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Unit 3 Fourier Analysis and Symmetry

Unit 2 discussed quantum e/*-o9-wave propagation in space and time and introduced
wavevector and frequency (ck,o)-space while deriving the basic Einstein relativistic
transformations and Planck-deBroglie quantum relations. But, what are ei*r-%-waves? One

answer comes from understanding relations between space-time (x,cf) and (ck,w)-space known
matrices and shows their connection to translational symmetry. This with Planck’s axiom gives
the quantum equation of motion known as Schodinger’s time equation, the evolution operator,
and its generator, the quantum Hamiltonain operator, the sine qua non of Schrodinger theory.
Unit 3 continues with a detailed description of quantum beats and revivals using symmetry
analysis. The final chapter describes 2-state and spin-1/2 systems while introducing U(2)

symmetry analysis.
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Expressing arbitrary wavefunctions or states in terms of spectral components or plane waves
is known as Fourier analysis. Fourier transformation matrices relate space and time
(coordinate) bases to wavevector and frequency (Energy-momentum) bases of plane waves.
Fourier analysis comes in different flavors depending on whether various bases are discretely
numbered or continuous. Chapter 7 compares the continuous coordinate bases of Bohr rotor
states to the fully continuous plane wave states of an unbounded continuum. Then a discrete
“‘gquantum-dot” sytsem is introduced in which both coordinates and wavevectors are discrete.
The later is the basis for the introduction of Fourier symmetry analysis in the following Chapter
8 and time evolution in Chapter 9. Discrete symmetry in space and time helps to clarify

quantum beats and “revivals” which all quantum systems will exhibit to some degree.
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Appendix 10.B Spin control and ellipsometry

(a). Polarization ellipsometry coordinate angles
(1) Type-A ellipsometry Euler angles
(2) Type-C ellipsometry Euler angles

(b) Beam evolution of polarization

Problems for Appendix 10.A and B
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Unit 3 Fourier Analysis and Symmetry

Chapter 7. Fourier Transformation Matrices

We have noted that a quantum experiment cannot move at all unless two or more frequency components
can interfere with each other. A single (mono-chromatic) wave ¥ = yei®! is not enough to make anything
happen. Such a W-system is a stationary state and appears to be dead. What we can observe is determined by the
absolute square W*¥, which kills the single oscillating phase.

Similarly, a wave ¥ = yei®* with a single momentum component appears to be a uniform cloud of random
counts in space. To obtain any structure in the quantum world, that is, atoms, molecules, solids, people, and so
forth, we need many momentum components in our matter waves.

The mathematics used to deal with multiple frequency or momentum components is called Fourier
analysis after Jean Baptiste Fourier, a French artillery officer turned mathematician. This section will review the
fundamentals of Fourier theory relevant to quantum theory using the Dirac notation. Fourier analysis has several
flavors depending on whether its coordinates and parameters, that is space-time and wavevector-frquency are
discrete or continuous and whether x or k£ are bounded or unbounded. We consider several distinct cases in turn.

Each has different forms for its completeness and orthonormality axioms-3 to 4.

7.1 Continuous but bounded x. Discrete but unbounded k
One of the most famous and widely used wavefunction systems in quantum theory are the one-
dimensional (1-D) Bohr orbitals \y k(x) = {x | k ). Examples are sketched in Fig. 7.1.1.

ik p,x
em

l//km(x)=<x|km>=m=y/km(x+L) (7.1.1)

These can be thought of as a set of waves on a ring of circumference L. The basic waves have just the right
wavevectors kj, to put integral numbers of whole wavelengths along L and thereby repeat the wave again after
each complete L-revolution. Such requirements are known as periodic boundary conditions.

ik px eikm(x+L)

v =y, (x+D)= =y, (et (7.1.2)

\/norm. - \/norm.

The boundary conditions lead to wavevector quantization conditions.

Eml Lor k, = 2—7tm , where:m=0,+1,+2,+3, ..+ (7.1.3)
L

The allowed wavevectors, while still infinite in number, are forced to be discrete.

This is a very common feature of quantum theory for which it owes its name quantum, but it happens to
classical waves, too. A bounded continuum leads to an unbounded but discrete set of allowed waves. For another
example, cavity modes in the Hall of Mirrors in Sec. 6.3 (d) acquire discrete frequencies as soon as the doors are
shut. If an indiscrete type of wave is put in a cage, then it is forced to be discrete. (Perhaps, this is just another sad

anthropomorphic metaphor.)
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Fig. 7.1.1 Sketches of Bohr orbitals confined to 1-D L-interval and quantum energies ( for m=01to 6 ).

The resulting amplitudes must satisfy Axioms 1-4. In particular, the orthonormality axiom-3 requires (k|

k1)=1but {k;| k») =0 , and so forth, or that the following Kronecker delta representation.

k| kn)=0m n (7.14a)
Completeness axiom-4 requires that | ;) (k;,| sum up to a unit operator or an x-Dirac-delta expression.
Y| ky) (kn| =1, or: 3{x | kpy (kpl x') = {x | x")=0(x-x). (7.1.4b)

(a) Orthonormality axiom-3
Using the integral form (2.1.2) of the completeness relation sum we get the following.

5, =k [k)= "1 i, [W) k)= e € (7.15)
= = X X)X = X 1.
" min —-L/2 " " -L/2 norm. N norm.
The conjugation axiom-2 was used to write
—ik x
* e m
<km|x>=<x|km> = T (7.1.6)
norm.
After integrating, this determines the normalization constant norm. as follows.
L/2
L2 gtkm¥ Gikp L2 e‘i(km‘kn)x e‘i(km‘kn)x |
6,,= | s — | dx =—
-L/2 N norm. \/norm —-L/2 norm. —z(km—kn)norm.‘ L (7.1 8)

¢ emkn)L2 _ Uk k)2 2sinl (k,~k,)L/2]
—i(km—kn)norm. - (km—kn)norm.

Using the quantization conditions (7.1.3) gives the desired norm. value and satisfies axiom-3.
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. Oif:m#n
2sinw|{m—n
. =#= I ,or: norm. = L. (7.1.9)
2—ﬂ(m—n)norm. norm ifzm=n
I .

Normalized wave amplitudes are therefore

ik px

l//km(x)=<x|km>=e\/z . (7.1.10)

(b) Completeness axiom-4
Completeness axiom-4 has a Dirac-delta form in the mixed discrete-continuous wave space.

6(x=)= "5 (x[ky )y | (7.1.11)
We test it with amplitudes (7.1.10) using orthonormahty (7.1.4) and conjugation (7.1.5).
sz p 5( ') sz J n:Z_'_oo eiknx e—iknx' nzgoo e—ik x' sz p iknx (7 | 12)
—-L/2 rovT _—L/2 xi’l=—°° \/z \/Z _nz—oo \/z —-L/2 L \/Z o

The last integral is a representation of a Kronecker delta 8o, . Recall that ky =0 and use (7.1 .4).

G AN s SR AL R PN 7
X = X = =
—-L/2 \/Z —-L/2 \/Z \/Z 01%n on

L/2

[ axe™m =15, . (7.1.13)
—-L/2
Then (7.1.12) is consistent with (7.1.11) and (7.1.10) and the definition of Dirac’s delta.
L2 L2 p=teo k¥ hnY pmiee Cikny
dxd(x—x")= | dx X —= X ntg =e 0% =1 7.1.14
o)z f ey s 2 ey, e 7.1.14)

(c) Fourier series representation of a state
With completeness one can quickly derive a representation of arbitrary state | ¥ ) if you know its
complex wavefunction W(x) = (x | ¥ ) . Formally, you just operate on | ¥ ) with the unit 1=X|kn) kn|.

=0 elkmx

(=5 (k)= TS S )

(7.1.15a)
m—tee g x
= Yy e My

m=—oo

m

where the Fourier coefficient P, is given by the following integral (Use x-completeness 1=]dx]| x )(x|.)
v L/2 L2 ~ikm
= < | > | [ dx—F—— ¢ <x|‘P

¥, = \/— \/Z L/2 <m|x><x|\}l> \/Z L2 \/Z > (7.1.15b)

_LH j dee Fm¥p(y)
-L/2

The only requirement is that the function be periodic in L, that is, W(x) = W(x+L).

(d) Bohr dispersion relation and energies
In Fig. 7.1.1 the waves with higher %, have higher energy E,, and are drawn higher according to the E-

values given by the Bohr dispersion function first drawn in Fig. 5.6.3.
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(nk,, )’
oM

2r
E,=ho, = ,where:pm=hkm=h7m . (7.1.16)

This is just a non-relativistic approximation for energy that neglects the rest energy Mc? and higher order terms in
(5.2.5b). It is kinetic energy only, that is KE = {/>Mu? = p?/2M with the momentum p=p,, and wavevector k=k;,
quantized by conditions (7.1.3). The dispersion function is then a simple parabola of discrete values as shown on
the right hand side of Fig. 7.1.1. Note that each energy value £, , except £y, has two orthogonal wavefunctions y
+km OF states |+k;,) corresponding to pairs of oppositely moving wavevectors +k, on either side of the dispersion
parabola. The |+k,) are called degenerate states because they share a single energy E,. Such degenerate pairs are
each an example of a U(2) two-state system. As long as the degeneracy remains, any unitary linear combination

of the two states is also an eigenstate with the same frequency and energy E=hv.

(e) Sine and cosine Fourier series worth remembering

A function defined by Fourier series (7.1.15) repeats after its fundamental wavelength L=2mn/k; or period
T=2m/wi. So do the real and imaginary parts that are series of sine or cosine functions of m™ spatial overtone
argument k,x or m™ overtone frequency argument ® 2. Moving wave terms use both: (knx- uf).

Let us consider wave functions with zero-DC-bias or zero (k=0)-Fourier component: 0=¥,=[. The
integrals and derivatives of unbiased functions may also be unbiased. An example of a series of unbiased
functions starts with the alternating Dirac delta function adel(x) shown at the top of Fig. 7.1.2. Its integrals and
derivatives are useful series worth remembering because they are easy to compute and visualize. Compare this
function to the simple delta pulse train (5.3.2) shown in Fig. 5.3.2.

The first integral of adel(x) is a square wave function hox(x) shown next in line in Fig. 7.1.2. Below it is a
saw-tooth wave saw(x) and then a parabolic amplitude wave paw(x). Each wave has an overall scale factor
attached so plots that are not delta-like end up with comparable amplitudes.

Wave paw(x) looks like a sine wave but isn’t quite. The derivative of a genuine sine wave is a cosine
wave that looks just like a sine wave but is moved back by n/2. The derivative of paw(x) is saw(x), which is
moved back, but it looks nothing like good old paw(x)! Subsequent derivatives only accentuate the differences
between sin(x) and paw(x). Differentiation amplifies little blips or bends (It differentiates!) while integration does
the opposite by smoothing out sharp corners or other differences.

There are at least two famous physics topics that make use of functions that are derivatives or integrals of
each other. Classical mechanics in one dimension is one such topic where the functions of acceleration a(t),
velocity v(t), and position x(t), are each the integral of one above or the derivative of the one below. Classical
electrostatics is another topic in which the charge-density p(x), electric field E(x), and potential ®(x), are so
related. (Various conventions may put +signs and scale factors onto these relations.)
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2 EX 5

T paw(x) /_\

Fig. 7.1.2 Fourier series sharing simple integral or derivative relations to each other.

Some more or less extreme examples of charge and field distributions are sketched in Fig. 7.1.3 on the
following page. The first set in Fig. 7.1.3(a) is due to alternating charge layers. The field is that of a series of
alternating parallel-plate capacitors. By taking a derivative of the alternating chasrge layers we make the dipole
layer distribution shown in the top of the middle Fig. 7.1.3(b). The final example in Fig. 7.1.3(c) actually has a
Dirac-delta potential lattice, one of many favorite models for nano science these days. We shall be modeling
periodic potentials, too. The preceding gives you some feeling how difficult it may be to actually produce some
of these exotic potentials! Seldom is theory so easy and the lab so hard.

Also it is worth considering these as time-pulse series. As we will explain later, you may taper the Fourier
series amplitudes gradually to zero and thereby replace the sharp and wrinkled deltas and squares by smoother
Gauassian or Lorentzian features that are useful spectroscopic models. Of course, you may taper them right back

to single term series of one sine or one cosine wave each!

Following page: Fig. 7.1.3 Exotic 1-D electric charge and field distributions.



Harter sy —Learnit Unit 3 Fourier Analysis and Symmetry

del(x) (") (+) (+)
@ Charge 7Y rfA ) (7
Density ( Se-n) d(-3m)  (+) d(-51)  (+
8(x-0) Se2m) (- 8(x-47) (-)V 8(x-6m)
PE (-gl . N )
Z box(x)l n ggxcar E-field +1 v +1 v
Electric I — 5 «—, - S
Field T f — _7i — > <
E(x) > < > < > <
saw(x) Sawtooth potenial function

2N T e G ; TN T f 11772
Potential
D(x
) 2o X2 NS _XESRENS XIVINS

DW@S flg ta ﬂgrwgttve ((lsp(olf layer lattlce)

(b)-(ddx)delrx) ) ) (+) () ) ()
Charge  Of") (W-) Ol16! (+>A() o e (ﬂ()
Density O Ao O @llo Ol e Gl

o T
dell(x) Dirac- % E- ﬁeld function é -~
: E = “&—
Ellf_ca’c’;c = S(An) = 5( =< 6&5‘@ >
e k-0 > —yfr-27) —} 5 3>  olfen
E) ? 3z, S '3 [
box(x) o > Boxccg”]Potentzal field
Poential P S £ PR R
X
i PR e LR
( C ) (d/d})lc)zdel(x) 00 Dirac- Tlm doubbe»derzvaAlve (quadmpole la er lattice)
arge () (-)gt) +)
Densz[y A A A A A A W
ORI T V i
G®HE) MO
-%?dx)tdgl(x) Dirac-Kelta derjvative fi el] lattice
ectric
Field A A A A A

SR

o dell(x) Dirac-cielta Potential func_tf;n

+00
d(x-m) S(x-3n) d(x-5m) A
—5(x-0) V ~8(x-2m) V ~3(x-47) V —5(x-61)




©2013 W. G. Harter Chapter 7 Fourier transformation matrices 7-- 7

7.2 Continuous and unbounded x. Continuous and unbounded k
In the preceding cases all wavevectors are restricted by the quantization condition (7.1.3).

2r

k,, = - ms where: m=0,+1, £2, £3,... %00 (7.1.3)repeated

If you let the "cage" become infinitely large (L — «~ ) then the wavevector set becomes finer and finer and
approaches a continuum. The trick is to replace each sum over index m by an integral over a continuous k-value.
If it is done right the wave functions will take a continuous form in both x and k.

ikx

y/k(x)=<x|k>=\/:07m , (7.2.1a)

We need to verify k-orthonormality relations based on wavevector Dirac-delta 8(k’,k)-functions.
(k'|ky=8(k'= k)= [ dx (k'|x) (x| k) = [ dx w(0) W (x) (7.2.1b)

We also need the usual x-completeness relations based on spatial Dirac-delta 6(x",x)-functions.
(x'x) =8 (x'—x) = [k (x| k) (k| x) = [ dle ()" () (7.2.1c)

It seems that orthonormality and completeness relations are two sides of the same coin. Orthonormality
(7.2.1b) for the k-states { Ik)...lk")..} expresses completeness for the x-states lx) , and completeness (7.2.1¢) of the
k-states k) expresses orthonormality for the x-states { Ix)...lx")..}.

The Dirac notation is extremely efficient but can be confusing. There is a world of difference between the
states { lk)...lk")..} of perfectly monochromatic plane waves and the Dirac position states {Ix)...x")..} of perfectly
localized particles. Recall that we said that an Ix) state was physically unrealizable; crushing a particle into a
single position-x would cost infinite energy. Technically, a |k) state is unrealizable, too, since it requires an infinite
amount of real estate; we have to let its cage dimension L be infinite, but that seems easier than the extreme
solitary confinement needed to make an lx) state. If space is cheaper than energy, then lk) is easier to approach
than Ix). Lasers easily make approximate lk)'s by being stable and coherent, but producing approximate lx)'s for
extremely short pulses requires more difficult engineering.

Use caution to not abuse this notation, though it is easily done. It should be obvious why the following
rendition of (7.2.1a) is a dreadful mistake.

2

el kk el k

(k|k)= (Dirac abuse. Very BAD mistake!)

\/norm. - \/norm.

Letters x and k denote very different bases which must not to be confused.

(a) Fourier integral transforms

. .. . . 2
To achieve the limit of infinite real estate (L — ~ ) we replace sums over k, = Tﬂm such as

m=-+oo m=-4oo
§= ¥ @ = 3 Adekm,where:Amzl. (7.2.2)

m=—oo m nm=—oo

Integrals over k with differential Ak, = 2T”Am = 2771 — dk or: AAk_m — L are used as follows.

mZn
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=+o0 Mm=-+oco
s=" S Amd, = Z ﬂAk ®, becomes - zijf: dkCD(k) (72.3)
T

This, by itself, blows up as we let (L — < ), but so do the normalization denominators +norm. = JL , and they
cancel. Finally, the Fourier series (7.1.15a) becomes a finite integral.

=00 ik pyx ikx ikx
(x1¥)="% %{kmlﬂbecomese%ﬁ:dk%@mlﬂ FW«J—ﬁ(mM

m=—oco
k,, | becomes — (k| letting the L’s cancel.

=

ot "
ikx

(x|¥)=[*2 \e/%<k|‘}’>=]f:dk<x|k><k|‘{’>, (7.2.42)

The newly “normalized” plane wave function yi(x)=(x|k) is defined as follows.

The trick is to renormalize the k-bases so

(x[x) = f/% (7.2.4b)

This ( x|k) is the kernal of a Fourier integral transform. An inverse follows by converting (7.1.15b).

(h|¥) 1 112 JL L+

JL —Z_Lj/zdxe_ikmx <x|‘I’> becomes—><k|‘P>—E— j dx e k¥ <x|‘I’> ,
<k|xp>{f"dxjg (s)=T (k] o] ¥) (7240)

Here the inverse kernal {k|x) is simply the conjugate of { x|k) as required by conjugation axiom-2.
—ikx

(k|x)= 3% = (x[k) . (7.2.4d)

(b) Fourier coefficients: Their many names
The efficiency of the Dirac notation (provided it isn't abused!) should be clear by now. The simple bra-ket

(x| k) stands for so many different mathematical and physical objects. Let's list some.

(1) (x| k) is a scalar product of bra (x| and ket |k)

(2) (x| k) is an x-wavefunction for a state |k) of definite momentum p = hk.

(3) (k| x)=(x| k)Y* is an k-wavefunction for a state |x) of definite position x .

(4) (x| k) is a unitary transformation matrix from position states to momentum states.

(5) (x| k) is the kernal of a Fourier transform between position states and momentum states.

As beautiful and compact as it is, the continuum functional Fourier analysis is merely an infinite and
unbounded abstraction that lets us use calculus to derive formulas in special cases. Its validity as a limiting case
for experimental and numerical analysis should always be questioned. Laboratory and computer experiments, on
the other hand, invariably deal with finite and bounded spaces, and it these that we turn to in the next section. We
finish this section by relating square-wave Fourier transforms to square-wave Fourier series of the preceding

section to help clarify discrete-vs.-continuum relations.
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(c) Time: Fourier transforms worth remembering
Fourier time-frequency (time-per-time) transforms resemble space-k-vector (space-per-space) transforms

(7.2.4). But, a negative sign is put in the exponent so the time phasor turns clockwise.

<t|\y>=j_:dwﬁ<w|q’>=j_:jdw<x|a)><w|\y> (72.5a) (t|w)= s (7.2.5b)
<w|‘P>=_{oth<t|‘}’>=_£odt<a)|t><t|‘{‘> (7.2.5¢) <w|z>:ﬂ=<z|w>

Consider, for example, a single square bump of amplitude B and duration 77/2. Its Fourier transform (7.2.5¢) is an

elementary diffraction function sin ®/® that is plotted in Fig. 7.2.1.
+T/4 it ioT/4 _ —ioT/4 2Bsin(wT /4
(0|¥)="| dr— B=B" ¢ = ( )

714 2z ioN2n o2

It is the first approximation to an optical diffraction function for a single square aperture.

(7.2.6)

The Fourier amplitude due to multiple square humps is a combination of finer and finer elementary
diffraction patterns. Three half-humps give the following frequency function plotted in Fig. 7.2.2(a).
-T/4 +T/4 +3T /4

(0|W)=—=|A | dte’® +B [ dte'® +A | dre'®™
N2m | 374 —T/4 +T/4
LioT/4_ BT/ ieT/4 _ —ioT/4  BoT/4 _ ioT/4
e —e e —e e —e
=A +B +A (72.7)

io2r io2r io2r
_2(B-A)sin(wT /4) . 2Asin(30T /4)

o2 o2

The frequency functions in Fig. 7.2.3 are the result of a lot more bumps. Each one consists of a series of spikes

corresponding to the Fourier series amplitudes 7, 1/3, 1/5, 1/7,... for the fundamental w=2n/7 and odd-overtones
30, 5o, 70, ..., respectively, for the box(x) function in Fig. 7.1.2. This is an even box function in Fig. 7.2.3 so
the series amplitudes alternate sign as 7, -1/3, 1/5, -1/7,...as shown. The very last example is an unbiased funtion
with no DC (w=0)-Fourier component.

The "ringing" between the peaks is generally considered to be a nuisance. One way to get rid of ringing is
to turn on the square wave more gradually. Fig. 7.2.4 shows the Fourier transform of a wave that has been turned
on and off by a Gaussian (exp-(x/a)?). This windowing kills the ringing. The width of each frequency peak varies

inversely with the width a of the Gaussian window.
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M

Fig.7.2.1 Elementary diffraction function: Fourier transform of single half square wave.
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Fig. 7.2.2 Fourier transform of (a) three half- square waves. (b) seven half -square waves.
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Fig. 7.2.3 Fourier transforms of square half-bumps (a) fifteen (b) forty-nine (c) fifty one .
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Fig. 7.2.4 Fourier transform of windowed square waves.

The idea of the Fourier integral, as opposed to Fourier series, is that any function, periodic or otherwise
can be approximated by sines and cosines from a frequency continuum. Fourier series require that the function be
periodic and repeat itself perfectly after some fixed period of time. The Fourier integral is supposed to be an
enduring and time-invariant frequency map that provides the predestination of a time function forever and ever!

One should be suspicious of something that requires an infinite continuum of perfect frequency oscillators
to be behind the scenes running your life. Pure sines and cosines are forever functions but we, like our world,
certainly are not so enduring. Consider Fourier integrals as a cute limit-taking tool but not ultimately realistic.

Consider the fictitious function of time shown in Fig. 2.6.6. It is only periodic for awhile, but like most of

us, cannot maintain the pace forever and finally gets in trouble with the hereafter.

00
27 I~
“Leam L1 L L L L0 L L = 1AM
Staggers 10 AM 12PM 1PM 5 PM 12PM rises
to work Coffee Lunch Nap Bar dec'd again masbo)

Fig. 7.2.5 A day in the life of a real function.

Now we go on to a practical Fourier analysis that is both finite and discrete.
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7.3 Discrete and bounded x. Discrete and bounded k

This is the most restrictive case, but also, due to practical considerations mentioned previously, the one
that actually gets used the most these days. However, in spite of its practical value it is not always treated as
carefully as the more “mathematically sophisticated” continuum case (b). It should be!

We begin by supposing that space itself is periodic as in case (a) but further is divided into N discrete

pieces or points. So the only x-values allowed are the following N values

{x0=0, x;j=a, x2=2a, x3=3a, ..., xN.;=(N-1)a, xy =0} (7.3.1a)
and there are only N position states are the following. The last |N) state is the same as the first |0) state.
L10) 1), 12),13), .., IN-1), IN) =[0)} (7.3.1b)

Fig. 7.3.1 shows ways to visualize this as N beads on a ring of length L = Na that wraps around so that the
N-th bead is the same as the zero-th. (Zero-based numbering is the modern computing standard.) Otherwise, we
invoke the so-called periodic or Born-VonKarman boundary conditions and imagine our 1-D world repeats like a
computer game outside its boundaries. As shown in Fig. 7.3.1, there is a distance a between the lattice of beads. It

is called the /lattice spacing a.

|0> N1 |0> 11)=/0) A |0) ~ |0) |1> 12)=10)
° o—o " N=2 o—e—o
<] =2a>
0) [0)
A 0) 1) 12) [3)=10) @ 0) (1) [2) 3) [4)=0)
oo 3 o—e—e—e—o
n & o < L=a> & > <— L=4a —>
12
o 10) 11y 12) 3) 14 [5)=10) 010y 1) 12 13 14 15 16)=]0)
1) @7 O &0 I —eo—0o—0o—o o
< b 2) Wy < L=ba——>
2) 13) 13)

Fig. 7.3.1 Finite coordinate spaces for N-cyclic (Cy) discrete systems (N =1, 2, ...,6...)

These ideal quantum dots will be among our first examples of 2-state, 3-state, ..., and 6-state systems. By
studying them carefully, it will be possible to learn important principles which will greatly help later study of
molecules and solids which have N-states with large-N but the same basic theory. Also, the quantum dots might
have hidden inventions that could make you wealthy!

The basic wavefunctions that live on the discrete dots or beads are a subset of the continuum
wavefunctions efkm¥ of (2.6.1), as though N equally spaced points of (2.6.1) were extracted and plotted over each
lattice point x, where

Xp=pa=p L/N . (p=0123, .. N-1) (73.2)

The basic wavefunctions are given explicitly below.
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ikmxp

o) = eT =y, (v, +1) (73.3)

v, ()=,

The only change from (7.1.1) is the use of a discrete coordinate x,, defined in (7.3.2) above. Also, the
normalization constant has been set to the dimension N since all N exponentials e?smX contribute unit magnitude

(letkmx |2 = 1) in the normalization sum.
N1 o Kmp JKm P

(kmlkm)%‘gol (o) (3, [ ) = R N ff

The quantization conditions due to periodicity requirement (7.3.3) over "cage" length L=Na are similar to

(7.3.4)

(7.1.3) but now expressed in terms of the discrete number N and spacing a of lattice points.

eFmt =1 o k =2—ﬂm=2—nm (7.3.5a)
moL Na

Wave amplitude at lattice point p is a power-p of (ei2%/N), the N-th root of unity (normalized, of course)

v ()= (x,[k,)= J_p J_(’Z”/N)mp (73.5b)

All N roots, together, form N-polygons in the complex plane as shown in Fig. 7.3.2. The allowed wave

amplitudes in Fig. 7.3.2 resemble the "ring" coordinate positions in Fig. 7.3.1. The complex zm p=exp(ikmxp) are
the N-th roots of unity (zV=1) introduced in a complex arithmetic review (App 1.A).

m=044 |
Re ¥
ImY¥Y
N=3 |1
e—2ni/4=(62ni/4)3
m=-1
2mi/3 2 i
g2mi/3 2% e 27:1/3:(62751/3)2 ‘
-l (627[1/4)2
N=5
m=0) 1
; : : 275 16_, . 2mi/6
o27u/5 e—2m/5=(e2m/5)4 e V0 (e=T0/0y5
m=1 m=-1
. _ 27i/6\4
i ; 27i/6 - m=2 (e )
(e2m/5)2 z e (ezm/5)3 (e 1 )2 m=2

(233

m=3

Fig. 7.3.2 Discrete wave amplitudes allowed for N-cyclic (Cy) systems (N =1, 2, ...,6...)
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(a) N-nary counting for N-state systems

Fig. 7.3.2 shows different counting schemes for odd-N and even-N. In the unbounded cases the k-values
go from —oeo to +oo. Here, letting m count from -N to +/N over-counts and gives 2N+ states when we know there
are only N. We could let m count from 0 to N-1, just like the lattice points. Or, we let m count from -(N-1)/2 to +
(N-1)/2, (odd-N ) and from -(N-2)/2 to +(N)/2 (even-N) as shown below.

It helps to think of N-state cyclic system as an N-nary computer element. Ever since 1950, we have
become accustomed to binary (N=2) data storage in 2-bit registers. Inevitably, someone will discover how to
make N-state registers. Until then, we imagine them. For an N-state register the quantum counting index m is
defined only by an integer modulo-N or (m)y.

(m)N.= m modulo N (7.3.6)
For example, for N=6 in Fig. 7.3.2, all the following values of the quantum index m in a given line below

have the same value modulo-6.

~=(96=(-3)6=0B)s=(9)6=(15)6=..= 3mod 6
=(-8)6=(2)=#6=(10)¢=.. =-2mod6
~=(Ne=(De=0B)=(11)¢=.. =-1mod6
.=(6)6=(0)g=(6)6=(12)6=... = 0mod6 (7.3.7)
w=(5)e=(De=(Te=(13)¢=.. = 1mod6
= Ae=(2)6=B)6=(14)e=... = 2mod 6
~=(3)6=(3)6=96=(15¢6=.. = 3mod6
w=(-8)6=(2)g=(4)6=(10)6 = ... =-2mod 6

How do we choose a k;, number label? We choose the underlined ones with the smallest |m| and pick the positive

one if two are equal. This choice {m=-2,-1,0,1,2,3} of N=6 m-values is used in Fig. 7.3.2.

(b) Discrete orthonormality and completeness
Orthonormality relations for wave states reduce to finite geometric sums.

=ik p'x ik yx
N-1 m>p N=l ik —k
¢ ¢ py el(km Emp , where:x  =pa (7.3.8a)

1
k'l V=3 =—
< " | m> p=0 \/N \/ﬁ Np
Substituting (7.3.2) and (7.3.5) gives

N1 2 N-1 .
<k '|k >= S Zp=1+Z+Z +..t+z ,where:z=el(
m m p:0 N

k m—k m')a: ei272,'(m—m')/N

The geometric sum yields a result that satisfies k;,-orthonormality axiom-3.
1 1=2V i27r(m—m')

1 1-
(e lhn) =5 17 =N

2r(m-m )N Omm’
e

(7.3.8b)

1-
The ky-completeness axiom-4 (or x,- orthonormality) is satisfied for these wave states, as well.

TG S O o A & g P SR

m=0 m=0 \/N \/ﬁ N m=0 pp
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(c) Discrete Fourier transformation matrices
Below are shown Fourier transformation matrices and discrete x,-wavefunctions (7.3.5b)
(el xp) = Wi, (xp) = ethmp [y (7.3.10a)
They are drawn as complex phasor amplitudes for the cyclic N-state systems (Cy) for N=1, 2, 3, 4, 5, and 6.

Also drawn over the phasors is the Re-part of the "Bohr's ghost" continuum x-wavefunctions
(ki x) = Wi, ()= e hm> 1y, (7.3.10b)
Recall (7.1.10) or Fig. 7.1.1. "Bohr's ghosts" match the discrete waves (7.3.10a) with phasor clocks.

0 01
Cy v Re }¥ C, r 1

o, [T . Mool N

L5(DQG) L] 1D 1
TN %8 N 0760 0 =

0 o T 1 2 3 4 5
C- Ce 11 1 17 1 U

.

........

25 @@@ Q@ 2% @@.@@@.@
25=35 (DO 3:(DQOWOO
RustasicEusisluse]
-16=3¢ @@...@

7.3.3 Discrete Fourier transformation matrices for N-cyclic (Cy) systems (N = 1, 2, .

A S

Fig.
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(d) Intoducing aliases and Brillouin zones

It is important to see the relation between the continuum waves and their "course-grained" images thatves
with integral wave-numbers of m mod N whole wavelengths within each (%, |-row of phasors. We might as well
call them "row-waves" or "bra-waves." Note also, that the same wave shape exists in the columns or kets |x,).
Each “ket-wave” | x,) represents a 8-position state or “pulse” localized at point x, . The inverse Fourier
transformation (%, |x, ) relates |x, ) to a bra-wave(ky,|. As required by conjugation axiom-2, namely, &y, |xp)=
(xplkm )*, the relation is the same as between |k, ) and (xpl ,except for conjugation.

For low wave number like, say (mpy)=(1)g or (2)g, it is easy to see the "Bohr's-ghost wave" mirrored in the
phasors as in the second and third row of the Cs matrix in Fig. 7.3.1. Note however, that these phasors are set so

the phase of the one to the right is clockwise (that is it appears ahead) of the one to the left. This means, if the
phasors turned clockwise, that the one to the right is feeding energy into the one to its left, so the wave would be
moving right-to-left with wave momentum minus (1)¢ or minus (2)g, respectively. But, they're conjugated bras so
their clocks go backwards and so the labels are OK, after all.

For high wave number like, say (my)=(4)g or (5)s, it is not so easy to see the "Bohr's-ghost wave"
mirrored in the phasors as in the fifth and sixth row of the C matrix in Fig. 7.3.1. But, you can see alias waves of

negative wave momentum (my)=(-2)g or (-1)¢ , respectively, that is oppositely moving waves of low
wavenumber. Recall that (4 mod 6) equals (-2 mod 6) and (5 mod 6) equals (-1 mod 6).

Right in the middle row of the even-N matrix is a wave that isn't going in either direction. In the Cs matrix
it is the (3)¢ wave. Since (3 mod 6) equals (-3 mod 6) this is a good old push-me-pull-you standing wave with all
real amplitudes of (/, -1, 1, -1, 1, -1). This can only happen for even-N and is known as a first Brillouin zone
boundary wave in solid-state physics.

All cases have a zero-momentum wave (0y) at the top of the transformation matrix. This is called the
Brillouin zone center wave in solid-state physics. Indeed, it is centered at the bottom of the dispersion plot in Fig.

2.6.1. Its phasor settings are the same as that of a higher (Ny), or (2Ny), or (3Ny), ...etc. wave. However, this N-
state system does not count higher than N-/ without recycling.

Consider, for example, a k;; wave of wavevector (-17);2 (with minus-eleven-kinks-modulo-12) as plotted
in Fig. 7.3.4 (a). Since (—11)-mod-12 equals (+1)-mod-12 (that is, (-11)12=(+1)2) it follows that the wave shown
has the same effect as a (+1);2 wave. Indeed, the twelve masses in Fig. 7.3.4(a) line up on a single-kink (k=1)-
wave moving positively, while the (k=-11)-wave moves negatively. (See Wavelt movie.) This is an example of
aliasing. In a C;; lattice, (k=-11) is an alias for (k=+1).

Fig. 7.3.4(b) shows the k-space with a typical frequency dispersion function plotted above it. The
difference between any two alias wavevectors such as (k=+1) and (k=-11) is a reciprocal lattice vector ki2 or (12)
12=(0)12. The reciprocal lattice vector k;> also spans the first Brillouin-zone from (-6);2 to (+6);2 as shown at the
bottom of the figure. An important idea here is that a wavevector k-space must have the same N-fold periodic
symmetry as the coordinate x-space. Moving across row of a (ky, |x,) matrix gives the same variation as moving

up the corresponding column since {ky, |x,) is unitary. Both are N-fold periodic!
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To appreciate the symmetry of a Fourier transfom matrix, it may help to examine some larger ones. For
example, Fig. 7.3.5 shows the Fourier matrix for N=24. Phase of each amplitude (;, |x,) is color coded so it can
be more easily spotted. Symmetry patterns should now be more evident. Remember, that these patterns repeat
forever in all directions right and left or up and down in a great checkerboard quilt!

This beginning discussion of discrete wave analysis should make it clear that there is considerable
physical and mathematical complexity hiding in these "simple" Fourier structures. Indeed, this is a key to
understanding fundamental quantum symmetry properties and techniques which are generally labeled by a

mathematical misnomer as “group theory.” We shall explore some more of this shortly.
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Problems for Chapter 7

Bohring problems

7.1.1. For a Bohr ring of fixed circumference L =1nm consider the following wavefunction W¥(x) =(x|¥) distributions around
the ring at =0, and deduce the amplitudes {m|¥) of each of the eigenstates |m) for m=0,+1,%2,.. Let the eigenfrequencies be
Vi =(0 1,4, ., m? JMH:z.

(a) Y(x) = const. . (b) W(x) = const.(1+cos 2ax/L) .

(c) W(x) = const. for -L/4<x<L/4 and ¥(x) = 0 elsewhere.

For each case evaluate const. assuming one particle occupies the ring.

(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each
case at time ¢ = /\sec, and at 0.5sec .

Continuously boring problems

7.2.1. For an infinite line (-co<x<oo) consider the following wavefunction ¥ (x) =(x|¥) distributions along the line. Calculate,
plot, and discusss the amplitude functions (k|'¥') of each of the eigenstates |k) for (-co<k<oo). Let the eates |k) for (-co<k<co).
Let the eigenfrequencies be vj = ( kL/Zn')ZMHz. (Let unit length be L =/nm.)

(a) Y(x) = const. . (b) W(x) = const.(1+cos 2rx/L) . .

(c) Y(x) = const. for -L/4<x<L/4 and ¥(x) = 0 elsewhere.

Evalu per unit length ( L =/nm.).

(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each
case at time ¢ = /lsec, and at 0.5usec .

Continuously discrete or discretely continuous?

7.3.1. Ch.7 contains discussion of 1D Fourier wave systems with (a) Continuous x and discrete &, (b) Continuous x and
continuous k, and (c) Discrete x and discrete k. Using physical models of each to discuss how physically relizeable these are.
Is there a 4th possibility? Discuss.

Aliases on the move

7.3.2. Consider the two aliases (-11) and (+1) in Fig. 7.3 .4. Discuss whether a dispersion function w(k) should repeat
periodically. Should the period be the zone vector ki2? For computation use w(k)=Isin(stk/12)! as plotted where k=0, +1, +2,
%3 ... in units of 2a/L. Use Vphase = Wk and Vgroup = do/dk .

(a) Is the phase velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.

(a) Is the group velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.
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Fourier analysis is most useful when there is a symmetry G in which all the coordinate points
are indistinguishable. For an unbounded x-continuum, G is an infinite translational symmetry
group labeled T. For a bounded x,-ring of “quantum dots” the symmetry G is an N-cyclic
rotation group labeled Cn. In Chapter 8 a fictitious hexagonal beam analyzer with Ce symmetry
is considered. The transfer matrix eigensolutions of such a device are found using a modern
form of Fourier analysis known as group representation theory or symmetry analysis, one of
the most powerful tools in quantum theory. The symmetry of the bounded Bohr x-ring

continuum is also discussed.
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Chapter 8. Fourier Symmetry Analysis

From where do the wavefunctions like ¥ = ei(kx - ®) come? One answer to this involves the concept of
symmetry analysis and group representation theory. These sound like big names for what is still regarded as a
pretty scary mathematical subject. However, the basic ideas of this powerful tool are actually quite simple as we
hope to show now. Most of the needed algebraic work has been done in Ch. 3 regarding spectral decomposition.
The physical ideas of Fourier analysis and Bohr ring waves are in Ch. 7. Symmetry group representation theory is
really just a beautiful generalization of Fourier analysis that gives eigensolutions of “difficult” operators using

simple properties of commuting symmetry operators.

8.1. Introducing Cyclic Symmetry: A Cs example
A ring of quantum dots was introduced in Section 7.3 as a model for finite Fourier analysis. The Fourier
tranformation matrix was discussed with examples for N=1, 2, 3, 4, 5, and 6. The idea of cyclic symmetry Cy was

broached as a property of the matrices in Fig. 7.3.3 and Fig. 7.3.5. Here that idea is put on a more solid footing.

