude alternate between well and barrier. Previously, we had mentioned that the 0+A1  had 
some m=6, in fact, it is just enough to make 0+A1  and 6+A1 orthogonal. 

 A resonance-repulsion pushes the 6+A1 wave up and pulls the 0+A1  wave down. Meanwhile, the 6-A2  
wave sits near the top of Fig. 16.1.9 without changing much from a pure m=6. Symmetry D6 prohibits a potential 

coupling between 6-A2  and any but another A2 state. The nearest A2 is the 12-A2 state (122-62=108) Bohr units 

above, pretty high for a potential of only 15 Bohr units. In Fig. 16.1.8 you can see the 6-A2  level at V=15 
repelled only a little below its V=0 energy. A quantitative analysis of this is given shortly. 
 The curvature of levels in Fig. 16.1.8 is indicative of changing eigenfunctions or varying mixture of 
Fourier components, and this gives the complicated second or higher order splittings. To analyze high-m 
splittings, a more detailed matrix analysis based on DN symmetry is necessary as shown next. 
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16.2 General DN-symmetric periodic potentials
  Mathieu DN potentials have only a single cosine A cos N φ. Now Mathieu analysis is generalized to 
potentials which have multi-cosine Fourier series in Hamiltonians of the following form.

  H = D + V = D + A1 cos N φ + A2 cos 2N φ + A3 cos 3N φ +     (16.2.1a)
A general Hamilton matrix element 〈m|H|n〉 in a Bohr orbital basis is computed, as follows, in Bohr units.

 

   

m H n = m D n + m V n

             = m2δm,n +
k=1

N
∑ dφ0

2π∫ e−imφ Ak cos kNφ e−inφ

             = m2δm,n +
k=1

N
∑

1
2

Ak dφ0
2π∫ e−i n−m+kN( )φ + e−i n−m−kN( )φ⎛

⎝
⎞
⎠

             = m2δm,n +
k=1

N
∑

1
2

Akδm−n,kN + 1
2

Akδn−m,kN
⎛
⎝⎜

⎞
⎠⎟

            = m2δm,n +

A m−n( )/ N        if : m > n    and : k = m − n( ) / N   is integer>0,

A n−m( )/ N        if : n > m    and : k = n − m( ) / N   is integer>0,

0                                       otherwise.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Each component 〈m|H|n〉 consists of three terms, only one of which is non-zero at a time. 

  

   

m H n      = m2δm,n + 1
2

A m−n( )/ N + 1
2

A n−m( )/ N

−m H n    = m2δm,n + 1
2

A −m−n( )/ N + 1
2

A n+m( )/ N

m H −n    = m2δm,n + 1
2

A m+n( )/ N + 1
2

A −n−m( )/ N

−m H −n  = m2δm,n + 1
2

A −m+n( )/ N + 1
2

A −n+m( )/ N

   (16.2.1b)

〈H〉 has a Fourier cosine coefficient υk = 1/2 Ak on k-th super diagonal. For N=2, 〈H〉 is as follows.

       

    

m D + V( ) n =    (for m and n even)              m D + V( ) n =    (for m and n odd)

    −6 ,  −4 ,  −2 ,  0 ,   2 ,    4 ,  6 ,              −7 , −5 , −3 ,   −1 ,   1 ,   3 ,   5 ,



62 v1 v2 v3 v4 v5 v6

v1 42 v1 v2 v3 v4 v5

v2 v1 22 v1 v2 v3 v4

v3 v2 v1 0 v1 v2 v3

v4 v3 v2 v1 22 v1 v2

v5 v4 v3 v2 v1 42 v1

v6 v5 v4 v3 v2 v1 62



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  , 



72 v1 v2 v3 v4 v5 v6

v1 52 v1 v2 v3 v4 v5

v2 v1 32 v1 v2 v3 v4

v3 v2 v1 12 v1 v2 v3

v4 v3 v2 v1 12 v1 v2

v5 v4 v3 v2 v1 32 v1

v6 v5 v4 v3 v2 v1 52



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (16.2.1c)

 The preceding generalizes the matrices in (16.1.11). It is a way to derive band eigenvalues and 
wavefunctions for any periodic potential whose individual wells are C2 symmetric. An equilateral square-well 
Kronig-Penney (KP) potential (with W=L) is an example treated in Fig. 14.2.12 and 14.2.13.
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  VKP = (V/π)[ cos N φ + 0 cos 2N φ - (1/3) cos 3N φ + 0 cos 4N φ + (1/5) cos 5N φ ..]   
An unbiased equilateral KP potential has no even harmonics ( cos 2N φ, cos 4N φ, cos 6N φ,..); Ak-even appear 
only when the well width W differs from barrier length L. The coefficients of the 1,3,5,7.. harmonics are an odd-
harmonic series with alternating signs (1, -1/3, +1/5, -1/7,...). The alternating signs cause "twisting" and crossing 
of band boundaries and the "smiles" in Figs. 14.2.11 and 14.2.13.
 If a periodic potential is "lop-sided" such as the "hounds-tooth" potential in Fig. 14.2.10, it will also be 
necessary to include sine Fourier series terms, or what is equivalent, a fully complex Fourier series as in the 
analysis of CN symmetry. This will mean complex off-diagonal matrix components in (16.2.1c). Nevertheless, 
transverse rotation or reflection symmetry breaking ("lop-sidedness") does not, by itself, split the DN 
degeneracies, it merely adjusts the local symmetry combinations such as (15.4.8c) so the waves are locally "lop-
sided" to match each potential well and barrier.
 To estimate band curvature and symmetry effects, including the size of band "smiles," we separate the 
Hamiltonian matrices using D2 symmetry bases. We begin with the "scalar" A1 symmetry bases.

   
  
0+ A1 = 0 ,   and: m+ A1 = m + −m( ) / 2   (for: m > 0)   (16.2.2a)

A1  are even-m cosine standing waves. To not double-count, let m and n be positive integers in the matrix.

   

m+ A1 H n+ A1 = m + −m( )H n + −n( ) / 2 =
m H n + −m H −n

2
+

m H −n + −m H n
2

                          = m H n + m H −n = δm,nm2 +υn−m +υn+m   where: υn±m = 1
2

A n±m( )/ N

(16.2.2b)

Furthermore, only upper diagonal (m<n) elements are given; transpose are conjugates (〈n|H|m〉= 〈m|H|n〉*).

   

   

m+ A1 = 0+ A1 2+ A1 4+ A1 6+ A1 8+ A1

0+ A1 0 2υ1 2υ2 2υ3 2υ4

2+ A1 22 +υ2 υ1 +υ3 υ2 +υ4 υ3 +υ5

4+ A1 42 +υ4 υ1 +υ5 υ2 +υ6

6+ A1 62 +υ6 υ1 +υ7

8+ A1 82 +υ8



 (16.2.2c)

Next are the "pseudo-scalar" A2 symmetry bases or even-m sine standing waves.

     
  
m− A2 = m − −m( ) / i 2      (16.2.3a)

A1 and A2 waves are "Always the same" phase and amplitude in every well, but the A2 waves have mid-well 
nodes that make them anti symmetric to 180° rotations around the well-center.

   

m− A2 H n− A2 = m − −m( )H n − −n( ) / 2 =
m H n + −m H −n

2
−

m H −n + −m H n
2

                          = m H n − m H −n = δm,nm2 +υn−m −υn+m   where: υn±m = 1
2

A n±m( )/ N

(16.2.3b)

The A2 matrix is quite different from the A1 matrix. Note absence of the forbidden |0-A2〉 state.
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m− A2 = 2− A2 4− A2 6− A2 8− A2

0 0 0 0 0

2− A2 22 −υ2 υ1 −υ3 υ2 −υ4 υ3 −υ5

4− A2 42 −υ4 υ1 −υ5 υ2 −υ6

6− A2 62 −υ6 υ1 −υ7

8− A2 82 −υ8



  (16.2.3c)

Odd Brillouin-band-boundary B1  and B2 symmetry bases or odd-m cosine B1 or sine B2 standing waves.

