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Unit 3 Fourier Analysis and Symmetry

Unit 2 discussed quantum e/*-o9-wave propagation in space and time and introduced
wavevector and frequency (ck,o)-space while deriving the basic Einstein relativistic
transformations and Planck-deBroglie quantum relations. But, what are ei*r-%-waves? One

answer comes from understanding relations between space-time (x,cf) and (ck,w)-space known
matrices and shows their connection to translational symmetry. This with Planck’s axiom gives
the quantum equation of motion known as Schodinger’s time equation, the evolution operator,
and its generator, the quantum Hamiltonain operator, the sine qua non of Schrodinger theory.
Unit 3 continues with a detailed description of quantum beats and revivals using symmetry
analysis. The final chapter describes 2-state and spin-1/2 systems while introducing U(2)

symmetry analysis.
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Expressing arbitrary wavefunctions or states in terms of spectral components or plane waves
is known as Fourier analysis. Fourier transformation matrices relate space and time
(coordinate) bases to wavevector and frequency (Energy-momentum) bases of plane waves.
Fourier analysis comes in different flavors depending on whether various bases are discretely
numbered or continuous. Chapter 7 compares the continuous coordinate bases of Bohr rotor
states to the fully continuous plane wave states of an unbounded continuum. Then a discrete
“‘gquantum-dot” sytsem is introduced in which both coordinates and wavevectors are discrete.
The later is the basis for the introduction of Fourier symmetry analysis in the following Chapter
8 and time evolution in Chapter 9. Discrete symmetry in space and time helps to clarify

quantum beats and “revivals” which all quantum systems will exhibit to some degree.
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Chapter 7. Fourier Transformation Matrices

We have noted that a quantum experiment cannot move at all unless two or more frequency components
can interfere with each other. A single (mono-chromatic) wave ¥ = yei®! is not enough to make anything
happen. Such a W-system is a stationary state and appears to be dead. What we can observe is determined by the
absolute square W*¥, which kills the single oscillating phase.

Similarly, a wave ¥ = yei®* with a single momentum component appears to be a uniform cloud of random
counts in space. To obtain any structure in the quantum world, that is, atoms, molecules, solids, people, and so
forth, we need many momentum components in our matter waves.

The mathematics used to deal with multiple frequency or momentum components is called Fourier
analysis after Jean Baptiste Fourier, a French artillery officer turned mathematician. This section will review the
fundamentals of Fourier theory relevant to quantum theory using the Dirac notation. Fourier analysis has several
flavors depending on whether its coordinates and parameters, that is space-time and wavevector-frquency are
discrete or continuous and whether x or k£ are bounded or unbounded. We consider several distinct cases in turn.

Each has different forms for its completeness and orthonormality axioms-3 to 4.

7.1 Continuous but bounded x. Discrete but unbounded k
One of the most famous and widely used wavefunction systems in quantum theory are the one-
dimensional (1-D) Bohr orbitals \y k(x) = {x | k ). Examples are sketched in Fig. 7.1.1.

ik p,x
em

l//km(x)=<x|km>=m=y/km(x+L) (7.1.1)

These can be thought of as a set of waves on a ring of circumference L. The basic waves have just the right
wavevectors kj, to put integral numbers of whole wavelengths along L and thereby repeat the wave again after
each complete L-revolution. Such requirements are known as periodic boundary conditions.

ik px eikm(x+L)

v =y, (x+D)= =y, (et (7.1.2)

\/norm. - \/norm.

The boundary conditions lead to wavevector quantization conditions.

Eml Lor k, = 2—7tm , where:m=0,+1,+2,+3, ..+ (7.1.3)
L

The allowed wavevectors, while still infinite in number, are forced to be discrete.

This is a very common feature of quantum theory for which it owes its name quantum, but it happens to
classical waves, too. A bounded continuum leads to an unbounded but discrete set of allowed waves. For another
example, cavity modes in the Hall of Mirrors in Sec. 6.3 (d) acquire discrete frequencies as soon as the doors are
shut. If an indiscrete type of wave is put in a cage, then it is forced to be discrete. (Perhaps, this is just another sad

anthropomorphic metaphor.)
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Fig. 7.1.1 Sketches of Bohr orbitals confined to 1-D L-interval and quantum energies ( for m=01to 6 ).

The resulting amplitudes must satisfy Axioms 1-4. In particular, the orthonormality axiom-3 requires (k|

k1)=1but {k;| k») =0 , and so forth, or that the following Kronecker delta representation.

k| kn)=0m n (7.14a)
Completeness axiom-4 requires that | ;) (k;,| sum up to a unit operator or an x-Dirac-delta expression.
Y| ky) (kn| =1, or: 3{x | kpy (kpl x') = {x | x")=0(x-x). (7.1.4b)

(a) Orthonormality axiom-3
Using the integral form (2.1.2) of the completeness relation sum we get the following.

5, =k [k)= "1 i, [W) k)= e € (7.15)
= = X X)X = X 1.
" min —-L/2 " " -L/2 norm. N norm.
The conjugation axiom-2 was used to write
—ik x
* e m
<km|x>=<x|km> = T (7.1.6)
norm.
After integrating, this determines the normalization constant norm. as follows.
L/2
L2 gtkm¥ Gikp L2 e‘i(km‘kn)x e‘i(km‘kn)x |
6,,= | s — | dx =—
-L/2 N norm. \/norm —-L/2 norm. —z(km—kn)norm.‘ L (7.1 8)

¢ emkn)L2 _ Uk k)2 2sinl (k,~k,)L/2]
—i(km—kn)norm. - (km—kn)norm.

Using the quantization conditions (7.1.3) gives the desired norm. value and satisfies axiom-3.
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. Oif:m#n
2sinw|{m—n
. =#= I ,or: norm. = L. (7.1.9)
2—ﬂ(m—n)norm. norm ifzm=n
I .

Normalized wave amplitudes are therefore

ik px

l//km(x)=<x|km>=e\/z . (7.1.10)

(b) Completeness axiom-4
Completeness axiom-4 has a Dirac-delta form in the mixed discrete-continuous wave space.

6(x=)= "5 (x[ky )y | (7.1.11)
We test it with amplitudes (7.1.10) using orthonormahty (7.1.4) and conjugation (7.1.5).
sz p 5( ') sz J n:Z_'_oo eiknx e—iknx' nzgoo e—ik x' sz p iknx (7 | 12)
—-L/2 rovT _—L/2 xi’l=—°° \/z \/Z _nz—oo \/z —-L/2 L \/Z o

The last integral is a representation of a Kronecker delta 8o, . Recall that ky =0 and use (7.1 .4).

G AN s SR AL R PN 7
X = X = =
—-L/2 \/Z —-L/2 \/Z \/Z 01%n on

L/2

[ axe™m =15, . (7.1.13)
—-L/2
Then (7.1.12) is consistent with (7.1.11) and (7.1.10) and the definition of Dirac’s delta.
L2 L2 p=teo k¥ hnY pmiee Cikny
dxd(x—x")= | dx X —= X ntg =e 0% =1 7.1.14
o)z f ey s 2 ey, e 7.1.14)

(c) Fourier series representation of a state
With completeness one can quickly derive a representation of arbitrary state | ¥ ) if you know its
complex wavefunction W(x) = (x | ¥ ) . Formally, you just operate on | ¥ ) with the unit 1=X|kn) kn|.

=0 elkmx

(=5 (k)= TS S )

(7.1.15a)
m—tee g x
= Yy e My

m=—oo

m

where the Fourier coefficient P, is given by the following integral (Use x-completeness 1=]dx]| x )(x|.)
v L/2 L2 ~ikm
= < | > | [ dx—F—— ¢ <x|‘P

¥, = \/— \/Z L/2 <m|x><x|\}l> \/Z L2 \/Z > (7.1.15b)

_LH j dee Fm¥p(y)
-L/2

The only requirement is that the function be periodic in L, that is, W(x) = W(x+L).

(d) Bohr dispersion relation and energies
In Fig. 7.1.1 the waves with higher %, have higher energy E,, and are drawn higher according to the E-

values given by the Bohr dispersion function first drawn in Fig. 5.6.3.
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(nk,, )’
oM

2r
E,=ho, = ,where:pm=hkm=h7m . (7.1.16)

This is just a non-relativistic approximation for energy that neglects the rest energy Mc? and higher order terms in
(5.2.5b). It is kinetic energy only, that is KE = {/>Mu? = p?/2M with the momentum p=p,, and wavevector k=k;,
quantized by conditions (7.1.3). The dispersion function is then a simple parabola of discrete values as shown on
the right hand side of Fig. 7.1.1. Note that each energy value £, , except £y, has two orthogonal wavefunctions y
+km OF states |+k;,) corresponding to pairs of oppositely moving wavevectors +k, on either side of the dispersion
parabola. The |+k,) are called degenerate states because they share a single energy E,. Such degenerate pairs are
each an example of a U(2) two-state system. As long as the degeneracy remains, any unitary linear combination

of the two states is also an eigenstate with the same frequency and energy E=hv.

(e) Sine and cosine Fourier series worth remembering

A function defined by Fourier series (7.1.15) repeats after its fundamental wavelength L=2mn/k; or period
T=2m/wi. So do the real and imaginary parts that are series of sine or cosine functions of m™ spatial overtone
argument k,x or m™ overtone frequency argument ® 2. Moving wave terms use both: (knx- uf).

Let us consider wave functions with zero-DC-bias or zero (k=0)-Fourier component: 0=¥,=[. The
integrals and derivatives of unbiased functions may also be unbiased. An example of a series of unbiased
functions starts with the alternating Dirac delta function adel(x) shown at the top of Fig. 7.1.2. Its integrals and
derivatives are useful series worth remembering because they are easy to compute and visualize. Compare this
function to the simple delta pulse train (5.3.2) shown in Fig. 5.3.2.

The first integral of adel(x) is a square wave function hox(x) shown next in line in Fig. 7.1.2. Below it is a
saw-tooth wave saw(x) and then a parabolic amplitude wave paw(x). Each wave has an overall scale factor
attached so plots that are not delta-like end up with comparable amplitudes.

Wave paw(x) looks like a sine wave but isn’t quite. The derivative of a genuine sine wave is a cosine
wave that looks just like a sine wave but is moved back by n/2. The derivative of paw(x) is saw(x), which is
moved back, but it looks nothing like good old paw(x)! Subsequent derivatives only accentuate the differences
between sin(x) and paw(x). Differentiation amplifies little blips or bends (It differentiates!) while integration does
the opposite by smoothing out sharp corners or other differences.

There are at least two famous physics topics that make use of functions that are derivatives or integrals of
each other. Classical mechanics in one dimension is one such topic where the functions of acceleration a(t),
velocity v(t), and position x(t), are each the integral of one above or the derivative of the one below. Classical
electrostatics is another topic in which the charge-density p(x), electric field E(x), and potential ®(x), are so
related. (Various conventions may put +signs and scale factors onto these relations.)
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2 EX 5
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Fig. 7.1.2 Fourier series sharing simple integral or derivative relations to each other.

Some more or less extreme examples of charge and field distributions are sketched in Fig. 7.1.3 on the
following page. The first set in Fig. 7.1.3(a) is due to alternating charge layers. The field is that of a series of
alternating parallel-plate capacitors. By taking a derivative of the alternating chasrge layers we make the dipole
layer distribution shown in the top of the middle Fig. 7.1.3(b). The final example in Fig. 7.1.3(c) actually has a
Dirac-delta potential lattice, one of many favorite models for nano science these days. We shall be modeling
periodic potentials, too. The preceding gives you some feeling how difficult it may be to actually produce some
of these exotic potentials! Seldom is theory so easy and the lab so hard.

Also it is worth considering these as time-pulse series. As we will explain later, you may taper the Fourier
series amplitudes gradually to zero and thereby replace the sharp and wrinkled deltas and squares by smoother
Gauassian or Lorentzian features that are useful spectroscopic models. Of course, you may taper them right back

to single term series of one sine or one cosine wave each!

Following page: Fig. 7.1.3 Exotic 1-D electric charge and field distributions.
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7.2 Continuous and unbounded x. Continuous and unbounded k
In the preceding cases all wavevectors are restricted by the quantization condition (7.1.3).

2r

k,, = - ms where: m=0,+1, £2, £3,... %00 (7.1.3)repeated

If you let the "cage" become infinitely large (L — «~ ) then the wavevector set becomes finer and finer and
approaches a continuum. The trick is to replace each sum over index m by an integral over a continuous k-value.
If it is done right the wave functions will take a continuous form in both x and k.

ikx

y/k(x)=<x|k>=\/:07m , (7.2.1a)

We need to verify k-orthonormality relations based on wavevector Dirac-delta 8(k’,k)-functions.
(k'|ky=8(k'= k)= [ dx (k'|x) (x| k) = [ dx w(0) W (x) (7.2.1b)

We also need the usual x-completeness relations based on spatial Dirac-delta 6(x",x)-functions.
(x'x) =8 (x'—x) = [k (x| k) (k| x) = [ dle ()" () (7.2.1c)

It seems that orthonormality and completeness relations are two sides of the same coin. Orthonormality
(7.2.1b) for the k-states { Ik)...lk")..} expresses completeness for the x-states lx) , and completeness (7.2.1¢) of the
k-states k) expresses orthonormality for the x-states { Ix)...lx")..}.

The Dirac notation is extremely efficient but can be confusing. There is a world of difference between the
states { lk)...lk")..} of perfectly monochromatic plane waves and the Dirac position states {Ix)...x")..} of perfectly
localized particles. Recall that we said that an Ix) state was physically unrealizable; crushing a particle into a
single position-x would cost infinite energy. Technically, a |k) state is unrealizable, too, since it requires an infinite
amount of real estate; we have to let its cage dimension L be infinite, but that seems easier than the extreme
solitary confinement needed to make an lx) state. If space is cheaper than energy, then lk) is easier to approach
than Ix). Lasers easily make approximate lk)'s by being stable and coherent, but producing approximate lx)'s for
extremely short pulses requires more difficult engineering.

Use caution to not abuse this notation, though it is easily done. It should be obvious why the following
rendition of (7.2.1a) is a dreadful mistake.

2

el kk el k

(k|k)= (Dirac abuse. Very BAD mistake!)

\/norm. - \/norm.

Letters x and k denote very different bases which must not to be confused.

(a) Fourier integral transforms

. .. . . 2
To achieve the limit of infinite real estate (L — ~ ) we replace sums over k, = Tﬂm such as

m=-+oo m=-4oo
§= ¥ @ = 3 Adekm,where:Amzl. (7.2.2)

m=—oo m nm=—oo

Integrals over k with differential Ak, = 2T”Am = 2771 — dk or: AAk_m — L are used as follows.

mZn
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=+o0 Mm=-+oco
s=" S Amd, = Z ﬂAk ®, becomes - zijf: dkCD(k) (72.3)
T

This, by itself, blows up as we let (L — < ), but so do the normalization denominators +norm. = JL , and they
cancel. Finally, the Fourier series (7.1.15a) becomes a finite integral.

=00 ik pyx ikx ikx
(x1¥)="% %{kmlﬂbecomese%ﬁ:dk%@mlﬂ FW«J—ﬁ(mM

m=—oco
k,, | becomes — (k| letting the L’s cancel.

=

ot "
ikx

(x|¥)=[*2 \e/%<k|‘}’>=]f:dk<x|k><k|‘{’>, (7.2.42)

The newly “normalized” plane wave function yi(x)=(x|k) is defined as follows.

The trick is to renormalize the k-bases so

(x[x) = f/% (7.2.4b)

This ( x|k) is the kernal of a Fourier integral transform. An inverse follows by converting (7.1.15b).

(h|¥) 1 112 JL L+

JL —Z_Lj/zdxe_ikmx <x|‘I’> becomes—><k|‘P>—E— j dx e k¥ <x|‘I’> ,
<k|xp>{f"dxjg (s)=T (k] o] ¥) (7240)

Here the inverse kernal {k|x) is simply the conjugate of { x|k) as required by conjugation axiom-2.
—ikx

(k|x)= 3% = (x[k) . (7.2.4d)

(b) Fourier coefficients: Their many names
The efficiency of the Dirac notation (provided it isn't abused!) should be clear by now. The simple bra-ket

(x| k) stands for so many different mathematical and physical objects. Let's list some.

(1) (x| k) is a scalar product of bra (x| and ket |k)

(2) (x| k) is an x-wavefunction for a state |k) of definite momentum p = hk.

(3) (k| x)=(x| k)Y* is an k-wavefunction for a state |x) of definite position x .

(4) (x| k) is a unitary transformation matrix from position states to momentum states.

(5) (x| k) is the kernal of a Fourier transform between position states and momentum states.

As beautiful and compact as it is, the continuum functional Fourier analysis is merely an infinite and
unbounded abstraction that lets us use calculus to derive formulas in special cases. Its validity as a limiting case
for experimental and numerical analysis should always be questioned. Laboratory and computer experiments, on
the other hand, invariably deal with finite and bounded spaces, and it these that we turn to in the next section. We
finish this section by relating square-wave Fourier transforms to square-wave Fourier series of the preceding

section to help clarify discrete-vs.-continuum relations.
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(c) Time: Fourier transforms worth remembering
Fourier time-frequency (time-per-time) transforms resemble space-k-vector (space-per-space) transforms

(7.2.4). But, a negative sign is put in the exponent so the time phasor turns clockwise.

<t|\y>=j_:dwﬁ<w|q’>=j_:jdw<x|a)><w|\y> (72.5a) (t|w)= s (7.2.5b)
<w|‘P>=_{oth<t|‘}’>=_£odt<a)|t><t|‘{‘> (7.2.5¢) <w|z>:ﬂ=<z|w>

Consider, for example, a single square bump of amplitude B and duration 77/2. Its Fourier transform (7.2.5¢) is an

elementary diffraction function sin ®/® that is plotted in Fig. 7.2.1.
+T/4 it ioT/4 _ —ioT/4 2Bsin(wT /4
(0|¥)="| dr— B=B" ¢ = ( )

714 2z ioN2n o2

It is the first approximation to an optical diffraction function for a single square aperture.

(7.2.6)

The Fourier amplitude due to multiple square humps is a combination of finer and finer elementary
diffraction patterns. Three half-humps give the following frequency function plotted in Fig. 7.2.2(a).
-T/4 +T/4 +3T /4

(0|W)=—=|A | dte’® +B [ dte'® +A | dre'®™
N2m | 374 —T/4 +T/4
LioT/4_ BT/ ieT/4 _ —ioT/4  BoT/4 _ ioT/4
e —e e —e e —e
=A +B +A (72.7)

io2r io2r io2r
_2(B-A)sin(wT /4) . 2Asin(30T /4)

o2 o2

The frequency functions in Fig. 7.2.3 are the result of a lot more bumps. Each one consists of a series of spikes

corresponding to the Fourier series amplitudes 7, 1/3, 1/5, 1/7,... for the fundamental w=2n/7 and odd-overtones
30, 5o, 70, ..., respectively, for the box(x) function in Fig. 7.1.2. This is an even box function in Fig. 7.2.3 so
the series amplitudes alternate sign as 7, -1/3, 1/5, -1/7,...as shown. The very last example is an unbiased funtion
with no DC (w=0)-Fourier component.