(a) Cyclic symmetry Cn: A 6-quantum-dot analyzer
Suppose someone invents some beam analyzer that takes an N-state beam and sorts it into N beams
arrayed around a circular device as imagined in Fig. 8.1.1 for N=6. Let each beam path entering the device

contain particles in one of N states {|0), |1), |2), ..., |N-1)} after which the device does things which causes the
beams to interfere or be otherwise modified before recombining and counting.

Your.- STATE — ANALYZER Win .- STATE
MEASUREMENT I 10) CHII%N_]\{’%S PREPARATION
Particle 10 1=r [0) Particle Yyy-State
Analyzer-Counter [1)=r |0) |1)=r |

12)=r2 |0) Analyzer-Filter
|3)=r" |0)

[4)=r4 |0) l

'

Fig. 8.1.1 Generic N-state (Cyn) beam analyzer experiment with (N = 6) channels

We are intentionally being vague about the nature of the states. (After all, this device hasn't even been
invented yet!) Let us just say they are some kind of hyper-polarization states. (Put a prefix like 'hyper' on
something ordinary and people stop asking questions.) The point is that by just knowing the symmetry of a

device it is possible to work out a lot of the quantum mechanics without knowing so much of the underlying
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details. It is a lot like the photon polarization and electron spin problems discussed in Chapter 1. Electron and
photon “spin” are physically quite different but use much of the same mathematical theory.

By symmetry, we mean any operators r, r2,.. that do not alter the analyzer experiment no matter how
many times you apply them. In particular, suppose a 60° rotational operator r indicated in Fig. 8.1.1. could be
done some night by the lab janitor, so when the physicists show up the next morning all their experiments work
the same as the day before.

However, it is important to state what we mean the janitor's r-operation to do. He could just rotate the
whole lab building by 60°. That, indeed, is a symmetry, but not one we will discuss until later. Besides, a rotation
like that happens every four hours as the Earth turns; no janitor needed! This is called the symmetry of isotropy of
space. It is a continuous or Lie symmetry for which 60° has no special significance.

Instead, what we have in mind for the janitor to do is rotate just the analyzer in the center of Fig. 8.1.1 by
60° as indicated in the figure. Well, that analyzer looks pretty heavy, so, instead we'll ask that the janitor just
rotate the little input source and the little output counter both by minus 60°, which is operation r-1=r5. This
does the same as a whole-Earth/lab rotation by -60° (which no one detects) followed by a positive 60° rotation of
the big analyzer to "upright" leaving input and output devices behind at -60°.

It is important to understand that all transformations are relative transformations; something gets moved
or mapped relative to something else. You've probably heard it quoted, "Everything's relative!" Well, that's often
garbage, but here it isn't. Rotations, Lorentz transformations, and our analyzer operators T (Recall Fig. 1.6.1),
and r in Fig. 8.1.1 are all mappings of one vector or thing relative to another.

By the way, our helpful suggestion to the janitor won't help much if the input and output devices are big
analyzers, too. It was noted in Chapter 1 that filters and counters are analyzers set in certain ways. But, the
analyzer in Fig. 8.1.1 is a more powerful one than heretofore discussed. (And, isn't better always bigger?) So let's
assume that the janitor can easily do r-! = r> to the smaller input and output devices whose in and out states are
written as follows in Dirac notation,

Your -1y = r1[Wour) , YNy =1 Y (8.1.1)
Symmetry of the transformation operator T means it does exactly the same relative thing to any state |

W) as it does to the janitor-rotated state |y (1)) , that is

Your) =T [¥mv) implies: Wour @iy =T [Pney  (8.1.2a)

or
r-!Youp =T r-1[¥n) (8.1.2b)
‘\POUT> =rT I"lylPIN> (812C)

If this is true for all input states |Wpy) then it follows that effect of analyzer operator T in (8.1.2a) and in (8.1.2¢)
are indistinguishable, or T is invariant to r

T=rTr! or: r!Tr=T (8.1.2d)
or, that r commutes with T; the latter being the most common way to say that T has r-symmetry.
Tr=rT (8.1.2¢)

All the above parts of equation (8.1.2) are really the same requirement for r-symmetry of T.
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Note: This is not the same as just multiplying both sides of [¥oyr) =T [¥n) by r or r-! which just gives
a whole-Earth/lab rotation, that is, operate with r-! and insert the identity (r r-! =1) to get

r!WYoun=r!T¥YnN)=r!Trr!|¥y). (8.1.3a)
This reduces to an expression similar to the original [Your) =T |WN)
Wourey = r''TWYm)=r!1Tr [Winey) =T @) VN 1) (8.1.3b)
where T (1 is a similarity transformation v-'T r of T . (This is an active transformation; devices move.)
Tey =r!Tr (8.1.3¢)

These relations hold true for any analyzer operator T whether it has symmetry or not.
For T to have r-symmetry it is necessary that the similarity transformation leaves T unchanged or
invariant (T -1y = T), as in (8.1.2d).To recap

An analyzer has y-symmetry if and only if its operator T commutes with r , thatis (T r =rT).

(b) Cn Symmetry groups and representations

Now, the janitor, having fooled the physicists once, does it again the next night, by rotating by r one more
time giving the same positions as if r2 had been done the first night. Then a combination of r2 and r3 is tried.
(This just gives r-1 = r3 the inverse of which was tried on the first night.) All of these products are symmetries if
the factors are. (So the physicists end up getting fooled night after night for almost a week of different positions!
Saturday, they have to take off since they read right-to-left. )

If operators a and b commute with an analyzer T-matrix then so do all their products

If:aT=Ta and bT=Tb then abT=Tab and baT =T ba (8.1.4a)

and inverses. If: aT =Ta then a-!T = Ta-! (8.1.4b)
This shows that the set of unitary operators that commute with a particular T-operator must satisfy the group
axioms (1-4) stated in Sec. 2.2. This set is called a symmetry group G={a, b, ¢c,..., g,..} of the operator T. We
are supposing that the analyzer matrix T associated with the experiment in Fig. 8.1.1 has an N-cyclic symmetry

group Cs={1,r,r?,r3 r4 r3} of six (N=6) operators that have the following group multiplication table. We

put the inverses of the first column in the top row so 1 is on the diagonal.

C6 1ir rir r r

1 1 :rs SR SR S | L

i R B e 1.
| 5.4 3 2
r ! 1 rir r r o

Alerle 108 8 (8.1.5a) 1= . (8.1.5b)
T

Pl vl P ot 1
|

et Pl 1 P 1
|

| :r4 Pl or 1

Think of the table as a matrix in a basis {|0)|1)[2}|3)]4)|5)} defined by operators {1,r,r?,r3,r4,r}.
This makes a matrix representation for each operator using the channel states as a basis by simply

replacing each operator's table entry by a "1" in that position of its matrix and "0" or "dot" (*) elsewhere.
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(8.1.5¢)
These are sometimes called the regular permutation representations because they permute each of the p-position
states. The first column of matrix rP-! represents the basic ket definition |p) = rP-!|1) as follows.
0) =110, [1) =r|0), [2) =r?|0), [3) = r3|0) , [4) =r¥0) , |5) = r°|0) (8.1.6a)
The r-transform is unitary r=r-1. The Hermitian conjugate of these relations is the basic bra definition.
(O] =01, (1] =0lr-1, (2| =(0r-2, (3| =(OJr 3, (4] = (O[r*, (5| = (OJr > (8.1.6b)
These defintions may be summed up by defining a representation matrix R(g) with components Ry4(g).
Rpq(g)=plglq) (8.1.6¢)

(c) So what’s a group representation?
To use a more “kosher” mathematical language we should say that the representation matrices in (8.1.5b-

c) are functions R(g) of the group G={1,81,82,...}=Cs={1,r,r°,r3,r% r7}. That is, every group operator gets
mapped onto a matrix so that the matrix R(gig2) of a group product gig is the matrix product R(g1)* R(g2) of the
factors.

R(g1)* R(g2) = R(gi*g2) (8.1.7a)
Stated simply, “The product of representations must equal the representation of the product.” The matrices in
(8.1.5b-c) must obey the group multiplication table (8.1.5a)! It is easy to see that the first matrix (8.1.5b) satisfies
this requirement trivially.

R(1)* R(1) =R(11) =R(1) (8.1.7b)
The remainder have to satisfy it because of definition (8.1.6) involve bras and kets which obey Axioms 1-4, that
is, R(g) is a unitary representation. The conjugation axiom ({p|g)*=(g|p)) implies that the -conugate (R7,,=

R*4p) of a representation must be the representation of the group inverse rf=r-1.

Rpq(g")= (plg"1q) = (qlglp)*= (Rgp(g)* (8.1.8a)
Stated more simply this is simply demanding operator unitarity from its representations.
R7(g) =R(g") =R(g/)=R'(g) (8.1.8b)

All of the above are properties that are invariant to a change-of-basis transformation UTU=1. Given RY(g) = U R
(g)U7, it follows that the new RY matrices also satisfy (8.1.7) thru (8.1.8). For example,
RYg1)RY(g1) = U R(g1)U7U R(g2)U’= U R(g1)R(g2)U” = RY(g1g2) (8.1.9)

Now we discuss finding and applying the diagonalizong transformation or d-tran of R(g).
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8.2 Cy Spectral Decomposition: Solving a Cs transfer matrix

The main analyzer of Fig. 8.1.1 is supposed to have Cs symmetry. However, it is also supposed to do

some things that we haven't let single analyzers do to an incoming base state |y )=|p), and that is, mix it up! No
longer will a base state | 1) or |2) just fly on through with nothing more than an extra phase attached, so it just
comes out ei1|7)or ei*%|2) . From now on, each base state |p) is going to get treated to a full-blown

transformation matrix T that is not necessarily diagonal. A general base state |'\¥ 7y ) will be output as |Yoy7) , as
follows,

<0|\POUT> Ty Ty Ty Ty Toy Tos <O|‘Pm>

(Mour) | | 7y 7y 5y 1y 1y 1 || (¥

{2[¥our) | B T T Tn T s | (2|¥) (2.1
<3|TOUT> Ly Ty Ty Ty Ty Tis <3|\PIN> -
<4|T0UT> Lo T T Tuz Tag Ty <4|‘I‘1N>

<5|‘POUT> Iy Iy Ty Ty Tsy Iss <5|\{IIN>

where off-diagonal (p#q) matrix elements
Tpg={(pIT |q) (8.2.1b)
of T are not all zero if |p) and |¢g) do not belong to T‘s "own" eigenbasis. (Bilingual redundancy, again.)

So, are we ready to diagonalize a general six-by-six matrix? No way, Jose'l But, here is where symmetry
analysis rides to the rescue. If we can diagonalize the r-matrix in (8.1.5) then, barring appearance of nilpotents or
other obnoxious gremlins, we may be able to also diagonalize the T-matrix (8.2.1). This is because (8.2.1) isn't
just any old six-by-six matrix; it has Cs symmetry and must therefore commute with each of its symmetry
operators like r. Recall T r = r T in (8.1.2). This means that T and r share projectors Py as shown in (3.1.37).

Diagonalize r and you may have diagonalized T as well!

(a) Spectral decomposition of symmetry operators rp
The problem of analyzing (8.2.1) is then reduced to diagonalizing r in (8.1.5a), another six-by-six matrix,
albeit a simpler one. But wait! No matrix need bother us. The minimal equation for r is simply
rN =1 (N=6, here.) (8.2.2)
and all its eigenvalues are the roots of unity given before by (7.3.5) and displayed in Fig. 7.3.3.

, m
X = (rN)m = (e_’sz) — 2EMIN  yhere: m=0,1,2,..,N -1 (8.2.3)

(Again, N=6). The spectral projectors of r follow easily. To help understand this recall that a spectral
decomposition of any matrix M come with beautiful and powerful consequential relations. First, M‘s eigen-

projector Py satisfies: MPy = g P and orthonormality PjPj = djk Py. Then there is completeness

1=P;+P, +..+P,. (3.1.15d)repeated
and spectral decomposition of operator M, and functional spectral decomposition of an operator M .
M=¢g;P;+e Py +..+¢,P, (3.1.15¢)repeated

f(M)= f(e;) P; + f(e2) Py + ..+ f(gy) Py (3.1.17)repeated
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Applying the spectral relations using the eigenvalues (roots) in (8.2.3) gives a functional (power) spectral
decomposition (3.1.17)repeated Of all powers rP of rotation operator r by putting ()’ before each P™m.
1= P° +P' +P? +P° +P' 4P
r= P'+y P+, P+ g PP+ g P+ g P
2 0 2pl 2p2 2p3 2p4 2pS5
r" =P +y P+ P+ y;P°+ P+ yP P _;
X X X3 X4 As where: Z:Z =(%m) e i2ne(mp)/ N (8.2.42)
r’ =P’ + P + 3PP + 3P + Pt + P
rf = PO+ [P 4 P+ P+ P+ P
r’ =P+ y P + 3P + P + Pt + P
Apart from the normalization, the P™-to-rP relation above is a unitary linear combination having the same Fourier
transformation coefficients (k;,|x,) as (7.3.10a). The inverse rP-to-P™ relation is obtained by transpose
conjugating the coefficients y,,,” above to give coefficients just like (xp|k;,) in (7.3.10b).
(X )* = NN Cembep)* = VN (el = ei2mmp)/N = p m (8.2.4b)
Then divide all by the norm N=6 to make the following idempotent projectors.

P0:(1 +r +r2 +rt o+t +r5)/6

p! = (1 +pr +p,rt+pr +prt +p5r5) /6

2 22, .23, 24, 25
1+pir +p5r” +p3r’ + pir +psr )/6 i21(pm)/ N

where: p7 = yP = (8.2.4¢)

p? (
p’ (1 + pfr + p;r2 + p§r3 + pir4 + p53r5) /6
pt = (1+pfr +pgr2 + p§r3 +pr1‘4 + pgrs)/6

P’ = (1 + plsr + pgr2 + p§r3 + pf‘r4 +p§r5)/6
Operating on the first position state with these projectors gives the desired eigenstates of the T-matrix. The norm
is (1P m|1) =1/N . (Recall (3.1.13)example) Its root /|y results to give normalized eigenkets.

)= P Io)IN = S et VN (v = S ) (8.2.52)

The inverse ket relations give position states |x,)=|p) in terms of wave |k;,) eigenkets.
N-1 N-1' _ir(m
|p)=r]0)="% ﬁﬁﬂ@Jﬁézzez“(WNMQ/£§ (8.2.5b)
p=0 p=0

The preceding ket relations (8.2.5) and their operator equivalents (8.2.4) are the discrete-N Fourier
transformations whose N-by-N transformation matrices are pictured for N=1, 2, 3, 4, 5, and 6 in Fig. 7.3.3 and for
N=24in Fig. 7.3.5. The physical transformation is between N “quantum-dot” position point |p)-states (|x,)=|p))

and their N quantum momentum Fourier-wave |k;,)-states. Much of the above is mathematical “legalese” which
gets short-circuited in the calculations that are described next.
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(b) Writing transfer operator T in terms of symmetry operators rP
In order for main analyzer T-matrix (8.2.1) to have C)y symmetry, it must commute with all the rotation

operator r-matrices in (2.7.5). T does this by being a linear combination of rP as follows.

T=41+Br+Cr?+Dr’+C'r¥+B'r, (8.2.6)
The rP-matrices in (2.7.5) are thus combined to give the general Cg -symmetric T-matrix relation (8.2.1).
O our) 4 B C D C B (O)
Mour) || 5 4 50 c p c || U¥n)
Cltou) || ¢ o 0w o || Gl .
(3] our) D C B 4 B' C 3]wn)
<4|TOUT> cC'" D C B 4 B' <4|\PIN>
B' C' D C B 4

(s¥our) (s¥)

The undetermined coefficients 4, B, C, D, C', and B’ correspond to all the transition amplitudes that state |0)
could possibly have to other states |0), |1), |2), |3), |4), and |5) as indicated by arrows in Fig. 8.2.1a.

A=(0TI0)
B(IT0)
C=(2[T(0)

D=(3[T|0)
C=(4T(0)
B=(S[T(0)

12)

Fig. 8.2.1 Generic 6-channel (Cg) beam transitions (a) Amplitudes (b) Paths

In order that the system really have Cs symmetry, the next state |1) must make the same amplitudes to the
states | 1), |2), |3), |4), |5), and |6), respectively, and so on for |2), |3), |4),and |5). All the equivalent paths are
indicated in Fig. 8.2.1b.

The expression of a quantum operator, such as the analyzer transfer matrix T, in terms of its symmetry
operators, such as the rP, is a deep and important idea which will be used a lot in the rest of this text. It is useful
if, as the case is here, the rP and T have the same set of eigenstates or projectors so that a (presumably!) easy
spectral decomposition of the former also solves the latter. Also, it is useful to label by symmetry operators both

the system coordinate base states, as in (8.1.6), and the transfer or transition amplitudes or paths between the base

states, as in Fig. 8.2.1.



Harter sy —Learnit Unit 3 Fourier Analysis and Symmetry ---10

(c) Spectral decomposition of transfer operator T
Now a Cg-symmetric T operator equation with these 4, B, C,.. amplitudes must be diagonalized if represented in

the symmetry projected |k;,) basis (8.2.5).

(ko |¥our) (k) o 0 0 0 0 (ko |% )
(k[ our ) o (k) o 0 0 0 (k[¥ )
o) || 00 ) s oo | e |
<k3|\POUT> 0 0 0 'S(ks) 0 0 <k3|LPIN>
<k4|LPOUT> 0 0 0 0 8(/(4) 0 <k4|lPIN>
(ks |¥our) o0 000 (k) || (k|¥y)

This is because T in (8.2.6) is a combination of symmetry operators (2.7.5) and all the symmetry
operators have |k,,) as eigenvectors with eigenvalues (8.2.3).
12 k) = 1P P7|1) = e-i2nmp/N P m||) = e-i2m mp/6 |f\ (8.2.9)

Eigensolutions for r-operators are examples of elementary Bloch symmetry conditions.

k) = e-ikm @ |y = e-i2m/6 |,y where: &, = i]—” m (8.2.10)
a

It says that a translation by distance a (60° rotation r along analyzer circumference) sees each phase timer
advance forward by k;,a consistent with pictures Fig. 7.3.3 of Bloch (m)y waves. (Remember: phasor clocks turn
clockwise with time, a negative angle.) Bloch symmetry is based upon the r -eigenoperator relation r P =y, P
m with (m)-th-root-of-unity eigenvalues y,,, = e27 "N of r from (8.2.3).
An eigenvalue formula for all possible Cs symmetric T-matrices
To compute the T-eigenvalues we just have to substitute the r-values of (8.2.9) into (8.2.6)!
kel Tk = A ek + B (klrl) + C (kmlr k) + D kle3kmy + C' mle#lkm) + B (klr)km)
=4+ Beikma+ Cei2kma+ D e-i3kma + O eilkma + B! ik a (8.2.11a)
(Note: ei4km a = ¢i2km a since -4 mod 6 = 2 mod 6. Also, ekm @ = etkm @ since -5 mod 6 = 1 mod 6) Another

way to derive eigenvalues is to put |k;,) into a matrix eigenequation (8.2.7) for T.

4 B' C' D C B 1 1
B 4 B C' D C ¢kme m¢
, , i2k,,a i2k,a
SR I B BT (5.2.11b)
D C B 4 B' C o3km o3km
c'' D C B 4 B' o 2kpa o Zkpa
B' C' D C B 4 o~ kma oikma

The first row multiplication shows gives the same eigenvalue.

elky) =A + Betkma + Cei2kma + D ei3kma + C'ei2kma + B’ etkm a (8.2.11c)
It is important to understand what has been accomplished. A general eigenvalue and eigenvector formula has
been derived for all possible matrices T that have the symmetry Cg of this particular “thought-experimental”
problem. That is pretty neat, and it is just the beginning of a powerful set of symmetry tools!
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What do the kn- eigensolutions mean?

The physical interpretation of Cyy eigensolutions is well known to electrical engineers. The ket in
(8.2.11b) is a 6-phase generalization of the voltage in 3-phase wires commonly used to transport 220V power. A
Cs example shown in Fig. 8.2.2 resembles the 23=-13-row of the C; table in Fig.7.3.3 with a time-phase of t=57/
6. (The 23=-13-bra (row) is the f-conjugate of a /3=-23-ket (column) eigenvector.) The result is a (k=1)-wave
moving left to right in Fig. 8.2.2a or clockwise in Fig. 8.2.2b. (Recall: phasor-ahead feeds into phasor-behind.

Imaginary Im¥ precedes the real Re' in time since phasors turn like clocks.)

fet/ mﬂ,f— [0 k= fj—ﬁ'fgfwr.fmff

Fig. 8.2.2 (k=1) 3-channel (C3) wave eigenstate (a) Real and imaginary waves (b) Phasors

A beam with all amplitudes equally dephased from their next neighbor is a |k;,)-state that is not changed by a
cyclically wired device that has Cy symmetry such as the Cg analyzer sketched in Fig. 8.2.1. Also, if the T-

matrix is unitary (TT=T -1), |k,,)-state eigenvalues £(k,,) must be unitary, too.

e(km)* =1/ e(ky)  or: €(ky) = eidm (8.2.12)
So the effect of the analyzer on an eigenchannel |k,,)-state can only be to add an overall phase ¢, to it.
T k) = €0m |k,,,) (8.2.13)

The phase 0, is sometimes called an eigenchannel phase-shift or eigenphase 0y, . Below we write the
eigenchannel basis representation of the T |k,,)-equation for a general input state |7y ) with arbitrary values for
its N-eigenchannel-amplitudes {k,;,|'¥1n ) of (8.2.7). (This means the N-channel-amplitudes {p|¥n ) in the
original representation (8.2.6) are arbitrary, too.) Below is for general |[¥7v ).

<ko |‘POUT> ei¢0 0 0 0 0 0 <k0 |\PIN>
(& [¥our) o M 0 o o o (k¥
(al¥our) | | 0 0 ® o0 0, (| 71) (8.2.14)
<k3 |LPOUT> o 0 0 & 0 <k3 |lPIN>
<k4 |‘P0UT> 0 0 0 0 M o <k4 |\PIN>
(ki ¥our) J Lo 0000 B ey
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(d) OK, where did those eikx wavefunctions come from?

Every student of differential equations is told early on to try the exponential solutions e’ or i’ in
independent variable ¢ with little reason given except, "It works!...sometimes." Now we can see why and when
such solutions work. The key to our exponential eigenfunctions W, (x,)= e'km¥p /- was Cy symmetry which
demanded in (2.7.5) that we use roots of unity, that is, the roots of the minimal equation rN=1 for symmetry
operator r.

If we let N approach infinity (N—ec) the symmetry approaches continuous translation symmetry Co., and
the eigenfunctions Y, (x,) approach plane waves Yy(x)= e’k /7 such as given by (2.6.20b) in Sec. 2.6b.
Symmetry demands independence or invariance to translation of the independent variable x. In other words, you
should get the same differential equation no matter whether you let the origin be at x=0 or at x=2,517 in

Timbuktu. For example, the differential equation

2
TV 2y Y 2y =0 (8.2.15)
o2 dx

does have C.. symmetry so ¢’ will work, but an equation like
2
DY oy 22y =0 (8.2.16)
o2 dx
does not have C. symmetry because of the x-dependence; it's not the same equation in Timbuktu. An example of

a Cy -symmetric differential equation is Matieu's equation for waves in a periodic solid.

2
ay +k° cos(Nx)y =0
dx?

All that we have said applies as well when the independent variable is time 7 For example, the differential

equation

2
v + Zl“d—w + a)zt// =0
dt2 dt

iot

does have C. symmetry so '™ will work. An example of a C)y -symmetric time differential equation is Mathieu's

equation for a periodic force. Later we use Cy -symmetry to help solve this type of equation.

2
ay +k? cos(NH)y =0
dr*
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8.3 Related Symmetry Analysis Examples
The homo-cyclic two-dot C> and three-dot C3 sytems are sketched below in the way the Cs system was
sketched in Fig. 8.2.1. The transfer matrix equations (8.3.1) have eigenket tables (8.3.2).

0¥ olw {0[¥our) A B' B (0] w)
{iwwi Nz ZJ{ <<1JN>>J(8’3'“‘) (o) = 8 4 & | (l¥,) |@3.10
ouT IN <2|‘POUT> B' B A <2|\PIN>
(a) Cy System  (b) C3 System

A
10)

A
10)

B

12)

@ I

Fig. 8.3.1 Generic N-channel (Cy) quantum dot systems. (a)N=2 (b) N=3
(8.3.2a) (8.3.2b)

|xo> =R’ |O> |x1> =R |0>

0)3) 1 1 1 3
‘(1)3> 1 ATil3 o 2mil3 / \/5
‘(2)3> 1 o 2mil3 ATil3 / ﬁ

The eigenket tables are from Fig. 7.3.3. Each phasor in the (bra| table for Cs in Fig. 7.3.3 is replaced by its
complex conjugate to make kets. A preceding Fig. 8.2.2 shows a |(1)3) wave with eigen-phase shift of —57/6. The
corresponding transfer matrix eigenvalues {my | T|mn) in terms of parameters A4, B,.. are left as exercises.

Besides such cyclic Cy systems there are an enormous number of ways to connect N-dots in ways that
have more or less symmetry. A few of these are considered below and in problems. Most of the interesting (Also,

read “doable!”’) quantum problems have an underlying symmetry.



Harter sy —Learnit Unit 3 Fourier Analysis and Symmetry ---14

(a) Dihedral symmetry D>
Two 4-dot symmetries are shown in Fig. 8.3.2 below with transfer matrix relations.

L IV (1 (7% B I 0 R IR R U
Your) |_| B4 ¢ ¢ | (¥w) (1% our) B o4 ¢ 5 || (¥w)
¥ our) g g ;1: i: @) ¥ our) IZ ; ’; i @)
(3 our) (3 ) (3% our) (3 )

(8.3.3b)

A

(b) D P rectangle
B/

13)
Fig. 8.3.2 Generic 4-channel (D2) quantum dot systems. (a)Diamond C>, (b) Rectangular D:.

Consider the rectangular D; system. Its transfer matrix may be written in terms of four operators.

T =4 1 +B R, +B R, +C R,
4 B B C 1000 0100 0010 000 1 (834
B 4 C B |_,/] 0100 | g 1000/ 0007100710 2
B C 4 B 0010 000 1 1000 0100
C B B 4 000 1 0010 0100 1000

Each of the operators Rx, Ry, or Rz, corresponds to /80°-rotations around x, y, or z axes, respectively, the effect
of which is indicated in Fig. 8.3.1b by transfer path arrows labeled B, B’, and C, respectively. A transfer path B’
along the x-direction is done by a y-rotation Ry, while B along y is done by Ry.

D; group structure

The multiplication table for the Verrgrupe (4-group) is quite famous and relevant to quantum theory.

1 R |R R
X y z
R, 1 |R R,
(8.3.52)
R R 1 R
y z X
R R |R 1
z y X

Its structure reduces to a few simple products. The first is (xyz)-cyclic: It holds for (zxy) and (yzx), too.
Rx Ry =Ry Rx =Ry, (8.3.5b) R=Ry’=R/2=1. (8.3.5¢)
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D; spectral decomposition: The old “1=11 trick” again

The latter (8.3.5¢) are of immediate interest to a quantum algebraist because they give minimal equations.
Ry-1=0, (8.3.5d) Ry>-1=0. (8.3.5¢)

From the roots (+1) of each minimal equation is constructed a spectral decomposition of Rx and Ry. This is the

simplest application of the Chapter 3 projector formula (3.1.15a) you will probably ever see.

P+=1+Rx P+=1+Ry
x 2 Y 2
8.3.6 3.
L (8.3.62) 2 (8.3.6b)
Px = X P = Yy
2 Y 2

This spectrally decomposes Rx and Ry separately. We can do Rz, too, but all three must be done fogether.

1 =P +P 1 =P +P]
x T (8.3.7a) y Ty (8.3.7b)
+ - + -

Rx:Px_Px Ry:Py_Py

To make projectors for the whole D> symmetry together we use the old “1=1¢1 trick” from (3.1.36).
1=1-1 =(P;r +P;)»(P; +P;)=Px+ ‘Pl +P P +P P +P P (8.3.8)

The result are irreducible projectors P for the whole D> symmetry. Irreducible means TraceR(P@)=1.

R LTk Lt I T
e (1- sz) 21+Ry)_i(1 R,+R, -R_) 539
T o o Rx) - Ry) -y

Each P is multiplied by its own elgenvalue (£1) of 1, Ry, Ry, and Ry in the D; spectral decomposition.
1 =EHDP™ +(+DP™F + (+D)PT™ + (+1)P™"  (completeness)
R_=DP™ +(=DP™" +(+D)P"™ +(-)P™
R; = E+1;P++ +E+1;P‘+ +((—1;P+_ +E—I;P" (8.3.9b)
R, =(+DP™" +(=DP™" +(-DP"" +(+D)P"
Spectral decomposition of D: transfer matrices

Spectral decomposition applies to transfer matrix (8.3.4) and yields its eigenvalue spectrum.
(++|T|++> <> < >+B’< y>+C<RZ>:A+B+B’+C
(ot =e = aln) s, )5 (R, e (R )= 45 -C
(+=|T|+-)=€" = 4(1)+ B(R >+B’< y>+C<RZ>=A+B—B’—C

(—=|T|--)=¢" :A<1>+B<Rx>+B’< y>+C<RZ>:A—B—B’+C

(8.3.10)

Again, this is a formula for all possible D2-symmetric operators in this device space of Fig. 8.3.2b. Higher

symmetry, such as “square” or tetragonal D4—symmetry is obtained if parameters B and B’ are equal. Then the
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eigenvalues £~ ande* become equal or degenerate. Such a symmetry is non-commutative or non-Abelian and
requires further theory which will be taken up in a later chapter.

(b) Outer product structure: Double qubit registers

One of the things that makes group algebra powerful is the concept of an outer (X) product of two groups.
You may have noticed that the D> group multiplication table was divided up so that the C> subgroup {1, Rx} was
isolated from the rest. The outer product is appropriate when two isolated “factors” correspond to orthogonal or
independent systems such as two separate particles or two dimensions or two qubits.
D3 is product C2xC>

An outer product of the eigenvalue tables in (8.3.2a) yields the D eigenvalue table. This is basically what
was happening in the algebraic maneuver of (8.3.8) based upon the old “1=11" trick.

C;xCJ |11 R 1| 1R, R_R,
G |1 R, G |1 R, v |10 1] 11 1
+ 01 X 41 1|7 =+ |11 11 11 11 (8.3.11a)
- 11 -l -1 - +— |11 11 [ 1(=])  1-(=1)
- = -1 -1-1 | 1-(=1) -1-(-=1)
D, |1 R |R, R,
++(1 1 1 1
= 41 a1 4 (8.3.11b)
+=[1 1 |-1 -l
—— |1 -1 ]-1 1

Note that the numbers in (8.3.11b) are exactly the coefficients of 4, B, B’, and C in the eigenvalue formulas for €*
* e *,e"7, and € " in (8.3.10). So the x-product makes this calculation very easy indeed.
The outer product requires every operator in D; to be uniquely a product of one element in C>* and one element in
C>. The elements in C>* must commute with all those in C>” so each product is unique.
CGxCy | 1 R,
agxa={LrRIx{LRr}= 1 |11 1R,
R, |R.1 R R,

X

(8.3.11c)

={LR.R, R }=D,

If a group G has g operators and a group H has 2 members, then GXH must have exactly gh members. It can be a
great help to find a symmetry group is an outer product of its parts.

Multiple outer products are possible. The D2= C2xC: system is like a double-binary or 4-bit register. A
C2xC2xC; system is a triple-binary or 8-bit register known as /-byte. A double-binary D; register differs from a
quadrary (Cy) register as a 1-byte binary systemis not a single octal (Cs) system.

Big-endian versus Little-endian

Computer scientists differ on whether the right ending bit should be the most significant bit (and least

rapidly changing) or least significant bit and most often changing. (The former is called the Big-Endian
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convention while the latter is called the Little-Endian convention after a perjorative folk-song.) The sequence (00,

01, 10, 11) is Little-Endian and more like our decimal numbering system. The sequence (00, 10, 01, 11) or in
(8.3.11) (++, -+, +-, --) is Big-Endian and what we are using here.

Cs is product C3x Ca (but C4 is NOT Cxx Cs)

Our first example, the cyclic group Cs, is a composite C3xC> of two of its subgroups C> and Cs as shown
below. Here the eigenvalue table (8.3.2a) of (> is crossed with the Cjs table (8.3.2b).

C,xC, | 1 r r’ 1-R r-R r’ R
G |1 r r’ (0)3 (0)2 ; 27:./2 —2;'/13 ; 27:./2 —2:'/13
(0)3 1 1 ! C2 . (1)3 (0)2 v e—27:i/3.1 6277::/3 ’ . e—27:i/3.1 eZ?ril/3 !
(), [1 s oo (0, [1 1= (2),-(0), [1-1 e S PSR U I T B 1 ST
Q) |1 eoms s (1), |1 -1 (0),-(1), |11 11 _Zi 1/13 1-(~1) 2 ;-/2—1) _; , /(3—1)
(1)3 (1)2 111 11 e A 1= 7B e (=)
(2)3 (1)2 111 2B 11 1= B 2B (-
C,xCy=C, |1 r=h* r*=i*|R=h0’ rR=h r* R=0
(0),-(0),=(0), {1 1 1 1 1 1
(1)3 _(0)2 — (2)6 1 e277:i/3 672m'/3 1 eZm’/B 67271:1'/3
= (2),-(0),=(4), |1 e 277 1 e il (8.3.12)
(0),-(1),=(3), {1 1 1 -1 -1 -1
(1),-(1),=(5), |1 &2 e a PHE
(2),-(1),=(1), [1 P SFE | R

The tricky part is to identify the Cs waves (k)s that belong to a each product (m)s.(n).. That is,

ei(k) X

6" — ¢

i mz—” nz—ﬂ X i 2
i(m)3xei(n)2 x _ e[ 3 + ) j _ 61(2m+3n)?x
k= (2m + 3n) mod 6 (8.3.13b)

For, example, the last row of (8.3.12) belongs to Cs wave k=(2.2+3.1) mod 6 = 7 mod 6 = I or (1)s. The result is

a reordered Cs table, but otherwise it is the same as the one first drawn in Fig. 7.3.3. Verify!

(8.3.13a)
The desired k-value is:

Symmetry Catalog
Cataloging the number of symmetry groups of a given order N is a difficult problem with a long history.

But, for commutative or Abelian groups considered so far, it reduces to finding all the distinct outer products

CpXCgxCpxCsxCx ...

Cpq if p and q share no factor in common so we don’t include Cpq in the catalog if p and g are prime since then

of cyclic groups such that N=pgrst.... is a product of primes. Product CpxCy is the same as
Cpg = CpxCy as in the case of Cs = C2xC3 above. But we do include both CpxCp and Cpp which are distinct as
were Cox C> and Cy above. If N=p’ is a power of a prime such as N=8=23, then a distinct group exists for each
partition of the power P. For example, P=3 =1+2 = [+1+1 has three distinct prime base-(p=2) groups: Cs and

Csx C2 and Co2xC2xC> are all distinct symmetries.
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Problems for Chapter 8.

Subgroup soup
8.1.1 (a) The Cs symmetry group has subgroups. List all of them except Cs itself.
(b) Do the same for the symmetry groups C3 , C4 , and Cs5 . What is special about groups Cy of prime order N?

Ttrace’o g

8.1.2 (a) By group axioms (Sec. 2.2) show each row and column of a group table has an operator g only once.

(b) Use (a) to show that the regular representation trace TraceR(g) is zero for all but “do-nothing” unit operator g=1.

Turn-about s fair play

8.2.1 Suppose we are given the eigenvalues {70, T1, T2, T3, T4, T5} of a unitary Cs transfer matrix T in (8.2.1).

(a) Can the {70, 71, T2, T3, T4, T5} be any old complex numbers? What restrictions, if any, apply?

(b) Can one give a formula for all 36 components 7, of T in terms of {10, T1, T2, T3, T4, T5}? If so do it. If not expalin why
not and under what conditions you may be able to do it.

A Hex on pairing

8.2.2 Suppose the Cs transfer matrix T is the form of the Pairing operator, that is all components equal 7, =T .
(a) Derive the resulting eigenvalue spectrum.

(b) What, if any, limitations need to be placed on parameter 77

(c) Discuss which waves belong to which eigenvalues

Phase o’Hex
8.2.3 (a) Could the hexagonal Cs analyzer be wired so input |even sites)=(1,0,1,0,1,0) comes out ei® |even)?
What kn-eigenstates make up |even sifes )? Does your “rewiring” maintain Cs symmetry?
(b) Could the Cs analyzer be wired so input |even sites ) comes out € |odd sites )=(0,1,0,1,0,1)?
What kn-eigenstates make up |odd sites )? Does your “rewiring” maintain Cs symmetry?
(c) Could the Cs analyzer be wired so input |odd symm)=(1,-1,1,-1,1,-1) comes out e |odd symm )?
What kn-eigenstates make up |odd symm )? Does your “rewiring” maintain Cs symmetry?
(d) Could the Cs analyzer be wired so input | odd symm ) comes out €i® |even symm )=(1,1,1,1,1,1)?
What kn-eigenstates make up | even symm )? Does your “rewiring” maintain Cs symmetry?

Little diamond

8.3.1. The symmetry eigensolution analysis of the C>, diamond quantum dot device in Fig. 8.3.2(a) is a little different than its
D: cousin in Fig. 8.3.2(b). Symmerty multiplication table and spectral decomposition is essentially the same but the transfer
T-operator is not such a simple linear combination of symmetry operators. Represent the symmetry and give a decomposition
of symmetry and T-matrix. (Note that x and y-plane mirror reflections are symmetry operators, too. There was no distinction
between rotations and reflections in the D, problem.)

Double Crossed
8.3.2. Complete a symmetry catalog of commutative (Abelian) groups in terms of distinct Cp,XCyX... cross products.
(a) for order N=8. (b) N=9. (¢) N=10. (d) N=11. (e) N=12. (f) N=16.
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Problem 8.3.3 “Big box” Problem 8.3.4 “Big diamond”

Big box

8.3.3. Give a complete symmetry eigensolution analysis of the D2, device pictured here. First show that the full symmetry
with horizontal reflection group Ci ={1, 6y /(thru z-axis)} is C2XC>xXCp=C2xC2xC> which is called D2p.

Derive character table of D2j using the cross product trick of (8.3.11).

Big diamond
8.3.4. Give a complete symmetry eigensolution analysis of the D2 device pictured above.