   
  
m−B1 = m + −m( ) / i 2    

  
m+B2 = m − −m( ) / i 2   (16.2.4a)

B1 and B2 waves are "Back-and-forth" in phase and amplitude in going from well-to-well. The B2 waves have 
mid-well nodes that make them anti symmetric to 180° flips, but  B1 waves are symmetric to flips. The 1st order 
splitting of m-th gap is 2νm, twice the m-th Fourier component.

   

m−B1 = 1− B1 3− B1 5− B1 7− B1

1− B1 12 +υ1 υ1 +υ2 υ2 +υ3 υ3 +υ4

3− B1 32 +υ3 υ1 +υ4 υ2 +υ5

3− B1 52 +υ5 υ1 +υ6

3− B1 72 +υ7



 (16.2.4a)

   

m+B1 = 1+ B2 3+ B2 5+ B2 7+ B2

1+ B2 12 −υ1 υ1 −υ2 υ2 −υ3 υ3 −υ4

3+ B2 32 −υ3 υ1 −υ4 υ2 −υ5

3+ B2 52 −υ5 υ1 −υ6

3+ B2 72 −υ7



(16.2.4b)

 If the number N of wells that is a multiple M of 2 it is only necessary to multiply all m-quanta by M 
(including m's in the m2 diagonal elements) and then obtain the band boundary eigenvalues. For N=6 the 
following matrices result for the lowest three bases. The Mathieu case has υk=0 except for υ1=V/2.

    

  

0+ A1    6+ A1    12+ A1        6− A2    12− A2         3− B1    9− B1     15− B1         3+ B2    9+ B2     15+ B2  

0 2υ1 2υ2

2υ1 62 υ1 +υ3

2υ2 υ1 +υ3 122

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

0 0 0
0 62 υ1 −υ3

0 υ1 −υ3 122

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

32 +υ1 υ1 +υ2 υ2 +υ3

υ1 +υ2 92 +υ3 υ1 +υ4

υ2 +υ3 υ1 +υ4 152 +υ5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

32 −υ1 υ1 −υ2 υ2 −υ3

υ1 −υ2 92 +υ3 υ1 −υ4

υ2 −υ3 υ1 −υ4 152 +υ5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     

0 2υ1 0

2υ1 62 υ1

0 υ1 122

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,           

0 0 0
0 62 υ1

0 υ1 122

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,             

32 +υ1 υ1 0

υ1 92 υ1

0 υ1 152

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,                   

32 −υ1 υ1 0

υ1 92 υ1

0 υ1 152

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(16.2.4c) 

(a) Mathieu potential solution by continued fractions
 The last set of matrices are all that is needed to estimate the effects of a Mathieu potential on 6± levels 

mentioned after Fig. 16.1.9. Perturbation to order-2 gives a 6-A2 energy downshift of 0.52 units.
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E 6− A2( ) ≅ 62 +
6 V 12 12 V 6

62 −122

               ≅ 62 +
V / 2( )2

62 −122
= 36 − 7.52

108
= 36 − 0.52

,   (16.2.5a)

However, the approximate 6+A2  energy shift is about five times greater and positive.

  

  

E 6+ A1( ) ≅ 62 +
6 V 0 0 V 6

62 − 02
+

6 V 12 12 V 6

62 −122

              ≅ 62 +
2 V / 2( )2
62 − 02

+
V / 2( )2

62 −122
= 36 + 2 ⋅7.52

36
− 7.52

108
= 36 + 2.6

, (16.2.5b)

This is consistent with the 6± levels on the V=15 line of Fig. 16.1.8.
 Since the Mathieu H-matrix has no elements beyond one step from the diagonal, it is relatively easy to 
derive perturbation expansions for its low eigenvalues ε(1), ε(2), ..., ε(m) and eigenvector components ψj(m). The 
equations that need to be solved are as follows. 

  

  

H12ψ 2 = E − H11( )ψ1

H21ψ1 H23ψ 3 = E − H22( )ψ 2

H32ψ 2 H34ψ 4 = E − H33( )ψ 3

   (16.2.6)

    ...        =      ...
For the first eigenvalue E= ε(1) and its components ψj, the following relations are exact but "entangled."

   
   
ε 1( ) = H11 + H12

ψ 2
ψ1

,     ψ 2 =
H21ψ1

ε 1( ) − H22
+

H23ψ 3
ε 1( ) − H22

,     ψ 3 =
H32ψ 2

ε 1( ) − H33
+

H32ψ 4
ε 1( ) − H33

,    (16.2.7)

One may approximately disentangle them by recursive substitution of approximations for ε(1) and ψj. 

   

ε 1( ) = H11 +
H12H21

ε 1( ) − H22
+

H12H23
ε 1( ) − H22

ψ 3
ψ1

     = H11 +
H12H21

ε 1( ) − H22
+

H12H23H32

ε 1( ) − H22( ) ε 1( ) − H33( )
ψ 2
ψ1

+…  ψ≥4terms⎡⎣ ⎤⎦

     = H11 +
H12H21

ε 1( ) − H22
+

H12H23H32H21

ε 1( ) − H22( )2 ε 1( ) − H33( )
+

H12H23H32H23

ε 1( ) − H22( )2 ε 1( ) − H33( )
ψ 3
ψ1

+…

     = H11 +
H12H21

ε 1( ) − H22
+

H12H23H32H21

ε 1( ) − H22( )2 ε 1( ) − H33( )
+

H12H23H32H23H32H21

ε 1( ) − H22( )3 ε 1( ) − H33( )2
+… ψ≥3terms⎡⎣ ⎤⎦

(16.2.8)

Then the entangling energies ε(1) in the denominator of each term is replaced by low order approximations 
beginning with ε(1) = H11 and recursively increasing the order giving continued fraction expansions.

   

  

ε 1( ) = H11 +
H12H21

H11 − H22 +
H12H21

H11 − H22 +
H12H21

H11 − H22 + ...
+ ..

+ ..
+

H12H23H32H21

H11 − H22 + .( )2 H11 − H33 + ..( )
+ ... (16.2.9)

 An elegant solution to Mathieu matrices of the form (16.2.2-4) first converts the eigenequations
  

  
Hn,n−1ψ n−1 + εn − E( )ψ n + Hn,n+1ψ n+1 = 0,          where :    εn = Hnn     (16.2.10a)
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to continued fractions which relate the n-th component ratio ψn /ψn±1 to lower and to higher ones.

   

  

ψ n
ψ n+1

=
Hn,n+1

E − εn − Hn,n−1
ψ n−1
ψ n

 

         =
Hn,n+1

E − εn −
Hn,n−1Hn−1,n

E − εn−1 − Hn−1,n−2
ψ n−2
ψ n−1

         =
Hn,n+1

E − εn −
Hn,n−1Hn−1,n

E − εn−1 −
Hn−1,n−2Hn−2,n−1

E − εn−2 − Hn−2,n−3
ψ n−3
ψ n−2

 

  

ψ n
ψ n−1

=
Hn,n−1

E − εn − Hn,n+1
ψ n+1
ψ n

 

         =
Hn,n−1

E − εn −
Hn,n+1Hn+1,n

E − εn+1 − Hn+1,n+2
ψ n+2
ψ n+1

         =
Hn,n−1

E − εn −
Hn,n+1Hn+1,n

E − εn+1 −
Hn+1,n+2Hn+2,n+1

E − εn+2 − Hn+2,n+3
ψ n+3
ψ n+2

      (16.2.10b)     (16.2.10c)
For example, the expansion of the 0+ energy eigenvalue for Hamiltonian (16.2.2c) has H12=√2v = H21 and v = 
H23 = H32 = H34 = H43 =... Bohr energies e1= 02, e2= 22, e3= 42, in (16.2.10c) give the following.

  

ψ 2
ψ1

=
E − ε1
H21

=
H21

E − ε2 −
H23H32

E − ε3 −
H34H43

E − ε4 − H45
ψ5
ψ 4

= 2v

E − 22 − v2

E − 42 − v2

E − 62 − v
ψ5
ψ 4

= E
2v

 (16.2.11a)

(16.2.10b) with n=2 or (16.2.7) gives the first equation. Converging approximations start with E=e1=02.

