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Unit 3 Fourier Analysis and Symmetry
Unit 2 discussed quantum ei(k•r-ω t)-wave propagation in space and time and introduced 

wavevector and frequency (ck,ω)-space while deriving the basic Einstein relativistic 

transformations and Planck-deBroglie quantum relations. But, what are ei(k•r-ω t)-waves? One 

answer comes from understanding relations between space-time (x,ct) and (ck,ω)-space known 
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matrices and shows their connection to translational symmetry. This with Planckʼs axiom gives 
the quantum equation of motion known as Schodingerʼs time equation, the evolution operator, 
and its generator, the quantum Hamiltonain operator, the sine qua non of Schrodinger theory. 
Unit 3 continues with a detailed description of quantum beats and revivals using symmetry 
analysis. The final chapter describes 2-state and spin-1/2 systems while introducing U(2) 
symmetry analysis.
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Expressing arbitrary wavefunctions or states in terms of spectral components or plane waves 
is known as Fourier analysis. Fourier transformation matrices relate space and time 
(coordinate) bases to wavevector and frequency (Energy-momentum) bases of plane waves. 
Fourier analysis comes in different flavors depending on whether various bases are discretely 
numbered or continuous. Chapter 7 compares the continuous coordinate bases of Bohr rotor 
states to the fully continuous plane wave states of an unbounded continuum. Then a discrete 
“quantum-dot” sytsem is introduced in which both coordinates and wavevectors are discrete. 
The later is the basis for the introduction of Fourier symmetry analysis in the following Chapter 
8 and time evolution in Chapter 9. Discrete symmetry in space and time helps to clarify 
quantum beats and “revivals” which all quantum systems will exhibit to some degree. 
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Unit 3 Fourier Analysis and Symmetry
Chapter 7. Fourier Transformation Matrices
	

 We have noted that a quantum experiment cannot move at all unless two or more frequency components 
can interfere with each other. A single (mono-chromatic) wave Ψ = ψe-iω t is not enough to make anything 
happen. Such a Ψ-system is a stationary state and appears to be dead. What we can observe is determined by the 
absolute square Ψ∗Ψ, which kills the single oscillating phase.
	

 Similarly, a wave Ψ = ψeikx with a single momentum component appears to be a uniform cloud of random 
counts in space. To obtain any structure in the quantum world, that is, atoms, molecules, solids, people, and so 
forth, we need many momentum components in our matter waves.
	

 The mathematics used to deal with multiple frequency or momentum components is called Fourier 
analysis after Jean Baptiste Fourier, a French artillery officer turned mathematician. This section will review the 
fundamentals of Fourier theory relevant to quantum theory using the Dirac notation. Fourier analysis has several 
flavors depending on whether its coordinates and parameters, that is space-time and wavevector-frquency are 
discrete or continuous and whether x or k are bounded or unbounded. We consider several distinct cases in turn. 
Each has different forms for its completeness and orthonormality axioms-3 to 4.

7.1 Continuous but bounded x. Discrete but unbounded k
	

 One of the most famous and widely used wavefunction systems in quantum theory are the one-
dimensional (1-D) Bohr orbitals ψ k(x) = 〈x | k 〉. Examples are sketched in Fig. 7.1.1.

	

 	


  
ψ km

(x) = x km = ei k mx

norm.
=ψ km

(x + L) 	

 	

 	

 	

 	

 (7.1.1)

These can be thought of as a set of waves on a ring of circumference L. The basic waves have just the right 
wavevectors km to put integral numbers of whole wavelengths along L and thereby repeat the wave again after 
each complete L-revolution. Such requirements are known as periodic boundary conditions.

	

 	


  
ψ km

(x) =ψ km
(x + L) = ei k mx

norm.
= ei k m x+ L( )

norm.
=ψ km

(x)ei k mL 	

 	

 (7.1.2)

The boundary conditions lead to wavevector quantization conditions.

	

 	


  
ei k mL = 1, or:  km = 2π

L
m ,  where: m = 0,±1, ± 2, ± 3,....± ∞ 	

 	

 (7.1.3)

The allowed wavevectors, while still infinite in number, are forced to be discrete.
	

 This is a very common feature of quantum theory for which it owes its name quantum, but it happens to 
classical waves, too. A bounded continuum leads to an unbounded but discrete set of allowed waves. For another 
example, cavity modes in the Hall of Mirrors in Sec. 6.3 (d) acquire discrete frequencies as soon as the doors are 
shut. If an indiscrete type of wave is put in a cage, then it is forced to be discrete. (Perhaps, this is just another sad 
anthropomorphic metaphor.) 
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 m or km

E

m=1m= -1
m=0

m=2m= -2

m=3m= -3

m=4m= -4

m=5m= -5

m=6m= -6

L

m=0

L= 40

m= ±1
m= ±2

m= ±3

m= ±4

m= ±5

m= ±6

Fig. 7.1.1  Sketches of Bohr orbitals confined to 1-D L-interval and quantum energies ( for m=0 to 6 ).

	

 The resulting amplitudes must satisfy Axioms 1-4. In particular, the orthonormality axiom-3 requires 〈k1| 
k1〉=1 but 〈k1| k2〉 =0 , and so forth,  or that the following Kronecker delta representation.
	

 	

 	

 	

 	

 〈km| kn〉=δm n 	

 	

 	

 	

 	

 (7.1.4a)
Completeness axiom-4 requires that | kn〉 〈kn| sum up to a unit operator or an x-Dirac-delta expression.
	

 	

 Σ| kn〉 〈kn| =1,	

 or:	

 Σ 〈x | kn〉 〈kn| x' 〉 =  〈x | x' 〉=δ(x-x').	

 	

 (7.1.4b)

 (a) Orthonormality axiom-3
Using the integral form (2.1.2) of the completeness relation sum we get the following. 

 	

 	


  
δm n = km kn = dx

−L / 2

L / 2
∫ km x x kn = dx

−L / 2

L / 2
∫

e−i k mx

norm.
ei k nx

norm.
	

 	

 (7.1.5)

The conjugation axiom-2 was used to write

	

 	

 	

 	


  

km x = x km
*
= e−i k mx

norm.
	

 	

 	

 	

 	

 (7.1.6)

After integrating, this determines the normalization constant norm. as follows.

	



  

δm n = dx
−L / 2

L / 2
∫

e−i k mx

norm.
ei k nx

norm.
= dx

−L / 2

L / 2
∫

e−i k m−k n( )x
norm.

= e−i k m−k n( )x
−i k m− k n( )norm.

−L / 2

L / 2

       = e−i k m−k n( )L / 2 − ei k m−k n( )L / 2

−i k m− k n( )norm.
=

2sin k m− k n( ) L / 2⎡⎣ ⎤⎦
k m− k n( )norm.

    	

 (7.1.8)

Using the quantization conditions (7.1.3) gives the desired norm. value and satisfies axiom-3.
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δm n =
2sinπ m − n( )

2π
L

m − n( )norm.
=

0 if : m ≠ n
L

norm.
 if : m = n

⎧

⎨
⎪

⎩
⎪

 , or: norm. = L.	

 	

 (7.1.9)

Normalized wave amplitudes are therefore

	

 	

 	

 	


  
ψ km

(x) = x km = ei k mx

L
.	

 	

 	

 	

 	

 (7.1.10)

(b) Completeness axiom-4
	

 Completeness axiom-4 has a Dirac-delta form in the mixed discrete-continuous wave space.

	

 	

 	

 	


  
δ x − x '( ) =

m=−∞

m=+∞
∑ x km km x ' 	

 	

 	

 	

 (7.1.11)

We test it with amplitudes (7.1.10) using orthonormality (7.1.4) and conjugation (7.1.5).

	


  

dx
−L / 2

L / 2
∫ δ x − x '( ) = dx

−L / 2

L / 2
∫

n=−∞

n=+∞
∑

ei k nx

L
e−i k nx '

L
= e−i k nx '

Ln=−∞

n=+∞
∑ dx

−L / 2

L / 2
∫

ei k nx

L
	

(7.1.12)

The last integral is a representation of a Kronecker delta δ0,n . Recall that k0 =0 and use (7.1.4).

	

 	

 	


  

dx
−L / 2

L / 2
∫

ei k nx

L
= L dx

−L / 2

L / 2
∫

e−i k 0x

L
ei k nx

L
= L k0 kn = Lδ0 n

	

 	

 	

 	


  

dx
−L / 2

L / 2
∫ ei k nx = Lδ0 n .	

 	

 	

 	

 	

 	

 (7.1.13)

Then (7.1.12) is consistent with (7.1.11) and (7.1.10) and the definition of Dirac’s delta.

	


  

dx
−L / 2

L / 2
∫ δ x − x '( ) = dx

−L / 2

L / 2
∫

n=−∞

n=+∞
∑

ei k nx

L
e−i k nx '

L
= e−i k nx '

n=−∞

n=+∞
∑ δ0 n = e−i k 0x ' = 1 	

 (7.1.14)

(c) Fourier series representation of a state
	

 With completeness one can quickly derive a representation of arbitrary state  | Ψ 〉 if you know its 
complex wavefunction Ψ(x) = 〈 x | Ψ 〉 . Formally, you just operate on | Ψ 〉 with the unit 1=Σ|km〉〈 km |.

	

 	



  

x |Ψ =
m=−∞

m=+∞
∑ x km km Ψ =

m=−∞

m=+∞
∑

ei k mx

L
km Ψ

          =
m=−∞

m=+∞
∑ ei k mx Ψm

	

 	

 	

 (7.1.15a)

where the Fourier coefficient Ψm is given by the following integral (Use x-completeness 1=∫dx| x 〉〈x |.)

	

 	



  

Ψm =
km Ψ

L
= 1

L
dx

−L / 2

L / 2
∫ km x x Ψ = 1

L
dx

−L / 2

L / 2
∫

e−i k mx

L
x Ψ

      = 1
L

dx
−L / 2

L / 2
∫ e−i k mx Ψ(x)

.	

 (7.1.15b)

The only requirement is that the function be periodic in L, that is, Ψ(x) =  Ψ(x+L). 

(d) Bohr dispersion relation and energies
	

 In Fig. 7.1.1 the waves with higher km have higher energy Em and are drawn higher according to the E-
values given by the Bohr dispersion function first drawn in Fig. 5.6.3.
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Em = ωm =

km( )2
2M

 , where: pm = km =  2π
L

m .	

 	

 (7.1.16)

This is just a non-relativistic approximation for energy that neglects the rest energy Mc2 and higher order terms in 
(5.2.5b). It is kinetic energy only, that is KE = 1/2Mu2 = p2/2M with the momentum p=pm and wavevector k=km 
quantized by conditions (7.1.3). The dispersion function is then a simple parabola of discrete values as shown on 
the right hand side of Fig. 7.1.1. Note that each energy value Em , except E0, has two orthogonal wavefunctions ψ
±km or states |±km〉 corresponding to pairs of oppositely moving wavevectors ±km on either side of the dispersion 
parabola. The |±km〉 are called degenerate states because they share a single energy Em. Such degenerate pairs are 
each an example of a U(2) two-state system. As long as the degeneracy remains, any unitary linear combination 
of the two states is also an eigenstate with the same frequency and energy E=hν. 

(e) Sine and cosine Fourier series worth remembering
 A function defined by Fourier series (7.1.15) repeats after its fundamental wavelength L=2π/k1 or period 
T=2π/ω1. So do the real and imaginary parts that are series of sine or cosine functions of mth spatial overtone 
argument kmx or mth overtone frequency argument ω mt. Moving wave terms use both: (kmx-ω mt).
 Let us consider wave functions with zero-DC-bias or zero (k=0)-Fourier component: 0=Ψ0=∫Ψ. The 
integrals and derivatives of unbiased functions may also be unbiased. An example of a series of unbiased 
functions starts with the alternating Dirac delta function adel(x) shown at the top of Fig. 7.1.2. Its integrals and 
derivatives are useful series worth remembering because they are easy to compute and visualize. Compare this 
function to the simple delta pulse train (5.3.2) shown in Fig. 5.3.2.
 The first integral of adel(x) is a square wave function box(x) shown next in line in Fig. 7.1.2. Below it is a 
saw-tooth wave saw(x) and then a parabolic amplitude wave paw(x). Each wave has an overall scale factor 
attached so plots that are not delta-like end up with comparable amplitudes.

Wave paw(x) looks like a sine wave but isn’t quite. The derivative of a genuine sine wave is a cosine 
wave that looks just like a sine wave but is moved back by π/2. The derivative of paw(x) is saw(x), which is 
moved back, but it looks nothing like good old paw(x)! Subsequent derivatives only accentuate the differences 
between sin(x) and paw(x). Differentiation amplifies little blips or bends (It differentiates!) while integration does 
the opposite by smoothing out sharp corners or other differences.

There are at least two famous physics topics that make use of functions that are derivatives or integrals of 
each other. Classical mechanics in one dimension is one such topic where the functions of acceleration a(t), 
velocity v(t), and position x(t), are each the integral of one above or the derivative of the one below. Classical 
electrostatics is another topic in which the charge-density ρ(x), electric field E(x), and potential Φ(x), are so 
related. (Various conventions may put ±signs and scale factors onto these relations.)
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box(x)

saw(x)

paw(x)

adel(x)

Fig. 7.1.2 Fourier series sharing simple integral or derivative relations to each other.

 Some more or less extreme examples of charge and field distributions are sketched in Fig. 7.1.3 on the 
following page. The first set in Fig. 7.1.3(a) is due to alternating charge layers. The field is that of a series of 
alternating parallel-plate capacitors. By taking a derivative of the alternating chasrge layers we make the dipole 
layer distribution shown in the top of the middle Fig. 7.1.3(b). The final example in Fig. 7.1.3(c) actually has a 
Dirac-delta potential lattice, one of many favorite models for nano science these days. We shall be modeling 
periodic potentials, too. The preceding gives you some feeling how difficult it may be to actually produce some 
of these exotic potentials! Seldom is theory so easy and the lab so hard.
 Also it is worth considering these as time-pulse series. As we will explain later, you may taper the Fourier 
series amplitudes gradually to zero and thereby replace the sharp and wrinkled deltas and squares by smoother 
Gauassian or Lorentzian features that are useful spectroscopic models. Of course, you may taper them right back 
to single term series of one sine or one cosine wave each!

Following page: Fig. 7.1.3 Exotic 1-D electric charge and field distributions.
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box(x)

! 2! 3! 4! 5!
Boxcar E-field +1 +1

-1 -1

+1

-1

+1

-1

saw(x)

! 2! 3! 4! 5!

Sawtooth potenial function

-x+!/2

x-3!/2+!/2

-!/2 -x+5!/2 -x+9!/2

x-7!/2 x-11!/2

del(x) +∞

δ(x-0) δ(x-2!) δ(x-4!) δ(x-6!)

δ(x-!) δ(x-3!) δ(x-5!)

+∞ +∞ +∞

-∞ -∞ -∞
(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

Potential
Φ(x)

Electric
Field
Ε(x)

Charge
Density
ρ(x)

(a)

        

box(x)

! 2! 3! 4! 5!

Boxcar Potential field+1 +1

-1 -1

+1

-1

+1

-1

-dell(x) Dirac-delta E-field function
+∞

−δ(x-0) −δ(x-2!) −δ(x-4!) −δ(x-6!)

δ(x-!) δ(x-3!) δ(x-5!)
+∞ +∞ +∞

-∞ -∞ -∞

(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

-(d/dx)del(x) Dirac-delta derivative (dipole layer lattice)

Potential
Φ(x)

Electric
Field
Ε(x)

Charge
Density
ρ(x)

(b)

        

dell(x) Dirac-delta Potential function
+∞

−δ(x-0) −δ(x-2") −δ(x-4") −δ(x-6")

δ(x-") δ(x-3") δ(x-5")

+∞ +∞ +∞

-∞ -∞ -∞

-(d/dx)del(x) Dirac-delta derivative field lattice
Electric
Field
Ε(x)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

-(d/dx)2del(x)
Charge
Density
ρ(x)

Dirac-delta double derivative (quadrupole layer lattice)(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(c)
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7.2 Continuous and unbounded x. Continuous and unbounded k
	

 In the preceding cases all wavevectors are restricted by the quantization condition (7.1.3).

	

 	

 	


  
 km = 2π

L
m ,  where: m = 0,±1, ± 2, ± 3,....± ∞ 	

 	

 	

 (7.1.3)repeated

If you let the "cage" become infinitely large ( L → ∞  ) then the wavevector set becomes finer and finer and 
approaches a continuum. The trick is to replace each sum over index m by an integral over a continuous k-value. 
If it is done right the wave functions will take a continuous form in both x and k. 

	

 	

 	

 	


  
ψ k (x) = x k = ei kx

norm.
,	

	

 	

 	

 	

 (7.2.1a)

We need to verify k-orthonormality relations based on wavevector Dirac-delta δ(k′,k)-functions.
	

 	



  
k ' k = δ k '− k( ) = dx−∞

∞∫ k ' x x k = dx−∞
∞∫ ψ k ' (x)*ψ k (x) ,	

 	

 (7.2.1b)

We also need the usual x-completeness relations based on spatial Dirac-delta δ(x′,x)-functions. 
	

 	



  
x ' x = δ x '− x( ) = dk−∞

∞∫ x ' k k x = dk−∞
∞∫ ψ k (x ')*ψ k (x) 	

 	

 (7.2.1c)

	

 It seems that orthonormality and completeness relations are two sides of the same coin. Orthonormality 
(7.2.1b) for the k-states { |k〉...|k' 〉..} expresses completeness for the x-states  |x〉 , and completeness (7.2.1c) of the 
k-states  |k〉 expresses orthonormality for the x-states { |x〉...|x' 〉..}.
	

 The Dirac notation is extremely efficient but can be confusing. There is a world of difference between the 
states { |k〉...|k' 〉..} of perfectly monochromatic plane waves and the Dirac position states {|x〉...|x' 〉..} of perfectly 
localized particles. Recall that we said that an |x〉 state was physically unrealizable; crushing a particle into a 
single position-x would cost infinite energy. Technically, a |k〉 state is unrealizable, too, since it requires an infinite 
amount of real estate; we have to let its cage dimension L be infinite, but that seems easier than the extreme 
solitary confinement needed to make an |x〉 state. If space is cheaper than energy, then |k〉 is easier to approach 
than |x〉. Lasers easily make approximate |k〉's by being stable and coherent, but producing approximate |x〉's for 
extremely short pulses requires more difficult engineering.
	

 Use caution to not abuse this notation, though it is easily done. It should be obvious why the following 
rendition of (7.2.1a) is a dreadful mistake.

	

 	

 	


  

k k = ei kk

norm.
= ei k2

norm.
         (Dirac abuse. Very BAD mistake!)

Letters x and k denote very different bases which must not to be confused.

(a) Fourier integral transforms

	

 To achieve the limit of infinite real estate ( L → ∞  ) we replace sums over 
  
km = 2π

L
m  such as 

	

 	


  
S =

m=−∞

m=+∞
∑ Φk m

= Δm
m=−∞

m=+∞
∑ Φk m

 , where: Δm = 1 	

.	

 	

 (7.2.2)

Integrals over k with differential 
  
Δkm = 2π

L
Δm = 2π

L
→ dk  or: 

  

Δm
Δkm

= L
2π

 are used as follows.
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S = Δm

m=−∞

m=+∞
∑ Φk m

= Δm
Δk m

Δk mm=−∞

m=+∞
∑ Φk m

 becomes → L
2π

dk−∞
+∞∫ Φ k( ) 	

 	

 (7.2.3)

This, by itself, blows up as we let ( L → ∞ ), but so do the normalization denominators   norm. = L , and they 
cancel. Finally, the Fourier series (7.1.15a) becomes a finite integral.

	


  

x |Ψ =
m=−∞

m=+∞
∑

ei k mx

L
km Ψ  becomes → L

2π
dk−∞

+∞∫
ei k x

L
km Ψ = dk−∞

+∞∫
ei k x

2π
L

2π
km Ψ

The trick is to renormalize the k-bases so 
  

L
2π

km  becomes → k  letting the L’s cancel.

	

 	

 	


  

x |Ψ = dk−∞
+∞∫

ei k x

2π
k Ψ = dk−∞

+∞∫ x k k Ψ ,	

 	

 	

 (7.2.4a)

The newly “normalized” plane wave function ψk(x)=〈x⏐k〉 is defined as follows.

	

 	

 	

 	


  

x k = ei k x

2π
	

 	

 	

 	

 	

 	

 	

 (7.2.4b)

This 〈 x⏐k〉 is the kernal of a Fourier integral transform. An inverse follows by converting (7.1.15b).

	


  

km Ψ

L
= 1

L
dx

−L / 2

L / 2
∫ e−i k mx x Ψ  becomes → k Ψ = L

2π
L
L

dx
−∞

+∞
∫ e−i k x x Ψ ,

	

 	

 	

  
  

k Ψ = dx
−∞

+∞
∫

e−i k x

2π
x Ψ = dx

−∞

+∞
∫ k x x Ψ ,	

 	

 	

 (7.2.4c)

Here the inverse kernal 〈k⏐x〉 is simply the conjugate of 〈 x⏐k〉 as required by conjugation axiom-2.

	

 	

 	

 	


  

k x = e−i k x

2π
= x k

* .	

 	

 	

 	

 	

 (7.2.4d)

(b) Fourier coefficients: Their many names
	

 The efficiency of the Dirac notation (provided it isn't abused!) should be clear by now. The simple bra-ket 
〈x| k〉 stands for so many different mathematical and physical objects. Let's list some.

	

 (1)  〈x| k〉 is a scalar product of bra 〈x| and ket |k〉  
	

 (2)  〈x| k〉 is an x-wavefunction for a state |k〉 of definite momentum p = k.
	

 (3)  〈k| x〉=〈x| k〉* is an k-wavefunction for a state |x〉 of definite position x .
	

 (4)  〈x| k〉 is a unitary transformation matrix from position states to momentum states.
	

 (5)  〈x| k〉 is the kernal of a Fourier transform between position states and momentum states.