Ttrace’o P

8.3.5. Before (8.3.9a) it is noted that TraceR(P)=1 means projector P is irreducible, that is, not a sum P= P+ P; of other
“smaller” projectors. Explain this and verify by constructing the representation of the P** ,... in (8.3.9).
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and
Fourier Dynamics

W. G. Harter

Now we consider the transfer operator from Hell, the time evolution operator U. This “grim-
reaper” of the quantum world determines everything that happens in a non-relativistic
(Schrodinger) system. Nothing escapes U-action including you! So learn U well, and pay
particular attention to U’s generator H which is called the Hamiltonian. The expression e Ht (for
constant H) is an icon of modern quantum theory. Quantum dot systems from Chapters 7 and
8 will be used as examples and provide our first introduction to quantum periodic band theory
and quantum “revival” beats. (Yes, some waves can survive the grim reaper by reviving

repeatedly while doing arithmetic, too!)
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Chapter 9. Time Evolution and Fourier Dynamics

9.1 Time Evolution Operator

It is often said that nothing that is more demanding than the test of time. All the analyzer experiments
considered so far have required time to do, lots and lots of time. Never forget that all our fancy theory of
analyzers and wave mechanics is just giving us probabilities; not too different from odds posted at the racetrack.
Millions of counts need to be registered before those fancy predictions are seen in a laboratory, and all that
counting takes time.

Now we consider a very demanding kind of analyzer, good old Father Time, in the form of the time
evolution operator U(tpinaL, ; tiniTiaz)- This "grim reaper” is supposed to be able to take any state at an initial
time and transform it into what the state will be at a later time.

W(trinaL,) ) = U(triNaL ; tiniTiar) Y (tniriar) ) .1.1)
The main task of this section will be to begin theory and derivation of U operators. This is the main problem of
quantum theory, so we won't finish the job here. In fact, we won't be done with U operators until the twelfth hour
of never!

Let's first suppose time translation symmetry is present. By that I mean there is no one (such as perfidious
janitors) "messing" with our analyzers. So, the experiments run the same day and night. Then we can often
simplify the evolution operator equation by just having one time variable as follows

W(@))=U(;0) [¥W0)), 9.1.2)
so you may pick a "time origin" (¢=0) arbitrarily.

(a) Planck's oscillation hypothesis
At first, the time evolution problem looks formidable, even for a little six-state beam analyzer problem
that was studied in Chapter 8. Its evolution equation (9.1.2) looks like the following at any point z in the beam

and varies with z. We will put off discussing z-dependence until a later chapter.

1|¥ 1|¥(0
< | (t)> Ull U12 U13 U14 U15 U16 < | ( )>
([ () Uy Uy Uy Uy Uy U (2] (0))
<3|\P(t)> _ U3l U32 U33 U34 U35 U36 N <3|lP (0)> (9 1 33)
<4|‘P(f)> Uy Uy Uy Uy Uy U <4|‘{'(0)>
<5|\P(;)> Usi Usy Usy Usy Uss Usg <5|\{1(0)>
<6|q,(t)> Usi Usy Uss Uss Ugs Ugg <6|\P(0)>
Here the matrix elements are
qu:<P|U(tI 0)1q) (9.1.3b)

How in the world can one derive all those N?=36 time functions Uy, ? Woe is us!
But wait! The U-operator and any matrix representing it should have the Cy symmetry of the analyzer

system shown in Fig. 9.1.1. And, like the analyzer T-operator, it should be reduced by the Fourier Cy -symmetry
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lky basis to a diagonal matrix made of phase factors ei®m as in (9.1.17b). Furthermore, the Planck hypothesis

indicates that the phase factors should have the time phasor "clock" form e-i®mt that is conventional clockwise
phasor rotation. Then the U-operator in (9.1.3) can be made to have a much simpler form if the basis is changed

to its eigenbasis |k;,) as shown below.

i) Tt 0 0 0 0 (ko|¥(0))
() e 0o S 0 0 0 (k[ (0)
(e |‘P(t)> 0 0 b 0 o, (k, |‘I’(0)>
<k3|‘1’(1)> 0 0 0 031 0 . <k3|‘{f(0)> (9.1.4)
e R s (k| (0))
(k| (1)) 0 0 0 0 0 e e ¥10)

Now, instead of N°=36 unknown Upq functions we have only N=6 frequency values @y, to derive.
This is quite a simplification, if true. It is also a reasonable one since the evolution operators need to form

a group called the time evolution group that multiplies as follows. (Recall (1.4.12d).)

U(tz;t;)=U(t3,;t2) - U(tr; t1) (9.1.52)
Also, axioms 1-4 require U( ¢, ; ;) to be unitary operators. (Recall (1.5.5b).)
Ul(tr,t;)=Ul(t2,t1)=U(t;; t2) (9.1.5b)
These requirements are satisfied by the Planck phasor forms in the diagonal matrix (9.1.4) or as follows,
U(ty; 1) = diag{ el@0(2-t1)  eio1(2-t1) | eiom(t2-t1) .} (9.1.6a)

since

eiOm(t3 - t1) = e-i0m(t3-12) e-iOm(2-t1), and (e i®m(2-t1) )* = eiOm(t1-2)  (9.1.6b)
which depends only on relative time difference (¢; - £2): U(t;,; t2) =U(t;-1t2,0).=U(0;ty-t;)

Indeed, we shall demand that a U-eigenbasis { |®p), |®;), ...|®,,), } shall exist even for asymmetric
evolution operators for which a convenient symmetry basis { |kg), k), ...lkn), } is not available to give "instant"
diagonalization. We shall describe how to generally find eigenkets |®,,) so that

U(t2; t1) |@p) = e®m(t2 - 1) |m,,) (9.1.7)
This is always possible in principle since we know that all unitary operators are diagonalizable. (Recall exercises
in Ch. 3.) However, in practice the problem of diagonalization can be a bit of a chore for large systems consisting

of millions, billions, or more states! We will need all the help that symmetry analysis can give us.
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9.2 Schrodinger Time Equations
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Time evolution operators and the states they evolve satisfy time differential equations known as

Schrodinger equations. This is a common way to restate Planck’s oscillation axiom in differential form.

(a) Schrodinger's time equations. Hamiltonian time generators
If time evolution equation (9.1.4) can predict the quantum state future far in advance, then it should

certainly give the rate of evolution correctly. The time derivative of (9.1.4) is the following.

(ko[ (2)) o, 20! 0
(| (2)) 0 e
9 <k2 |\P(t)> _ 0 0
o (k| (1)) 0 0
(ky | (2) 0 0
(ks | (c) 0 0

e
o

S o o o o

Here we lose the Dirac notation briefly with
Piom(t) = ¥ (1)) = e 1Omh,, [ P(0) = e1OmE ¥y, (0) .
Multiplying by i# and then putting back the Dirac notation gives the following.

) 10)

S o o o o

0

S o o O

e
9

0

S o o O

[= R )

S o O

[ R )

£

oS O

o o o o

e
N

o

0 0
0 0
0 0
.
0 0
e—i(D4 t 0
0 wse—iCUSt
—iay thkO (0)
0 _
. e lw]tl{"kl (0)
0 e—zwz thkz (0)
0 7:w3zLPk3 (0)
0 —io, [\Pk4 (0)
5
e (0)

o o o O

oS o o o o

ho

(ko|¥(0))
(k[ (0))
(ks |[#(0))
(ks |¥(0))
(ks |[#(0))
(ks (0))

(9.2.1)

(9.2.2)

(9.2.3)

(9.2.4a)
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<k° |T (t)> hwg, 0 0 0 0 0 <k° |lP (1)>
(| (2)) 0 ho, 0 0 0 0 (| (2))
k, ¥ k,|¥Y
2] Gl 100 e, 000 | {B¥(0) | (9.2.4b)
o (i | (1)) 0 0 0 ho, 0 0 (ks | (1))
<k4|‘P(t)> o 0 0 0 ho, O <k4|‘{‘(t)>
0 0 0 0 0 &
(0) B 0
which is called Schrodinger's time equation. Its abstract Dirac form is the following
d
in=|¥ (r))=H| ¥ (c)) (9.2.5a)
where the Hamiltonian energy operator H is related to i times the time evolution operator derivative by
ih%U(t,O)=HU(t,O) (9.2.5b)
and 1s H also called the generator of time translation. An exponential solution to (9.1.5b) is
U(t,O):e'th/h U (O,O)Ze'th/h where: U (0,0) =1 (9.2.5¢)

if H is an N-by-N constant matrix operator as it is in (9.1.4a-b). (It must be constant if there is time translation
symmetry. Remember, it is time translation symmetry that permits exponential solutions.)
All of the above "derivations" of Schrodinger's equations (9.2.5) are really only Planck's frequency and

energy axiom, starting with (9.1.4) and restated in many fancy ways for an N-state system for N=6.

(b) Schrodinger's matrix equations

The thing that makes a Hamiltonian H powerful is that it may be easily derived it in some other basis like
the original channel basis {|7), |2), ...|N) } and then diagonalized using symmetry techniques or numerical
methods to find its eigenvectors { [wp), |®7), ...|oxN.7)} known as energy eigenstates and eigenvalues { iy,
hwy, ...hiopn. 1} known as energy or frequency spectra €, = hwy, . This time, the word spectra is used as it was
intended by the pioneering spectroscopists who first saw atomic spectral lines in laboratory and in astrophysical
observations. (Mathematicians co-opt the term spectra other ways.)

Rewriting Schrodinger's time equation (9.2.5a)
d
ihg|‘1-‘(t)>=H|‘I‘(t)> (9.2.6a)

in an arbitrary basis gives

ol oY
t)> Hyy Hy Hyy Hyy Hyy  Hps <| (t)>

(o (

I e S N R U 10)
ihi <2|‘P(t)> _ Hyy H, Hy Hy,y H, Hy . <2|\P(t)> , (9.2.6b)
ot <3|‘P(t)> Hyy Hy Hyy Hyy Hyy Hig <3|‘P([)>

<4|‘P(t)> Hyy Hy Hyy Hyy Hyy Hys <4|‘I’(t)>

<5|‘P(t)> Hsy Hgy Hsy, Hsy Hgy  Hgs <5|‘I’(t)>
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where the matrix elements
Hpq = (pIH |q) (9.2.6¢)

are generally non-diagonal except in H’s or U’s own (eigen) basis |kx) as in (9.2.4).

(c) Writing Hamiltonian H in terms of symmetry operators r?
If analyzer H -matrix (8.2.1) has Cs symmetry, it commutes with all the rotation operator r-matrices in
(2.7.5) and is a linear combination of rP as follows.
H=H1+Sr+Tr2+Ur3+T*r4+5*%r, (9.2.6)
The rP-matrices in (2.7.5) combine to give a Cg -symmetric H-matrix Schrodinger equation (9.2.7) in analogy to
the T-matrix transfer equation (8.2.7), and label its tunneling paths from point-to-point.

(o] (1)) P (o] (1))
<<1||‘P(t)>> o u <(1||\{f(:)>>
.0 2 (1) | ros o st U | 21¥(¢)
T <3|‘P(t)> U* T S H S* T: <3|‘P(:)> > (9.2.7)
(4] (1)) g* TU* ; i [; ‘; (4] (e))
(3% () (s (1))

The undetermined coefficients H, S, 7, U, T* and S* correspond to all the tunneling amplitudes that state |0)
could possibly have to other states |0), |1), |2), |3), |4), and |5) as indicated by arrows in Fig. 9.2.1 which are
analogous to the transfer amplitude paths for the T —matrix (or of a U-matrix) in Fig. 8.2.1.

(a) Tunneling Amplitudes
from |0)

H =(0[H|0)=H*

S=(1H0) I

T =(2[H]|0)

U =(3[H|0)=U*

T*=(4|H|0)

S*=(5[H|0) R 4

13)
Fig.9.2.1 Generic 6-channel (Cg)Hamiltonian tunneling (a) Amplitudes (b) Paths
But, there is one important difference. Hamiltonian matrices must be Hermitian (self-conjugate: Hf = H ).
Hpg={pIH |q)={p|HT|q)=Hy " (9.2.8a)
Unitary U implies Hermitian H
Hamiltonian H is Hermitian because the time evolution operator is unitary by definition (9.2.5).
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0 {1,0) (e ) - 10) < u(-r,0)- o (9.2.8b)
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So, an inverse tunneling amplitude such as $* is the complex conjugate of the forward one S. Also, diagonal
components of a Hamiltonian matrix are thus always real.
Hpp =Hpp * (9.2.8¢)

This means the eigenvalues are also real since relations (9.2.8) are true in any basis including the H operator’s
own basis or eigenbasis where H is diagonal.

Note that a diametric tunneling amplitude such as U=U* also is real because its operator r? is its own
inverse (r’= r37=r-3 ). Conjugation reverses direction of rotation for all C4 operators except 1 and r3. -
conjugation is time reversal for Schrodinger equation (9.2.6). Axiom-2 says bra-clocks run backwards.

9.3 Schrodinger Eigen-Equations

Time evolution is simple for eigenstates | ,, ) because only a single eigenfrequency ,, is present.
Energy or frequency eigenstates and eigenvalues satisfy Schrodinger's eigenvalue equation, also called the

Schrodinger time-independent equation.

H | 0p) = 10y, [ 0) = €5 | 0p)

(9.3.1a)

In a “quantum-dot” basis this is a matrix eigenvalue problem such as the following for N=6.

Hyy Hy Hy Hyy Hyy Hs (0lo,,) (0]w,,)
Hy Hy Hy Hy Hy Hg <1 wm> <1 wm>
Hyy Hy Hy Hy Hy Hy <2|a)m> <2|a)m>
Hyy Hy Hiyy Hyy Hyy His <3|a)m> ~n <3|a)m> ’ ©-3.10)
Hyy Hy Hy Hyg Hyy Hys <4|wm> <4|wm>
Hsy Hsy Hsy Hsy Hsy Hes (5o, (5o,

The Schrodinger time equation (9.2.6b) is a simple 1-dimensional relation for each amplitude.
d
ihg<p|a)m>=<p|ﬂ|wm>:hwm<p|wm> (9.3.2)
Its solution has each amplitude (p|®.) spinning its clock at the same rate m,, at constant size [(p|em)|*.

(plo,, (1))=(p|o, (0))e (9.3.3)

‘<p|wm (t)>‘2 = ‘<p|a)m (0)>‘2 = const.

Such is the fate of an eigenstate or stationary state. Its observable probability distribution is forever fixed.

(9.3.4)

But, how does one find just the right {p|m,) amplitudes to solve (9.3.1)? Aren't we back in hot water again
with N?=36 unknown constants Hp, and a big diagonalization job facing us? Woe is us, again! But, fortunately,
there are all kinds of techniques and approximation tricks to find the Hamiltonian matrix elements and then find
the energy spectrum. That is what most of the rest of the book is about!

Chief among the eigensolution techniques is symmetry analysis. The time evolution matrix U and the
Hamiltonian matrix H for the Cg -analyzer in Fig. 8.1.1 can be treated to the same techniques that worked for the

analyzer T-matrix. Again, all possible Cs—symmetric Hamiltonian matrices are given with a single complete set
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of eigensolutions. Then all possible motions are obtained from combinations of eigensolutions, which, by their
completeness are able to produce an arbitrary initial condition.

After that, the motion is just the interference beating between all the eigenfrequencies that participate in
producing a given initial state. Remember, it takes two to tango! At least two eigenstates with different
eigenfrequencies need to be up and spinning to have observable motion. Otherwise, nothin’s happening!

It turns out that while it takes two to tango, three’s a crowd! Two state systems are unique in their harmonic
simplicity. At the end of this unit we will see how to understand more complicated 3, 4, J5,...level excitations for

some simple systems.
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(a) Solving Schrodinger's eigen-equations for Cs system
H-eigenvalues use r-expansion (9.2.6) of H and Cg symmetry r’-eigenvalues from (8.2.9).
{elrP|ky )= eiPkma = e-ipm2@/N where: kn = m(2n/Na)
(e Hlk) = H (kUi + S Cklrlk) + T ele2lm) + U k3l + T* (le ) + S* el
=H + S e-thma + T e-i2kma + [ e-i3kma + T* eilkma + §* eikpa (9.3.5a)

Again we check that H eigenvectors |wn) are the |k») in (8.2.11) which solved transfer matrix T.

H §*T1* U T S 1 1
N S* T* U T oFm okma

T § H S§* T* U o 2hma o 2ma

u T S H S* T* * o 3ma =ho, Si3kma (9.3.5b)
T* U T S H S* e—ikaa e—ikaa
s* r* U T S H e—ikma e_ikm“

Because of Hermiticity (HT = H) eigenvalues w, or €, will be real eigenfrequency and energy spectra.

hoy, =¢€, =H+ 2|S| cos(kya-0)+ 2|T |cos( 2ky,a-t )-U(-1)m (9.3.5d)
Here we note: e i3kma = g-i3mm = (-1ym for N=6. Also, let the complex parameters be in polar form.
S=|S|eic, T=|T|el" (9.3.5¢)

Their phase angles ¢ and T correspond to what is sometimes called a gauge symmetry breaking or Zeeman
splitting parameters. To begin the discussion, we shall let the phase angles be zero or pi.

A little physical intuition helps to make some sense of the energy eigenvalues. The parameters S, 7, and U
are called tunneling amplitudes because they are "sneak factors" that tell how rapidly (and with what phase G, T)
an evanescent wave in one channel can sneak or tunnel over to one of its neighbors as indicated in Fig. 9.2.1. The

S, T, U give rates at which the 4, B, C amplitudes of a T or U matrix grow.

(b) Energy spectrum and tunneling rates
We saw how the evanescent waves in (6.3.10a) of Sec. 6.3¢(3) decay exponentially and die off with

distance. Channel waves are like this, a channel wave state |0) will be exponentially more likely to tunnel to its
nearest neighbor channels |/) or |5) than to more distant channels |2), |3),or|4) in Fig. 9.2.1. So, the distant
tunneling amplitudes U and T might be approximated by zero in (9.3.5d) to give

hoy, =€, =H+ 2|S|cos(kpa-0). (9.3.59)
This is an elementary Bloch dispersion relation. If wavevector k;,, were a continuous variable k the dispersion
function (k) would trace a cosine as shown in Fig. 9.3.1 where the gauge phase is set to pi (6=m) to make the &y
state lowest. Now the spectra correspond to hexagonal projections of ei2@m/6

hoy, =¢, =H-2|S|cos(kya). (o=m) (9.3.5g)
Note that while the eigenvalues (7w, = &) vary with parameters H, S, T, or U, the eigenvectors |®,, ) or

eigenfunctions Yy(xp) are the same for all values of parameters due to Cy -symmetry.
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If the tunneling phase ¢ increases by /12 it shifts the dispersion relation to the right by /12 in k-space. It rotates
the hexagonal spectral diagram by n/12 or /5° as shown in Fig. 9.3.2. The resulting spectra shifts and splits the
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Ko K1k, ki ko kg

Fig. 9.3.1 Generic 6-channel (Cg) tunneling spectra and Bloch dispersion.

degenerate doublets +/5 and +2s.

ho(ks)

no(k )

ho(ky)

h(u(k_lj

hok 1)

hoke)

o=

\

w12,

Fig.9.3.2 Same 6-channel (Cg) tunneling spectra with broken symmetry and doublet splitting

This is equivalent to rotating the analyzer disk in Fig. 8.1.1 at a constant negative or clockwise velocity so

negatively moving waves increase in energy while the positively moving ones have less energy.
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Such a tunneling phase or gauge factor causes a right-left symmetry breaking so right-handed and left-
handed waves are no longer degenerate in energy. It is analogous to the Doppler shift that is observed by an
observer moving through a monochromatic standing wave and sees red-shifted and blue-shifted frequencies while
the stationary observer sees equal frequencies. (Recall Sec. 4.2.)
A similar effect occurs if a magnetic field is applied perpendicular to the plane of the analyzer along a beam of
charged particles. Then the splitting of doublets is called Zeeman splitting which is a very well known atomic
spectral effect that will be studied later.

Bloch's waves vs. Bohr's
One should compare the discrete Bloch spectra and dispersion in Fig. 9.3.1 here to the simple Bohr

spectra in Fig. 7.1.1. The orbital wavefunctions for both have a plane-wave form of "Bohr's ghost" waves.

Yin(x) = etkmx (9.3.6a)
However, Bloch waves for Cs are discretized into N=6 phasors at discrete points xp. (p=1, 2, ...,6)
Wm(xp) = etkmxp= gi2xmp/N (9.3.6b)

Each Bloch quantum number m=0, 1, 2, ..., 5, is a number m-modulo-6 as in (7.3.7) and in Fig. 7.3.3.
Bloch eigenvalues, however, differ from Bohrt's. Bohr orbital dispersion or energy is a simple parabola
(7.1.16) as follows using momentum quantization p,,=hk,,=h2zm/L with: m=0, +1, £2,...
Ep= (hky)2/2M = m? [h2/2ML?] (9.3.7)
This parabola is a low-energy approximation to the relativistic hyperbola in Fig. 5.2.1. In contrast, the Bloch
curve is a flipped cosine function (9.3.5g) as plotted in Fig.9.3.3 and superimposed upon the Bohr parabola. For
larger N (Fig. 9.3.3 it is N=24) and small m the cosine curve is approximated by a Bloch-like parabola given by a
Taylor expansion at the origin (k=0=ky) in k-space.
hoy, =E, = H - 2|S| cos(ky a) = H - 2|S| + |S|( kma )? +.. (9.3.8)
In this limit the Bloch dispersion is approximated by the simple Bohr parabola.
In the limit of large number N of “quantum dot” coordinates xp. (p=1, 2, 3, 4, ...,N) the continuum
coordinate x of the Bohr orbitals is approached. As long as the waves considered have low 4 , that is, are long
compared to the lattice interval a=L/N that divides up the Bohr coordinate range L, then Bohr and Bloch waves

have nearly the same dispersion ®m(km) and will behave the same.

(c) Brillouin's boundary
For larger wavevector &, the wavelength becomes shorter until its waves begin to "fall through the
cracks" in the lattice. Recall the difficulty in following the "Bohr's ghost" wave through the Cg phasors in Fig.
7.3.3 for the higher waves (m)y = (4)s or (5)s , or even (2)¢ . A break occurs when a half-wave length matches the
lattice spacing a. This is when (m)y =(V/2)n = (3)s, a "half-way point" known as the first Brillouin zone
boundary (BZB-1). It 1is at k;> or (m)y = (12)24 in Fig. 9.3.3 (N=24).
(m)BzB-1=(/2) or: kpzp.; = m/a or: Apzp.; = 2a (9.3.92)
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Fig.9.3.3 Generic 24-channel (C»4) tunneling spectra and Bohr vs. Bloch dispersion.

At this m-number or k-value the wave amplitudes are alternating +/ at the lattice points x,.
Yn/(xp) = etkn/2ip= ei2n(N2)p/N = einp = (-])p (9.3.9b)
Phases that are in or m-out of phase make a standing wave with zero group velocity as in Fig. 9.3.4.

p=9 p=11 p=I13 p=15 p=17 p=19 p=21 p=23

A

EQVEQTER VAR VIR VIR VIR VIR YE

. s

p=0 p=2 p=4 p=6 p=8 p=10 p=12 p=I14 p=16 p=I18 p=20 p22 p=10

k1) =1+1254) B’Z)”_O”m boundary Waves rZero group velocity

7 " Wavevector k (in units of 2n/L) N 7
24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24

Fig.9.3.4 (Cyy) Brillouin boundary wave must be standing. (No group velocity)

Postive or negative (k=+/2) waves have the same effect on the 24 lattice points; both give standing wave
motion with no transmission one way or the other. In C24 symmetry +12 mod 24 = -12 mod 24.

The wave group velocity is the velocity Vgroup associated with classical particle or "message" velocity.
(Recall discussions in Sec. 4.4 (b-c).) From (9.3.8) the Vgroup for Bloch (or for low-k Bohr) is
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roup = C;k& = 2|—;|asin(kma) [5 2|—;:|kma2 Jforik <<m/a (9.3.10)

The group velocity goes to zero at the origin (k;,;,=0) and at the Brillouin zone boundary (k,,=kpzp). This is

consistent with our picture Fig. 9.3.4 of a standing wave. It just goes nowhere but up and down.

Effective mass: Another quantum view of inertia
Low velocity (u<<c) particle momentum is mass times particle velocity: Mu=MV g;yp. DeBroglie

relation (5.2.5¢) gives momentum as 7iky,. For low-ky,-Bloch waves (Bohr waves), (9.3.10) gives Veyoup

proportional to the tunneling amplitude S implying an effective mass M.y inversely proportional to S.
Meg(0)=12/( 2|S| a?) (9.3.11a)
This is consistent with a comparison of Bohr energy values €,,,= {/>(fik,;,)?/ps and the low-k;,, Bloch energy
eigenvalues (9.3.8). Recall the quantum effective mass introduced in (5.3.13) and repeated here.
F hk hk h do

M, =—= = = where: V. =—
7 a dVgroup dVgroup % d 260 sroup dk
dt dk dt dic?

(9.3.11b)

Effective mass is inversely proportional to the curvature of the dispersion relation. As £, increases in Fig. 9.3.3
the effective mass starts out at k=0 with the Me(0) value (9.3.11a). Then it increases until it goes to infinity at &y,
= kn/4 = k¢ . Then it comes back from negative infinity losing much of its negativity to end up at (Meg(k;2)=-Mef
(0)) on the Brillouin zone boundary &, = kn/2 = k> . There ®pioch(k) 1s a downward curving dispersion like Dirac
negative-energy anti-particle band in the lower half of Fig. 5.4.1. But, ®Bioch(k) in Fig. 9.3.3 differs from a
continuum relativistic dispersion relation (5.2.8)

2
2
E=ho, ... = J_r\/ ( Mczj +(chk) (5.2.8)repeated

For Wyeia.(k) effective mass approaches infinity only as the momentum or k becomes large. For a vacuum , a
constant applied electric field would cause & to increase uniformly. But, for a Cy lattice k-space is periodic so a
field causes a charged particle to just oscillate back and forth each time k passes through another Brillouin zone.
Based on this, relativistic symmetry appears quite different from that of a Bloch lattice. But then, have we really
looked closely enough at that vacuum continuum? It may take some pretty high k-values to do so!

The final sections of this unit are devoted to dynamics of Bohr waves shown in space-time plots of the
following Fig. 9.3.5-6. Recall also Fig. 5.5.5-6. The interference anti-nodes that spring up and then vanish are
called revivals, a term coined by Joe Eberly to describe atom-laser simulations he noticed around 1976. Much of
the intricate structure are called fractional revivals first noticed in molecular rotor simulations around 1980.
Much of the first analyses of fractional revivals, done during the 1990’s, involves particle-in-a-box and atomic
Rydberg states. However, Bohr orbitals provide the clearest understanding of revivals because of their underlying
Cy symmetry.

(Next pages: Figs. 9.3.5a-c)
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(Preceding pages. Figs. 9.3.5a-c Bohr wavepact revivals in space-time )
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(d) Bohr wavepacket dynamics: Uncertainty and revival
We now study Bohr waves that are a Gaussian combination of momentum-m plane waves.

‘P(¢,0)=<¢,O|‘P>=$ éwe‘mzmmze“"‘l’ (9.3.12a)

Here, m=0, £1, 2, +£3,...are momentum quantum numbers in Bohr energy formula (9.3.7).
Ep= (hky)?/2M = m? [h2/2ML?]= m?hv; = m?ho; (9.3.12b))
The fundamental Bohr frequency w;=2mv; is the lowest transition (beat) frequency v; =(Ej-Eg)/h.
Completing the square of the exponent provides a simpler ¢-angle wavefunction.
mAm V (am Am YV
W(0,0) = %m b e_(m_’ijj 13) - @{[”j (9.3.13a)
Only the lower-m terms with m<Am in the sum 4(Am,) have significant e-( m/Am)? yalues, but for larger Am the
number of significant terms grows until sum 4 approaches a Gaussian integral independent of ¢ .
k

2 2
A(amg)= 5 e_[Am ) ——)Jf;dke_[A’") —Jrzam  (9.3.13b)

Am>>1

m Am

The variable factor e-A ¢/2)? is a Gaussian function of angle ¢ or position x. It is remarkable that the Fourier

transform of a Gaussian e-("/Am)? momentum distribution is a Gaussian e-@A%)? in coordinate ¢.

(m|¥)= e-(m/Am)2 implies: (O |P)= e (®/A9)? (9.3.14)
The relation between momentum uncertainty Am and coordinate uncertainty A¢ is a Heisenberg relation.
Am/2 =1/A¢ ,or: Am Ao =2 (9.3.15)

A Gaussian is an eigenvector of the Fourier C,, transformation matrix. (More about this later.)

Three space-time plots are given in Fig. 9.3.5a, b, and c, respectively, with decreasing momentum half-
width Am=9, 3, and /.5 and courser spatial resolution A¢/2n=2%, 6%, and 12% . Each is plotted for a full time
period T; = 1/0;= 2r/w; after which it repeats. The first Fig. 9.3.5a uses fine spatial resolution Ax-=0.02 which
requires 9-quantum excitation (Am=9). It shows a labyrinth of increasingly fine self-similar X-patterns of wave
revivals. In the second and third figures (9.3.5b and c), of lower excitation (Am=3, and 1.5, respectively), the
finer X-patterns begin to disappear leaving one big X over Fig. 9.3.5c.

Semi-classical Theory: Farey Sums and Quantum Speed Limits

Fig. 9.3.5c provides a clue to the theory of revivals. Its X is like a zero crossing in the Lorentz grid in Fig.

4.2.9, but with momentum values restricted by Am=1.5 to the first two levels m=0, +1, leaving two group (or

phase) velocities Vi; =+L/t; by (4.2.20), that is, a Bohr length L per Bohr time unit 7;.
2

_ m —n2 hv
a)m wn _( ) ! :(m+n)£:(m+n)Vl (9.316)

VBohr —
k, —k, (m—n)h/L T,

group

(m s n)=

The X in Fig. 9.3.5¢ has two zeros doing one lap in opposite directions around the Bohr ring in a Bohr period t;.
The packet anti-nodes or "particles" do laps, too, but their paths are not as contiguous.
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Fig. 9.3.6 Intersecting wave space-time X-path trajectories of nodes and anti-nodes.
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(Anti-nodal revival peaks and phases are discussed later.) |'¥|-nodes, being virtually dead, have an
indestructibility not had by zeros of Re'¥ that annihilate and re-create as they gallop through Fig. 4.2.9.

Relaxing the momentum uncertainty Am allows more m-values and wave velocities: £V ;,+2V;,+3V,...
ranging up to 2AmV’;. By (9.3.16) the maximum lap rate or quantum speed limit is 2Am, i.e., twice the maximum
|m|. Each velocity gives a fractional lap time of 1/1, 1/2, 1/3, ..., 1/(2Am) of the Bohr period. Such fractions are
written in the margin of Fig. 9.3.5 at the point where a lap trajectory passes the point ¢==x opposite the origin
0=0 of the wave packet. An n-th multiple n/D of an allowed fraction //D corresponds to the n-th lap of a wave
node ("zero") if D is odd or the n-th lap of a wave anti-node ("particle") if D is even.

The n/D fractional lines in Fig. 9.3.6 highlight the wave paths in Fig. 9.3.5a. As excitation Am increases,
even-D "particle" paths show up as dark shadows in between the odd-D "zero" paths in Fig. 9.3.5a. Also seen in a
high-Am plot (Fig. 9.3.5a) are "particle" paths with odd and even fractional slopes emanating from the origin ¢=0
of the wave packet. This is indicated in Fig. 9.3.6, too.

The geometry of generic group velocity rays is sketched in Fig. 9.3.7 using two rays to form an
asymmetric X around an intersection. (A symmetric X has equal group speeds d; and d5.) Fig. 9.3.5ais a
patchwork of self-similar X patterns of nodal (odd-dj ) or anti-nodal (even-dj, ) rays. The equations for the two
lines in Fig. 9.3.6 are

¢p=—dit+n+1/2 p=dyt—n,+1/2 (9.3.17)

Subtracting the first ¢ equation from the second gives the intersection time for the center of the X.

+I’ll_ n I’ll

tIZ—intersection - d +d d F ;
1

(9.3.18)

The resulting combination is called a Farey Sum @ f of the rational fractions n;/d; and ny/d; after John Farey, an
1800's geologist.

t I/ v
(in units of T}) |14 %zl/dz

(np+1)/d; no/d

> (nytnp)/(dy+dy)
(ny-1)/d> — ni/d] T
/4

- 17\ = -l
/ 1/d2 /= _d') !
_— A (I) (in units of 2m)

0/] Le=14"0] 14 1/2

Fig. 9.3.7 Farey-sum geometry and algebra of intersecting wave space-time trajectories.



Hartercss—Learnit Unit 3 Fourier Analysis and Symmetry 9-19

The Farey sum has been used to analyze classically "chaotic" or "fractal" structures , but its use in organizing
quantum resonance structure is new. It begins with a fundamental Farey sum relating the beginning fraction (0/1)
and ending fraction (/1) of the (0« 1)-quantum beat or fundamental revival.

0 1 1

This is the instant #/t;=1/2 for a half-time revival and the zero at the center of the fundamental X in Fig. 9.3.5c.
The fundamental sum makes up the second row of a Farey Tree of such sums shown in (9.3.20). The sums in the
D-th row of a Farey tree are an ordered set of all reduced fractions with denominator equal to D or less. The tree
need not go beyond D>2Am where denominator D exceeds the wave quantum speed limit 2Am of (9.3.16). Finer
revivals will be unresolvable. More energy is needed to see finer X’s.

p<t @ 1
1 1
p<2 O 1 1
1 2 1
p<3 O 1 1 2 1
1 3 2 3 1
p<a © 1 1 1 2 3 1
1 4 3 2 3 4 1
p<s 0 11 1 2 1 3 2 3 4 1
1 5 4 3 5 2 5 3 4 5 1
p<e © i1 1 2 1 3 2 3 45 1
1 6 5 4 3 5 2 5 3 45 6 1
p<7 © 11121 23143 253456 1
1 76 5 4 71 3 572175 37 4 5 6 1 1
p<g 01111121323 1435253456171
> 187 65 4 7 3 857275837 45¢6 781
(9.3.20)

The tracking of crests or wave peaks yields information about classical particle-like or group-wave
motion. It is comforting to see familiar classical paths in what is often bewildering quantum cacophony but, the
clearest X-paths in Fig. 9.3.5a are zeros emanating from the point ¢ ==z where the particle packet originally was
not. Quantum wave dynamics differs from classical dynamics is that multiple Fourier components easily interfere
much of a wave to death. Most path phases lead to non-existence except near (rare) stationary-phase paths that
may be familiar classical ones. This is what is responsible for particle localization that allows us to enjoy a
Newtonian world and largely conceals its quantum wave nature from us. Where the wave is not provides
important quantum clues. One recalls Sherlock Holmes' revelation that it is the "dog that did not bark" which

solved a mystery.
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9.4 Homo-cyclic Cn Revivals

Wave phase is key to the Cyy dynamics beginning with the “beats” of two-state C> system. As we have
said, “It takes two to tango.” First we review the two-state-system dynamics with analogies to optical polarization
from Chapter 1 and coupled pendulum dynamics. (Later chapters will use this analogy.) C> holds the first key to
analyzing the revivals introduced in the preceding section.
We have also said, “Three’s a crowd.” The dynamics associated with C3 systems is discussed after that of C, and

then that of Cy, Cs, Cg, and C;5 systems. Each is part of the revival milieu of Fig. 9.3.5.

(a) Two-state Co systems: Beats
Motion of anti-nodal revivals for a 2-level excitation such as Fig. 9.3.5c are like beats of coupled
pendulums. Fig. 9.4.1a shows phasor pictures of 2-cyclic (C;) eigenstates. Phasor "clocks" are phase-space plots
of ReV vs. Im¥ for wavefunction W (p) at each spatial point p=0, 1. Re'' is up, Im¥ is to the left, and the area 7|
|2 of the phasor is proportional to probability |¥|? at point p.
Each eigenstate phasor rotates clockwise at its Bohr eigenfrequency ®,, = m?®; , that is,
W (t)=eOm¥(0). The C, eigenstates are labeled even (02)=(+) or odd (1,)=(-) as usual.
|4) =10,)=( x)+ ) V2 (9.4.1a) |9 =)= ) )2 (9.4.1b)
Bohr eigenfrequency: ®g = 0 (9.4.2a) Bohr eigenfrequency: ®; (9.4.2b)
|m>) eigenfrequencies ®,, are wy = 0 and w; = h/(2ML?) by (9.3.12b). States |my) are + or — combinations of a
local oscillator base state labeled |x)=|r) (localized at spatial point p=0 or $=0) and a "flipped" base state |y)=rx)
=|r!y(localized at point p=1 or ¢=r). States |+) and |-) are also eigenstates of C "flip" operator r defined by F|x)
=[y) and r|y)=|x), that is, r|+)=+|+) , and r|-)=-|-). State |+) is analogous to +45° polarization which is the "slow"
eigenstate. State |—) is analogous to the “fast" -45° optical axis.
An initial 50-50 combination of the |+) and |-) eigenstates briefly recovers the |x)=|r0) local base
by =( ) +]-) VA2 =(102)+12) YA2, (Time t=0)
lying between [+) and |-) in Fig. 9.4.1b. The |12)-eigenstate is faster than the |02)-eigenstate (which does not move
at all by (9.4.2a)) The |x)-state is always a sum of 0z and 1> phasors. (Left and right 0> phasors are at 12 PM in
Fig. a while the left /> phasor starts at 12 PM and the right /> phasor at 6 PM.) After 12 PM the /2 phasors “tick”
but 0 phasors are stuck at 12PM. Their sum |x) varies with time.
By 1/4 of beat period 1;, the fast |72) clocks are 90° ahead of the stuck |02). (Clockwise is —i.)
ILY =( [+)—i|-) YN2 =(102)—i |12) YN2. (Time t=(1/4)1; )
The left and right hand /2 clocks move to 3 PM and 9 PM, respectively, but 02 clocks are stuck at 12 PM. On the
left: 12 PM plus 3 PM is half-size clock at 2:30 PM. On the right: 12 PM plus 9PM is a half-size clock at 10:30
PM. Note two half-phasors at -45° (2:30 PM) and +45° (10:30 PM) at //4-period. The 1/4 period situation is
analogous to optical //4-wave plates that change |x)-polarization to left-circular |L).
By 1:/2 the fast 1> -clocks go /80° ahead to give the "flipped" local base state of y-polarization.
) = (F=DAN2 = (102)= 112) )2 (Time t=(1/2)11)
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At 1,/2, the left 12 clock is at 6 PM the right one at 12 PM, but both 0> clocks still read 12PM . On the left: 12 PM
plus 6 PM is zero (a node). On the right: 12 PM plus 12PM is big 12 PM. All the wave flips to the |y)-state. The
1/2-period situation is like //2-wave plate changing |x)-polarization to |y).

Still later at (371;/4) the initial |x)-state has become a right circular state. (Fig. 9.4.1b bottom)

IRY =( H)+i|-) YN2 =(102)+i |12) YN2 (Time t=(3/4)1; )
Finally, at full-time (7/1)t; the initial |x) state (top of Fig. 9.4.1b) is once again back to being |x) and would
reappear beneath Fig. 9.4.1b to begin repeating the revival sequence.

In Fig. 9.4.1b, dotted lines making an X are drawn around the phasors to connect places where wave
amplitude is low like the X-pattern in Fig. 9.3.5¢c. Low m-uncertainty (Am=1.5) means the revival wave is mostly
a combination of the first two Bohr eigenlevels m=0 and |m|=1 having just two group (or phase) velocities +V;
and -V;. In other words, Fig. 9.3.5c¢ is essentially just a two-state system, and the major half and full revivals are
just binary beat of two coupled symmetric pendulums.