 

  

E ≅ 0 ⇒ E ≅ −v2

2
⇒ E ≅ −2v2

v2

2
+ 22 − v2

v2

2
+ 42

=

−2v2 42 + v2

2

⎛

⎝
⎜

⎞

⎠
⎟

64 + 9v2 + v4

4

≅ −v2

2
1− v2

8

⎛

⎝
⎜

⎞

⎠
⎟  (16.2.11b)

The first one (-v2/2) agrees with elementary perturbation (16.1.13b). The next one straightens it up a bit.
 A first approximation of the 2+ eigenvalue given by (16.2.10c) with n=2 blows up since the denominator 
is zero (E-e2 =22- 22=0). We first appeal to (16.2.10b) with n=2 before using (16.2.10c).

  

  

ψ 2
ψ 3

=
H23

E − ε2 −
H21H12

E − ε1 − 0

 ,    or:      E = ε2 +
H21H12
E − ε1

+H23
ψ 3
ψ 2

    (16.2.12a)

This result is exact. Then (16.2.10c) with n=3 gives continued fraction approximation formulas.

 

   

 E = ε2 +
H21H12
E − ε1

+
H23H32

E − ε3 −
H34H43

E − ε4 − H45
ψ5
ψ 4

= 22 + 2ν2

E − 02
+ ν2

E − 42 − ν2

E − 62 −…

(16.2.12b)

Starting with E=e2=22, the following two approximations result.
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 E ≅ 22 + ν2

2
⇒ E ≅ 22 + ν2

2
+ ν2

22 + ν2

2
− 42

≅ 22 + ν2

2
-ν

2

20
1+ ν2

40

⎛

⎝
⎜

⎞

⎠
⎟  (16.2.12c)

Again, the first one (22+v2/2) agrees with elementary perturbation (16.1.13b). The next one bends it down a bit as 
v = V/2 grows, and so the 2+ band is seen curving over in Fig. 16.1.3 and 16.1.8. Formula (16.2.12c) gives E(2+)
=4.413 for v=1.0 which is close to the numerical diagonalization result of 4.371 in (16.1.16b). Convergence is 
slow and more than two fraction levels or "orders" are needed to get four-figure accuracy. (See exercises.)
 Continued fraction expansions need to be used with care, particularly, if the continued fraction or other 
perturbation analyses are used to give the energy values as polynomials in the potential strength v. For example, 
the fraction formula (16.2.11b) gives E(0+)=-.4505 for v=1.0 which is closer to the numerical result  -0.4551 in 
(16.1.16b) than the polynomial expansion in (16.2.11b) which gives a poorer approximation of -7/16= -0.4375. 
One is tempted to use polynomials since the curves in Fig. 16.1.8 look to be of polynomial form. However, 
polynomials are generally poor fits to most quantum solutions.
 Instead, quantum eigenvalues tend to be more like circular or hyperbolic functions, that is, sine and 
exponential. Even in the simplest case of a 2-by-2 matrix, the energy levels follow the hyperbolic conic sections 
of the "diablo" in Fig. 10.3.1. It takes many orders of polynomials to fit even one full oscillation of a sine curve 
or a 95%-folding of e-x. The hyperbola in the 2-level avoided crossing of Fig. 3.2.2 is even worse; neither the 
perturbation expansion nor the "exact" polynomial expansion converge on the answer or with each other. Like 
two quarreling thieves, they are nothing but trouble!
 Continued fraction expansions such as (16.2.11a) and (16.2.12b) are, in principle, capable of converging 
on exact eigenvalues using (16.2.10b-b) which also converge on eigenfunctions. The application of them, 
however, is tricky, because the desired energy E is repeated forever in the fractions on the right hand side of the 
equations for E. We're left with the decison of how many fraction levels to actually compute and what 
approximate value of E to use at each stage of a converging sequence. Since continued fraction calculation is 
done from the last (bottom) level up to the first (top) level, the effect of an added level is not simply the next term 
as in a power series. This complicates both the error estimation and the actual calculation.
 If, finally, the value of E obtained equals the value of E used for the (infinite) computation of the 
fractions, then and only then is the E value correct. In other words, the task is to find the fixed point of a mapping 
function which can only be evaluated approximately, albeit, to an arbitrarily high degree of accuracy. Any 
technique that gets closer to a fixed point is fair game. 

(b) Coordinate x-space vs Momentum k-space:Reaction vs Proaction
 Derivations of Schrodinger equations in Chapter 11 gave a coordinate-x-space version (11.4.5d) for wave 
function 〈x|ε〉 = Ψε(x) and a wavevector-k-space or momentum representation (11.4.13) for 〈k|ε〉.

   
 −

2

2M
∂2 x ε

∂x2
+V x( ) x ε = E x ε   (16.2.13a)  

   
2

2M
k2 k ε + dk 'V k − k '( )∫ k ' ε = E k ε    (16.2.13b)

The k-space version is less popular due to its integral of the Fourier transform Vkk′ of potential V(x).

    
  
V k − k '( ) = 1

2π
dx∫ e−i(k−k ')xV x( ) = k V k ' = Vk ′k    (16.2.14)
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However, the matrix view of Schrodinger’s equations reveals how misleading “popularity” can be. The 

momentum |m〉-basis used earlier for Hamiltonians (16.1.11) and (16.2.1) is the k-basis and the off-diagonal terms 

υk-k′ = Vkk′ are, in fact, V(x)-Fourier transforms (16.2.14). We compare x-vs.-k for a typical Schrodinger 

Hamiltonian H=KE+PE=(2/2M)k2+V(x) acting on a general state |Ψ〉. (⇒  is not = equality)

   

H Ψ :

 
 Hx0

−S

−S Hx1
−S

−S Hx2
−S

−S Hx3
−S

−S Hx4


 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


x0 Ψ

x1 Ψ

x2 Ψ

x3 Ψ

x4 Ψ



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

⇒

 
 Hk0k0

Vk0k1
Vk0k2

Vk0k3

Vk1k0
Hk1k1

Vk1k2
Vk1k3

Vk1k4

Vk2k0
Vk2k1

Hk2k2
Vk2k3

Vk2k4

Vk3k1
Vk3k2

Hk3k3
Vk3k4

Vk4k2
Vk4k3

Hk4k4


 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


k0 Ψ

k1 Ψ

k2 Ψ

k3 Ψ

k4 Ψ



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

    (16.2.15a)       (16.2.15b)
In x-basis, kinetic k2 has off-diagonal (–S), but it is diagonal in k-basis where V(x) has off-diagonal Vkk′.

     -S=(2 /2M )     (16.2.15c)  
  
Vkmkn

= km V x( ) kn   (16.2.15d)

x-bases put position x (“x marks the spot!”) on-diagonal. k-bases put kinetic operator k2 on-diagonal. 

   
  
Hxp

=2S+V xp( )   (16.2.15e)  
  
Hkmkm

= Skm
2 +V0  (16.2.15f)

If V(x) is a one-cosine (Mathieu) potential then x and k matrices have similar numerical structure.

   

H Ψ :

 
 Hx0

−S

−S Hx1
−S

−S Hx2
−S

−S Hx3
−S

−S Hx4


 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


x0 Ψ

x1 Ψ

x2 Ψ

x3 Ψ

x4 Ψ



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

⇒

 
 Hk0

υ1

υ1 Hk1
υ1

υ1 Hk2
υ1

υ1 Hk3
υ1

υ1 Hk4


 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


k0 Ψ

k1 Ψ

k2 Ψ

k3 Ψ

k4 Ψ



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 
   
KExm ,xn

= xm Sk2 xn   (16.2.16a)  
  
Vkmkn

= km V x( ) kn   (16.2.16b)

Mathieu PE, diagonal in x-basis, has off-diagonal k-rows υ1=-υ0. Other Fourier υk are zero (0=υ2=υ3..).
   