The "ringing" between the peaks is generally considered to be a nuisance. One way to get rid of ringing is
to turn on the square wave more gradually. Fig. 7.2.4 shows the Fourier transform of a wave that has been turned
on and off by a Gaussian (exp-(x/a)?). This windowing kills the ringing. The width of each frequency peak varies

inversely with the width a of the Gaussian window.
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M

Fig.7.2.1 Elementary diffraction function: Fourier transform of single half square wave.
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Fig. 7.2.2 Fourier transform of (a) three half- square waves. (b) seven half -square waves.
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Fig. 7.2.3 Fourier transforms of square half-bumps (a) fifteen (b) forty-nine (c) fifty one .
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Fig. 7.2.4 Fourier transform of windowed square waves.

The idea of the Fourier integral, as opposed to Fourier series, is that any function, periodic or otherwise
can be approximated by sines and cosines from a frequency continuum. Fourier series require that the function be
periodic and repeat itself perfectly after some fixed period of time. The Fourier integral is supposed to be an
enduring and time-invariant frequency map that provides the predestination of a time function forever and ever!

One should be suspicious of something that requires an infinite continuum of perfect frequency oscillators
to be behind the scenes running your life. Pure sines and cosines are forever functions but we, like our world,
certainly are not so enduring. Consider Fourier integrals as a cute limit-taking tool but not ultimately realistic.

Consider the fictitious function of time shown in Fig. 2.6.6. It is only periodic for awhile, but like most of

us, cannot maintain the pace forever and finally gets in trouble with the hereafter.

00
27 I~
“Leam L1 L L L L0 L L = 1AM
Staggers 10 AM 12PM 1PM 5 PM 12PM rises
to work Coffee Lunch Nap Bar dec'd again masbo)

Fig. 7.2.5 A day in the life of a real function.

Now we go on to a practical Fourier analysis that is both finite and discrete.
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7.3 Discrete and bounded x. Discrete and bounded k

This is the most restrictive case, but also, due to practical considerations mentioned previously, the one
that actually gets used the most these days. However, in spite of its practical value it is not always treated as
carefully as the more “mathematically sophisticated” continuum case (b). It should be!

We begin by supposing that space itself is periodic as in case (a) but further is divided into N discrete

pieces or points. So the only x-values allowed are the following N values

{x0=0, x;j=a, x2=2a, x3=3a, ..., xN.;=(N-1)a, xy =0} (7.3.1a)
and there are only N position states are the following. The last |N) state is the same as the first |0) state.
L10) 1), 12),13), .., IN-1), IN) =[0)} (7.3.1b)

Fig. 7.3.1 shows ways to visualize this as N beads on a ring of length L = Na that wraps around so that the
N-th bead is the same as the zero-th. (Zero-based numbering is the modern computing standard.) Otherwise, we
invoke the so-called periodic or Born-VonKarman boundary conditions and imagine our 1-D world repeats like a
computer game outside its boundaries. As shown in Fig. 7.3.1, there is a distance a between the lattice of beads. It

is called the /lattice spacing a.

|0> N1 |0> 11)=/0) A |0) ~ |0) |1> 12)=10)
° o—o " N=2 o—e—o
<] =2a>
0) [0)
A 0) 1) 12) [3)=10) @ 0) (1) [2) 3) [4)=0)
oo 3 o—e—e—e—o
n & o < L=a> & > <— L=4a —>
12
o 10) 11y 12) 13y 14 [5)=10) 010y 1) 12 1B 14 15 16)=]0)
1) @7 O &0 I —eo—0o—0o—o o
< b 2) Wy < L=ba——>
2) 13) 13)

Fig. 7.3.1 Finite coordinate spaces for N-cyclic (Cy) discrete systems (N =1, 2, ...,6...)

These ideal quantum dots will be among our first examples of 2-state, 3-state, ..., and 6-state systems. By
studying them carefully, it will be possible to learn important principles which will greatly help later study of
molecules and solids which have N-states with large-N but the same basic theory. Also, the quantum dots might
have hidden inventions that could make you wealthy!

The basic wavefunctions that live on the discrete dots or beads are a subset of the continuum
wavefunctions efkm¥ of (2.6.1), as though N equally spaced points of (2.6.1) were extracted and plotted over each
lattice point x, where

Xp=pa=p L/N . (p=0123, .. N-1) (73.2)

The basic wavefunctions are given explicitly below.
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ikmxp

o) = eT =y, (v, +1) (73.3)

v, ()=,

The only change from (7.1.1) is the use of a discrete coordinate x,, defined in (7.3.2) above. Also, the
normalization constant has been set to the dimension N since all N exponentials e?smX contribute unit magnitude

(letkmx |2 = 1) in the normalization sum.
N1 o Kmp JKm P

(kmlkm)%‘gol (o) (3, [ ) = R N ff

The quantization conditions due to periodicity requirement (7.3.3) over "cage" length L=Na are similar to

(7.3.4)

(7.1.3) but now expressed in terms of the discrete number N and spacing a of lattice points.

eFmt =1 o k =2—ﬂm=2—nm (7.3.5a)
moL Na

Wave amplitude at lattice point p is a power-p of (ei2%/N), the N-th root of unity (normalized, of course)

v ()= (x,[k,)= J_p J_(’Z”/N)mp (73.5b)

All N roots, together, form N-polygons in the complex plane as shown in Fig. 7.3.2. The allowed wave

amplitudes in Fig. 7.3.2 resemble the "ring" coordinate positions in Fig. 7.3.1. The complex zm p=exp(ikmxp) are
the N-th roots of unity (zV=1) introduced in a complex arithmetic review (App 1.A).

m=044 |
Re ¥
ImY¥Y
N=3 |1
e—2ni/4=(62ni/4)3
m=-1
2mi/3 2 i
g2mi/3 2% e 27:1/3:(62751/3)2 ‘
-l (627[1/4)2
N=5
m=0) 1
; : : 275 16_, . 2mi/6
o27u/5 e—2m/5=(e2m/5)4 e V0 (e=T/0y5
m=1 m=-1
. _ 27i/6\4
i ; 27i/6 - m=2 (e )
(e2m/5)2 z e (ezm/5)3 (e 1 )2 m=2

(233

m=3

Fig. 7.3.2 Discrete wave amplitudes allowed for N-cyclic (Cy) systems (N =1, 2, ...,6...)
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(a) N-nary counting for N-state systems

Fig. 7.3.2 shows different counting schemes for odd-N and even-N. In the unbounded cases the k-values
go from —oeo to +oo. Here, letting m count from -N to +/N over-counts and gives 2N+ states when we know there
are only N. We could let m count from 0 to N-1, just like the lattice points. Or, we let m count from -(N-1)/2 to +
(N-1)/2, (odd-N ) and from -(N-2)/2 to +(N)/2 (even-N) as shown below.

It helps to think of N-state cyclic system as an N-nary computer element. Ever since 1950, we have
become accustomed to binary (N=2) data storage in 2-bit registers. Inevitably, someone will discover how to
make N-state registers. Until then, we imagine them. For an N-state register the quantum counting index m is
defined only by an integer modulo-N or (m)y.

(m)N.= m modulo N (7.3.6)
For example, for N=6 in Fig. 7.3.2, all the following values of the quantum index m in a given line below

have the same value modulo-6.

~=(96=(-3)6=0B)s=(9)6=(15)6=..= 3mod 6
=(-8)6=(2)6=#6=(10)¢=... =-2mod6
~=(Ne=(De=0B)=(11)¢=.. =-1mod6
.=(6)6=(0)g=(6)6=(12)6=... = 0mod6 (7.3.7)
w=(5)e=(De=(Te=(13)¢=.. = 1mod6
= Ae=(2)6=B)6=(14)e=... = 2mod 6
~=(3)6=(3)6=96=(15¢6=.. = 3mod6
w=(-8)6=(2)g=(4)6=(10)6 = ... =-2mod 6

How do we choose a k;, number label? We choose the underlined ones with the smallest |m| and pick the positive

one if two are equal. This choice {m=-2,-1,0,1,2,3} of N=6 m-values is used in Fig. 7.3.2.

(b) Discrete orthonormality and completeness
Orthonormality relations for wave states reduce to finite geometric sums.

=ik p'x ik yx
N-1 m>p N=l ik —k
¢ ¢ py el(km Emp , where:x  =pa (7.3.8a)

1
k'l V=3 =—
< " | m> p=0 \/N \/ﬁ Np
Substituting (7.3.2) and (7.3.5) gives

N1 2 N-1 .
<k '|k >= S Zp=1+Z+Z +..t+z ,where:z=el(
m m p:0 N

k m—k m')a: ei272,'(m—m')/N

The geometric sum yields a result that satisfies k;,-orthonormality axiom-3.
1 1=2V i27r(m—m')

1 1-
(e lhn) =5 17 =N

2r(m-m )N Omm’
e

(7.3.8b)

1-
The ky-completeness axiom-4 (or x,- orthonormality) is satisfied for these wave states, as well.

TG S O o A & g P SR

m=0 m=0 \/N \/ﬁ N m=0 pp
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(c) Discrete Fourier transformation matrices
Below are shown Fourier transformation matrices and discrete x,-wavefunctions (7.3.5b)
(el xp) = Wi, (xp) = ethmp [y (7.3.10a)
They are drawn as complex phasor amplitudes for the cyclic N-state systems (Cy) for N=1, 2, 3, 4, 5, and 6.

Also drawn over the phasors is the Re-part of the "Bohr's ghost" continuum x-wavefunctions
(ki x) = Wi, ()= e hm> 1y, (7.3.10b)
Recall (7.1.10) or Fig. 7.1.1. "Bohr's ghosts" match the discrete waves (7.3.10a) with phasor clocks.

0 01
Cy v Re }¥ C, r 1

o, [T . Mool N

L5(DQG) L] 1D 1
TN %8 N 0760 0 =

0 o T 1 2 3 4 5
C- Ce 11 1 17 1 U

.

........

25 @@@ Q@ 2% @@.@@@.@
25=35 (DO 3:(DQOWOO
RustasicEusisluse]
-16=3¢ @@...@

7.3.3 Discrete Fourier transformation matrices for N-cyclic (Cy) systems (N = 1, 2, .

A S

Fig.
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(d) Intoducing aliases and Brillouin zones

It is important to see the relation between the continuum waves and their "course-grained" images thatves
with integral wave-numbers of m mod N whole wavelengths within each (%, |-row of phasors. We might as well
call them "row-waves" or "bra-waves." Note also, that the same wave shape exists in the columns or kets |x,).
Each “ket-wave” | x,) represents a 8-position state or “pulse” localized at point x, . The inverse Fourier
transformation (%, |x, ) relates |x, ) to a bra-wave(ky,|. As required by conjugation axiom-2, namely, &y, |xp)=
(xplkm )*, the relation is the same as between |k, ) and (xpl ,except for conjugation.

For low wave number like, say (mpy)=(1)g or (2)g, it is easy to see the "Bohr's-ghost wave" mirrored in the
phasors as in the second and third row of the Cs matrix in Fig. 7.3.1. Note however, that these phasors are set so

the phase of the one to the right is clockwise (that is it appears ahead) of the one to the left. This means, if the
phasors turned clockwise, that the one to the right is feeding energy into the one to its left, so the wave would be
moving right-to-left with wave momentum minus (1)¢ or minus (2)g, respectively. But, they're conjugated bras so
their clocks go backwards and so the labels are OK, after all.

For high wave number like, say (my)=(4)g or (5)s, it is not so easy to see the "Bohr's-ghost wave"
mirrored in the phasors as in the fifth and sixth row of the C matrix in Fig. 7.3.1. But, you can see alias waves of

negative wave momentum (my)=(-2)g or (-1)¢ , respectively, that is oppositely moving waves of low
wavenumber. Recall that (4 mod 6) equals (-2 mod 6) and (5 mod 6) equals (-1 mod 6).

Right in the middle row of the even-N matrix is a wave that isn't going in either direction. In the Cs matrix
it is the (3)¢ wave. Since (3 mod 6) equals (-3 mod 6) this is a good old push-me-pull-you standing wave with all
real amplitudes of (/, -1, 1, -1, 1, -1). This can only happen for even-N and is known as a first Brillouin zone
boundary wave in solid-state physics.

All cases have a zero-momentum wave (0y) at the top of the transformation matrix. This is called the
Brillouin zone center wave in solid-state physics. Indeed, it is centered at the bottom of the dispersion plot in Fig.

2.6.1. Its phasor settings are the same as that of a higher (Ny), or (2Ny), or (3Ny), ...etc. wave. However, this N-
state system does not count higher than N-/ without recycling.

Consider, for example, a k;; wave of wavevector (-17);2 (with minus-eleven-kinks-modulo-12) as plotted
in Fig. 7.3.4 (a). Since (—11)-mod-12 equals (+1)-mod-12 (that is, (-11)12=(+1)2) it follows that the wave shown
has the same effect as a (+1);2 wave. Indeed, the twelve masses in Fig. 7.3.4(a) line up on a single-kink (k=1)-
wave moving positively, while the (k=-11)-wave moves negatively. (See Wavelt movie.) This is an example of
aliasing. In a C;; lattice, (k=-11) is an alias for (k=+1).

Fig. 7.3.4(b) shows the k-space with a typical frequency dispersion function plotted above it. The
difference between any two alias wavevectors such as (k=+1) and (k=-11) is a reciprocal lattice vector ki2 or (12)
12=(0)12. The reciprocal lattice vector k;> also spans the first Brillouin-zone from (-6);2 to (+6);2 as shown at the
bottom of the figure. An important idea here is that a wavevector k-space must have the same N-fold periodic
symmetry as the coordinate x-space. Moving across row of a (ky, |x,) matrix gives the same variation as moving

up the corresponding column since {ky, |x,) is unitary. Both are N-fold periodic!
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Fig. 7.3.4 (a) (-11)-wave has the same effect as its alias (+1)-wave. (b) Difference is zone vector kj>.
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To appreciate the symmetry of a Fourier transfom matrix, it may help to examine some larger ones. For
example, Fig. 7.3.5 shows the Fourier matrix for N=24. Phase of each amplitude (k;, |x,) is color coded so it can
be more easily spotted. Symmetry patterns should now be more evident. Remember, that these patterns repeat
forever in all directions right and left or up and down in a great checkerboard quilt!

This beginning discussion of discrete wave analysis should make it clear that there is considerable
physical and mathematical complexity hiding in these "simple" Fourier structures. Indeed, this is a key to
understanding fundamental quantum symmetry properties and techniques which are generally labeled by a

mathematical misnomer as “group theory.” We shall explore some more of this shortly.
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7.3.5 Phase color coded Fourier transformation matrix for N
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Problems for Chapter 7

Bohring problems

7.1.1. For a Bohr ring of fixed circumference L =1nm consider the following wavefunction W¥(x) =(x|¥) distributions around
the ring at =0, and deduce the amplitudes {m|¥) of each of the eigenstates |m) for m=0,+1,%2,.. Let the eigenfrequencies be
Vi =(0 1,4, ., m? JMH:z.

(a) Y(x) = const. . (b) W(x) = const.(1+cos 2nx/L) .

(c) W(x) = const. for -L/4<x<L/4 and ¥(x) = 0 elsewhere.

For each case evaluate const. assuming one particle occupies the ring.

(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each
case at time ¢ = /\sec, and at 0.5sec .

Continuously boring problems

7.2.1. For an infinite line (-co<x<oo) consider the following wavefunction ¥ (x) =(x|¥) distributions along the line. Calculate,
plot, and discusss the amplitude functions (k|'¥') of each of the eigenstates |k) for (-co<k<oo). Let the eates |k) for (-co<k<co).
Let the eigenfrequencies be vj = ( kL/Zn')ZMHz. (Let unit length be L =/nm.)

(a) Y(x) = const. . (b) W(x) = const.(1+cos 2rx/L) . .

(c) Y(x) = const. for -L/4<x<L/4 and ¥(x) = 0 elsewhere.

Evalu per unit length ( L =/nm.).

(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each
case at time ¢ = /lsec, and at 0.5usec .

Continuously discrete or discretely continuous?

7.3.1. Ch.7 contains discussion of 1D Fourier wave systems with (a) Continuous x and discrete &, (b) Continuous x and
continuous k, and (c) Discrete x and discrete k. Using physical models of each to discuss how physically relizeable these are.
Is there a 4th possibility? Discuss.

Aliases on the move

7.3.2. Consider the two aliases (-11) and (+1) in Fig. 7.3 .4. Discuss whether a dispersion function w(k) should repeat
periodically. Should the period be the zone vector ki2? For computation use w(k)=Isin(stk/12)! as plotted where k=0, +1, +2,
%3 ... in units of 2a/L. Use Vphase = Wk and Vgroup = do/dk .

(a) Is the phase velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.

(a) Is the group velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.
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Problems for Chapter 8. 18

Fourier analysis is most useful when there is a symmetry G in which all the coordinate points
are indistinguishable. For an unbounded x-continuum, G is an infinite translational symmetry
group labeled T. For a bounded x,-ring of “quantum dots” the symmetry G is an N-cyclic
rotation group labeled Cn. In Chapter 8 a fictitious hexagonal beam analyzer with Ce symmetry
is considered. The transfer matrix eigensolutions of such a device are found using a modern
form of Fourier analysis known as group representation theory or symmetry analysis, one of
the most powerful tools in quantum theory. The symmetry of the bounded Bohr x-ring

continuum is also discussed.
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Chapter 8. Fourier Symmetry Analysis

From where do the wavefunctions like ¥ = ei(kx - ®) come? One answer to this involves the concept of
symmetry analysis and group representation theory. These sound like big names for what is still regarded as a
pretty scary mathematical subject. However, the basic ideas of this powerful tool are actually quite simple as we
hope to show now. Most of the needed algebraic work has been done in Ch. 3 regarding spectral decomposition.
The physical ideas of Fourier analysis and Bohr ring waves are in Ch. 7. Symmetry group representation theory is
really just a beautiful generalization of Fourier analysis that gives eigensolutions of “difficult” operators using

simple properties of commuting symmetry operators.

8.1. Introducing Cyclic Symmetry: A Cs example
A ring of quantum dots was introduced in Section 7.3 as a model for finite Fourier analysis. The Fourier
tranformation matrix was discussed with examples for N=1, 2, 3, 4, 5, and 6. The idea of cyclic symmetry Cy was

broached as a property of the matrices in Fig. 7.3.3 and Fig. 7.3.5. Here that idea is put on a more solid footing.

(a) Cyclic symmetry Cn: A 6-quantum-dot analyzer
Suppose someone invents some beam analyzer that takes an N-state beam and sorts it into N beams
arrayed around a circular device as imagined in Fig. 8.1.1 for N=6. Let each beam path entering the device

contain particles in one of N states {|0), |1), |2), ..., |N-1)} after which the device does things which causes the
beams to interfere or be otherwise modified before recombining and counting.