The 1/4 fractional revival corresponds to transition state |L) =( |x)—i|y) A2 (analogous to left circular
polarization) between the major revivals. In |L) the left hand position phasor is 90° ahead of the right hand one

being resonantly pumped up. The roles of the two phasors are reversed at 3t;/4.

(b) Cn group structure: n=3, 4,...6 Eigenstates

To understand finer X-zero patterns and fractional revivals between zeros in Fig. 9.3.5 a-b we go beyond
the binary {|0,)|1,)} basis to, at least, the base-3 basis {|03)|1/3)|23)} of C3 The bra state vectors {{03|{13[{23|}
were defined in Fig. 2.6.4 and are re-drawn in Fig. 9.4.2a. The C3 wave states have quantized momentum m=0,
1, and 2 modulo 3 . Each m labels a row of three phasors in Fig. 9.4.2a which are a discrete sampling of the
waves in the first three Bohr levels m=0, 1, and 2.

In Fig. 9.4.2b are 4-nary C4 base states of m=0, 1, 2 and 3 modulo 4 quanta and Fig. 9.4.3a reintroduces
5-nary Cs bases of m=0, 1, 2,3, and 4 modulo 5 quanta, and similarly in Fig. 9.4.3b for Cgs. These systems are
like counters; a binary C system can count only to two, that is, 0 to /, but each of the Cy systems are capable of
counting to N, thatis, 0, I, 2,3,..,N-1.

Physically the Cy waves are bases of a finite and discrete Fourier analysis. Each Cy character table in
Fig. 9.4.2a-b or 9.4.3a-b (if all divided by YN) is the N-by-N unitary (U(n)) transformation matrix {p|m) of
discrete Fourier transformation coefficients. (Recall Fig. 7.3.3 and discussion.)

<P‘(’”)N>: PN [N <(m)N ‘p>* (pm=012..N-1) (9.43a)
Each phasor in Fig. 9.4.2-12 sits at one of N equally spaced lattice points p=0, I, ...,N-1. Each phasor
gives for a particular angular point p=0, I, 2,3,..,N-1 the complex wave amplitude (7.3.10a)
Vm(21tp/N) = {pl(m)n ) = {(m)N |p)*
of a continuous running wave that is one of Bohr-Schrodinger eigenfunctions y+,,(¢).
A real (cosine) part of the eigenfunction is drawn for each eigenstate |(m)y) in Fig. 9.4.2-3 to help connect it to
the latter. The state notation (m)y labels these waves and should be read m-modulo-N (or m%N in C) meaning
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that waves having m+ nN wavelengths or quanta will give a physically and mathematically identical state (m)y .
(They are Fourier aliases (m)y = (m* nN)y, states differing only by reciprocal lattice vectors K=+ nN .)

In Fig. 9.4.2-12 each one of N equally spaced lattice points p=0, I, 2, 3,...,N-1, is labeled by a p-th power
r? of a fundamental Cyy group rotation r by angle 21/N , that is, by r0=1 , r!, r? r3 ..., rN-I  rN=1 respectively.
This labeling notation simply lists the operator elements of the cyclic Cy symmetry group as was done in
equations (8.1.5a). The entries e-?"/27N are m-th eigenvalues of r0,r! r2....x7.

The phasors are graphical representations of the complex eigenvalues or characters of the various cyclic
groups. It should be noted that the binary C, phasor table (Fig. 9.4.1a) is embedded as a subset in the Cy4 table
since C> is a subgroup of Cy. C> 1is also seen in the Cg table (Fig. 9.4.3b) or any Cy table of even-N since C> is
a subgroup of all C»,,. The Cg table also has the Cj table (Fig. 9.4.2a) embedded. Symmetry embedding is of
utmost importance for analyzing group algebra, their representations, and their physical applications. Here it is
what gives the revival structure down to the finest observable details of revival wave phase or amplitude shown
in Fig. 9.3.5 a.

The same numbers (without the VN ) serve triple or quadruple duty in algebraic group theory. Besides
Fourier transforms they are irreducible representations D"™(¥P) of Cy

pm

D" (gr)= e 2e (9.4.3b)
such that Dm@a) D" (b) = D™ (ab) .
This goes along with the D" (¢) being eigenvalues of the group operators e=r?. (Note (r?)’ =r P.)
| (m), )= D" (2| (m), )= e 2 | (), ) (9.4.3¢)
L
<(m)N‘rp =D(m)N (rp)<(m)N‘=e 2zN <(m)N‘ (9.4.3d)

Also, each row of the character table in Fig. 9.4.2-3 is an eigen-bra-vector wavefunction of discrete points p or
powers of rP. As shown in Sec. 9.2, each bra ((m)y| and ket |(m)y) must also be an eigenvector of any
Hamiltonian operator H that commutes with Cy , i.e., has Cy symmetry (HrP=r”H). So the character tables
serve finally as universal energy eigenvectors and eigenstates, too. All the above apply to the generic Cy groups

and all their embedded subgroups which include all smaller C,, for which #n is an integral divisor of N.
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(a) C;3 Eigenstate Characters (b)c 4 Eigenstate Characters
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Fig.94.2 C3 and C4 eigenstates and revivals.
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1/ 3|90°
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(a) and (b) C3 and Cy4 eigenstate characters.
(c) and (d) C3 and C4 revival space time patterns.

(c) Ch dynamics: n=3, 4,...6 Fractional Revivals

For each subgroup embedding there is a corresponding embedding of the revival tables that are shown in
Fig. 9.4.2c-d and 9.4.3c-d. Revival tables are obtained, as in Fig. 9.4.1b, by first summing all the rows of phasors
in each character table C3, Cy, Cs, or Cgs of Fig. 9.4.2-3a-b. This localizes the initial wave 100% onto the first

phasor position state |xg). Because {(m)n] xg) = I identically, we have
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N-1 N-1
|x0>=méo‘(m)N><(m)N‘x0>=méo‘(m)N> (9.4.4a)
This is called a group completeness relation or resolution of the identity. All phasors are equivalent due to Cy
symmetry, so arbitrarily picking the first column (r’=1) does not affect the general utility of Fig. 9.4.2-3.

Translation by r? rephases the sum (9.4.4a) according to (9.4.3c) and translates all waves rigidly.

N-1 N1 -2

‘x >=rp|x>= Erp‘(m) >= Y e 27N
p 0 ~ N -
m=0 m=0

(m),) (9.4.4b)

Then each term |(m)y) in the sum (9.4.3) is allowed to advance its Bohr phase e i@l = e im0t in discrete

time fractions //N of t1 for N-odd or 1/2N for N-even, that is, through stroboscopic instants t.

T, 2
LY (21,2, N =1) for N - odd
N~ oN

(m)y) = (9.4.5)

T
v—= v (v= 1,2,...,2N—1)f0r N —even
2N  oN

N-1 —imza)t
|x0(tv)>: 2 e Y
m=0

For each stroboscopic instant or row in Fig. 9.4.3 there is an array of equally-sized and equally-spaced phasors,
that is, a kaleidoscopic phasor array. At each #,, phasors are either revived or else zeroed-out.

An even-N=2p revival table, such as N=4 and N=6 in Fig. Fig. 9.4.3 has embedded the N=2 revival or
"beat" table in Fig. Fig. 9.4.1b since C is a C3, subgroup. So besides the obvious 1/2-time revival halfway
around, there must be //4-time and 3/4-time revivals for N=2 at each of the //4-lattice points, that is for N=6, at
t=3/12 and t=9/12, and for N=4, at t=2/8 and t=6/8. Because N=6 is also divisible by 3 there will be N=3
revivals embedded at r=4/12=1/3 and t=8/12=2/3. Also, N=3 revivals embedded relative to the 1/2-time revival
at t=1/3-1/2=-1/6 and t=1/3+1/2=5/6 and t=2/3-1/2=1/6 and at t=2/3+1/2=7/6. The phase angle
"combinations" for each of the embedded phasors are reproduced perfectly and periodically as in a kind of
quantum "odometer" or counter.

An even-N revival table must start all over again at half-time, but from a point half-way around the ring at
o=r if it started at =0. This is required by Cy symmetry and by C> half-time revival having 100% probability
on the antipodal (half-way) point p=N/2 if 100% probability starts on the initial p=0 point. So the C4 phasors
below the (p=2, t=2/4=1/2) point in Fig. Fig. 9.4.3b, namely, t=5/8, 3/4, and 7/8, must have positions,
amplitudes, and phases relative to the mid-point p=2 that are identical to ones at r=1/8, 1/4, and 3/8, respectively,
below the initial /=0=p point. Similar repetition is seen for N=6 in Fig. 9.4.3c and for any even-N revival table
below t=1/2.

A prime-N revival table (like N=3 in Fig. 9.4.2c or N=5 in Fig. 9.4.3c) has no embedded structure
because prime Cy has no subgroup but C;. After the initial localized state each revival has probability distributed
equally on all N lattice sites but with distinct phase combinations as in a kind of base-N quantum odometer. In
contrast, base-N counters with N=2P, p! or other composite numbers like N=4 or 6 in Fig. 9.4.2d or 9.4.3d have

the greatest variety of revival amplitudes.
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(a) C5 Eigenstate Characters (b) C ¢ Eigenstate Character
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Fig.94.3 Cs5 and Cg eigenstates and revivals.
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(a) and (b) C5 and Cg eigenstate characters.
(c) and (d) C5 and Cg revival space time patterns.

The N=6 space-time wave patterns of Fig. 9.4.3d match phasor-for-peak with the revival intensity
structure of the 1/12ths, 1/6th's, 1/4th's, 1/3rd's, and 1/2 revivals in Fig. 9.4.5 a or b if Fig. 9.4.3 tables are
rescaled to the same size and overlapped with their edges centered in Fig. 9.4.5 a or b. Also, each table gives
exactly the correct amplitude and phase of each revival peak that belongs to it as well as showing where the zeros
reside. Similar character-revival tables of C5 (Fig. 9.4.3¢c), C7, Cy,... will account for finer odd-fractional revivals
occurring at stroboscopic odd-time fractions like the 7/5th's, 1/7th's, 1/9th's,...and so on. (Recall //8th's are
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revivals for C4 shown in Fig. 9.4.2d. They will be copied by a Cg revival table in between its (new) 1/16th's.) The
medium resolution wave plot of Fig. 9.4.5b displays N=2, 3, 4, ...,8 structure more clearly than high-Am Fig.
9.4.5a by suppressing or defocusing the even finer revivals and prolonging fewer but more robust peaks or zeros
of the more fundamental revivals. But, all zero-centered excitations (i =0) for larger-Am such as shown in Fig.

9.4.5a-b have the same fundamental X of'a (0<>1) C; beat in Fig. 9.4.5c, that is, they show a half-time revival
that peaks around the center of the largest X.

Cyclic subgroup hierarchies

---C cC ch CC3 c---
n pn pn pn

are here being used to organize quantum fractal revival dynamics. Schrodinger's approach to quantum theory,
which eschewed the gruppenpest in favor of differential equations, is not set up to explain the origins of such
discrete fractal structure. This is because each successive integer N starts a new hierarchical group family. If the
integer is prime the family is entirely new. But, if it is not prime, then older smaller families belonging to each of
N's factors are copied and embedded in the new family. In contrast, Schrodinger's wave equation treats every
value of its independent variables as just another dumb x or ¢, and rational structure is glossed over.

Each new odd integer N=2m+1 will have N new revival peaks at time fractions t/I=v/N=1/N,...q/N .. but
only for fractions g/N that are irreducible. Reducible fractions ¢/N that reduce to ¢/N = gr/r (by dividing out a
highest common factor f=N/r=q/qr ) just recreate the "old" r=N/f-peak revivals already seen for a lesser or
reduced integer Ng =r=N/f. Similarly, for even N=2m the only new revivals are at found irreducible time
fractions t1=v/2N=1/2N,...q/2N ... . All the rest belong to subgroups Cy;, (if any) of Cy including C,, and C>. A
formula for new revival phasors based on sum (9.4.5) is given in Appendix 3.A. Now we consider a quasi-
classical way to understand revival dynamics.

Odd-N revivals clearly display the prime factors and their multiples of the integer N. If N is a prime
number as it is for N=3 in Fig. 9.4.2c and for N=5 in Fig. 9.4.3c¢ then all reviving kaleidoscopes except the initial
one consist of uniform distributions of N phasors of probability //N. However, for a composite odd integer such
as N=13, the phasor distributions are not uniform as shown in Fig. 9.4.4. There are nodes at the p=+/ points for
all revivals that correspond to factors of the integer N=15, namely at the revivals numbered /, 3, 6, 9, 12, and /,
5, 10, and 15. The latter are copies of C3 revivals seen in Fig. 9.4.2¢ and the former are copies of Cs revivals seen
in Fig. 9.4.3c. Their presence is simply a result of C3 and C5 being subgroups of Cy35.

By definition, / is a factor of all N and Cj is a subgroup of all Cjy . This is manifest by the first row of
each revival table. The only even prime integer is N=2. This helps to account for the unique status of the C>
revival table in Fig. 9.4.1b and the extra significance of the C> parity of each integer N, that is, the distinction

between odd and even integers.
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Bohr vs. Bloch dispersion

The value of the Cy models increases when the purely quantum effects, particularly those of a single Cy,
are to be isolated. One imagines having a discrete Bohr ring like those sketched Fig. 9.4.5 composed of N atoms,
quantum dots, optical fibers, or Josephson circuits homo-cyclically coupled is such a way that the usual quadratic
Bohr dispersion spectrum ®,, = m?®; is obtained with a finite number N of states per band. As a first
approximation, such a ring has a Bloch dispersion spectrum ®,, = (Hp-2H| cos am) where H; is the nearest
neighbor coupling amplitude. Such a Bloch spectrum only approximates a Bohr spectrum for low m-values, and
so high-Am revivals would decay eventually. However, by inserting cross-connecting coupling paths H, , H3 ,
Hy, ..Hyy , as shown in Fig. 9.4.5, it is possible to achieve any spectrum, including m?, by adjusting coefficients
Hy in a Fourier series.

Wy, = Hp-28] cos am-2H> cos 2am-2H3 cos 3am...-Hpy» cos Nam/2 .

A quadratic spectrum (E,,=hvm?) is achieved for general N by setting Hamiltonian parameters as follows.

hom® = NilH e_ipm%, where: H _ v > m? eipm%” (9.4.6)
=0 " N {m}
For example, a 4-level N=6 quadratic spectrum {E)=0, E+;=1? E.+»>=22, E3=32.} involves six eigenstates: |(m)s)
=1(0)¢), |(£1)6), |(£2)6), and |(3)6), using the following coupling amplitudes as given in the N=6 row of Table 9.1.
Hp=3.16, H;=-2.0=Hs*, Hy= 0.67=H4*, H3=-0.5 , (9.4.7)

With the adjustments in Table 9.1. of Hy coupling, pure Cy revivals like those in Fig. 9.4.2-3 would repeat
at frequency vV=Ah-! until the coupling is turned off. Such a device would be an N-ary counter as implied before.
By incorporating the N-ring as the crossection of a coaxial N-fiber cable, it would be possible for the revival
evolution to occur as an N-phase wave propagated down the cable. The possibility of storing, processing, and
transporting quantum or classical N-ary data for N>>2 using just one kind of basic hardware may yet warm the

heart (and portfolio) of a future cyber-entrepreneur.
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Fig. 9.4.5 Quantum dot or co-axial cable structures with arbitrary dispersion

Table 9.1. N-Discrete m?-Hamiltonian Coupling Amplitudes. All devices have a unit revival rate: ho=1 .

30

N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12
N=13
N=14
N=15
N=16
N=17

Hy
1/2
2/3
3/2
2
19/6
4
11/2
20/3
17/2
10
73/6
14
33/2
57/3
43/2
24

Hj

-1/2
-1/3

-1
-1.1708
-2
-2.393
-3.4142
-4.0165
-5.2361
-6.0442
-7.4641
-8.4766
-10.098
-11.314
-13.137
-14.557

H

172
0.1708
2/3
0.51

1
0.9270
1.4472
1.4391
2
2.0500
2.6560
2.7611
34142
3.5728

H3

-1/2
-0.1171
-0.5858
-1/3
-0.7639
-0.5733
-1
-0.8511
-1.2862
-1.1708
-1.6199
-1.5340

Hy

1/2
0.0895
0.5528
0.2510
2/3
04194
0.8180
0.6058
1
0.81413

Hs

-1/2

-0.0726
-0.5359
-0.2028
-0.6160
-1/3

-0.7232
-0.4732

Hgs

172
0.06116
0.5260
0.1708
0.5858
0.2781

H7 Hg

-1/2

-0.0528

-0.5198 1/2
-0.1479 0.0465

Hy
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Problems for Chapter 9.

Evolution (A 2000 Qualifying exam problem)
9.1.1. A two-state quantum system evolves as follows in 5 sec. (First: Is the evolution unitary?)
State |1) becomes state |1'y = -v3/2 |1) - i/2 |2)
State |2) becomes state [2) = -i/2|1) -v3/2]2)
(a) Derive a complete set of states as combinations of |1) and |2) so that each combination would stay the same (except for a
possible overall phase) at all times.
(b) Compute the energy level splitting AE=E3-E{ for this system assuming AE is the lowest possible to achieve the 5 sec.
evolution given in part (a).
(c) Derive an expression for any state at any time t and give |1(2)) and |2 (¢)) numerically at t=1 sec.
(d) Does this evolution correspond to a Hamiltonian H? If so, what H?

Revolution

9.1.2. A two-state quantum system evolves as follows in t sec. (First: Is the evolution unitary?)
State |1) becomes state |1') = cos wt |1) - sin ot |2)
State |2) becomes state |2') = sin ot |1) + cos t |2)

(a) Does this time evolution correspond to a Hamiltonian H? If so, what H? Is it Hermitian?

Hexapairs
9.3.1 The hexagonal Cs eigenstates |06) and 136) are standing waves while [I+1¢), I-16)] and [I4+26), |-2¢)] are right and left moving
wave pairs.

(a) Do [I+36), I-36)] a moving wave pair make? Explain why or why not?

(b) Can the [I+16), |-16)] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.

(c) Can the [I+26), |-26)] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.

(d) What values, if any, for tunneling parameters ISI, 6, ITl, T, and U allow standing-wave-pair eigenstates. Must they always

be degenerate?

Octapairs
9.3.2 Consider an octagonal Cg system of 8 quantum dots.
(a) Write the general form of its Hamiltonian.
(b) Display its eigenkets and write a formula for its energy eigenvalues.

Back to Roots...again
9.3.3. Eigensolutions of C2 and C3 symmetric H can be turned into quadratic and cubic root formulas.

A B

(a) Eigenvalues of H=[ 2 4 J , namely A=A%B give solutions to A2-2AA+A2-B2=0 Use this to derive the familiar quadratic

formula for roots of aA2+bA+c=0 .

A C B
(b) Use the above and C3-derived eigenvaluesof H=| B 4 ( | to derive the less familiar formula for roots to general cubic
C B 4

equation aA3+bA2+cA+d=0. (Hint: First consider A3-+pA+q=0 .)
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Quantum baseball

9.3.3 Suppose the Asumma Tummy Quantum Computer Co. has taken over the world and you are the only one in your country that
still knows the difference between an amplitude and a phase. Your assignment is to design, make or experiment with some
quantum dot computer elements diagrammed below having charge carrier matter-waves that tunnel along edges and diagonals of
squares as indicated below.

H+AH
5% g
g% S

S*=(pHlp+1)
(a) Tunneling P aths

S
S=({p+1H]p)

(c) Broken sy mmetry
(OH|0)=H+AH
(1LH|0)=S+AS = (OH|1)
(OH[3)=S+AS = (3H|0)

(b)(4 Quantum Dots
H=(pH|p)=H*

Suppose edge tunneling amplitudes are equal and real (S =-7.0) while diagonal tunneling amplitudes are zero (7=0) to give C4
symmetry as shown in Fig. (b). Suppose at time =0 the charge carrier amplitude is 100% on "home" base state |0).( (O]'¥(¢=0))=1).
(a) Derive eigenlevels and calculate the time dependence of the home-base amplitude (O|¥(#))=? Find the period Trebound of
time it takes home-base to rebound to a maximum again after initially decreasing. Does it rebound to 100% the first time?
ever?
(b) Sketch phasors for each of the four bases |0), |1), |2), and |3) at 1/4- Trebound time intervals and indicate by arrows
between phasors the direction of instantaneous charge flow from one to the other. (Tell how you determine this just by
looking at the phasors.) Does first, second, or third base ever hold 100% of the charge?
(c.) Suppose all edge tunneling amplitudes are equal but (possibly) complex (S =-ei0) while diagonal tunneling amplitudes
are zero (T=0).
(a) Adjust the tunneling phase angle G so as to make four equally spaced energy eigenlevels with quantum numbers m=(0)4,
(-1)4, (1)4,and (2)4 ,in that order.
Is the order (0)4, (1)4, (2)4, and (3)4 = (-1)4 also possible using this adjustment? If not, can some other kind of adjustment

achieve it without changing the form of the eigenstates? Discuss.

Janitor’s revenge
9.3.4. Suppose a janitor hits the home-base dot-0 with his broom handle and accidentally resets some H-matrix elements shown in
Fig. (c) by small amounts: the first diagonal by AH=A and the first off-diagonal by AS=AS*=B. All other matrix elements remain
the same as in Problem 9.3.3. Let the new "broken" Hamiltonian be a sum H' =H + V(A,B).
(a) Derive a matrix representation of the janitor's perturbation V(A,B) in the original |0) to |3) basis, in the moving-wave basis
1(0)4),1(-1)4),1(1)4), and |(2)4), and in the standing-wave cosine and sine basis |(0)4), |(c]1)4),(s1)4), and |(2)4), where: |(c])

D =-DPHDgHN2 and: |(sp)g) = ((-D-(Da)/iv2 .
(b) Use (a) and perturbation theory to estimate (to 2nd order |A/2=IAS/? or |bI?=IAH]) the effect of the V(A=0.1,B=0.2) on
energy eigenlevels €(0)4, €(+l)4, and €(2)4 as €(m)4 turn into eigenlevels of the "broken" Hamiltonian H'. Which

representation from (a) should be used and why? Show your work.
(c.) Discuss the effect, if any, on the original eigenstates [(0)4), |(-1)4),1(1)4), and |(2)4), and sketch their phasor diagrams

next to the corresponding eigenlevels. Are moving-wave eigenstates still possible after the janitor does his or her work?



Hartercss—Learnit Unit 3 Fourier Analysis and Symmetry 933

Beware the pentagram

9.3.5. Suppose a pentagonal C5 device in prob. 9.3.3(a).

(a) Could it ever rebound to 100%? Discuss devices (a), (b), and (c).

(b) Discuss the possibility (or impossibility) of constructing such a device that would give a "runner-going-around-the-bases"
effect with 100% probability occurring briefly but consecutively on first base, then second base, then third base, and finally

home base. If such a device could be made would it also be capable of running in the opposite direction without modifying
the H-matrix?

Quantum dot.com

9.3.6 The Cn quantum dots in Fig. 9.4.5 are supposed to belong to an infinite family of structures whose ®y-spectrum is
quadratic in quantum number my. This assumes a sequence of tunneling paths or connecting couplers described by (9.4.6).
The N=2 example seems an exception having only a single H; = S connector on each dot. Is this right? Should the

H

Hamiltonian be H = H S or should it be H=
S H 28

ij j to conform with the rest? Discuss. Compare the N=2
case with, say, that of N=4.

Quantum dot.com again
9.3.7 The Cn quantum dots in Fig. 9.4.5 might be made to have other spectral band functions such as

(Q) Quadratic spectrum: ®(m)=¢e(m)/fi= m2 = 1,0,1,4,9,... for (m)N=-1,0,1,and £2, £3,....
(L) Linear spectrum: ®(m)=¢(m)/#=Iml=1,0,1,23,... for (m)N=-1,0,1, +2,+3,...
(SL) Super-linear spectrum: @(m)=¢(m)/A=m =-1,0,1,+2,+3,... for (m)N=-1,0, 1,+2,+3....

(a) Derive N=8 coupling parameters for each of these spectra.
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Review Topics & Formulas for Unit 3

Fourier Series Coefficients Fourier Integral Transform Fourier Cy, Transformation

(ko )= "1 (i, J)(e]) (k1)= T aeCrl) o) {h90="3 (ko s, )

— ik, x —ikx

* e * 7ikmxp N
<km x>=e\/z =<x km> Kernal:<k|x>=\/g=<x|k> <km‘xp>:eT:<xp‘km>
x-Wavefunction ¥ (x)= x-Wavefunction ¥ (x)= x-Wavefunction ¥ (x)=
—oo o0 =N-1
()= "5 (ol )k, ) ()= T el) (e, =" ) )
Ortho — Completeness Ortho — Completeness Ortho — Completeness
—oo o =N-1
")k =0(e) T a8l =00 0) " oy o=,
L2 o p=N-1
a0l =t Tl =0-8) S b N )=
Discrete momentum m Continuous momentum k Discrete momentum m
Continuous position x Continuous position x Discrete position x,
U must be Unitary
Time Evolution Operator U Time Evolution Operator U U?(t) _ U_l(t) V()
|¥(1) = U(1,0)|¥(0)) U(,0)= ¢ 1H/A P
I . _ —id/n\' _ imTn _ iH/R
Hamiltonian Generator H Schrodinger t— Equation (e ) =e =e
ih%U(t,O) =H U(1,0) ih%| V(1)) =H|¥(1) so H is Hermitiam H' = H
Schrodinger time-independent energy eigen equation.
H/ ) =10, 0,) =€y 0y,) (9.3.1a)

H-eigenvalues use r-expansion (9.2.6) of H and Cg symmetry rP-eigenvalues from (8.2.9).
{klrPlkyy= e iPkma = e-ipm27/N where: ky, = m(27/Na)
(kinHlkm) = H (k| Lkm) + S Ckmltlkm) + T Cknle2lkmy + U (kinlr3lkin) + T klr#lki) + S* (ki)

= H + Setkma + Tei2kma + U e-3kma 4 T* ei2kma + §* eikma (9.3.5a)
Bloch dispersion relation. And Bohr limit (k<<s/a) approxiamtion. Band group velocity Veroup.
hoy, =E, = H - 218 cos( ky,a) = H - 2ISI + ISI( kypa )? +.. (9.3.8)
do, _Is| LBl 2
eroup = % = Z?asm(kma) [: Z;kma Jforik <<m/a (9.3.10)
Effective mass M. inversely proportional to S. Meg(0)= h2/( 218 a?) (9.3.11a)

Fourier transform of a Gaussian e"™/Am)? momentum distribution is a Gaussian e"(%/20)? in coordinate o.
(m¥)= e-(m/Am)2 implies: (O W)= e (¢/A0)? (9.3.14)

The relation between momentum uncertainty Am and coordinate uncertainty A is a Heisenberg relation.
Am/2 =1/Ad ,or: AmAG =2 (9.3.15)
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Bohr wave quantum speed limits
2

3 —n?|ho
wm wn (m " ) 1=(m+n)£=(m-|-}’l)V1 (9316)

Bohr —
v k, —k, B (m—n)h/L T,

group

(m > n)=

Predicting fractional revivals: Farey Sum & r of the rational fractions n;/d; and ny/d>

112 + I’ll 1’12 }’ll
tlZ—intersection = e G—DF -
d,+d, d, d,

(9.3.18)
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Appendix 9.A. Relative phase of peaks in a revival lattice

The first derivation here of revival amplitudes at stroboscopic time fractions ¢, = T(v/N) and kaleidescopic
angular positions ¢p=21(p/N) assumes N is odd. At times when fraction (V/N) is reduced, all N revival peak sites
hop up with identical magnitude and with particular arrangement of phases that clearly distinguishes each v/N
from all others. First we derive formulas for these phases as a function of site index p and revival time index v.
(If time fraction v/N reduces to Vg/Np, then use (Vg ,Ng) in place of (v,N) to find N peak phases of subgroup
Cny revivals.) The first step is to complete the square of exponent in sum.

2
. 2 \2r¢ —i mzv—merp— 2n ‘p2 2r
Loy JUmP=mviis 1 oyl 4v | N "N
W0(¢p’tv):;2m=0 € :;Zm:o € e
2
1 —i[mv—B J[m—ﬂ]zi iLZl
=—3Nle 2 WIN g av N (A.1)
m= .
N
2
1y —i(2mv—p)2—427]rv zi—%{
=;Zm=0 e 12 e v

The integer square (2mv-p)? in the exponent is to be treated as an integer-modulo-4VN since the phase
factor repeats after that value. However, as summation index m runs through the integers m = 0, 1, 2, ..., N-1 it
exhausts all the possible values of (2mv-p)? -mod-4vN for a given v and p, and the values are the same no matter
what we take for the range of m. For example, consider tables of phase index (2mv-p)? -mod-4vN for select times

of v=1/ and v=2 for an N=5 level excitation.

(2mv - p)’mod4vN for N=5 (2mv-p);, forN=5
v=l |m=0 1 2 3 415 & v=2|m=0 1 2 3 415 6 7 8 9110
p=0| 0 4 16 16 450 4 p=0| 0 16 24 24 1650 16 24 24 16i 0
1 19 5 901 (A22) 19 9 1 331 9 9 1 25) 1 (A.2b)
2 4 0 4 16 1614 0 2 4 4 36 20 36!4 4 36 20 !
3 9 1 1 9 5 i 9 1 3 9 1 25 1 9 i 9 1 i
4 16 4 0 4 16116 4 4 16 0 16 24 2416 !

Note that N consecutive values for m give the same sum no matter whether the sum starts at m=0 or at a
sum-shift value m=U. The idea is to shift the summation index m to m-u so that a (2mv-p)? -mod-4vN binomials
in row-p can be replaced by a simple square (2mv)? -mod-4vN monomial found in the p=0 row. This will reduce
the exponent to a term independent of site-index p plus a A—term independent of summation-index m.

It would be nice if the A—term were also independent of p but the tables show that is asking too much! So,
A= A(p,v) and, each of the rows p =1, .., N-1 differ from the p=0 row by a single modular difference A(p,v) in
phase index which is overlined in the table and is the single unpaired number in each row. For example,
subtracting A(7,1)=5-mod-20 = (5),¢ from the (p=1) row of the (v=1) table and shifting forward by ;=2 gives
the (p=0) row (mod-20) . The shifts needed to line up rows p=1, 2, 3, and 4 are p;=2, ur=4, u3=6, and Ls=8

respectively, that is Wp=[1;p. These observations are summarized by a modular equation.
2

(Z(m— ,up)v— p)2 mod4vN = (Z(m— up)v— p)4VN = (2mv)ivN - A(p,v) (A.3a)

This is supposedly valid for all values of m so for m=0 the equation reads
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2

(—Zypv - p)4VN =0- A(p,v) , (A.3b)

where 1y =P (A.3¢)
Subtracting equation (A.3b) from (A.3a) gives the following, again valid for all m.

(2ms )=, =2, =

(4mv(—2/,t V- p)) (0),,,, = K4VN =0, 4VN, VN.... 4YN(N - 1)

4N
Next, set m=1, and solve for the m-sum-shift 1, of row p.
—Supv2 —4vp=-x4vN =0, -4vN, -8VN,...,-4vN(N - 1)
2 v+ p=kN=0,N, 2N,...NOV =1 or: it =X =P _ (integer) (A4
P R P2y N
Avalue ¥=0,1,2,..,N-1 is selected so that m-sum-shift i, is an integer Wp=0,1,2,..,N-1, too. Substituting the
resulting [, value in (A.3a) gives the phase modular difference A first defined there and in (A.3b).

2
_ 2 KN —p B 2
A(p,v) = —(Zvup + p)4VN = —(2v[ >y j+ pj = —(K'N)4vN , (A.4b)
4vN
where
v+
o TP (A.4c)
N
Puttiing (A.3a) into the revival wavefunction sum (A.1) gives
. 2 2w ,pz 2r
—il2mv— —
Wo(q)p»’v)ziixl(l) e mrr) e dv N
1 —i_(2mv)2—A(p,v)}2—ﬂ ,ﬁzi
=—3Nle L N av N [using:(A.3a)]
_i_(va)2+(;cN)2—p2}2—n
= %zg;g e L N [using:(A.4b) |
—i_(2mv)2+4,u2v2+4,u vp}z—”
= %2%;& el P P lavN [using:(A.4c)]
_i|:/,L[2)V+'Llppi|27[ —i[ulzv+ul}p227r
= P(V)e N = P(V)e N [using:(A30)]  (A.5a)

The overall phase and amplitude prefactor P(v) is a Gaussian sum discussed in Appendix 9B.

i(2mv ) 2E —ivm? 22

—il2mv | ——
P(v):iEZZ‘(% e N :izg;g e N (A.5b)

Finally, the (p=1) m-sum-shift [ is the first fraction (N-1)/2v, (2N-1)/2v, (3N-1)/2v, ..., or (N?-1)/2v, to
yield an integer according to (A.4a). Recall that it was assumed that N and v are relatively prime, that is, have no
common factors. It seems evident that the integer arithmetic behind base-/N counter revivals is not trivial, even for

the case of odd-N .To complete this particular N=5 example we find the sum-shift 1] at each revival time v=1- 4.
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1=’dv_1 KN—1= 4 9 14 19 24
2v
2v=2 2 7 12 (A.6)
2v=4 1 . . . 6
2v==6 R |
2v=8 3

From the discussion of Appendix 9B come the overall prefactors P(v=1 )=IN5, P2)=-1N5, P(3)=-1N5, and P
(v=1)=1A5, which are needed to complete the following N=5 revival table using (A.5).

v(p.v)| p=0 p=1 p=2 p=3 p=4

v=0 1 (1 0 0 (1 e =ei27r/5/\/g
v=1 1 /\/g e e e e
. . where: (A.7)
v=2 | -1/ \/g -e, —e, -e, —e,
* % 2i2mw/5
v=3 —1/\/5 -e, —e, —e —e, e =e o /‘/g

* *

v=4 1/\/§ e e e e

A phasor gauge plot of the N=5 revivals (A.7) is shown in Fig. 9.4.3c.

The summation (A.1) for even-N is mostly the same as the above. Time index v is replaced by v/2.

2 2rm ,pz 2r

1 —ilmv-p ) — i—— b
wo(q)p,tv):;ZZ;é e ) WNe 2V N where; ¢, =v%, for N-even.
_i|:/.tl2)V+2‘Llpp}27r —i[,ulzwrz,ul}pzzn
= P(v)e 2N = P(v)e 2N (A.8a)
where
-1 . . -1 2N -1 -1
1= kN = first integer in N R N s 3N y e (A,gb)
v v v 1%

Again the overall phase and amplitude prefactor P(v) is a Gaussian sum discussed in Appendix B.

22w

—ivm~ ——

1 —i(mv)zzi 1
P(V)ZEZZ;E) e 2vN :;ZN—I o N (A.8¢)

m=0

This works for odd-numerator time fractions 1/2N, 3/2N, 5/2N,...=v/2N . For the even numerator ones, we take
advantage of the revival sequence v/N = I/N, 2/N, 3/N,.... for N cut in half and shifted by «. If N/2 is odd then (A.
5) is used. If N/2 is even then (A.8) is used again, but with N cut in half to N/2. Note that fractions with singly-
even denominators have zeros at =0 and peaks at ¢==z. Fractions with odd denominators have peaks at ¢p=0

and zeros at ¢==z. Fractions with doubly-even denominators have zeros at =0 and ¢==x.



Hartercss—Learnit Unit 3 Fourier Analysis and Symmetry 939

Appendix 9.B. Overall phase of peaks in a revival lattice

The evaluation of the N-term integral Gaussian sum

—iv

m2 2—”
G(v)=zN e N =NP(v) (B.1)
in the prefactor P(v)=G(v)/N given by (A.5b) is, perhaps, the least trivial part of the revival formulation. The
develpment involves complex Gaussian integer analysis, a subject which occupied Gauss for more than the first
decade of his most productive years. Here we will be content with giving a list of the results for the first few

integer combinations that would be relevant for the revivals shown previously.

N= 2 3 4 5 6 7 8 9 10 11 12
-

SNb e V= 0 -3 (1-iV4 5 0 -7 (-8 Vo 0 -l (1-i)Vi2
_iom22E

sV eV 2 W3 0 5 Wiz W7 (1e)e B W W o

S¥le N2 0 3 (1+iVE 5 0 W7 —(1+iV8 —27 0 -l (1-)6

-1 mzz—n
3 P T S NN RN 0 Yoo 20 -l —iVas
7im22—ﬂ
sNle Nz 0 W3 (Va5 0 W7 (- W 0 -l —(1-i)Wi2
22w

o AP R S 0o 5 6 W1 (1+i)s W27 20 Wi 0

—i mzz—n
SNl e N = 0 s (14 5 0 7 (1w W 0 Wil —(1+i)i2
(B.2)
Particuarly simple general results are had for the case of doubly-even integer.
N =2n 4=2-2 8=2-4 12=2-6 16=2-8 20=2-10
221 (B3)

sy e "V = (1=0) (1=iV2 (1=i3 (1-iVE (1-i)5

A complex vector diagram of the first few G(u) sums is shown below in Fig. 9B.1.
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X H crank-Q vector

Unit 3 - Chapter 10
Two-State Evolution, Coupled

Oscillators, and Spin
W. G. Harter

Schrodinger time evolution is analogous to the motion of coupled oscillators or
pendulums. This analogy is valuable for theoretical insight, visualization, and for
developing computer simulations. Particularly valuable is the insight into the use of
Hamilton-Pauli algebra of reflection-symmetry operators ca, os, and oc, which are
known as spinor or quaternion operators and generate the U(2) group. Hamiltonians
made of the o, apply to many 2-state phenomena including the NHz maser, spin
resonance, and optical polarization introduced in Chapter 1. We have said that in

quantum dynamics, “It takes two to tango.” Now we begin to see how the pros do it!
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Appendix 10.B Spin control and ellipsometry

(a). Polarization ellipsometry coordinate angles
(1) Type-A ellipsometry Euler angles
(2) Type-C ellipsometry Euler angles

(b) Beam evolution of polarization

Problems for Appendix 10.A and B
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Chapter 10. Two-State Evolution and Analogies
10.1 Mechanical Analogies to Schrodinger Dynamics

The quantum Schrodinger time evolution equations (9.2.5) are similar to the classical Newtonian
equations of motion for coupled pendulums. This analogy may help to understand quantum dynamics in this
and later chapters. Indeed, for certain constant H Hamiltonian operators, the classical and quantum equations
are mathematically and dynamically identical. Also, the concept of spin will be introduced.

We begin with the simplest non-trivial quantum systems having just two-states (N=2) such as optical
polarization and electron spin-polarization introduced in Chapter 1. This U(2) system is such an experimentally
important system that we will devote several units to its technology. This chapter will provide an introduction to
U(2) systems and their symmetry by using classical mechanical analogies.