  
Hxp

=2S-2υ1 1− cos xp( )  (16.2.16c)  
  
Hkm

= 2S 1− cos km( ) − 2υ1  (16.2.16d)

If the potential is zero, H is diagonal in k-basis and, for low-k, gives a Bohr-ring k2-dispersion.
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H Ψ :  

 
 2S −S

−S 2S −S
−S 2S −S

−S 2S −S
−S 2S 

 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


x0 Ψ

x1 Ψ

x2 Ψ

x3 Ψ

x4 Ψ



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

   

⇒

 

 Sk0
2

Sk1
2

Sk2
2

Sk3
2

Sk4
2 

 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


k0 Ψ

k1 Ψ

k2 Ψ

k3 Ψ

k4 Ψ



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

    (16.2.17a)       (16.2.17b)
Symmetry (16.2.16) is due to the fact that Fourier transformation matrix Fmp=〈km|xp〉 is symmetric.
Fig. 9.4.2 and Fig. 9.4.3 defined by (9.4.3a) show that F-daggger (†) is F-complex-conjugate (*).(F†=F°)

    
  
Fmp = km xp = e

−imp
2πN = Fpm = xp km

*
= Fmp

†*    (16.2.18)

So, a real H is the same F-transformed forwards to (FHF†) or F-transformed backwards to (F†HF).
      (FHF†)=(FHF*)=(F*H*F)* =(F†HF)*        (16.2.19)
The effect of F or F° is to diagonalize a hyper-kinetic x-matrix into an arbitrary dispersion function ω(km) while 
moving an arbitrary potential function V(xp) from the x-diagonal to off-diagonal Fourier υk-bands. 

    

F(KE)F* = F

 
 H0 −S −T −U

−S H0 −S −T −U

−T −S H0 −S −T

−U −T −S H0 −S

−U −T −S H0 

 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

F* =

 
 ω k0( )

ω k1( )
ω k2( )

ω k3( )
ω k4( ) 
 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

(16.2.20a-b) 

    

F(PE)F*= F

 
 V x0( )

V x1( )
V x2( )

V x3( )
V x4( ) 
 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

F*=

 
 υ0 υ1 υ2 υ3

υ1 υ0 υ1 υ2 υ3

υ2 υ1 υ0 υ1 υ2

υ3 υ2 υ1 υ0 υ1

υ3 υ2 υ1 υ0 

 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

(16.2.20c-d) 

Off-diagonal rows hold Fourier-υ1, υ2,… of potential V(x) or -S,-T,… of dispersion function ω(k).
    

  
V x( )=υ0 +2υ1 cos x+2υ2 cos 2x+2υ3 cos3x    (16.2.20e)     

  
ω k( ) = H − 2S cos k − 2T cos 2k − 2U cos3k    (16.2.20f)

 This relates banded k-matrices (16.2.1) of PE to the analogous hyper-connected x-matrices (11.15.10) of 

the KE operator. A two-state version is a type-AB Hamiltonian AσA+ BσB discussed in Section 10.3.

  
T A 0

0 −A
⎛

⎝⎜
⎞

⎠⎟
T * + T 0 B

B 0

⎛

⎝⎜
⎞

⎠⎟
T * = B 0

0 −B
⎛

⎝⎜
⎞

⎠⎟
+ 0 A

A 0

⎛

⎝⎜
⎞

⎠⎟
        where :    T = 1 1

1 −1

⎛

⎝⎜
⎞

⎠⎟
1
2

 (16.2.21)

The T-transform simply switches A and B components. Type-AC matrices AσA+ CσC behave similarly.
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F A 0

0 −A
⎛

⎝⎜
⎞

⎠⎟
F* + F 0 −iC

iC 0

⎛

⎝⎜
⎞

⎠⎟
F* = C 0

0 −C
⎛

⎝⎜
⎞

⎠⎟
+ 0 iA

−iA 0

⎛

⎝⎜
⎞

⎠⎟
        where :    F = 1 i

i 1

⎛

⎝⎜
⎞

⎠⎟
1
2

 (16.2.21)

The symmetric F-transform replaces -C (or A) by A (or C), not unlike (16.2.20) replacing V(x) Fourier 
coefficients υ1, υ2,… by kinetic amplitudes  -S,-T,…, the Fourier components of dispersion ω(k).
 In each of these examples two non-commuting matrices compete to foster their kind of eigenbasis. PE 
and KE cannot be diagonalized by one basis as neither can AσA and CσC, but there is a compromise basis that 
diagonalizes the sum AσA+ CσC. An A-type potential function of position tries to pile-up wave at one location, 
while a C-type kinetic energy encourages sharing by moving wave momentum and current. It is the quantum 
version of political right-versus-left, reaction-versus-proaction, and status-quo-versus-change. In between is the 
world as usual, a messy but interesting compromise.
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16.3 Finite Fourier Analysis of Potential Structure
 The techniques described in preceding sections are based on two main ideas, symmetry and the 
approximation of a continuous system by discrete Fourier series. There are also practical considerations. Infinite 
Fourier series may be required in principle but a practical Fourier series must be finite. So ∞ by ∞ matrices or ∞ 
continued fractions must be truncated since computers, however grandiose and expensive, are finite. So is is our 
time to calculate.
 This section, is devoted to physical models for which truncation yields exact solutions or good 
approximations. Such models have several advantages. First, they let us compare approximations based on 
physical properties of models rather than numerical witchcraft. Second, they provide a range of computer 
simulation techniques. (BohrIt is an example.) Third, and most important, they further elucidate quantum 
phenomena using classical and quantum analogies.
 One analogy is between waves and coupled pendulums described in Sec. 11.5(b). Expanding the classical 
dispersion function from (11.5.4b) shows a quadratic (k2) dependence for small wave vector km. 

  

   

ωm = ωcutoff
2 + 4s sin2( 

km  a
2

 )

       = ωcutoff + 4s
2ωcutoff

sin2( 
km  a

2
 ) − 16s2

6ωcutoff
3

sin4( 
km  a

2
 )+…

       = ωcutoff + s
2ωcutoff

km  a( )2 − s2

8ωcutoff
3

km  a( )4 +…

 (16.3.1)

The cutoff frequency ωcutoff = √(g/) is the free pendulum angular frequency. If the product kma (a =L/N is 
distance between pendulums) is small then a k2 dependence of Schrodinger wave dispersion is modeled. The 
model improves with increasing number N of pendulums or smaller coupling constant s=k12/m.
 Another analogy involves CN  symmetric "quantum dot" structures introduced in Sections 7.3, 8.1, and 9.4 
and extended to a DN  symmetric "dot" structure in Sec. 15.3 to describe D3  Kronig-Penney (KP) wave band 
structure in Figs. 15.3.3. The simplest non-chiral (σ=π) quantum-dot wave dispersion function (9.3.5g) also has a 
quadratic (k2) dependence for small wave vector km. 

    
   
ωm =H -2S cos kma( ) = H − 2S + S km  a( )2 − S

12
km  a( )4 …    (16.3.2)

(a) Finite and discrete Bohr-Bloch waves
 Fig. 16.3.1 plots the dispersion function involving the lowest twenty-four (m=0, 1, 2, ...,24,..) eigenvalues 
of a C120  symmetric quantum dot ring or a ring of 120 coupled pendulums. The lowest energy or frequency 
values Em = ωm are quadratic in km. Bohr units are used so that frequency is simply Em = m2 and is plotted 
relative to cut-off frequency H = ωcutoff = √(g/) which is the frequency of the very lowest m=0 mode in which 
all oscillators or pendulums swing together in equal phase and amplitude as one huge rigid "curtain." Then 
coupling S or s has no effect. 
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    Fig. 16.3.1  Lowest twenty-four eigenvalues for an N=120 homo-cyclic ring of C120 coupled oscillators.
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 For the lowest non-zero km modes the frequency rises, at first quadratically with km, then (above the 
figure) according to the exact nearest-neighbor-coupling dispersion function (16.3.2) of Bloch for the quantum-
dot model, and the Klein-Gordan dispersion function (16.3.1) for the coupled pendulum model. 