Your.- STATE — ANALYZER Win .- STATE
MEASUREMENT I 10) CHII%N_]\{’%S PREPARATION
Particle 10 1=r [0) Particle Yyy-State
Analyzer-Counter [1)=r |0) |1)=r |

12)=r2 |0) Analyzer-Filter
|3)=r" |0)

[4)=r4 |0) l

'

Fig. 8.1.1 Generic N-state (Cyn) beam analyzer experiment with (N = 6) channels

We are intentionally being vague about the nature of the states. (After all, this device hasn't even been
invented yet!) Let us just say they are some kind of hyper-polarization states. (Put a prefix like 'hyper' on
something ordinary and people stop asking questions.) The point is that by just knowing the symmetry of a

device it is possible to work out a lot of the quantum mechanics without knowing so much of the underlying
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details. It is a lot like the photon polarization and electron spin problems discussed in Chapter 1. Electron and
photon “spin” are physically quite different but use much of the same mathematical theory.

By symmetry, we mean any operators r, r2,.. that do not alter the analyzer experiment no matter how
many times you apply them. In particular, suppose a 60° rotational operator r indicated in Fig. 8.1.1. could be
done some night by the lab janitor, so when the physicists show up the next morning all their experiments work
the same as the day before.

However, it is important to state what we mean the janitor's r-operation to do. He could just rotate the
whole lab building by 60°. That, indeed, is a symmetry, but not one we will discuss until later. Besides, a rotation
like that happens every four hours as the Earth turns; no janitor needed! This is called the symmetry of isotropy of
space. It is a continuous or Lie symmetry for which 60° has no special significance.

Instead, what we have in mind for the janitor to do is rotate just the analyzer in the center of Fig. 8.1.1 by
60° as indicated in the figure. Well, that analyzer looks pretty heavy, so, instead we'll ask that the janitor just
rotate the little input source and the little output counter both by minus 60°, which is operation r-1=r5. This
does the same as a whole-Earth/lab rotation by -60° (which no one detects) followed by a positive 60° rotation of
the big analyzer to "upright" leaving input and output devices behind at -60°.

It is important to understand that all transformations are relative transformations; something gets moved
or mapped relative to something else. You've probably heard it quoted, "Everything's relative!" Well, that's often
garbage, but here it isn't. Rotations, Lorentz transformations, and our analyzer operators T (Recall Fig. 1.6.1),
and r in Fig. 8.1.1 are all mappings of one vector or thing relative to another.

By the way, our helpful suggestion to the janitor won't help much if the input and output devices are big
analyzers, too. It was noted in Chapter 1 that filters and counters are analyzers set in certain ways. But, the
analyzer in Fig. 8.1.1 is a more powerful one than heretofore discussed. (And, isn't better always bigger?) So let's
assume that the janitor can easily do r-! = r> to the smaller input and output devices whose in and out states are
written as follows in Dirac notation,

Your -1y = r1[Wour) , YNy =1 Y (8.1.1)
Symmetry of the transformation operator T means it does exactly the same relative thing to any state |

W) as it does to the janitor-rotated state |y (1)) , that is

Your) =T [¥mv) implies: Wour @iy =T [Pney  (8.1.2a)

or
r-!Youp =T r-1[¥n) (8.1.2b)
‘\POUT> =rT I"lylPIN> (812C)

If this is true for all input states |Wpy) then it follows that effect of analyzer operator T in (8.1.2a) and in (8.1.2¢)
are indistinguishable, or T is invariant to r

T=rTr! or: r!Tr=T (8.1.2d)
or, that r commutes with T; the latter being the most common way to say that T has r-symmetry.
Tr=rT (8.1.2¢)

All the above parts of equation (8.1.2) are really the same requirement for r-symmetry of T.
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Note: This is not the same as just multiplying both sides of [¥oyr) =T [¥n) by r or r-! which just gives
a whole-Earth/lab rotation, that is, operate with r-! and insert the identity (r r-! =1) to get

r!WYoun=r!T¥YnN)=r!Trr!|¥y). (8.1.3a)
This reduces to an expression similar to the original [Your) =T |WN)
Wourey = r''TWYm)=r!1Tr [Winey) =T @) VN 1) (8.1.3b)
where T (1 is a similarity transformation v-'T r of T . (This is an active transformation; devices move.)
Tey =r!Tr (8.1.3¢)

These relations hold true for any analyzer operator T whether it has symmetry or not.
For T to have r-symmetry it is necessary that the similarity transformation leaves T unchanged or
invariant (T -1y = T), as in (8.1.2d).To recap

An analyzer has y-symmetry if and only if its operator T commutes with r , thatis (T r =rT).

(b) Cn Symmetry groups and representations

Now, the janitor, having fooled the physicists once, does it again the next night, by rotating by r one more
time giving the same positions as if r2 had been done the first night. Then a combination of r2 and r3 is tried.
(This just gives r-1 = r3 the inverse of which was tried on the first night.) All of these products are symmetries if
the factors are. (So the physicists end up getting fooled night after night for almost a week of different positions!
Saturday, they have to take off since they read right-to-left. )

If operators a and b commute with an analyzer T-matrix then so do all their products

If:aT=Ta and bT=Tb then abT=Tab and baT =T ba (8.1.4a)

and inverses. If: aT =Ta then a-!T = Ta-! (8.1.4b)
This shows that the set of unitary operators that commute with a particular T-operator must satisfy the group
axioms (1-4) stated in Sec. 2.2. This set is called a symmetry group G={a, b, ¢c,..., g,..} of the operator T. We
are supposing that the analyzer matrix T associated with the experiment in Fig. 8.1.1 has an N-cyclic symmetry

group Cs={1,r,r?,r3 r4 r3} of six (N=6) operators that have the following group multiplication table. We

put the inverses of the first column in the top row so 1 is on the diagonal.

C6 1ir rir r r

1 1 :rs SR SR S | L

i R B e 1.
| 5.4 3 2
r ! 1 rir r r o

Alerle 108 8 (8.1.5a) 1= . (8.1.5b)
T

Pl vl P ot 1
|

et Pl 1 P 1
|

| :r4 Pl or 1

Think of the table as a matrix in a basis {|0)|1)[2}|3)]4)|5)} defined by operators {1,r,r?,r3,r4,r}.
This makes a matrix representation for each operator using the channel states as a basis by simply

replacing each operator's table entry by a "1" in that position of its matrix and "0" or "dot" (*) elsewhere.



Harter sy —Learnit Unit 3 Fourier Analysis and Symmetry -6

(8.1.5¢)
These are sometimes called the regular permutation representations because they permute each of the p-position
states. The first column of matrix rP-! represents the basic ket definition |p) = rP-!|1) as follows.
0) =110, [1) =r|0), [2) =r?|0), [3) = r3|0) , [4) =r¥0) , |5) = r°|0) (8.1.6a)
The r-transform is unitary r=r-1. The Hermitian conjugate of these relations is the basic bra definition.
(O] =01, (1] =0lr-1, (2] =(0r-2, (3| =(OJr 3, (4] = (O[r#, (5| = (Olr > (8.1.6b)
These defintions may be summed up by defining a representation matrix R(g) with components Ry4(g).
Rpq(g)=plglq) (8.1.6¢)

(c) So what’s a group representation?
To use a more “kosher” mathematical language we should say that the representation matrices in (8.1.5b-

c) are functions R(g) of the group G={1,81,82,...}=Cs={1,r,r°,r3,r% r7}. That is, every group operator gets
mapped onto a matrix so that the matrix R(gig2) of a group product gig is the matrix product R(g1)* R(g2) of the
factors.

R(g1)* R(g2) = R(gi*g2) (8.1.7a)
Stated simply, “The product of representations must equal the representation of the product.” The matrices in
(8.1.5b-c) must obey the group multiplication table (8.1.5a)! It is easy to see that the first matrix (8.1.5b) satisfies
this requirement trivially.

R(1)* R(1) =R(11) =R(1) (8.1.7b)
The remainder have to satisfy it because of definition (8.1.6) involve bras and kets which obey Axioms 1-4, that
is, R(g) is a unitary representation. The conjugation axiom ({p|g)*=(g|p)) implies that the -conugate (R7,,=

R*4p) of a representation must be the representation of the group inverse rf=r-1.

Rpq(g")= (plg"1q) = (qlglp)*= (Rgp(g)* (8.1.8a)
Stated more simply this is simply demanding operator unitarity from its representations.
R7(g) =R(g") =R(g/)=R'(g) (8.1.8b)

All of the above are properties that are invariant to a change-of-basis transformation UTU=1. Given RY(g) = U R
(g)U7, it follows that the new RY matrices also satisfy (8.1.7) thru (8.1.8). For example,
RYg1)RY(g1) = U R(g1)U7U R(g2)U’= U R(g1)R(g2)U” = RY(g1g2) (8.1.9)

Now we discuss finding and applying the diagonalizong transformation or d-tran of R(g).
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8.2 Cy Spectral Decomposition: Solving a Cs transfer matrix

The main analyzer of Fig. 8.1.1 is supposed to have Cs symmetry. However, it is also supposed to do

some things that we haven't let single analyzers do to an incoming base state |y )=|p), and that is, mix it up! No
longer will a base state | 1) or |2) just fly on through with nothing more than an extra phase attached, so it just
comes out ei1|7)or ei*%|2) . From now on, each base state |p) is going to get treated to a full-blown

transformation matrix T that is not necessarily diagonal. A general base state |'\¥ 7y ) will be output as |Yoy7) , as
follows,

<0|\POUT> Ty Ty Ty Ty Toy Tos <O|‘Pm>

(Mour) | | 7y 7y 5y 1y 1y 1 || (¥

{2[¥our) | B T T Tn T s | (2|¥) (2.1
<3|TOUT> Ly Ty Ty Ty Ty Tis <3|\PIN> -
<4|T0UT> Lo T T Tuz Tag Ty <4|‘I‘1N>

<5|‘POUT> Iy Iy Ty Ty Tsy Iss <5|\{IIN>

where off-diagonal (p#q) matrix elements
Tpg={(pIT |q) (8.2.1b)
of T are not all zero if |p) and |¢g) do not belong to T‘s "own" eigenbasis. (Bilingual redundancy, again.)

So, are we ready to diagonalize a general six-by-six matrix? No way, Jose'l But, here is where symmetry
analysis rides to the rescue. If we can diagonalize the r-matrix in (8.1.5) then, barring appearance of nilpotents or
other obnoxious gremlins, we may be able to also diagonalize the T-matrix (8.2.1). This is because (8.2.1) isn't
just any old six-by-six matrix; it has Cs symmetry and must therefore commute with each of its symmetry
operators like r. Recall T r = r T in (8.1.2). This means that T and r share projectors Py as shown in (3.1.37).

Diagonalize r and you may have diagonalized T as well!

(a) Spectral decomposition of symmetry operators rp
The problem of analyzing (8.2.1) is then reduced to diagonalizing r in (8.1.5a), another six-by-six matrix,
albeit a simpler one. But wait! No matrix need bother us. The minimal equation for r is simply
rN =1 (N=6, here.) (8.2.2)
and all its eigenvalues are the roots of unity given before by (7.3.5) and displayed in Fig. 7.3.3.

, m
X = (rN)m = (e_’sz) — 2EMIN  yhere: m=0,1,2,..,N -1 (8.2.3)

(Again, N=6). The spectral projectors of r follow easily. To help understand this recall that a spectral
decomposition of any matrix M come with beautiful and powerful consequential relations. First, M‘s eigen-

projector Py satisfies: MPy = g P and orthonormality PjPj = djk Py. Then there is completeness

1=P;+P, +..+P,. (3.1.15d)repeated
and spectral decomposition of operator M, and functional spectral decomposition of an operator M .
M=¢g;P;+e Py +..+¢,P, (3.1.15¢)repeated

f(M)= f(e;) P; + f(e2) Py + ..+ f(gy) Py (3.1.17)repeated
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Applying the spectral relations using the eigenvalues (roots) in (8.2.3) gives a functional (power) spectral
decomposition (3.1.17)repeated Of all powers rP of rotation operator r by putting ()’ before each P™m.
1= P° +P' +P? +P° +P' 4P
r= P'+y P+, P+ g PP+ g P+ g P
2 0 2pl 2p2 2p3 2p4 2pS5
r" =P +y P+ P+ y;P°+ P+ yP P _;
X X X3 X4 As where: Z:Z =(%m) e i2ne(mp)/ N (8.2.42)
r’ =P’ + P + 3PP + 3P + Pt + P
rf = PO+ [P 4 P+ P+ P+ P
r’ =P+ y P + 3P + P + Pt + P
Apart from the normalization, the P™-to-rP relation above is a unitary linear combination having the same Fourier
transformation coefficients (k;,|x,) as (7.3.10a). The inverse rP-to-P™ relation is obtained by transpose
conjugating the coefficients y,,,” above to give coefficients just like (xp|k;,) in (7.3.10b).
(X )* = NN Cembep)* = VN (el = ei2mmp)/N = p m (8.2.4b)
Then divide all by the norm N=6 to make the following idempotent projectors.

P0:(1 +r +r2 +rt o+t +r5)/6

p! = (1 +pr +p,rt+pr +prt +p5r5) /6

2 22, .23, 24, 25
1+pir +p5r” +p3r’ + pir +psr )/6 i21(pm)/ N

where: p7 = yP = (8.2.4¢)

p? (
p’ (1 + pfr + p;r2 + p§r3 + pir4 + p53r5) /6
pt = (1+pfr +pgr2 + p§r3 +pr1‘4 + pgrs)/6

P’ = (1 + plsr + pgr2 + p§r3 + pf‘r4 +p§r5)/6
Operating on the first position state with these projectors gives the desired eigenstates of the T-matrix. The norm
is (1P m|1) =1/N . (Recall (3.1.13)example) Its root /|y results to give normalized eigenkets.

)= P Io)IN = S et VN (v = S ) (8.2.52)

The inverse ket relations give position states |x,)=|p) in terms of wave |k;,) eigenkets.
N-1 N-1' _ir(m
|p)=r]0)="% ﬁﬁﬂ@Jﬁézzez“(WNMQ/£§ (8.2.5b)
p=0 p=0

The preceding ket relations (8.2.5) and their operator equivalents (8.2.4) are the discrete-N Fourier
transformations whose N-by-N transformation matrices are pictured for N=1, 2, 3, 4, 5, and 6 in Fig. 7.3.3 and for
N=24in Fig. 7.3.5. The physical transformation is between N “quantum-dot” position point |p)-states (|x,)=|p))

and their N quantum momentum Fourier-wave |k;,)-states. Much of the above is mathematical “legalese” which
gets short-circuited in the calculations that are described next.
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(b) Writing transfer operator T in terms of symmetry operators rP
In order for main analyzer T-matrix (8.2.1) to have C)y symmetry, it must commute with all the rotation

operator r-matrices in (2.7.5). T does this by being a linear combination of rP as follows.

T=41+Br+Cr?+Dr’+C'r¥+B'r, (8.2.6)
The rP-matrices in (2.7.5) are thus combined to give the general Cg -symmetric T-matrix relation (8.2.1).
O our) 4 B C D C B (O)
Mour) || 5 4 50 c p c || U¥n)
Cltou) || ¢ o 0w o || Gl .
(3] our) D C B 4 B' C 3]wn)
<4|TOUT> cC'" D C B 4 B' <4|\PIN>
B' C' D C B 4

(s¥our) (s¥)

The undetermined coefficients 4, B, C, D, C', and B’ correspond to all the transition amplitudes that state |0)
could possibly have to other states |0), |1), |2), |3), |4), and |5) as indicated by arrows in Fig. 8.2.1a.

A=(0TI0)
B(IT0)
C=(2[T(0)

D=(3[T|0)
C=(4T(0)
B=(S[T(0)

12)

Fig. 8.2.1 Generic 6-channel (Cg) beam transitions (a) Amplitudes (b) Paths

In order that the system really have Cs symmetry, the next state |1) must make the same amplitudes to the
states | 1), |2), |3), |4), |5), and |6), respectively, and so on for |2), |3), |4),and |5). All the equivalent paths are
indicated in Fig. 8.2.1b.

The expression of a quantum operator, such as the analyzer transfer matrix T, in terms of its symmetry
operators, such as the rP, is a deep and important idea which will be used a lot in the rest of this text. It is useful
if, as the case is here, the rP and T have the same set of eigenstates or projectors so that a (presumably!) easy
spectral decomposition of the former also solves the latter. Also, it is useful to label by symmetry operators both

the system coordinate base states, as in (8.1.6), and the transfer or transition amplitudes or paths between the base

states, as in Fig. 8.2.1.
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(c) Spectral decomposition of transfer operator T
Now a Cg-symmetric T operator equation with these 4, B, C,.. amplitudes must be diagonalized if represented in

the symmetry projected |k;,) basis (8.2.5).

(ko |¥our) (k) o 0 0 0 0 (ko |% )
(k[ our ) o (k) o 0 0 0 (k[¥ )
o) || 00 ) s oo | e |
<k3|\POUT> 0 0 0 'S(ks) 0 0 <k3|LPIN>
<k4|LPOUT> 0 0 0 0 8(/(4) 0 <k4|lPIN>
(ks |¥our) o0 000 (k) || (k|¥y)

This is because T in (8.2.6) is a combination of symmetry operators (2.7.5) and all the symmetry
operators have |k,,) as eigenvectors with eigenvalues (8.2.3).
12 k) = 1P P7|1) = e-i2nmp/N P m||) = e-i2m mp/6 |f\ (8.2.9)

Eigensolutions for r-operators are examples of elementary Bloch symmetry conditions.

I k) = e-ikm @ |y = e-i2m/6 |,y where: &, = i]—” m (8.2.10)
a

It says that a translation by distance a (60° rotation r along analyzer circumference) sees each phase timer
advance forward by k;,a consistent with pictures Fig. 7.3.3 of Bloch (m)y waves. (Remember: phasor clocks turn
clockwise with time, a negative angle.) Bloch symmetry is based upon the r -eigenoperator relation r P =y, P
m with (m)-th-root-of-unity eigenvalues y,,, = €27 "N of r from (8.2.3).
An eigenvalue formula for all possible Cs symmetric T-matrices
To compute the T-eigenvalues we just have to substitute the r-values of (8.2.9) into (8.2.6)!
kel Tk = A ek + B (klrl) + C (kmlr k) + D kle3kmy + C' mle#lkm) + B (klr)km)
=4+ Beikma+ Cei2kma+ D e-i3kma + O eilkma + B! ik a (8.2.11a)
(Note: ei4km a = ¢i2km a since -4 mod 6 = 2 mod 6. Also, ekm @ = etkm @ since -5 mod 6 = 1 mod 6) Another

way to derive eigenvalues is to put |k;,) into a matrix eigenequation (8.2.7) for T.

4 B' C' D C B 1 1
B 4 B C' D C ¢kme m¢
, , i2k,,a i2k,a
SR I B BT (5.2.11b)
D C B 4 B' C o3km o3km
c'' D C B 4 B' o 2kpa o Zkpa
B' C' D C B 4 o~ kma oikma

The first row multiplication shows gives the same eigenvalue.

elky) =A + Betkma + Cei2kma + D ei3kma + C'ei2kma + B’ etkm a (8.2.11c)
It is important to understand what has been accomplished. A general eigenvalue and eigenvector formula has
been derived for all possible matrices T that have the symmetry Cg of this particular “thought-experimental”
problem. That is pretty neat, and it is just the beginning of a powerful set of symmetry tools!
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What do the kn- eigensolutions mean?