The simplest non-trivial quantum system is the two-level atom or a spin-1/2 particle. The Schrodinger

equation (9.2.5) for these systems has the general form:

., 0
iz | ¥ (1)) = 1] (1)) (10.1.1a)
where H is a two-by-two Hermitian (HT=H) matrix operator
H=( 4 B-iC j (10.1.1b)
B+iC D

and ket |¥) is a two-dimensional complex phasor vector x;+ip;

p .
|w):{ ! J:[ T ] (10.1.1c)
v, x, +ip,
Separating real x; and imaginary p; parts of the amplitudes (10.1.1¢) lets us convert the complex

Schrodinger equation (10.1.1a) into twice as many real differential equations. The results are as follows.

X, = 4p, + Bp, — Cx, p, =—4x,— Bx, - Cp,

(10.1.2a)

. . (10.1.2b)
X, = Bp, + Dp, + Cx, P, =—Bx; — Dx, + Cp,

The same equations arise from the following classical coupled oscillator Hamiltonian in which x; and

p; are canonical coordinates and momenta, respectively.

A D
H, =E(p]2 +x12)+B(x1x2 +p1p2)+C(xlp2 —x2p1)+3(p§ +x§) (10.1.3a)

Hamilton’s classical canonical equations of motion are the following:

. oH, . H
X = —ap = Apl + sz - sz == x = —(A)Cl + sz + sz)

! (10.1.3b) ! (10.1.3¢)
o om, _om,
Xy = o, = Bp, + Dp, + Cx p2=_8x2 =—(Bx1+Dx2—Cp1)

Note that these are identical to Schrodinger’s equations (10.1.2).
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To see a connection with conventional second order coupled oscillator equations, we differentiate the x,

equations (10.1.3b) and substitute the p; expressions (10.1.3c). (Note: Canonical momentum here is not the
usual p, =mi, . See exercises at the end of the chapter.)
i, = Ap, + Bp, - C%,
= —A(Ax, + Bx, + Cp, ) - B(Bx, + Dx, — Cp,) - C(Bp, + Dp, + Cx, )
:—(A2+BZ+C2)x1—(AB+BD)x2 —(4+D)Cp, (10.1.4a)
¥, = Bp, + Dp, + (¥,
= —B(Ax] + Bx, + sz)— D(Bxl + Dx, — Cpl)-i- C(Ap1 + Bp, — sz)
=—(AB+BD)x1—(B2+D2+C2)x2 +(4+D)Cp, (10.1.4b)

If the complex parameter C is zero this reduces to classical coupled oscillator equations
—¥, = K+ Kppx, (10.1.5a) —¥y = Ky %+ Koy, (10.1.5b)
where the force or acceleration or spring matrix K;; depends on masses and spring constants in Fig. 10.1.1a and

is related as follows to the Schrodinger H -matrix parameters 4, B, and D.

mK, = A" +B> =k +k,, mK,,=AB+BD=—k,, (10.1.5¢)
m,K, = AB+BD =—k,,, mK,, =B>+D* =k, +k,. (10.1.5d)
(a) — X X
k, 1 k) —p-2 k,

i

'

x1=0

0,
Fig.10.1.1 Classical analogs for spatially asymmetric U(2) quantum system.
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Fig. 10.1.1 shows (a) two masses , (b) two pendulums, and (c) a single mass m hung by diagonal springs. Each

has an isotropic kinetic energy 7 (m is divided out) and an anisotropic potential V.

T:%xf+%x§=%fux V:%Kllxl2

+%(K12 +K21)x1x2 +%K22x§ = %XOK.X

(10.1.6a) (10.1.6b)
Constant-J curves (equipotentials) are ellipses as shown in Fig. 10.1.2 below. The parameters 4, B, and D in the
K-matrix (10.1.5) or H-matrix (10.1.1b) determine the shape of the ellipses and inclination of their major axes
which correspond to different K-matrix eigenvalues and eigenvectors, that is, different frequencies and normal
modes in the classical models and different energy states in the original quantum U(2) model. We now study

different cases and see how they correspond to different symmetries.

(a) CoA-symmetry (a-b) Co4B-symmetry (b) CoP-symmetry
X

A0 X2 A 2
(0 D) fdst (

Fig. 10.1.2 Potentials for (a) C>A-asymmetric-diagonal, (ab) C>"'B-mixed , (b) U(2)system.

(a). ABCD Symmetry operator analysis
Following the lead of Chapters 8 and 9, we decompose the Hamiltonian (10.1.1b) into four ABCD

symmetry operators that are so labeled to provide helpful mnemonics in sections following.

A BiC L0 g O Ll O = p 00 =Ae;;+ Bo;+ (0O + De,,
B+iC D 00 1 0 i 0 0 1
_A+D[ 1 0 w5 O 1 il O +A—D 1 0
2 0 1 1 0 i 0 2 0 -1 (1017)

A+ D A-D
= Gl ~
2

H

The {61, 64, 05, O} are best known as Pauli-spin operators {G]=60, 65=0x, GC=0y, 64=0G7 }but they (or
ones quite like them) were discovered almost a century earlier by Hamilton. (He carved them into a bridge in
Dublin in 1843.) Hamilton was looking for a consistent generalization of complex numbers to 3-dimensional
space. One day he hit upon the idea of a four-dimensional set of operators which he labeled {1, i, j, k}.
Hamilton’s quaternions are related as follows to the ABCD or ZXY(0 operators.

{o1=1=0y¢, iop=i=icx, icc=j=iCy, ic4=K=iGz} (10.1.8)
Note: i2 = j2 = k? = -1. They square to negative-1 like imaginary number i°=-1. Pauli’s form removes the

imaginary i so the oy, all square to positive 1 (cx? = 6y?> = 67> = +1) and each belongs to a C> group. Note that
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our first operator 64 (or Pauli’s third 67 ) is a difference 64 =e;;- e22 of elementary operators e;; and e22. G4 is

a group operator but exx are not since they are projectors and do not have inverses.

Now each C> group C>4={1,04}, C58={1, 05}, and C>¢={1,c¢! is considered in turn. They are labeled
A (asymmetric-diagonal), B (bilateral balanced beat), and C (circular) symmetry for reasons that will become
clear. Each of them represents a different physical archetype and a different kind of dynamics. Mnemonic
alliteration is used for pedagogical enhancement, particularly the C (circular) symmetry for which the following
C-adjectives apply: complex, circular, chiral, cyclotron, Coriolis, centrifugal, curly, and circulating-current.

The last symmetry adjective explains its important distinction and the coloring scheme used in formulae
and illustrations. The 4 and 5 designations are colored the , orange or red color of traffic signals for
CAUTION, or STOP since these symmetries refer to real-standing waves. The green or blue-green GO signal

color applies to the C (current-like) symmetry of imaginary or complex moving or galloping waves.



©2013 W. G. Harter Chapter10 Two-State Time Evolution 10- 8
10.2 The ABCD’s of 2-State Dynamics

Operators G 4, 0 3, any ¢ ¢ within each C> group C>?4={1,64}, C>8={1, 05}, and C>¢={1, 5¢} do not
commute with each other. Therefore they are first considered separately as is done in the following sections

labeled, appropriately, (a), (b), and (c). Then follows a discussion of how they intermix.

(a) Asymmetric-Diagonal or CoA symmetry

The first case involves an H-matrix that is asymmetric-diagonal, that is (/=0=C) and (4<D)

2
Hz[ A0 ], or: K:[ 70 ] (10.2.1a)
0 D 0 D2
The A-matrix gives uncoupled oscillators in (10.1.5) or a single mass in a diagonal potential (10.1.6).
le 2.1, . 22k g 2k 10.2.1b
V:EK“xl +5K22x2 where: K, = 4 = and: Ky, =D = (10.2.1b)

Such an elliptical potential is plotted in Fig. 10.1.2a. Here cross coupling is zero (k;,=0), so each mass or
pendulum in Fig. 10.1.1a-b is disconnected and independent of the other one. Motion that is purely along one of
the Cartesian axes in Fig. 10.1.2a, say purely along the x or x;-axis, or else purely along the y or x-axis, will be
simple harmonic motion whose frequency is a "slow" 4=\(k;/m) or else a "fast" D=V(ky/m), respectively. This
is because the force or gradient for any mass on the x -axis is also along the x or x;-axis driving it directly back
to the origin. The same holds for the x»-axis but the force constant 4 is presumed stronger than k; making the
x2-axis gradient steeper so xy-axial motion is faster than x;-axial motion.

Arrows in Fig. 10.1.2a indicate elementary normal modes of the uncoupled x-and y-dimensions. The

modes are plotted (using the program Color U(2) ) as separate functions of time in Fig. 10.2.1a and b.
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Fig. 10.2.1 Pure normal modes for C>4-asymmetric-diagonal potential (a) Slow x-mode (b) Fast y-mode
By setting both the x-and-y-modes in motion at once we get a plot like the one shown below in Fig.
10.2.2. In this mixed mode the two motions go about their business as though the companion oscillator was not

even present. Note that the x vs. y plot of coordinates x;=Re'¥1 and x,=Re¥> shows the beginning of a



Harter /s —Learnlt Unit 3 Fourier Analysis and Symmetry 10- 9
Lissajous pattern caused by the unequal frequencies of the 1 and W5 phasors, but the phasors themselves are

each unfazed, so to speak, by the motion of their companion. The x vs. y trajectory curves due to the potential
gradient whose direction varies continuously for points not following x or y axes.
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—% %2 } i Slow&fasi¥i
p2 ’:'_ r'J' \I‘ I::{ .-I:'!L [LM J
05 LA s P

LIJ2 & X2 i-

Fig. 10.2.2 Mixed modes for CxA-asymmetric-diagonal potential
This H-matrix Hamiltonian or K-matrix potential in Fig. 10.2.2 above has a most elementary example of
symmetry, namely axial-reflection symmetry C>4 or Cartesian mirror-plane symmetry. The potential ellipse is
invariant to reflecting the y or x-axis (x,—-x2). We define an x-plane-reflection operator 65 accordingly to
reflect the y-base ket |2) but leave the x-base ket |1) alone.
oall)=11) , oal2)= -2) (10.2.2a)

Operator 6 and unit operator 1 make the following C»“ group multiplication table and representation.

o, 1ic
2 iy i) ) (o) (o) |_
CACHAEN {<211> <21|2>]-[é V)| e <z|oAz>}‘(3 5 ) o2z

And, as required of symmetry g-operators (H=gHg' or gH = Hg), 6, must commute with H and K.

1 0 40 40 1 0
H=HoG ,,or: = 10.2.2
G Ca [0—1][0 D](O DJ(O—IJ ( ©)

So, also, must the negative -G 5 operator which is a y-plane-reflection operator 6_5 defined as follows to reflect
the x-base ket |1) but leave the y-base ket |2) alone.
oall)=-1) , -oal2)=12) (10.2.2d)

Operator -G and the unit operator 1 make a similar C> group multiplication table and representation.

2 ljjjj [<1|—0A1> (il-o,2 J[ ] (102.26)

1 <2‘_GA‘1> <2|_6A‘2> 0 1
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Furthermore, the product of the two reflection operators is a symmetry, too, since if two operators commute

with H then so do their group products. The product (-ca)(ca) is a 180° rotation matrix R.

_GAGA=[ (1) _01 j( —01 (1’ }:[ —01 _01 j=R(180°) (10.2.2f)

Together, all four operators {1,64,-0,R} form a famous group called the four-group D4, or C45, with the
group multiplication table shown below. It is like the group D> in (8.3.5) and will be used later.

G, | 1 c,1-9, R

1|1 o,i-6, R

s,|6, 1|R -o, (10.2.2g)
o,|-o, R{ 1 o]

R| R —o,lc, |1

Here, o and 1 are sufficient to describe the H-matrix which, as in Sec. 9.3 (Recall especially (9.3.5).), is a
linear combination of its own symmetry operators. This is the 4-case of expansion (10.1.7).

[ 4.0 j:ﬂ( L0 j+ﬂ[ L0 ],or:H:A;D1+%GA (10.2.2h)

0 D 2 L0 1 2

(b) Bilateral or C2® symmetry
The next case-5 involves identical coupled oscillators such are shown in Fig. 10.2.3 below. These have a
symmetry called bilateral or C>B symmetry. We should be very familiar with this symmetry since it is the only
one that our human bodies approximate. A diagonal-reflection operator oy is defined which simply reflects left
and right sides of Fig. 10.2.3a-b or trades the x or x;-axis with the y or x»-axis.
In terms of base kets we define such a reflection as follows.
opll)=12) , opl|2)=|1) (10.2.3a)

Operator o and the unit operator 1 make a C>8 group multiplication table and representation.

o, |1ic
e | ) ) (o) (osf2) |
GIBGIBIB (P (2)1]2) }[é (1)] [<chl> (2o 2) ‘[? é] (10.2.35)

The Hamiltonian matrix H in (10.1.1b) must be invariant to o operator if H is to have C»8 symmetry.
H=cgHopt= ocg Hop (10.2.4a)
Stated another way: H must commute with 6 . Hopf= op H

) ) Yo (o Ol ) ) [ GlR) ) ) (el @)
[<2H|1> (22 1[1 o) J [ J [ ]

(ain[1) (2[n[2) (2(uf2) Cuf | (nj) (nj2)
The last result demands equality of the following H-matrix component pairs.
AH [1)={2|H [2) (10.2.4b), AH[2)=2|H 1) (10.2.4¢)
This reduces the number of free parameters in the H-matrix (10.1.1) and A-matrix components (10.1.5b-c).
A=D , B-iC=B+iC (10.2.4b)
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(af)y ([n]2) | (4 3 or (x[1) (x[2) _| 4#+B 248
[<2|H|1> (2[n]2) J( B A] ' ] (

(2lxr) (2Ix[2) 248 A +F
The complex parameter C must be zero to have C»>” symmetry. (We also needed C=0 to get (10.1.5a) but the

J (10.2.4¢)

extra symmetry 4=D was not required there. Now we demand 4=D , as well.)

=0

X5

m

X1=0

'

0,
Fig. 10.2.3 Classical analogs for Cr-symmetric U(2) quantum system.

58 projectors and eigenstates: Normal modes

The C>Z projectors follow from the minimal equation for (> operator o that is simply
op2=1,o0r op2-1=0=(og-1)(op+1)
We put the roots {e+=1, ¢ =-1} in the general projection formula (3.1.15a) which is repeated below.
11 (M - gjl)
Py = 5 (3.1.15a)repeated
Il (gk - e].)
J#£k

With M=cg this gives two normalized symmetric (+) and anti-symmetric (-) projectors

PO =1 +op)2, PO=1-0p)2, (10.2.5)
giving two normalized eigenstates of 6 and the C)B-symmetric H and K operators in (10.2.4¢)
=P D2 =(D+2)N2, 2 =PO V2 =(1)-2)A2, (10.2.6a)

This yields a o3- or H-diagonalizing transformation (d-tran).
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6 00 (0
[ <2|+> <2|_> J_[ 1i\/5 _1//j§ ] : (10.2.6b)

This C>5-d-tran is actually a rare example of a d-tran matrix that is Hermitian (Tt=T) as well as unitary
(TT=T-1). More about this later. The columns are eigenvectors of any matrix that commutes with (>”-operator

oB. This includes the H-matrix (10.2.4c) that is diagonalized as follows.

() G2 Y s ) ) ) s o :
[ (-1 2) J( i j[ (+) (2-) ]‘[ 0 A-p ] (10.2.6¢)

The H eigenvalues are
(+H}+) = A+B, (—|H|-) = 4-5. (10.2.7a)
The K eigenvalues are
(H K ) = A2+24B+A42 = (A+B)2,  {(~|K|-)=A2-24B+A42 = (4-B)2. (10.2.7b)
The physical meaning of eigenvalues is different for quantum mechanics than for the classical analogies.

For quantum mechanics, H eigenvalues are eigenstate energies or 7 times eigenfrequencies.

et =hot =A+B, e =hw~ =A4-B. (10.2.8)
Classical K-cigenvalues are squares of normal mode frequencies. (Classical energy is mw?/2.)
(02(+)mode = (A+B)? = k/m, wz(—)mode =(4-B)? = (k+2k;2)/m. (10.2.9)

Understanding C)B eigenstates: Tunneling splitting

(5P eigenstates (10.2.6a) point at ¥45° angle to the base states |1) and |2) as shown in Fig. 10.1.2¢ and in
Fig. 10.2.4 below. Why exactly *45° ? It's because the *45° directions are the +o mirror planes halfway
between coordinate axes |1) and |2) that are C>7-equivalent or "indistinguishable."

The *45° mode |+) corresponds to two masses moving perfectly in phase with each other as in Fig.
10.2.4a. It is the (0), "wave" in the C) table in Fig. 9.4.1a. The “45° mode |-) corresponds to two masses
moving 7 out of phase with each other as in Fig. 10.2.4b, or a (1), wave in the C table.

The -45° mode has a higher frequency than the t45° mode since it stretches the connecting k;, spring.
The t45° mode would behave the same if the k;, spring was gone. The |+)-mode direction is a major or "slow"
axes of equipotential ellipses in Fig. 10.1.2¢ or Fig. 10.2.4; the |-)-mode use minor or "fast" axes. The steepest
slope is found along the -45° "fast" mode line, and the gentlest slopes are found along the t45° "slow" mode
line. Along these eigen-axes the motion is simple harmonic oscillation just as it was along x-or y-axes for the
uncoupled oscillators in Fig. 10.2.1.

The preceding pictures apply as well to polarization oscillation inside optical analyzers which have
"slow" or "fast" optical axes like the X or Y charge axes in the model given in Chapter 1 by Fig. 1.2.2 or the
two-spring axes of the single-mass oscillator in Fig. 10.2.1c. Photons initially polarized along a "slow" or "fast"
eigenvector direction pass unchanged except for overall phase that undergoes "slow" or "fast" harmonic
oscillation, respectively. However, other polarizations are combinations of X and Y, and they undergo multi-

harmonic "beating" that changes polarization as will be shown next.
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Fig. 10.2.4 Classical analog modes for C--symmetric U(2) quantum system. (m=1, k=13, k;2=7)
Understanding C>” dynamics: Beats and transition frequency
We noted that quantum eigenstates are motionless except for their unobservable phase oscillation. Of
course, phase oscillation is the motion for the classical analog normal modes in Fig. 10.2.4; we can see that

easily. But, note that the phasor clocks ¥ or W5 do not change in size or norm. (W, *Wy, =const.) The norm is
all we can see in a quantum system. Pure energy states are motionless blobs of probability.

13
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However, mixed energy states or combinations of eigenstates will oscillate at a rate equal to the beat

frequency or transition frequency that is the difference between their eigenfrequencies. (Recall Sec. 4.4.a and
Fig. 9.4.1b.) In the example of Fig. 10.2.4 the eigenfrequecies are (from (10.2.9))
O(Hmode = (A+B) = Vk=13=3.6 O()mode =(4-B) = (k+2k;)=\27=52 (10.2.10)
and the transition frequency is the beat frequency | 25 | (Actually, B is negative here.)
O(+ -)transition = Obeat = | O(+)mode -~ O(-)mode | =| 25 [=5.2-3.6=1.6 (10.2.11a)
which has the beat period shown in Fig. 10.2.5.

P1.0 Mixed
Y
Lo (H)+ =)
10 3N L 05 g, —L STON mode
[ 15 :"-. " Xz(t)
e s W
: S T e
. LA 2 u'ml;Eu.l T, LT A
e W3 -
}:2 i W ! 1
i - I
- C0s ]
e g
L0 x, . -1 _al Beat
period

-1.0
Fig. 10.2.5 Analog mixed modes for C>5-symmetric U(2) quantum system. (m=1, k=13, kj>=7)

The mixed state in Fig. 10.2.5 was made by initially giving all the amplitude to the first coordinate
(x1=%1(0) =1) but none to the second (¥>(0) =0). This equivalent to having initial normal coordinates of
(+H¥0)) =112, (—]¥0)) =112 . (10.2.12)
The time behavior of the state is then predetermined by the normal modes each oscillating at their

eigenfrequencies according to a general diagonal evolution equation, a 2-D case of (9.2.1).

Gl | (oo o (+¥(0) a
<_|‘P(t)> _[ 0 e—ia)_tJ <—|\P(0)> (10.2.13a)

[ (e)) = |4)(+|®(0))+ ™| -)(-|¥(0)) (10.2.13b)

This has the following coordinate phasor representation (Replacing abstract kets with representations.)
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W) = ) (o)™ ) (e(o)
RN A R A
[w} o) | [<2|+>]< [¥(0) [

_ efia)th 1/\/5 n e—iw_t 1/\/5
- [ b j 1742 [ ] 1/42

This reduces to the following. (Recall the use of the expo-sine identity in (4.4.3c).)

[ ¥, (t) 11{ o0t 0t J:e—i(w++w_)t/2 @m0 2 | 0, ~0_ )2 ]

¥, (,) 2 2 @m0 )2 _ i, —0 )2

J<|Lp(o)> (10.2.14a)

e—iw+t _ e—iw_t
(10.2.14b)
cos[(wJr - )t/ 2}

isinf (0, —w_)t/2]

_ e—i(a)+ +w_)t/2

According to this, the bottom ¥(t) phasor amplitude grows sinusoidally from zero to its maximum with a rate
that is half the beat frequency.

Ohalf-beat = Wbeat /2 = | O(+)mode -~ O(-)mode /2 (10.2.15)
As seen in Fig. 10.2.5, the bottom ¥,(t) phasor goes around 90° behind the top ¥(t) phasor. That is the i factor
in the W(t) part of (10.2.14b). The overall phase rotates at an average rate

Oaverage = ( O(+)mode T ®(-)mode )/2. (10.2.16)
Then, just as the bottom W;(t) phasor passes its maximum, it moves 90° ahead of the top ¥'1(t) phasor that has

just gone through zero and starts to grow. The bottom W5(t) phasor returns to zero amplitude every beat period
Theat given by (10.2.11b) just as the top ¥1(t) phasor reaches its maximum amplitude.

The relative phase between the two phasors is important classically as well as in the quantum analog.
Whichever phasor is ahead is the one feeding energy to the other that grows while its feeder shrinks. One should
recall an important resonance theorem: (Prove this if it's new to you. See exercises.)

Power transfer between two isochronous linearly connected oscillators is proportional to the

product of their amplitudes and the sine of their relative phase.

A relative phase of 90° gives the best possible work rate. This type of resonance transfer is important in
quantum mechanics. A relative phase of 0° or /80° gives no transfer, as in a classical normal mode or a quantum
stationary state; having no net energy gain or loss by individual parts makes them stationary.

Another way to visualize beats is by analogy to optical polarization-wave-plates introduced in Fig.
1.3.6b. One quarter of a beat corresponds to a quarter wave plate. The effect is to convert X-polarization into
right circular polarization as shown below in Fig. 10.2.6a. A half-beat converts X=x; to Y=x2 as in Fig. 10.2.6b
and corresponds to a half~-wave plate as shown below in Fig. 10.2.6b. For this example, the coupling constant
2B =Nk -N(k+2k;5) is reduced from -1.6 in (10.2.11a) to -0.26 to slow the beat from 3 periods to about 18. Real

wave-plate beats take millions of periods so 18 is still way too fast.
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(c) Circular or C2C€ symmetry

Now we consider the very different case in which all parameters are zero except C. Then a continuous
circular rotational C., symmetry or R(2) symmetry is present. The reflection symmetry associated with the C-
parameter is called C>C or R(2)=C... C>C-symmetry states are characterized by circularity and chirality or

"handedness." Now the circular motion in Fig. 10.2.6a is an eigenstate.

Cw-symmetry means a two-by-two Hermitian Hamiltonian (HT = H) matrix operator

H[ () ()

A B—-iC
= . 10.1.1b

B+iC D

commutes with any rotation operator R(¢) defined as follows. (Recall (2.2.1) in Chapter 2.)
R(®) |I)=cos ¢ [1)+sind[2) , R(0)[2)=-sind|1)+cosd|2) (10.2.18a)
Rotation R(¢) has the following R(2)=C.. group multiplication rule and C.. representation.
([R[1) ([RI2) | [ cosp —sing
R(¢) R(¢')=R(¢p+¢'), = 10.2.18b
(o) R(o)R(o+) [<2|R|l> GIR2) || sing coss ( )
Since matrix H must commute with R(0) for all ¢, it must also commute with the derivative of R(¢) at

zero rotation (0=0 and R(0) =1 ). The derivative of a transformation operator near 1 is called the generator G

of the operator. The generator of the rotation R(¢) is as follows.

9 —sing  —cosg -
GzﬁR((,,)‘H:[ cfff¢ _:’j(p L :( 0 - J or: R(¢)=R(0)e?® = ¢ (10.2.18c)

1 0

The set R(2)=C.. of all R(¢) operators is an example of continuous or Lie group symmetry. It is very much like
the "empty time" symmetry made of all time evolution operators U(t)=e-H ¢, The generator of the evolution
operators U(?) is the Hamiltonian H itself.

Multiplying R(¢) generator G by i and gives a third C>C-Hamilton-Pauli reflection operator ¢ .

GC:[ 0 I)f ]:iG’ where: 6o, =o2=1 (10.2.18d)

The i makes 6¢c Hermitian-unitary like 64 and o, and gives it a (-1) determinant.(def|G¢c|=-1) So o has
similar properties to a reflection operator, but it sure doesn’t look like one!.
Reflection operator o for circular C>C-symmetry is imaginary unlike o4 and o that are real. However,

the C->C rotation matrices R(0) are all real, but we will find imaginary rotations associated with C>-symmetry

or (55-symmetry. Imaginary rotations are Lorentz transformations! More on this later.

The physical idea is that C>4 or C>5-symmetries are associated with "static" or standing wave states that
have a real (+)-reflection symmetry about their nodes or anti-nodes. For the classical analogies the nodes
corresponded to normal modes or polarization planes. The nodes, modes, or planes sit in different places
depending on whether it is C>4, C»45, or C,5-symmetry, but they must sit still.

In contrast, states having C>C-symmetry are moving waves that have no fixed nodes or anti-nodes.

Instead, they are characterized by a real (+)-direction of motion and a chirality of left or right handed motion.
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This is why C>C-rotation operators are real while it is the reflection operators that are real for C>4, C>45, or

('»P-symmetries. The former has a constant momentum, the latter a constant position.

Commutation with reflection 6¢ or generator G yields C>C-symmetry restrictions on H-matrices.
H- G = G-H

(1[uf1) (1[u]2) ) (o o Py (a2 a
[ (2[u]1) (2[n]2) }( 0 )_[ (1) 0 j[ Qa1 (2[u)2) J (10.2.19a)
|

(1/12) <|H|>J {<2|H|1> <2|H|2>J
(lujz) -Cafy ) Qa2

Thus, R(2)=C., or C>C-symmetry demands the following for H matrix components.

AIH|H=Q|H]2) , (l|H]2)=-2|H]|I) (10.2.19b)
For the H example (10.1.1b) we have
A=D , B-iC=-(B+iC) (10.2.19¢)
1{H|1 1{H|2 .
so only two free parameters remain. < |H| > < |H| > :( A4 i J (10.2.19d)
(2[m1) (2|H]|2) iC 4

This H matrix is easy to diagonalize, but let's use symmetry projection just to get some more practice.
R(2)=C., projectors and C>C eigenstates
The R(2)=C.. projectors follow from the secular equation for R(2)=C.. operator R(¢) which is

€2 - (trace R()) € + (det R())) = 0 = €2 - (2cos &) e + 1 (10.2.20)
The +eigenvalues are labeled L and R for "Left" and "Right" for reasons that we'll see below.

£L=cos¢+\/cos¢2—1=cos¢+isin¢=ei¢ (10.2.21a)

€p =cosp—+cosp’ —1=cosp—ising=e'? (10.2.21b)

Substituting the roots {&7=ei®, ep=e0} of M=R(¢() in the projection formula ((3.1.15) repeated below)

m (M-g1)

szj#k— 5 (3.1.15a)repeated
Il (gk 8])
Jj#k

gives two normalized projectors

cosqb—e_""’ —sing cos¢—ei¢ —sing
sing cos ¢ — e i? sing cosP— ¢?
, PR —

pb)
RTRT) et _el? , (10.2.22)
ising —sing ] [ 1 ] [ ising —sing ] [ 1 - J
sing ising —i 1 sing ising i1
- 2ismg 2 - isng 2

which in turn, give two normalized eigenstates of the R(2) -symmetric H operator in (10.2.19d)
ILy=PO 2= (D= 2)N2, R =P® |1y 2 = 1)+ 2)N2, (10.2.23a)

and a diagonalizing transformation

18
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ey Ry | [ 145 142
[ lz) (2[r) J[ i3 i ] ' (10.2.23b)

The columns are eigenvectors of any matrix that commutes with R(2)=C. operator R(¢). This includes the H-
matrix (10.2.19d) that is diagonalized as follows.

e 2 04— ) OB R ] (ae o
= (10.2.23¢)
(R[1) (R]2) |\ ic 4 (2|) (2|R) 0 A4A+C
The H eigenvalues are (for i=1) eigenfrequencies that determine the time evolution dynamics.
er =(LHIL) = A-C = hwy, , er =(RH|R) = A+C=hwg ,(10.2.24)
Understanding CoC eigenstates: Zeeman-like splitting and coriolis or cyclotron motion

The eigenstate evolution is given below and represented in the original xy or {|1), |2)} basis.

(212) (2[7)

To help visualize the R(2) base states {|L), |R)} we plot their real parts in the center parts of Fig. 10.2.7.

R <1|L(t)> R e "L /2 cosw,; ! R <1|R(I)> R e R ), COS @ pt
€ =Re = , Re =Re ' =
(2|L()) _ie OR —sinw, ¢ (2|R(v)) i PR s sin @ ¢

|L(r)>|L>e“"L’[ e }“"L’, |R(t>>|R>e"“’R’[ %) ]e"“’R’ (10.2.25)

(10.2.26)
[ 2.0
M (a)
Lo Sy *?; - Left Circular
K:.--f.u (L) mode
- (ALY /12
((2|L>)-(—i/\/2)
= AT o - 1
_ei_ he -sin ot e
P
QIL) Lt

AN
N,

Fig. 10.2.7 R(2)=Cs symmetry eigenstates (a) Left circular

From the Figures 10.2.7 a and b it seen how |L) and |R) stand for left and right handed circular
polarization states. Previously, we have seen how to briefly achieve right circular polarization using a 1/4-beat
of mixed C»-mode or a quarter wave plate in Fig. 10.2.6a. Here it's a pure R(2) mode. Circular orbits are also

known as cyclotron modes. They are the orbits that a positively charged particle in an isotropic 2-D oscillator
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potential could have in the presence of a magnetic field normal to the orbit plane. They are also called Coriolis

modes or Foucault orbits if the oscillator is on a rotating table.

(1IR)

(b)
Right Circular
(R) mode
(1R) (12
((2|R>)-( iNz)

in ot
sin 50

Fig. 10.2.7 R(2)=Cs symmetry eigenstates (a) Left circular (b) Right circular polarization

With no magnetic field or rotation the particle orbits either way with the same orbit frequency as shown
on the left-hand side of Fig. 10.2.8. It is only necessary that the centrifugal force m®?r balance the attractive
"spring" force -kr of the oscillator. But, a magnetic field B or rotation € will either help to attract or else repel
the particle depending on the particles direction of orbit. For left handed |L)-orbits the magnetic F=gvxB force
(or Coriolis force F=mvx{Q) teams up with the attractive F = -kr of the oscillator. So, the centrifugal force must
increase to balance these two and keep the particle at the same radius. That means faster orbit frequency ® as
shown in the upper right hand side of Fig. 10.2.8. For right hand |R)-rotation the magnetic gvxB force or
Coriolis mvxQ teams up with the centrifugal force mw?r against the attractive -kr, so m®?r must be reduced to
maintain a given orbit radius, hence reduced orbit frequency .

This mechanics is also analogous to our prevailing weather phenomena. The Earth's counter clockwise
rotation tends to create counterclockwise cyclones in the Northern hemisphere and the opposite ® in the
Southern latitudes. Anti-cyclones are not impossible, just energetically disfavored.

The classical analogs for the rotational R(2)-symmetric (Zeeman-like) quantum splitting are quite
different from the corresponding analogs for bilateral 4B-symmetric (Stark-like) splitting described later. The

frequency equation resulting from cyclotron orbits in Fig. 10.2.8 is a force balance equation.

N 2
Fcemlﬂgal + FB—ﬁeld +F itlator = 0=mro” +gBro - kr (10.2.273)

It has quadratic solutions that are plotted in Fig. 10.2.9.

2 2
—gB++(gB) +4mk  _ 2
o q (q ) m _ qBi (ﬁj +£=w7ci [w_CJ +(a)0)2 (10227b)

2m 2m

The vacuum cyclotron frequency ®¢ and zero-B-field harmonic oscillator frequency o are labeled.
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w.="2 0, =~ (10.2.27¢)

m m

centrif.ugal — centrif.ugal

centrif.ugal

Fig. 10.2.8 Cyclotron or Coriolis orbit degeneracy lifted by B-field or rotation.

Note: the cyclotron frequency w¢ is minus the field parameter gB while mg is a positive (+)-root of
parameter k&/m. While wg is positive, orbit frequency or angular velocity ® or m¢ can each be positive or
negative. In the vacuum case (k=0), positive gB means negative w=w¢ and clockwise or left L orbits only, as
shown on the extreme upper right hand side of Fig. 10.2.9. Negative ¢B means positive 0=m¢ and counter
clockwise or R orbits only, as shown on the extreme upper left hand side of Fig. 10.2.9. The negative (-)-root in
(10.2.10Db) gives a zero frequency mode, that is, no motion at all, as indicated by dashed circles in Fig. 10.2.9.
(A B-field does not affect effect a stationary charge.)

The plot in Fig. 10.2.9 is one of orbital speed |w| which is quantum phasor velocity or energy %|w| rather
than classical orbital velocity ® . An orbital velocity m-plot would flip the ascending curve about the x-axis so it
was below the axis and descending parallel to the other descending one. Classical kinetic energy is simply

1/ymr?|m|? and resembles Fig. 10.2.9, too.
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| Frequency |

GBI~ - qB=D qB>0

k=1

Fig. 10.2.9 Cyclotron orbital speed for varying B-field (¢qB=x) and oscillator spring constant k=|1-x|.

Consider the limiting cases. For weak oscillator potential (mp<<|w]| ) or strong ¢gB-field, the
approximate frequencies shift quadratically in wg.

(‘%)2
)2 -+ ps
P qB Wk _9c wo Po) .. |- c
2m Zm m 2 wc (w )2
_\V0)
Oc
(10.2.28a)
For strong potential (wp>>|w¢]| ) or weak gB-field, the approximate frequencies split linearly in ®¢ .
2
o, ©
o, +—S+—C
ko > (0. o > " 2 3w
_=_Ci ((D)+—C ~_C+w+_c..= o
mo 2 © 2 2 % 8w o. o
0 c_%
2 8w
)

(10.2.28b)
Compare this to phasor frequencies (10.2.24) that, unlike the orbital velocities, are positive.

hop=A4A-C=h( wp-0c/2), hop =A+C=ha( 0o+ wc/2). (10.2.29)
This connects the ¢ to the off-diagonal C-parameter in (10.2.19d) and wg to 4, but only for weak ¢gB.

Understanding C->C dynamics: Faraday rotation
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The effect of mixing R and L modes in Fig. 10.2.7a-b is quite dramatic as shown in Fig. 10.2.10 where a

50-50 mixture gives perfect beats as were seen in Fig. 10.2.6 when x-polarization evolved into elliptic then
circular then y-polarization. However, in Fig. 10.2.10 there is a rotation or precession of the plane of

polarization directly from x to y. In the classical analogy this is a famous effect called Foucault precession
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demonstrated in many science museums which trace the daily motion of a great pendulum due to Earth rotation.

In optics, this is known as Faraday rotation of the plane of polarization.

A 50-50 mixture of R and L modes with the same frequency would just be plain old (or plane old) x-
polarization. However, if, as in Fig. 10.2.10, R is a little faster in its counter-clockwise orbit than L is in going
the other way then they will meet further and further to the right each period. The result is a nearly planar

polarization ellipse that is slowly rotating to the right as shown in Fig. 10.2.10 where a half beat rotates x-into-

y-polarization. Note that a whole beat will only be half a rotation, that is, x-polarization will only been rotated
into minus-x-polarization. Later, we will see this is related to the spin-1/2 half-angle conundrum we

encountered in Chapter 1. There in (1.2.12) a "whole" rotation by B=2m of a spin vector only rotates spin-up |T>

by B/2=m and into minus spin-up (-|T> ). Same math, different physics!

r Mixed
IR) and |L)

modes
(half-beat)

Beat
period

A
Fig. 10.2.10 Faraday rotation from X to Y. (A=4.1=D, C=0.1, B=0)

The picture changes radically if right handed rotation is much faster than the left handed orbit which
would be zero in a purely negative qB-field cyclotron indicated on the left of Fig. 10.2.9. This sort of motion is
shown in Fig. 10.2.11 where left-handed orbit is nearly zero and a cyclotron orbit circle is seen precessing

around a circle of nearly the same radius.
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— Mixed
IR) and |L)
modes
(0 <<wR)
B Kéu 50,100
—_e_}iz e

L]

>
Fig. 10.2.11 Hyper-Faraday rotation. (A=4.1=D, C=4.2, B=0)

The analogy between Foucault precession and magnetic cyclotron orbiting, and Faraday rotation are
profound and deep ones. The Foucault precession is due to an underlying rotation such as that of our Earth. The
cyclotron orbit is due to an applied magnetic field as is, in some cases, the Faraday effect. The remarkable
similarities of magnetism and rotation of space might lead one to speculate that magnetism is, in some sense, a
rotation of space. Perhaps, we will have more to say about this later.

The magnetic or Zeeman like splitting seen in Fig. 10.2.9 starts out as a first order effect, that is, linear
in the field, and then quadratic or second order effects show up at higher fields. The B-field splitting (C-type
symmetry) is sketched below in Fig. 10.2.12b and mirrors behavior seen in Fig. 10.2.9.

Stark (Electric) Splitting Zeeman (Magnetic) Splitting
(2nd Order then 1st order) (1st Order then 2nd Order

—¥

Fig. 10.2.12 Two archetypical splittings (a) Stark-like (15 order) (b) Zeeman-like (2" order)

The next sections treat electric or Stark-like splitting which is quite the opposite. As sketched in Fig.
10.2.12a below, the electric or Stark-like splitting starts out as a second order effect and then becomes linear at
higher E-fields. The symmetry differences between electric dipole or Stark effects (4-type symmetry) on one
hand, and magnetic dipole or Zeeman effects (C-type symmetry) on the other, are important ones and are
connected with quite different physics. Also, quadratic or 2" order variation of energy eigenvalues is a first sign

that eigenstates are changing. Now we study some examples.
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10.3 Mixed A and B Symmetry

So far our study of symmetry analysis has concentrated on its “easy” side. We found “easy” eigenvalue
formulas that varied linearly with Hamiltonian parameters H, S, T, or 4, B, C, and D , but the “easy” eigenstates
remained fixed. This “easy” situation requires all the relevant symmetry operators commute with each other as
dor, r?, ... in Chapter 8 and 9. This is about to change because there is no such commutation between operators
G4, OB, or 6¢. that make up a general U(2) Hamiltonian,

_A+D A-D

H=—=0, +B0, +Co. +——0, (10.3.1)

The following non-commutation relations mean no two of 64, 65, and 6¢ can be diagonalized together.
040B =-0B04 =OC, OBOC =-OCOB =04, O(CO4=-040C =OB, (10.3.2)

So eigenvalues may vary non-linearly with parameters 4, 7, C, and D . Most important: So do the eigenstates.