(b) Finite and discrete Mathieu waves
 In Fig. 16.3.2a the 120 pendulums or dots are divided into identical consecutive sets of ten each with a co-
sinusoidal variation in length or local frequency. As described in (11.5.5) and Fig. 11.5.5 this is equivalent to a 
co-sinusoidal variation in the potential V(xp) as given by a Mathieu potential.
    V(xp) = V - V cos (N xp)        (16.3.3) 
By dividing a ring of n=120 into N=12 equivalent sets of P=10 we reduce the C120 or D120 symmetry of the 
Bohr-Bloch model to C12 or D12  symmetry, that is, exactly one-tenth the original symmetry. This splits the 
original band of 120 into 10 bands of 12 states each arranged into seven levels labeled as follows. 
  A1 , E1 , E2 , E3 , E4 , E5 , B1 (gap) B2 ,  E5, E4, E3 , E2 , E1 , A2  (gap)...[repeat band-pair total of five times]

The lowest levels are effected the most by the sinusoidal variation of the oscillator or pendulum frequency. The 
total (barrier top to well bottom) height 2V = 100 of the potential is indicated in Fig. 16.3.2 and shows that only 
the first pair of bands lie near or below 100 and these are the only dispersion functions that suffer major 
disruption. A larger potential with 2V = 400  is shown in Fig. 16.3.2b. Now a pair of bands are caught inside the 
potential and the lowest of these is practically flat. A flat dispersion function means low or zero group velocity 

   
  
ω k( ) ≅ constant     ⇒    vgroup = dω

dk
≅ 0     (16.3.4)

 The pendulum modes corresponding to the flat-band A1 , E1 ..., B1  would restrict oscillation amplitude to 
only the longest and slowest pendulums numbered p = 0, 10, 20,..., 110 = 10 (ρ-1) where (ρ= 1, 2, ..., 12) is the 
well-number of the "well" that has pendulum number 10 (ρ-1) at the bottom. Next-to-bottom pendulums p±1 = 
10 (ρ-1)±1 and perhaps next-to-next-to-bottom pendulums p±2, would also swing in phase with the bottom 
pendulum-p but with reduced amplitude the farther they reside from the bottom. The pendulums far from the 
bottom are shorter and faster and less able to respond to slowly swinging lower pendulums. The top pendulum 
motions are exponentially small and analogous to a weak evanescent wave. This keeps in-phase "bottom-
wiggling" activity trapped in each well since any coupling between wells must be done through the top 
pendulums. As a result the mode frequency is practically independent of the relative (wavevector) phase k 
between different wells. Motion is like that of a string of identical but independently blinking Christmas-tree 
twinkle-lights. 
 The next to lowest band B2 , ..., E1 , A2  is not quite as flat. In this band there are next-to-bottom 
pendulums p+1, p+2,.. swinging π-out of phase with pendulums  p-1, p-2,.. on the other side of the bottom 
pendulum p = 10 (ρ-1) of the ρ-th well. The bottom pendulum is nearly stationary since it sits near a local 
symmetry node. Recall that the index 2  of B2 or A2  labels local well anti-symmetry shared by the whole band. 
This anti symmetry raises the frequency and slightly increases the coupling due to the top pendulums which are 
now responding more enthusiastically.
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Fig. 16.3.2  Lowest four bands for an N=120 ring of C12 symmetry broken into 12 sets of 10 oscillators.
 (a) V=50    and (b) V = 200.
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 The H-matrix is reduced by C12 symmetry analysis to exactly 12 matrices of size 10-by-10. Each matrix 
belongs to an integer-modulo-12, that is m= 012,, ±112,, ±212,, ±312,, ±412,, ±512,, and 612,, that label the 12 k-
values in the first (and subsequent) Brillouin zone of C12. First, 012 and 612 matrices:
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012 = O-mod-12 representation:     612 = 6-mod-12 representation:

 

−48 −36 −24 −12 0 12 24 36 48 60
482 ν ν
ν 362 ν

ν 242 ν
ν 122 ν

ν 02 ν
ν 122 ν

ν 242 ν
ν 362 ν

ν 482 ν
ν ν 602

  (16.3.5a)

 

−54 −42 −30 −18 −6 6 18 30 42 54
542 ν
ν 422 ν

ν 302 ν
ν 182 ν

ν 62 ν
ν 62 ν

ν 182 ν
ν 302 ν

ν 422 ν
ν 542

 

(16.3.5b)
Except for energy scale factors of 62, these C12 Hamiltonians resemble the C2 or D2 based matrices of (16.1.11) 
with a couple of differences. The first difference is that (16.3.5) are 10-by-10 matrices while matrices (16.1.11) 
are ∞-by-∞ . The second difference is the extra v in the corner of the 012 matrix connecting supreme Brillouin 
zone boundary state of m=60 to its nearest cohort m=-48=60-12.
 The Hamiltonian matrices reduce by D12 symmetry analysis to matrices of roughly half the size.

    0+12 = A1  representation:      6+12 = B1  representation: 

    
 

0+ 12+ 24+ 36+ 48+ 60+

0 2ν
2ν 122 ν

ν 242 ν
ν 362 ν

ν 482 2ν
2ν 602

  (16.3.5c)   

 

6+ 18+ 30+ 42+ 54+

62 + ν ν
ν 182 ν

ν 302 ν
ν 422 ν

ν 542

  (16.3.5d)

     0-12 = A2  representation:      6-12 = B2  representation: 

 

 

12− 24− 36− 48−

122 ν
ν 242 ν

ν 362 ν
ν 482

  (16.3.5e)    

 

6− 18− 30− 42− 54−

62 −ν ν
ν 182 ν

ν 302 ν
ν 422 ν

ν 542

  (16.3.5f)

So, D12 symmetry reduces key parts of a formidable 120-by-120 matrix to relatively small 4, 5, and 6 
dimensional matrices. This accounts for all the band edges. The reduction occurs because the number of A1, B1, 
A2, and B2 -labeled states is, respectively, 6, 5, 4, and 5.

HarterSoft –LearnIt Unit 5 Periodic Potentials  16-31



32
 Since there are ten each of the remaining E1 , E2 , E3 , E4 , E5 doublet states there is little to be gained by 
a D12  analysis beyond the C12  analysis which gives the five 10-by-10 matrices in a form very much like ten-
truncated (16.1.19a) matrices. Each Em is doubly degenerate in the absence of chirality.
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(c) Finite and discrete Kronig-Penney waves
 In Fig. 16.3.3 the 120 pendulums are adjusted to resemble CN square well-barriers of a Kronig-Penney 
potential V(xp) whose Fourier cosine-series has the following general form.
   V(xp) = V0 + V1 cos (P xp) + V2 cos (2P xp) + V3 cos (3P xp) +...   (16.3.6) 
An (W=L)-equilateral (barrier=V)-KP potential V(x) is a real infinite series of Fourier Vm coefficients.
 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V6.,V7 ,V8 ..) = (V/2)(1,4/π,0,-4/3π,0,+4/5π,0,-4/7π, 0,...)  (16.3.7a)
    = (V/2)( 1.0,1.27324,0,-0.42441,0,+0.25465,0,-0.18, 0,...)  (16.3.7b)
If asymmetry is needed, a cosine-sine or complex Fourier series can make arbitrary V(x).
 However, a finite system such as Fig. 16.3.3 with just P=10 pendulums per well has a finite Fourier 
series. Terms beyond p=P/2=5 are redundant. A discrete KP arrangement like Fig. 16.3.4 requires just five 
numbers, but the new Vm are not all quite the same as the first five numbers in (16.3.7b).

(V0 ,V1 ,V2 ,V3 ,V4 ,V5 ).= (V/2)(1.0,1.29442,0,-0.49442,0,+0.20000).  (16.3.8)
The new Vm coefficients for discrete-xp are derived from P-fold orthonormality and completeness.

    
  
Vm = 1

2P
V xp( )cos 2π mp

Pp=0

P−1
∑     (16.3.9a)

The sole non-zero Vm coefficients for (P=10)-pendulum equilateral square barriers are as follows.