	

 As beautiful and compact as it is, the continuum functional Fourier analysis is merely an infinite and 
unbounded abstraction that lets us use calculus to derive formulas in special cases. Its validity as a limiting case 
for experimental and numerical analysis should always be questioned. Laboratory and computer experiments, on 
the other hand, invariably deal with finite and bounded spaces, and it these that we turn to in the next section. We 
finish this section by relating square-wave Fourier transforms to square-wave Fourier series of the preceding 
section to help clarify discrete-vs.-continuum relations. 
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(c) Time: Fourier transforms worth remembering
	

 Fourier time-frequency (time-per-time) transforms resemble space-k-vector (space-per-space) transforms 
(7.2.4). But, a negative sign is put in the exponent so the time phasor turns clockwise.

	

 t |Ψ = dω−∞
+∞∫

e−iωt

2π
ω Ψ = dω−∞

+∞∫ x ω ω Ψ 	

 (7.2.5a)	

 t ω =
e−iω t

2π
(7.2.5b)

	

 ω Ψ = dt
−∞

+∞
∫

eiω t

2π
t Ψ = dt

−∞

+∞
∫ ω t t Ψ 	

 	

 (7.2.5c)	

 ω t =

eiω t

2π
= t ω * 	



Consider, for example, a single square bump of amplitude B and duration T/2. Its Fourier transform (7.2.5c) is an 
elementary diffraction function sin ω/ ω  that is plotted in Fig. 7.2.1.

	

 	

 ω Ψ = dt
−T /4

+T /4
∫

eiω t

2π
B=B e

iωT /4 − e−iωT /4

iω 2π
=
2Bsin ωT / 4( )

ω 2π
	

 (7.2.6)

It is the first approximation to an optical diffraction function for a single square aperture. 
The Fourier amplitude due to multiple square humps is a combination of finer and finer elementary 

diffraction patterns. Three half-humps give the following frequency function plotted in Fig. 7.2.2(a).

	



ω Ψ = 1
2π

A dt
−3T /4

−T /4
∫ eiω t + B dt

−T /4

+T /4
∫ eiω t + A dt

+T /4

+3T /4
∫ eiω t

⎡

⎣
⎢

⎤

⎦
⎥

=A e
−iωT /4 − ei3ωT /4

iω 2π
+ B e

iωT /4 − e−iωT /4

iω 2π
+ A e

i3ωT /4 − eiωT /4

iω 2π

=
2 B − A( )sin ωT / 4( )

ω 2π
+
2Asin 3ωT / 4( )

ω 2π

	

 (7.2.7)

The frequency functions in Fig. 7.2.3 are the result of a lot more bumps. Each one consists of a series of spikes 
corresponding to the Fourier series amplitudes 1, 1/3, 1/5, 1/7,… for the fundamental ω=2π/T and odd-overtones 
3ω,  5ω,  7ω, …, respectively, for the box(x) function in Fig. 7.1.2. This is an even box function in Fig. 7.2.3 so 
the series amplitudes alternate sign as 1, -1/3, 1/5, -1/7,…as shown. The very last example is an unbiased funtion 
with no DC (ω=0)-Fourier component.

The "ringing" between the peaks is generally considered to be a nuisance. One way to get rid of ringing is 
to turn on the square wave more gradually. Fig. 7.2.4 shows the Fourier transform of a wave that has been turned 
on and off by a Gaussian (exp-(x/a)2). This windowing kills the ringing. The width of each frequency peak varies 
inversely with the width a of the Gaussian window.
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Fig.7.2.1  Elementary diffraction function: Fourier transform of single half square wave.

(a)

(b)

Fig. 7.2.2 Fourier transform of (a) three half- square waves. (b) seven half -square waves.
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(a)

(b)

(c)

Fig. 7.2.3 Fourier transforms of square half-bumps (a) fifteen (b) forty-nine (c) fifty one .
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Fig. 7.2.4 Fourier transform of windowed square waves.

	

 The idea of the Fourier integral, as opposed to Fourier series, is that any function, periodic or otherwise 
can be approximated by sines and cosines from a frequency continuum. Fourier series require that the function be 
periodic and repeat itself perfectly after some fixed period of time. The Fourier integral is supposed to be an 
enduring and time-invariant frequency map that provides the predestination of a time function forever and ever!
	

 One should be suspicious of something that requires an infinite continuum of perfect frequency oscillators 
to be behind the scenes running your life. Pure sines and cosines are forever functions but we, like our world, 
certainly are not so enduring. Consider Fourier integrals as a cute limit-taking tool but not ultimately realistic.

Consider the fictitious function of time shown in Fig. 2.6.6. It is only periodic for awhile, but like most of 
us, cannot maintain the pace forever and finally gets in trouble with the hereafter. 

6 AM
Staggers
to work

10 AM
Coffee

12 PM
Lunch

5 PM
Bar

12PM
dec'd

1 AM
rises
again

1 PM
Nap

(maybe)

Fig. 7.2.5  A day in the life of a real function.

 Now we go on to a practical Fourier analysis that is both finite and discrete.
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7.3 Discrete and bounded x. Discrete and bounded k
	

 This is the most restrictive case, but also, due to practical considerations mentioned previously, the one 
that actually gets used the most these days. However, in spite of its practical value it is not always treated as 
carefully as the more “mathematically sophisticated” continuum case (b). It should be!
	

 We begin by supposing that space itself is periodic as in case (a) but further is divided into N discrete 
pieces or points. So the only x-values allowed are the following N values 
	

 	

 	

 { x0=0, x1=a , x2=2a , x3=3a, ... , xN-1=(N-1)a, xN =0}	

 	

 (7.3.1a)
and there are only N position states are the following. The last |N〉 state is the same as the first |0〉 state. 
	

 	

 	

 { |0〉, |1〉 , |2〉 , |3〉 , ... , |N-1〉 , |N〉 =|0〉}	

 	

 	

 	

 (7.3.1b)
	

 Fig. 7.3.1 shows ways to visualize this as N beads on a ring of length L = Na that wraps around so that the 
N-th bead is the same as the zero-th. (Zero-based numbering is the modern computing standard.) Otherwise, we 
invoke the so-called periodic or Born-VonKarman boundary conditions and imagine our 1-D world repeats like a 
computer game outside its boundaries. As shown in Fig. 7.3.1, there is a distance a between the lattice of beads. It 
is called the lattice spacing a. 

      

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉=|0〉

|0〉 |1〉 |2〉 |3〉 |4〉=|0〉

|0〉 |1〉 |2〉=|0〉

|0〉
|1〉

|2〉
|3〉

|4〉

|5〉

|0〉

|1〉

|2〉

|3〉

N=6

N=4

|0〉

|1〉
N=2

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉=|0〉

|0〉 |1〉 |2〉 |3〉=|0〉

|2〉 |3〉

|4〉

|0〉

|1〉

|0〉

|1〉 |2〉

N=5

N=3

N=1 |0〉 |1〉=|0〉|0〉
a

a a

a a a a

a a a

a a a a a

a

a

a

a

aa

a a

a

a

L=3a

L=5a

L=4a

L=6a

L=2a

	

 Fig. 7.3.1 Finite coordinate spaces for N-cyclic (CN) discrete systems (N = 1, 2, ...,6...)

	

 These ideal quantum dots will be among our first examples of 2-state, 3-state, ..., and 6-state systems. By 
studying them carefully, it will be possible to learn important principles which will greatly help later study of 
molecules and solids which have N-states with large-N but the same basic theory. Also, the quantum dots might 
have hidden inventions that could make you wealthy!
	

 The basic wavefunctions that live on the discrete dots or beads are a subset of the continuum 
wavefunctions eikmx of (2.6.1), as though N equally spaced points of (2.6.1) were extracted and plotted over each 
lattice point xp where
	

 	

 	

 	

 xp = p a =p L/N  .  ( p = 0, 1, 2, 3, ..., N-1 )	

 	

 	

 (7.3.2) 
The basic wavefunctions are given explicitly below.
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ψ km

(xp ) = xp km = e
i k mxp

N
=ψ km

(xp + L) 	

 	

 	

 (7.3.3)

The only change from (7.1.1) is the use of a discrete coordinate xp defined in (7.3.2) above. Also, the 
normalization constant has been set to the dimension N since all N exponentials eikmx  contribute unit magnitude 
(|eikmx |2 = 1) in the normalization sum.

	


  

km km =
p=0

N −1
∑ km xp xp km =

p=0

N −1
∑

e
−i k mxp

N
e

i k mxp

N
= N 1

N
1
N

= 1 	

 	

 (7.3.4)

	

 The quantization conditions due to periodicity requirement (7.3.3) over "cage" length L=Na are similar to 
(7.1.3) but now expressed in terms of the discrete number N and spacing a of lattice points.

	

 	

 	


  
ei k mL = 1 , or:  km = 2π

L
m = 2π

Na
m 	

 	

 	

 	

 (7.3.5a)

Wave amplitude at lattice point p is a power-p of (ei2π/N), the N-th root of unity (normalized, of course)

	

 	

 	


  
ψ km

(xp ) = xp km = e
i k mxp

N
= 1

N
ei 2π / N( )mp

	

 	

 	

 (7.3.5b)

All N roots, together, form N-polygons in the complex plane as shown in Fig. 7.3.2. The allowed wave 
amplitudes in Fig. 7.3.2 resemble the "ring" coordinate positions in Fig. 7.3.1. The complex zm,p=exp(ikmxp) are 
the N-th roots of unity (zN=1) introduced in a complex arithmetic review (App 1.A). 

	



N=1

1

e2πi/3 e-2πi/3=(e2πi/3)2

1

N=3

N=2 1

e2πi/4=i

N=4

1

e2πi/5

N=5

1

e2πi/6

N=6
1

-1

(e2πi/5)2 (e2πi/5)3

e-2πi/5=(e2πi/5)4

(e2πi/6)2
-1=(e2πi/3)3

-1=(e2πi/4)2

e-2πi/4=(e2πi/4)3

(e2πi/6)4

e-2πi/6=(e2πi/6)5

Re Ψ

Im Ψ

m=0

m=0

m=0

m=0

m=0

m=1

m=0

m=1

m=1

m=1

m=1

m=-1

m=-1 m=-1

m=-1

m=-2

m=-2

m=2
m=2

m=3

m=2

	

 Fig. 7.3.2 Discrete wave amplitudes allowed  for N-cyclic (CN) systems (N = 1, 2, ...,6...)
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(a) N-nary counting for N-state systems
	

 Fig. 7.3.2 shows different counting schemes for odd-N and even-N. In the unbounded cases the k-values 
go from −∞ to +∞. Here, letting m count from -N to +N over-counts and gives 2N+1 states when we know there 
are only N. We could let m count from 0 to N-1, just like the lattice points. Or, we let  m count from -(N-1)/2 to +
(N-1)/2, (odd-N ) and from -(N-2)/2 to +(N)/2 (even-N) as shown below.
	

 It helps to think of N-state cyclic system as an N-nary computer element. Ever since 1950, we have 
become accustomed to binary (N=2) data storage in 2-bit registers. Inevitably, someone will discover how to 
make N-state registers. Until then, we imagine them. For an N-state register the quantum counting index m is 
defined only by an integer modulo-N or (m)N.
	

 	

 	

 	

 	

 (m)N.= m modulo N  	

 	

 	

 	

 (7.3.6)   
	

 For example, for N=6 in Fig. 7.3.2, all the following values of the quantum index m in a given line below 
have the same value modulo-6. 
	

 	

 ...= (-9)6 = (-3)6 = (3)6 = ( 9 )6 = (15)6 = ...=  3 mod 6
	

 	

 ...= (-8)6 = (-2)6 = (4)6 = (10)6 = ...  	

= -2 mod 6
	

 	

 ...= (-7)6 = (-1)6 = (5)6 = (11)6 = ...  	

 = -1 mod 6  
	

 	

 ...= (-6)6 = ( 0)6 = (6)6 = (12)6 = ...   	

=  0 mod 6	

 	

 	

 (7.3.7)
	

 	

 ...= (-5)6 = ( 1)6 = (7)6 = (13)6 = ...  	

 =  1 mod 6	


	

 	

 ...= (-4)6 = ( 2)6 = (8)6 = (14)6 = ...  	

 =  2mod 6	


	

 	

 ...= (-3)6 = ( 3)6 = (9)6 = (15)6 = ...  	

 =  3mod 6
	

 ...= (-8)6 = (-2)6 = ( 4)6 = (10)6 = ...  	

  	

 = -2 mod 6
How do we choose a km number label? We choose the underlined ones with the smallest |m| and pick the positive 
one if two are equal. This choice {m=-2,-1,0,1,2,3} of N=6 m-values is used in Fig. 7.3.2.

(b) Discrete orthonormality and completeness
	

 Orthonormality relations for wave states reduce to finite geometric sums.

	


  

km ' km =
p=0

N −1
∑

e
−i k m' xp

N
e

i k mxp

N
= 1

N p=0

N −1
∑ e

i k m−k m'( )xp  , where: xp  = p a  	

(7.3.8a)

Substituting (7.3.2) and (7.3.5) gives

	


  

km ' km =
p=0

N −1
∑ z p = 1+ z + z2 + ...+ z N −1

N
 , where: z  = ei k m−k m'( )a = ei2π m−m '( )/ N

The geometric sum yields a result that satisfies km-orthonormality axiom-3.

	

 	


  

km ' km = 1
N

1− z N

1− z
 = 1

N
1− ei2π m−m '( )

1− ei2π m−m '( )/ N
= δmm ' 	

 	

 	

 (7.3.8b)

The km-completeness axiom-4 (or xp- orthonormality) is satisfied for these wave states, as well.

  
  

xp ' xp =
m=0

N −1
∑ xp ' km km xp =

m=0

N −1
∑

e
i k mxp '

N
e
−i k mxp

N
= 1

N m=0

N −1
∑ e

i xp '− xp( )k m = δ p p '  	

 (7.3.9)
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(c) Discrete Fourier transformation matrices
	

 Below are shown Fourier transformation matrices and discrete xp-wavefunctions (7.3.5b)

	

 	

 	

 	

 〈 km | xp 〉 =  ψkm(xp)*= e-ikmxp /√N  	

 	

 	

 	

 (7.3.10a)	


They are drawn as complex phasor amplitudes for the cyclic N-state systems (CN) for N= 1, 2, 3, 4, 5, and  6. 
Also drawn over the phasors is the Re-part of the "Bohr's ghost" continuum x-wavefunctions
	

 	

 	

 	

 〈 km | x 〉 =  ψkm(x)*= e-ikmx /√L  	

 	

 	

 	

 (7.3.10b)	


Recall (7.1.10) or Fig. 7.1.1. "Bohr's ghosts" match the discrete waves (7.3.10a) with phasor clocks.

1 1  1
1 -1

1    1    1
1 e-i2π/3 ei2π/3

1 ei2π/3 e-i2π/3

1  1  1  1
1 -i -1     i
1 -1   1-1
1   i  -1    i

__
√2

__
√3 __

√4

-16=
-26=

-25=
-15=

-14=
-13=

Re Ψ

Im Ψ

Fig. 
7.3.3 Discrete Fourier transformation matrices for N-cyclic (CN) systems (N = 1, 2, ...,6...)
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(d) Intoducing aliases and Brillouin zones
	

 It is important to see the relation between the continuum waves and their "course-grained" images thatves 
with integral wave-numbers of m mod N whole wavelengths within each 〈 km |-row of phasors. We might as well 
call them "row-waves" or "bra-waves."  Note also, that the same wave shape exists in the columns or kets | xp 〉. 
Each “ket-wave” | xp 〉 represents a δ-position state or “pulse” localized at point xp . The inverse Fourier 
transformation 〈 km   | xp 〉 relates | xp 〉 to a bra-wave〈 km |. As required by conjugation axiom-2, namely, 〈 km   | xp 〉=

〈 xp | km 〉∗, the relation is the same as between | km 〉 and 〈 xp |  , except for conjugation.
	

 For low wave number like, say (mN )=(1)6 or (2)6, it is easy to see the "Bohr's-ghost wave" mirrored in the 
phasors as in the second and third row of the C6 matrix in Fig. 7.3.1. Note however, that these phasors are set so 
the phase of the one to the right is clockwise (that is it appears ahead) of the one to the left. This means, if the 
phasors turned clockwise, that the one to the right is feeding energy into the one to its left, so the wave would be 
moving right-to-left with wave momentum minus (1)6 or minus (2)6, respectively. But, they're conjugated bras so 
their clocks go backwards and so the labels are OK, after all.
	

 For high wave number like, say (mN )=(4)6 or (5)6, it is not so easy to see the "Bohr's-ghost wave" 
mirrored in the phasors as in the fifth and sixth row of the C6 matrix in Fig. 7.3.1. But, you can see alias waves of 
negative wave momentum (mN )=(-2)6 or (-1)6 , respectively, that is oppositely moving waves of low 
wavenumber. Recall that (4 mod 6) equals (-2 mod 6) and (5 mod 6) equals (-1 mod 6).
	

 Right in the middle row of the even-N matrix is a wave that isn't going in either direction. In the C6 matrix 
it is the (3)6 wave. Since (3 mod 6) equals (-3 mod 6) this is a good old push-me-pull-you standing wave with all 
real amplitudes of (1, -1, 1, -1, 1, -1). This can only happen for even-N and is known as a first Brillouin zone 
boundary wave in solid-state physics. 
	

 All cases have a zero-momentum wave (0N ) at the top of the transformation matrix. This is called the 
Brillouin zone center wave in solid-state physics. Indeed, it is centered at the bottom of the dispersion plot in Fig. 
2.6.1. Its phasor settings are the same as that of a higher (NN ), or (2NN ), or (3NN ), ...etc. wave. However, this N-
state system does not count higher than N-1 without recycling.
	

 Consider, for example, a k-11 wave of wavevector (-11)12 (with minus-eleven-kinks-modulo-12) as plotted 
in Fig. 7.3.4 (a). Since (–11)-mod-12 equals (+1)-mod-12 (that is, (-11)12=(+1)12) it follows that the wave shown 
has the same effect as a (+1)12 wave. Indeed, the twelve masses in Fig. 7.3.4(a) line up on a single-kink (k=1)-
wave moving positively, while the (k=-11)-wave moves negatively. (See WaveIt movie.) This is an example of 
aliasing. In a C12 lattice, (k=-11) is an alias for (k=+1). 
	

 Fig. 7.3.4(b) shows the k-space with a typical frequency dispersion function plotted above it. The 
difference between any two alias wavevectors such as (k=+1) and (k=-11) is a reciprocal lattice vector k12 or (12)
12=(0)12. The reciprocal lattice vector k12 also spans the first Brillouin-zone from (-6)12 to (+6)12 as shown at the 
bottom of the figure. An important idea here is that a wavevector k-space must have the same N-fold periodic 
symmetry as the coordinate x-space. Moving across row of a 〈 km   | xp 〉 matrix gives the same variation as moving 
up the corresponding column since 〈 km   | xp 〉 is unitary. Both are N-fold periodic!
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Fig. 7.3.4 (a) (-11)-wave has the same effect as its alias (+1)-wave. (b) Difference is zone vector k12.

	

 To appreciate the symmetry of a Fourier transfom matrix, it may help to examine some larger ones. For 
example, Fig. 7.3.5 shows the Fourier matrix for N=24. Phase of each amplitude 〈 km   | xp 〉 is color coded so it can 
be more easily spotted. Symmetry patterns should now be more evident. Remember, that these patterns repeat 
forever in all directions right and left or up and down in a great checkerboard quilt!
	

 This beginning discussion of discrete wave analysis should make it clear that there is considerable 
physical and mathematical complexity hiding in these "simple" Fourier structures. Indeed, this is a key to 
understanding fundamental quantum symmetry properties and techniques which are generally labeled by a 
mathematical misnomer as “group theory.” We shall explore some more of this shortly.
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Fig. 7.3.5  Phase color coded Fourier transformation matrix for N=24.

©2013 W. G. Harter      Chapter 7 Fourier transformation matrices  	

 7--



Problems for Chapter 7
Bohring problems
7.1.1. For a Bohr ring of fixed circumference L =1nm consider the following wavefunction Ψ(x) =〈x|Ψ〉 distributions around 
the ring at t=0, and deduce the amplitudes 〈m|Ψ〉 of each of the eigenstates |m〉 for m=0,±1,±2,.. Let the eigenfrequencies be  
νm = ( 0, 1, 4, . , m2, .)MHz. 
(a) Ψ(x) = const. . 	

 	

 	

 	

 	

 	

 (b) Ψ(x) = const.(1+cos 2πx/L) .
(c) Ψ(x) = const. for -L/4<x<L/4 and  Ψ(x) = 0  elsewhere.
For each case evaluate const. assuming one particle occupies the ring. 
(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each 
case at time t = 1µsec, and at 0.5µsec .

Continuously boring problems
7.2.1. For an infinite line (-∞<x<∞) consider the following wavefunction Ψ(x) =〈x|Ψ〉 distributions along the line. Calculate, 
plot, and discusss the amplitude functions 〈k|Ψ〉 of each of the eigenstates |k〉 for (-∞<k<∞). Let the eates |k〉 for (-∞<k<∞). 
Let the eigenfrequencies be  νk = ( kL/2π)2MHz. (Let unit length be L =1nm.)
(a) Ψ(x) = const. . 	

 	

 	

 	

 	

 	

 (b) Ψ(x) = const.(1+cos 2πx/L) . .
(c) Ψ(x) = const. for -L/4<x<L/4 and Ψ(x) = 0  elsewhere.
Evalu per unit length ( L =1nm.). 
(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each 
case at time t = 1µsec, and at 0.5µsec .

Continuously discrete or discretely continuous?
7.3.1. Ch.7 contains discussion of 1D Fourier wave systems with (a) Continuous x and discrete k, (b) Continuous x and 
continuous k, and (c) Discrete x and discrete k. Using physical models of each to discuss how physically relizeable these are. 
Is there a 4th possibility? Discuss.