The study of mixed symmetries is not as “easy” but it’s quite interesting!

(a) Asymmetric bilateral CoAE symmetry: Stark-like-splitting
Consider the 2-state Hamiltonian with zero complex constant C=( but nonzero 4, 5, and D.

H- [A B] :[ H-pt =S ] (10.3.3a)

B D -S  H+pE
H=(4+D)/206,+B6,+(4A-D)/26 ,=Ho6,-2S6,-pEc, (10.3.3a)
The presence of unequal diagonal energies (4>D) spoils bilateral C,® symmetry even if the complex constant
vanishes (C=0). It makes the C'»” projectors less useful. It appears one has to diagonalize the H-matrix brute
force. (Later, we will see how to elegantly "finesse" this C>4% case, t00.)

Above it is imagined that a potential energy field pE=(4-D)/2 is turned on to make the |1) state lower in
energy (or higher if pE is negative) than the |2) state. The coupling constant B has intentionally been set
negative (B=-S) to match sign of the constant K;, in the coupled pendulum analogy (10.1.5a-c). The S-constant
is a "sneak rate" or tunneling amplitude S like the S introduced in Fig. 9.3.5. (That was negative, as well, in
(9.3.5g).) A positive field (pE>0) corresponds to making the number-1 pendulum lower, slower, and longer than
its number-2 neighbor as shown in Fig. 10.1.1b.

Now for the diagonalization. First the secular equation for H in (10.3.3a) is (recalling (3.1.5))

€2 - (trace H) e + (det H) = 0 = €2 - (2H) £ + (H?-(pE)?-5? ). (10.3.4)
The eigenvalues are hyperbolic conic sections plotted above a pE-S axes in Fig. 10.3.1a-b.

£, = H+\(pE) +5° (10.3.52)

£

L= H—y(pE) +5° (10.3.5b)
The high and low eigenvalues form two halves of an intersecting vertical cone in Fig. 10.3.1a. (Michael Berry
calls the cone a diablo after a child's toy top. The intersection is called a diabolical point since it’s a devilish

singularity, as we will see.) The corresponding eigenvector projectors are (using (3.1.15))
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2
—pE+4|(pE) + 5 -S
H-pE-¢g,, =S
2
) H+ pE-¢, =S pE+ (pE) +52
P, = = . (10.3.5¢)
€y &, 2\/(pE) + 52
2
pE+ (pE) + 52 S
H-pE—¢, -
2
-5 H+pE-eg, N —pE +4|(pE) + 5
P, = - 2 (10.3.5d)
€lo = Epi 2\/(pE) +52

For constant $>0 and varying pFE the two eigenvalues trace hyperbolic conic sections or a Wigner
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avoided level crossing as shown in Fig. 10.3.1. Crossing happens only at one "diabolical" point where tunneling

and field both vanish (S=0=pE). In Fig. 10.3.1b, relative amplitudes for the "up-field" or |2)=|y) versus "dn-
field" or |1)=|x) states vary from 50-50 for pE=0 to 99up-1dn when pE field is up (pE=+1) or lup-99dn for
(pE=-1) for the "ground" states on the bottom hyperbola. Meanwhile, the "excited" states on the top curve go
against the field. For smaller S, polarization shifts near the diabolical point become sharper, finally jumping
from /00up-0dn to Oup-100dn right at pE=0. We now see how this works.

High field splitting: Strong C>* or weak C-F symmetry
For large |pE| and small tunneling (|pE|>>S) the approximate eigenvalues are growing up or down

linearly with the applied field energy pE as the energy eigenvalues approach the hyperbolic asymptotes.

2 N
&, = H++(PE) +S2zH+pE+2}TE+--- (10.3.6a)

g, = H—,/(pE)2 +5% = H—pE—Z“jTZEJr---(for:pE»S) (10.3.6b)

In this limit, the eigenvectors get their symmetry broken, too. With zero field (pE=0) the lowest
eigenstate |+) is a perfect 50-50 combination of the "down-field" state |1) and the "up-field" state |2) as in
(10.2.6a). With a large field, the lowest state becomes nearly 100% "down-field" state |1) and negligible

amplitude in the "up-field" direction of state |2), as seen in the following first column of (10.3.5d).

e V= <1810> __ L 1 pE+ (pE)2+S2
o [<z|sh,>] J—{ ; J

1 2
zm[ 2pE+S S/2pE+ ]_{ (1) J:|1> (for: pE>>S)

(10.3.7a)

Meanwhile, the highest eigenstate |-) , also once a (minus) 50-50 combination, behaves in a contrary fashion

and "fights" its way against the field toward almost 100% "up-field" direction of state |2).
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v - 2
B (10.3.7b)
. -S o). |
~\/norm.[ 2pE+S*/2pE +-- ]_)[ 1 ]—|2> (fOr.pE>>S)
[T 3 5
Iuaneluns - D
- ].L| - 5 D I
S e
10 ‘ ~ Yy
:
[
e
op
- 10
- 10
h Fig.

10.3.1 (a) Two state eigenvalue "diablo" surfaces and conical intersection and pendulum eigenstates.
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Fig. 10.3.1 (b) Wigner avoided level crossing. (Fixed tunneling S and variable pE field.)
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The tendency for a ground state system to acquiesce or "polarize" in the direction of the applied field is

quite natural. (Don't you feel like just "giving in" sometimes?) Most systems that we "push" in our classical
world are in their ground states and respond accordingly. However, an excited quantum state can be a very
different beast and will display a "passive aggressive" behavior, to use an anthropomorphic analogy. (That's
right...fight the #%*(@ system no matter what it takes!)

The pendulum analogy helps to understand this behavior in terms of resonance, or the lack thereof. If we
reduce symmetry by making pendulum-1 longer and slower than pendulum-2 as in Fig. 10.1.1b then we spoil
the resonance between them, particularly if the coupling is weak ( |k;2|<<|k; - k;|). The response of faster
pendulum-2 to the slower one drops off according to Lorentz's classical formula (Append. 1.B)

response of 2 due to 1~kj2/(0p2-w12)=k;/(ks - kj) = -response of I due to 2.
So the low-frequency mode is mostly the slow pendulum swinging. The fast pendulum swing is less by a factor
(~S/2pE) in (10.3.7a). But, the high frequency mode is mostly the fast pendulum-2 swinging. The slow
pendulum-1 response is down by about (-S/2pE) and & out of phase. (See (-) sign in (10.3.7b).)

For a geometric picture of the effect of reduced symmetry see Fig. 10.1.2(a) and (ab). For lower S/|pE|
the mode lines move away from mode axes |[+) (low ®) or |-) (high ®) and toward the local axes |x)=|1) (slow)
or |y)=[2) (fast) of individual pendulums. That is shown in Fig. 10.3.1b, too.

Low field splitting: Strong C-7 or weak C> symmetry and A— B basis change
For weak fields (|pE|<<S) the symmetry breaking and energy splitting is much less severe. The

eigenvalue splitting is approximately quadratic or 2nd order in the field pE near the hyperbolic minima.

2

g, =H+ (pE)2+S2 zH+S+%+-~ (10.3.8a)
(pE)

= H=\(pE) +5% = H =S =25+ for: $>>pE) (10.3.8b)

At first, as pE becomes non-zero, there is little change of eigenvalues or eigenvectors. Low pE favors 5-

symmetry eigenvectors |+) and |—) being the basis. The d-tran (10.2.6¢) does the A— 5 change of basis.

) +2) (1)) (1n2) A ) ) [ el () a
[ e ek J [ elmfy el J [ (el e J [ () () J e

{m/i 12 j[ H-pE S ][ N2 12 ]: [H—S ~PE J (10.3.9b)

1742 <1/42 -S  H+pE || 1/42 -1/42 -pE  H+S

Note that field energy pE and tunneling energy S switch places. Now (10.3.8) are perturbations of H+S values
due to an off-diagonal component -pE. In 4-bases, tunneling energy —S perturbs H+pE values.
(b) Ammonia (NH3) maser
If you imagine the € vs. pE hyperbolas in Fig. 10.3.1 are effectively potential energy curves it is possible
to understand how the first MASER (Microwave Amplification by Stimulated Excitation of Radiation) was
made. To obtain a population of predominately excited ammonia (NH3) molecules, Charles Townes and co-
workers put a hot beam of NH3 through a non-uniform electric field that acted as a sorter that distinguished

which states belonged to one or the other of the two hyperbolic "potential" energies.
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(a) 1>Num2>Nd®

(b) |+>=|13;|2> =11 @1%

Fig. 10.3.2 Ammonia (NH3) inversion states (a) Base states (b) C»-Eigenstates

The NH3 molecule can be viewed as a CyB-symmetric two-state system in which the N-atom has two
possible position base states |1) = [N-up) and |2) = [N-dn) wherein the N-atom resides on one or the other side of
the H3 plane as shown below in Fig. 10.3.2a. It is assumed that the system has a bilateral C,B-reflection
symmetry about the H3 plane.

Ammonia is a peculiar "fluxional" molecule that won't "stick" to one side or another, that is, it has states
|1) = [N-up) and |2) = [N-dn) are not stationary states. In fact if NH3 were to start out in state |1) = [N-up) it
would "beat" or "tunnel" up and down between state |1) and state [2) = [N-down) with a beat or transition
frequency of 24 GHz. This is analogous to the beat oscillations between X=x; and Y=x; in Fig. 10.2.6 and Fig.
9.4.1. It might oscillate like this forever. However, it is a tiny charged dipole coupled to the electromagnetic
field as we'll study later. While oscillating its charge, it behaves like a tiny microwave antenna broadcasting at
the transition frequency. After billions of cycles it finally must "damp out" to a stationary eigenstate |€;,)=|+),
that is, it decays to its ground state emitting a 24 GHz photon.

For zero or low E-field the molecules start out in one of two inversion eigenstates |€;,)=|+) and [e;)=|-)
sketched in Fig. 10.3.2b. The temperature and statistical mechanics determine how many of each. The hotter the
beam is, the more nearly the excited |ey;) state population will become equal to unexcited ground |gj,) state
population.

Eigenstates are made of 50-50 (or /y», 1/ ) combinations of |1) = [N-up) and |2) = |[N-dn) exactly like
the C,B prototypes in (10.2.6). In other words, the N-atom is "fuzzed-out" so it has the same probability of
being found on either side of the H3 plane, and the same or opposite quantum phase. These two states are

analogous to the normal modes (+) and (—) in Fig. 10.2.4a and b, respectively.
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As the beam of |g;,)=|+) and |ej;)=|—) molecules enters a non-uniform field the excited |ep;)=|—) state

molecules fall away from the strong field because they are on the upper branch of the hyperbola in Fig. 10.3.1
and can get to lower energy by heading for the (pE=0) point. They become separated from ground state (|g;)=|

+))-molecules that gain kinetic energy by “gravitating” toward high field.
This makes it possible to cull out particles in the |ej;)=|-) state. The excited output is fed into a cavity
tuned to the 24 GHz transition "broadcast" frequency which has a wavelength of 1.25 cm. , and it begins to

resonate strongly and coherently. And so, the laser (and kitchen microwave) revolution began!

C4B Symmetry : Weyl reflections
The symmetry of a Stark Hamiltonian matrix with 4#D might not be as obvious as the >” symmetry of
an H-matrix with A=D. However, if you look again at the normal coordinate axes of the C'’>¥ modes in Fig.

10.1.2b you can see they are rotations of the original Cartesian xy-axes in Fig. 10.1.2a by an angle ¢$=45°. The
normal coordinate axes of the "symmetry-broken" modes in Fig. 10.1.2ab are rotations of the original base

states in Fig. 10.1.2a by some other angle ¢=[/2 that is less than 45°. In fact, each set of axes pictured in Figs.
10.1.2 (a), (ab), and (b) has its own reflection symmetry operator G5, GAB, and op, respectively, and each is
related to the other by rotational transformation.

We have used the bilateral reflection o5 given by (10.2.3b) to switch x-axes with y-axes. The operation
op is a reflection through a 45° mirror plane lying on major axes of B-potential ellipses. (VB=const.) As such,
op is a 45° rotation of the 6 mirror reflection through an x-axial plane lying on major axes of 4-potential
ellipses (V4=const.) in Fig. 10.1.2.

oAz[ Lo J (10.3.9a)

s, = R[%] G, R - R[45] 6,  R[45°]

T o roox | [ L L + L (10.3.9b)
[o 1 ]z o8y Ty ( 10 J sy Sy NORN) ( 10 J NO) "
o z |l o - 1 1

sSin— COS—
4

. T T
—sin— cos— - = - =
i R B RN NN

The matrices 64 and op are two real Hamilton-Pauli-Jordan spinor operators. (The third ¢ operator is the

complex one.) The reflections 65 and o do so-called Weyl! reflections after the famous theorist Hermann Weyl.

Moving the rotations to the left side gives a diagonalization of o3 and HZ.

A B
B 4

1

HiD

_| A+B 0
1 Lro 0 A-B
V2
(10.3.9¢)
This is like d-tran (10.2.6¢) except it is done here by a rotation R[-45°] instead of a reflection through the 22.5°

plane that is what we unknowingly wrote down in (10.2.6a). How can this be understood?
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To understand this we need a couple of lessons from this elementary introduction of Weyl and Hamilton

operations. First, as seen first in (10.1.7), all H-matrices are made of "pieces" of their symmetry groups. (It's

true whether or not we can easily see it!) Here, H” is made of (> "pieces" 1 and op.

H=d1+B.6,, o | 4 B =y 1O |ip 0
B 4 01 10

Rotation R[-45°] diagonalizes o and HZ. A ¢=22.5° mirror reflection can do it, too, as in Fig. 10.3.3a.

(a) A to B (b) A to AB
Transformations Transformations
y

s %Q /2 b@
.R\?mlio\/n o} /;jlectic ,Ro(tbalwz
IN2 -IN2 cosf -sin

(1/\/2 1/\/2) W ‘1}‘%) (qu) cos®

o A—plane | 64-plane

Fig. 10.3.3 Rotations and reflections that convert G into (a) op, (b) OaB
Generalizing (10.3.9¢) for a rotation by angle ¢=B/2 yields a general ¢-tipped o plane-reflection.

R[¢] o, Rg) = G = o[ ¢ tipped plane]
cos¢ —sing 1 0 cosp sing | cos2¢— sin2¢ 2sin@cos | cos2¢  sin2¢ (10.3.10a)
sing  cos¢ 0 -1 —sing cos¢ - 2singcos¢  —cos’@+sin’ ¢ | sin 2¢ —cos2¢

This shows we can bring a ¢-tipped 4 5-plane parallel to the x-plane in two ways. We can do a rotation R[-¢]
that "untips" by angle -¢=—[/2 or we can perform a reflection through a mirror plane that is tipped by ¢/2=p/4
half-way between the x-plane and the 45-plane. Here is the latter.

(5[[3 / 4 tipped plane] ~G[[3 /2 tipped plane] G[ﬂ / 4 tipped plane] = 0,

cosf3/2 sinf3/2 . cosff  sinf . cosfB/2 sinfB/2 | [ 1 o (10.3.10b)
sinf8/2 —cosf/2 sinfB —cosf sinf3/2 —cosf/2 Lo -1

This transformation then also diagonalizes the general H4# matrix made of C»4” "pieces" 1 and oA p.

it = ATD g AD G ipg, | A B |2AER L0 AEDE 0 b gl 0L g03110)
2 2 B D 2 Lot 2 Lo -1 10

A+D A B A+D( 1 0 cosf3 0 0 sinf
H = A+ k0 : =— +k +k
2 ABD AR [ B D ] 2 [ 0 1 J ABD( 0 —cosf AP sinB 0
A-D . A-D
kABDcosﬂzT, k zpsin=B, or [3=ATAN2(B,T) (10.3.11b)

Then tipping angle 6=[3/2 of the normal coordinate axes is found from the parameters 4, 7, and D.

This is a shortcut to solving H4Z eigenvalues and eigenvectors. It generalizes to U(2) “spin” in Section 10.5.
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Unitary U(2) versus Special Unitary SU(2)

Before continuing, we should elaborate on some fine points and terminology. In Sec. 2.2 (d) and (e) we
introduced the unitary group U(n) of operators U that satisfy unitarity (UTU=1) and its subgroup called the
special unitary group SU(n) which had an additional requirement of unimodularity. (det|U|=1)

Note that rotational operators like R[-45°] belong to SU(2) while reflection operators like 6o belong to U(2)
(cfo=066=1) but not SU(2) because o's have (-1) determinants. ( det|G|=-1) Mirror reflections change left
handed gloves into right handed ones. Since two reflections through the same mirror is an identity operation
(66=1) it follows that reflections are both Hermitian (6T=0) and unitary (6To=1). In some sense they are the
most “perfectly normal” operators.

If you multiply two members of SU(2) the product has to be an SU(2) member, too. (Closure axiom) So,
products of rotations can never yield a reflection. However, the product of two reflections will have a positive
unit determinant, in fact, it will be a rotation. This is easily see by an example that multiplies x-plane reflection
G4 in (10.2.13a) by an AB-plane or ¢-tipped reflection 6ap in (10.2.14a) .

G[q) tipped plane} 0, = R[2¢} , O G, - o[q) tipped plane] = R[—Zd)}

cos2¢  sin2¢ 1 0 |_| cos2¢ -—sin2¢ or 1 0 cos2¢ sin2¢ | | cos2¢ sin2¢ (10.3.12)
sin2¢p —cos2¢ |\ 0 -1 | | sin2p cos2¢ |~ 0 -1 )| sin2¢ —cos2p | | —sin2¢ cos2¢
In other words, rotations are composed of reflections, and not vice-versa. The ¢'s are more fundamental than the
R's. In some sense reflections are "square roots" of rotations. One only needs half the angle 6=[3/2 to do the job

that a full angle 20=P rotation would need. As seen in (10.3.10) a pair of mirror planes separated by angle ¢=[3/2

will perform a rotation by either B or - , depending on the order of action.
Complete sets of commuting operators
One may turn the discussion of symmetry inside-out by asking what are all the operators Q that
commute with a given H-matrix (or set of commuting H-matrices). Spectral decomposition gives the answers to
such questions, for if Py are the irreducible projectors of H (or set of H's) then the answer is
Q=Z0;Pr(=0;P; +oy P, , for 2-by-2 Q) (10.3.13a)
for arbitrary complex numbers oy . If you further restrict Q to be unitary (in U(n)) then the answer is
Q=X eil®% Py (= ¢l® P; +¢el%2 P, | for 2-by-2 Q) (10.3.13b)
for arbitrary real numbers oy . Finally, if you want Q to be unimodular (in SU(n)), too, then the answer is
Q =X ei% Py (= e"i%P; + ei®P, for 2-by-2 Q) (10.3.13c¢)
where angles in exponents must sum to zero or multiples of 2x. (2o = 27n)
For example, the SU(2) symmetry operators that commute with HZ must be of the form

Xl 1) X1 cosy —isiny
Q:T( j+7[ ]:[ ]ZRB(Z) (10.3.14)

11 -1 1 —isiny cosy

In other words, the only rotations that commute with H” are imaginary or complex. It turns out these are

representations of Lorentz transformations that provide a relativistic theory of polarization.
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10.4 Mixed ABCD Symmetry: U(2) quantum systems
With no symmetry restrictions the U(2) modes or eigenstates assume a general nondescript form of conjugate

elliptical polarization. An example in Fig. 10.4.1 shows results of competition between all three archetypes of

the asymmetric (4), bilateral (5), and circular (C) types of symmetry described previously.

[ 2.0
=, 1.0
é.u-.u% 1.0&8]
[ A0
[ 2.0 r| "
. 5.0 100
e
R e LA
e

Fig.10.4.1 Typical asymmetric elliptical modes. (A=4.1, B= 0.67, C=1.16, D=3.3)

The types of general 2-state Hamiltonian matrix 10.1.1b discussed so far have involved varying the
parameters A, 5, and D while parameter C is set to zero. If 4=D then bilateral C>”-symmetry is present and
parameter B=-S determines tunneling splitting. If pE=|4-D|>0 then bilateral C>”-symmetry changes to C>15-
symmetry and second order Stark splitting occurs. If pE grows so |4-D|>>B then parameter B becomes
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irrelevant and asymmetric-diagonal C>“-symmetry takes effect. The parameter pE=|4-D| for C»4-symmetry

determines first order Stark splitting. Adding the circular C>C-symmetry makes ellipses.
(a) ABC Symmetry catalog: Standing, moving, or galloping waves

Let us review the archetypes C>4, (55 and R(2)>C>C symmetry using one-dimensional plane waves or
Bohr orbitals (7.1.10) as the base states of a U(2) two-state system, and compare that to the coupled-oscillator
and optical polarization analogies. Various symmetries are summarized in Fig. 10.4.2.

A, B, and AB-Archetypes are standing waves (Linear polarization)

Asymmetric C»4 systems discussed in 10.2(a) have x-plane | x1) and y-plane | xo) modes. These are
analogous to a pair of cosine and sine Bohr orbital |c) and |s) standing waves. The symmetry operation of
reflection 6.4 through x=0 (that is x—-x ) gives a positive eigenvalue (+1) for symmetric cosine function {x|c)
and a negative (-1) value for anti symmetric sine wave (x|s).

(x|c) = cos mx= cos-mx =+ {—x|c), {x|s)= sin mx = -sin-mx = — (—x|s) (10.4.1a)

Taking (cos ¢, sin ¢) combinations of (10.4.1a) gives states of C»47 systems discussed in 10.2ab.
(x|+) = cos ¢ cos mx + sin ¢ sin mx (x|-) = -sin ¢ cos mx + cos ¢ sin mx
= cos (mx - ¢) = sin (mx - ¢) (10.4.1b)

These are standing waves, too. However, their nodes are shifted by angle ¢ to accommodate a new origin and
symmetry plane at x=¢/m. Weak D-field or strong B-coupling shifts angle toward ¢ =+45° of hilateral
symmetric C-F system coupled modes. The decoupled system is a C>* system with |x1), |x2) bases. Decoupling is
encouraged by applying a strong polar vector field like a Stark electric pFE field.

C-Archetypes are moving waves (Circular polarization)
The opposite to the standing-wave systems is the chiral or circularly symmetric RC(2) or C..C system with left
handed and right handed modes |R) and |L). For the Bohr orbitals |R) and |L) correspond to positive and negative
exponential moving waves, respectively. These involve complex combinations.

(x |R) = eTimx = cos mx + 1 sin mx (x |Ly= emx = cos mx - i sin mx (10.4.2)

A symmetry reduction of U(2) to RC(2) is caused by an axial vector field like a Zeeman magnetic B field or a
rotational velocity vector axis €2. It is sometimes called "gauge symmetry" breaking.
..All others are galloping waves (Elliptical polarization)

The general Hamiltonian is labeled as a C; system, that is, no symmetry. It will have eigenstates that are

general linear combination of the above, that is, elliptical polarized eigenstates like Fig. 10.4.1.

x|¥Wy=ap x|RY+ ar{x|L) = agetimx + qj e-imx (10.4.3)
In other words, the vast majority of "nondescript" or asymmetric eigenstates are simply the galloping waves we
introduced Chapter 4. (Fig. 4.2.6) The galloping phase velocity noticed there is related to the polar angle of the
elliptic orbit. As the ellipse becomes more eccentric, that is, more like a standing wave states A, 5, or A5, the
polar angle has to gallop more and more rapidly at the passage of the minor axis. To conserve angular
momentum it "gallops" faster at lesser radius and is faster at an orbital perigee than at an apogee. Newton and
Kepler were first to note that Coulomb orbits sweep out equal area in equal time, but the same is true of any
central force orbit including the isotropic harmonic oscillator which is a full U(2) symmetric system. (Recall Fig.
4.2.6b and Fig. 4.2v8.)
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Fighting rotational isotropy are the anisotropic (Stark-like) non-central "tensor" C>45-symmetry-

breaking forces. The 4, B, or A5 Hamiltonians do not conserve angular momentum and try to stretch orbits
along certain directions and away from their circular R(2) symmetric shape. The compromise is elliptical or
galloping eigenstates such as are pictured in Fig. 10.4.1. Rotational R(2)>C>C symmetry is the mortal enemy of
“tensor” C»15-symmetries, a yin-and-yang that live together as subgroups in the encompassing quantum
operator group U(2) of a 2-state system.

With isotropic U(2)-symmetry all possible ellipses of any tipping or ratio or handedness are degenerate
eigenstates. This is the case listed in the first column on the extreme lefthand side of Fig. 10.4.2. Then and only
then do all four operators {G;, 64, 65, o¢} or all four quaternions {1, i, j, k} or all four elementary operators
{ e11,e12,e21, e22} commute with the Hamiltonian which is necessarily reduced to a constant H times a unit-1
matrix. All vectors are eigenstates of such an operator.

HY?=H1=Ho/= H(ei1 + e22) (10.4.4)
(b) General Hasco eigenvalues

The opposite extreme portrayed on the extreme right hand side of Fig. 10.4.2, is a Hamiltonian with no
apparent symmetry in which all parameters 4, 5, C, and D are allowed.

g AtD 10+B[01 vl 0 =i ),4=D( 1 0

A+ D A-D
= c, +B5 G, +C O, +
2 _

H

Being made of all four {G;, 64, 65, oc} guarantees H will commute only with the unit operator itself.
Eigenstates are detemined by values of parameters 4, 5, C, and D. Any single operator of the form (10.4.5a) can
be diagonalized and represented in its (own) eigen-basis as follows.

A+D| 1 0 1 0
== ( 0 1 j+HA”C”( 0 -1 J
(10.4.5b)
A+ D
H= 5 G +H,pcp O upep

The constant Hzcp is a Pythagorean sum and G.4¢p is a reflection operator with (+/)-eigenvalues.

2
A-D 2, 2
*H o :i\/(TJ +B°+C (10.4.5¢)
The combination operator 6.4scp defined as follows
O pep=—o—0y t——— o, +—L g, (10.4.5d)
HABCD HAB’(,‘D 2[—1,41'3(.'D

is a reflection symmetry (G.scp)°=1 because of the {6/, 64, 65, 6¢}-multiplication rules.
GAGB =-GBG4 =O(C, GBOG(C =-0C0B=C4, GCO4=-040C=0B, c4=0p=cc*=1 (10.4.6)
A generalization of the A5 solution (10.3.11) results. Eigenvectors are discussed in Sec. 10.5.
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10-
Catalog of Two - State Hamiltonians
Hye) = Hc{ = ch‘B = H(‘ZC = Hc1 =
H=H"= ( 4.0 ] 40 4 B 4 e 4 —iC
0 4 0 D B D A iC 4 +iC D
R()=
U= R()= cos¢ issin¢ R(y)= R(p)= 1) =
Com-:zz-lte U, U, R —icsing cosy —isiny cosqp —sing al 10
i Uy, Uy 0 o cosl —isiny cosy sing  cosp ¢ 0 1
—issing )
+icsing
e11—[ (1) g J
01 Gp= Gpp = Gg = Ge= 1=
e12=[ 0 0] dR(O)| _ dR(Q)| _ dR()| _ dR(p)| _ dR()| _
Generated o |, g |, dy |y o |, ar o
by: 0 0
em—(l oj -i 0 —ic —is 0 —i 0 -1 10
0 i —is ic - 0 1 0 0 1
e22:[ g ? J
o, = Opp = Og = O = Gy =
Spin (all) iGp = iGpg = iGg = iGg =
Operator : 1 0 c s 01 0 —i ( 10 ]
0 -1 s —c 10 i 0 01
Symmetry : UQ) clcrY(2) c® <R (2) 7 cR(2) €S cr°(2) of
P by b (S CEEL
(Any ket s (| £> Depends
H isan 1 0 cos— —sin— 1 1 1 1
Eigenkets ) oV 1 2 2 1) -1 —i i on
eigenvector) B A,B,C,and D)
sin— cos— \/5 ﬁ ﬁ \/5
Twp State RA(2)D CAy AR -
Unitary RAB(2)D CABy
Group Cq
U®2) 2-D Rotation
Algebra Sub-Groups RC(2)> CC,
Plane 0° Plane /2 Circular  Elliptical
|

ly) '

Fig. 10.4.2 Catalog of 2-state Hamiltonians, symmetry groups, eigenstates and analogs
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10.5 Spin-Vector Pictures for Two-State Quantum Systems

Our most common atomic "particles" are the electron with its 2-component (up,dn) spin-#/2 and the
photon with its two-component (x,)) polarization. Then there is the NH3 inversion states (UP,DN) that gave us
the laser revolution. These three are summarized in Fig. 10.5.1. Add to these the 2-component Bohr-waves or

spins of neutrinos, neutrons, protons, quarks, etc.; it appears that our world is lousy with U(2) objects! We need

ways to picture them. Here we introduce another way called the spin-vector.

(a) Electron Spin-1/2-Polarization

pi=Im y,
( \ / \ / . \
Spin-up xXT e 1=
|1)=1T) ( _ B Re

7= =

X
Spin-dn \ ¢ <\L|X>/ \@Xz /
12)=|1) I DY)

(b) Photon Spin-1-Polarization o

( A / \ / \
Plane-x % Wx x|y X
1=l W)= = = | n
Plane-y | | | \ Yy \(ylw) \Q )
12)=ly) =[x)xy)+Hy Xy lw)

(¢) Ammonia (NH3) Inversion States Pup
N-UP ¢ (v..)  (wem) [ —)

11)=| UP) or

|V>: = = PpN
0.0
N-DN 9 VDN <DN|V>
12)=|DN) 7\ N

=|UP){UP|v)+|DN){DN|v)

Fig. 10.5.1 Some of the most famous 2-state systems and their two-complex-component coordinates.

Ways to "picture" these U(2) worlds begins with the U(2) 2-phasor or spinor pictures shown in Fig. 10.5.2 (a-b)
The full picture (b) is four dimensional but the polarization picture (a) takes only the real parts to make a 2D
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orbit path. This was used earlier. If we can ignore overall phase, a three-dimensional R(3)-SU(2) spin-vector

picture shown in Fig. 10.5.2(c) is sufficient and useful to define a U(2)-state.

(a) Real Spinor (b) 2-Phasor (c) 3-Dimensional Real
Space Picture U(2) SpinorPicture R(3)-SU(2)Vector Picture
(2D-Oscillator Orbit) p1=Im*y
/ (A )
0,
p2=Im'¥
x1=Re¥ (Eh
xy=Re'¥» 2

“*H=Re¥
\\Vz 9

¥ = x +ip; = ¥l el i
\Pz = X2+ip2 = |\P2| elq)z SX )

~
~

Sa = (F1* ¥ - ¥5* ¥)2

Sp=W¥1*¥2 + ¥o*¥1)2
Sc=M1*¥2 - ¥r*¥1)/2i
Fig. 10.5.2 Spinor, phasor, and vector descriptions of 2-state systems .

A set of four real coordinates of U(2) states from (10.1.1) are listed here with phase angles (¢1,02).

v ) [ ) [ x| | [ L% =Re¥ and:p = Im¥,
v L) || nre, | [, %2 U =ReW, L and:p, = I,

Overall-phase-independent quantities Wi, *'V;, define the following three spin-vector coordinates.

|¥)= (10.5.1a)

2
(s ey |1
S;=58, =§(\P1\P1 —‘P2‘1’2)=EU‘P1‘2 _‘\Pz‘z)
S, =S =1(T1W2+T2~{'1)=Re\{';‘?2=\L111\|T2\cos(¢2—¢1) (10.5.1b)

oY ): MW, =|'¥,[[¥[sin(6, - 9))
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(a) Density operators and Pauli c-operators

The Y *'¥, quantities from which a spin-vector is built, are components of a very useful operator
called the density operator p = |¥)(¥|, first employed by U. Fano. p is defined as an outer (tensor ®) product

of ket-bras as are projection operators in (2.1.19) but it's for a general state |¥'), not just a base state |1) or |2).
¥ R0 S RO
p=lw)wl=| ' (e wr wy )= UL (105.2)
¥ Y, Y,
We have three spin-vector components (Sy =S, Sy =S¢, Sz =S4 ) and a fourth quantity, the norm N
N =Y 1*¥Y1 + ¥o*¥> (10.5.3)
(Norm or total probability must be unity (N=1) for base states but may be less than 1 for general states.) the

density matrix components can be inverted from (10.5.1) to give

* 1 * .
911=W1W1=5N+Sz’ pp=1,¥ =S, —iSy,

1 (10.5.4)
Py =¥ ¥, =5 +iS, , p22=‘P;‘{’2=5N—SZ.

Density operator p = [¥)('¥'| becomes the following.

[ P P12 ]=
P P S. +iS, %N—SZ

N( 1o )+s ( J+SY[ 0 = J+SZ[ Lo ] (10.5.5a)
0 1 i 0 0 -1

p=_N 1 45 o +5,

1
- . —N+5, S, -iS
Wi W, || iSy
\qulz WZ\PZ

Oy +S, oy,

where the ¢ matrices are known as the Pauli spin(or) operator matrices.

1:(1 0], 5 :( ] 6y=(9 —z‘J, GZ:(I 0] (10.5.5b)
0 1 i 0 0 -1 A

These are the spin generators 6g , G: , 6C , and 6 listed in Fig. 10.4.2 catalog of 2-state Hamiltonians and
symmetry. This is no accident; these operators are all set up to do an elegant job of completely solving the 2-
state Schrodinger problem and quite a bit more. We saw some of this in equation (10.4.5).

Furthermore, the p-operator lets us treat statistical ensembles of possibly dephased particles that suffer
"peeking" or other randomizing effects as in Sec. 1.3b. For pure-state beams, each of N particles contributes a

spin-1/2 so the total expected spin magnitude S exactly equals half-norm N/2 where

S=\/52+S§+S§=\/S2+S§+Sf1 (10.5.6)
Beams with S<N/2 are known as depolarized or "dirty" beams, and S=0 corresponds to completely depolarized
(or "filthy"-random) beams. Pure-state (S=N/2) beams are also called /00%-polarized.

Before, beginning p-analysis, let us explore some of the possible states in various U(2) worlds.  Fig.
10.5.3 below shows the S-vectors for our most commonly used base states. Examples 1 and 2 belong to the

spin-up or dn (|T), 1)), or x-or-y-polarization ([x), |v)), or NH3 base states ((UP), IDN)).  Spin vector S is,
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indeed, up or down, in Example 1 or 2, that is £/80°, while in real spinor space |T) and |~L) bases are 90° apart.

Recall 2:1 ratio between R(3) and U(2) angles first noted in (1.2.13).
Example 1:

. p1=Im ¥
Spin-up
( h
1=Re %1
Plane-x % S

N-UP @ \ x2=Re

Example
2: Spin-dn 9

Plane-y M
2=Im %>

N-DN bo \ e 1/

Example 3:

Spin- "northko
Plane-45° %

N-Ground
State \ =Re x/

p2=Im x>

Fig. 10.5.3 Examples of spinor, phasor, and vector base states for electron, photon, or NH3 .

Example 3 is an eigenstate of bilateral C,”-symmetric Hamiltonian
H - 4 (1 0 2 4a)repeated
& A

such as the £45° normal modes |(+)) and |(—)) shown previously in Fig. 10.2.4 or NH3 ground and excited states
shown in Fig. 10.3.2b. The C,"-type S-eigenvectors lie on the bilateral /-axis.
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Spin-West @3 Example 4:

Right 1
Circular —

| . 0
NHs- 9&%’ N2 S=|12
0

Resonant
State

Spin_East KO Example 5:

Left 12
Circu- _

NHY & V2
Resonant
State

Spin-somewhere d’ Generic Example 6: :
cos o sin 3

(c.B) S=1/2 sin o sin B

Elliptic @ cos B
Polarization e—1002 cospB/2 S,

~

NH; = . e-1y/2
Broken & =
Resonating Sp Sc

Fig. 10.5.4 Other spinor, phasor, and vector base states for electron, photon, or NH3 .

Examples 4 and 5 shown in Fig. 10.5.4 are eigenstates of circular C;C-symmetric Hamiltonians
A —iC
H o ]02]9dre eate:
c§ ( iC A J ‘ repeated

such as the left and right-circular-polarization eigenstates |L) and |R) shown in Fig. 10.2.7. The S-vectors for the
circular eigenbasis are "East" and "West" respectively, that is, along the circular C-axis. |L) and |R) are resonant
"beat" modes or fransition states for the NH3 model. Recall how the beat in Fig. 10.2.6 briefly has two phasors;
one "donor" phasor 90° ahead of a "receiver" phasor to give |L)-circular polarization like a 1/4-wave plate. State
|L) corresponds to NH3 actually undergoing an inversion. In example 4, the N-atom probability is moving down
(because UP-phasor is ahead of DN), but in Example 5 the N-atom is moving up since the UP-phasor is behind

that of DN. Recall phase principle stated after (10.2.16).

Finally, note that Examples 1 and 2 belong to eigenbasis of basic C»-symmetric Hamiltonians
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ch/‘ =( 1(;1 g ] (10.2.2h)repeated

which have no off-diagonal coupling components of either the bilateral (%) or circular (C) types. Their S-vectors
must lie "up" and "down" along the 4-axis as shown in Fig. 10.5.3. At the other extreme are the vast majority of
generic Hamiltonians with generic eigenstates like the one sketched in Example 6 of Fig. 10.5.4. For a generic

state it is convenient to introduce Euler phase-angle coordinates (0., [3,7) along with a norm N.

—ict/2 B
11y . e coS— '
“I—’>: ¥, _ <| > _ X1+l.]71 :\/ﬁ 2 o /2 (10.5.8a)
¥, (2|¥) x, +ip, Jo2 g B

From (10.5.1) this gives a length-S=N/2 spin S-vector with polar angles (o, 3) in 47 C-space!

S,=8,= %O‘Pllz —“lezj = g[cos2 g— sin’ g} = %cosﬁ

S, =8,=Re¥¥, =Ncosacos§sin§ =%cos0¢sinﬁ (10.5.8b)
SY=SC:Im‘I‘T‘{’2 :Nsinacosgsing :%Sinasinﬂ

Spin S-vector components are one-half the Pauli spinor operator expectation values (¥|oy|¥) .

¥

oyt 1o 1 2,2 2 2

<\P\oz\\y>=zs‘4=( LN Of )[0 . {\P J:NCOsﬁ =N(P1+x1—pz—x2)
2

<‘I—" "I—‘>=2S =( ‘I’T ‘P; )[(1) (I)J jl } = Ncosa sin 3 =2N(x1x2+p1p2)(10.5.8c)
2

¥

<‘I’\0;,\‘P)=2SC:( v )( 0 I)i [ y

For 2-state systems, like the electron or photon, which actually carry real-live-spin-angular momentum we need

1

] = Nsino sin 8 :2N(x1p2—x2pl)
2

1on

to introduce Jordan spin operators J =S = (1/2)c that are 1/2 of Pauli's "quasi-spin" G-operators.
Note that the Y-or C-component J¢ = S¢ is precisely the angular momentum xp), - ypy of an orbit in the
mechanical analogy involving 2-dimensional oscillators.