The physical interpretation of Cyy eigensolutions is well known to electrical engineers. The ket in
(8.2.11b) is a 6-phase generalization of the voltage in 3-phase wires commonly used to transport 220V power. A
Cs example shown in Fig. 8.2.2 resembles the 23=-13-row of the C; table in Fig.7.3.3 with a time-phase of t=57/
6. (The 23=-13-bra (row) is the f-conjugate of a /3=-23-ket (column) eigenvector.) The result is a (k=1)-wave
moving left to right in Fig. 8.2.2a or clockwise in Fig. 8.2.2b. (Recall: phasor-ahead feeds into phasor-behind.

Imaginary Im¥ precedes the real Re' in time since phasors turn like clocks.)

fet/ mﬂ,f— [0 k= fj—ﬁ'fgfwr.fmff

Fig. 8.2.2 (k=1) 3-channel (C3) wave eigenstate (a) Real and imaginary waves (b) Phasors

A beam with all amplitudes equally dephased from their next neighbor is a |k;,)-state that is not changed by a
cyclically wired device that has Cy symmetry such as the Cg analyzer sketched in Fig. 8.2.1. Also, if the T-

matrix is unitary (TT=T -1), |k,,)-state eigenvalues £(k,,) must be unitary, too.

e(km)* =1/ e(ky)  or: €(ky) = eidm (8.2.12)
So the effect of the analyzer on an eigenchannel |k,,)-state can only be to add an overall phase ¢, to it.
T k) = €0m |k,,,) (8.2.13)

The phase 0, is sometimes called an eigenchannel phase-shift or eigenphase 0y, . Below we write the
eigenchannel basis representation of the T |k,,)-equation for a general input state |7y ) with arbitrary values for
its N-eigenchannel-amplitudes {k,;,|'¥1n ) of (8.2.7). (This means the N-channel-amplitudes {p|¥n ) in the
original representation (8.2.6) are arbitrary, too.) Below is for general |[¥7v ).

<ko |‘POUT> ei¢0 0 0 0 0 0 <k0 |\PIN>
(& [¥our) o M 0 o o o (k¥
(al¥our) | | 0 0 ® o0 0, (| 71) (8.2.14)
<k3 |LPOUT> o 0 0 & 0 <k3 |lPIN>
<k4 |‘P0UT> 0 0 0 0 M o <k4 |\PIN>
(ki ¥our) J Lo 0000 B ey
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(d) OK, where did those eikx wavefunctions come from?

Every student of differential equations is told early on to try the exponential solutions e’ or i’ in
independent variable ¢ with little reason given except, "It works!...sometimes." Now we can see why and when
such solutions work. The key to our exponential eigenfunctions W, (x,)= e'km¥p /- was Cy symmetry which
demanded in (2.7.5) that we use roots of unity, that is, the roots of the minimal equation rN=1 for symmetry
operator r.

If we let N approach infinity (N—ec) the symmetry approaches continuous translation symmetry Co., and
the eigenfunctions Y, (x,) approach plane waves Yy(x)= e’k /7 such as given by (2.6.20b) in Sec. 2.6b.
Symmetry demands independence or invariance to translation of the independent variable x. In other words, you
should get the same differential equation no matter whether you let the origin be at x=0 or at x=2,517 in

Timbuktu. For example, the differential equation

2
TV 2y Y 2y =0 (8.2.15)
o2 dx

does have C.. symmetry so ¢’ will work, but an equation like
2
DY oy 22y =0 (8.2.16)
o2 dx
does not have C. symmetry because of the x-dependence; it's not the same equation in Timbuktu. An example of

a Cy -symmetric differential equation is Matieu's equation for waves in a periodic solid.

2
ay +k° cos(Nx)y =0
dx?

All that we have said applies as well when the independent variable is time 7 For example, the differential

equation

2
v + Zl“d—w + a)zt// =0
dt2 dt

iot

does have C. symmetry so '™ will work. An example of a C)y -symmetric time differential equation is Mathieu's

equation for a periodic force. Later we use Cy -symmetry to help solve this type of equation.

2
ay +k? cos(NH)y =0
dr*
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8.3 Related Symmetry Analysis Examples
The homo-cyclic two-dot C> and three-dot C3 sytems are sketched below in the way the Cs system was
sketched in Fig. 8.2.1. The transfer matrix equations (8.3.1) have eigenket tables (8.3.2).

0¥ olw {0[¥our) A B' B (0] w)
{iwwi Nz ZJ{ <<1JN>>J(8’3'“‘) (o) = 8 4 & | (l¥,) |@3.10
ouT IN <2|‘POUT> B' B A <2|\PIN>
(a) Cy System  (b) C3 System

A
10)

A
10)

B

12)

@ I

Fig. 8.3.1 Generic N-channel (Cy) quantum dot systems. (a)N=2 (b) N=3
(8.3.2a) (8.3.2b)

|xo> =R’ |O> |x1> =R |0>

0)3) 1 1 1 3
‘(1)3> 1 ATil3 o 2mil3 / \/5
‘(2)3> 1 o 2mil3 ATil3 / ﬁ

The eigenket tables are from Fig. 7.3.3. Each phasor in the (bra| table for Cs in Fig. 7.3.3 is replaced by its
complex conjugate to make kets. A preceding Fig. 8.2.2 shows a |(1)3) wave with eigen-phase shift of —57/6. The
corresponding transfer matrix eigenvalues {my | T|mn) in terms of parameters A4, B,.. are left as exercises.

Besides such cyclic Cy systems there are an enormous number of ways to connect N-dots in ways that
have more or less symmetry. A few of these are considered below and in problems. Most of the interesting (Also,

read “doable!”’) quantum problems have an underlying symmetry.
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(a) Dihedral symmetry D>
Two 4-dot symmetries are shown in Fig. 8.3.2 below with transfer matrix relations.

L IV (1 (7% B I 0 R IR R U
Your) |_| B4 ¢ ¢ | (¥w) (1% our) B o4 ¢ 5 || (¥w)
¥ our) g g ;1: i: @) ¥ our) IZ ; ’; i @)
(3 our) (3 ) (3% our) (3 )

(8.3.3b)

A

(b) D P rectangle
B/

13)
Fig. 8.3.2 Generic 4-channel (D2) quantum dot systems. (a)Diamond C>, (b) Rectangular D:.

Consider the rectangular D; system. Its transfer matrix may be written in terms of four operators.

T =4 1 +B R, +B R, +C R,
4 B B C 1000 0100 0010 000 1 (834
B 4 C B |_,/] 0100 | g 1000/ 0007100710 2
B C 4 B 0010 000 1 1000 0100
C B B 4 000 1 0010 0100 1000

Each of the operators Rx, Ry, or Rz, corresponds to /80°-rotations around x, y, or z axes, respectively, the effect
of which is indicated in Fig. 8.3.1b by transfer path arrows labeled B, B’, and C, respectively. A transfer path B’
along the x-direction is done by a y-rotation Ry, while B along y is done by Ry.

D; group structure

The multiplication table for the Verrgrupe (4-group) is quite famous and relevant to quantum theory.

1 R |R R
X y z
R, 1 |R R,
(8.3.52)
R R 1 R
y z X
R R |R 1
z y X

Its structure reduces to a few simple products. The first is (xyz)-cyclic: It holds for (zxy) and (yzx), too.
Rx Ry =Ry Rx =Ry, (8.3.5b) R=Ry’=R/2=1. (8.3.5¢)
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D; spectral decomposition: The old “1=11 trick” again

The latter (8.3.5¢) are of immediate interest to a quantum algebraist because they give minimal equations.
Ry-1=0, (8.3.5d) Ry>-1=0. (8.3.5¢)

From the roots (+1) of each minimal equation is constructed a spectral decomposition of Rx and Ry. This is the

simplest application of the Chapter 3 projector formula (3.1.15a) you will probably ever see.

P+=1+Rx P+=1+Ry
x 2 Y 2
8.3.6 3.
L (8.3.62) 2 (8.3.6b)
Px = X P = Yy
2 Y 2

This spectrally decomposes Rx and Ry separately. We can do Rz, too, but all three must be done fogether.

1 =P +P 1 =P +P]
x T (8.3.7a) y Ty (8.3.7b)
+ - + -

Rx:Px_Px Ry:Py_Py

To make projectors for the whole D> symmetry together we use the old “1=1¢1 trick” from (3.1.36).
1=1-1 =(P;r +P;)»(P; +P;)=Px+ ‘Pl +P P +P P +P P (8.3.8)

The result are irreducible projectors P for the whole D> symmetry. Irreducible means TraceR(P@)=1.

R LTk Lt I T
e (1- sz) 21+Ry)_i(1 R,+R, -R_) 539
T o o Rx) - Ry) -y

Each P is multiplied by its own elgenvalue (£1) of 1, Ry, Ry, and Ry in the D; spectral decomposition.
1 =EHDP™ +(+DP™F + (+D)PT™ + (+1)P™"  (completeness)
R_=DP™ +(=DP™" +(+D)P"™ +(-)P™
R; = E+1;P++ +E+1;P‘+ +((—1;P+_ +E—I;P" (8.3.9b)
R, =(+DP™" +(=DP™" +(-DP"" +(+D)P"
Spectral decomposition of D: transfer matrices

Spectral decomposition applies to transfer matrix (8.3.4) and yields its eigenvalue spectrum.
(++|T|++> <> < >+B’< y>+C<RZ>:A+B+B’+C
(ot =e = aln) s, )5 (R, e (R )= 45 -C
(+=|T|+-)=€" = 4(1)+ B(R >+B’< y>+C<RZ>=A+B—B’—C

(—=|T|--)=¢" :A<1>+B<Rx>+B’< y>+C<RZ>:A—B—B’+C

(8.3.10)

Again, this is a formula for all possible D2-symmetric operators in this device space of Fig. 8.3.2b. Higher

symmetry, such as “square” or tetragonal D4—symmetry is obtained if parameters B and B’ are equal. Then the
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eigenvalues £~ ande* become equal or degenerate. Such a symmetry is non-commutative or non-Abelian and
requires further theory which will be taken up in a later chapter.

(b) Outer product structure: Double qubit registers

One of the things that makes group algebra powerful is the concept of an outer (X) product of two groups.
You may have noticed that the D> group multiplication table was divided up so that the C> subgroup {1, Rx} was
isolated from the rest. The outer product is appropriate when two isolated “factors” correspond to orthogonal or
independent systems such as two separate particles or two dimensions or two qubits.
D3 is product C2xC>

An outer product of the eigenvalue tables in (8.3.2a) yields the D eigenvalue table. This is basically what
was happening in the algebraic maneuver of (8.3.8) based upon the old “1=11" trick.

C;xCJ |11 R 1| 1R, R_R,
G |1 R, G |1 R, v |10 1] 11 1
+ 01 X 41 1|7 =+ |11 11 11 11 (8.3.11a)
- 11 -l -1 - +— |11 11 [ 1(=])  1-(=1)
- = -1 -1-1 | 1-(=1) -1-(-=1)
D, |1 R |R, R,
++(1 1 1 1
= 41 a1 4 (8.3.11b)
+=[1 1 |-1 -l
—— |1 -1 ]-1 1

Note that the numbers in (8.3.11b) are exactly the coefficients of 4, B, B’, and C in the eigenvalue formulas for €*
* e *,e"7, and € " in (8.3.10). So the x-product makes this calculation very easy indeed.
The outer product requires every operator in D; to be uniquely a product of one element in C>* and one element in
C>. The elements in C>* must commute with all those in C>” so each product is unique.
CGxCy | 1 R,
agxa={LrRIx{LRr}= 1 |11 1R,
R, |R.1 R R,

X

(8.3.11c)

={LR.R, R }=D,

If a group G has g operators and a group H has 2 members, then GXH must have exactly gh members. It can be a
great help to find a symmetry group is an outer product of its parts.

Multiple outer products are possible. The D2= C2xC: system is like a double-binary or 4-bit register. A
C2xC2xC; system is a triple-binary or 8-bit register known as /-byte. A double-binary D; register differs from a
quadrary (Cy) register as a 1-byte binary systemis not a single octal (Cs) system.

Big-endian versus Little-endian

Computer scientists differ on whether the right ending bit should be the most significant bit (and least

rapidly changing) or least significant bit and most often changing. (The former is called the Big-Endian
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convention while the latter is called the Little-Endian convention after a perjorative folk-song.) The sequence (00,

01, 10, 11) is Little-Endian and more like our decimal numbering system. The sequence (00, 10, 01, 11) or in
(8.3.11) (++, -+, +-, --) is Big-Endian and what we are using here.

Cs is product C3x Ca (but C4 is NOT Cxx Cs)

Our first example, the cyclic group Cs, is a composite C3xC> of two of its subgroups C> and Cs as shown
below. Here the eigenvalue table (8.3.2a) of (> is crossed with the Cjs table (8.3.2b).

C,xC, | 1 r r’ 1-R r-R r’ R
G |1 r r’ (0)3 (0)2 ; 27:./2 —2;'/13 ; 27:./2 —2:'/13
(0)3 1 1 ! C2 . (1)3 (0)2 v e—27:i/3.1 6277::/3 ’ . e—27:i/3.1 eZ?ril/3 !
(), [1 s oo (0, [1 1= (2),-(0), [1-1 e S PSR U I T B 1 ST
Q) |1 eoms s (1), |1 -1 (0),-(1), |11 11 _Zi 1/13 1-(~1) 2 ;-/2—1) _; , /(3—1)
(1)3 (1)2 111 11 e A 1= 7B e (=)
(2)3 (1)2 111 2B 11 1= B 2B (-
C,xCy=C, |1 r=h* r*=i*|R=h0’ rR=h r* R=0
(0),-(0),=(0), {1 1 1 1 1 1
(1)3 _(0)2 — (2)6 1 e277:i/3 672m'/3 1 eZm’/B 67271:1'/3
= (2),-(0),=(4), |1 e 277 1 e il (8.3.12)
(0),-(1),=(3), {1 1 1 -1 -1 -1
(1),-(1),=(5), |1 &2 e a PHE
(2),-(1),=(1), [1 P SFE | R

The tricky part is to identify the Cs waves (k)s that belong to a each product (m)s.(n).. That is,

ei(k) X

6" — ¢

i mz—” nz—ﬂ X i 2
i(m)3xei(n)2 x _ e[ 3 + ) j _ 61(2m+3n)?x
k= (2m + 3n) mod 6 (8.3.13b)

For, example, the last row of (8.3.12) belongs to Cs wave k=(2.2+3.1) mod 6 = 7 mod 6 = I or (1)s. The result is

a reordered Cs table, but otherwise it is the same as the one first drawn in Fig. 7.3.3. Verify!

(8.3.13a)
The desired k-value is:

Symmetry Catalog
Cataloging the number of symmetry groups of a given order N is a difficult problem with a long history.

But, for commutative or Abelian groups considered so far, it reduces to finding all the distinct outer products

CpXCgxCpxCsxCx ...

Cpq if p and q share no factor in common so we don’t include Cpq in the catalog if p and g are prime since then

of cyclic groups such that N=pgrst.... is a product of primes. Product CpxCy is the same as
Cpg = CpxCy as in the case of Cs = C2xC3 above. But we do include both CpxCp and Cpp which are distinct as
were Cox C> and Cy above. If N=p’ is a power of a prime such as N=8=23, then a distinct group exists for each
partition of the power P. For example, P=3 =1+2 = [+1+1 has three distinct prime base-(p=2) groups: Cs and

Csx C2 and Co2xC2xC> are all distinct symmetries.
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Problems for Chapter 8.

Subgroup soup
8.1.1 (a) The Cs symmetry group has subgroups. List all of them except Cs itself.
(b) Do the same for the symmetry groups C3 , C4 , and Cs5 . What is special about groups Cy of prime order N?

Ttrace’o g

8.1.2 (a) By group axioms (Sec. 2.2) show each row and column of a group table has an operator g only once.

(b) Use (a) to show that the regular representation trace TraceR(g) is zero for all but “do-nothing” unit operator g=1.

Turn-about s fair play

8.2.1 Suppose we are given the eigenvalues {70, T1, T2, T3, T4, T5} of a unitary Cs transfer matrix T in (8.2.1).

(a) Can the {70, 71, T2, T3, T4, T5} be any old complex numbers? What restrictions, if any, apply?

(b) Can one give a formula for all 36 components 7, of T in terms of {10, T1, T2, T3, T4, T5}? If so do it. If not expalin why
not and under what conditions you may be able to do it.

A Hex on pairing

8.2.2 Suppose the Cs transfer matrix T is the form of the Pairing operator, that is all components equal 7, =T .
(a) Derive the resulting eigenvalue spectrum.

(b) What, if any, limitations need to be placed on parameter 77

(c) Discuss which waves belong to which eigenvalues

Phase o’Hex
8.2.3 (a) Could the hexagonal Cs analyzer be wired so input |even sites)=(1,0,1,0,1,0) comes out ei® |even)?
What kn-eigenstates make up |even sifes )? Does your “rewiring” maintain Cs symmetry?
(b) Could the Cs analyzer be wired so input |even sites ) comes out € lodd sites )=(0,1,0,1,0,1)?
What kn-eigenstates make up |odd sites )? Does your “rewiring” maintain Cs symmetry?
(c) Could the Cs analyzer be wired so input |odd symm)=(1,-1,1,-1,1,-1) comes out e |odd symm )?
What kn-eigenstates make up |odd symm )? Does your “rewiring” maintain Cs symmetry?
(d) Could the Cs analyzer be wired so input | odd symm ) comes out €i® |even symm )=(1,1,1,1,1,1)?
What kn-eigenstates make up | even symm )? Does your “rewiring” maintain Cs symmetry?

Little diamond

8.3.1. The symmetry eigensolution analysis of the C>, diamond quantum dot device in Fig. 8.3.2(a) is a little different than its
D: cousin in Fig. 8.3.2(b). Symmerty multiplication table and spectral decomposition is essentially the same but the transfer
T-operator is not such a simple linear combination of symmetry operators. Represent the symmetry and give a decomposition
of symmetry and T-matrix. (Note that x and y-plane mirror reflections are symmetry operators, too. There was no distinction
between rotations and reflections in the D, problem.)

Double Crossed
8.3.2. Complete a symmetry catalog of commutative (Abelian) groups in terms of distinct Cp,XCyX... cross products.
(a) for order N=8. (b) N=9. (¢) N=10. (d) N=11. (e) N=12. (f) N=16.
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Problem 8.3.3 “Big box” Problem 8.3.4 “Big diamond”

Big box

8.3.3. Give a complete symmetry eigensolution analysis of the D2, device pictured here. First show that the full symmetry
with horizontal reflection group Ci ={1, 6y /(thru z-axis)} is C2XC>xXCp=C2xC2xC> which is called D2p.

Derive character table of D2j using the cross product trick of (8.3.11).

Big diamond
8.3.4. Give a complete symmetry eigensolution analysis of the D2 device pictured above.