Aliases on the move
7.3.2. Consider the two aliases (-11) and (+1) in Fig. 7.3.4. Discuss whether a dispersion function ω(k) should repeat 
periodically. Should the period be the zone vector k12? For computation use ω(k)=|sin(πk/12)| as plotted where k=0, ±1, ±2, 
±3 ,… in units of 2π/L. Use Vphase = ω/k and Vgroup = dω/dk .
(a) Is the phase velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.
(a) Is the group velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.
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Fourier analysis is most useful when there is a symmetry G in which all the coordinate points 
are indistinguishable. For an unbounded x-continuum, G is an infinite translational symmetry 
group labeled T. For a bounded xp-ring of “quantum dots” the symmetry G is an N-cyclic 
rotation group labeled CN. In Chapter 8 a fictitious hexagonal beam analyzer with C6 symmetry 
is considered. The transfer matrix eigensolutions of such a device are found using a modern 
form of Fourier analysis known as group representation theory or symmetry analysis, one of 
the most powerful tools in quantum theory. The symmetry of the bounded Bohr x-ring 
continuum is also discussed.
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Chapter 8. Fourier Symmetry Analysis
 From where do the wavefunctions like Ψ = ei(kx - ωt) come? One answer to this involves the concept of 
symmetry analysis and group representation theory. These sound like big names for what is still regarded as a 
pretty scary mathematical subject. However, the basic ideas of this powerful tool are actually quite simple as we 
hope to show now. Most of the needed algebraic work has been done in Ch. 3 regarding spectral decomposition. 
The physical ideas of Fourier analysis and Bohr ring waves are in Ch. 7. Symmetry group representation theory is 
really just a beautiful generalization of Fourier analysis that gives eigensolutions of “difficult” operators using 
simple properties of commuting symmetry operators.

8.1. Introducing Cyclic Symmetry: A C6 example
 A ring of quantum dots was introduced in Section 7.3 as a model for finite Fourier analysis. The Fourier 
tranformation matrix was discussed with examples for N=1, 2, 3, 4, 5, and 6. The idea of cyclic symmetry CN was 
broached as a property of the matrices in Fig. 7.3.3 and Fig. 7.3.5. Here that idea is put on a more solid footing.

(a) Cyclic symmetry CN: A 6-quantum-dot analyzer
 Suppose someone invents some beam analyzer that takes an N-state beam and sorts it into N beams 
arrayed around a circular device as imagined in Fig. 8.1.1 for N=6. Let each beam path entering the device 
contain particles in one of N states {|0〉, |1〉, |2〉, ... , |N-1〉} after which the device does things which causes the 
beams to interfere or be otherwise modified before recombining and counting. 

	



|0〉
|1〉=r |0〉
|2〉=r2 |0〉

|4〉=r4 |0〉
|5〉=r5 |0〉

|0〉=1 |0〉

|3〉=r3 |0〉

|2〉

|3〉

|4〉

|5〉|1〉

rr
|1〉=r |0〉

|0〉

|ΨIN〉
|ΨOUT〉=ΤΤ|ΨIN〉

ΨIN - STATE
PREPARATION
Particle ΨIN-State
Analyzer-Filter

ANALYZER
CHANNELS

ΨOUT - STATE
MEASUREMENT

Particle
Analyzer-Counter

 Fig. 8.1.1 Generic N-state (CN) beam analyzer experiment with (N = 6) channels

 We are intentionally being vague about the nature of the states. (After all, this device hasn't even been 
invented yet!) Let us just say they are some kind of hyper-polarization states. (Put a prefix like 'hyper' on 
something ordinary and people stop asking questions.) The point is that by just knowing the symmetry of a 
device it is possible to work out a lot of the quantum mechanics without knowing so much of the underlying 
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details. It is a lot like the photon polarization and electron spin problems discussed in Chapter 1. Electron and 
photon “spin” are physically quite different but use much of the same mathematical theory.
 By symmetry, we mean any operators r, r2,.. that do not alter the analyzer experiment no matter how 
many times you apply them. In particular, suppose a 60° rotational operator r indicated in Fig. 8.1.1. could be 
done some night by the lab janitor, so when the physicists show up the next morning all their experiments work 
the same as the day before. 
 However, it is important to state what we mean the janitor's r-operation to do. He could just rotate the 
whole lab building by 60°. That, indeed, is a symmetry, but not one we will discuss until later. Besides, a rotation 
like that happens every four hours as the Earth turns; no janitor needed! This is called the symmetry of isotropy of 
space. It is a continuous or Lie symmetry for which 60° has no special significance. 
 Instead, what we have in mind for the janitor to do is rotate just the analyzer in the center of Fig. 8.1.1 by 
60° as indicated in the figure. Well, that analyzer looks pretty heavy, so, instead we'll ask that the janitor just 
rotate the little input source and the little output counter both by minus 60°, which is operation    r -1=r 5. This 
does the same as a whole-Earth/lab rotation by -60° (which no one detects) followed by a positive 60° rotation of 
the big analyzer to "upright" leaving input and output devices behind at -60°. 
 It is important to understand that all transformations are relative transformations; something gets moved 
or mapped relative to something else. You've probably heard it quoted, "Everything's relative!" Well, that's often 
garbage, but here it isn't. Rotations, Lorentz transformations, and our analyzer operators T (Recall Fig. 1.6.1), 
and r in Fig. 8.1.1 are all mappings of one vector or thing relative to another.
 By the way, our helpful suggestion to the janitor won't help much if the input and output devices are big 
analyzers, too. It was noted in Chapter 1 that filters and counters are analyzers set in certain ways. But, the 
analyzer in Fig. 8.1.1 is a more powerful one than heretofore discussed. (And, isn't better always bigger?) So let's 
assume that the janitor can easily do r -1 = r 5 to the smaller input and output devices whose in and out states are 
written as follows in Dirac notation, 
    |ΨOUT (r-1)〉 = r -1|ΨOUT〉  ,     |ΨIN (r-1)〉 = r -1 |ΨIN〉 .  (8.1.1)
 Symmetry of the transformation operator T means it does exactly the same relative thing to any state |
ΨIN〉 as it does to the janitor-rotated state |ΨIN (r-1)〉 , that is 
   |ΨOUT〉 = T |ΨIN〉     implies:  |ΨOUT (r-1)〉 = T |ΨIN (r-1)〉  (8.1.2a)
or 
               r -1|ΨOUT〉 = T r -1|ΨIN〉     (8.1.2b)
      |ΨOUT〉 = r T r -1|ΨIN〉     (8.1.2c)
If this is true for all input states |ΨIN〉 then it follows that effect of analyzer operator T in (8.1.2a) and in (8.1.2c) 
are indistinguishable, or T is invariant to r
      T = r T r -1  or:  r -1T r = T      (8.1.2d)
or, that r commutes with T; the latter being the most common way to say that T has r-symmetry.
       T r = r T      (8.1.2e)
All the above parts of equation (8.1.2) are really the same requirement for r-symmetry of T.
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 Note: This is not the same as just multiplying both sides of |ΨOUT〉 = T |ΨIN〉 by r  or r -1 which just gives 
a whole-Earth/lab rotation, that is, operate with r -1 and insert the identity (r r -1 =1) to get
    r -1 |ΨOUT〉 =  r -1 T |ΨIN〉 =  r -1 T r r -1 |ΨIN〉 .      (8.1.3a) 
This reduces to an expression similar to the original |ΨOUT〉 = T |ΨIN〉 
     |ΨOUT (r-1)〉  =  r -1 T |ΨIN〉 =  r -1 T r |ΨIN (r-1)〉 = T (r-1) |ΨIN (r-1)〉     (8.1.3b)
where T (r-1) is a similarity transformation r -1T r of T . (This is an active transformation; devices move.)
     T (r-1)  = r -1 T r       (8.1.3c)
These relations hold true for any analyzer operator T whether it has symmetry or not. 
 For T to have r-symmetry it is necessary that the similarity transformation leaves T unchanged or 
invariant (T (r-1)  = T), as in (8.1.2d).To recap 
 An analyzer has r-symmetry if and only if its operator T commutes with r , that is (T r = r T).

(b) CN Symmetry groups and representations
 Now, the janitor, having fooled the physicists once, does it again the next night, by rotating by r one more 
time giving the same positions as if r 2 had been done the first night. Then a combination of r 2 and r 3 is tried. 
(This just gives r -1 = r 5 the inverse of which was tried on the first night.) All of these products are symmetries if 
the factors are. (So the physicists end up getting fooled night after night for almost a week of different positions! 
Saturday, they have to take off since they read right-to-left. ) 
 If operators a and b commute with an analyzer T-matrix then so do all their products
   If: aT = Ta  and  bT = T b    then    abT = Tab  and  baT = T ba     (8.1.4a)
and inverses.  If: aT = Ta       then   a-1T = Ta-1       (8.1.4b)
This shows that the set of unitary operators that commute with a particular T-operator must satisfy the group 
axioms (1-4) stated in Sec. 2.2. This set is called a symmetry group G={ a , b , c ,..., g ,..}  of the operator T. We 
are supposing that the analyzer matrix T associated with the experiment in Fig. 8.1.1 has an N-cyclic symmetry 
group C6 = { 1 , r , r2 , r3, r4, r5} of six (N=6) operators that have the following group multiplication table. We 
put the inverses of the first column in the top row so 1 is on the diagonal.

 

   

  

C6 1 r5 r4 r3 r2 r

1 1 r5 r4 r3 r2 r

r r 1 r5 r4 r3 r2

r2 r2 r 1 r5 r4 r3

r3 r3 r2 r 1 r5 r4

r4 r4 r3 r2 r 1 r5

r5 r5 r4 r3 r2 r 1

 (8.1.5a)                       1=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   (8.1.5b)  

Think of the table as a matrix in a basis {|0〉  |1〉  |2〉  |3〉  |4〉  |5〉} defined by operators {1,r,r2,r3,r4,r5}.
 This makes a matrix representation for each operator using the channel states as a basis by simply 
replacing each operator's table entry by a "1" in that position of its matrix and "0" or "dot" (.) elsewhere. 
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        0 1 2 3 4 5                    0 1 2 3 4 5                    0 1 2 3 4 5                    0 1 2 3 4 5                    0 1 2 3 4 5

r=

⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,r2 =

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

, r3=

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,r4 =

⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,r5=

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

            (8.1.5c)
These are sometimes called the regular permutation representations because they permute each of the p-position 
states. The first column of matrix rp-1 represents the basic ket definition |p〉 = rp-1|1〉 as follows.
  |0〉 = 1|0〉 , |1〉 = r|0〉 , |2〉 = r2|0〉 , |3〉 = r3|0〉 , |4〉 = r4|0〉 , |5〉 = r5|0〉   (8.1.6a)
The r-transform is unitary r†=r -1. The Hermitian conjugate of these relations is the basic bra definition.
  〈0| = 〈0|1 , 〈1| = 〈0|r -1 , 〈2| = 〈0|r -2 , 〈3| = 〈0|r -3 , 〈4| = 〈0|r -4 , 〈5| = 〈0|r -5  (8.1.6b)
These defintions may be summed up by defining a representation matrix R(g) with components Rpq(g).
     Rpq(g)= 〈p|g|q 〉         (8.1.6c)

(c) So whatʼs a group representation?
 To use a more “kosher” mathematical language we should say that the representation matrices in (8.1.5b-
c) are functions R(g) of the group G={1,g1,g2,…}=C6={1,r,r2,r3,r4,r5}. That is, every group operator gets 
mapped onto a matrix so that the matrix R(g1g2) of a group product g1g2 is the matrix product R(g1)• R(g2) of the 
factors. 
     R(g1)• R(g2) = R(g1•g2)       (8.1.7a)
Stated simply, “The product of representations must equal the representation of the product.” The matrices in 
(8.1.5b-c) must obey the group multiplication table (8.1.5a)! It is easy to see that the first matrix (8.1.5b) satisfies 
this requirement trivially.
     R(1)• R(1) = R(1•1) = R(1)     (8.1.7b)
The remainder have to satisfy it because of definition (8.1.6) involve bras and kets which obey Axioms 1-4, that 
is, R(g) is a unitary representation. The conjugation axiom (〈p|q〉*=〈q|p〉) implies that the †-conugate (R†pq= 
R*qp) of a representation must be the representation of the group inverse r†=r -1.
    Rpq(g†)= 〈p|g†|q 〉 = (〈q|g|p〉)*= (Rqp(g))*      (8.1.8a)
Stated more simply this is simply demanding operator unitarity from its representations.
    R†(g) = R(g†) = R(g-1) = R-1(g)      (8.1.8b)
All of the above are properties that are invariant to a change-of-basis transformation U†U=1. Given RU(g) = U R
(g)U†, it follows that the new RU matrices also satisfy (8.1.7) thru (8.1.8). For example,
  RU(g1)RU(g1) = U R(g1)U†U R(g2)U†= U R(g1)R(g2)U† = RU(g1g2) (8.1.9)
Now we discuss finding and applying the diagonalizong transformation or d-tran of R(g).
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8.2 CN Spectral Decomposition: Solving a C6 transfer matrix
 The main analyzer of Fig. 8.1.1 is supposed to have C6  symmetry. However, it is also supposed to do 

some things that we haven't let single analyzers do to an incoming base state |ΨIN 〉 =|p〉, and that is, mix it up! No 
longer will a base state |1〉 or |2〉 just fly on through with nothing more than an extra phase attached, so it just 
comes out eiΩ1|1〉 or eiΩ2|2〉 . From now on, each base state |p〉 is going to get treated to a full-blown 
transformation matrix Τ that is not necessarily diagonal. A general base state |ΨIN 〉 will be output as |ΨOUT〉 , as 
follows,

   

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

4 ΨOUT

5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

T00 T01 T02 T03 T04 T05

T10 T11 T12 T13 T14 T15

T20 T21 T22 T23 T24 T25

T30 T31 T32 T33 T34 T35

T40 T41 T42 T43 T44 T45

T50 T51 T52 T53 T54 T55

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 ΨIN

1 ΨIN

2 ΨIN

3 ΨIN

4 ΨIN

5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (8.2.1a)

where off-diagonal (p≠q) matrix elements 
       Tpq = 〈 p | Τ | q 〉       (8.2.1b)
of T are not all zero if |p〉 and |q〉 do not belong to T‘s "own" eigenbasis. (Bilingual redundancy, again.)
 So, are we ready to diagonalize a general six-by-six matrix? No way, Jose'! But, here is where symmetry 
analysis rides to the rescue. If we can diagonalize the r-matrix in (8.1.5) then, barring appearance of nilpotents or 
other obnoxious gremlins, we may be able to also diagonalize the T-matrix (8.2.1). This is because (8.2.1) isn't 
just any old six-by-six matrix; it has C6 symmetry and must therefore commute with each of its symmetry 
operators like r. Recall T r = r T in (8.1.2). This means that T and r share projectors Pk as shown in (3.1.37). 
Diagonalize r and you may have diagonalized T as well!

(a) Spectral decomposition of symmetry operators rp

 The problem of analyzing (8.2.1) is then reduced to diagonalizing r in (8.1.5a), another six-by-six matrix, 
albeit a simpler one. But wait! No matrix need bother us. The minimal equation for r is simply
      rN = 1  (N=6, here.)    (8.2.2)
and all its eigenvalues are the roots of unity given before by (7.3.5) and displayed in Fig. 7.3.3.

   
  
χm = rN( )m = e−i 2π / N( )m =e−i 2π m/ N      where:  m = 0,1,2,..., N −1      (8.2.3)

(Again, N=6). The spectral projectors of r follow easily. To help understand this recall that a spectral 
decomposition of any matrix M come with beautiful and powerful consequential relations. First, M‘s eigen- 
projector Pk  satisfies: MPk = εk Pk  and orthonormality PjPk = δjk Pk. Then there is completeness 
      1 = P1 + P2  + ...+ Pn .     (3.1.15d)repeated 
and spectral decomposition of operator M, and functional spectral decomposition of an operator M .
     M = ε1 P1 + ε2 P2  + ...+ εn Pn     (3.1.15e)repeated 

f(M)= f(ε1) P1 + f(ε2) P2  + ...+ f(εn) Pn    (3.1.17)repeated 
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Applying the spectral relations using the eigenvalues (roots) in (8.2.3) gives a functional (power) spectral 
decomposition (3.1.17)repeated of all powers rp of rotation operator r by putting (χm)p before each Pm. 

   

  

1 =   P0    + P1    + P2    + P3     + P4     + P5

r =   P0 + χ1P1 + χ2P2 + χ3P3 + χ4P4 + χ5P5

r2 = P0 + χ1
2P1 + χ2

2P2 + χ3
2P3 + χ4

2P4 + χ5
2P5

r3 = P0 + χ1
3P1 + χ2

3P2 + χ3
3P3 + χ4

3P4 + χ5
3P5

r4 = P0 + χ1
4P1 + χ2

4P2 + χ3
4P3 + χ4

4P4 + χ5
4P5

r5 = P0 + χ1
5P1 + χ2

5P2 + χ3
5P3 + χ4

5P4 + χ5
5P5

 where: 
  
χm

p = χm( )p
= e−i 2π mp( )/ N   (8.2.4a)

Apart from the normalization, the Pm-to-rp relation above is a unitary linear combination having the same Fourier 
transformation coefficients 〈km|xp〉 as (7.3.10a). The inverse rp-to-Pm relation is obtained by transpose 
conjugating the coefficients χmp above to give coefficients just like 〈xp|km〉 in (7.3.10b).
    ( χmp )* = √N 〈km|xp〉* = √N 〈xp|km〉 = ei2π(mp)/N = ρ pm      (8.2.4b)
Then divide all by the norm N=6 to make the following idempotent projectors.

   

  

P0 = 1   + r     + r2    + r3     + r4     + r5( ) / 6

P1 = 1 + ρ1r + ρ2r2 + ρ3r
3 + ρ4r4 + ρ5r5( ) / 6

P2 = 1 + ρ1
2r + ρ2

2r2 + ρ3
2r3 + ρ4

2r4 + ρ5
2r5( ) / 6

P3 = 1 + ρ1
3r + ρ2

3r2 + ρ3
3r3 + ρ4

3r4 + ρ5
3r5( ) / 6

P4 = 1 + ρ1
4r + ρ2

4r2 + ρ3
4r3 + ρ4

4r4 + ρ5
4r5( ) / 6

P5 = 1 + ρ1
5r + ρ2

5r2 + ρ3
5r3 + ρ4

5r4 + ρ5
5r5( ) / 6

 where: 
  
ρp

m = χm
p* = ei 2π pm( )/ N    (8.2.4c)

Operating on the first position state with these projectors gives the desired eigenstates of the T-matrix. The norm 
is 〈1|P m|1〉 =1/N . (Recall (3.1.13)example) Its root 1/√N  results to give normalized eigenkets.

  
   
km = Pm 0 N =

p=0

N −1
∑ ρp

mr p 0 N / N =
p=0

N −1
∑ ei2π pm( )/ N p / N     (8.2.5a)

The inverse ket relations give position states |xp〉=|p〉 in terms of wave |km〉 eigenkets.

  
   

p = r p 0 =
p=0

N −1
∑ χ p

pPm 0 N =
p=0

N −1
∑ e−i2π mp( )/ N km / N     (8.2.5b)

 The preceding ket relations (8.2.5) and their operator equivalents (8.2.4) are the discrete-N Fourier 
transformations whose N-by-N transformation matrices are pictured for N=1, 2, 3, 4, 5, and 6 in Fig. 7.3.3 and for 
N=24 in Fig. 7.3.5. The physical transformation is between N “quantum-dot” position point |p〉-states (|xp〉=|p〉) 
and their N quantum momentum Fourier-wave |km〉-states. Much of the above is mathematical “legalese” which 
gets short-circuited in the calculations that are described next.
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 (b) Writing transfer operator T in terms of symmetry operators rp 
 In order for main analyzer T-matrix (8.2.1) to have CN  symmetry, it must commute with all the rotation 
operator r-matrices in (2.7.5). T does this by being a linear combination of rp as follows.
   T = A 1 + B r + C r2 + D r3 + C' r4 + B' r5,    (8.2.6) 
The rp-matrices in (2.7.5) are thus combined to give the general C6 -symmetric T-matrix relation (8.2.1).

   

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

4 ΨOUT

5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

A B ' C ' D C B

B A B ' C ' D C

C B A B ' C ' D

D C B A B ' C '

C ' D C B A B '

B ' C ' D C B A

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 ΨIN

1 ΨIN

2 ΨIN

3 ΨIN

4 ΨIN

5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (8.2.7)

The undetermined coefficients A, B, C, D, C', and B' correspond to all the transition amplitudes that state |0〉 
could possibly have to other states |0〉, |1〉, |2〉, |3〉, |4〉, and |5〉 as indicated by arrows in Fig. 8.2.1a.

	



        

|0〉
A

B B'
C C'

D

|1〉

|2〉

|3〉

|4〉

|5〉

(a) Paths from |0〉 (b) All Paths

Β=〈1|T|0〉
Α=〈0|T|0〉

C=〈2|T|0〉
D=〈3|T|0〉
C'=〈4|T|0〉
B'=〈5|T|0〉

 Fig. 8.2.1 Generic 6-channel (C6) beam transitions (a) Amplitudes (b) Paths

 In order that the system really have C6 symmetry, the next state |1〉 must make the same amplitudes to the 
states |1〉, |2〉, |3〉, |4〉, |5〉, and |6〉, respectively, and so on for |2〉, |3〉, |4〉, and |5〉. All the equivalent paths are 
indicated in Fig. 8.2.1b. 
 The expression of a quantum operator, such as the analyzer transfer matrix T, in terms of its symmetry 
operators, such as the rp, is a deep and important idea which will be used a lot in the rest of this text. It is useful 
if, as the case is here, the rp and T have the same set of eigenstates or projectors so that a (presumably!) easy 
spectral decomposition of the former also solves the latter. Also, it is useful to label by symmetry operators both 
the system coordinate base states, as in (8.1.6), and the transfer or transition amplitudes or paths between the base 
states, as in Fig. 8.2.1. 
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(c) Spectral decomposition of transfer operator T 
Now a C6-symmetric T operator equation with these A, B, C,.. amplitudes must be diagonalized if represented in 
the symmetry projected |km〉 basis (8.2.5).