(PYIY) =(YIcl¥) = (FISclY) = 2Y|ocl'¥) = N(xpy - ypx ) (10.5.9)
This is analogous to photon-spin momentum. Circularly polarized photons hitting make you twist!
(b) Hamiltonian operators and Pauli-Jordan spin operators (J=S)

Symmetry and operator analysis solves the generic asymmetric Hamiltonian (10.1.1). The trick is to
expand H in terms of the spinor G-operators as was done for the state density p-operator in (10.5.5a). Instead,
we use Jordan's J = (1/2)c operators so as to respect that spin-1/2 factor.

Jo=Sp=(12)op=(12)ox , Jc=Sc=(1/2)cc=(112)oy, Ja=Sa = (1/2)op = (1/2)6z7
The resulting generic H Hamiltonian operator expansion is here.
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[ Hy H, N (1H1) (1[H]2) ]h[ 4 sic ]
Hy, H,y (2[H|1) (2|H[2) +iC D
H/h—%(A+D)[ (1) ‘1) J+2 ( J +2C( ([) ‘Oi ]%WA—D)[ (1) _01 ]% (10.5.10a)

1
H/h= (4+D) 1 +25 8 +2¢ 8,  +(4-D) S,

1
H/ = §(A+D) o, +2 +2C S,

The three constants (27, 2C, A-D) multiplying the respective ( 6, 6Yy, 67 )= (63, GC, OA ) operators are

components of what is called the Hamiltonian Q-cranking vector

Q=(Qy, Qy, Qz)= ("7, 2C, A-D)= (25, Qc, Qp) (10.5.10b)
while the coefficient (4+D)/2 of the unit operator G is just the average overall phase rate or energy €/A.
Qo= (A+D)/2 (10.5.10c)
The Hamiltonian expression involves an operator scalar product QoS = QeG/2.
H=1Q s, +1QeS=1Q1+1QeS (10.5.10d)

Here Q is an ordinary 3-vector made of three numerical components Q, Qy, and Qz, but S is an operator 3-
vector made of three Jordan-Pauli spin operators S = (1/2)c ¢, Sy= (1/2)cy, and Sz= (1/2)c7.

Each of the /2, C, or 4 type H-matrices (10.5.7 A-C) has its Q-vector pointing along the 7, C, or 4 axis,
respectively, precisely the direction of the S-vector for H-eigenstates in each case. This lining up of S and Q is
particularly useful since it's true for the generic H-matrices, too. S-vectors of all H-eigenstates must lie along (or
against) its Hamiltonian Q-vector.

Bingo! The Hamiltonian Q-vector completely determines the observable dynamics of all states, not just
H-cigenstates. The result is a closed-form analytic and pictorial solution of all possible eigenvectors and

dynamics, that is, all possible states of all possible U(2) Hamiltonians! The first result is frequency

Q=\0% +02 +02 =\/(2 ) +(2C) +(4-D) (10.5.10e)

which is the beat-transition frequency difference between ABCD eigenlevels of (10.4.5). (That factor of 1/2 in

defining spin S is key to getting the right Q-cranking rate or beat frequency Q=wni -Wio.)
(c) Bloch equations and spin precession

The notion of cranking or precession of a gyroscope is an old classical one. Here it is appearing in a
purely quantum mechanical context and applies to all the Schrodinger 2-state dynamics described so far.

Precession arises from the density operator p by writing the Schrodinger equation backwards and
forwards in time, that is, as a ket equation (forwards) and as a "daggered" bra-equation (backwards).

ih|‘P>:H|‘P>, & Daggar’ = —ih(‘P|:<‘P|H (10.5.11)
Note: Hf = H. Combining these gives a time derivative of the density operator p = [¥)(P|

2 d . ol _

in=—p=inp= ih| W) (| + in| W) (¥| = H| W) (¥ |- |¥)(¥|H (10.5.12a)

The result is called a Bloch equation. This is the “professional” version of the Schrodinger equation.
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., d s
zhgp:zhp:Hp—pH:[H,p] (10.5.12b)
Then we write p and H in terms spin S-vector and crank Q-vector by (10.5.5) and (10.5.10), respectively.

Hp=[ 121+ 000 | L1450 =hQOEl+Eth6+hQOSoo+E(QoG)(SoG)
2 2 24 2

oH=| Litsec | 101+ 000 |10, X1+ L 1006410506+ L (Se0)(Qe0)
2 2 24 2

Only the last terms don't cancel, and then only if the spin S and crank Q point in different directions.
7 n
Hp-pH= E(Q.G)(S.G)_E(S.G)(Q.G)

To finish this we need to derive the Pauli-Hamilton identity. This uses 6-multiplication rules (10.4.6).
(A0)(Beo)=4,By0,05= 4, B5(6,5+ 25,0,
=Ay B, +i€,5,4,B50,, (10.5.13)
=AeB+i(AxB)-c

So finally the time dynamics is reduced to the following.

ih%p:ihp:%(QxS)oc—%(SxQ)-c

ihi(ﬁlJrSooj:ihSoczih(QxS)-G
at\ 2

Factoring out *G gives a gyroscopic precession equation.

s .
2-=$=-axs (10.5.14)

Perhaps, the Fig. 1.2.4 sketch of “helicopter” electrons in Stern-Gerlach analyzers is not so silly after all!
Magnetic spin precession (ESR, NMR,..)
Indeed, the classical Hamiltonian for a magnetic moment m in a magnetic B-field is H=-m*B. If the

particle's magnetic moment is proportional to its spin angular momentum

m=gS$S (10.5.15a)

where g is called a gyromagnetic ratio then the Hamiltonian can be written
H=-m*B = -g S*B = -g (B\Sx + ByS) + B.S;) (10.5.15b)
Replacing each classical spin component Sy, by a spin operator S, gives the quantum Hamiltonian.
H=-g S*B=-g i(B,S, + B,S, + B.S;) (10.5.15¢)

The matrix representation of this has the QeS form of the generic U(2) Hamiltonian (10.5.10).

He—giBes=5"p | 0 1 | p| 0 =i | p| 1 0
21 0) i o) o4

5, 8-, J (10.5.16a)

z X

B,+iB, B
y

z

gh
2

The Q-crank is the ghiB/>-field vector! It will make the spin S-vector precess around € at a rate given by the

magnetic resonance frequency Q.

Q=g|B|A/2 (10.5.16b)
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In other words, if you have seen one U(2) Hamiltonian, you have seen them all! They are basically all

the same no matter whether it describes nuclear magnetic resonance (NMR), electron spin resonance (ESR),
muon spin resonance (MSR), and so forth, as long there are just two base states. The difference lies in how we
set the parameters By, B), and, B; or, for our generic H matrix, the parameters 2/, 2C, and (4-D) . Finally (and

most important!) we need to understand how parameters may be varied with time to cause a desired resonance.

(d) Visualizing quantum dynamics as S-precession

Perhaps, the greatest advantage of the 3-space spin vector rotational formulation is its power of
visualization. Let us return to the earlier 2-state models and analogies to see this. We begin with the -
type Hamiltonian (Sec. 10.2(b)) of NH3 and our coupled pendulum analogy. This will then be compared with
the C-type Zeeman-like Hamiltonians of Sec. 10.2(c). Then we see how this changes to the basic 4-type
problem via the "avoided-crossing" Stark-like 4/-types discussed in Sec. 10.3(a). The /-type Hamiltonian
(ur) (ln(2)

A
= 10.2. repeate
ety iz £ 5 B

has a cranking Q2-vector on the ' or /-axis of the spin 3-vector space according to (10.5.10b).

Q=(Qy, Qy, Q7)=(25, 0, 0)=(Qs, Qc, Qp) (10.5.17)
It has no effect, except for overall phase advance, on the £45° or /-eigenvectors |(+)) or |(—)) whose spin vectors
lie up and down the /~-axis as shown in Examples 3 and 4, respectively, of Fig. 10.5.3. However, if the initial
state is the first base state |1) = |x) of x-polarization whose spin S-vector lies on the 4-axis then it begins to
precess at the beat frequency of Q=2/5.If 27 = -2§ is negative (our choice in (10.3.3)), the precession is
clockwise from A to the positive C-axis and then to -A as shown in the Fig. 10.5.5 below. This is a "birds-eye"

view of what happened in Fig. 10.2.6.

X H crank-Q vector
for negative B=-S

IL)

Fig. 10.5.5 Time evolution of a /-type beat. S-vector rotates from A to C to -A to -C and back to A.
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Contrast that to what happened in Fig. 10.2.10 with a circular C-type Zeeman-like Hamiltonian.

) (]2) M )

<2|H|l> <2‘H‘2> iC 4 (10.2.19d)repeated

Its cranking Q-vector is aligned with the C- or Y-axis.

Q=(Qy, Qy, Q7)= (1, 2C, 0)=(Qg, Qc, Qp) (10.5.18)
The resulting rotation is shown in Fig. 10.5.6. It is a very simple Faraday Rotation of the initial x-plane of
polarization. However, it is a funny kind of rotation since the plane only rotates at half the angle 3 of the
precessing spin S-vector. When the spin is at B=60° the plane is only at 3/2=30°, as seen in the figure. This
makes big trouble when the S-vector arrives back at 4 after going B=360°, all the way around the globe. The
polarization is back to being a level x-polarization, but it is exactly 3/2=180° out of phase! That is, the plane has
only gone half-way. Once again, there is a 2:1 ratio between what happens to spin vecfors and spinors.

A X>

| r—

|x<15°>>( ‘ .
e N [x1s0 )

—60>(0) %'B

1X(30°)) g (-))
x(45°))=](+)) C

?E Q
B H crank-Q vector

|X(60°)) ly) i for C=1

m A )

Fig. 10.5.6 Time evolution of a C-type beat. S-vector rotates from A to B to -A to -B and back to A.

If you follow carefully the evolution of the beat in the previous Fig. 10.5.5 you find that it, too, acquires
a 180° phase shift upon one "complete" 360° rotation. So do electrons or any U(2) object. It is a fundamental
property of rotational space, and a quite mysterious one. This is studied in a later chapter.

By breaking the bilateral *-symmetry we make it more difficult for the initial A-spin state to resonate or
rotate around the R(3) globe. This is shown in Fig. 10.5.7 which diagrams the effect of a Stark-like A/ D-type

Hamiltonian
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[<1H1> (1/1]2) J(A ][ H-pE - ] (10.3 30)upena

(2H]1) (2|H|2) B D -S  H-pE
Its cranking Q-vector is between the A- or Z-axis and the /- or X-axis..
Q= (Qx, Qy, Q7)=(25, 0, A-D )= (-2S, 0, -2pE ) = (Q&, Qc, QA) (10.5.19)
The chosen parameters are tunneling S=1, and symmetry breaking pE= V3. The resulting rotation goes along a
much smaller circle that only "throws" the S-vector out to =60°, twice as far as the polar angle 9=30° of the

Q-vector. Along the way the polarization becomes elliptical briefly with its ellipse always contained in a box
which is tipped by exactly the angle ¥/2=15°. (Prove this!)

Q

% A >0 2B=-2S

Ix<15°>>(

S -B
- "~ 30°
|X(30°)> (_)>
IX(459)=](+)) C €2

ﬂ B H crank-Q vector

for negative B=-S
) - and pE = -BV3

N _AQ

Fig. 10.5.7 Time evolution of a AB-type beat. S-vector rotates from A to B=60° and back to A.

S ¢rc-=dAde

Notice how effectively the symmetry breaking parameter pE quenches resonance when it gets much
larger than the coupling or tunneling parameter S. The 2-vector approaches the A4-axis closely. Since the Q-
vector determines the two S-vectors that represent eigenstates of H, it is seen that the original A4-type base states
of x and y polarization are recovered quite closely. These are the eigenstates of the 4-Hamiltonian that start the

ABC classification in Sec. 10.2a.

chfl:( 81 g ] (10.2.2h)repeated
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CrankQ polar angles (¢,9) versus Spin S polar angles (0.,3)
The azimuth-o and polar-3 angles of spin S of a state [y) are set in (10.5.8b). We need azimuth-¢ and

polar-0 angles of crank vectors €2 or @=£2-¢ of a Hamiltonian H. These are defined below and in Fig. 10.5.8.

S =(N/2) cos a.sin B =Rey;* > Q. =Q cos ¢ sin & =2Re Hz;=2 (10.5.20a)
Sy=(N/2) sin o sin B =Imy;* y> Qy=Q sin @ sin O =2Im H>;=2C  (10.5.20b)
Sz=(N/2) cos B=(yr¥yi-y*y2)2 Q= Q cos O =Hu-H»2=4-D  (10.5.20c)
So=(N/2) =(yreyrtytye )2 Qo= =H;+H2=4+D (10.5.20d)

Since eigenstate S aligns to Q, finding |e5;) or |€:,) means equating angles: (o ,3) = (¢ ,9) or (¢ ,0+7).
This is a very powerful way to analyze and understand eigensolutions of U(2) systems. It will be used later.
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U(2) World : Complex 2D Spinors
2-State ket |¥)=

WNe 10/ 2¢0sf/2
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<

|X<45°>>=I{+)>

Z

|X(60°))

B
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S(0

1
!
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e-17/2
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~

Qcl=|2C |=| Qsindsing

Q| 4Dl \Qcosd

i

1 A5

X(120°))

C

=)

H crank-Q vector
(for @=75° V=65°)

IR)

Fig. 10.5.8 Comparison of  (a) Complex U(2) spinor picture in (W1, y2)-space,
With  (b) Real R(3) vector picture in (A,B,C)-space.
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Hamilton s generalization of exp(-i®t) =cos®t-isin®t : exp(-ic t)=What?

When Hamilton generalized imaginary numbers to quaternions he had also generalized the famous
Theorem of DeMoivre (e7i®=cosa.-isino.). Engineers use e to rotate phase by o in AC theory, and a 2D Planck
time phasor e®/=coswt-isinwt of wave theory generalizes to a 3D rotation e-/$267,

An exponential expression for a 2-by-2-polarization rotation matrix was given in (10.2.18).

0 -l (0 —i
e A0 2) A7)
R((p)ze‘”G, represented by: [ c?s¢ sne Jze PO V0 (10.5.21)
sing cosQ

This is a C- or Y-rotation by @ in (x,y)-space, and @ is half the angle B=2¢ that S rotates in 3-space.

Rc((p):e7i¢cc =¢'2Sc = 1 cosQ -i G sing

, —i : —i 1

S0 (0 )10 o 0 10522

=e =e = = COSQ — i sing

sing cos@ 0 1 i 0

The rotation e799C breaks down to a sum of a unit operator 1 times cos(¢) minus io¢ times sin(@), a
generalization of the DeMoivre exponential: e“® = cos ¢ -1 sin ¢. These represent enormous milestones in the
history of mathematics, but Hamilton's contribution is particularly powerful as we will see. It is hard to imagine
quantum theory without either one of these great developments.

The other two types 4 and / of rotations are listed in the U(2) catalog in Fig. 10.4.2. The 4 or Z-type
rotation generated by asymmetric-diagonal G is also diagonal but complex.

RA(B) =¢ 0A =205 = 1 cos@ -i o, sin@
P el 1O L . 10.5.23
=e 9[ 0 - )=e 29[ 0 jz: e 0 = 1O leoso—i| 1O |sing ( :
0 0 1 0 -1
The /7 or X type rotation is complex and non-diagonal. (Check it by doing a & spectral decomposition.)
R (}()=e_il =X = 1 cosy -i sin y

—isiny cosy 0 1

:e—ix[ J:e—ﬁx( ) _{ cosy  -isiny ]:( 10 jcosl—{ Jsinx (105.24)

The key idea here is that e“90 = cos ¢ -iG sin ¢ works not just for separate 6 =0, 6C, or G but for any
combination-reflection 6 =01 or 6A=cD provided 6?=1. Evolution operator U= e-*H? (h=1) has Hamiltonian
H=0+C/2=(Q2/2)c defined by crank vector € or rotation axis vector ©=C ¢t as in (10.5.10).

.0 - 1
—159-0' ® ® —i-0Oec _ e_l.@.s

U=eM=p =R[O] =cos— l—isinE Qeg=c 2

(10.5.25a)

The rotation axis is given by its polar coordinates (¢ , 9) and angle of turn © = /@5 + 63} +0% =Q .
® = (O, Oy, ©z) = |O|- (cos@ sinV, sin® sinV, cos¥)= (Op, Oc, Op)

Representing 6x =013, 6y =0C, and 67 =G by their usual matrices gives a representation of U=R.
R[®]=cos% 1 - i ¢} sinE -i oy (:)Y sinE -i o, (:)Z sin%
= cos9 Lo _; ¢} sin9 —i| 0 (:)Y sin9 — Lo (:)7 sin9
200 1 2 i 0 2 0 -1 ’ 2

Unit rotation axis vector é:( 6., 06,, 6, )z( cos@sin®d singsind  cos? ) is defined.
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(IR[e]1) (IR[e]2)
(2IR[e]1) (Ir[e]2)

cosg— iéz sing —ising((:) - i@Y)
- 2 2 2 (10.5.25b)

—isin%(é + i@Y) cos%+ i@z sinE

In terms of polar axis angles [,,0=C2-f] this expands to a general SU(2) rotation matrix.

cosg—icosﬁsin9 —ising(cosq)sinﬁ—isin¢sin19)
R[@] _ 2 2
.. . o 0 . ©
—zs1n5(005(ps1n19+zs1n(ps1n19) coszﬂcosﬂsln—
(10.5.25¢)
cos% - icosz?sin9 —ie”® sinl?sin% ' ‘
=R|:(P19®] — ZeﬂHt :(’9'5

0 - e C] . O
—ie'? sin®¥sin— coS—+icosvsin—
2 2 2

H cigenstates |eni(a ,B)) or |ewn(o ,)) have angles (o) in (10.5.8) given by (¢ ,8) or (¢ ,9+m).
Why the 1/2?
The 1/2 in front of angle O is there because © =2t is the angle of rotation in 3D- A= C space in Fig.

10.5.8b. Angle O or [ is twice the 2D-spinor-space angle ¢ or B/2 in Fig. 10.5.8a. Why is this?
One answer is that to transform spinor operator O from O to O'=RORT by rotation R requires two R‘s.

For example, O= 6z=0 transformed by Ry = R is the following.

Ry (@) Oz Ry (‘l”)T - sn2g 07 cos2g
cosp -sing 1 0 cosg  sing (10.5.26)
sing  cosp 0 -1 —sing  cosp B
_| cos'p-sin’p 2singcosp | [ cos2p sin2 =[ jsin2(P+( - JCOSZ(P
2sinpcosp  sin’@—cos’ Sin2¢  -cos2¢ 0 -l

For angle 2¢=n/2, this relates 6G7=64 to 6x=0; as is done in (10.3.9). A rotation by 2¢=0=f in A~ C-operator

3-space (Ox, OY, 07) is twice the angle ¢ used for spinor 2-space. Spinor-1/2 factors double in vector 3-space,

and spinors have half-angles @=[/2 so that f=0 is a real 3D-rotation. Also, recall in (10.3.12) that two mirror
planes separated by ¢ yield rotations by 2¢.

The evolution-rotation-operator U= e-i© *0/2 = ¢-i0 *S by 3D-angle © may be viewed two ways: A 3D rotation
by © generated by spin vector operator S=6/2, or a 2D rotation by ©/2 generated by a spinor operator . The
1/2-factors have quite deep significance. They are related to electrons having //2 quantum of spin S=6/2. They
deserve deep consideration. We shall try again later to explain more about the mysterious 7/2!
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Problems for Chapter 10.

ABCDanonical?
10.1.1. The canonical definition of momentum does not always give pj/=m dx;/dt. (See “Deep Classical..” Chapter 5.3)
(a) What is the general definition of p; in terms of a Lagrangian L? First, what is L in terms of Hamiltonian H?
(b) Find L and p; for the classical ABCD Hamiltonian (10.1.3c).
(c) Is the Schrodinger-to-Classical-Oscillator analogy correct if there is explicit time dependence A(?), B(t),..etc.?
All fall down
10.1.2. The fall-line at any point in a 2D potential V(x,y) is determined by VV (or -VV, which?)
(a) Relate acceleration-force vector (10.1.5) for the general potential ¥=(1/2)x*A*x (10.1.6b) to the gradient V V.
(b) Find eigenvectors and eigenvalues of acceleration matrix A . Show how eigenvectors relate to V-ellipse axes for:.
case A: (A=4, D=1, B=0, C=0) , case B: (A=D=4, B=-1, C=0) , case AB: (A=4, D=1, B=1, C=0) .
Relate each to a classical normal mode frequency.
(c) Find eigenvectors and eigenvalues of Hamiltonian matrix H for:.
case A: (A=4, D=1, B=0, C=0) , case B: (A=D=4, B=-1, C=0) , case AB: (A=4, D=1, B=1, C=0) .
Relate each to a quantum energy or eigenfrequency.
Groupie quaternions

10.1.3 Do the quaternions {1, i, j, k} by themselves make a group? How about Pauli {6/, 64, 6B, 6C }?
(a) How about the set {1, 1, j, k, -1, -i, -j, -k} ? Construct a 4x4 multiplication table for {1, i, j, k}.
(b) How about the set {G/,64 ,6B,0C ,-G1,-G4 ,-GB ,-6C } ? Construct a 4x4 multiplication table.
[c] Show that Gm - 6n = Omnl + iemnp Op .

Use the Phase Luke!
10.2.1 Suppose a particle is oscillating at frequency ® according to x(2) = 4 sin (® t) while experiencing an applied force at the
same frequency but ahead in phase angle ¢ according to F(?) = F sin (o t-¢) .

(a) Does positive ¢ represent a force ahead or behind ?

(b) Sketch a F versus x (Work-cycle) diagram for ¢ =0, n/4, n/2, n, and 3n/2 .

(c) Calculate the work F does on x each cycle as a function of ¢ and indicate how it relates to area of F-x plots (b).

(d) At the moment shown in Fig. 10.2.6, what is the phase angle ¢ between x; and x>. Who’s ahead? How does the phase

angle vary with time? How does the energy flow (in the classical model) between the two vary with time?

B versus C
10.3.1The H-matrix for the symmetry B, and C was given in the form of the tunneling amplitudes (B=-S) plus magnetic Zeeman
(dipole) energy shifts (C') . As the relative magnitudes of these vary the eigenstates, eigenvalues, and symmetry changes, too.
(a) Write the H(H, B, C=0) matrix in a basis that is most appropriate for its (What? B, or C?)-symmetry and use the lowest
order perturbation theory to describe the effect of small C-value. Compare your result to that of the exact avoided crossing
eigenvalues for (B=1, C=0.2). Describe the set or group of matrix operators that commute with H(H, B, C=0) and with H
(H, B=1, C=0.2), that is, give both finite "rotation" matrices and their generators.
Sketch eigenstate phasor and polarization diagramsT for each case.
Sketch ABC Q and S vector diagramst for each case.
(b) Write the H(H, B=0, C) matrix in a basis that is most appropriate for its (What? B, or C?)-symmetry and use the lowest
order perturbation theory to describe the effect of small B-value. Compare your result to that of the exact avoided crossing
eigenvalues for (B=0.2, C=1). Describe the set or group of matrix operators that commute with H(H, B=0, C) and with H
(H, B=0.2, C=1) , that is, give both finite "rotation" matrices and their generators.
Sketch eigenstate phasor and polarization diagramsf for each case.
Sketch ABC Q and S vector diagramsT for each case. TSee Sec. 10.5.

Commute or else!
10.3.2 Use spectral decompositions to derive the form of the general U(2) matrix that commutes...

(a) Wlth O_A =( (1) 01 J (b) Wlth O-B =[ (1) (1) J ,(C) Wlth O'C =( 0 _Ol j ,(d) Wlth M=( : ; J
— 1

(e to h) Derive the form of the most general SU(2) matrices that commute with each of the above.
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Eigenvalues easy as ABCD
10.4.1 The expansion (10.4.5b-c) gives a closed form expression for eigenvalues of a general Hagcp.
(a) Verify all parts of (10.4.5).
(b) Show the eigenvalues so obtained agree with a direct diagonalization of Hagcp.
(c) Show that this is a special case of Hag eigenvalues in (10.3.11).
Ellipses on ellipses
10.4.2 The elliptical eigenstate orbits of Fig. 10.4.1 are seen to correspond to the elliptical equipotential level curves.
(a) Do they really? How so?
(b) Work the eigensolutions for Fig. 10.4.1 and plot their ellipses.
(c) Are the ellipse major axes of orthogonal eigenvectors themselves orthogonal? Why or why not?

Eigenvectors easy as ABCD

10.5.1 The prescription (10.5.20) for finding general U(2) eigenvectors is powerful and important.
(a) Write it out in detail for the AB-Hamiltonian in Fig. 10.5.7. Give eigenstates easily. (Recall (10.5.8a)
(b) Show how a polarization ellipse would evolve and fill a rectangle if x-polarization were fed to this H.
(c) Do similarly with the Hamiltonian and initial spin shown in Fig. 10.5.8.

Very cross prodots

10.5.2 Using the ¢-operator definitions and the Levi-Civita tensor definition

derive the following. (First prove Levi-Civita rule: €, €, =0,,6,,—0,.6,,)

(@) 0,0,=6,+ixe, o, (b)o,0,0,=206,0, -0, (c) (ooA)(ooB)=(AoB)+i(A><B)-G

Spinor round
10.5.3 Use spectral decomposition to derive three rotation operators(A-C) and base transforms (d-g).
6

iP5 0 0 iy, /2
(2) R(Oxy)ze PR =1cos—-—i0, sin—- = € ‘ 0
2 2 0 ezexy/z
6
-ils 0 (7]
(b) R(0y2)=e 2 x=lcos%—i0'xsin%=[ e ]
-i-“£o e] 0
(©) R(Ozx):el2 ’ =1cos ;x—iO'ysin ;x:[ e J
(d) R(eah) 1-R (eah)zl
(©) R(6,) 0, RT(6,)= 0, cos6,, +0,sin0,,
® R(Gab) o, Rf (Gab): o,sinf , +0,cosb ,
() R(6,) 0, -RT(6,)=0, (Lete, =1)
The Lorentz district
10.5.4 Use spectral decomposition to derive three Lorentz operators (A-C) and base transforms (d-f).
Otz
Lo 0 0 6,12
(a) L(et )282 * —1lcosh-£ +0_sinh-L£=| ¢° 0
z 2 z 2 0 o 02

0

2o 6 0
(b) L(G ):e2 * zlcosh%+0'xsinh%:£ - ]

ix
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0,
A 0 0
c
(c) L(G )=e2 ? =1sinh2 +06_cosh-2L=| —— ——
4 2 Y 2

Fig. 1
10.5.5. Suppose an NMR spin system described by Hamiltonian H=gSeB=_8/>G¢B is initially in a state

G 1

(o)) =2 ay=| B2 5.1)
2 2 1/2

(a) Write out H and its Schrodinger equation using 2-dimensional matrix notation.

(b) Write out H and its Bloch equation using 2-dimensional matrix notation.

(c) Define a set of H that make state (5.1) stationary. What other state(s) are also stationary.

(d) Find constant Hamiltonian H which will drive state (5.1) thru spin-up |T> in a given time T.

(N =1 bue (2 ())f %1 for:e<e (5.2)

A number of H satisfy (5.2) but we prefer one which requires the least energy. Explain by describing a set of H. (Hint: Does
least energy this also mean least angle of spin vector rotation?)

(e) Give the eigenkets and energy eigenvalues of the Hamiltonian resulting from (d) in terms of T and % and sketch an
energy level diagram.
(f) Give a formula for the angular frequency of radiation in terms of T and 7 that might be observed as the state (5.1) and
Hamiltonian from (d) are allowed to time-evolve.
(g) Indicate where on Fig. I would be the initial spin vector, the driving magnetic B-field, and path followed by spin vector.
(h) Let this be the analogous optical polarization problem. Show how the polarization E evolves.

(j) What is the maximum energy or frequency of radiation that can result from (5.1-2) above.
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Review Topics & Formulas for Unit 3

Fourier Series Coefficients Fourier Integral Transform Fourier Cy, Transformation

(ko ¥)=1 ar(h, ) (s¥) (k1= T arChl) o) (o 9)="2 (ke ) )

— ik, x —ikx

* e * —ik, x .
e e i i B A e T
x-Wavefunction ¥ (x)= x-Wavefunction ¥ (x)= x-Wavefunction ¥ (x)=
—oo o =N-1
(o) = "5 (b, )k ) (x[¥)= 1 aie x| ) (k| ¥) (e P)=" “(x, [k ) (k)
Ortho — Completeness Ortho — Completeness Ortho — Completeness
—oo o0 =N-1
"5 ) =5 x) T (el =0lex) TS ) )=,
L2 oo =N-1
L R N Y TR 2 R TS B CH P CH T R
Discrete momentum m Continuous momentum k Discrete momentum m
Continuous position x Continuous position x Discrete position x,
U must be Unitary
Time Evolution Operator U Time Evolution Operator U i a
- U'()=U"w =0
W (1)) = U(£,0)| ¥(0)) U(,0)=e b
I . ) —iH/n\' _ M n _ iH/h
Hamiltonian Generator H Schrodinger t— Equation (e ) =e =e
ih%U(i, 0)=H U(z,0) ih %|\y([)> —H |‘P(t)> so H is Hermitiamn H' = H

Schrodinger time-independent energy eigen equation.
H |0y,) = 1oy, | 0n) =€y, | 0) (9.3.1a)
H-eigenvalues use r-expansion (9.2.6) of H and Cg symmetry r’-eigenvalues from (8.2.9).
{emlP|ky )= eiPkma = e-ipm2@/N where: kn = m(2n/Na)
(e Ay = H oWy + S elrlhmy + T {elv?lem) + U anle3|kn) + T* denle k) + S* (k) k)

Bloch dispersion relation. And Bohr limit (k<<m/a) approxiamtion. Band group velocity Vgroup.
hoy, =E, = H - 2|S| cos(ky a) = H - 2|S| + |S|( kma )? +.. (9.3.8)
S S
g =dw—’"=2uasin(k a) EZUk a® | for: k <<77:/a] (9.3.10)
roup dkm h m h m m

Effective mass M.y inversely proportional to S. Meg(0)=12/( 2|S| a?) (9.3.11a)
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Fourier transform of a Gaussian e-("Am)? momentum distribution is a Gaussian e"®/20)? in coordinate .
(m|¥)= e (mAm)? implies:

(0 [¥)= e (0/A)? (9.3.14)

The relation between momentum uncertainty Am and coordinate uncertainty A¢ is a Heisenberg relation.

Bohr wave quantum speed limits

VBohr (m PN n) _

group

Am/2 =1/A¢ ,or: Am A =2 (9.3.15)

2 2)
_ m- —n" |hv
wm wn ( 1

ky—k,  (m=n)h/L

=(m+n)£=(m+n)V1
g

(9.3.16)

Predicting fractional revivals: Farey Sum @ r of the rational fractions n;/d; and ny/d;

12—intersection dz + dl

}’12+}'ll

n m

< @ 1
F

d, d,

(9.3.18)

U(2)-Oscillation and R(3)-Rotation Analogies for 2-Dimension or Spin-1/2 Systems

General U(2) Hamiltonian Matrix
B-iC

\Pl
D | v

20,+Q, Q,-iQ,

A
B+iC

QX+iQY

Asymmetric Diagonal C2A
A 0

H=( i J=Qol +Q 0,

_A+D| 1 0 +A—D 1
2 0 1 2 0

M

Oz
2

2
1
=S4 :( (1) —01 ]5
A — Spin ExpectaionValue
S;=8,= <‘P|Sz |‘P>
=N (p12 +x12 —p§ —x%)/2
:(N/Z) cos 3

= (wre, v, )2

-J,=S,=

2Q,-Q,

0 _ 4l 1o
-1 01

Hermitian Hamilton-Jordan-Pauli-Jones ABC or XYZ operator basis for U(2) Hamiltonians
A -Typeor Z - Spin Op

General U(2) State Vector |‘P> =

x, +ip,

1 Xy +ip,
%2 cos B2

%% sinf/2

N | —
Il

Y
2

Bilateral( Balanced) Cf

Circular,Cyclotron, Curly CZC
H=| 4 B
B 4

4 —iC
=Q 1 +Q,0 H= =Q,1 +Q.0
J 0 BYB (z’C Aj 0 c%
+pl 01 4 VO | O
10 0 1 i 0

B-Typeor X - Spin Op C -TypeorY - Spin Op
iqy o

iq
Xy =§ =X 2y
2 X 2 2

<00 )3
B — Spin ExpectaionValue
Sxy=5p= <‘P|SX|\P>
=N (%3, +pyp,)
:(N/2) cos sinf3
=Re ¥|¥,

Oy
X

2

0 —i |!
=8 = —
C(z‘ojz

C — Spin ExpectationValue
Sy =S¢ = <T|SY|\P>

=N (xp,~x%,p,)

:(N/2) sing sinf3

=Im ¥[¥,

-J,=S,=

10-
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U(2) Hamiltonian Operator H U(2) H in ABC notation
H=Q,1+QeS , QeS= H=Q,1+QeS , QeS=
[ 4 B-ic
H—( seic D j =Q,8,+Q,8,+Q.S, =(4-D)S ;+2BS ,+2CS,.
(e} —_
-0, 240,21, %2 _A D + Bo,+Coy
Qr=Q=Hj;-Hyy =A-D Qy=Qp=2ReHy; =2B Qy=Qc=2ImHy; =2C
=Q cos® (H-Crank A-Component) =Qcos@ sin® (Q B-Component) =LQsin@ sin® (Q C-Component)
. \Pl * \PI\PT \1}1\1};
Density Operator (Pure 2-state only) p=|¥)(¥|= ®( S ): * ’
¥ L2 SH 2% 2
EO0 I 00 7
PPl i ! f P l=p= N 1+S,0,tS,6,+S,6, =N/21+8S°c
Py Py Y, YOY, 2
. ., 0 o S .
Bloch equations. in=-p=inp =Hp-pH=[H,p] or E:S:QXS
Hamilton-Pauli Identities
(A‘G)(B‘G):A.B+i(AXB).G, GU.GV: 6u\)1+leuv7\107\‘

SU(2) rotation matrix by rotation axis vector ©=Q t. and Two-state evolution operator

R[®]=cos% 1 - oy (?)Xsinz - ioy (:)Ysinz - io, @Zsin%
® .~ .0 .. O/ A
<1‘R[®}|l> <1‘R[®]’2> ) COSE_l@ZSIHE —zsm;(@X—z@},) (10525b)
<2|R[®]‘1> <2‘R[®]‘2> —isin%(é)XnLiC:)Y) cos%ﬂ'@zsin%

The rotation axis is given by its polar coordinates (¢ , 9) and angle of turn © = /@3 +©% +©% =Q ¢.
0 = (O, Oy, Oz) = 0O (cos sint, sin@ sin, cos¥)= (OB, Oc, Op)

J Jy

Unit rotation axis vector é=@/‘®‘=( 6,, 6,, 6, )=( cos@sin®g  sin@sin®  cosd )

cosg—icosﬁsing —ising(coswsinﬂ—isin(psim?)
R[@} _ 2 2 2
. . L 0 | . O
—lsm—(cosq)sm19+zsmq)smz‘}) cos—+icos¥sin—
2 2 2 (10.5.25¢)
cos9 - icosﬁ‘sin9 —ie"® sin® sing . '
=R[(p19®] _ 2 2| il _ i0eS

0 . . 0 (C) e
—ie'? sin ¥ sin— cos—+icos¥sin—
2 2 2

Hamiltonian generator determines crank rate €.
Q7= Q=Hj;-Hyy =A-D Qy=Qp=2ReHy; =2B Qy=Qc=2ImH,; =2C
=Q cosY (H-Crank A-Component) =QcosQ sind (Q B-Component) =LQsin@ sin® (Q C-Component)
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U(2)-R(3) Two-State and Spin-Vector Summary

Hamiltonian H Hamiltonian Q-vector Eigenvectors |€),|€') and Spin expectation S-vector
Operator & matrix mirror planes (if any) for each eigenvector
in |1),]12)-basisin ABC-space in |1),12)-space in ABC-space
o) 5, ) [ tels.le
HZQOI'I-Q‘S _ ' S SB — <€|SB|8>
Q= X + P,
:7(A+D)1+(A—D)s ‘ Sc (elscle)
2 A QA A-D x2 + lp2
=[ 4 Boic J e *¢ X +ip| = 2
B+iC D ., XXy + DDy
.X'2 + lp2
YPy ~ X P
A. A tric — Di / e )=
symmeitric agona | 1> <£1 ‘SA ‘81 U
(1) (e[85]e) = o
(&[Scle) 0
<£2‘SA‘82> -1/2
(e2]S5le2) |=| 0
(e2]Sce2) 0
<81ISI811 A
nyﬁC
(e7lSley)
£)= (elfsaler) | (g
B;nglateral — Balanced G- . /\/E (8{ S, 81,> = 1/2
H —_ ’ ’
Q, 0 1/42 (eS¢ |e7) 0
A-1+2BS, o | ,
| 4 B QB ) 2(? £2>= <8§ S 85> 0
= B A4 c _1/\/5 ] <gé SB gé) =l -1/2
12 (e51Sc|e3) °

e',ISle'))
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AB. Asymmetric — Bilateral

Q— <81, SA 81 1 COSﬁ

e 470, i [ cos ] (eflSser) |=3| sinp

2 QA A—D sin @ <8{/ SC 8{ 0

+ (A_D)SA+2BSB QB = 2B 8;>= 3 ;

0 <82 S, €2> —cos B

_| 4 B Q¢ —sinf s le7) |= 1 )
B D 03O <82| B|82> =5| —sinp

(e7]sc|e7) 0

C. Circular — Complex ~
e Q= /2
B ) 0 iI\N2
A4-1+2CS.

[ 4 -ic
ic 4

1 O -1 \_j — )
> 2(;’ 0 ] $=907 %= (RISIR)

Polar Angle Descriptions of U(2) Hamiltonian H and its state space |g),|€")...
Crank Axis angles (¢,9,Q) (Q=,Q5 +Q} +Q2) Spin Vector Euler angles (0.,B,Y)

) o ‘g >: s, <e|SA|£>
H=Q 1+QeS = . s B2 | S=| Sy |=| (¢]Ssle)
1] 2Q,+Q, Qy-iy QA A-D ¢*?sinf/2 Sc (e[Scle)
5 . 5 |7 2B |7 ,
2l Q,+iQ, 2Q,-Q, Q, 2 ‘6'): cos B
—e 2 gn g/ | it S=| cosasinf

Q : e ? o

z cosv ¢ cos B2 sina sin 8

Q, |=Q| cosgsind

Q, singsin}
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Catalog of Two - State Hamiltonians

= = H = .= =
Hye) = Hc; cs'® Hc§ Hc1
=H =
H=H'= (A 0] 4 0 4 B A A4 -iC A —iC
0 4 0 D B D A iC A4 +iC D
R()=
= R(6)= cos§ —issin¢ R(x)= R(p)= 1) =
Co;r;zt'tte Uy Uy e 0 —icsing cosy —isiny cosp —sing Ji 10
' Uy Uy 0 o ssing cos —isiny cosy sing  cos 01
—issin
+icsing
10
e11_[ ]
0 0
01 Gp= Gpg = Gg = Gc= G=
e12_[ 00 ] dR(6) dR()| _ dR(0)| _ dR(®) dR(%)
Genbemted 0 . dac ) dy , do . ar )
v 00
921—[1 0] -i 0 —ic —is 0 —i 0 -1 1o
0 —is ic -i 0 1 0 01
00
ezz—[ 01 ]
Op= Opg = Og = Oc= Gy =
Spin (all) Gy = iGpg = iGg = iGg =
Operator : [10] [cs] [01] (O—i] (10]
0 -1 s —c 10 i 0 01
Symmetry : UQ) ¢l crY(2) c® < r*(2) c? < R(2) cScR(2) G
. CEEE by )16 o
" (Any ket | . 8 5 | | 1 1 (|£>Depends
isan cos —sin
Eigenkets ) [ 0 ]’ [ 1 ] 2 2 1) 1 —i | i on
eigenvector) ) B J_ J— \/_ J— A,B,C,and D)
sin— COS; 2 2 2 2

Two State RA(2):> CAy

Unitary 2 RAB (2)D CAB,y

Group | RB(2)> CB) C
UQ) 2-D Rotation c .