Ttrace’o P

8.3.5. Before (8.3.9a) it is noted that TraceR(P)=1 means projector P is irreducible, that is, not a sum P= P+ P; of other
“smaller” projectors. Explain this and verify by constructing the representation of the P** ,... in (8.3.9).
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Now we consider the transfer operator from Hell, the time evolution operator U. This “grim-
reaper” of the quantum world determines everything that happens in a non-relativistic
(Schrodinger) system. Nothing escapes U-action including you! So learn U well, and pay
particular attention to U’s generator H which is called the Hamiltonian. The expression e Ht (for
constant H) is an icon of modern quantum theory. Quantum dot systems from Chapters 7 and
8 will be used as examples and provide our first introduction to quantum periodic band theory
and quantum “revival” beats. (Yes, some waves can survive the grim reaper by reviving

repeatedly while doing arithmetic, too!)
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Chapter 9. Time Evolution and Fourier Dynamics

9.1 Time Evolution Operator

It is often said that nothing that is more demanding than the test of time. All the analyzer experiments
considered so far have required time to do, lots and lots of time. Never forget that all our fancy theory of
analyzers and wave mechanics is just giving us probabilities; not too different from odds posted at the racetrack.
Millions of counts need to be registered before those fancy predictions are seen in a laboratory, and all that
counting takes time.

Now we consider a very demanding kind of analyzer, good old Father Time, in the form of the time
evolution operator U(tpinaL, ; tiniTiaz)- This "grim reaper” is supposed to be able to take any state at an initial
time and transform it into what the state will be at a later time.

W(trinaL,) ) = U(triNaL ; tiniTiar) Y (tniriar) ) .1.1)
The main task of this section will be to begin theory and derivation of U operators. This is the main problem of
quantum theory, so we won't finish the job here. In fact, we won't be done with U operators until the twelfth hour
of never!

Let's first suppose time translation symmetry is present. By that I mean there is no one (such as perfidious
janitors) "messing" with our analyzers. So, the experiments run the same day and night. Then we can often
simplify the evolution operator equation by just having one time variable as follows

W(@))=U(;0) [¥W0)), 9.1.2)
so you may pick a "time origin" (¢=0) arbitrarily.

(a) Planck's oscillation hypothesis
At first, the time evolution problem looks formidable, even for a little six-state beam analyzer problem
that was studied in Chapter 8. Its evolution equation (9.1.2) looks like the following at any point z in the beam

and varies with z. We will put off discussing z-dependence until a later chapter.

1|¥ 1|¥(0
< | (t)> Ull U12 U13 U14 U15 U16 < | ( )>
([ () Uy Uy Uy Uy Uy U (2] (0))
<3|\P(t)> _ U3l U32 U33 U34 U35 U36 N <3|lP (0)> (9 1 33)
<4|‘P(f)> Uy Uy Uy Uy Uy U <4|‘{'(0)>
<5|\P(;)> Usi Usy Usy Usy Uss Usg <5|\{1(0)>
<6|q,(t)> Usi Usy Uss Uss Ugs Ugg <6|\P(0)>
Here the matrix elements are
qu:<P|U(tI 0)1q) (9.1.3b)

How in the world can one derive all those N?=36 time functions Uy, ? Woe is us!
But wait! The U-operator and any matrix representing it should have the Cy symmetry of the analyzer

system shown in Fig. 9.1.1. And, like the analyzer T-operator, it should be reduced by the Fourier Cy -symmetry
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lky basis to a diagonal matrix made of phase factors ei®m as in (9.1.17b). Furthermore, the Planck hypothesis

indicates that the phase factors should have the time phasor "clock" form e-i®mt that is conventional clockwise
phasor rotation. Then the U-operator in (9.1.3) can be made to have a much simpler form if the basis is changed

to its eigenbasis |k;,) as shown below.

i) Tt 0 0 0 0 (ko|¥(0))
() e 0o S 0 0 0 (k[ (0)
(e |‘P(t)> 0 0 b 0 o, (k, |‘I’(0)>
<k3|‘1’(1)> 0 0 0 031 0 . <k3|‘{f(0)> (9.1.4)
e R s (k| (0))
(k| (1)) 0 0 0 0 0 e e ¥10)

Now, instead of N°=36 unknown Upq functions we have only N=6 frequency values @y, to derive.
This is quite a simplification, if true. It is also a reasonable one since the evolution operators need to form

a group called the time evolution group that multiplies as follows. (Recall (1.4.12d).)

U(tz;t;)=U(t3,;t2) - U(tr; t1) (9.1.52)
Also, axioms 1-4 require U( ¢, ; ;) to be unitary operators. (Recall (1.5.5b).)
Ul(tr,t;)=Ul(t2,t1)=U(t;; t2) (9.1.5b)
These requirements are satisfied by the Planck phasor forms in the diagonal matrix (9.1.4) or as follows,
U(ty; 1) = diag{ el@0(2-t1)  eio1(2-t1) | eiom(t2-t1) .} (9.1.6a)

since

eiOm(t3 - t1) = e-i0m(t3-12) e-iOm(2-t1), and (e i®m(2-t1) )* = eiOm(t1-2)  (9.1.6b)
which depends only on relative time difference (¢; - £2): U(t;,; t2) =U(t;-1t2,0).=U(0;ty-t;)

Indeed, we shall demand that a U-eigenbasis { |®p), |®;), ...|®,,), } shall exist even for asymmetric
evolution operators for which a convenient symmetry basis { |kg), k), ...lkn), } is not available to give "instant"
diagonalization. We shall describe how to generally find eigenkets |®,,) so that

U(t2; t1) |@p) = e®m(t2 - 1) |m,,) (9.1.7)
This is always possible in principle since we know that all unitary operators are diagonalizable. (Recall exercises
in Ch. 3.) However, in practice the problem of diagonalization can be a bit of a chore for large systems consisting

of millions, billions, or more states! We will need all the help that symmetry analysis can give us.
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Time evolution operators and the states they evolve satisfy time differential equations known as

Schrodinger equations. This is a common way to restate Planck’s oscillation axiom in differential form.

(a) Schrodinger's time equations. Hamiltonian time generators
If time evolution equation (9.1.4) can predict the quantum state future far in advance, then it should

certainly give the rate of evolution correctly. The time derivative of (9.1.4) is the following.

(ko[ (2)) o, 20! 0
(| (2)) 0 e
9 <k2 |\P(t)> _ 0 0
o (k| (1)) 0 0
(ky | (2) 0 0
(ks | (c) 0 0

e
o

S o o o o

Here we lose the Dirac notation briefly with
Piom(t) = ¥ (1)) = e 1Omh,, [ P(0) = e1OmE ¥y, (0) .
Multiplying by i# and then putting back the Dirac notation gives the following.

) 10)

S o o o o

0

S o o O

e
9

0

S o o O

[= R )

S o O

[ R )

£

oS O

o o o o

e
N

o

0 0
0 0
0 0
.
0 0
e—i(D4 t 0
0 wse—iCUSt
—iay thkO (0)
0 _
. e lw]tl{"kl (0)
0 e—zwz thkz (0)
0 7:w3zLPk3 (0)
0 —io, [\Pk4 (0)
5
e (0)

o o o O

oS o o o o

ho

(ko|¥(0))
(k[ (0))
(ks |[#(0))
(ks |¥(0))
(ks |[#(0))
(ks (0))

(9.2.1)

(9.2.2)

(9.2.3)

(9.2.4a)
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<k° |T (t)> hwg, 0 0 0 0 0 <k° |lP (1)>
(| (2)) 0 ho, 0 0 0 0 (| (2))
k, ¥ k,|¥Y
2] Gl 100 e, 000 | {B¥(0) | (9.2.4b)
o (i | (1)) 0 0 0 ho, 0 0 (ks | (1))
<k4|‘P(t)> o 0 0 0 ho, O <k4|‘{‘(t)>
0 0 0 0 0 &
(0) B 0
which is called Schrodinger's time equation. Its abstract Dirac form is the following
d
in=|¥ (r))=H| ¥ (c)) (9.2.5a)
where the Hamiltonian energy operator H is related to i times the time evolution operator derivative by
ih%U(t,O)=HU(t,O) (9.2.5b)
and 1s H also called the generator of time translation. An exponential solution to (9.1.5b) is
U(t,O):e'th/h U (O,O)Ze'th/h where: U (0,0) =1 (9.2.5¢)

if H is an N-by-N constant matrix operator as it is in (9.1.4a-b). (It must be constant if there is time translation
symmetry. Remember, it is time translation symmetry that permits exponential solutions.)
All of the above "derivations" of Schrodinger's equations (9.2.5) are really only Planck's frequency and

energy axiom, starting with (9.1.4) and restated in many fancy ways for an N-state system for N=6.

(b) Schrodinger's matrix equations

The thing that makes a Hamiltonian H powerful is that it may be easily derived it in some other basis like
the original channel basis {|7), |2), ...|N) } and then diagonalized using symmetry techniques or numerical
methods to find its eigenvectors { [wp), |®7), ...|oxN.7)} known as energy eigenstates and eigenvalues { iy,
hwy, ...hiopn. 1} known as energy or frequency spectra €, = hwy, . This time, the word spectra is used as it was
intended by the pioneering spectroscopists who first saw atomic spectral lines in laboratory and in astrophysical
observations. (Mathematicians co-opt the term spectra other ways.)

Rewriting Schrodinger's time equation (9.2.5a)
d
ihg|‘1-‘(t)>=H|‘I‘(t)> (9.2.6a)

in an arbitrary basis gives

ol oY
t)> Hyy Hy Hyy Hyy Hyy  Hps <| (t)>

(o (

I e S N R U 10)
ihi <2|‘P(t)> _ Hyy H, Hy Hy,y H, Hy . <2|\P(t)> , (9.2.6b)
ot <3|‘P(t)> Hyy Hy Hyy Hyy Hyy Hig <3|‘P([)>

<4|‘P(t)> Hyy Hy Hyy Hyy Hyy Hys <4|‘I’(t)>

<5|‘P(t)> Hsy Hgy Hsy, Hsy Hgy  Hgs <5|‘I’(t)>
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where the matrix elements
Hpq = (pIH |q) (9.2.6¢)

are generally non-diagonal except in H’s or U’s own (eigen) basis |kx) as in (9.2.4).

(c) Writing Hamiltonian H in terms of symmetry operators r?
If analyzer H -matrix (8.2.1) has Cs symmetry, it commutes with all the rotation operator r-matrices in
(2.7.5) and is a linear combination of rP as follows.
H=H1+Sr+Tr2+Ur3+T*r4+5*%r, (9.2.6)
The rP-matrices in (2.7.5) combine to give a Cg -symmetric H-matrix Schrodinger equation (9.2.7) in analogy to
the T-matrix transfer equation (8.2.7), and label its tunneling paths from point-to-point.

(o] (1)) P (o] (1))
<<1||‘P(t)>> o u <(1||\{f(:)>>
.0 2 (1) | ros o st U | 21¥(¢)
T <3|‘P(t)> U* T S H S* T: <3|‘P(:)> > (9.2.7)
(4] (1)) g* TU* ; i [; ‘; (4] (e))
(3% () (s (1))

The undetermined coefficients H, S, 7, U, T* and S* correspond to all the tunneling amplitudes that state |0)
could possibly have to other states |0), |1), |2), |3), |4), and |5) as indicated by arrows in Fig. 9.2.1 which are
analogous to the transfer amplitude paths for the T —matrix (or of a U-matrix) in Fig. 8.2.1.

(a) Tunneling Amplitudes
from |0)

H =(0[H|0)=H*

S=(1H0) I

T =(2[H]|0)

U =(3[H|0)=U*

T*=(4|H|0)

S*=(5[H|0) R 4

13)
Fig.9.2.1 Generic 6-channel (Cg)Hamiltonian tunneling (a) Amplitudes (b) Paths
But, there is one important difference. Hamiltonian matrices must be Hermitian (self-conjugate: Hf = H ).
Hpg={pIH |q)={p|HT|q)=Hy " (9.2.8a)
Unitary U implies Hermitian H
Hamiltonian H is Hermitian because the time evolution operator is unitary by definition (9.2.5).
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0 {1,0) (e ) - 10) < u(-r,0)- o (9.2.8b)

©2013 W. G. Harter

So, an inverse tunneling amplitude such as $* is the complex conjugate of the forward one S. Also, diagonal
components of a Hamiltonian matrix are thus always real.
Hpp =Hpp * (9.2.8¢)

This means the eigenvalues are also real since relations (9.2.8) are true in any basis including the H operator’s
own basis or eigenbasis where H is diagonal.

Note that a diametric tunneling amplitude such as U=U* also is real because its operator r? is its own
inverse (r’= r37=r-3 ). Conjugation reverses direction of rotation for all C4 operators except 1 and r3. -
conjugation is time reversal for Schrodinger equation (9.2.6). Axiom-2 says bra-clocks run backwards.

9.3 Schrodinger Eigen-Equations

Time evolution is simple for eigenstates | ,, ) because only a single eigenfrequency ,, is present.
Energy or frequency eigenstates and eigenvalues satisfy Schrodinger's eigenvalue equation, also called the

Schrodinger time-independent equation.

H | 0p) = 10y, [ 0) = €5 | 0p)

(9.3.1a)

In a “quantum-dot” basis this is a matrix eigenvalue problem such as the following for N=6.

Hyy Hy Hy Hyy Hyy Hs (0lo,,) (0]w,,)
Hy Hy Hy Hy Hy Hg <1 wm> <1 wm>
Hyy Hy Hy Hy Hy Hy <2|a)m> <2|a)m>
Hyy Hy Hiyy Hyy Hyy His <3|a)m> ~n <3|a)m> ’ ©-3.10)
Hyy Hy Hy Hyg Hyy Hys <4|wm> <4|wm>
Hsy Hsy Hsy Hsy Hsy Hes (5o, (5o,

The Schrodinger time equation (9.2.6b) is a simple 1-dimensional relation for each amplitude.
d
ihg<p|a)m>=<p|ﬂ|wm>:hwm<p|wm> (9.3.2)
Its solution has each amplitude (p|®.) spinning its clock at the same rate m,, at constant size [(p|em)|*.

(plo,, (1))=(p|o, (0))e (9.3.3)

‘<p|wm (t)>‘2 = ‘<p|a)m (0)>‘2 = const.

Such is the fate of an eigenstate or stationary state. Its observable probability distribution is forever fixed.

(9.3.4)

But, how does one find just the right {p|m,) amplitudes to solve (9.3.1)? Aren't we back in hot water again
with N?=36 unknown constants Hp, and a big diagonalization job facing us? Woe is us, again! But, fortunately,
there are all kinds of techniques and approximation tricks to find the Hamiltonian matrix elements and then find
the energy spectrum. That is what most of the rest of the book is about!

Chief among the eigensolution techniques is symmetry analysis. The time evolution matrix U and the
Hamiltonian matrix H for the Cg -analyzer in Fig. 8.1.1 can be treated to the same techniques that worked for the

analyzer T-matrix. Again, all possible Cs—symmetric Hamiltonian matrices are given with a single complete set
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of eigensolutions. Then all possible motions are obtained from combinations of eigensolutions, which, by their
completeness are able to produce an arbitrary initial condition.

After that, the motion is just the interference beating between all the eigenfrequencies that participate in
producing a given initial state. Remember, it takes two to tango! At least two eigenstates with different
eigenfrequencies need to be up and spinning to have observable motion. Otherwise, nothin’s happening!

It turns out that while it takes two to tango, three’s a crowd! Two state systems are unique in their harmonic
simplicity. At the end of this unit we will see how to understand more complicated 3, 4, J5,...level excitations for

some simple systems.
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(a) Solving Schrodinger's eigen-equations for Cs system
H-eigenvalues use r-expansion (9.2.6) of H and Cg symmetry r’-eigenvalues from (8.2.9).
{elrP|ky )= eiPkma = e-ipm2@/N where: kn = m(2n/Na)
(e Hlk) = H (kUi + S Cklrlk) + T ele2lm) + U k3l + T* (le ) + S* el
=H + S e-thma + T e-i2kma + [ e-i3kma + T* eilkma + §* eikpa (9.3.5a)

Again we check that H eigenvectors |wn) are the |k») in (8.2.11) which solved transfer matrix T.

H §*T1* U T S 1 1
N S* T* U T oFm okma

T § H S§* T* U o 2hma o 2ma

u T S H S* T* * o 3ma =ho, Si3kma (9.3.5b)
T* U T S H S* e—ikaa e—ikaa
s* r* U T S H e—ikma e_ikm“

Because of Hermiticity (HT = H) eigenvalues w, or €, will be real eigenfrequency and energy spectra.

hoy, =¢€, =H+ 2|S| cos(kya-0)+ 2|T |cos( 2ky,a-t )-U(-1)m (9.3.5d)
Here we note: e i3kma = g-i3mm = (-1ym for N=6. Also, let the complex parameters be in polar form.
S=|S|eic, T=|T|el" (9.3.5¢)

Their phase angles ¢ and T correspond to what is sometimes called a gauge symmetry breaking or Zeeman
splitting parameters. To begin the discussion, we shall let the phase angles be zero or pi.

A little physical intuition helps to make some sense of the energy eigenvalues. The parameters S, 7, and U
are called tunneling amplitudes because they are "sneak factors" that tell how rapidly (and with what phase G, T)
an evanescent wave in one channel can sneak or tunnel over to one of its neighbors as indicated in Fig. 9.2.1. The

S, T, U give rates at which the 4, B, C amplitudes of a T or U matrix grow.

(b) Energy spectrum and tunneling rates
We saw how the evanescent waves in (6.3.10a) of Sec. 6.3¢(3) decay exponentially and die off with

distance. Channel waves are like this, a channel wave state |0) will be exponentially more likely to tunnel to its
nearest neighbor channels |/) or |5) than to more distant channels |2), |3),or|4) in Fig. 9.2.1. So, the distant
tunneling amplitudes U and T might be approximated by zero in (9.3.5d) to give

hoy, =€, =H+ 2|S|cos(kpa-0). (9.3.59)
This is an elementary Bloch dispersion relation. If wavevector k;,, were a continuous variable k the dispersion
function (k) would trace a cosine as shown in Fig. 9.3.1 where the gauge phase is set to pi (6=m) to make the &y
state lowest. Now the spectra correspond to hexagonal projections of ei2@m/6

hoy, =¢, =H-2|S|cos(kya). (o=m) (9.3.5g)
Note that while the eigenvalues (7w, = &) vary with parameters H, S, T, or U, the eigenvectors |®,, ) or

eigenfunctions Yy(xp) are the same for all values of parameters due to Cy -symmetry.
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If the tunneling phase ¢ increases by /12 it shifts the dispersion relation to the right by 7/12 in k-space. It rotates
the hexagonal spectral diagram by n/12 or /5° as shown in Fig. 9.3.2. The resulting spectra shifts and splits the

Unit 3 Fourier Analysis and Symmetry 99

Ko K1k, ki ko kg

Fig. 9.3.1 Generic 6-channel (Cg) tunneling spectra and Bloch dispersion.

degenerate doublets +/5 and +2s.

ho(ks)

no(k )

ho(ky)

h(u(k_lj

hok 1)

hoke)

o=

\

w12,

Fig.9.3.2 Same 6-channel (Cg) tunneling spectra with broken symmetry and doublet splitting

This is equivalent to rotating the analyzer disk in Fig. 8.1.1 at a constant negative or clockwise velocity so

negatively moving waves increase in energy while the positively moving ones have less energy.
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Such a tunneling phase or gauge factor causes a right-left symmetry breaking so right-handed and left-
handed waves are no longer degenerate in energy. It is analogous to the Doppler shift that is observed by an
observer moving through a monochromatic standing wave and sees red-shifted and blue-shifted frequencies while
the stationary observer sees equal frequencies. (Recall Sec. 4.2.)
A similar effect occurs if a magnetic field is applied perpendicular to the plane of the analyzer along a beam of
charged particles. Then the splitting of doublets is called Zeeman splitting which is a very well known atomic
spectral effect that will be studied later.