   
  
V1 =

2
5
+ 4

5
cos π

5
+ 4

5
cos 2π

5
= 4

5
+ 4

5
3− 5

2
   (1.6.3.9b)

   
  
V3 = 2

5
− 4

5
cos π

5
− 4

5
cos 2π

5
= −4

5
3− 5

2
    (1.6.3.9c)

   
  
V5 = 1

5
         (1.6.3.9d)

Here we note: 
 
cos π

5
= 3+ 5

2
 and 

 
cos 2π

5
= 3− 5

2
. Also, V2 =0= V4 for the equilateral W=L well-barrier.

 The Vm coefficients make off-diagonal bandsυm= Vm/2 in the Hamiltonian matrices. The Mathieu matrix 
of (16.3.5) for N=12 wells of P=10 pendulums is generalized below with 012 and 612 matrices given first. As 
usual, 0 and N/2 determine A and B-symmetry band boundaries. For the square-well onlyυ1 ,υ3 ,andυ5 are non-
zero. The diagonal origin-placement termυ0 =V/2 is ignored.
012 = O-mod-12 representation (A-levels):    612 = 6-mod-12 representation (B-levels):

 

−48 −36 −24 −12 0 12 24 36 48 60
482 ν1 ν2 ν3 ν4 ν5 ν4 ν3 ν2 ν1

ν1 362 ν1 ν2 ν3 ν4 ν5 ν4 ν3 ν2

ν2 ν1 242 ν1 ν2 ν3 ν4 ν5 ν4 ν3

ν3 ν2 ν1 122 ν1 ν2 ν3 ν4 ν5 ν4

ν4 ν3 ν2 ν1 02 ν1 ν2 ν3 ν4 ν5

ν5 ν4 ν3 ν2 ν1 122 ν1 ν2 ν3 ν4

ν4 ν5 ν4 ν3 ν2 ν1 242 ν1 ν2 ν3

ν3 ν4 ν5 ν4 ν3 ν2 ν1 362 ν1 ν2

ν2 ν3 ν4 ν5 ν4 ν3 ν2 ν1 482 ν1

ν1 ν2 ν3 ν4 ν5 ν4 ν3 ν2 ν1 602

(16.3.10a)

 

−54 −42 −30 −18 −6 6 18 30 42 54
542 ν1 ν2 ν3 ν4 ν5 ν4 ν3 ν2 ν1

ν1 422 ν1 ν2 ν3 ν4 ν5 ν4 ν3 ν2

ν2 ν1 302 ν1 ν2 ν3 ν4 ν5 ν4 ν3

ν3 ν2 ν1 182 ν1 ν2 ν3 ν4 ν5 ν4

ν4 ν3 ν2 ν1 62 ν1 ν2 ν3 ν4 ν5

ν5 ν4 ν3 ν2 ν1 62 ν1 ν2 ν3 ν4

ν4 ν5 ν4 ν3 ν2 ν1 182 ν1 ν2 ν3

ν3 ν4 ν5 ν4 ν3 ν2 ν1 302 ν1 ν2

ν2 ν3 ν4 ν5 ν4 ν3 ν2 ν1 422 ν1

ν1 ν2 ν3 ν4 ν5 ν4 ν3 ν2 ν1 542

 (16.3.10b)
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 Fig. 16.3.3  Lowest four bands for an N=120 pendulum model for Kronig-Penney potential V = 200.
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3-term exact series
for discrete xp
p= -4...5

V=1.0
3-term approximation
for continuum x

Fig. 16.3.4 Comparison of exact-discrete V(xp) and approximate continuum V(x) for a square potential .

 The difference now is that the H-matrices for P-pendulums and for a given m-value (Momentum quantum 
m or km ranges over N values for N-wells of P-pendulums) are only P-by-P dimensional and there are only (for 
even number P of pendulums per well) P/2 (=5 here) coefficients vk = v1 ,v0,...vP/2 . The are repeated in the H-
matrices according modular relations such as v6 = v-4 mod 10 =v4*, v7 = v-3 mod 10 =v3* , and so on. The first 
coefficient v1*  appears in the upper right hand corners of (16.3.10) as in (16.3.5a). Three coefficients fit discrete 
potential V(xp) in Fig. 16.3.4 exactly. The infinite series only approaches.

Here we are assuming bilateral symmetry so all Fourier coefficients are real vk * = vk . Then the H-matrix 
is symmetric and Hermitian. Since all Hamiltonians are Hermitian (self-transpose conjugate H†=H) the presence 
of complex coefficients presents no essential change in the formalism though it does double the computation. The 
extreme upper diagonal above vP/2 =v5  are filled with conjugate coefficients vk*  in general. The reverse holds 
for lower diagonal rows. For m12 = m-mod-12 representations belonging to in-band Em levels there are Em 
matrices with similar off-diagonal vk -structure.
 Band-edge H-matrices are reduced by D12 symmetry analysis to generalized versions of (16.3.5).
0+12 = A1  representation:      6+12 = B2  representation: 

 

0+ 12+ 24+ 36+ 48+ 60+

0 2υ1 2υ2 2υ3 2υ4 υ5

122 +υ2 υ1 +υ3 υ2 +υ4 υ3 +υ5 2υ4

242 +υ4 υ1 +υ5 υ2 +υ4 2υ3

362 +υ4 υ1 +υ3 2υ2

482 +υ2 2υ1

602

   

 

6+ 18+ 30+ 42+ 54+

62 −υ1 υ1 −υ2 υ2 −υ3 υ3 −υ4 υ4 −υ5

182 −υ3 υ1 −υ4 υ2 −υ5 υ3 −υ4

302 −υ5 υ1 −υ4 υ2 −υ3

422 −υ3 υ1 −υ2

542 −υ1

 

      (16.3.10c)       (16.3.10d)
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0-12 = A2  representation:      6-12 = B1  representation: 

 

 

12− 24− 36− 48−

122 −υ2 υ1 −υ3 υ2 −υ4 υ3 −υ5

242 −υ4 υ1 −υ5 υ2 −υ4

362 −υ4 υ1 −υ3

482 −υ2

   

 

6− 18− 30− 42− 54−

62 +υ1 υ1 +υ2 υ2 +υ3 υ3 +υ4 υ4 +υ5

182 +υ3 υ1 +υ4 υ2 +υ5 υ3 +υ4

302 +υ5 υ1 +υ4 υ2 +υ3

422 +υ3 υ1 +υ2

542 +υ1

  

      (16.3.10e)       (16.3.10f)
 Note that the vk parts of the resulting matrices have an anti-diagonal symmetry in the case of real vk *= 
vk . This makes the first-order splittings such as 62±v1 and 542±v1 occur equally in the high regions of the 
spectrum as they do in the low regions. Higher order splittings, however, do not come out the same due to the 
increased spacing between diagonal m2-elements for higher m-values.

(d) Acoustical and optical phonon modes
 In Sec. 15.3 a D3 band pair structure was modeled by considering just P=2 points in each of N=3 wells as 
shown in Fig. 15.3.2. This is equivalent to a NP=6 pendulum model of the quantum waves shown in Fig. 15.3.3. 
Similarly, the D6 band pair structure of Fig. 15.5.10 may be modeled by considering a NP=12 pendulum model, 
that is, by considering just P=2 points in each of N=6 wells. These models are sketched in Fig. 16.3.5. Such 
very-truncated quantum models are equivalent to elementary classical models of acoustical and optical phonon 
modes. Diatomic crystals may be modeled by treating heavy and light atoms as long and short pendulums, 
respectively.

 

D3 D6

Fig. 16.3.5 Trigonal and hexagonal pendulum models .
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 A spectrum of a D8 model is plotted in Fig. 16.3.6 showing the two bands of eight states each.
   A1 , E1 , E2 , E3  , B1 (gap) B2 , E3 , E2 , E1 , A2    
The lowest band (A1 , E1 , E2 , E3  , B1) is called the acoustical band while (B2 , E3 , E2 , E1 , A2), the upper 
band, is called the optical band. The acoustical-band-waves swing the long pendulums in phase with their shorter 
neighbors and are so named because they resemble sound waves. The optical-band-waves swing the long 
pendulums out of phase with their shorter neighbors and are so named because they can more easily couple with 
light waves particularly if the two masses are oppositely charged. Also, acoustical waves tend to encourage large 
amplitudes of the slower pendulums. The A1 wave in Fig. 16.3.6 has a larger amplitude on the low-frequency 
pendulum points p=0,2,4,…,14 than on the higher frequency pendulum points p=1,3,5,…,15. Optical waves, such 
as B2 tend to favor the faster pendulums with higher amplitude.