  

  

k0 ΨOUT

k1 ΨOUT

k2 ΨOUT

k3 ΨOUT

k4 ΨOUT

k5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

ε k0( ) 0 0 0 0 0

0 ε k1( ) 0 0 0 0

0 0 ε k2( ) B 0 0

0 0 0 ε k3( ) 0 0

0 0 0 0 ε k4( ) 0

0 0 0 0 0 ε k5( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 ΨIN

k1 ΨIN

k2 ΨIN

k3 ΨIN

k4 ΨIN

k5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (8.2.8)

 This is because T in (8.2.6) is a combination of symmetry operators (2.7.5) and all the symmetry 
operators have |km〉 as eigenvectors with eigenvalues (8.2.3).
     rp |km〉 =  rp P m|1〉 = e-i2π mp/N  P m|1〉 = e-i2π mp/6 |km〉   (8.2.9)
Eigensolutions for r-operators are examples of elementary Bloch symmetry conditions.

    r |km〉 = e-ikm a |km〉 = e-i2π m/6 |km〉 where:  
  
  km = 2π

Na
m   (8.2.10)

It says that a translation by distance a (60° rotation r along analyzer circumference) sees each phase timer 
advance forward by kma consistent with pictures Fig. 7.3.3 of Bloch (m)N waves. (Remember: phasor clocks turn 
clockwise with time, a negative angle.) Bloch symmetry is based upon the r -eigenoperator relation r P m = χm P 
m with (m)-th-root-of-unity eigenvalues χm = e-i2π m/N of r from (8.2.3). 
An eigenvalue formula for all possible C6 symmetric T-matrices
 To compute the T-eigenvalues we just have to substitute the r-values of (8.2.9) into (8.2.6)!
     〈km|T|km〉 = A 〈km|1|km〉 + B 〈km|r|km〉 + C 〈km|r2|km〉 + D 〈km|r3|km〉 + C' 〈km|r4|km〉 + B' 〈km|r5|km〉
	

          = A + B e-ikm a + C e-i2km a + D e-i3km a + C' ei2km a + B' eikm a   (8.2.11a) 
(Note: e-i4km a = ei2km a since -4 mod 6 = 2 mod 6. Also,  e-i5km a = eikm a since -5 mod 6 = 1 mod 6) Another 
way to derive eigenvalues is to put |km〉 into a matrix eigenequation (8.2.7) for T. 

  

  

A B ' C ' D C B

B A B ' C ' D C

C B A B ' C ' D

D C B A B ' C '

C ' D C B A B '

B ' C ' D C B A

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

= ε km( )

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

  (8.2.11b)

The first row multiplication shows gives the same eigenvalue.
 ε(km) = A + B e-ikm a + C e-i2km a + D e-i3km a + C' ei2km a + B' eikm a  (8.2.11c) 
It is important to understand what has been accomplished. A general eigenvalue and eigenvector formula has 
been derived for all possible matrices T that have the symmetry C6 of this particular “thought-experimental” 
problem. That is pretty neat, and it is just the beginning of a powerful set of symmetry tools!
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What do the km- eigensolutions mean?
 The physical interpretation of CN  eigensolutions is well known to electrical engineers. The ket in 
(8.2.11b) is a 6-phase generalization of the voltage in 3-phase wires commonly used to transport 220V power. A 
C3 example shown in Fig. 8.2.2 resembles the 23=-13-row of the C3 table in Fig.7.3.3 with a time-phase of t=5π/
6. (The 23=-13-bra (row) is the †-conjugate of a 13=-23-ket (column) eigenvector.) The result is a (k=1)-wave 
moving left to right in Fig. 8.2.2a or clockwise in Fig. 8.2.2b. (Recall: phasor-ahead feeds into phasor-behind. 
Imaginary ImΨ precedes the real ReΨ in time since phasors turn like clocks.)

 

      

 Fig. 8.2.2 (k=1) 3-channel (C3) wave eigenstate (a) Real and imaginary waves (b) Phasors
A beam with all amplitudes equally dephased from their next neighbor is a |km〉-state that is not changed by a 
cyclically wired device that has CN  symmetry such as the C6 analyzer sketched in Fig. 8.2.1. Also, if the T-
matrix is unitary (T†=T -1), |km〉-state eigenvalues ε(km) must be unitary, too.
     ε(km)* = 1/ ε(km) or:  ε(km) = eiφm     (8.2.12)
So the effect of the analyzer on an eigenchannel |km〉-state can only be to add an overall phase φm to it.
    T |km〉 = eiφm |km〉        (8.2.13)
The phase φm is sometimes called an eigenchannel phase-shift or eigenphase φm . Below we write the 
eigenchannel basis representation of the T |km〉-equation for a general input state |ΨIN 〉 with arbitrary values for 
its N-eigenchannel-amplitudes 〈km|ΨIN 〉 of (8.2.7).  (This means the N-channel-amplitudes 〈p|ΨIN 〉 in the 
original representation (8.2.6) are arbitrary, too.) Below is for general |ΨIN 〉.

  

  

k0 ΨOUT

k1 ΨOUT

k2 ΨOUT

k3 ΨOUT

k4 ΨOUT

k5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

eiφ0 0 0 0 0 0

0 eiφ1 0 0 0 0

0 0 eiφ2 0 0 0

0 0 0 eiφ3 0 0

0 0 0 0 eiφ4 0

0 0 0 0 0 eiφ5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 ΨIN

k1 ΨIN

k2 ΨIN

k3 ΨIN

k4 ΨIN

k5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (8.2.14)
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 (d) OK, where did those eikx wavefunctions come from?
 Every student of differential equations is told early on to try the exponential solutions eAt or eiat in 
independent variable t with little reason given except, "It works!...sometimes." Now we can see why and when 

such solutions work. The key to our exponential eigenfunctions  ψkm(xp)= eikmxp /√N  was CN symmetry which 
demanded in (2.7.5) that we use roots of unity, that is, the roots of the minimal equation  rN=1 for symmetry 
operator r. 
 If we let N approach infinity (N→∞) the symmetry approaches continuous translation symmetry C∞, and 
the eigenfunctions ψkm(xp) approach plane waves ψk(x)= eikx /√2π such as given by (2.6.20b) in Sec. 2.6b. 
Symmetry demands independence or invariance to translation of the independent variable x. In other words, you 
should get the same differential equation no matter whether you let the origin be at x=0 or at x=2,517 in 
Timbuktu. For example, the differential equation 

   
  

d2ψ
dx2

+ 2γ dψ
dx

+ k2ψ = 0       (8.2.15)

does have C∞ symmetry so eikx will work, but an equation like 

   
  

d2ψ
dx2

+ 2γ x dψ
dx

+ k2x2ψ = 0       (8.2.16)

does not have C∞ symmetry because of the x-dependence; it's not the same equation in Timbuktu. An example of 
a CN -symmetric differential equation is Matieu's equation for waves in a periodic solid.

   
  

d2ψ
dx2

+ k2 cos(Nx)ψ = 0

 All that we have said applies as well when the independent variable is time t. For example, the differential 
equation 

   
  

d2ψ
dt2

+ 2Γ dψ
dt

+ω 2ψ = 0       

does have C∞ symmetry so eiωt will work. An example of a CN -symmetric time differential equation is Mathieu's 
equation for a periodic force. Later we use CN -symmetry to help solve this type of equation.

   
  

d2ψ
dt2

+ k2 cos(Nt)ψ = 0
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8.3 Related Symmetry Analysis Examples
 The homo-cyclic two-dot C2 and three-dot C3 sytems are sketched below in the way the C6 system was 
sketched in Fig. 8.2.1. The transfer matrix equations (8.3.1) have eigenket tables (8.3.2).

 

  

0 ΨOUT

1 ΨOUT

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

A B
B A

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0 ΨIN

1 ΨIN

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (8.3.1a)   

  

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
A B ' B
B A B '
B ' B A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 ΨIN

1 ΨIN

2 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(8.3.1b) 

  

      
(a) C2 System

|0〉
A

|1〉

(b) C3 System

|0〉
A

|1〉 |2〉

B B'B

 Fig. 8.3.1 Generic N-channel (CN) quantum dot systems. (a)N=2 (b) N=3
     (8.3.2a)       (8.3.2b)

 

   

C2 x0 = R0 0 x1 = R1 0

0( )2 1 1 / 2

1( )2 1 −1 / 2

 

   

C3 x0 = r0 0 x1 = r1 0 x2 = r2 0

0( )3 1 1 1 / 3

1( )3 1 e2π i /3 e−2π i /3 / 3

2( )3 1 e−2π i /3 e2π i /3 / 3

 

The eigenket tables are from Fig. 7.3.3. Each phasor in the 〈bra| table for C3 in Fig. 7.3.3 is replaced by its 
complex conjugate to make kets. A preceding Fig. 8.2.2 shows a |(1)3〉 wave with eigen-phase shift of –5π/6. The 
corresponding transfer matrix eigenvalues 〈 m N |T| m N〉 in terms of parameters A,B,.. are left as exercises.
 Besides such cyclic CN systems there are an enormous number of ways to connect N-dots in ways that 
have more or less symmetry. A few of these are considered below and in problems. Most of the interesting (Also, 
read “doable!”) quantum problems have an underlying symmetry.
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(a) Dihedral symmetry D2

 Two 4-dot symmetries are shown in Fig. 8.3.2 below with transfer matrix relations.

      

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

A B C C
B A C C
C C ′A ′B
C C ′B ′A

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 Ψ IN

1 Ψ IN

2 Ψ IN

3 Ψ IN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

  

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

A B ′B C
B A C ′B
′B C A B

C ′B B A

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 Ψ IN

1 Ψ IN

2 Ψ IN

3 Ψ IN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

      (8.3.3a)     (8.3.3b)
      

(a)
|0〉
A

|1〉

B

|2〉
A′

B′
C

|3〉

|0〉
A

|1〉

B

|2〉

|3〉

BC

B′

B′

(b)C2v diamond D2 rectangle

C

C

C

C

 Fig. 8.3.2 Generic 4-channel (D2) quantum dot systems. (a)Diamond C2v (b) Rectangular D2.
Consider the rectangular D2 system. Its transfer matrix may be written in terms of four operators.

 

   

                T               = A             1             + B          Rx            + ′B             Ry            +C            Rz                 

A B ′B C
B A C ′B
′B C A B

C ′B B A

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= A

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ B

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ ′B

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+C

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   (8.3.4)

Each of the operators Rx, Ry, or Rz,  corresponds to 180°-rotations around x, y, or z axes, respectively, the effect 
of which is indicated in Fig. 8.3.1b by transfer path arrows labeled B, B′, and C, respectively. A transfer path B′ 
along the x-direction is done by a y-rotation Ry, while B along y is done by Rx.

D2 group structure
The multiplication table for the Verrgrupe (4-group) is quite famous and relevant to quantum theory. 

      

  

1 Rx Ry Rz

Rx 1 Rz Ry

Ry Rz 1 Rx

Rz Ry Rx 1

      (8.3.5a)

Its structure reduces to a few simple products. The first is (xyz)-cyclic: It holds for (zxy) and (yzx), too.
   Rx Ry = Ry Rx = Rz,  (8.3.5b)    Rx2= Ry2= Rz2= 1.  (8.3.5c)
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D2 spectral decomposition: The old “1=1•1 trick” again
The latter (8.3.5c) are of immediate interest to a quantum algebraist because they give minimal equations.
   Rx2- 1 = 0,  (8.3.5d)      Ry2- 1 = 0.  (8.3.5e)
From the roots (±1) of each minimal equation is constructed a spectral decomposition of Rx and Ry. This is the 
simplest application of the Chapter 3 projector formula (3.1.15a) you will probably ever see.

  

   

Px
+ =

1 + Rx
2

Px
− =

1 − Rx
2

  (8.3.6a)   

   

Py
+ =

1 + R y

2

Py
− =

1 − R y

2

  (8.3.6b)

This spectrally decomposes Rx and Ry separately. We can do Rz, too, but all three must be done together.

  
   

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
  (8.3.7a)   

   

 1  = Py
+ + Py

−

R y = Py
+ − Py

−
  (8.3.7b)

To make projectors for the whole D2 symmetry together we use the old “1=1•1 trick” from (3.1.36).

  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−   (8.3.8)

The result are irreducible projectors P(i) for the whole D2 symmetry. Irreducible means TraceR(P(i))=1.

   

P++ ≡ Px
+ ⋅Py

+ =
1 + Rx( ) ⋅ 1 + R y( )

2 ⋅2
= 1

4
1 + Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1 − Rx( ) ⋅ 1 + R y( )

2 ⋅2
= 1

4
1 − Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1 + Rx( ) ⋅ 1 − R y( )

2 ⋅2
= 1

4
1 + Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1 − Rx( ) ⋅ 1 − R y( )

2 ⋅2
= 1

4
1 − Rx − R y + R z( )

  (8.3.9a)

Each P is multiplied by its own eigenvalue (±1) of 1, Rx, Ry, and Rz in the D2 spectral decomposition.

  

   

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−    (completeness)

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

  (8.3.9b)

Spectral decomposition of D2 transfer matrices
 Spectral decomposition applies to transfer matrix (8.3.4) and yields its eigenvalue spectrum.

  

+ + T + + = ε++ = A 1 + B Rx + ′B R y + C R z = A+ B + ′B + C

− + T − + = ε−+ = A 1 + B Rx + ′B R y + C R z = A− B + ′B − C

+ − T + − = ε+− = A 1 + B Rx + ′B R y + C R z = A+ B − ′B − C

− − T − − = ε−− = A 1 + B Rx + ′B R y + C R z = A− B − ′B + C

 (8.3.10)

Again, this is a formula for all possible D2-symmetric operators in this device space of Fig. 8.3.2b. Higher 
symmetry, such as “square” or tetragonal D4–symmetry is obtained if parameters B and B’ are equal. Then the 
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eigenvalues ε+ − and ε− + become equal or degenerate. Such a symmetry is non-commutative or non-Abelian and 
requires further theory which will be taken up in a later chapter.

(b) Outer product structure: Double qubit registers
 One of the things that makes group algebra powerful is the concept of an outer (×) product of two groups. 
You may have noticed that the D2 group multiplication table was divided up so that the C2 subgroup {1, Rx} was 
isolated from the rest. The outer product is appropriate when two isolated “factors” correspond to orthogonal or 
independent systems such as two separate particles or two dimensions or two qubits. 
D2 is product C2×C2  
 An outer product of the eigenvalue tables in (8.3.2a) yields the D2 eigenvalue table. This is basically what 
was happening in the algebraic maneuver of (8.3.8) based upon the old “1=1•1” trick.

 

   

C2
x 1 Rx

+ 1 1
− 1 −1

  ×   
C2

y 1 R y

+ 1 1
− 1 −1

  =  

C2
x × C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 -1⋅1 1⋅1 -1⋅1
+ ⋅ − 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1)
− ⋅ − 1⋅1 -1⋅1 1⋅ (−1) -1⋅ (−1)

 (8.3.11a)

 

   

                                                      =   

D2 1 Rx R y R z

+ + 1 1 1 1
− + 1 -1 1 -1
+ − 1 1 −1 −1
− − 1 -1 −1 1

  (8.3.11b)

Note that the numbers in (8.3.11b) are exactly the coefficients of A, B, B′, and C in the eigenvalue formulas for ε+  

+, ε−  +, ε+  −, and ε−  − in (8.3.10). So the ×-product makes this calculation very easy indeed.
The outer product requires every operator in D2 to be uniquely a product of one element in C2x and one element in 
C2y. The elements in C2x must commute with all those in C2y so each product is unique. 

  

   

C2
x × C2

y = 1, Rx{ } × 1, R y{ } =
C2

x × C2
y 1 R y

1 1 ⋅1 1 ⋅R y

Rx Rx ⋅1 Rx ⋅R y

              = 1, Rx ,R y , R z{ } = D2

 (8.3.11c)

If a group G has g operators and a group H has h members, then G×H must have exactly gh members. It can be a 
great help to find a symmetry group is an outer product of its parts.
 Multiple outer products are possible. The D2= C2×C2 system is like a double-binary or 4-bit register. A 
C2×C2×C2 system is a triple-binary or 8-bit register known as 1-byte. A double-binary D2 register differs from a 
quadrary (C4) register as a 1-byte binary systemis not a single octal (C8) system.

Big-endian versus Little-endian 
 Computer scientists differ on whether the right ending bit should be the most significant bit (and least 
rapidly changing) or least significant bit and most often changing. (The former is called the Big-Endian 
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convention while the latter is called the Little-Endian convention after a perjorative folk-song.) The sequence (00, 
01, 10, 11) is Little-Endian and more like our decimal numbering system. The sequence (00, 10, 01, 11) or in 
(8.3.11) (++, -+, +-, --) is Big-Endian and what we are using here.

C6 is product C3× C2 (but C4 is NOT C2× C2) 

 Our first example, the cyclic group C6, is a composite C3×C2 of two of its subgroups C2 and C3 as shown 
below. Here the eigenvalue table (8.3.2a) of C2 is crossed with the C3 table (8.3.2b).

   

C3 1 r r2

0( )3 1 1 1

1( )3 1 e2π i /3 e−2π i /3

2( )3 1 e−2π i /3 e2π i /3

  ×   

C2 1 R

0( )2 1 1

1( )2 1 −1

  =  

C3 × C2 1 r r2 1 ⋅R r ⋅R r2 ⋅R

0( )3 ⋅ 0( )2 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1

1( )3 ⋅ 0( )2 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1

2( )3 ⋅ 0( )2 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1

0( )3 ⋅ 1( )2 1⋅1 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1) 1⋅ (−1)

1( )3 ⋅ 1( )2 1⋅1 1⋅1 e−2π i /3 ⋅1 1⋅ (−1) e2π i /3 ⋅ (−1) e−2π i /3 ⋅ (−1)

2( )3 ⋅ 1( )2 1⋅1 e−2π i /3 ⋅1 1⋅1 1⋅ (−1) e−2π i /3 ⋅ (−1) e2π i /3 ⋅ (−1)

   

                                                      =   

C3 × C2 = C6 1 r = h2 r2 = h4 R = h3 r ⋅R = h r2 ⋅R = h5

0( )3 ⋅ 0( )2 = 0( )6 1 1 1 1 1 1

1( )3 ⋅ 0( )2 = 2( )6 1 e2π i /3 e−2π i /3 1 e2π i /3 e−2π i /3

2( )3 ⋅ 0( )2 = 4( )6 1 e−2π i /3 e2π i /3 1 e−2π i /3 e2π i /3

0( )3 ⋅ 1( )2 = 3( )6 1 1 1 -1 -1 -1

1( )3 ⋅ 1( )2 = 5( )6 1 e2π i /3 e−2π i /3 -1 -e2π i /3 −e−2π i /3

2( )3 ⋅ 1( )2 = 1( )6 1 e−2π i /3 e2π i /3 −1 −e−2π i /3 −e2π i /3

	

 (8.3.12)

 The tricky part is to identify the C6 waves (k)6 that belong to a each product (m)3.(n)2. That is,

    e
i k( )6 x

= e
i m( )3 x

e
i n( )2 x

= e
i m 2π

3
+n 2π

2
⎛
⎝⎜

⎞
⎠⎟

x
= e

i 2m+3n( )2π
6

x
.  (8.3.13a)

The desired k-value is:    k = (2m + 3n) mod 6     (8.3.13b)
For, example, the last row of (8.3.12) belongs to C6 wave k=(2.2+3.1) mod 6 = 7 mod 6 = 1 or (1)6. The result is 
a reordered C6 table, but otherwise it is the same as the one first drawn in Fig. 7.3.3. Verify!

Symmetry Catalog 
 Cataloging the number of symmetry groups of a given order N is a difficult problem with a long history. 
But, for commutative or Abelian groups considered so far, it reduces to finding all the distinct outer products 

Cp×Cq×Cr×Cs×Ct … of cyclic groups such that N=pqrst…. is a product of primes. Product Cp×Cq is the same as 
Cpq if p and q share no factor in common so we don’t include Cpq in the catalog if p and q are prime since then 
Cpq = Cp×Cq  as in the case of C6 = C2×C3 above. But we do include both Cp×Cp and Cpp which are distinct as 
were C2× C2 and C4 above. If N=pP is a power of a prime such as N=8=23, then a distinct group exists for each 
partition of the power P. For example, P=3 =1+2 = 1+1+1 has three distinct prime base-(p=2) groups: C8 and 
C4× C2 and C2×C2×C2 are all distinct symmetries.
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Problems for Chapter 8.
Subgroup soup
8.1.1 (a) The C6 symmetry group has subgroups. List all of them except C6 itself.
(b) Do the same for the symmetry groups C3 , C4 , and C5 . What is special about groups CN of prime order N?

Ttrace’o g
8.1.2 (a) By group axioms (Sec. 2.2) show each row and column of a group table has an operator g only once.
(b) Use (a) to show that the regular representation trace TraceR(g) is zero for all but “do-nothing” unit operator g=1.
Turn-about’s fair play
8.2.1 Suppose we are given the eigenvalues {τ0, τ1, τ2, τ3, τ4, τ5} of a unitary C6 transfer matrix T in (8.2.1).
(a) Can the {τ0, τ1, τ2, τ3, τ4, τ5} be any old complex numbers? What restrictions, if any, apply?
(b) Can one give a formula for all 36 components Tpq of T in terms of {τ0, τ1, τ2, τ3, τ4, τ5}? If so do it. If not expalin why 

not and under what conditions you may be able to do it.

A Hex on pairing
8.2.2 Suppose the C6 transfer matrix T is the form of the Pairing operator, that is all components equal Tpq = T .  
(a) Derive the resulting eigenvalue spectrum.
(b) What, if any, limitations need to be placed on parameter T? 
(c) Discuss which waves belong to which eigenvalues

Phase o’Hex
8.2.3 (a) Could the hexagonal C6 analyzer be wired so input |even sites〉=(1,0,1,0,1,0) comes out eiφ |even〉? 
    What km-eigenstates make up |even sites 〉? Does your “rewiring” maintain C6 symmetry?
(b) Could the C6 analyzer be wired so input |even sites 〉 comes out eiφ |odd sites 〉=(0,1,0,1,0,1)? 
    What km-eigenstates make up |odd sites 〉? Does your “rewiring” maintain C6 symmetry?
(c) Could the C6 analyzer be wired so input |odd symm〉=(1,-1,1,-1,1,-1) comes out eiφ |odd symm 〉? 
    What km-eigenstates make up |odd symm 〉? Does your “rewiring” maintain C6 symmetry?
 (d) Could the C6 analyzer be wired so input | odd symm 〉 comes out eiφ |even symm 〉=(1,1,1,1,1,1)? 
    What km-eigenstates make up | even symm 〉? Does your “rewiring” maintain C6 symmetry?