Bloch's waves vs. Bohr's
One should compare the discrete Bloch spectra and dispersion in Fig. 9.3.1 here to the simple Bohr

spectra in Fig. 7.1.1. The orbital wavefunctions for both have a plane-wave form of "Bohr's ghost" waves.

Yin(x) = etkmx (9.3.6a)
However, Bloch waves for Cs are discretized into N=6 phasors at discrete points xp. (p=1, 2, ...,6)
Wm(xp) = etkmxp= gi2nmp/N (9.3.6b)

Each Bloch quantum number m=0, 1, 2, ..., 5, is a number m-modulo-6 as in (7.3.7) and in Fig. 7.3.3.
Bloch eigenvalues, however, differ from Bohrt's. Bohr orbital dispersion or energy is a simple parabola
(7.1.16) as follows using momentum quantization p,,=hk,,=h2zm/L with: m=0, +1, £2,...
Ep= (hky)2/2M = m? [h2/2ML?] (9.3.7)
This parabola is a low-energy approximation to the relativistic hyperbola in Fig. 5.2.1. In contrast, the Bloch
curve is a flipped cosine function (9.3.5g) as plotted in Fig.9.3.3 and superimposed upon the Bohr parabola. For
larger N (Fig. 9.3.3 it is N=24) and small m the cosine curve is approximated by a Bloch-like parabola given by a
Taylor expansion at the origin (k=0=ky) in k-space.
hoy, =E, = H - 2|S| cos(ky a) = H - 2|S| + |S|( kma )? +.. (9.3.8)
In this limit the Bloch dispersion is approximated by the simple Bohr parabola.
In the limit of large number N of “quantum dot” coordinates xp. (p=1, 2, 3, 4, ...,N) the continuum
coordinate x of the Bohr orbitals is approached. As long as the waves considered have low 4 , that is, are long
compared to the lattice interval a=L/N that divides up the Bohr coordinate range L, then Bohr and Bloch waves

have nearly the same dispersion ®m(km) and will behave the same.

(c) Brillouin's boundary
For larger wavevector &, the wavelength becomes shorter until its waves begin to "fall through the
cracks" in the lattice. Recall the difficulty in following the "Bohr's ghost" wave through the Cg phasors in Fig.
7.3.3 for the higher waves (m)y = (4)s or (5)s , or even (2)¢ . A break occurs when a half-wave length matches the
lattice spacing a. This is when (m)y =(V/2)n = (3)s, a "half-way point" known as the first Brillouin zone
boundary (BZB-1). It 1is at k;> or (m)y = (12)24 in Fig. 9.3.3 (N=24).
(m)BzB-1=(/2) or: kpzp.; = m/a or: Apzp.; = 2a (9.3.92)
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Fig.9.3.3 Generic 24-channel (C»4) tunneling spectra and Bohr vs. Bloch dispersion.

At this m-number or k-value the wave amplitudes are alternating +/ at the lattice points x,.
Yn/a(xp) = etkn/2ip= ei2n(N2)p/N = einp = (-])p (9.3.9b)
Phases that are in or m-out of phase make a standing wave with zero group velocity as in Fig. 9.3.4.

p=9 p=11 p=I13 p=15 p=17 p=19 p=21 p=23

A

EQVEQTER VAR VIR VIR VIR VIR YE

. s

p=0 p=2 p=4 p=6 p=8 p=10 p=12 p=I14 p=16 p=I18 p=20 p22 p=10

k1) =1+1254) B’Z)”_O”m boundary Waves rZero group velocity

7 " Wavevector k (in units of 2n/L) N 7
24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24

Fig.9.3.4 (Cyy) Brillouin boundary wave must be standing. (No group velocity)

Postive or negative (k=+/2) waves have the same effect on the 24 lattice points; both give standing wave
motion with no transmission one way or the other. In C24 symmetry +12 mod 24 = -12 mod 24.

The wave group velocity is the velocity Vgroup associated with classical particle or "message" velocity.
(Recall discussions in Sec. 4.4 (b-c).) From (9.3.8) the Vgroup for Bloch (or for low-k Bohr) is
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roup = C;k& = 2|—;|asin(kma) [5 2|—;:|kma2 Jforik <<m/a (9.3.10)

The group velocity goes to zero at the origin (k;,;,=0) and at the Brillouin zone boundary (k,,=kpzp). This is

consistent with our picture Fig. 9.3.4 of a standing wave. It just goes nowhere but up and down.

Effective mass: Another quantum view of inertia
Low velocity (u<<c) particle momentum is mass times particle velocity: Mu=MV g;yp. DeBroglie

relation (5.2.5¢) gives momentum as 7iky,. For low-ky,-Bloch waves (Bohr waves), (9.3.10) gives Veyoup

proportional to the tunneling amplitude S implying an effective mass M.y inversely proportional to S.
Meg(0)=12/( 2|S| a?) (9.3.11a)
This is consistent with a comparison of Bohr energy values €,,,= {/>(fik,;,)?/ps and the low-k;,, Bloch energy
eigenvalues (9.3.8). Recall the quantum effective mass introduced in (5.3.13) and repeated here.
F hk hk h do

M, =—= = = where: V. =—
7 a dVgroup dVgroup % d 260 sroup dk
dt dk dt dic?

(9.3.11b)

Effective mass is inversely proportional to the curvature of the dispersion relation. As £, increases in Fig. 9.3.3
the effective mass starts out at k=0 with the Me(0) value (9.3.11a). Then it increases until it goes to infinity at &y,
= kn/4 = k¢ . Then it comes back from negative infinity losing much of its negativity to end up at (Meg(k;2)=-Mef
(0)) on the Brillouin zone boundary &, = kn/2 = k> . There ®pioch(k) 1s a downward curving dispersion like Dirac
negative-energy anti-particle band in the lower half of Fig. 5.4.1. But, ®Bioch(k) in Fig. 9.3.3 differs from a
continuum relativistic dispersion relation (5.2.8)

2
2
E=ho, ... = J_r\/ ( Mczj +(chk) (5.2.8)repeated

For Wyeia.(k) effective mass approaches infinity only as the momentum or k becomes large. For a vacuum , a
constant applied electric field would cause & to increase uniformly. But, for a Cy lattice k-space is periodic so a
field causes a charged particle to just oscillate back and forth each time k passes through another Brillouin zone.
Based on this, relativistic symmetry appears quite different from that of a Bloch lattice. But then, have we really
looked closely enough at that vacuum continuum? It may take some pretty high k-values to do so!

The final sections of this unit are devoted to dynamics of Bohr waves shown in space-time plots of the
following Fig. 9.3.5-6. Recall also Fig. 5.5.5-6. The interference anti-nodes that spring up and then vanish are
called revivals, a term coined by Joe Eberly to describe atom-laser simulations he noticed around 1976. Much of
the intricate structure are called fractional revivals first noticed in molecular rotor simulations around 1980.
Much of the first analyses of fractional revivals, done during the 1990’s, involves particle-in-a-box and atomic
Rydberg states. However, Bohr orbitals provide the clearest understanding of revivals because of their underlying
Cy symmetry.

(Next pages: Figs. 9.3.5a-c)
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(Preceding pages. Figs. 9.3.5a-c Bohr wavepact revivals in space-time )
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(d) Bohr wavepacket dynamics: Uncertainty and revival
We now study Bohr waves that are a Gaussian combination of momentum-m plane waves.

‘P(¢,0)=<¢,O|‘P>=$ éwe‘mzmmze“"‘l’ (9.3.12a)

Here, m=0, £1, 2, +£3,...are momentum quantum numbers in Bohr energy formula (9.3.7).
Ep= (hky)?/2M = m? [h2/2ML?]= m?hv; = m?ho; (9.3.12b))
The fundamental Bohr frequency w;=2mv; is the lowest transition (beat) frequency v; =(Ej-Eg)/h.
Completing the square of the exponent provides a simpler ¢-angle wavefunction.
mAm V (am Am YV
W(0,0) = %m b e_(m_’ijj 13) - @{[”j (9.3.13a)
Only the lower-m terms with m<Am in the sum 4(Am,) have significant e-( m/Am)? yalues, but for larger Am the
number of significant terms grows until sum 4 approaches a Gaussian integral independent of ¢ .
k

2 2
A(amg)= 5 e_[Am ) ——)Jf;dke_[A’") —Jrzam  (9.3.13b)

Am>>1

m Am

The variable factor e-A ¢/2)? is a Gaussian function of angle ¢ or position x. It is remarkable that the Fourier

transform of a Gaussian e-("/Am)? momentum distribution is a Gaussian e-@A%)? in coordinate ¢.

(m|¥)= e-(m/Am)2 implies: (O |P)= e (®/A9)? (9.3.14)
The relation between momentum uncertainty Am and coordinate uncertainty A is a Heisenberg relation.
Am/2 =1/A¢ ,or: Am Ao =2 (9.3.15)

A Gaussian is an eigenvector of the Fourier C,, transformation matrix. (More about this later.)

Three space-time plots are given in Fig. 9.3.5a, b, and c, respectively, with decreasing momentum half-
width Am=9, 3, and /.5 and courser spatial resolution A¢/2n=2%, 6%, and 12% . Each is plotted for a full time
period T; = 1/0;= 2r/w; after which it repeats. The first Fig. 9.3.5a uses fine spatial resolution Ax-=0.02 which
requires 9-quantum excitation (Am=9). It shows a labyrinth of increasingly fine self-similar X-patterns of wave
revivals. In the second and third figures (9.3.5b and c), of lower excitation (Am=3, and 1.5, respectively), the
finer X-patterns begin to disappear leaving one big X over Fig. 9.3.5c.

Semi-classical Theory: Farey Sums and Quantum Speed Limits

Fig. 9.3.5c provides a clue to the theory of revivals. Its X is like a zero crossing in the Lorentz grid in Fig.

4.2.9, but with momentum values restricted by Am=1.5 to the first two levels m=0, +1, leaving two group (or

phase) velocities Vi; =+L/t; by (4.2.20), that is, a Bohr length L per Bohr time unit 7;.
2

_ m —n2 hv
a)m wn _( ) ! :(m+n)£:(m+n)Vl (9.316)

VBohr —
k, —k, (m—n)h/L T,

group

(m s n)=

The X in Fig. 9.3.5¢ has two zeros doing one lap in opposite directions around the Bohr ring in a Bohr period t;.
The packet anti-nodes or "particles" do laps, too, but their paths are not as contiguous.
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Fig. 9.3.6 Intersecting wave space-time X-path trajectories of nodes and anti-nodes.
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(Anti-nodal revival peaks and phases are discussed later.) |'¥|-nodes, being virtually dead, have an
indestructibility not had by zeros of Re'¥ that annihilate and re-create as they gallop through Fig. 4.2.9.

Relaxing the momentum uncertainty Am allows more m-values and wave velocities: £V ;,+2V;,+3V,...
ranging up to 2AmV’;. By (9.3.16) the maximum lap rate or quantum speed limit is 2Am, i.e., twice the maximum
|m|. Each velocity gives a fractional lap time of 1/1, 1/2, 1/3, ..., 1/(2Am) of the Bohr period. Such fractions are
written in the margin of Fig. 9.3.5 at the point where a lap trajectory passes the point ¢==x opposite the origin
0=0 of the wave packet. An n-th multiple n/D of an allowed fraction //D corresponds to the n-th lap of a wave
node ("zero") if D is odd or the n-th lap of a wave anti-node ("particle") if D is even.

The n/D fractional lines in Fig. 9.3.6 highlight the wave paths in Fig. 9.3.5a. As excitation Am increases,
even-D "particle" paths show up as dark shadows in between the odd-D "zero" paths in Fig. 9.3.5a. Also seen in a
high-Am plot (Fig. 9.3.5a) are "particle" paths with odd and even fractional slopes emanating from the origin ¢=0
of the wave packet. This is indicated in Fig. 9.3.6, too.

The geometry of generic group velocity rays is sketched in Fig. 9.3.7 using two rays to form an
asymmetric X around an intersection. (A symmetric X has equal group speeds d; and d5.) Fig. 9.3.5ais a
patchwork of self-similar X patterns of nodal (odd-dj ) or anti-nodal (even-dj, ) rays. The equations for the two
lines in Fig. 9.3.6 are

¢p=—dit+n+1/2 p=dyt—n,+1/2 (9.3.17)

Subtracting the first ¢ equation from the second gives the intersection time for the center of the X.

+I’ll_ n I’ll

tIZ—intersection - d +d d F ;
1

(9.3.18)

The resulting combination is called a Farey Sum @ f of the rational fractions n;/d; and ny/d; after John Farey, an
1800's geologist.

t I/ v
(in units of T}) |14 %zl/dz

(np+1)/d; no/d

> (nytnp)/(dy+dy)
(ny-1)/d> — ni/d] T
/4

- 17\ = -l
/ 1/d2 /= _d') !
_— A (I) (in units of 2m)

0/] Le=14"0] 14 1/2

Fig. 9.3.7 Farey-sum geometry and algebra of intersecting wave space-time trajectories.
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The Farey sum has been used to analyze classically "chaotic" or "fractal" structures , but its use in organizing
quantum resonance structure is new. It begins with a fundamental Farey sum relating the beginning fraction (0/1)
and ending fraction (/1) of the (0« 1)-quantum beat or fundamental revival.

0 1 1

This is the instant #/t;=1/2 for a half-time revival and the zero at the center of the fundamental X in Fig. 9.3.5c.
The fundamental sum makes up the second row of a Farey Tree of such sums shown in (9.3.20). The sums in the
D-th row of a Farey tree are an ordered set of all reduced fractions with denominator equal to D or less. The tree
need not go beyond D>2Am where denominator D exceeds the wave quantum speed limit 2Am of (9.3.16). Finer
revivals will be unresolvable. More energy is needed to see finer X’s.

p<t @ 1
1 1
p<2 O 1 1
1 2 1
p<3 O 1 1 2 1
1 3 2 3 1
p<a © 1 1 1 2 3 1
1 4 3 2 3 4 1
p<s 0 11 1 2 1 3 2 3 4 1
1 5 4 3 5 2 5 3 4 5 1
p<e © i1 1 2 1 3 2 3 45 1
1 6 5 4 3 5 2 5 3 45 6 1
p<7 © 11121 23143 253456 1
1 76 5 4 71 3 572175 37 4 5 6 1 1
p<g 01111121323 1435253456171
> 187 65 4 7 3 857275837 45¢6 781
(9.3.20)

The tracking of crests or wave peaks yields information about classical particle-like or group-wave
motion. It is comforting to see familiar classical paths in what is often bewildering quantum cacophony but, the
clearest X-paths in Fig. 9.3.5a are zeros emanating from the point ¢ ==z where the particle packet originally was
not. Quantum wave dynamics differs from classical dynamics is that multiple Fourier components easily interfere
much of a wave to death. Most path phases lead to non-existence except near (rare) stationary-phase paths that
may be familiar classical ones. This is what is responsible for particle localization that allows us to enjoy a
Newtonian world and largely conceals its quantum wave nature from us. Where the wave is not provides
important quantum clues. One recalls Sherlock Holmes' revelation that it is the "dog that did not bark" which

solved a mystery.
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9.4 Homo-cyclic Cn Revivals

Wave phase is key to the Cyy dynamics beginning with the “beats” of two-state C> system. As we have
said, “It takes two to tango.” First we review the two-state-system dynamics with analogies to optical polarization
from Chapter 1 and coupled pendulum dynamics. (Later chapters will use this analogy.) C> holds the first key to
analyzing the revivals introduced in the preceding section.
We have also said, “Three’s a crowd.” The dynamics associated with C3 systems is discussed after that of C, and

then that of Cy, Cs, Cg, and C;5 systems. Each is part of the revival milieu of Fig. 9.3.5.

(a) Two-state Co systems: Beats
Motion of anti-nodal revivals for a 2-level excitation such as Fig. 9.3.5c are like beats of coupled
pendulums. Fig. 9.4.1a shows phasor pictures of 2-cyclic (C;) eigenstates. Phasor "clocks" are phase-space plots
of ReV vs. Im¥ for wavefunction W (p) at each spatial point p=0, 1. Re'' is up, Im¥ is to the left, and the area 7|
|2 of the phasor is proportional to probability |¥|? at point p.
Each eigenstate phasor rotates clockwise at its Bohr eigenfrequency ®,, = m?®; , that is,
W (t)=eOm¥(0). The C, eigenstates are labeled even (02)=(+) or odd (1,)=(-) as usual.
|4) =10,)=( x)+ ) V2 (9.4.1a) |9 =)= ) )2 (9.4.1b)
Bohr eigenfrequency: ®g = 0 (9.4.2a) Bohr eigenfrequency: ®; (9.4.2b)
|m>) eigenfrequencies ®,, are wy = 0 and w; = h/(2ML?) by (9.3.12b). States |my) are + or — combinations of a
local oscillator base state labeled |x)=|r) (localized at spatial point p=0 or $=0) and a "flipped" base state |y)=rx)
=|r!y(localized at point p=1 or ¢=r). States |+) and |-) are also eigenstates of C "flip" operator r defined by F|x)
=[y) and r|y)=|x), that is, r|+)=+|+) , and r|-)=-|-). State |+) is analogous to +45° polarization which is the "slow"
eigenstate. State |—) is analogous to the “fast" -45° optical axis.
An initial 50-50 combination of the |+) and |-) eigenstates briefly recovers the |x)=|r0) local base
by =( ) +]-) VA2 =(102)+12) YA2, (Time t=0)
lying between [+) and |-) in Fig. 9.4.1b. The |12)-eigenstate is faster than the |02)-eigenstate (which does not move
at all by (9.4.2a)) The |x)-state is always a sum of 0z and 1> phasors. (Left and right 0> phasors are at 12 PM in
Fig. a while the left /> phasor starts at 12 PM and the right /> phasor at 6 PM.) After 12 PM the /2 phasors “tick”
but 0 phasors are stuck at 12PM. Their sum |x) varies with time.
By 1/4 of beat period 1;, the fast |72) clocks are 90° ahead of the stuck |02). (Clockwise is —i.)
ILY =( [+)—i|-) YN2 =(102)—i |12) YN2. (Time t=(1/4)1; )
The left and right hand /2 clocks move to 3 PM and 9 PM, respectively, but 02 clocks are stuck at 12 PM. On the
left: 12 PM plus 3 PM is half-size clock at 2:30 PM. On the right: 12 PM plus 9PM is a half-size clock at 10:30
PM. Note two half-phasors at -45° (2:30 PM) and +45° (10:30 PM) at //4-period. The 1/4 period situation is
analogous to optical //4-wave plates that change |x)-polarization to left-circular |L).
By 1:/2 the fast 1> -clocks go /80° ahead to give the "flipped" local base state of y-polarization.
) = (F=DAN2 = (102)= 112) )2 (Time t=(1/2)11)
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At 1,/2, the left 12 clock is at 6 PM the right one at 12 PM, but both 0> clocks still read 12PM . On the left: 12 PM
plus 6 PM is zero (a node). On the right: 12 PM plus 12PM is big 12 PM. All the wave flips to the |y)-state. The
1/2-period situation is like //2-wave plate changing |x)-polarization to |y).