Fig. 16.3.6 Octagonal D8 pendulum band model in lowest acoustical A1 wave state .

(e) Dn symmetric quantum dot structures
 The preceding analogies between quantum and classical wave structures suggest a more general quantum 
dot structure of the type introduced in Chapters 8, 9,  14 and 15. So far, the discrete models have been introduced 
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38
as approximations to homo-cyclic or periodic potential wells. However, the possibility exists for discrete 
photonic and electronic devices that are useful in and of themselves.
 Imagine a corrals of quantum dots such as are sketched in Fig. 16.3.7. Each dot represents a quantum 
oscillator which by itself has an assigned frequency or energy that may be higher for smaller dots and lower for 
larger ones. Between each dot are tunneling paths or links to neighboring ones that may be stronger for nearer 
neighbors and weaker for more distant ones.
 Two examples in Fig. 16.3.7a-b are analogous to the pendulum models in preceding Fig. 16.3.5 but show 
extra coupling or tunneling paths beyond the near-neighbor S1 connections of a mechanical device. The third 
example Fig. 16.3.7c shows a discretely varying near-neighbor tunneling rates S1, S2, S3, …as well as the local 
dot frequency V1, V2, V3, … in a ring that models a variable potential Vp=V(xp). Near-neighbor Sp=S(xp) paths 
model a variable effective mass M(x)=h2/2|S(x)|. Longer paths T1, T2, U1, … sketched in Fig. 16.3.7a-b (also 
possible in Fig. 16.3.7c) model hyper-kinetics. In fact, there are N(N-1)/2 paths in an N-dot system, 15 for 6 dots, 
66 for 12 dots, and 276 for 24 dots in Fig. 16.3.7a, b, and c. Symmetry reduces the number of distinct path 
parameters to 4, 10, and 92, respectively. The number of distinct dot potentials V(xp) is 2, 2, and 8, repectively, to 
give 6, 12, and 72 free parameters.
  

V(x1)

S1
T1

T2U

(a) D3(b) D6(c) D3
V(x2)

V(x3)
S1S2S3

S1
S2 S3

S1

S2
S3

V(x2)

V(x1)

V(x1)
V(x2)

V(x3)

V(x1)
V(x2)

V(x3)

Fig. 16.3.7 Trigonal and hexagonal dot networks. (a-b)Hyperconnected. (c) Simple connection.

 There emerges an infinitude of possible “quantum circuits” even for a simple Bohr-ring topology, but 
even that is dwarfed by the possiblilities for concentric rings or structures in two, three, or higher number of 
dimensions. A number of independent parameters for a circuit H-matrix serve to vary its eigenfrequncy spectrum 
and eigenstates subject to the symmetry of the device. Simple circuits in Chapter 9 and Chapter 15 provide 
examples of the symmetry analysis. The number of physical parameters may be larger since, according to 
(16.2.20), contibutions to an H-matrix come from its KE and PE parts.

©2002 W. G. Harter Chapter16 Fourier Analysis of Periodic Potentials  16-



Problems for Chapter 16.
Continued Fractions
16.1.1. Use the continued fraction approximation technique described in (16.2.10) to (16.2.12).
(a) Give approxiamtion formulas for the 1- band boundary and determine where it falls below the E=0 line in Fig. 16.1.3 to give 
inverted stability in the classical pendulum analog.
(b) Apply the technique to 1+ and 2- band boundaries. See if it is possible to obtain an accurate approximation for the behavior at 
higher values V = 10-15 (Bohr units) of the Mathieu cosine potential. Locate the V values where these eigenvalues become 
negative.
(b) Use the solutions obtained in (b) to determine the E=0 wavefunction for 2-. Sketch both the 1+ and 2-  wavefunction for this V. 
In the classical penulum analogy, what pump frequency range do these two span?

Continued Fractions Continued
16.1.2. Derive an appoximation formula for the levels E1 and E2 inside the band boundaries of Fig. 16.1.8.
(a) Apply the formulas to the 1±E1  and 2±E2  levels and determine where they cross E=0.
 (b) Apply the formulas to the 5±E1  and 4±E2  levels and determine where they cross E=0.

Continued Fractions Terminated
16.1.3. Use the preceding techniques to analyze the two-by-two Hamiltonian (3.2.7) that gave elementary perturbation theory such 
a problem in Chapter 3. 

  

   

H =
H11 H12

H21 H22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

E1 V

V E2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −1 V

V 1

⎛

⎝⎜
⎞

⎠⎟

Show what several iterations of this technique give as approximations and plot them as a function of V for -5<V<5. Are your 
results any improvement over Fig. 3.2.2?

Bohr(ring) Periodic Potentials
16.3.1 A variety of periodic potentials (See figures below.) can be installed on a Bohr ring. Each may be described by quasi-infinite 
Hamiltonian matrix of the form also shown below. 
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−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 
−5       

−4  42 V1 V2 V3 V4 V5  

−3  V1
* 32 V1 V2 V3 V4 V5 

−2  V2
* V1

* 22 V1 V2 V3 V4 V5

−1  V3
* V2

* V1
* 12 V1 V2 V3 V4 V5

0  V4
* V3

* V2
* V1

* 0 V1 V2 V3 V4 V5

1  V5
* V4

* V3
* V2

* V1
* 12 V1 V2 V3 V4 V5  

2  V5
* V4

* V3
* V2

* V1
* 22 V1 V2 V3 V4 V5 

3   V5
* V4

* V3
* V2

* V1
* 32 V1 V2 V3 V4 

4 V5
* V4

* V3
* V2

* V1
* 42 V1 V2 V3 

5 V5
* V4

* V3
* V2

* V1
* 52 V1 V2 

6 V5
* V4

* V3
* V2

* V1
* 62 V1 

7 V5
* V4

* V3
* V2

* V1
* 72 

8 V5
* V4

* V3
* V2

* 82

 V3
*

In each case the crest to trough energy is given by VC-to-TN2 so that the band boundaries are roughly the same height in each 
diagram.  For each of the 12 cases:      

(a) Show or describe the form such a matrix would have. Are complex Vk ever needed?
(b) Give numbers needed to get the first two bands for VC-to-T=5 in εBohr(2) units (14.2.10)
(c) Estimate the band energies and label using notation (0)± A1, (m)± B1, (n)± E1,etc.  

Summing Discreetly
16.3.2. Consider the comparison between discrete and continuous Fourier potential representations.

(a) Check the square well decompositions (16.3.7) and (16.3.8) by rederiving them.
(b) Do similar calculations of the two kinds of Fourier representations if the P=10 pendulums form a quadratic (harmonic 
oscillator) potential with pendulum 0 mod 10 at the lowest point  V(0) = 0 and pendulum 5 mod 10 at the highest point V(5)
=V.
(c) Use (b) to estimate the splittings of all the bands in a 120-pendulum model for small positive values of V. Show the 
resulting ordering of the A1, B1, A2, and B2 levels. Does this indicate there will be crossing of band-edge levels at some 
larger V?

Periodic Potential Pile-up
16.3.3 Consider a case where all  potential Fourier components υm equal the same real constant υ =υ1=υ2=υ3=υ4=υ5. The 
resulting potential V(xp) “piles-up” into what is called a Pairing or Dirac potential.

(a) Derive and plot the resulting potential (as in Fig. 16.3.4) for the P=10 pendulum model.
(b) Derive and plot the resulting dispersion function.

Dispersion Pile-up
16.3.4 Consider a case where all  hyper-kinetic tunneling components S=Sp=Tp=Up = …equal the same real constant. 

 (a) Derive and plot the resulting dispersion function.