Little diamond
8.3.1. The symmetry eigensolution analysis of the C2v diamond quantum dot device in Fig. 8.3.2(a) is a little different than its 
D2 cousin in Fig. 8.3.2(b). Symmerty multiplication table and spectral decomposition is essentially the same but the transfer 
T-operator is not such a simple linear combination of symmetry operators. Represent the symmetry and give a decomposition 
of symmetry and T-matrix. (Note that x and y-plane mirror reflections are symmetry operators, too. There was no distinction 
between rotations and reflections in the D2 problem.)

Double Crossed
8.3.2. Complete a symmetry catalog of commutative (Abelian) groups in terms of distinct Cp×Cq×... cross products.
(a) for order N=8. (b) N=9. (c) N=10. (d) N=11. (e) N=12. (f) N=16.
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|4〉 |5〉

|6〉
|7〉

|0〉
|1〉

|3〉
|2〉

x

y

z

|0〉

|1〉

|2〉

|3〉

|4〉

|5〉

Problem 8.3.3 “Big box”                                       Problem 8.3.4 “Big diamond”

Big box
8.3.3. Give a complete symmetry eigensolution analysis of the D2h device pictured here. First show that the full symmetry 
with horizontal reflection group Ch ={1, σxy(thru z-axis)} is C2×C2×Ch=C2×C2×C2 which is called D2h.
Derive character table of D2h using the cross product trick of (8.3.11). 

Big diamond
8.3.4. Give a complete symmetry eigensolution analysis of the D2h device pictured above.

Ttrace’o P
8.3.5. Before (8.3.9a) it is noted that TraceR(P)=1 means projector P is irreducible, that is, not a sum P= P1+ P2 of other 
“smaller” projectors. Explain this and verify by constructing the representation of the P++ ,… in (8.3.9).
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QM
for

AMOPΨ
Chapter 9

Time Evolution 
and 

Fourier Dynamics

W. G. Harter

Now we consider the transfer operator from Hell, the time evolution operator U. This “grim-
reaper” of the quantum world determines everything that happens in a non-relativistic 
(Schrodinger) system. Nothing escapes U-action including you! So learn U well, and pay 

particular attention to Uʼs generator H which is called the Hamiltonian. The expression e-iHt (for 

constant H) is an icon of modern quantum theory. Quantum dot systems from Chapters 7 and 
8 will be used as examples and provide our first introduction to quantum periodic band theory 
and quantum “revival” beats. (Yes, some waves can survive the grim reaper by reviving 
repeatedly while doing arithmetic, too!)
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Chapter 9. Time Evolution and Fourier Dynamics

9.1 Time Evolution Operator
 It is often said that nothing that is more demanding than the test of time. All the analyzer experiments 
considered so far have required time to do, lots and lots of time. Never forget that all our fancy theory of 
analyzers and wave mechanics is just giving us probabilities; not too different from odds posted at the racetrack. 
Millions of counts need to be registered before those fancy predictions are seen in a laboratory, and all that 
counting takes time. 
 Now we consider a very demanding kind of analyzer, good old Father Time, in the form of the time 
evolution operator U(tFINAL, ; tINITIAL). This "grim reaper" is supposed to be able to take any state at an initial 
time and transform it into what the state will be at a later time.
     |Ψ(tFINAL,) 〉 = U(tFINAL ; tINITIAL)  |Ψ(tINITIAL) 〉    (9.1.1)
The main task of this section will be to begin theory and derivation of U operators. This is the main problem of 
quantum theory, so we won't finish the job here. In fact, we won't be done with U operators until the twelfth hour 
of never!
 Let's first suppose time translation symmetry is present. By that I mean there is no one (such as perfidious 
janitors) "messing" with our analyzers. So, the experiments run the same day and night. Then we can often 
simplify the evolution operator equation by just having one time variable as follows 
      |Ψ(t) 〉 = U(t ; 0)  |Ψ(0) 〉 ,     (9.1.2)
so you may pick a "time origin" (t=0) arbitrarily.

(a) Planck's oscillation hypothesis
 At first, the time evolution problem looks formidable, even for a little six-state beam analyzer problem 
that was studied in Chapter 8. Its evolution equation (9.1.2) looks like the following at any point z in the beam 
and varies with z. We will put off discussing z-dependence until a later chapter.

   

  

1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )
6 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

U11 U12 U13 U14 U15 U16

U21 U22 U23 U24 U25 U26

U31 U32 U33 U34 U35 U36

U41 U42 U43 U44 U45 U46

U51 U52 U53 U54 U55 U56

U61 U62 U63 U64 U65 U66

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

1 Ψ 0( )
2 Ψ 0( )
3 Ψ 0( )
4 Ψ 0( )
5 Ψ 0( )
6 Ψ 0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (9.1.3a)

Here the matrix elements are
        Upq = 〈 p | U(t ; 0) | q 〉     (9.1.3b)
How in the world can one derive all those N2=36 time functions Upq  ? Woe is us!
 But wait! The U-operator and any matrix representing it should have the CN symmetry of the analyzer 
system shown in Fig. 9.1.1. And, like the analyzer T-operator, it should be reduced by the Fourier CN -symmetry  
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2
|km〉  basis to a diagonal matrix made of phase factors eiφm as in (9.1.17b).  Furthermore, the Planck hypothesis 
indicates that the phase factors should have the time phasor "clock" form e-iωmt  that is conventional clockwise 
phasor rotation. Then the U-operator in (9.1.3) can be made to have a much simpler form if the basis is changed 
to its eigenbasis |km〉 as shown below.

     

  

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

e−iω0 t 0 0 0 0 0

0 e−iω1 t 0 0 0 0

0 0 e−iω2 t 0 0 0

0 0 0 e−iω3 t 0 0

0 0 0 0 e−iω4 t 0

0 0 0 0 0 e−iω5 t

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 Ψ 0( )
k1 Ψ 0( )
k2 Ψ 0( )
k3 Ψ 0( )
k4 Ψ 0( )
k5 Ψ 0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (9.1.4)

Now, instead of N2=36 unknown Upq functions we have only N=6 frequency values ωm to derive.
 This is quite a simplification, if true. It is also a reasonable one since the evolution operators need to form 
a group called the time evolution group that multiplies as follows. (Recall (1.4.12d).)
     U( t3 ; t1 ) = U( t3 ; t2 ) . U( t2 ; t1 )     (9.1.5a)
Also, axioms 1-4 require U( t2 ; t1 ) to be unitary operators. (Recall (1.5.5b).)
      U†( t2 ; t1 ) = U-1( t2 ; t1 ) = U( t1 ; t2 )    (9.1.5b)
These requirements are satisfied by the Planck phasor forms in the diagonal matrix (9.1.4) or as follows,

   U( t2 ; t1 ) = diag{ e-iω0(t2 - t1) , e-iω1(t2 - t1) , .. e-iωm(t2 - t1) , ...  }   (9.1.6a)
since 

 e-iωm(t3 - t1) =  e-iωm(t3 - t2)  e-iωm(t2 - t1), and    ( e-iωm(t2 - t1) )* =  e-iωm(t1 - t2)  (9.1.6b)
which depends only on relative time difference (t1 - t2): U( t1 ; t2 ) = U( t1 - t2 ;0).= U(0;t2 - t1 ) 

 Indeed, we shall demand that a U-eigenbasis { |ω0〉, |ω1〉, ...|ωm〉,   } shall exist even for asymmetric 
evolution operators for which a convenient symmetry basis { |k0〉, |k1〉, ...|km〉,   } is not available to give "instant" 
diagonalization. We shall describe how to generally find eigenkets |ωm〉 so that
     U( t2 ; t1 ) |ωm〉 = e-iωm(t2 - t1) |ωm〉     (9.1.7)
This is always possible in principle since we know that all unitary operators are diagonalizable. (Recall exercises 
in Ch. 3.) However, in practice the problem of diagonalization can be a bit of a chore for large systems consisting 
of millions, billions, or more states! We will need all the help that symmetry analysis can give us.
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9.2 Schrodinger Time Equations
 Time evolution operators and the states they evolve satisfy time differential equations known as 
Schrodinger equations. This is a common way to restate Planck’s oscillation axiom in differential form.

(a) Schrodinger's time equations. Hamiltonian time generators
 If time evolution equation (9.1.4) can predict the quantum state future far in advance, then it should 
certainly give the rate of evolution correctly. The time derivative of (9.1.4) is the following.

  

∂
∂t

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=-i

ω0e−iω0 t 0 0 0 0 0

0 ω1e−iω1 t 0 0 0 0

0 0 ω2e−iω2 t 0 0 0

0 0 0 ω3e−iω3 t 0 0

0 0 0 0 ω4e−iω4 t 0

0 0 0 0 0 ω5e−iω5 t

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 Ψ 0( )
k1 Ψ 0( )
k2 Ψ 0( )
k3 Ψ 0( )
k4 Ψ 0( )
k5 Ψ 0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Simplifying the notation and factoring gives         (9.2.1)

   

  

∂
∂t

Ψk0
t( )

Ψk1
t( )

Ψk2
t( )

Ψk3
t( )

Ψk4
t( )

Ψk5
t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=-i

ω0 0 0 0 0 0

0 ω1 0 0 0 0

0 0 ω2 0 0 0

0 0 0 ω3 0 0

0 0 0 0 ω4 0

0 0 0 0 0 ω5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

e−iω0 tΨk0
0( )

e−iω1 tΨk1
0( )

e−iω2 tΨk2
0( )

e−iω3 tΨk3
0( )

e−iω4 tΨk4
0( )

e−iω5 tΨk5
0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (9.2.2)

Here we lose the Dirac notation briefly with
    Ψkm(t) = 〈km|Ψ( t )〉 = e-iωmt〈km|Ψ(0〉 = e-iωmt Ψkm(0) .    (9.2.3)
Multiplying by i and then putting back the Dirac notation gives the following. 

   

   

i
∂
∂t

Ψk0
t( )

Ψk1
t( )

Ψk2
t( )

Ψk3
t( )

Ψk4
t( )

Ψk5
t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

ω0 0 0 0 0 0

0 ω1 0 0 0 0

0 0 ω2 0 0 0

0 0 0 ω3 0 0

0 0 0 0 ω4 0

0 0 0 0 0 ω5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

Ψk0
t( )

Ψk1
t( )

Ψk2
t( )

Ψk3
t( )

Ψk4
t( )

Ψk5
t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.2.4a)
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i
∂
∂t

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

ω0 0 0 0 0 0

0 ω1 0 0 0 0

0 0 ω2 0 0 0

0 0 0 ω3 0 0

0 0 0 0 ω4 0

0 0 0 0 0 ω5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, (9.2.4b)

which is called Schrodinger's time equation. Its abstract Dirac form is the following

      
    
i

∂
∂t

Ψ t( ) =H Ψ t( )      (9.2.5a)

where the Hamiltonian energy operator H is related to i times the time evolution operator derivative by

      
    
i

∂
∂t

U t,0( )=H U t,0( )      (9.2.5b)

and is H also called the generator of time translation. An exponential solution to (9.1.5b) is

     
    
U t,0( )=e-i H t / U 0,0( )=e-i H t /   where: U 0,0( ) = 1    (9.2.5c)

if H is an N-by-N constant matrix operator as it is in (9.1.4a-b). (It must be constant if there is time translation 
symmetry. Remember, it is time translation symmetry that permits exponential solutions.)
 All of the above "derivations" of Schrodinger's equations (9.2.5) are really only Planck's frequency and 
energy axiom, starting with (9.1.4) and restated in many fancy ways for an N-state system for N=6. 

(b) Schrodinger's matrix equations 
 The thing that makes a Hamiltonian H powerful is that it may be easily derived it in some other basis like 
the original channel basis {|1〉, |2〉, ...|N〉 } and then diagonalized using symmetry techniques or numerical 
methods to find its eigenvectors { |ω0〉, |ω1〉, ...|ωN-1〉} known as energy eigenstates and eigenvalues { ω0, 
ω1, ...ωN-1} known as energy or frequency spectra εm = ωm . This time, the word spectra is used as it was 
intended by the pioneering spectroscopists who first saw atomic spectral lines in laboratory and in astrophysical 
observations. (Mathematicians co-opt the term spectra other ways.)
 Rewriting Schrodinger's time equation (9.2.5a) 

     
    
i

∂
∂t

Ψ t( ) =H Ψ t( )       (9.2.6a)

in an arbitrary basis gives 

   

   

i
∂
∂t

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

H00 H01 H02 H03 H04 H05

H10 H11 H12 H13 H14 H15

H20 H21 H22 H23 H24 H25

H30 H31 H32 H33 H34 H35

H40 H41 H42 H43 H44 H45

H50 H51 H52 H53 H54 H55

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.2.6b)
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where the matrix elements
         Hpq = 〈 p | H | q 〉        (9.2.6c)
are generally non-diagonal except in H’s or U’s own (eigen) basis |km〉 as in (9.2.4).

(c) Writing Hamiltonian H in terms of symmetry operators rp 
 If analyzer H -matrix (8.2.1) has C6  symmetry, it commutes with all the rotation operator r-matrices in 
(2.7.5) and is a linear combination of rp as follows.
    H = H 1 +S r + T r2 + U r3 + T* r4 + S* r5,    (9.2.6) 
The rp-matrices in (2.7.5) combine to give a C6 -symmetric H-matrix Schrodinger equation (9.2.7) in analogy to 
the T-matrix transfer equation (8.2.7), and label its tunneling paths from point-to-point.

   

   

i
∂
∂t

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

H S * T * U T S

S H S * T * U T

T S H S * T * U

U T S H S * T *

T * U T S H S *

S * T * U T S H

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.2.7)

The undetermined coefficients H, S, T, U, T*, and S* correspond to all the tunneling amplitudes that state |0〉 
could possibly have to other states |0〉, |1〉, |2〉, |3〉, |4〉, and |5〉 as indicated by arrows in Fig. 9.2.1 which are 
analogous to the transfer amplitude paths for the T –matrix (or of a U-matrix) in Fig. 8.2.1.

        

|0〉
H=H*

S S*

T T*

U=U*

|1〉

|2〉

|3〉

|4〉

|5〉

(a) Tunneling Amplitudes
  from |0〉

S = 〈1|H|0〉
H = 〈0|H|0〉=H*

T = 〈2|H|0〉
U = 〈3|H|0〉=U*
T*= 〈4|H|0〉
S*= 〈5|H|0〉

(b) All C6 Tunneling Paths

	

 Fig. 9.2.1 Generic 6-channel (C6)Hamiltonian tunneling (a) Amplitudes (b) Paths
But, there is one important difference. Hamiltonian matrices must be Hermitian (self-conjugate: H† = H ).
       Hpq = 〈 p | H | q 〉 = 〈 p | H†| q 〉 = Hqp *       (9.2.8a)
Unitary U implies Hermitian H
Hamiltonian H is Hermitian because the time evolution operator is unitary by definition (9.2.5).
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U t,0( )† = e-i H t /( ) †= ei H† t / = U t,0( )−1

= U −t,0( )= ei H t /    (9.2.8b)

So, an inverse tunneling amplitude such as S* is the complex conjugate of the forward one S. Also, diagonal 
components of a Hamiltonian matrix are thus always real.
         Hpp =Hpp *         (9.2.8c)
This means the eigenvalues are also real since relations (9.2.8) are true in any basis including the H operator’s 
own basis or eigenbasis where H is diagonal.
 Note that a diametric tunneling amplitude such as U=U* also is real because its operator r3 is its own 
inverse (r3= r3†= r-3 ). Conjugation reverses direction of rotation for all C6 operators except 1 and r3. †-
conjugation is time reversal for Schrodinger equation (9.2.6). Axiom-2 says bra-clocks run backwards.

9.3 Schrodinger Eigen-Equations
 Time evolution is simple for eigenstates | ωm 〉 because only a single eigenfrequency ωm  is present. 
Energy or frequency eigenstates and eigenvalues satisfy Schrodinger's eigenvalue equation, also called the 
Schrodinger time-independent equation.
      H | ωm 〉 = ωm | ωm 〉 = εm | ωm 〉    (9.3.1a)
In a “quantum-dot” basis this is a matrix eigenvalue problem such as the following for N=6. 

   

   

H00 H01 H02 H03 H04 H05

H10 H11 H12 H13 H14 H15

H20 H21 H22 H23 H24 H25

H30 H31 H32 H33 H34 H35

H40 H41 H42 H43 H44 H45

H50 H51 H52 H53 H54 H55

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 ωm

1 ωm

2 ωm

3 ωm

4 ωm

5 ωm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= ωm

0 ωm

1 ωm

2 ωm

3 ωm

4 ωm

5 ωm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.3.1b)

The Schrodinger time equation (9.2.6b) is a simple 1-dimensional relation for each amplitude. 

    
    
i

∂
∂t

p ωm = p H ωm = ωm p ωm     (9.3.2 )

Its solution has each amplitude 〈p|ωm〉 spinning its clock at the same rate ωm at constant size |〈p|ωm〉|2.

   
  

p ωm t( ) = p ωm 0( ) e−iωmt       (9.3.3)

   
  
 p ωm t( ) 2

= p ωm 0( ) 2
= const.      (9.3.4)

Such is the fate of an eigenstate or stationary state. Its observable probability distribution is forever fixed.
 But, how does one find just the right 〈p|ωm〉 amplitudes to solve (9.3.1)? Aren't we back in hot water again 
with N2=36 unknown constants Hpq  and a big diagonalization job facing us? Woe is us, again! But, fortunately, 
there are all kinds of techniques and approximation tricks to find the Hamiltonian matrix elements and then find 
the energy spectrum. That is what most of the rest of the book is about! 
Chief among the eigensolution techniques is symmetry analysis. The time evolution matrix U and the 
Hamiltonian matrix H for the C6 -analyzer in Fig. 8.1.1 can be treated to the same techniques that worked for the 
analyzer T-matrix. Again, all possible C6–symmetric Hamiltonian matrices are given with a single complete set 
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of eigensolutions. Then all possible motions are obtained from combinations of eigensolutions, which, by their 
completeness are able to produce an arbitrary initial condition. 
After that, the motion is just the interference beating between all the eigenfrequencies that participate in 
producing a given initial state. Remember, it takes two to tango! At least two eigenstates with different 
eigenfrequencies need to be up and spinning to have observable motion. Otherwise, nothin’s happening!
It turns out that while it takes two to tango, three’s a crowd! Two state systems are unique in their harmonic 
simplicity. At the end of this unit we will see how to understand more complicated 3, 4, 5,…level excitations for 
some simple systems.
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 (a) Solving Schrodinger's eigen-equations for C6 system
 H-eigenvalues use r-expansion (9.2.6) of H and C6 symmetry rp-eigenvalues from (8.2.9).
     〈km|rp|km〉= e-ipkma = e-ipm2π/N  where:  km = m(2π/Na)  
    〈km|H|km〉 = H 〈km|1|km〉 + S 〈km|r|km〉 + T 〈km|r2|km〉 + U 〈km|r3|km〉 + T* 〈km|r4|km〉 + S* 〈km|r5|km〉
	

          = H + S e-ikma + T e-i2kma + U e-i3kma + T* ei2kma + S* eikma    (9.3.5a) 
Again we check that H eigenvectors |ωm〉 are the |km〉 in (8.2.11) which solved transfer matrix T.

  

   

H S * T * U T S

S H S * T * U T

T S H S * T * U

U T S H S * T *

T * U T S H S *

S * T * U T S H

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

= ωm

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

  (9.3.5b)

Because of Hermiticity (H† = H) eigenvalues ωm or  εm will be real eigenfrequency and energy spectra.
 ωm = εm = H + S e-ikma + T e-i2kma + U e-i3kma + T* ei2kma + S* eikma (9.3.5c)
 ωm = εm = H + 2|S| cos( km a - σ )+ 2|T |cos( 2km a - τ  ) - U (-1)m    (9.3.5d) 
Here we note: e-i3kma = e-i3πm = (-1)m for N=6. Also, let the complex parameters be in polar form. 

     S = |S| eiσ ,     T = |T| eiτ        (9.3.5e) 
Their phase angles σ and τ correspond to what is sometimes called a gauge symmetry breaking or Zeeman 
splitting parameters. To begin the discussion, we shall let the phase angles be zero or pi.
 A little physical intuition helps to make some sense of the energy eigenvalues. The parameters S, T, and U 
are called tunneling amplitudes because they are "sneak factors" that tell how rapidly (and with what phase σ, τ) 
an evanescent wave in one channel can sneak or tunnel over to one of its neighbors as indicated in Fig. 9.2.1. The 
S, T, U give rates at which the A, B, C amplitudes of a T or U matrix grow.

(b) Energy spectrum and tunneling rates
 We saw how the evanescent waves in (6.3.10a) of Sec. 6.3c(3) decay exponentially and die off with 
distance. Channel waves are like this, a channel wave state |0〉 will be exponentially more likely to tunnel to its 
nearest neighbor channels |1〉 or |5〉 than to more distant channels  |2〉, |3〉, or |4〉 in Fig. 9.2.1. So, the distant 
tunneling amplitudes U and T might be approximated by zero in (9.3.5d) to give
    ωm = εm = H + 2|S| cos( km a - σ ) .    (9.3.5f) 
This is an elementary Bloch dispersion relation. If wavevector km were a continuous variable k the dispersion 
function ω(k) would trace a cosine as shown in Fig. 9.3.1 where the gauge phase is set to pi (σ=π) to make the k0 
state lowest. Now the spectra correspond to hexagonal projections of ei2πm/6 . 
    ωm = εm = H - 2|S| cos( km a ) .  (σ=π )   (9.3.5g) 
Note that while the eigenvalues (ωm = εm) vary with parameters H, S, T, or U, the eigenvectors |ωm 〉 or 
eigenfunctions ψm(xp) are the same for all values of parameters due to CN -symmetry.
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 Fig. 9.3.1 Generic 6-channel (C6) tunneling spectra and Bloch dispersion.