Still later at (371;/4) the initial |x)-state has become a right circular state. (Fig. 9.4.1b bottom)

IRY =( H)+i|-) YN2 =(102)+i |12) YN2 (Time t=(3/4)1; )
Finally, at full-time (7/1)t; the initial |x) state (top of Fig. 9.4.1b) is once again back to being |x) and would
reappear beneath Fig. 9.4.1b to begin repeating the revival sequence.

In Fig. 9.4.1b, dotted lines making an X are drawn around the phasors to connect places where wave
amplitude is low like the X-pattern in Fig. 9.3.5¢c. Low m-uncertainty (Am=1.5) means the revival wave is mostly
a combination of the first two Bohr eigenlevels m=0 and |m|=1 having just two group (or phase) velocities +V;
and -V;. In other words, Fig. 9.3.5c¢ is essentially just a two-state system, and the major half and full revivals are
just binary beat of two coupled symmetric pendulums.

The 1/4 fractional revival corresponds to transition state |L) =( |x)—i|y) A2 (analogous to left circular
polarization) between the major revivals. In |L) the left hand position phasor is 90° ahead of the right hand one

being resonantly pumped up. The roles of the two phasors are reversed at 3t;/4.

(b) Cn group structure: n=3, 4,...6 Eigenstates

To understand finer X-zero patterns and fractional revivals between zeros in Fig. 9.3.5 a-b we go beyond
the binary {|0,)|1,)} basis to, at least, the base-3 basis {|03)|1/3)|23)} of C3 The bra state vectors {{03|{13[{23|}
were defined in Fig. 2.6.4 and are re-drawn in Fig. 9.4.2a. The C3 wave states have quantized momentum m=0,
1, and 2 modulo 3 . Each m labels a row of three phasors in Fig. 9.4.2a which are a discrete sampling of the
waves in the first three Bohr levels m=0, 1, and 2.

In Fig. 9.4.2b are 4-nary C4 base states of m=0, 1, 2 and 3 modulo 4 quanta and Fig. 9.4.3a reintroduces
5-nary Cs bases of m=0, 1, 2,3, and 4 modulo 5 quanta, and similarly in Fig. 9.4.3b for Cgs. These systems are
like counters; a binary C system can count only to two, that is, 0 to /, but each of the Cy systems are capable of
counting to N, thatis, 0, I, 2,3,..,N-1.

Physically the Cy waves are bases of a finite and discrete Fourier analysis. Each Cy character table in
Fig. 9.4.2a-b or 9.4.3a-b (if all divided by YN) is the N-by-N unitary (U(n)) transformation matrix {p|m) of
discrete Fourier transformation coefficients. (Recall Fig. 7.3.3 and discussion.)

<P‘(’”)N>: PN [N <(m)N ‘p>* (pm=012..N-1) (9.43a)
Each phasor in Fig. 9.4.2-12 sits at one of N equally spaced lattice points p=0, I, ...,N-1. Each phasor
gives for a particular angular point p=0, I, 2,3,..,N-1 the complex wave amplitude (7.3.10a)
Vm(21tp/N) = {pl(m)n ) = {(m)N |p)*
of a continuous running wave that is one of Bohr-Schrodinger eigenfunctions y+,,(¢).
A real (cosine) part of the eigenfunction is drawn for each eigenstate |(m)y) in Fig. 9.4.2-3 to help connect it to
the latter. The state notation (m)y labels these waves and should be read m-modulo-N (or m%N in C) meaning
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that waves having m+ nN wavelengths or quanta will give a physically and mathematically identical state (m)y .
(They are Fourier aliases (m)y = (m* nN)y, states differing only by reciprocal lattice vectors K=+ nN .)

In Fig. 9.4.2-12 each one of N equally spaced lattice points p=0, I, 2, 3,...,N-1, is labeled by a p-th power
r? of a fundamental Cyy group rotation r by angle 21/N , that is, by r0=1 , r!, r? r3 ..., rN-I  rN=1 respectively.
This labeling notation simply lists the operator elements of the cyclic Cy symmetry group as was done in
equations (8.1.5a). The entries e-?"/27N are m-th eigenvalues of r0,r! r2....x7.

The phasors are graphical representations of the complex eigenvalues or characters of the various cyclic
groups. It should be noted that the binary C, phasor table (Fig. 9.4.1a) is embedded as a subset in the Cy4 table
since C> is a subgroup of Cy. C> 1is also seen in the Cg table (Fig. 9.4.3b) or any Cy table of even-N since C> is
a subgroup of all C»,,. The Cg table also has the Cj table (Fig. 9.4.2a) embedded. Symmetry embedding is of
utmost importance for analyzing group algebra, their representations, and their physical applications. Here it is
what gives the revival structure down to the finest observable details of revival wave phase or amplitude shown
in Fig. 9.3.5 a.

The same numbers (without the VN ) serve triple or quadruple duty in algebraic group theory. Besides
Fourier transforms they are irreducible representations D"™(¥P) of Cy

pm

D" (gr)= e 2e (9.4.3b)
such that Dm@a) D" (b) = D™ (ab) .
This goes along with the D" (¢) being eigenvalues of the group operators e=r?. (Note (r?)’ =r P.)
| (m), )= D" (2| (m), )= e 2 | (), ) (9.4.3¢)
L
<(m)N‘rp =D(m)N (rp)<(m)N‘=e 2zN <(m)N‘ (9.4.3d)

Also, each row of the character table in Fig. 9.4.2-3 is an eigen-bra-vector wavefunction of discrete points p or
powers of rP. As shown in Sec. 9.2, each bra ((m)y| and ket |(m)y) must also be an eigenvector of any
Hamiltonian operator H that commutes with Cy , i.e., has Cy symmetry (HrP=r”H). So the character tables
serve finally as universal energy eigenvectors and eigenstates, too. All the above apply to the generic Cy groups

and all their embedded subgroups which include all smaller C,, for which #n is an integral divisor of N.
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(a) C;3 Eigenstate Characters (b)c 4 Eigenstate Characters
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Fig.94.2 C3 and C4 eigenstates and revivals.
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(a) and (b) C3 and Cy4 eigenstate characters.
(c) and (d) C3 and C4 revival space time patterns.

(c) Ch dynamics: n=3, 4,...6 Fractional Revivals

For each subgroup embedding there is a corresponding embedding of the revival tables that are shown in
Fig. 9.4.2c-d and 9.4.3c-d. Revival tables are obtained, as in Fig. 9.4.1b, by first summing all the rows of phasors
in each character table C3, Cy, Cs, or Cgs of Fig. 9.4.2-3a-b. This localizes the initial wave 100% onto the first

phasor position state |xg). Because {(m)n] xg) = I identically, we have
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N-1 N-1
|x0>=méo‘(m)N><(m)N‘x0>=méo‘(m)N> (9.4.4a)
This is called a group completeness relation or resolution of the identity. All phasors are equivalent due to Cy
symmetry, so arbitrarily picking the first column (r’=1) does not affect the general utility of Fig. 9.4.2-3.

Translation by r? rephases the sum (9.4.4a) according to (9.4.3c) and translates all waves rigidly.

N-1 N1 -2

‘x >=rp|x>= Erp‘(m) >= Y e 27N
p 0 ~ N -
m=0 m=0

(m),) (9.4.4b)

Then each term |(m)y) in the sum (9.4.3) is allowed to advance its Bohr phase e i@l = e im0t in discrete

time fractions //N of t1 for N-odd or 1/2N for N-even, that is, through stroboscopic instants t.

T, 2
LY (21,2, N =1) for N - odd
N~ oN

(m)y) = (9.4.5)

T
v—= v (v= 1,2,...,2N—1)f0r N —even
2N  oN

N-1 —imza)t
|x0(tv)>: 2 e Y
m=0

For each stroboscopic instant or row in Fig. 9.4.3 there is an array of equally-sized and equally-spaced phasors,
that is, a kaleidoscopic phasor array. At each #,, phasors are either revived or else zeroed-out.

An even-N=2p revival table, such as N=4 and N=6 in Fig. Fig. 9.4.3 has embedded the N=2 revival or
"beat" table in Fig. Fig. 9.4.1b since C is a C3, subgroup. So besides the obvious 1/2-time revival halfway
around, there must be //4-time and 3/4-time revivals for N=2 at each of the //4-lattice points, that is for N=6, at
t=3/12 and t=9/12, and for N=4, at t=2/8 and t=6/8. Because N=6 is also divisible by 3 there will be N=3
revivals embedded at r=4/12=1/3 and t=8/12=2/3. Also, N=3 revivals embedded relative to the 1/2-time revival
at t=1/3-1/2=-1/6 and t=1/3+1/2=5/6 and t=2/3-1/2=1/6 and at t=2/3+1/2=7/6. The phase angle
"combinations" for each of the embedded phasors are reproduced perfectly and periodically as in a kind of
quantum "odometer" or counter.

An even-N revival table must start all over again at half-time, but from a point half-way around the ring at
o=r if it started at =0. This is required by Cy symmetry and by C> half-time revival having 100% probability
on the antipodal (half-way) point p=N/2 if 100% probability starts on the initial p=0 point. So the C4 phasors
below the (p=2, t=2/4=1/2) point in Fig. Fig. 9.4.3b, namely, t=5/8, 3/4, and 7/8, must have positions,
amplitudes, and phases relative to the mid-point p=2 that are identical to ones at r=1/8, 1/4, and 3/8, respectively,
below the initial /=0=p point. Similar repetition is seen for N=6 in Fig. 9.4.3c and for any even-N revival table
below t=1/2.

A prime-N revival table (like N=3 in Fig. 9.4.2c or N=5 in Fig. 9.4.3c) has no embedded structure
because prime Cy has no subgroup but C;. After the initial localized state each revival has probability distributed
equally on all N lattice sites but with distinct phase combinations as in a kind of base-N quantum odometer. In
contrast, base-N counters with N=2P, p! or other composite numbers like N=4 or 6 in Fig. 9.4.2d or 9.4.3d have

the greatest variety of revival amplitudes.
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(a) C5 Eigenstate Characters (b) C ¢ Eigenstate Character
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Fig.94.3 Cs5 and Cg eigenstates and revivals.
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(a) and (b) C5 and Cg eigenstate characters.
(c) and (d) C5 and Cg revival space time patterns.

The N=6 space-time wave patterns of Fig. 9.4.3d match phasor-for-peak with the revival intensity
structure of the 1/12ths, 1/6th's, 1/4th's, 1/3rd's, and 1/2 revivals in Fig. 9.4.5 a or b if Fig. 9.4.3 tables are
rescaled to the same size and overlapped with their edges centered in Fig. 9.4.5 a or b. Also, each table gives
exactly the correct amplitude and phase of each revival peak that belongs to it as well as showing where the zeros
reside. Similar character-revival tables of C5 (Fig. 9.4.3¢c), C7, Cy,... will account for finer odd-fractional revivals
occurring at stroboscopic odd-time fractions like the 7/5th's, 1/7th's, 1/9th's,...and so on. (Recall //8th's are
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revivals for C4 shown in Fig. 9.4.2d. They will be copied by a Cg revival table in between its (new) 1/16th's.) The
medium resolution wave plot of Fig. 9.4.5b displays N=2, 3, 4, ...,8 structure more clearly than high-Am Fig.
9.4.5a by suppressing or defocusing the even finer revivals and prolonging fewer but more robust peaks or zeros
of the more fundamental revivals. But, all zero-centered excitations (i =0) for larger-Am such as shown in Fig.

9.4.5a-b have the same fundamental X of'a (0<>1) C; beat in Fig. 9.4.5c, that is, they show a half-time revival
that peaks around the center of the largest X.

Cyclic subgroup hierarchies

---C cC ch CC3 c---
n pn pn pn

are here being used to organize quantum fractal revival dynamics. Schrodinger's approach to quantum theory,
which eschewed the gruppenpest in favor of differential equations, is not set up to explain the origins of such
discrete fractal structure. This is because each successive integer N starts a new hierarchical group family. If the
integer is prime the family is entirely new. But, if it is not prime, then older smaller families belonging to each of
N's factors are copied and embedded in the new family. In contrast, Schrodinger's wave equation treats every
value of its independent variables as just another dumb x or ¢, and rational structure is glossed over.

Each new odd integer N=2m+1 will have N new revival peaks at time fractions t/I=v/N=1/N,...q/N .. but
only for fractions g/N that are irreducible. Reducible fractions ¢/N that reduce to ¢/N = gr/r (by dividing out a
highest common factor f=N/r=q/qr ) just recreate the "old" r=N/f-peak revivals already seen for a lesser or
reduced integer Ng =r=N/f. Similarly, for even N=2m the only new revivals are at found irreducible time
fractions t1=v/2N=1/2N,...q/2N ... . All the rest belong to subgroups Cy;, (if any) of Cy including C,, and C>. A
formula for new revival phasors based on sum (9.4.5) is given in Appendix 3.A. Now we consider a quasi-
classical way to understand revival dynamics.

Odd-N revivals clearly display the prime factors and their multiples of the integer N. If N is a prime
number as it is for N=3 in Fig. 9.4.2c and for N=5 in Fig. 9.4.3c¢ then all reviving kaleidoscopes except the initial
one consist of uniform distributions of N phasors of probability //N. However, for a composite odd integer such
as N=13, the phasor distributions are not uniform as shown in Fig. 9.4.4. There are nodes at the p=+/ points for
all revivals that correspond to factors of the integer N=15, namely at the revivals numbered /, 3, 6, 9, 12, and /,
5, 10, and 15. The latter are copies of C3 revivals seen in Fig. 9.4.2¢ and the former are copies of Cs revivals seen
in Fig. 9.4.3c. Their presence is simply a result of C3 and C5 being subgroups of Cy35.

By definition, / is a factor of all N and Cj is a subgroup of all Cjy . This is manifest by the first row of
each revival table. The only even prime integer is N=2. This helps to account for the unique status of the C>
revival table in Fig. 9.4.1b and the extra significance of the C> parity of each integer N, that is, the distinction

between odd and even integers.
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Bohr vs. Bloch dispersion

The value of the Cy models increases when the purely quantum effects, particularly those of a single Cy,
are to be isolated. One imagines having a discrete Bohr ring like those sketched Fig. 9.4.5 composed of N atoms,
quantum dots, optical fibers, or Josephson circuits homo-cyclically coupled is such a way that the usual quadratic
Bohr dispersion spectrum ®,, = m?®; is obtained with a finite number N of states per band. As a first
approximation, such a ring has a Bloch dispersion spectrum ®,, = (Hp-2H| cos am) where H; is the nearest
neighbor coupling amplitude. Such a Bloch spectrum only approximates a Bohr spectrum for low m-values, and
so high-Am revivals would decay eventually. However, by inserting cross-connecting coupling paths H, , H3 ,
Hy, ..Hyy , as shown in Fig. 9.4.5, it is possible to achieve any spectrum, including m?, by adjusting coefficients
Hy in a Fourier series.

Wy, = Hp-28] cos am-2H> cos 2am-2H3 cos 3am...-Hpy» cos Nam/2 .

A quadratic spectrum (E,,=hvm?) is achieved for general N by setting Hamiltonian parameters as follows.

hom® = NilH e_ipm%, where: H _ v > m? eipm%” (9.4.6)
=0 " N {m}
For example, a 4-level N=6 quadratic spectrum {E)=0, E+;=1? E.+»>=22, E3=32.} involves six eigenstates: |(m)s)
=1(0)¢), |(£1)6), |(£2)6), and |(3)6), using the following coupling amplitudes as given in the N=6 row of Table 9.1.
Hp=3.16, H;=-2.0=Hs*, Hy= 0.67=H4*, H3=-0.5 , (9.4.7)

With the adjustments in Table 9.1. of Hy coupling, pure Cy revivals like those in Fig. 9.4.2-3 would repeat
at frequency vV=Ah-! until the coupling is turned off. Such a device would be an N-ary counter as implied before.
By incorporating the N-ring as the crossection of a coaxial N-fiber cable, it would be possible for the revival
evolution to occur as an N-phase wave propagated down the cable. The possibility of storing, processing, and
transporting quantum or classical N-ary data for N>>2 using just one kind of basic hardware may yet warm the

heart (and portfolio) of a future cyber-entrepreneur.
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Fig. 9.4.5 Quantum dot or co-axial cable structures with arbitrary dispersion

Table 9.1. N-Discrete m?-Hamiltonian Coupling Amplitudes. All devices have a unit revival rate: ho=1 .

30

N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12
N=13
N=14
N=15
N=16
N=17

Hy
1/2
2/3
3/2
2
19/6
4
11/2
20/3
17/2
10
73/6
14
33/2
57/3
43/2
24

Hj

-1/2
-1/3

-1
-1.1708
-2
-2.393
-3.4142
-4.0165
-5.2361
-6.0442
-7.4641
-8.4766
-10.098
-11.314
-13.137
-14.557

H

172
0.1708
2/3
0.51

1
0.9270
1.4472
1.4391
2
2.0500
2.6560
2.7611
34142
3.5728

H3

-1/2
-0.1171
-0.5858
-1/3
-0.7639
-0.5733
-1
-0.8511
-1.2862
-1.1708
-1.6199
-1.5340

Hy

1/2
0.0895
0.5528
0.2510
2/3
04194
0.8180
0.6058
1
0.81413

Hs

-1/2

-0.0726
-0.5359
-0.2028
-0.6160
-1/3

-0.7232
-0.4732

Hgs

172
0.06116
0.5260
0.1708
0.5858
0.2781

H7 Hg

-1/2

-0.0528

-0.5198 1/2
-0.1479 0.0465

Hy
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Problems for Chapter 9.

Evolution (A 2000 Qualifying exam problem)
9.1.1. A two-state quantum system evolves as follows in 5 sec. (First: Is the evolution unitary?)
State |1) becomes state |1'y = -v3/2 |1) - i/2 |2)
State |2) becomes state [2) = -i/2|1) -v3/2]2)
(a) Derive a complete set of states as combinations of |1) and |2) so that each combination would stay the same (except for a
possible overall phase) at all times.
(b) Compute the energy level splitting AE=E3-E{ for this system assuming AE is the lowest possible to achieve the 5 sec.
evolution given in part (a).
(c) Derive an expression for any state at any time t and give |1(2)) and |2 (¢)) numerically at t=1 sec.
(d) Does this evolution correspond to a Hamiltonian H? If so, what H?

Revolution

9.1.2. A two-state quantum system evolves as follows in t sec. (First: Is the evolution unitary?)
State |1) becomes state |1') = cos wt |1) - sin ot |2)
State |2) becomes state |2') = sin ot |1) + cos t |2)

(a) Does this time evolution correspond to a Hamiltonian H? If so, what H? Is it Hermitian?