Complete Pile-up
16.3.4 Discuss a case where both 16.3.3 and 16.3.4 are in effect. 
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 Review Topics & Formulas for Unit 5

 

R"eikx+L"e-ikx Reikx+Le-ikxR2'eix+L2'e-ix

x = b' x = a'

R1'eix+L1'e-ix

x = b x = a
L L

A

  Fig. 14.1.5 C2-symmetric double barrier .

  

  

′′R
′′L

⎛

⎝⎜
⎞

⎠⎟
=

ei2kLχ*2 + e−i2kAξ2 −iξ e−i2kbχ* + e−i2k ′a χ( )
iξ ei2kbχ + ei2k ′a χ*( ) e−i2kLχ2 + ei2kAξ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

R
L

⎛

⎝⎜
⎞

⎠⎟
  (14.1.6)

   χ = cosh κL - i sinh 2β  sinh κL,  and:  ξ = cosh 2β  sinh κL,   (14.1.7)

  
  
cosh 2β = 1

2
κ
k
+ k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 + k2

2kκ
,      sinh 2β = 1

2
κ
k
− k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 − k2

2kκ
 (14.1.8)

___________________________________________________________________________

Model Lorentz resonance function
  

1
C11 ω( )

2

=
cn

ω −ωn + iΓn

2

=
cn

2

ω −ωn( )2 + Γn
2

  (14.1.10)

resonance frequency ωn , resonance decay rate Γn, , resonance peak strength |cn /Γn|2 
Γn is the Lorenztian Half-Width at Half-Maximum (HWHM).

 

L
A

W

 b2  a2 b1  a1      b3 a3

E
V

x = bN+1 aN+1

 Fig. 14.1.18 (N+1)-barrier (N)-well potential

   

C N +1barrier = C[N +1] ′C ⋅C =

eikLχ* −ie−ik(aN +1+bN +1)ξ

ieik(aN +1+bN +1)ξ e−ikLχ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟


eikLχ* −ie−ik(a2 +b2 )ξ

ieik(a2 +b2 )ξ e−ikLχ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⋅

eikLχ* −ie−ik(a1+b1)ξ

ieik(a1+b1)ξ e−ikLχ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  (14.1.17a)

For (E<V) are k = √(2E), κ = √(2V-2E), and sinh 2β = (κ2-k2)/(2kκ) ,
   χ = cosh κL - i sinh 2β  sinh κL,  and:  ξ = cosh 2β  sinh κL,   (14.1.17a)
For (E>V) they are  = √(2E-2V), and cosh 2α = (2+k2)/(2k).
   χ = cos L + i cosh 2α  sin L,   and:  ξ = sinh 2α  sin L.    (14.1.17b)
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Pendulum model: 

  

H εk =
H −S 0
−S H −S
0 −S H

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1 Ψ

2 Ψ

3 Ψ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= εk

1 Ψ

2 Ψ

3 Ψ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= εk Ψ    (14.1.18)

       εm =  H - 2 S cos (π  m/4) .  (14.1.21b)

   

 

ε1 = 1    2     1( ) / 2

ε2 =   1   0  −1( ) / 2

ε3 = 1  − 2   1( ) / 2

  

  

ε1 = H − 2S
ε2 = H

ε3 = H + 2S

   (14.1.21c)

Kronig-Penney band conditions.   

  

   

 

( for E >V ) : cos kW cos L − 2E −V

2 E E −V( )
sin kW sin L

( for E <V ) : cos kW coshκ L + V − 2E

2 E V − E( )
sin kW sinhκ L

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

= cosφ  (14.2.5b)

where rational units are used for energy. 

 
   
φ = m 2π

N
 ,         k = 2E  ,            = 2 E −V( )  ,        κ = 2 V − E( )  .       (14.2.5c)

Bohr units

   

ε 1
Bohr ( A) = 

2

2M
π 2

A2
=

1.05 ⋅10−34πJ ⋅ s( )2
2 ⋅9.109 ⋅10−31kg( )

103meV
1.602 ⋅10-19J

1

A ⋅10−8 m( )2
                = 3.76meV

A2
  (A in units of 100 A) 

  (14.2.10a)

Our rational units:
   
ε 1

Bohr ( A)= π 2 / 2
A2

= 4.93
A2

=1.23  (for: A=2 in 100 Aunits)   (14.2.11)
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D2 1 Rz R y Rx

A1 1 1 1 1

B1 1 -1 1 -1

A2 1 1 −1 −1

B2 1 -1 −1 1

(15.1.4)   

   

D3 characters g = 1 r,r2{ } i1, i2 , i3{ }
TraceD A1 g( ) = χ A1 g( ) 1 1 1

TraceD A2 g( ) = χ A2 g( ) 1 1 −1

TraceDx2 y2

E1 g( ) = χ E1 g( ) 2 −1 0

 (15.1.13)

   

g = 1 r r2 i1 i2 i3

Dc3d3

E1 g( ) = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
ε− 0

0 ε+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ε+ 0

0 ε−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 ε+
ε− 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 ε−
ε+ 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟

    (15.1.8)

   

g = 1 r r2 i1 i2 i3

Dx2 y2

E1 g( ) = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
−1 / 2 − 3 / 2

3 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 / 2 3 / 2

− 3 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 / 2 − 3 / 2

− 3 / 2 1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 / 2 3 / 2

3 / 2 1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

Wigner-Weyl projection formula 

   

g =
µ
∑

m
∑ Dmn

µ g( )
n
∑ Pmn

µ = D A1 g( )P A1 + D A2 g( )P A2 + D11
E1 g( )P11

E1 + D12
E1 g( )P12

E1

                                                                                         + D21
E1 g( )P21

E1 + D22
E1 g( )P22

E1

(15.1.20a)

    
Pmn
µ = 

µ

oG
Dmn

µ*
g( )

g
∑ g    (15.1.20d)  

  
Pjk
µ Pmn

ν = δ µνδkmPjn
µ   (15.1.20b)

  
gPmn

µ =
′m

∑ D ′m m
µ g( ) P ′m n

µ  (15.1.21a) 
  
Pmn
µ g =

′n
∑ Dn ′n

µ g( ) Pm ′n
µ   (15.1.21b)

grand D-orthonormality relations.

  
Dmn

µ P ′m ′n
′µ( ) = δ µ ′µ δm ′m δn ′n  or: 

    g
∑ Dmn

µ g( )D ′m ′n
′µ * g( ) =

oG
 ′µ

δ µ ′µ δm ′m δn ′n  (15.1.30)

Pµ =
    

Pmm
µ

m=1

µ
∑ = 

µ

oG
Dmm

µ* g( )
m=1

µ
∑

g
∑ g = 

µ

oG
χµ* g( )

g
∑ g  

   
cg =

o cgχg
µ

µirepsµ
∑ Pµ   (15.2.5b)

Pµ is the (µ)-th all-commuting idempotent Pµ or class projector.

χµ
1 = µ  =

    
°G
µχ1

µ*

oG
= °G c1 coefficient inPµ( ) = µ( )2  (15.2.10g)

Duality principle 
  
g 1 = g = g† 1 = g−1 1   ,   or:   g−1 1 = g† 1 = g−1 = g 1 = g 1 . (15.3.8)

Duality-relativity principle 
  
g t = t ⋅g† ⋅ t−1 t = t ⋅g† ⋅ t† t .    (15.3.9)

    
g mn

µ   =
′m =1

µ
∑ D ′m m

µ g( ) ′m n
µ    

    
g mn

µ    =
′n =1

µ
∑ D ′n n

µ* g( ) m ′n
µ   (15.3.10)
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Regular representation of operators g and dual operators  g .

   
Rh, f

G (g) = h g f = δh=gf =
1  if: h = g ⋅ f  
0  if: h ≠ g ⋅ f

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= δ

f † =h†g
 

   
Rh, f

G (g) = h g f = 1 h†f ⋅g† 1 = δ f =hg  (15.3.11)

 Symmetry: g H = H g of Hamiltonian   H = H 1 + Rr + R*r2 + L i1 + M i2 + S i3  (15.4.2a)

Solution:    
   
Hab

µ
=

g=1

°G
∑ 1 H g Dab

µ*
g( )      (15.4.5c)
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