If the tunneling phase σ increases by π/12 it shifts the dispersion relation to the right by π/12 in k-space. It rotates 
the hexagonal spectral diagram by π/12 or 15° as shown in Fig. 9.3.2. The resulting spectra shifts and splits the 
degenerate doublets ±16 and ±26.
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 Fig.9.3.2 Same 6-channel (C6) tunneling spectra with broken symmetry and doublet splitting 

This is equivalent to rotating the analyzer disk in Fig. 8.1.1 at a constant negative or clockwise velocity so 
negatively moving waves increase in energy while the positively moving ones have less energy. 
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 Such a tunneling phase or gauge factor causes a right-left symmetry breaking so right-handed and left-
handed waves are no longer degenerate in energy. It is analogous to the Doppler shift that is observed by an 
observer moving through a monochromatic standing wave and sees red-shifted and blue-shifted frequencies while 
the stationary observer sees equal frequencies. (Recall Sec. 4.2.)
A similar effect occurs if a magnetic field is applied perpendicular to the plane of the analyzer along a beam of 
charged particles. Then the splitting of doublets is called Zeeman splitting which is a very well known atomic 
spectral effect that will be studied later.
 Bloch's waves vs. Bohr's
 One should compare the discrete Bloch spectra and dispersion in Fig. 9.3.1 here to the simple Bohr 
spectra in Fig. 7.1.1. The orbital wavefunctions for both have a plane-wave form of "Bohr's ghost" waves. 

 ψm(x) = eikmx        (9.3.6a)
However, Bloch waves for C6 are discretized into N=6 phasors at discrete points xp. (p=1, 2, ...,6)  
      ψm(xp) = eikmxp= ei2πmp/N         (9.3.6b)
Each Bloch quantum number m=0, 1, 2, ..., 5, is a number m-modulo-6 as in (7.3.7) and in Fig. 7.3.3. 
 Bloch eigenvalues, however, differ from Bohr's. Bohr orbital dispersion or energy is a simple parabola 
(7.1.16) as follows using momentum quantization pm=km=2πm/L with: m=0, ±1, ±2,…

 Em= (km)2/2M = m2 [h2/2ML2]   (9.3.7)
This parabola is a low-energy approximation to the relativistic hyperbola in Fig. 5.2.1. In contrast, the Bloch 
curve is a flipped cosine function (9.3.5g) as plotted in Fig.9.3.3 and superimposed upon the Bohr parabola. For 
larger N  (Fig. 9.3.3 it is N=24) and small m the cosine curve is approximated by a Bloch-like parabola given by a 
Taylor expansion at the origin (k=0=k0) in k-space.
   ωm =Em = H - 2|S| cos( km a)  = H - 2|S| + |S|( kma )2 +..     (9.3.8)
In this limit the Bloch dispersion is approximated by the simple Bohr parabola.
 In the limit of large number N of “quantum dot” coordinates xp. (p=1, 2, 3, 4, ...,N) the continuum 
coordinate x of the Bohr orbitals is approached. As long as the waves considered have low km , that is, are long 
compared to the lattice interval a=L/N that divides up the Bohr coordinate range L, then Bohr and Bloch waves 
have nearly the same dispersion ωm(km) and will behave the same. 

(c) Brillouin's boundary
 For larger wavevector km the wavelength becomes shorter until its waves begin to "fall through the 
cracks" in the lattice. Recall the difficulty in following the "Bohr's ghost" wave through the C6 phasors in Fig. 
7.3.3 for the higher waves (m)N = (4)6 or (5)6 , or even (2)6 . A break occurs when a half-wave length matches the 
lattice spacing a. This is when (m)N =(N/2)N = (3)6, a "half-way point" known as the first  Brillouin zone 
boundary (BZB-1). It is at k12 or (m)N  = (12)24 in Fig. 9.3.3 (N=24).
    (m)BZB-1=(N/2)  or:  kBZB-1 = π/a  or:  λ BZB-1 = 2a    (9.3.9a)
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 Fig.9.3.3 Generic 24-channel (C24) tunneling spectra and Bohr vs. Bloch dispersion.

At this m-number or k-value the wave amplitudes are alternating ±1 at the lattice points xp.
    ψN/2(xp) = eikN/2xp= ei2π(N/2)p/N = eiπp = (-1)p    (9.3.9b)
Phases that are in or π-out of phase make a standing wave with zero group velocity as in Fig. 9.3.4.
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 Fig.9.3.4 (C24) Brillouin boundary wave must be standing. (No group velocity)

 Postive or negative (k=±12) waves have the same effect on the 24 lattice points; both give standing wave 
motion with no transmission one way or the other. In C24 symmetry +12 mod 24 = -12 mod 24. 
 The wave group velocity is the velocity Vgroup associated with classical particle or "message" velocity. 
(Recall discussions in Sec. 4.4 (b-c).) From (9.3.8) the Vgroup for Bloch (or for low-k Bohr) is 
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Vgroup =

dωm
dkm

= 2
S


a sin kma( )   ≅ 2
S


kma2  , for: km << π / a
⎛

⎝
⎜

⎞

⎠
⎟   (9.3.10)

The group velocity goes to zero at the origin (km=0) and at the Brillouin zone boundary (km=kBZB). This is 
consistent with our picture Fig. 9.3.4 of a standing wave. It just goes nowhere but up and down.

 Effective mass: Another quantum view of inertia
 Low velocity (u<<c) particle momentum is mass times particle velocity: Mu=MVgroup. DeBroglie 
relation (5.2.5c) gives momentum as km. For low-km-Bloch waves (Bohr waves), (9.3.10) gives Vgroup 
proportional to the tunneling amplitude S implying an effective mass Meff inversely proportional to S.
      Meff(0)= 2/( 2|S| a2 )    (9.3.11a)
This is consistent with a comparison of Bohr energy values εm= 1/2(km)2/M and the low-km Bloch energy 
eigenvalues (9.3.8). Recall the quantum effective mass introduced in (5.3.13) and repeated here. 

  

   

Meff = F
a
=  k

dVgroup

dt

⎛

⎝
⎜

⎞

⎠
⎟

=  k
dVgroup

dk
dk
dt

⎛

⎝
⎜

⎞

⎠
⎟

= 

d2ω
dk2

⎛

⎝
⎜

⎞

⎠
⎟

 
  
where: Vgroup = dω

dk
  (9.3.11b)

Effective mass is inversely proportional to the curvature of the dispersion relation.  As km increases in Fig. 9.3.3 
the effective mass starts out at k=0 with the Meff(0) value (9.3.11a). Then it increases until it goes to infinity at km 
= kN/4  = k6 . Then it comes back from negative infinity losing much of its negativity to end up at (Meff(k12)=-Meff

(0)) on the Brillouin zone boundary km = kN/2 = k12 . There ωBloch(k) is a downward curving dispersion like Dirac 
negative-energy anti-particle band in the lower half of Fig. 5.4.1. But, ωBloch(k) in Fig. 9.3.3 differs from a 
continuum relativistic dispersion relation (5.2.8) 

   
   
E = ωrelativistic = ± Mc2⎛

⎝⎜
⎞
⎠⎟

2
+ ck( )2    (5.2.8)repeated 

For ωrela.(k) effective mass approaches infinity only as the momentum or k becomes large. For a vacuum , a 
constant applied electric field would cause k to increase uniformly. But, for a CN lattice k-space is periodic so a 
field causes a charged particle to just oscillate back and forth each time k passes through another Brillouin zone. 
Based on this, relativistic symmetry appears quite different from that of a Bloch lattice. But then, have we really 
looked closely enough at that vacuum continuum? It may take some pretty high k-values to do so!
 The final sections of this unit are devoted to dynamics of Bohr waves shown in space-time plots of the 
following Fig. 9.3.5-6. Recall also Fig. 5.5.5-6. The interference anti-nodes that spring up and then vanish are 
called revivals, a term coined by Joe Eberly to describe atom-laser simulations he noticed around 1976. Much of 
the intricate structure are called fractional revivals  first noticed in molecular rotor simulations around 1980. 
Much of the first analyses of fractional revivals, done during the 1990’s, involves particle-in-a-box and atomic 
Rydberg states. However, Bohr orbitals provide the clearest understanding of revivals because of their underlying 
CN symmetry. 
(Next pages: Figs. 9.3.5a-c)
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  (Preceding pages: Figs. 9.3.5a-c Bohr wavepact revivals in space-time )  
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(d) Bohr wavepacket dynamics: Uncertainty and revival
 We now study Bohr waves that are a Gaussian combination of momentum-m plane waves.

   
  
Ψ(φ,0) = φ,0 Ψ = 1

2π
e− m 2/Δm2

ei mφ

m=−∞

∞
∑       (9.3.12a)

Here, m=0, ±1, ±2, ±3,...are momentum quantum numbers in Bohr energy formula (9.3.7).
     Em= (km)2/2M = m2 [h2/2ML2]= m2hυ1 = m2ω1   (9.3.12b))
The fundamental Bohr frequency ω1=2πυ1 is the lowest transition (beat) frequency υ1 =(E1-E0)/h.
Completing the square of the exponent provides a simpler φ-angle wavefunction. 

      
  
Ψ(φ,0) = 1

2π
e
− m

Δm
− iΔm

2
φ

⎛
⎝⎜

⎞
⎠⎟

2
− Δm

2
φ

⎛
⎝⎜

⎞
⎠⎟

2

m=−∞

∞
∑ =

A Δm,φ( )
2π

e
− Δm

2
φ

⎛
⎝⎜

⎞
⎠⎟

2

    (9.3.13a)

Only the lower-m terms with m<Δm in the sum A(Δm,φ) have significant e-(m/Δm)2 values, but for larger Δm the 
number of significant terms grows until sum A approaches a Gaussian integral independent of φ . 

  
  
A Δm,φ( ) = e

− m
Δm

− iΔm
2
φ

⎛
⎝⎜

⎞
⎠⎟

2

m=−∞

∞
∑ Δm>>1

⎯ →⎯⎯⎯ dk−∞
∞∫ e

− k
Δm

⎛
⎝⎜

⎞
⎠⎟

2

= πΔm     (9.3.13b)

The variable factor e-(Δm φ/2)2 is a Gaussian function of angle φ or position x. It is remarkable that the Fourier 
transform of a Gaussian e-(m/Δm)2 momentum distribution is a Gaussian e-(φ/Δφ)2 in coordinate φ. 
    〈m|Ψ〉 =  e-(m/Δm)2   implies:   〈 φ |Ψ〉 =  e-(φ/Δφ)2      (9.3.14)
The relation between momentum uncertainty Δm and coordinate uncertainty Δ φ is a Heisenberg relation.
     Δm/2 =1/ Δ φ , or:   Δm Δ φ  =2     (9.3.15)
A Gaussian is an eigenvector of the Fourier Cn transformation matrix. (More about this later.)  
 Three space-time plots are given in Fig. 9.3.5a, b, and c, respectively, with decreasing momentum half-
width  Δm=9, 3, and 1.5 and courser spatial resolution Δφ/2π=2%, 6%, and 12% . Each is plotted for a full time 
period τ1 = 1/υ1= 2π/ω1  after which it repeats. The first Fig. 9.3.5a uses fine spatial resolution Δx.=0.02 which 
requires 9-quantum excitation (Δm=9). It shows a labyrinth of increasingly fine self-similar X-patterns of wave 
revivals. In the second and third figures (9.3.5b and c), of lower excitation (Δm=3, and 1.5, respectively), the 
finer X-patterns begin to disappear leaving one big X over Fig. 9.3.5c.

Semi-classical Theory: Farey Sums and Quantum Speed Limits
 Fig. 9.3.5c provides a clue to the theory of revivals. Its X is like a zero crossing in the Lorentz grid in Fig. 

4.2.9, but with momentum values restricted by Δm=1.5 to the first two levels m=0 , ±1, leaving two group (or 
phase) velocities V±1 =±L/τ1 by (4.2.20), that is, a Bohr length L per Bohr time unit τ1.

  
  
Vgroup

Bohr m ↔ n( ) = ωm −ωn
km − kn

=
m2 − n2( )hυ1

m − n( )h / L
= (m + n) L

τ1
= (m + n)V1  (9.3.16)

The X in Fig. 9.3.5c has two zeros doing one lap in opposite directions around the Bohr ring in a Bohr period τ1. 
The packet anti-nodes or "particles" do laps, too, but their paths are not as contiguous.
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Fig. 9.3.6 Intersecting wave space-time X-path trajectories of nodes and anti-nodes.
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(Anti-nodal revival peaks and phases are discussed later.) |Ψ|-nodes, being virtually dead, have an 
indestructibility not had by zeros of ReΨ that annihilate and re-create as they gallop through Fig. 4.2.9.
 Relaxing the momentum uncertainty Δm allows more m-values and wave velocities: ±V1,±2V1,±3V1,... 
ranging up to 2ΔmV1. By (9.3.16) the maximum lap rate or quantum speed limit is 2Δm, i.e., twice the maximum 
|m|. Each velocity gives a fractional lap time of 1/1, 1/2, 1/3, ..., 1/(2Δm) of the Bohr period. Such fractions are 
written in the margin of Fig. 9.3.5 at the point where a lap trajectory passes the point φ=±π opposite the origin 
φ=0 of the wave packet. An n-th multiple n/D of an allowed fraction 1/D corresponds to the n-th lap of a wave 
node ("zero") if D is odd or the n-th lap of a wave anti-node ("particle") if D is even.
 The n/D fractional lines in Fig. 9.3.6 highlight the wave paths in Fig. 9.3.5a. As excitation Δm increases, 
even-D "particle" paths show up as dark shadows in between the odd-D "zero" paths in Fig. 9.3.5a. Also seen in a 
high-Δm plot (Fig. 9.3.5a) are "particle" paths with odd and even fractional slopes emanating from the origin φ=0 
of the wave packet. This is indicated in Fig. 9.3.6, too.
 The geometry of generic group velocity rays is sketched in Fig. 9.3.7 using two rays to form an 
asymmetric X around an intersection. (A symmetric X has equal group speeds d1 and d2.) Fig. 9.3.5a is a 
patchwork of self-similar X patterns of nodal (odd-dk ) or anti-nodal (even-dk ) rays. The equations for the two 
lines in Fig. 9.3.6 are 
   φ = −d1t + n1 +1 / 2                       φ = d2t − n2 +1 / 2      (9.3.17)

Subtracting the first φ equation from the second gives the intersection time for the center of the X.

   
  
t12− intersection =

n2 + n1
d2 + d1

=
n2
d2

⊕F
n1
d1

    (9.3.18)

The resulting combination is called a Farey Sum ⊕ F of the rational fractions n1/d1 and n2/d2 after John Farey, an 
1800's geologist.
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Fig. 9.3.7 Farey-sum geometry and algebra of intersecting wave space-time trajectories.
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The Farey sum has been used to analyze classically "chaotic" or "fractal" structures , but its use in organizing 
quantum resonance structure is new. It begins with a fundamental Farey sum relating the beginning fraction (0/1) 
and ending fraction (1/1) of the (0↔1)-quantum beat or fundamental revival.

     
  
0
1
⊕F

1
1
= 1

2
      (9.3.19)

This is the instant t/τ1=1/2 for a half-time revival and the zero at the center of the fundamental X in Fig. 9.3.5c. 
The fundamental sum makes up the second row of a Farey Tree of such sums shown in (9.3.20). The sums in the 
D-th row of a Farey tree are an ordered set of all reduced fractions with denominator equal to D or less. The tree 
need not go beyond D>2Δm where denominator D exceeds the wave quantum speed limit 2Δm of (9.3.16). Finer 
revivals will be unresolvable. More energy is needed to see finer X’s.
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(9.3.20)

 The tracking of crests or wave peaks yields information about classical particle-like or group-wave 
motion. It is comforting to see familiar classical paths in what is often bewildering quantum cacophony but, the 
clearest X-paths in Fig. 9.3.5a are zeros emanating from the point φ=±π where the particle packet originally was 
not. Quantum wave dynamics differs from classical dynamics is that multiple Fourier components easily interfere 
much of a wave to death. Most path phases lead to non-existence except near (rare) stationary-phase paths that 
may be familiar classical ones. This is what is responsible for particle localization that allows us to enjoy a 
Newtonian world and largely conceals its quantum wave nature from us. Where the wave is not provides 
important quantum clues. One recalls Sherlock Holmes' revelation that it is the "dog that did not bark" which 
solved a mystery.
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9.4  Homo-cyclic Cn Revivals
 Wave phase is key to the CN dynamics beginning with the “beats” of two-state C2 system. As we have 
said, “It takes two to tango.” First we review the two-state-system dynamics with analogies to optical polarization 
from Chapter 1 and coupled pendulum dynamics. (Later chapters will use this analogy.) C2 holds the first key to 
analyzing the revivals introduced in the preceding section.
We have also said, “Three’s a crowd.” The dynamics associated with C3 systems is discussed after that of C2 and 
then that of C4, C5, C6, and C15 systems. Each is part of the revival milieu of Fig. 9.3.5. 

(a) Two–state C2 systems: Beats 
 Motion of anti-nodal revivals for a 2-level excitation such as Fig. 9.3.5c are like beats of coupled 
pendulums. Fig. 9.4.1a shows phasor pictures of 2-cyclic (C2) eigenstates. Phasor "clocks" are phase-space plots 
of ReΨ vs. ImΨ for wavefunction Ψ(p) at each spatial point p=0,1. ReΨ is up, ImΨ is to the left, and the area π|
Ψ|2 of the phasor is proportional to probability |Ψ|2 at point p. 
 Each eigenstate phasor rotates clockwise at its Bohr eigenfrequency ωm = m2ω1 , that is, 
Ψ(t)=e-iωmtΨ(0). The C2  eigenstates are labeled even (02)=(+) or odd (12)=(−) as usual.
     | +〉 =| 02 〉 = (| x〉 + | y〉 )/ 2      (9.4.1a)     | −〉 =| 12 〉 = (| x〉 − | y〉 )/ 2     (9.4.1b)

    Bohr eigenfrequency: ω0 = 0    (9.4.2a)   Bohr eigenfrequency: ω1    (9.4.2b)
|m2〉 eigenfrequencies ωm are ω0 = 0 and ω1 = h/(2ML2) by (9.3.12b). States |m2〉 are + or − combinations of a 
local oscillator base state labeled |x〉=|r0〉 (localized at spatial point p=0 or φ=0) and a "flipped" base state |y〉=r|x〉
=|r1〉 (localized at point p=1 or φ=π). States |+〉 and |−〉 are also eigenstates of C2 "flip" operator r defined by r|x〉
=|y〉 and r|y〉=|x〉, that is, r|+〉=+|+〉 , and r|−〉=-|−〉. State |+〉 is analogous to +45° polarization which is the "slow" 
eigenstate. State |−〉 is analogous to the “fast" -45° optical axis. 
 An initial 50-50 combination of the |+〉 and |−〉 eigenstates briefly recovers the |x〉=|r0〉 local base    

 |x〉 = ( |+〉 + |−〉 )/√2 = ( |02〉 + |12〉 )/√2,   (Time t=0)
lying between |+〉 and |−〉 in Fig. 9.4.1b. The |12〉-eigenstate is faster than the |02〉-eigenstate (which does not move 
at all by (9.4.2a)) The |x〉-state is always a sum of 02 and 12 phasors. (Left and right 02 phasors are at 12 PM in 
Fig. a while the left 12 phasor starts at 12 PM and the right 12 phasor at 6 PM.) After 12 PM the 12 phasors “tick” 
but 02 phasors are stuck at 12PM. Their sum |x〉 varies with time. 
By 1/4 of beat period τ1, the fast |12〉 clocks are 90° ahead of the stuck |02〉. (Clockwise is –i.)
    |L〉 = ( |+〉 − i |−〉 )/√2 = ( |02〉 − i  |12〉 )/√2.  (Time t=(1/4) τ1 )
The left and right hand 12 clocks move to 3 PM and 9 PM, respectively, but 02 clocks are stuck at 12 PM. On the 
left: 12 PM plus 3 PM is half-size clock at 2:30 PM. On the right: 12 PM plus 9PM is a half-size clock at 10:30 
PM. Note two half-phasors at -45° (2:30 PM) and +45° (10:30 PM) at 1/4-period. The 1/4 period situation is 
analogous to optical 1/4-wave plates that change |x〉-polarization to left-circular |L〉. 
By τ1/2 the fast 12 -clocks go 180° ahead to give the "flipped" local base state of y-polarization.

  |y〉 = (|+〉−|−〉)/√2 = ( |02〉 −  |12〉 )/√2    (Time t=(1/2) τ1 )
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Fig. 9.4.1 (a) C2 eigenstate phasors. (b) 50% combination states de localizing and reviving.
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At τ1/2, the left 12 clock is at 6 PM the right one at 12 PM, but both 02 clocks still read 12PM . On the left: 12 PM  
plus 6 PM is zero (a node). On the right: 12 PM plus 12PM is big 12 PM. All the wave flips to the |y〉-state. The 
1/2-period situation is like 1/2-wave plate changing |x〉-polarization to |y〉. 
 Still later at (3τ1/4) the initial |x〉-state has become a right circular state. (Fig. 9.4.1b bottom) 
    |R〉 = ( |+〉 + i |−〉 )/√2 = ( |02〉 + i  |12〉 )/√2   (Time t=(3/4) τ1 )
Finally, at full-time (1/1)τ1 the initial |x〉 state (top of Fig. 9.4.1b) is once again back to being |x〉 and would 
reappear beneath Fig. 9.4.1b to begin repeating the revival sequence. 

In Fig. 9.4.1b, dotted lines making an X are drawn around the phasors to connect places where wave 
amplitude is low like the X-pattern in Fig. 9.3.5c. Low m-uncertainty (Δm=1.5) means the revival wave is mostly  
a combination of the first two Bohr eigenlevels m=0 and |m|=1 having just two group (or phase) velocities +V1 
and -V1. In other words, Fig. 9.3.5c is essentially just a two-state system, and the major half and full revivals are 
just binary beat of two coupled symmetric pendulums. 
 The 1/4 fractional revival corresponds to transition state |L〉 = ( |x〉 − i |y〉 )/√2 (analogous to left circular 
polarization) between the major revivals. In |L〉 the left hand position phasor is 90° ahead of the right hand one 
being resonantly pumped up. The roles of the two phasors are reversed at 3τ1/4.