Hexapairs
9.3.1 The hexagonal Cs eigenstates |06) and 136) are standing waves while [I+1¢), I-16)] and [I4+26), |-2¢)] are right and left moving
wave pairs.

(a) Do [I+36), I-36)] a moving wave pair make? Explain why or why not?

(b) Can the [I+16), |-16)] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.

(c) Can the [I+26), |-26)] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.

(d) What values, if any, for tunneling parameters ISI, 6, ITl, T, and U allow standing-wave-pair eigenstates. Must they always

be degenerate?

Octapairs
9.3.2 Consider an octagonal Cg system of 8 quantum dots.
(a) Write the general form of its Hamiltonian.
(b) Display its eigenkets and write a formula for its energy eigenvalues.

Back to Roots...again
9.3.3. Eigensolutions of C2 and C3 symmetric H can be turned into quadratic and cubic root formulas.

A B

(a) Eigenvalues of H=[ 2 4 J , namely A=A%B give solutions to A2-2AA+A2-B2=0 Use this to derive the familiar quadratic

formula for roots of aA2+bA+c=0 .

A C B
(b) Use the above and C3-derived eigenvaluesof H=| B 4 ( | to derive the less familiar formula for roots to general cubic
C B 4

equation aA3+bA2+cA+d=0. (Hint: First consider A3-+pA+q=0 .)
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Quantum baseball

9.3.3 Suppose the Asumma Tummy Quantum Computer Co. has taken over the world and you are the only one in your country that
still knows the difference between an amplitude and a phase. Your assignment is to design, make or experiment with some
quantum dot computer elements diagrammed below having charge carrier matter-waves that tunnel along edges and diagonals of
squares as indicated below.

H+AH
5% g
g% S

S*=(pHlp+1)
(a) Tunneling P aths

S
S=({p+1H]p)

(c) Broken sy mmetry
(OH|0)=H+AH
(1LH|0)=S+AS = (OH|1)
(OH[3)=S+AS = (3H|0)

(b)(4 Quantum Dots
H=(pH|p)=H*

Suppose edge tunneling amplitudes are equal and real (S =-7.0) while diagonal tunneling amplitudes are zero (7=0) to give C4
symmetry as shown in Fig. (b). Suppose at time =0 the charge carrier amplitude is 100% on "home" base state |0).( (O]'¥(¢=0))=1).
(a) Derive eigenlevels and calculate the time dependence of the home-base amplitude (O|¥(#))=? Find the period Trebound of
time it takes home-base to rebound to a maximum again after initially decreasing. Does it rebound to 100% the first time?
ever?
(b) Sketch phasors for each of the four bases |0), |1), |2), and |3) at 1/4- Trebound time intervals and indicate by arrows
between phasors the direction of instantaneous charge flow from one to the other. (Tell how you determine this just by
looking at the phasors.) Does first, second, or third base ever hold 100% of the charge?
(c.) Suppose all edge tunneling amplitudes are equal but (possibly) complex (S =-ei0) while diagonal tunneling amplitudes
are zero (T=0).
(a) Adjust the tunneling phase angle G so as to make four equally spaced energy eigenlevels with quantum numbers m=(0)4,
(-1)4, (1)4,and (2)4 ,in that order.
Is the order (0)4, (1)4, (2)4, and (3)4 = (-1)4 also possible using this adjustment? If not, can some other kind of adjustment

achieve it without changing the form of the eigenstates? Discuss.

Janitor’s revenge
9.3.4. Suppose a janitor hits the home-base dot-0 with his broom handle and accidentally resets some H-matrix elements shown in
Fig. (c) by small amounts: the first diagonal by AH=A and the first off-diagonal by AS=AS*=B. All other matrix elements remain
the same as in Problem 9.3.3. Let the new "broken" Hamiltonian be a sum H' =H + V(A,B).
(a) Derive a matrix representation of the janitor's perturbation V(A,B) in the original |0) to |3) basis, in the moving-wave basis
1(0)4),1(-1)4),1(1)4), and |(2)4), and in the standing-wave cosine and sine basis |(0)4), |(c]1)4),(s1)4), and |(2)4), where: |(c])

D =-DPHDgHN2 and: |(sp)g) = ((-D-(Da)/iv2 .
(b) Use (a) and perturbation theory to estimate (to 2nd order |A/2=IAS/? or |bI?=IAH]) the effect of the V(A=0.1,B=0.2) on
energy eigenlevels €(0)4, €(+l)4, and €(2)4 as €(m)4 turn into eigenlevels of the "broken" Hamiltonian H'. Which

representation from (a) should be used and why? Show your work.
(c.) Discuss the effect, if any, on the original eigenstates [(0)4), |(-1)4),1(1)4), and |(2)4), and sketch their phasor diagrams

next to the corresponding eigenlevels. Are moving-wave eigenstates still possible after the janitor does his or her work?
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Beware the pentagram

9.3.5. Suppose a pentagonal C5 device in prob. 9.3.3(a).

(a) Could it ever rebound to 100%? Discuss devices (a), (b), and (c).

(b) Discuss the possibility (or impossibility) of constructing such a device that would give a "runner-going-around-the-bases"
effect with 100% probability occurring briefly but consecutively on first base, then second base, then third base, and finally

home base. If such a device could be made would it also be capable of running in the opposite direction without modifying
the H-matrix?

Quantum dot.com

9.3.6 The Cn quantum dots in Fig. 9.4.5 are supposed to belong to an infinite family of structures whose ®y-spectrum is
quadratic in quantum number my. This assumes a sequence of tunneling paths or connecting couplers described by (9.4.6).
The N=2 example seems an exception having only a single H; = S connector on each dot. Is this right? Should the

H

Hamiltonian be H = H S or should it be H=
S H 28

ij j to conform with the rest? Discuss. Compare the N=2
case with, say, that of N=4.

Quantum dot.com again
9.3.7 The Cn quantum dots in Fig. 9.4.5 might be made to have other spectral band functions such as

(Q) Quadratic spectrum: ®(m)=¢e(m)/fi= m2 = 1,0,1,4,9,... for (m)N=-1,0,1,and £2, £3,....
(L) Linear spectrum: ®(m)=¢(m)/#=Iml=1,0,1,23,... for (m)N=-1,0,1, +2,+3,...
(SL) Super-linear spectrum: @(m)=¢(m)/A=m =-1,0,1,+2,+3,... for (m)N=-1,0, 1,+2,+3....

(a) Derive N=8 coupling parameters for each of these spectra.
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Review Topics & Formulas for Unit 3

Fourier Series Coefficients Fourier Integral Transform Fourier Cy, Transformation

(ko )= "1 (i, J)(e]) (k1)= T aeCrl) o) {h90="3 (ko s, )

— ik, x —ikx

* e * 7ikmxp N
<km x>=e\/z =<x km> Kernal:<k|x>=\/g=<x|k> <km‘xp>:eT:<xp‘km>
x-Wavefunction ¥ (x)= x-Wavefunction ¥ (x)= x-Wavefunction ¥ (x)=
—oo o0 =N-1
()= "5 (ol )k, ) ()= T el) (e, =" ) )
Ortho — Completeness Ortho — Completeness Ortho — Completeness
—oo o =N-1
")k =0(e) T a8l =00 0) " oy o=,
L2 o p=N-1
a0l =t Tl =0-8) S b N )=
Discrete momentum m Continuous momentum k Discrete momentum m
Continuous position x Continuous position x Discrete position x,
U must be Unitary
Time Evolution Operator U Time Evolution Operator U U?(t) _ U_l(t) V()
|¥(1) = U(1,0)|¥(0)) U(,0)= ¢ 1H/A P
I . _ —id/n\' _ imTn _ iH/R
Hamiltonian Generator H Schrodinger t— Equation (e ) =e =e
ih%U(t,O) =H U(1,0) ih%| V(1)) =H|¥(1) so H is Hermitiam H' = H
Schrodinger time-independent energy eigen equation.
H/ ;) =10, o) =€y 0y,) (9.3.1a)

H-eigenvalues use r-expansion (9.2.6) of H and Cg symmetry rP-eigenvalues from (8.2.9).
{klrPlkyy= e iPkma = e-ipm27W/N where: ky, = m(27/Na)
(kinHlkm) = H (k| Lkm) + S Ckmltlkm) + T Cknle2lkmy + U (kinlr3lkin) + T klr#lki) + S* (ki)

= H + Setkma + Tei2kma + U e-3kma 4 T* ei2kma + §* eikma (9.3.5a)
Bloch dispersion relation. And Bohr limit (k<<s/a) approxiamtion. Band group velocity Veroup.
hoy, =E, = H - 218 cos( ky,a) = H - 2ISI + ISI( kypa )? +.. (9.3.8)
do, _Is| LBl 2
eroup = % = Z?asm(kma) [: Z;kma Jforik <<m/a (9.3.10)
Effective mass M. inversely proportional to S. Meg(0)= h2/( 218 a?) (9.3.11a)

Fourier transform of a Gaussian e"™/Am)? momentum distribution is a Gaussian e"(%/20)? in coordinate o.
(m¥)= e-(m/Am)2 implies: (O W)= e (¢/A0)? (9.3.14)

The relation between momentum uncertainty Am and coordinate uncertainty A is a Heisenberg relation.
Am/2 =1/Ad ,or: AmAG =2 (9.3.15)
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Bohr wave quantum speed limits
2

3 —n?|ho
wm wn (m " ) 1=(m+n)£=(m-|-}’l)V1 (9316)

Bohr —
v k, —k, B (m—n)h/L T,

group

(m > n)=

Predicting fractional revivals: Farey Sum & r of the rational fractions n;/d; and ny/d>

112 + I’ll 1’12 }’ll
tlZ—intersection = e G—DF -
d,+d, d, d,

(9.3.18)
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Appendix 9.A. Relative phase of peaks in a revival lattice

The first derivation here of revival amplitudes at stroboscopic time fractions ¢, = T(v/N) and kaleidescopic
angular positions ¢p=21(p/N) assumes N is odd. At times when fraction (V/N) is reduced, all N revival peak sites
hop up with identical magnitude and with particular arrangement of phases that clearly distinguishes each v/N
from all others. First we derive formulas for these phases as a function of site index p and revival time index v.
(If time fraction v/N reduces to Vg/Np, then use (Vg ,Ng) in place of (v,N) to find N peak phases of subgroup
Cny revivals.) The first step is to complete the square of exponent in sum.

2
. 2 \2r¢ —i mzv—merp— 2n ‘p2 2r
Loy JUmP=mviis 1 oyl 4v | N "N
W0(¢p’tv):;2m=0 € :;Zm:o € e
2
1 —i[mv—B J[m—ﬂ]zi iLZl
=—3Nle 2 WIN g av N (A.1)
m= .
N
2
1y —i(2mv—p)2—427]rv zi—%{
=;Zm=0 e 12 e v

The integer square (2mv-p)? in the exponent is to be treated as an integer-modulo-4VN since the phase
factor repeats after that value. However, as summation index m runs through the integers m = 0, 1, 2, ..., N-1 it
exhausts all the possible values of (2mv-p)? -mod-4vN for a given v and p, and the values are the same no matter
what we take for the range of m. For example, consider tables of phase index (2mv-p)? -mod-4vN for select times

of v=1/ and v=2 for an N=5 level excitation.

(2mv - p)’mod4vN for N=5 (2mv-p);, forN=5
v=l |m=0 1 2 3 415 & v=2|m=0 1 2 3 415 6 7 8 9110
p=0| 0 4 16 16 450 4 p=0| 0 16 24 24 1650 16 24 24 16i 0
1 19 5 901 (A22) 19 9 1 331 9 9 1 25) 1 (A.2b)
2 4 0 4 16 1614 0 2 4 4 36 20 36!4 4 36 20 !
3 9 1 1 9 5 i 9 1 3 9 1 25 1 9 i 9 1 i
4 16 4 0 4 16116 4 4 16 0 16 24 2416 !

Note that N consecutive values for m give the same sum no matter whether the sum starts at m=0 or at a
sum-shift value m=U. The idea is to shift the summation index m to m-u so that a (2mv-p)? -mod-4vN binomials
in row-p can be replaced by a simple square (2mv)? -mod-4vN monomial found in the p=0 row. This will reduce
the exponent to a term independent of site-index p plus a A—term independent of summation-index m.

It would be nice if the A—term were also independent of p but the tables show that is asking too much! So,
A= A(p,v) and, each of the rows p =1, .., N-1 differ from the p=0 row by a single modular difference A(p,v) in
phase index which is overlined in the table and is the single unpaired number in each row. For example,
subtracting A(7,1)=5-mod-20 = (5),¢ from the (p=1) row of the (v=1) table and shifting forward by ;=2 gives
the (p=0) row (mod-20) . The shifts needed to line up rows p=1, 2, 3, and 4 are p;=2, ur=4, u3=6, and Ls=8

respectively, that is Wp=[1;p. These observations are summarized by a modular equation.
2

(Z(m— ,up)v— p)2 mod4vN = (Z(m— up)v— p)4VN = (2mv)ivN - A(p,v) (A.3a)

This is supposedly valid for all values of m so for m=0 the equation reads
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2

(—Zypv - p)4VN =0- A(p,v) , (A.3b)

where 1y =P (A.3¢)
Subtracting equation (A.3b) from (A.3a) gives the following, again valid for all m.

(2ms )=, =2, =

(4mv(—2/,t V- p)) (0),,,, = K4VN =0, 4VN, VN.... 4YN(N - 1)

4N
Next, set m=1, and solve for the m-sum-shift 1, of row p.
—Supv2 —4vp=-x4vN =0, -4vN, -8VN,...,-4vN(N - 1)
2 v+ p=kN=0,N, 2N,...NOV =1 or: it =X =P _ (integer) (A4
P R P2y N
Avalue ¥=0,1,2,..,N-1 is selected so that m-sum-shift i, is an integer Wp=0,1,2,..,N-1, too. Substituting the
resulting [, value in (A.3a) gives the phase modular difference A first defined there and in (A.3b).

2
_ 2 KN —p B 2
A(p,v) = —(Zvup + p)4VN = —(2v[ >y j+ pj = —(K'N)4vN , (A.4b)
4vN
where
v+
o TP (A.4c)
N
Puttiing (A.3a) into the revival wavefunction sum (A.1) gives
. 2 2w ,pz 2r
—il2mv— —
Wo(q)p»’v)ziixl(l) e mrr) e dv N
1 —i_(2mv)2—A(p,v)}2—ﬂ ,ﬁzi
=—3Nle L N av N [using:(A.3a)]
_i_(va)2+(;cN)2—p2}2—n
= %zg;g e L N [using:(A.4b) |
—i_(2mv)2+4,u2v2+4,u vp}z—”
= %2%;& el P P lavN [using:(A.4c)]
_i|:/,L[2)V+'Llppi|27[ —i[ulzv+ul}p227r
= P(V)e N = P(V)e N [using:(A30)]  (A.5a)

The overall phase and amplitude prefactor P(v) is a Gaussian sum discussed in Appendix 9B.

i(2mv ) 2E —ivm? 22

—il2mv | ——
P(v):iEZZ‘(% e N :izg;g e N (A.5b)

Finally, the (p=1) m-sum-shift [ is the first fraction (N-1)/2v, (2N-1)/2v, (3N-1)/2v, ..., or (N?-1)/2v, to
yield an integer according to (A.4a). Recall that it was assumed that N and v are relatively prime, that is, have no
common factors. It seems evident that the integer arithmetic behind base-/N counter revivals is not trivial, even for

the case of odd-N .To complete this particular N=5 example we find the sum-shift 1] at each revival time v=1- 4.
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1=’dv_1 KN—1= 4 9 14 19 24
2v
2v=2 2 7 12 (A.6)
2v=4 1 . . . 6
2v==6 R |
2v=8 3

From the discussion of Appendix 9B come the overall prefactors P(v=1 )=IN5, P2)=-1N5, P(3)=-1N5, and P
(v=1)=1A5, which are needed to complete the following N=5 revival table using (A.5).

v(p.v)| p=0 p=1 p=2 p=3 p=4

v=0 1 (1 0 0 (1 e =ei27r/5/\/g
v=1 1 /\/g e e e e
. . where: (A.7)
v=2 | -1/ \/g -e, —e, -e, —e,
* % 2i2mw/5
v=3 —1/\/5 -e, —e, —e —e, e =e o /‘/g

* *

v=4 1/\/§ e e e e

A phasor gauge plot of the N=5 revivals (A.7) is shown in Fig. 9.4.3c.

The summation (A.1) for even-N is mostly the same as the above. Time index v is replaced by v/2.

2 2rm ,pz 2r

1 —ilmv-p ) — i—— b
wo(q)p,tv):;ZZ;é e ) WNe 2V N where; ¢, =v%, for N-even.
_i|:/.tl2)V+2‘Llpp}27r —i[,ulzwrz,ul}pzzn
= P(v)e 2N = P(v)e 2N (A.8a)
where
-1 . . -1 2N -1 -1
1= kN = first integer in N R N s 3N y e (A,gb)
v v v 1%

Again the overall phase and amplitude prefactor P(v) is a Gaussian sum discussed in Appendix B.

22w

—ivm~ ——

1 —i(mv)zzi 1
P(V)ZEZZ;E) e 2vN :;ZN—I o N (A.8¢)

m=0

This works for odd-numerator time fractions 1/2N, 3/2N, 5/2N,...=v/2N . For the even numerator ones, we take
advantage of the revival sequence v/N = I/N, 2/N, 3/N,.... for N cut in half and shifted by &. If N/2 is odd then (A.
5) is used. If N/2 is even then (A.8) is used again, but with N cut in half to N/2. Note that fractions with singly-
even denominators have zeros at =0 and peaks at ¢==z. Fractions with odd denominators have peaks at ¢p=0

and zeros at ¢==z. Fractions with doubly-even denominators have zeros at =0 and ¢==x.
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Appendix 9.B. Overall phase of peaks in a revival lattice

The evaluation of the N-term integral Gaussian sum

—iv

m2 2—”
G(v)=zN e N =NP(v) (B.1)
in the prefactor P(v)=G(v)/N given by (A.5b) is, perhaps, the least trivial part of the revival formulation. The
develpment involves complex Gaussian integer analysis, a subject which occupied Gauss for more than the first
decade of his most productive years. Here we will be content with giving a list of the results for the first few

integer combinations that would be relevant for the revivals shown previously.

N= 2 3 4 5 6 7 8 9 10 11 12
-

SNb e V= 0 -3 (1-iV4 5 0 -7 (-8 Vo 0 -l (1-i)Vi2
_iom22E

sV eV 2 W3 0 5 Wiz W7 (1e)e B W W o

S¥le N2 0 3 (1+iVE 5 0 W7 —(1+iV8 —27 0 -l (1-)6

-1 mzz—n
3 P T S NN RN 0 Yoo 20 -l —iVas
7im22—ﬂ
sNle Nz 0 W3 (Va5 0 W7 (- W 0 -l —(1-i)Wi2
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Particuarly simple general results are had for the case of doubly-even integer.
N =2n 4=2-2 8=2-4 12=2-6 16=2-8 20=2-10
221 (B3)

sy e "V = (1=0) (1=iV2 (1=i3 (1-iVE (1-i)5

A complex vector diagram of the first few G(u) sums is shown below in Fig. 9B.1.
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