 (b) Cn group structure: n=3, 4,...6 Eigenstates
 To understand finer X-zero patterns and fractional revivals between zeros in Fig. 9.3.5 a-b we go beyond 
the binary {|02〉 |12〉} basis to, at least, the base-3 basis {|03〉 |13〉 |23〉} of C3  The bra state vectors {〈03 | 〈13 | 〈23 |} 
were defined in Fig. 2.6.4 and are re-drawn in Fig. 9.4.2a. The C3  wave states have quantized momentum m=0, 
1, and 2 modulo 3 . Each m labels a row of three phasors in Fig. 9.4.2a which are a discrete sampling of the 
waves in the first three Bohr levels m=0,1, and 2.
 In Fig. 9.4.2b are 4-nary C4 base states of m=0, 1, 2 and 3 modulo 4 quanta and Fig. 9.4.3a reintroduces 
5-nary C5 bases of m=0, 1, 2,3, and 4 modulo 5 quanta, and similarly in Fig. 9.4.3b for C6. These systems are 
like counters; a binary C2 system can count only to two, that is, 0 to 1, but each of the CN systems are capable of 
counting to N, that is, 0, 1, 2,3,..,N-1. 
 Physically the CN waves are bases of a finite and discrete Fourier analysis. Each CN  character table in 
Fig. 9.4.2a-b or 9.4.3a-b (if all divided by √N) is the N-by-N unitary (U(n)) transformation matrix 〈p|m〉 of 
discrete Fourier transformation coefficients. (Recall Fig. 7.3.3 and discussion.) 

  
  

p m( )N
= ei p m/ 2πN / N = m( )N

p
*

    (p,m = 0,1,2,...,N - 1)  (9.4.3a)

 Each phasor in Fig. 9.4.2-12 sits at one of N equally spaced lattice points p=0, 1, ...,N-1. Each phasor 
gives for a particular angular point p=0, 1, 2,3,..,N-1 the complex wave amplitude (7.3.10a)
    ψ±m(2πp/N) = 〈p|(m)N 〉 = 〈(m)N |p〉* 
of a continuous running wave that is one of Bohr-Schrodinger eigenfunctions ψ±m(φ). 
A real (cosine) part of the eigenfunction is drawn for each eigenstate |(m)N〉 in Fig. 9.4.2-3 to help connect it to 
the latter. The state notation (m)N  labels these waves and should be read m-modulo-N (or m%N in C) meaning 
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that waves having m± nN wavelengths or quanta will give a physically and mathematically identical state (m)N . 
(They are Fourier aliases (m)N = (m± nN)N, states differing only by reciprocal lattice vectors K= ± nN .)
 In Fig. 9.4.2-12 each one of N equally spaced lattice points p=0, 1, 2, 3,...,N-1, is labeled by a p-th power 
rp of a fundamental CN  group rotation r by angle 2π/N , that is, by r0=1 , r1, r2, r3 ... , rN-1 , rN=1 respectively. 
This labeling notation simply lists the operator elements of the cyclic CN  symmetry group as was done in 
equations (8.1.5a). The entries e-ipm/2πN are m-th eigenvalues of r0,r1,r2...,rp.   
 The phasors are graphical representations of the complex eigenvalues or characters of the various cyclic 
groups. It should be noted that the binary C2 phasor table (Fig. 9.4.1a) is embedded as a subset in the C4 table 
since C2 is a subgroup of C4. C2  is also seen in the C6 table (Fig. 9.4.3b) or any CN  table of even-N since C2  is 
a subgroup of all C2n. The C6 table also has the C3 table (Fig. 9.4.2a) embedded. Symmetry embedding is of 
utmost importance for analyzing group algebra, their representations, and their physical applications. Here it is 
what gives the revival structure down to the finest observable details of revival wave phase or amplitude shown 
in Fig. 9.3.5 a.

The same numbers (without the √N ) serve triple or quadruple duty in algebraic group theory. Besides 
Fourier transforms they are irreducible representations Dm(rp) of CN  

     
   
D

m( )N r p( ) = e
−i p m

2πN      (9.4.3b)

such that     Dm(a) Dm(b) = Dm(ab) .
This goes along with the Dm(c) being eigenvalues of the group operators c=rp. (Note (rp)† =r -p.)

    
   
r p m( )N

= D
m( )N r p( ) m( )N

= e
−i p m

2πN m( )N
   (9.4.3c)

    
   

m( )N
r p = D

m( )N r p( ) m( )N
= e

−i p m
2πN m( )N

   (9.4.3d)

Also, each row of the character table in Fig. 9.4.2-3 is an eigen-bra-vector wavefunction of discrete points p or 
powers of rp. As shown in Sec. 9.2, each bra 〈(m)N| and ket |(m)N〉 must also be an eigenvector of any 
Hamiltonian operator H that commutes with CN , i.e., has CN  symmetry (Hrp=rpH). So the character tables 
serve finally as universal energy eigenvectors and eigenstates, too. All the above apply to the generic CN  groups 
and all their embedded subgroups which include all smaller Cn  for which n is an integral divisor of N.
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Fig. 9.4.2  C3  and C4 eigenstates and revivals. 
 (a) and (b) C3  and C4 eigenstate characters.         
(c) and (d) C3  and C4  revival space time patterns.

(c) Cn dynamics: n=3, 4,...6 Fractional Revivals
 For each subgroup embedding there is a corresponding embedding of the revival tables that are shown in 
Fig. 9.4.2c-d and 9.4.3c-d. Revival tables are obtained, as in Fig. 9.4.1b, by first summing all the rows of phasors 
in each character table C3 , C4, C5 , or C6  of Fig. 9.4.2-3a-b. This localizes the initial wave 100% onto the first 
phasor position state |x0〉. Because 〈(m)N| x0〉 = 1 identically, we have
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x0 = m( )Nm=0

N −1
∑ m( )N

x0 = m( )Nm=0

N −1
∑     (9.4.4a)

This is called a group completeness relation or resolution of the identity. All phasors are equivalent due to CN  
symmetry, so arbitrarily picking the first column (r0=1) does not affect the general utility of Fig. 9.4.2-3. 
Translation by rp rephases the sum (9.4.4a) according to (9.4.3c) and translates all waves rigidly.

         
   
xp = r p x0 = r p m( )Nm=0

N −1
∑ = e

−i pm
2πN m( )Nm=0

N −1
∑    (9.4.4b)

 Then each term |(m)N〉 in the sum (9.4.3) is allowed to advance its Bohr phase e-iωmt  = e-im2ω1t  in discrete 
time fractions 1/N of τ1 for N-odd or 1/2N for N-even, that is, through stroboscopic instants tυ.

 

  

x0 (tυ ) = e−im2ω1tυ m( )N
       

m=0

N −1
∑ tυ =

υ
τ1
N

= 2π υ
ω1N

  υ = 1,2,..., N −1( ) for N − odd

υ
τ1
2N

= π υ
ω1N

  υ = 1,2,..., 2N −1( ) for N − even

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (9.4.5)

For each stroboscopic instant or row in Fig. 9.4.3 there is an array of equally-sized and equally-spaced phasors, 
that is, a kaleidoscopic phasor array. At each tυ, phasors are either revived or else zeroed-out. 
 An even-N=2p revival table, such as N=4 and N=6 in Fig. Fig. 9.4.3 has embedded the N=2 revival or 
"beat" table in Fig. Fig. 9.4.1b since C2  is a C2p  subgroup. So besides the obvious 1/2-time revival halfway 
around, there must be 1/4-time and 3/4-time revivals for N=2 at each of the 1/4-lattice points, that is for N=6, at 
t=3/12 and t=9/12, and for N=4, at t=2/8 and t=6/8. Because N=6 is also divisible by 3 there will be N=3 
revivals embedded at t=4/12=1/3 and t=8/12=2/3. Also, N=3 revivals embedded relative to the 1/2-time revival 
at t=1/3-1/2=-1/6 and t=1/3+1/2=5/6 and t=2/3-1/2=1/6 and at  t=2/3+1/2=7/6. The phase angle 
"combinations" for each of the embedded phasors are reproduced perfectly and periodically as in a kind of 
quantum "odometer" or counter.
 An even-N revival table must start all over again at half-time, but from a point half-way around the ring at 
φ=π if it started at φ=0. This is required by CN  symmetry and by C2 half-time revival having 100% probability 
on the antipodal (half-way) point p=N/2 if 100% probability starts on the initial p=0 point. So the C4 phasors 
below the (p=2, t=2/4=1/2) point in Fig. Fig. 9.4.3b, namely, t=5/8, 3/4, and 7/8, must have positions, 
amplitudes, and phases relative to the mid-point p=2 that are identical to ones at t=1/8, 1/4, and 3/8, respectively, 
below the initial t=0=p point. Similar repetition is seen for N=6 in Fig. 9.4.3c and for any even-N revival table 
below t=1/2.
 A prime-N  revival table (like N=3 in Fig. 9.4.2c or N=5 in Fig. 9.4.3c) has no embedded structure 
because prime CN  has no subgroup but C1. After the initial localized state each revival has probability distributed 
equally on all N lattice sites but with distinct phase combinations as in a kind of base-N quantum odometer. In 
contrast, base-N counters with N=2p , p! or other composite numbers like N=4 or 6 in Fig. 9.4.2d or 9.4.3d have 
the greatest variety of revival amplitudes.
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Fig. 9.4.3  C5  and C6 eigenstates and revivals. 
(a) and (b) C5  and C6  eigenstate characters.        
(c) and (d) C5  and C6   revival space time patterns.

 The N=6 space-time wave patterns of Fig. 9.4.3d match phasor-for-peak with the revival intensity 
structure of the 1/12ths, 1/6th's, 1/4th's, 1/3rd's, and 1/2 revivals in Fig. 9.4.5 a or b if Fig. 9.4.3 tables are 
rescaled to the same size and overlapped with their edges centered in Fig. 9.4.5 a or b. Also, each table gives 
exactly the correct amplitude and phase of each revival peak that belongs to it as well as showing where the zeros 
reside. Similar character-revival tables of C5 (Fig. 9.4.3c), C7, C9,...  will account for finer odd-fractional revivals 
occurring at stroboscopic odd-time fractions like the 1/5th's, 1/7th's, 1/9th's,...and so on. (Recall 1/8th's are 

©2013 W. G. Harter    Chapter 9 Time Evolution  9-



revivals for C4 shown in Fig. 9.4.2d. They will be copied by a C8 revival table in between its (new) 1/16th's.) The 
medium resolution wave plot of Fig. 9.4.5b displays N=2, 3, 4, ...,8 structure more clearly than high-Δm Fig. 
9.4.5a by suppressing or defocusing the even finer revivals and prolonging fewer but more robust peaks or zeros 
of the more fundamental revivals. But, all zero-centered excitations ( m =0) for larger-Δm such as shown in Fig. 
9.4.5a-b have the same fundamental X of a (0↔1) C2 beat in Fig. 9.4.5c, that is, they show a half-time revival 
that peaks around the center of the largest X.

 Cyclic subgroup hierarchies
       

   
Cn ⊂ Cpn ⊂ C

p2n
⊂ C

p3n
⊂  

are here being used to organize quantum fractal revival dynamics. Schrodinger's approach to quantum theory, 
which eschewed the gruppenpest in favor of differential equations, is not set up to explain the origins of such 
discrete fractal structure. This is because each successive integer N starts a new hierarchical group family. If the 
integer is prime the family is entirely new. But, if it is not prime, then older smaller families belonging to each of 
N's factors are copied and embedded in the new family. In contrast, Schrodinger's wave equation treats every 
value of its independent variables as just another dumb x or t, and rational structure is glossed over.

 Each new odd integer N=2m+1 will have N new revival peaks at time fractions t/τ=ν/N=1/N,...q/N .. but 
only for fractions q/N that are irreducible. Reducible fractions q/N  that reduce to q/N = qR/r (by dividing out a 
highest common factor f=N/r=q/qR ) just recreate the "old" r=N/f-peak revivals already seen for a lesser or 
reduced integer NR =r=N/f. Similarly, for even N=2m the only new revivals are at found irreducible time 

fractions t/τ=ν/2N=1/2N,...q/2N ... . All the rest belong to subgroups CNR (if any) of CN  including Cm  and C2. A 
formula for new revival phasors based on sum (9.4.5) is given in Appendix 3.A. Now we consider a quasi-
classical way to understand revival dynamics.
 Odd-N revivals clearly display the prime factors and their multiples of the integer N. If N is a prime 
number as it is for N=3 in Fig. 9.4.2c and for N=5 in Fig. 9.4.3c then all reviving kaleidoscopes except the initial 
one consist of uniform distributions of N phasors of probability 1/N. However, for a composite odd integer such 
as N=15, the phasor distributions are not uniform as shown in Fig. 9.4.4. There are nodes at the p=±1 points for 
all revivals that correspond to factors of the integer N=15, namely at the revivals numbered 1, 3, 6, 9, 12, and 1, 
5, 10, and 15. The latter are copies of C3 revivals seen in Fig. 9.4.2c and the former are copies of C5 revivals seen 
in Fig. 9.4.3c. Their presence is simply a result of C3  and C5  being subgroups of C15. 
 By definition, 1 is a factor of all N and C1 is a subgroup of all CN . This is manifest by the first row of 
each revival table. The only even prime integer is N=2. This helps to account for the unique status of the C2  
revival table in Fig. 9.4.1b and the extra significance of the C2 parity of each integer N, that is, the distinction 
between odd and even integers.
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Fig. 9.4.4 Bohr space-time revival pattern for C15 Bohr system. 
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Bohr vs. Bloch dispersion
 The value of the CN  models increases when the purely quantum effects, particularly those of a single CN, 
are to be isolated. One imagines having a discrete Bohr ring like those sketched Fig. 9.4.5 composed of N atoms, 
quantum dots, optical fibers, or Josephson circuits homo-cyclically coupled is such a way that the usual quadratic 
Bohr dispersion spectrum ωm =  m2ω1 is obtained with a finite number N of states per band. As a first 
approximation, such a ring has a Bloch dispersion spectrum ωm = (H0-2H1 cos am) where H1  is the nearest 
neighbor coupling amplitude. Such a Bloch spectrum only approximates a Bohr spectrum for low m-values, and 
so high-Δm revivals would decay eventually. However, by inserting cross-connecting coupling paths H2 , H3 , 
H4 , ...HN/2 , as shown in Fig. 9.4.5, it is possible to achieve any spectrum, including m2, by adjusting coefficients 
Hk in a Fourier series. 
   ωm = H0-2S1 cos am-2H2 cos 2am-2H3 cos 3am...-HN/2 cos Nam/2 .
A quadratic spectrum (Em=hυm2) is achieved for general N by setting Hamiltonian parameters as follows.

   
  
hυm2 = H p e

−i p m 2π
N

p=0

N −1
∑ ,   where:  H p = hυ

N
m2 e

i p m 2π
N

m{ }
∑   (9.4.6)

For example, a 4-level N=6 quadratic spectrum {E0=0, E±1=12 E±2=22, E3=32.} involves six eigenstates: |(m)6〉 
= |(0)6〉, |(±1)6〉, |(±2)6〉, and |(3)6〉, using the following coupling amplitudes as given in the N=6 row of Table 9.1. 
   H0=3.16, H1=-2.0=H5*, H2= 0.67=H4*, H3=-0.5 ,    (9.4.7)
 With the adjustments in Table 9.1. of Hk coupling, pure CN revivals like those in Fig. 9.4.2-3 would repeat 
at frequency υ=h-1 until the coupling is turned off. Such a device would be an N-ary counter as implied before. 
By incorporating the N-ring as the crossection of a coaxial N-fiber cable, it would be possible for the revival 
evolution to occur as an N-phase wave propagated down the cable. The possibility of storing, processing, and 
transporting quantum or classical N-ary data for N>>2 using just one kind of basic hardware may yet warm the 
heart (and portfolio) of a future cyber-entrepreneur.
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Fig. 9.4.5 Quantum dot or co-axial cable structures with arbitrary dispersion

Table 9.1. N-Discrete m2-Hamiltonian Coupling Amplitudes. All devices have a unit revival rate: hυ=1 .
H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

N=2 1/2 -1/2
N=3 2/3 -1/3
N=4 3/2 -1 1/2
N=5 2 -1.1708 0.1708
N=6 19/6 -2 2/3 -1/2
N=7 4 -2.393 0.51 -0.1171
N=8 11/2 -3.4142 1 -0.5858 1/2
N=9 20/3 -4.0165 0.9270 -1/3 0.0895
N=10 17/2 -5.2361 1.4472 -0.7639 0.5528 -1/2
N=11 10 -6.0442 1.4391 -0.5733 0.2510 -0.0726
N=12 73/6 -7.4641 2 -1 2/3 -0.5359 1/2
N=13 14 -8.4766 2.0500 -0.8511 0.4194 -0.2028 0.06116
N=14 33/2 -10.098 2.6560 -1.2862 0.8180 -0.6160 0.5260 -1/2
N=15 57/3 -11.314 2.7611 -1.1708 0.6058 -1/3 0.1708 -0.0528
N=16 43/2 -13.137 3.4142 -1.6199 1 -0.7232 0.5858 -0.5198 1/2
N=17 24 -14.557 3.5728 -1.5340 0.81413 -0.4732 0.2781 -0.1479 0.0465
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Problems for Chapter 9.
Evolution   (A 2000 Qualifying exam problem) 
9.1.1. A two-state quantum system evolves as follows in 5 sec. (First: Is the evolution unitary?)

	

 	

 	

 State |1〉 becomes state |1'〉 = -√3/2 |1〉 - i/2  |2〉 
	

 	

 	

 State |2〉 becomes state |2'〉 =     -i/2|1〉 -√3/2|2〉 

(a) Derive a complete set of states as combinations of |1〉 and |2〉 so that each combination would stay the same (except for a 
possible overall phase) at all times. 
(b) Compute the energy level splitting ΔE=E2-E1 for this system assuming ΔE is the lowest possible to achieve the 5 sec. 
evolution given in part (a).
(c) Derive an expression for any state at any time t and give |1(t)〉 and |2 (t)〉 numerically at t=1 sec.
(d) Does this evolution correspond to a Hamiltonian H? If so, what H?

Revolution
9.1.2. A two-state quantum system evolves as follows in t sec. (First: Is the evolution unitary?)

	

 	

 	

 State |1〉 becomes state |1'〉 = cos ωt |1〉  -  sin ωt |2〉 
	

 	

 	

 State |2〉 becomes state |2'〉 = sin ωt |1〉 + cos ωt |2〉 

 (a) Does this time evolution correspond to a Hamiltonian H? If so, what H? Is it Hermitian?

__________________________________________________________________

Hexapairs
9.3.1  The hexagonal C6 eigenstates |06〉 and |36〉 are standing waves while [|+16〉, |-16〉] and [|+26〉, |-26〉] are right and left moving 
wave pairs. 

(a) Do [|+36〉, |-36〉] a moving wave pair make? Explain why or why not? 
(b) Can the [|+16〉, |-16〉] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.
(c) Can the [|+26〉, |-26〉] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.
(d) What values, if any, for tunneling parameters |S|, σ, |T|, τ, and U allow standing-wave-pair eigenstates. Must they always 

be degenerate?

Octapairs
9.3.2 Consider an octagonal C8 system of 8 quantum dots.

(a) Write the general form of its Hamiltonian.
(b) Display its eigenkets and write a formula for its energy eigenvalues.

Back to Roots...again
9.3.3. Eigensolutions of C2 and C3 symmetric H can be turned into quadratic and cubic root formulas. 

(a) Eigenvalues of H=
 

A B
B A

⎛

⎝⎜
⎞

⎠⎟
, namely λ=A±B give solutions to λ2-2Aλ+A2-B2=0  Use this to derive the familiar quadratic 

formula for roots of aλ2+bλ+c=0 .

(b) Use the above and C3-derived eigenvalues of H=

 

A C B
B A C
C B A

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 to derive the less familiar formula for roots to general cubic 

equation aλ3+bλ2+cλ+d=0. (Hint: First consider λ3+pλ+q=0 .)
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_____________________________________________________________________________
Quantum baseball
9.3.3 Suppose the Asumma Tummy Quantum Computer Co. has taken over the world and you are the only one in your country that 
still knows the difference between an amplitude and a phase. Your assignment is to design, make or experiment with some 
quantum dot computer elements diagrammed below having charge carrier matter-waves that tunnel along edges and diagonals of 
squares as indicated below. 

	



H

S

S*

T
H = 〈ρ|H |ρ〉=H*

(b)C4  Quantum Dots

S S

S

S* S*

S*

H

H

H

(a) Tunneling P aths

 〈0 |H|0〉=H+ΔH
(c) Broken symmetry

H

H

H

H+ΔH

S+ΔS S+ΔS

 〈1|H |0〉  = S+ΔS =   〈0|H|1〉

S=S* S=S*
T=0

 〈0|H |3〉  = S+ΔS =   〈3|H|0〉

|0〉

|2〉

|3〉
|1〉

|2〉

|3〉

|0〉

|1〉

S = 〈ρ+1|H|ρ〉

S* = 〈ρ|H|ρ+1〉
T=0

Suppose edge tunneling amplitudes are equal and real (S =-1.0) while diagonal tunneling amplitudes are zero (T=0 ) to give C4 
symmetry as shown in Fig. (b). Suppose at time t=0 the charge carrier amplitude is 100% on "home" base state |0〉.( 〈0|Ψ(t=0)〉=1).

(a) Derive eigenlevels and calculate the time dependence of the home-base amplitude 〈0|Ψ(t)〉=?  Find the period τrebound of 
time it takes home-base to rebound to a maximum again after initially decreasing. Does it rebound to 100% the first time?  
ever?  
(b) Sketch phasors for each of the four bases |0〉, |1〉, |2〉, and |3〉 at 1/4- τrebound time intervals and indicate by arrows 
between phasors the direction of instantaneous charge flow from one to the other. (Tell how you determine this just by 
looking at the phasors.) Does first, second, or third base ever hold 100% of the charge?
(c.) Suppose all edge tunneling amplitudes are equal but (possibly) complex (S =-eiσ) while diagonal tunneling amplitudes 
are zero (T=0 ). 
(a) Adjust the tunneling phase angle σ so as to make four equally spaced energy eigenlevels with quantum numbers m=(0)4, 
(-1)4, (1)4, and (2)4 , in that order. 
Is the order (0)4, (1)4, (2)4, and (3)4 = (-1)4 also possible using this adjustment? If not, can some other kind of adjustment 
achieve it without changing the form of the eigenstates? Discuss.

Janitor’s revenge
9.3.4. Suppose a janitor hits the home-base dot-0 with his broom handle and accidentally resets some H-matrix elements shown in 
Fig. (c) by small amounts: the first diagonal by ΔH=A and the first off-diagonal by ΔS=ΔS*=B. All other matrix elements remain 
the same as in Problem 9.3.3. Let the new "broken" Hamiltonian be a sum H' = H + V(A,B).

(a) Derive a matrix representation of the janitor's perturbation V(A,B) in the original  |0〉 to |3〉 basis, in the moving-wave basis  
|(0)4〉, |(-1)4〉, |(1)4〉, and |(2)4〉, and in the standing-wave cosine and sine basis |(0)4〉, |(c1)4〉, |(s1)4〉, and |(2)4〉, where: 	

|(c1)

4〉 = (|(-1)4〉+|(1)4〉)/√2   , and:   |(s1)4〉 = (|(-1)4〉-|(1)4〉)/i√2 . 

(b) Use (a) and perturbation theory to estimate (to 2nd order |A|2=|ΔS|2 or |b|2=|ΔH|) the effect of the V(A=0.1,B=0.2) on 
energy eigenlevels ε(0)4,  ε(±1)4, and ε(2)4 as ε(m)4 turn into eigenlevels of the "broken" Hamiltonian H'. Which 
representation from (a) should be used and why? Show your work. 

(c.)   Discuss the effect, if any, on the original eigenstates  |(0)4〉, |(-1)4〉, |(1)4〉, and |(2)4〉, and sketch their phasor diagrams 
next to the corresponding eigenlevels. Are moving-wave eigenstates still possible after the janitor does his or her work?
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 (a) (b) (c) (d)

Beware the pentagram
 9.3.5. Suppose a pentagonal C5 device in prob. 9.3.3(a). 
(a)  Could it ever rebound to 100%? Discuss devices (a), (b), and (c).
(b) Discuss the possibility (or impossibility) of constructing such a device that would give a "runner-going-around-the-bases" 
effect with 100% probability occurring briefly but consecutively on first base, then second base, then third base, and finally 
home base. If such a device could be made would it also be capable of running in the opposite direction without modifying 
the H-matrix?

Quantum dot.com
9.3.6 The CN quantum dots in Fig. 9.4.5 are supposed to belong to an infinite family of structures whose ωm-spectrum is 
quadratic in quantum number mN. This assumes a sequence of tunneling paths or connecting couplers described by (9.4.6).
The N=2 example seems an exception having only a single H1 = S connector on each dot. Is this right? Should the 

Hamiltonian be 
  
H = H S

S H
⎛

⎝⎜
⎞

⎠⎟
 or should it be 

   
H = H 2S

2S H
⎛

⎝⎜
⎞

⎠⎟
 to conform with the rest? Discuss. Compare the N=2 

case with, say, that of N=4.

Quantum dot.com again
9.3.7 The CN quantum dots in Fig. 9.4.5 might be made to have other spectral band functions such as 
(Q) Quadratic spectrum: ω(m)=ε(m)/= m2 = 1, 0, 1, 4, 9,… for (m)N= -1, 0, 1, and ±2, ±3,….
(L) Linear spectrum: ω(m)=ε(m)/= |m|= 1, 0, 1, 2,3,… for (m)N= -1, 0, 1,  ±2, ±3,…
(SL) Super-linear spectrum: ω(m)=ε(m)/= m = -1, 0, 1, ±2, ±3,… for (m)N= -1, 0, 1, ±2, ±3,…
	

 (a) Derive N=8 coupling parameters for each of these spectra.

HarterSoft –LearnIt    Unit 3 Fourier Analysis and Symmetry   9-33



34
Review Topics & Formulas for Unit 3

  

Fourier SeriesCoefficients

km Ψ = dx
−L / 2

L / 2
∫ km x x Ψ

   km x = e−ikmx

L
= x km

*

  	



  

Fourier Integral Transform

k Ψ = dx
−∞

∞
∫ k x x Ψ

Kernal : k x = e−ikx

2π
= x k

*

  

Fourier CN Transformation

km Ψ = km xp xp Ψ
p=0

p=N −1
∑

  km xp = e
−ikmxp

N
= xp km

*

x-Wavefunction Ψ(x)=	

 	

 	

 x-Wavefunction Ψ(x)=	

 	

 x-Wavefunction Ψ(x)=

 

x Ψ = x km km Ψ
m=−∞

m=∞
∑

Ortho −Completeness
	

 	



 

x Ψ = dk
−∞

∞
∫ x k k Ψ

Ortho −Completeness
	



  

xp Ψ = xp km km Ψ
m=0

m=N −1
∑

Ortho −Completeness

  

x km km ′x
m=0

m=∞
∑ = δ x − ′x( )

dx
−L / 2

L / 2
∫ km x x k ′m = δm, ′m

	



 

dk
−∞

∞
∫ x k k ′x = δ x − ′x( )

dx
−∞

∞
∫ k x x ′k = δ k − ′k( )

	



  

xp km km x ′p
m=0

m=N −1
∑ = δ p, ′p

km xp xp k ′m
p=0

p=N −1
∑ = δm, ′m

Discrete momentum m	

	

 Continuous momentum k	

 	

 Discrete momentum m
Continuous position x	

	

 	

 Continuous position x	

	

 	

 Discrete position xp
_____________________________________________________________________________________________________________________________

    

Time EvolutionOperator U
Ψ(t) = U(t,0) Ψ(0)

HamiltonianGenerator H

i ∂
∂t

U(t,0) = H U(t,0)

	

 	



    

Time EvolutionOperator U

U(t,0) = e−i t H /

Schrodinger t − Equation

i ∂
∂t

Ψ(t) = H Ψ(t)

	

 	


    

U must beUnitary

U†(t) = U−1(t) = U(−t)

e−itH /( )† = eitH† / = eitH /

so H is Hermitiam H† = H

__________________________________________________________________________________
Schrodinger time-independent  energy eigen equation.
	

 	

 	

 	

  H | ωm 〉 = ωm | ωm 〉 = εm | ωm 〉	

 	

 	

 	

 (9.3.1a)
H-eigenvalues use r-expansion (9.2.6) of H and C6 symmetry rp-eigenvalues from (8.2.9).
	

 	

 	

   〈km|rp|km〉= e-ipkma = e-ipm2π/N  where:  km = m(2π/Na)  
     〈km|H|km〉 = H 〈km|1|km〉 + S 〈km|r|km〉 + T 〈km|r2|km〉 + U 〈km|r3|km〉 + T* 〈km|r4|km〉 + S* 〈km|r5|km〉
	

          = H + S e-ikma + T e-i2kma + U e-i3kma + T* ei2kma + S* eikma	

  	

 	

 (9.3.5a) 
Bloch dispersion relation. And Bohr limit (k<<π/a) approxiamtion. Band group velocity Vgroup.
	

 	

  ωm =Em = H - 2|S| cos( km a)  = H - 2|S| + |S|( kma )2 +..	

  	

 	

 (9.3.8)

	

 	


   
Vgroup =

dωm
dkm

= 2
S


a sin kma( )   ≅ 2
S


kma2  , for: km << π / a
⎛

⎝
⎜

⎞

⎠
⎟ 	

 	

 (9.3.10)

Effective mass Meff inversely proportional to S.	

  Meff(0)= 2/( 2|S| a2 )	

 	

 (9.3.11a)

_________________________________________________________________________________
Fourier transform of a Gaussian e-(m/Δm)2 momentum distribution is a Gaussian e-(φ/Δφ)2 in coordinate φ. 
	

 	

   〈m|Ψ〉 =  e-(m/Δm)2   implies:	

 	

  〈 φ |Ψ〉 =  e-(φ/Δφ)2   	

 	

 	

 (9.3.14)
The relation between momentum uncertainty Δm and coordinate uncertainty Δ φ is a Heisenberg relation.
	

 	

 	

 	

  Δm/2 =1/ Δ φ ,	

or: 	

 	

 Δm Δ φ  =2  	

 	

 	

 (9.3.15)
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Bohr wave quantum speed limits

	

 	


  
Vgroup

Bohr m ↔ n( ) = ωm −ωn
km − kn

=
m2 − n2( )hυ1

m − n( )h / L
= (m + n) L

τ1
= (m + n)V1 	

 (9.3.16)

Predicting fractional revivals: Farey Sum ⊕ F of the rational fractions n1/d1 and n2/d2

	

 	

 	


  
t12− intersection =

n2 + n1
d2 + d1

=
n2
d2

⊕F
n1
d1
	

 	

 	

 	

 (9.3.18)
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Appendix 9.A. Relative phase of peaks in a revival lattice
 The first derivation here of revival amplitudes at stroboscopic time fractions tν = τ(ν/N) and kaleidescopic 
angular positions φρ=2π(ρ/N) assumes N is odd. At times when fraction (ν/N) is reduced, all N revival peak sites 
hop up with identical magnitude and with particular arrangement of phases that clearly distinguishes each ν/N 
from all others. First we derive formulas for these phases as a function of site index ρ and revival time index ν. 
(If time fraction ν/N reduces to νR/NR, then use (νR ,NR) in place of (ν,N) to find NR peak phases of subgroup 
CNR revivals.) The first step is to complete the square of exponent in sum.

       

  

ψ 0 φρ , tν( ) = 1

N m=0
N −1∑ e

i m ρ− m2 ν⎛
⎝⎜

⎞
⎠⎟

2π
N = 1

N m=0
N −1∑ e

−i m2 ν−mρ+ ρ
2

4ν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2π
N

e
i ρ

2

4ν
2π
N

                  = 1

N m=0
N −1∑ e

−i mν− ρ
2

⎛
⎝⎜

⎞
⎠⎟

m−
ρ

2ν
⎛
⎝⎜

⎞
⎠⎟

2π
N e

i ρ
2

4ν
2π
N

                  = 1

N m=0
N −1∑ e

−i 2mν−ρ( )2 2π
4νN e

i ρ
2

4ν
2π
N

  (A.1)

 The integer square (2mν-ρ)2 in the exponent is to be treated as an integer-modulo-4νN since the phase 
factor repeats after that value. However, as summation index m runs through the integers m = 0, 1, 2, ..., N-1 it 
exhausts all the possible values of (2mν-p)2 -mod-4νN for a given ν and ρ, and the values are the same no matter 
what we take for the range of m. For example, consider tables of phase index (2mν-ρ)2 -mod-4νN for select times 
of ν=1 and ν=2 for an N=5 level excitation.

   

   

(2mν − ρ)2mod4νN    for N =5  

ν=1 m = 0 1 2 3 4 5 6
ρ = 0 0 4 16 16 4 0 4

1 1 1 9 5 9 1 1
2 4 0 4 16 16 4 0
3 9 1 1 9 5 9 1
4 16 4 0 4 16 16 4

  (A.2a)  

    

(2mν − ρ)4νN
2    for N =5  

ν=2 m = 0 1 2 3 4 5 6 7 8 9 10
ρ = 0 0 16 24 24 16 0 16 24 24 16 0

1 1 9 9 1 25 1 9 9 1 25 1
2 4 4 36 20 36 4 4 36 20
3 9 1 25 1 9 9 1
4 16 0 16 24 24 16

(A.2b)

 Note that N consecutive values for m give the same sum no matter whether the sum starts at m=0 or at a 
sum-shift value m=µ. The idea is to shift the summation index m to m-µ so that a (2mν-ρ)2 -mod-4νN binomials 
in row-ρ can be replaced by a simple square (2mν)2 -mod-4νN monomial found in the ρ=0 row. This will reduce 
the exponent to a term independent of site-index ρ plus a Δ−term independent of summation-index m. 
 It would be nice if the Δ−term were also independent of ρ but the tables show that is asking too much! So, 
Δ = Δ(ρ,ν) and, each of the rows ρ =1, .., N-1 differ from the ρ=0 row by a single modular difference Δ(ρ,ν) in 
phase index which is overlined in the table and is the single unpaired number in each row. For example, 
subtracting Δ(1,1)=5-mod-20 = (5)20 from the (ρ=1) row of the (ν=1) table and shifting forward by µ1=2 gives 
the (ρ=0) row (mod-20) . The shifts needed to line up rows ρ=1, 2, 3, and 4 are µ1=2, µ2=4, µ3=6, and µ4=8 
respectively, that is µρ=µ1ρ. These observations are summarized by a modular equation.

 
  

2 m − µρ( )ν − ρ( )2 mod 4νN ≡ 2 m − µρ( )ν − ρ( )
4νN

2
= 2mν( )4νN

2
− Δ ρ,ν( )      (A.3a)

This is supposedly valid for all values of m so for m=0 the equation reads
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−2µρν − ρ( )

4νN

2
= 0 − Δ ρ,ν( )  ,      (A.3b)

where      
 
µρ = µ1ρ .        (A.3c)

Subtracting equation (A.3b) from (A.3a) gives the following, again valid for all m. 

  

   

2 m − µρ( )ν − ρ( )
4νN

2
− −2µρν − ρ( )

4νN

2
= 2mν( )4νN

2

4mν −2µρν − ρ( )( )
4νN

= 0( )4νN
= κ 4νN = 0, 4νN , 8νN ,…,4νN (N −1)

Next, set m=1, and solve for the m-sum-shift µρ of row ρ.

  

   

−8µρν
2 − 4νρ = −κ 4νN = 0, -4νN , -8νN ,…,-4νN (N −1)

2µρν + ρ = κN = 0, N , 2N ,…,N (N −1) or: µρ=κN − ρ
2ν

= (integer)N

   (A.4a)

A value κ=0,1,2,..,N-1 is selected so that m-sum-shift µρ is an integer µρ=0,1,2,..,N-1, too. Substituting the 
resulting µρ value in (A.3a) gives the phase modular difference Δ first defined there and in (A.3b).

      
  
Δ ρ,ν( ) = − 2νµρ + ρ( )

4νN

2
= − 2ν κN − ρ

2ν
⎛
⎝⎜

⎞
⎠⎟
+ ρ

⎛

⎝⎜
⎞

⎠⎟ 4νN

2

= − κN( )4νN
2

 ,      (A.4b)

where

    
  
κ =

2νµρ + ρ

N
.        (A.4c)

Puttiing (A.3a) into the revival wavefunction sum (A.1) gives 

     

  

ψ 0 φρ , tν( ) = 1

N m=0
N −1∑ e

−i 2mν−ρ( )2 2π
4νN e

i ρ
2

4ν
2π
N

                = 1

N m=0
N −1∑ e

−i 2mν( )2 −Δ ρ,ν( )⎡
⎣⎢

⎤
⎦⎥

2π
4νN e

i ρ
2

4ν
2π
N              using:(A.3a)⎡⎣ ⎤⎦

                = 1

N m=0
N −1∑ e

−i 2mν( )2 + κ N( )2 −ρ2⎡
⎣⎢

⎤
⎦⎥

2π
4νN                     using:(A.4b)⎡⎣ ⎤⎦

                = 1

N m=0
N −1∑ e

−i 2mν( )2 +4µρ
2ν2 +4µρνρ

⎡
⎣⎢

⎤
⎦⎥

2π
4νN              using:(A.4c)⎡⎣ ⎤⎦

 

   
  
                = P(ν )e

−i µρ
2ν+µρρ

⎡
⎣⎢

⎤
⎦⎥
2π

N = P(ν )e

−i µ1
2ν+µ1

⎡
⎣⎢

⎤
⎦⎥
ρ2 2π

N      using:(A.3c)⎡⎣ ⎤⎦  (A.5a)

The overall phase and amplitude prefactor P(ν) is a Gaussian sum discussed in Appendix 9B.

  
  
P ν( ) = 1

N m=0
N −1∑ e

−i 2mν( )2 2π
4νN = 1

N m=0
N −1∑ e

−iνm2 2π
N     (A.5b)

 Finally, the (ρ=1) m-sum-shift µ1 is the first fraction (N-1)/2ν, (2N-1)/2ν, (3N-1)/2ν, ..., or (N2-1)/2ν, to 
yield an integer according to (A.4a). Recall that it was assumed that N and ν are relatively prime, that is, have no 
common factors. It seems evident that the integer arithmetic behind base-N counter revivals is not trivial, even for 
the case of odd-N .To complete this particular N=5 example we find the sum-shift µ1 at each revival time ν=1- 4.
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µ1 =
κN −1

2ν
κN −1= 4 9 14 19 24

2ν = 2 2 . 7 . 12
2ν = 4 1 . . . 6
2ν = 6 . . . . 4
2ν = 8 . . . . 3

    (A.6)

From the discussion of Appendix 9B come the overall prefactors P(v=1)=1/√5,  P(2)=-1/√5, P(3)=-1/√5, and P
(v=1)=1/√5, which are needed to complete the following N=5 revival table using (A.5).

  

  

ψ ρ,ν( ) ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

ν = 0 1 0 0 0 0
ν = 1 1 / 5 e1

* e1 e1 e1
*

ν = 2 −1 / 5 −e2 −e2
* −e2

* −e2

ν = 3 −1 / 5 −e2
* −e2 −e2 −e2

*

ν = 4 1 / 5 e1 e1
* e1

* e1

 where: 

e1 = ei2π /5 / 5

e2 = e2i2π /5 / 5

 (A.7)

A phasor gauge plot of the N=5 revivals (A.7) is shown in Fig. 9.4.3c.
 The summation (A.1) for even-N is mostly the same as the above. Time index υ is replaced by υ/2.

   

  

ψ 0 φρ , tν( ) = 1

N m=0
N −1∑ e

−i mν−ρ( )2 2π
2νN e

i ρ
2

2ν
2π
N , where;   tν = ν 2π

2N
,   for N -even.

                

 

                     = P(ν )e

−i µρ
2ν+2µρρ

⎡
⎣⎢

⎤
⎦⎥
2π

2N = P(ν )e

−i µ1
2ν+2µ1

⎡
⎣⎢

⎤
⎦⎥
ρ2 2π

2N         (A.8a)

where 

  
  
µ1=κN −1

ν
= first integer in N −1

ν
, 2N −1

ν
, 3N −1

ν
, ...     (A.8b)

Again the overall phase and amplitude prefactor P(ν) is a Gaussian sum discussed in Appendix B.

  
  
P ν( ) = 1

N m=0
N −1∑ e

−i mν( )2 2π
2νN = 1

N m=0
N −1∑ e

−iνm2 2π
2N     (A.8c)

This works for odd-numerator time fractions 1/2N, 3/2N, 5/2N,...=υ/2N . For the even numerator ones, we take 
advantage of the revival sequence υ/N = 1/N, 2/N, 3/N,.... for N cut in half and shifted by π. If N/2 is odd then (A.
5) is used. If N/2 is even then (A.8) is used again, but with N cut in half to N/2. Note that fractions with singly-
even denominators have zeros at φ=0 and peaks at φ=±π. Fractions with odd denominators have peaks at φ=0 
and zeros at φ=±π.  Fractions with doubly-even denominators have zeros at φ=0 and φ=±π. 
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Appendix 9.B. Overall phase of peaks in a revival lattice
 The evaluation of the N-term integral Gaussian sum 

    
  
G ν( ) = m=0

N −1∑ e
−iνm2 2π

N = NP ν( )      (B.1)

in the prefactor P(ν)=G(ν)/N given by (A.5b) is, perhaps, the least trivial part of the revival formulation. The 
develpment involves complex Gaussian integer analysis, a subject which occupied Gauss for more than the first 
decade of his most productive years. Here we will be content with giving a list of the results for the first few 
integer combinations that would be relevant for the revivals shown previously.

   

  

N = 2 3 4 5 6 7 8 9 10 11 12

m=0
N −1∑ e

−im2 2π
N = 0 −i 3 1− i( ) 4 5 0 −i 7 1− i( ) 8 9 0 −i 11 1− i( ) 12

m=0
N −1∑ e

−i2m2 2π
N = 2 i 3 0 − 5 −i 12 −i 7 1− i( )4 9 20 i 11 0

m=0
N −1∑ e

−i3m2 2π
N = 0 3 1+ i( ) 4 − 5 0 i 7 − 1+ i( ) 8 −i 27 0 −i 11 1− i( )6

m=0
N −1∑ e

−i4m2 2π
N = 2 −i 3 4 5 i 12 −i 7 0 9 − 20 −i 11 −i 48

m=0
N −1∑ e

−i5m2 2π
N = 0 i 3 1− i( ) 4 5 0 i 7 − 1− i( ) 8 9 0 −i 11 − 1− i( ) 12

m=0
N −1∑ e

−i6m2 2π
N = 2 3 0 5 6 i 7 1+ i( )4 i 27 − 20 i 11 0

m=0
N −1∑ e

−i7m2 2π
N = 0 −i 3 1+ i( ) 4 − 5 0 7 1+ i( ) 8 9 0 i 11 − 1+ i( ) 12

             (B.2)
Particuarly simple general results are had for the case of doubly-even integer.

  

  

N = 2n 4 = 2 ⋅2 8 = 2 ⋅4 12 = 2 ⋅6 16 = 2 ⋅8 20 = 2 ⋅10

m=0
N −1∑ e

−im2 2π
N = 1− i( ) 1− i( ) 2 1− i( ) 3 1− i( ) 4 1− i( ) 5

  (B.3)

A complex vector diagram of the first few G(u) sums is shown below in Fig. 9B.1.
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N=8

N=10

N=12

(1- i )√4/2
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- i√3/2

- i√7/2
1

 Fig. 9B.1 Sums of modular squares (m2)N  = m2 mod N  (N = 3-12).
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