Algebra Sub-Groups R*(2)o Cte

Plane 0° Plane B/2 Plane 45° Clrcular Elliptical

COS L
U st T | 4o
z_:ﬁlsg)l sinf/2 l @ |

standmg waves mpvmg waves gallopmg waves
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P1 | %)

U(2) World : Complex 2D Spinors e
2-State ket [¥)= ! ?
b 11 [WNe1®2¢0sB/2
= ’\Tf—
\{'2 VNel®2ginB/2 2
Y 1~ X1Hipy
R(3) World : Real 3D Vectors 4 B-iC
|V) State | e H-Operator \s+ic b
Spin Vector Sc | = Nsinf sino. % Angular Velocity
S S4 NcosP Q: Qp 2B Qsindcos
(for 0=15° B=45°) —Tx 15%) |x 159°)> Qc|=|2¢ |=|Qsindsing
y 4&* *i _ Qy A-DI \Qcosd
IL) (v P#45 ’jﬁ Y
- A S{0 <)
|X(30°)) H crank-Q vector
f =75° 9=65°
X(45%))=](+)) C( e :

%B (@

|X(60°)) =
= —A [X(120°))
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Easy eigensolution and evolution for polarizer-analyzers based on spin-crank allignment
The behavior of spin-1/2 or optical polarization states inside analyzers is easy to understand and

calculate using the polar angles (o,3) of the state spin vector S and the polar angles (@,0) of the analyzer crank
0. The first eigenstate (own-state) of the analyzer which flies through the upper path unscathed (except for
phase shift) is simply one whose S angles (o,) equal the angles (¢,9) of crank © , that is, a state whose spin S
lies along analyzer crank ©, or o=@ and =9.The second eigenstate which flies through the lower path is a state
whose spin S lies opposite to the analyzer crank ©, so o=@ and B=9—n. Below 9=90° and ¢=0° so the
eigenstates have spin up-B (3=90° and o.=0°) or else spin down-B (B=-90° and a.=0°).

A ) A A S-spin down A

e e

[+45°) polarization

takes high road

R 5 W N

h‘
ﬁ= E“:ID O|—45 > : ..::.::_._.- T = i |}=_g|:,-:-
; o=pn |—45°) polatization ) 52
o L] o akes low road [t L) i k]

However, other polarization states such as |x) (spin-S along the 4-axis) are changed by going through the
analyzer. Now the ©=90° shift of one path over the other has the effect of rotating the spin vector by ®=90°. So
the first analyzer takes |x) into |L) (left circular or spin down-C) and another identical analyzer takes |L) into |y)
(vertical or spin down-A) . Each of these analyzers acts like a quarter-wave plate.

A\ Second ©=90° A First ©=90° .
rotation around, rotation aroupn

190)=[y)
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(a) (X.Xp) Space | X, (b) (A,B,C) Space A-axis
Azimuth
angle
7 A 20=0.,=60°

/

| ’M
\ -
N i
| —
| phase lag
| 20=0.,=6
| :
| JT
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Unit 3 Chapter 10 Appendices A-B: Coordinate Analysis of U(2) States

Appendix 10.A. U(2) Angles and Spin Rotation Operators 2
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Appendix 10.A. U(2) Angles and Spin Rotation Operators

Every U(2) state |¥(ofy)) can be obtained from an original base state |1) by doing three rotations
shown in Fig. 10.A.1, the first by v around the Z (or A) axes, the second by 3 around Y (or C) and the third

by o around Z again. This “favors” the Z-axis. Equivalent axial choices are discussed in Appendix 10.B.
“P> = R(aﬁ}/)|1> = R((x around Z) R(ﬁ around Y) R(]/ around Z) |1>

—i cos— —sin— —ir 1
e o 2 2 0
o . B B e

0 8’2 s1n5 cosz 0 elz 0

A matrix representation of this gives exactly the original state definition (10.5.8a) with unit norm (N=1).

R(eBy)|1)= R(c 00) R(05 0) R(00y)  |1) = |¥)

o+y o=y &

izt —i—L —i—

e 2 cosﬁ —e 2 sing 1 e 2005? ,,% (10.A.1a)
- = e

o~y o+y o

i i— =

e 2 sing e 2 cosﬁ 0 ezsinﬁ

The resulting Euler (ofy)-angle matrix is simpler in form and construction than the ®-axis matrix
(10.5.25c¢) using [@,1,0] angles. Do not confuse the two kinds of angles! We use parentheses () around

Euler angles as in R(ay) while square braces [] are used when a rotation is labeled R[@,3,Q2/=0] by axis-
angles. It is important to relate the two. A Hamilton expansion of R(ofy) yields its @-axis.

_ oty B _jor
e 2 cosz —e 2 sinE aty  B( 1 o
R(aﬂy)= oy y =cos—2 COSE[ 0 1 j
el 2 sing el 2 cosﬁ

(10.A.1b)

. sin—y_asinﬁ—i 0 - cosy_asinﬁ—i b0 sina—ﬂ/cosﬁ
1 0 2 2 i 0 2 2 0 -1 2 2

We equate R(0y)'s expansion term-by-term to the @-axis-angle R[¢,¥,0] expansion (10.5.25a-c).

R[6]-

® .~ .0 . .
cosz—z(azsm? —zs1n5(® —19),)

_ 1 0
LY 0 6_085(01j
—isin—(@ +i®},) cos—+i0, sin—
2 2 2

—i e} sin9 —i 0 —i (:)Ysin9 —i 10 (:)7sin9
2 i 0 2 0 -1 - 2

The Re-Im 4-D phasor coordinates (x;=Re'Y;, pj=Im'¥';) show up in the Euler vs. Axis angle relations.
x;=  cos[(+o)/2] cosP/2 =  cos ©/2
-pr>=sin[(y-0)/2] sin/2 =6
X2 =

(10.5.25a-c)repeated

sin ©/2 =cos @ sin ¥ sin ©/2
cos[(y—0)/2] sinf/2 = Oy sin®/2 =sin @ sin ¥ sin O/2

(10.A.1¢)
-p;= sin[(y+o)/2] cosp/2 = Gz sin @2 =cos ¥

sin ©/2
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Solving these relations yields the following Euler angles in terms of axis angles
o=@-7/2+T, B = 2sin"!(sinQ/2 sin®), y=1/2-¢+T, (10.A.14)
where; T= tan-!(tan (€2/2) cos ¥ ) while the axis-angles in terms of Euler angles are
@=(0t—y+m)/2 , O = tan-![tan B/2/ sin(o+Y)/2] , Q = 2 cos-1[cos /2 cos(0-+Y)/2]. (10.A.1e)
It is important to understand the practical difference between Euler angles (c37) and axis angles

[0,9,0]. Euler angles (c:37) are coordinates of rotated states of position while axis-angles [@,9,0] are

parameters of rotation operators or angular velocity. Euler angles (o3y) serve as convenient polar

coordinates of spin vectors S (Recall Fig. 10.5.2) and for orbiting or spinning bodies as shown below,
while axis angles [@,0,0] are the polar coordinates and rotation angle of a crank-axis € for an operation.

Euler angles (0.37) label the state and density operator of a U(2) system, while axis angles [¢,9,0] label

its Hamiltonian and time-evolution operator. Euler (o37) tell where S is; axis [@,9,€2] where it's going.
Fig. 10.A.1 shows explicitly how to construct a general spin state or density operator labeled by
Euler (0.3y)-angles by illustrating the sequence of rotations: (1) Z-rotation R(00y) by angle v, followed by
(2) Y-rotation R(0B0) by angle 3, followed by (3) Z-rotation R(c:00) by angle o.. The result is a spin
vector S pointing with polar angle [3 or beta (often labeled by its ryhmesake 'theta') and an azimuthal
angle o (often labeled with a 'phi'), in exact agreement with (10.5.8¢c) and Example 7 in Fig. 10.5.4.
One new 'twist' added here is not found in other treatments of U(2). We interpret the third Euler

angle y and overall phase or gauge factor ¢*/?

in (10.A.1a) as a twist of a rigid body attached to the spin
S-vector. Indeed, the first Z-rotation R(00y) by angle y twists the spin vector as shown in the upper right
hand y-part of Fig. 10.A.1. This means that the overall phase, which got canceled out of the 3D-density -
spin-operator formulas involving W*W quantities, is still present if we consider a 3D spin-body instead of
just a spin vector. Twisting a spin vector by 7 does nothing if it's just a line, but a solid vector body
actually "feels" a twist by 7. Nuclear, molecular and atomic spin rotations all have a twist angle.

A note of caution is in order with respect to exponential operator notation. Axis angle operations
were given in (10.5.15) using a single exponential-of-a-sum expression.

R[O] = 1098 _ eft(e +0,5,+6,5 ) e—i@(@ +6,5,+6,5,) (10.A.22)
Euler angle operation (10.A.1a) is a product of three separate single exponentials.
R(ofy)=e *S2¢ Sy 71757 (10.A.2b)

Unless operators A and B commute, you cannot combine eiA e/B into e/(A*B) nor can you factor ei/(A+B),

In rare cases (and this is one of them) where two operators commute with their commutator you can write
eA B ¢-[AB]= o(A+B) = oB oA o[AB] if: [A, [A, B]]=0=[A, [A, B]] (10.A.3)

This is the first part of what is known as the Baker-Campbell-Hausdorf theorem.
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Third rotation R(a00) Second rotation R(030) First rotation R(OOy)
i

a

Sets the (3 dial

=
Py

’

Sets the Q dial

- |

Sequence R(a:00)R(0 3 0) R(007) sets Euler Angle position state—|c[7)
using Z-rotation R(00) following Y-rotation R(0/3 0) following Z-rotation R(00)= R(~00)

S, * Original (1) Rotate by ¥

around Z

Spin State [1)
S
=|T) ng

(2) Rotate by B
T~ around Y S

(3) Rotate by o
around Z

General Spin Stateé
'¥)=R(ap)|T)-

Fig. 10.A4.1 The operational definition of Euler (03y)-angle coordinates applied to a spin-state.

Sy=Scosp
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(a) Equivalence transformations of rotations

Another way to factor the axis-angle expression (10.A.2a) is to find a transformation T that builds
the rotation R[,9,0] by © about an axis © at polar angle (¢, ®) out of a Z-axis twist rotation e-©5z,
R[9,9,0] =T 05z Tt (10.A.4)
The desired transformation T is just the Euler operation R(¢10) such as was diagrammed in Fig. 10.A.1,
only we leave off the twist 7 since it would just cancel out. Effectively, we take the ®-axis from polar-
angle location [(,9] to the Z-axis with an inverse Euler-op TT = RT(¢00), then do the Z-twist e7©S7, and
finally, return the axis to its original (¢,¥)-position with the Euler rotation (sans twist) T = R(¢@00).
R[¢,9,0] = R(¢90) ¢Sz Ri(910) = R(¢¥0) R(000) RT(¢00) (10.A.5a)
Expanding the Euler rotations using (10.A.2b) gives (Note: RT(090) = R(0—90) and RTST = (SR)T)
R[¢,9,0] = R(¢00) R(090) R(000) R(0—%0) R(-¢00) (10.A.5b)
R[,9,0] = e19S7  oi0Sy (-i0Sy HtTi0Sy ,tipSy (10.A.5¢)
So axis-defined R[¢,9,0] factors into five monomial exponentials instead of three factors found in the
much simpler Euler rotation R(o3y). (Check that this gives the desired 2-by-2 matrix (10.5.25¢).) The
expression of rotations in terms of just a 1 and two Z rotations keeps the matrix arithmetic to a minimum
since generally the Z-rotations are diagonal and the Y-rotations, while not diagonal, are generally real.
This is very important when we deal with big 201-by-201 spin-100 matrices! But, it helps even with
medium-sized 3-by-3, 4-by-4, and 5-by-5 spin-1, spin-3/2, and spin-2 matrices seen later on.

It is important to understand the transformation (10.A.4) as a simple R(¢¥0)-rotation of an
operator's crank-vector ®. The magic-vector of an operator like a rotation R or a Hamiltonian H or a time
evolution operator U gets transformed just like the spin vector S in Fig. 10.A.1, which, after all, is the
magic vector of the spin-state density operator p. Such a transformation R' = T R TT is called a similarity
or equivalence transformation because the resulting rotation R' must be similar or equivalent to the
original R. In particular, it must have the same trace, determinant, eigenvalues, etc., which means it must
rotate by the same angle © as the original. So, the crank vector has the same © =|0| length as the original,
but, it will be in a different direction ©' = R+© . Let's see how to quickly calculate a 3-by-3 direction-
cosine R-matrix.

(b) Euler equivalence transformations of 3-vectors
The 3-by-3 transformation matrix R(c[37) describing an Euler rotation of real 3-vectors is a little
more complicated than the 2-by-2 spinor matrix (10.A.1), but simpler than the axis-angle matrix R/Q00O/

you will derive later. The triple product rotation R(c37) made 3-by-3 rotation matrices is

(R(opy))=(R(c00)) (R(0po))  (r(00r))

cosor  -sinoe 0 cosff 0 sinf cosy -siny 0 (10.A.6a)
=| sinoc cosax 0 0 I 0 siny cosy O
0 0 1 -sinff 0 cosf 0 0 1

The resulting transformation matrix is
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lex)=R(oBr)les)  leg)=R(oBy)ley)  |ez)=R(abr)e;)

<e‘ cosccosfcosy —sinasiny  -cosccos Bsiny —sinocosy  cosasin 3 (10.A.6b)

(R(er))= {ey

<eZ’ —cosysin 3 siny sin 3 cosf3

sinocos Bcosy +cosasiny  -sinocos Bsiny +cosoccosy  sinocsin 3

The third column contains the Cartesian components of the R(o3y)-rotated Z-axis which is labeled

é =‘ez> = (coso sinf, sino sinf3, cosf)  or: ey =e cosasinf+e, sinasin+e, cosf3

It is the same as the polar coordinate components ( cosc: sin3, sino sinf3, cosP) seen in Fig. 10.A.1 or

(10.5.8b). The matrix gives the \, ¥, Z-direction cosines e eeg=("|X), e oeg=(1|7),etc.50 any
vector be quickly transformed passively (Recall Fig. 2.2.2) or actively (Recall Fig. 2.2.3).
(c) Euler angle goniometer: Double valued position

Research laboratories which need to orient crystals or X-ray targets or perform angular scattering
experiments of any kind must be equipped with some sort of goniometer such as is sketched in Fig. 10.A.
1 or Fig. 10.A.2 and photographed there and in Fig. 10.A.3. Theorists, too, would do well to "equip" their
minds with such a device since it is a powerful "thought tool" for understanding the R(3) and SU(2) group
properties of Euler angles.

Two metal frames labeled x’ and x”, respectively, are used to connect the laboratory or LAB frame
{,Y,Z} to the body or BOD frame { X,Y,Z } through a series of three bearings labeled and measured by
dials that keep track of the Euler angles (o37). The goniometer shows a number of things immediately.

First, it demonstrates clearly that Euler angles are primarily position coordinates. While the
operator definition given by Fig. 10.A.1 had to be performed in a definite (Z), (Yp), and (Z,) order, the
dials shown in Fig. 10.A.2 are totally independent of each other. You may set them in any order and the
same position state will be obtained and exactly the one obtained by operators in Fig. 10.A.1.

Second, the device shows how Euler angles are natural choices for any laboratory or theoretical
problem involving 3D rotation. Indeed, (037) are the same as yaw (o), pitch (B), and roll () used by a
pilot of space ship, airplane, or submarine to track the bow or Z -axis of the craft body relative to Earth or
stars.

Third, the convention used in Fig. 10.A.1-2 makes the first two Euler angles (o and 3) into
azimuth and polar angles of the body zenith Z . This is the appropriate for atomic and molecular physics
where the body zenith Z is a symmetry axis, radius vector, or other significant body point.

Fourth, it is seen from Fig. 10.A.2 the second two Euler angles (3 and ), more correctly, their

minuses (-3 and -y) are also azimuth and polar angles, but for the LAB zenith Z relative to the body
frame. Note that the last row of matrix (10.A.6b) has exactly the polar coordinate form using -3 and -y as
azimuth and polar angle, respectively. This is sketched in the upper left hand corner of Fig. 10.A.4.
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Fig. 10.4.2 Euler angle device relates body frame to lab frame through a succession of frames and dials.

, Euler Angle Dial An
Euler Angle Dial . . B astronomer’s

Y (Polar coordinate) diagram
(Twist coordinate) ;

[eA

goniometer

Euler Angle Dial
o
Azimuthal coordinate)

For 3=0°,ball frame
holds its position as
the oL and vy frames
swivel by angle ¢ to
any state of form
|0=0,3=0°y=-0°)
including origin state
|0e=0°,3=0°,7=0°).

(d) Origin
position state
|0=0°,p=0°y=0°)
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Other slightly different conventions exist for Euler angles. Indeed, the first were based on
astronomical orientation of planetary orbits and celestial stellar tracks. In this case the zenith of an orbit
plane is not a measurable or observable point. The azimuth and polar angle of the orbit zenith is useless.
Instead the astronomer records the azimuth of the points where the body rises or sets; the so-called
ascending or descending nodes. These are located exactly £90°, respectively, from the azimuth of the
orbital zenith so old Euler definitions measure azimuth o from the +Y-axis instead of the X-axis. The
astronomer will also record the orbital inclination which is the same as 3 except, possibly, for a +-sign.

One should be aware of the fact that Euler angles, and for that matter, any 3D angular coordinates,
are intrinsically and fundamentally double valued. This is no surprise to us; Fig. 10.5.6 shows that 3D
spin vectors went around twice (4m) every time the U(2) spinor rotation went around once (27). However,
a mechanical demonstration of this is shown in Fig. 10.A.5b-c. It is easy to see that two different settings,
one with positive [ (o, 3,7) and another with negative 3 (-0, —[3, t—y) leave the body in the same lab-
relative position. Calculus texts restrict polar angle 6 to being positive to avoid dealing with this.

The case of p=0 (Fig. 10.A.2d) might seem to avoid double valued trouble, but unfortunately,
things just get worse there. Then the two remaining o and y coordinates become infinite-valued since the
state (0., 0,7) is the same position as (0—, 0, y+¢) for all ¢. This worst of all singularities occurs right at
the origin of R(3) and U(2) group parameter space namely (0:=0, 3=0,7=0) or, more likely to be found,
(0=0, 3=0,7=—0). There is another such singularity at B=m, too. The singular 0—floppiness is a killer,
literally; the singularity at (000) corresponds to gyroscopic gimbal-lock so dreaded by pilots who fly
acrobatic maneuvers that depended upon gyroscopic instruments.

However, the infinite valued rotational origin is a necessary to allow an arbitrary axis-angle
rotation R[,13,0] operator to produce the Euler-(o.3y)-angle position states

R(aBy) |000) = | o3y) = R[@,0,0] |000)= R[,9,0] |¢—n/2,0, /2—@) (10.A.7)
according to Euler-axis angle relations (10.A.1). The device which demonstrates this is shown attached to
the Euler angle goniometer in Fig. 10.A.3. However, gimbal-lock prevents motion from the original
position until the goniometer x'-frame is tucked under the axis-angle crank support at azimuth @, that is,
until the origin is reset from (0:=0, 3=0,7=0) to (¢—mn/2,0,n/2—@). Recall, that an azimuth of o puts the x'-
frame at 0-90°. Then, the continuous rotation by axis angle ®=¢2-t may begin as shown below in in Fig.
10.A.5.
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Axis-Angle Dial

©

(Angle of Crank Rotation)

Axis-Angle Scale

(0]

(—Axis Polar Angle)

Axis-Angle Scale

¢

(w-Axis Azimuth)

Fig. 10.4.3 Mechanical crank axis angles [©,3,0] operating on sphere having Euler angles (o,3,y)
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BOD frame view
Polar angles of
LAB zenith z=x3 are

(azimuth angle=—y,

polar angle=—3 )

x’-Frame
x”-Frame

x-Frame

10-4 10

LAB frame view
Polar angles of
BOD zenith z=x3 are

(azimuth angle=q,
polar angle=f )

, :
X' ,=-X,SIn oc+x2c:0s o

Fig. 10.A.4 Mechanical device demonstrating Euler angles (c,3,y) as coordinates of a body BOD-frame

relative to a “star-fixed” LAB-frame.

LAB-frame view sees BOD-Z axis with polar angles of azimuth o and polar angle 3.

BOD-frame view sees LAB-Z axis with polar angles of azimuth -~ and polar angle -[3.



©2013 W. G. Harter Chapter10 Appendix-A -Coordinate Angles for U(2) States 10A- 11

- i - Position State:
joBy) = R(6 8 @]|1) = 3 - B IU'SY)’RWG'D]“)=
[-10° 0° 10° ) =|1) e ‘ R oy
(Initial Position State) | 15.7° 32.20° 35.7°) § | 50° 60° 70°)

(g) o = 360° (h) = 420° (i) ® = 488.68°
Operator: R[¢ 8 ©] = Operator: R(¢ 6 @] = Operator: R[$ 8 @] =
R[80° 33.69° 360°] # By R[80° 33.69° 420°] R[80° 33.69° 488.68°]

Position State: Position State: i, / :

lofy) = R(9 6 w]l1) = : lofy) =R[¢Ba)il)= | loBy) = R[o 0 o)1) =
| 170° 0° 190°) ; X "~

(2nd Initial State) Lk : | 195.7° -32.2° 215.7%) | 230° -60° 250°)

Fig. 10.4.5 Rotational 47 sequence I*' Row: (a) First origin state ®=0=0, (b-f) First position states.

(d) Axis angle rotation: Double valued operation
In Fig. 10.A.5 we attempt to follow an entire 720° or 4x rotation that connects the two positions
shown in Fig. 10.A.2(b-c). First use relations (10.A.1) to derive the axis angles [(p=80°,9=34°,0=129°]
for the “first” initial Euler position state (0=50°, 3=60°,7=70°) in Fig. 10.A.5(c) and Fig. 10.A.3(a).
R(0=50°,3=60°,7=70°) |000) = R[9=80°,0=34°,0=129°] |000) (10.A.8a)
It starts from a "first" origin state in Fig. 10.A.5(a). (Note figure notation: =@, 0=0, ®=0)
|000) = |@-m/2,0,t/2—@) = |o=—10°,=0°,v=10°)= R[@, 3, 0=0°] |000) (10.A.8b)
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(d) o = 180° " (e) = 240° =
Operator: R[¢ 6 @] = Operator: R[¢ 6 @] =
R[80° 33.69° 180°] 2
Position State: .
lafy) = R1¢ 0 wli1) = ) = Ri6 0 wli1) =
| 114.8° 57.4° 134.8°) | 144.3° 32.2° 164.3%)
(1) ® = 660°
Operator: R[0 6 @] =
R([80° 33.69° 660°]
Position State:
lafy) = R[¢ 6 w]Il) =
| 260° -67.4° 280°) s : 294.8° -57.4° 314.8 ] 324.3° =32.2° 344.3%)
Fig. 10.A.5 2" Row: (g) 2" origin state ©=0O=2x, (h-1) 2" negative-B position states.
A 2m rotation (a-g) by ©=m = 360° gives the "second" origin state in Fig. 10.A.5(g).
R[9=80°,9=34°,0=360°] |000) = |0=170°, 3=0°,=190°) (10.A.8¢c)
The ball “looks” the same in the "second" initial state of Fig. 10.A.5(i) or Fig. 10.A.3(b) as in the “first.”
R[9=80°,9=34°,0=489°] |000) = |0=230°, =—60°,7=250°) (10.A.8¢c)

However, “looks” by classical eyes are deceiving in quantum rotations. In fact, the o,y-Euler angles and

the goniometer x'-frame for each “second” position in figures 10.A.5(g-1) are nt-flipped from those above

12
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them in figures 10.A.5(a-f). Also, B is negative. Another "full" 2x rotation (either way) is needed to finish

a full-quantum rotation of 0-modulo-4 7 and return apparatus to first initial position in Fig. 10.A.5(c).
There is a double-valued nature of the 3D-space we occupy. It has been noted repeatedly in
Chapter 10 comparisons of the real 3-D R(3) spin-vector world versus the complex 2-D U(2) spinor world
in Fig. 10.5.8. Photon polarization spin-vector S goes twice (4m) around R(3) space while the polarization

E-vector or W-spinor goes just once around U(2) space in Fig. 10.5.5 and Fig. 10.5.6. Also, spinor
reflections only need half the angle of the rotations they accomplish in Fig. 10.3.3. They also provide a

more elegant formula and graphical “slide-rule” for rotation group products as we show now.

(1) Combining rotations: U(2) group products

The product of R[@'] R[®'] of any two rotations is another rotation operator R[®"] which can be
computed using Hamilton's axis-angle expansion. First we multiply the separate expansions.

R[é']R[(:)] =(c0s%, l—isin%, @'-Gj[cos% l—isin% é-o’j
(10.A.9)

=cosgcos9 1-i cosgsin9 (3)+cosgsin9 e G—Singsing( A'-O')((':)-G)
2 2 2 2 2 2 2 2

Then the Jordan-Pauli identity (10.5.13) is used to reduce (©'*c)(O+c) to (O"*O)1+(O'X O)o.

R[©’IR[O] = [cos@z j 1 - {sin(—; (:)”}-0 = R[O"]
) ) ) : ) (10.A.10a)
= cosgcosg—singsingé’-é 1-; cosgsin9 é+cosgsin9 o +sin9sin9é'><(:) Xe]
2 2 2 2 2 2 2 2 2 2
It is straightforward to solve for the new product angle ©” and axis unit vector©” of crank ©" .
(cos (—)2 j = (cos%cos% - sin%sin%é’-(:)j
(10.A.10b)

sine— 0" |= cosgsin9 é+cosgsin9 é'+singsin9(:)'><é
2 2 2 2 2 2 2

This is the U(2) group product formula. Now a simple way to visualize this product is done with mirrors!.

(2) Mirror reflections and Hamilton's turns

In Section 10.3b we noted that mirror reflection operations are more fundamental than rotations

and are done by real Pauli matrices such as 6 and &1, or their combination 6, below. Recall Fig. 10.3.3

1 0 cos¢  sing .
O-A:( 0 J , :[ ] , GO:[ sing  —coso ]=0'Acos¢+ sing

Their action is displayed in Fig. 10.A.6. 6, reflects through a plane inclined at half-angle ¢/2 to the x-axis.
The product 6,04 is a rotation R[¢] by angle ¢, while 64 0, is a rotation R[-0] the opposite way (-0).
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—sing —R[-0]
cos¢

6¢|X> =cosh[x)+sind[y)

T =

Z T =

T 0z oz,
ERCRY
Z TS
A=

- — -
= < -

O ly)=sind|x)—cosoly)

Fig. 10.4.6 Mirror reflections G4 through xz-plane and G, through rotated plane.

Hamilton saw this as a neat way to visualize three-dimensional rotations. Simply install two
mirrors so they intersect on a © crank vector with half-angle ©/2 between the first and the second as
shown in Fig. 10.A.7. It is like a clothing store mirror which lets you rotate an image of yourself by O as
you adjust the angle ©/2 between mirrors. A unit normal vector N1 and N> is constructed from each
mirror plane and a ©/2 arc-vector drawn between the first and second plane normals. This arc is called

Hamilton's turn vector (N1—N»). It is these Hamilton turns that can be "added" like vectors to give U(2)

-
7,
7~
7~
7~ —_—

group products!

A

Rotation vector ®

Rotation angle = ©
—

N
N S .
1st Mirror 1 Hamilton Turn

plane —>| Nl—)NZ
ond Mirror |of = > (®/2 Arc)
plane—>>] /

Fig. 10.4.7 Mirror reflection planes, normals, and Hamilton-turn arc vector.
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Notice that only the relative angle ©/2 or n—0/2 between mirrors is important in defining rotation

R[ O] ; their absolute position is irrelevant. You can swivel the two mirrors anywhere around the ©-axis.
The trick to making products is to swivel the Hamilton turn arc Ny—N; for the first rotation R[©] around

so it meets head-to-tail with the Hamilton turn arc N'{— N'; of the second rotation as R[®'] as shown in
Fig. 10.A.8.

Then the two mirrors associated with N, and N'q lie on top of each other and cancel since two reflections

by the same mirror is no reflection. That leaves only first mirror (N1) and last mirror (N'2), and so the
resultant Hamilton-turn arc N1—N'; is the arc of the desired product R[®"]=R[O'|R[O].

)

Fig. 10.4.8 Adding Hamilton-turn arcs to compute a U(2) product R[®"]=R[O@']R[O].

It is important to note that all Hamilton-turn arcs lie on great or equatorial circles and slide along
the equatorial circles of the rotation axis vector © of the rotation R[O] .

Also, note that each Hamilton arc ©/2, ©'/2, or ©"/2 is half of the actual angle ©, ©', or ©" of
rotation R[O], R[O'], or R[®"], respectively. That means that an arc ©/2 between Ny and N> and its
supplement angles (O+2n)/2=0/2tr between Nj and -Nj represent the same classical rotation by ©. For

classical objects, a rotation by ©x2x is the same as one by ©. However, for a quantum spin-1/2 object, the
arc pointing from Nj to the antipodal normal -N; represents a ©-rotation with an extra m-phase factor e*i7
= -1, that is, -R[©] . Recall rotation by 2n of the U(2) polarization state in Fig. 10.5.6 and Fig. 10.5.7
always comes up the same state, but it's m-out of phase. Hamilton's turns account for this.

(3) Similarity transformation and Hamilton's turns

Finally, the Hamilton-turn "vector addition" on a sphere gives different results if the vectors are
added in the reverse order to give R[O"""[=R[©]R[©'] instead of R[O"[=R[O']R[©]. The arc-diagram for
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this forms a spherical parallelogram as shown in Fig. 10.A.9. It also shows the effect of a similarity

transformation of rotation R[®'"] by rotation R[] to give rotation R[®"""].

R[O]R[O"] R[-0]=R[O"'] (10.A.12a) R[-O]R[O"']TR[O]=R[O"]  (10.A.12b)
As in (10.A.4), a rotation R[] of a rotation R[©"'] is just that. So everything associated with that rotation
R[©'"] gets rotated by the full angle © around axis ©. This includes its ‘crank vector’ © and now its
Hamilton-turn arc which, in Fig. 10.A.9 gets moved by exactly two R[©] Hamilton-turn arcs into path of

the R[®'"""] turn arc below it, that is, two R[©] Hamilton-turn ©)/2 arcs amount to one whole angle

Fig. 10.A.9 shows a similarity transformation of rotation R[©'"'] by rotation R[©'] to gives R[O"].
R[O']R[O"']R[-O'] =R[O"] (10.A.12¢)

There are an infinite number of rotations that transform R[©"] into R[®'""] . Of these, there is one that is

by the smallest angle ©. Can you tell where this one's crank and Hamilton-turn is located in Fig. 10.A.9?

@"r\'\ o

Product R[®"]
= R[O']*R[O]

Product R[O®""]
= R[O]*R[O']

Product
R[®']*R-1[O]

Product
R-1[®]*R[O']

Fig. 10.4.9 Hamilton-turn arc parallelogram with R[O"]=R[O']R[®] and R[O""']|=R[O]R[O']

e

(e) Quaternion and spinor algebra (again)
Suppose we rotate a spin ket |T) or [¥) with an operator like the R above to give a new state

V) =RY)
and a new density operator
p'=¥X¥|=R|¥X¥|Rt=RpRT (10.A.13a)
Use (10.5.5) to write p = N/2 1 + Sec in terms of its S-vector gives
p'=R(N/21+S+)Rf=(N21+S[RoRT) (10.A.13b)

which is just the same S-vector referred to a rotated spinor basis; in other words an ®-rotated spin vector.
It is important to remember that R acts only on the U(2) operators (G, Gy, 67) and pays no attention to
the scalar component N/2 or the components of the S-vector. But, the effect is the same as it would be
applying the 3-by-3 matrix transformation R to the S-vector and leaving the spinor ¢'s alone.

p'=R (21 +S+0)RT=(N/21+ S'*0), where: S’ = RSy (10.A.13c¢)



©2013 W. G. Harter Chapter10 Appendix-A -Coordinate Angles for U(2) States 10A- 17
We will derive the 3-by-3 R-matrix by considering each unit base operator (G, Gy, 67) in turn. This

involves Hamilton's original algebra of quaternions (qx, qy, qz) = (-ic, -iGY, -iG7) which satisfies cyclic
multiplication rules below along with the negative squares: qx qx =qy qy =qz qz =-1,
qXqYy=9z=-49qYqz, qz9x=4qy=-49x4qz, qvqz=49x=-4qzqy. (l10.A.14a)
These are summarized using the dyy and €yyy-tensors (Recall €)y... in Appendix 3.A)
qu qv = -Opv 1 +euviqi or: 6y 6y = Jyuy 1 +1guyy o) (10.A.14b)

Here, we've written the multiplication rules for Pauli's "6),-quaternions" as well as Hamiltion's qy = -ioy,.

W . . . 7 o |1 o, o,
1 1 q)( qY ‘lz 1 1 G)’ GZ
dy [y -1 4q; -qy |, 1 ic, —io, (10.A.14c¢)
aG |9y -9, -1 ay oy, | oy -io, 1 i
97 |49z 9y 9y 1 o,|0, io, -i 1

Also, we need commutation rules for Pauli's operators as well as Jordan's spin-ops: J;, = Sy, = /2.
OOy - OvOp =[Oy, Ov] = 2i €yyi Op or: SySy - SySy =[Sy, Syl =i guva Si (10.A.14d)
The latter are the very important angular momentum commutation relations which we will apply later.
Now the application of G-rules to the derivation of the expression for a general rotation R[@] of an
arbitrary unit 3-vector e, or unit spinor 67, is tricky. But, it's something important that every physicist
should do at least once in their life! Therefore we leave the following result as an exercise.

1
R[(:)]GLR[(:)F =(cos% l—isin% (:)KGKJO'L[COS% l—isin% (:)NO'NJ

(10.A.15a)
:GL':O'Lcos@—eLKMéKO'Msin®+(l—cos®)@L(@NGN)
You should also demonstrate that this is equivalent to the following 3-vector expression.
e '=e cosO—g,,.,, 0 e sin@+(1-cos®)O, (O e
L =% kMO KM ( ) L( N N) (10.A.15b)

= eLcos®+(:)><eLsin®+(1—cos®)@((':)oeL)

The 3-vector transformations are a lot more complicated than the 2-spinor ones. But, they do have one
simple property; they all use cosines of whole angles © of rotation while the 2-space spinor operations all
use half-angles ©/2 or square-root cosines cos ©/2 = \[1/3+1/>cos ©] of the rotation angle.
Why rotations are such a big deal

In Chapters 8 and 9 we introduced the idea of labeling quantum channels or states using rotational
symmetry operators r, r2,..., and then discovered that the Hamiltonian was made of linear combinations of
the r”'s, as were their projectors which solved the eigenvalue problem. Similar relations apply to 2-state
systems. Indeed, all SU(2) operators are related to rotations in some way including the grand time
evolution operator U(z). When you have a hammer; everything's a nail!
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Appendix 10.B Spin control and ellipsometry

So far, rotational analysis has been referred to the Z-axis or, as we have re-labeled it, the 4-axis.
This “favors” base states (spin-up-Z, spin-dn-Z) for electrons, (Plane-x, Plane-y) states for photons, and
(N-UP, N-DN) for NH3 shown in Fig. 10.5.1. It favors an 4-symmetry (asymmetric-diagonal) Haniltonian
in the U(2) catalog of Fig. 10.4.2 which begins with 4-type base states introduced in Section 10.2(a).

In fact, any axis may be a home base. Three choices 4, 7, and C (or Z, ., and ¥) belong to obvious
symmetries. A Hamiltonian near one has archetypical physics. One should be able to quickly relate them.

To begin this, recall the Z-axis or 4-type Euler angle (o3y) definition from (10.A.1).

e
represented | o 2 cosﬁ

%) =R(0By)[1)=R(c 00) R(0B 0) R(00y)|1} inA—basis e 2 (10.B.1)
by e g smﬁﬁ

Now we define X or /-type Euler angles (ABG) and Y or C-type Euler angles (abg). A general state is

defined by any and all of the following three sets of Euler angles; one set for each choice 4, /7, or C.

() =R, (@R, (BR,(1)|T Z) =R (HR,(BR 4 (G)|T X) =Ry (a)R  (H)R, ()| T ¥) (10.B.2)
A main-axis operator Z (for choice-4), X (for ), or Y (for choice-C) sets overall phase of its
particular favored number-1 state |1) of spin-up-Z, spin-up-X, or spin-up-Y, respectively.

() =R, (@R, (B)|T Z)e™? =R (HR,(B)|T X)e > =R (a)R , (b)| T Y) e > (10.B.3)

Each gives a different algebraic and numerical representation for the same general state [V).

represented e_if cos B 5 represented e_l? cos B G represented e_iE cosé <
in A— basis e ? in P e 2 inC — basis e ?
a
— . B i
by e 2 sint- B ,B by e 2 sin> by e? smé
2 2
(10.B.4a) ( ) (10.B.4c)

Relating the three kinds of Euler angles begins by connecting the two spin-vector "polar angles"
(a, B) related to (a,b) related to (A, B)---

We cyclicly permute the polar coordinates combinations (cos , sin_sin , sin_cos_) in (10.5.8c) and solve.

Aor Z — based CorY —based or X —based

S,=8,=cos =S, =sinbcosa =S, =sinBsin 4

1 =8 =cosh z z=> (10.B.5)
S, =8, =sinBsinc =Sy =cosb =Sy =sin Bcos 4

S,=8, =sinficosax =S, =sinbsina =Sy =cosB

Fig. 10.B.1a below shows the three sets of (azimuth, polar) angles in the top-down-Z view. Arcs drawn are

great circles except for two straight lines that meet the spin vector at the 3, b, B triple intersection that are

lesser circles at the base of a cone of constant X-polar angle B or constant Y-polar angle b, respectively.
The diagram shows ways to solve a common "spin-erection" problem, finding operations that

return an arbitrary initial spin vector to one of the three main axes such as spin-up the Z axis, spin-up the
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Y axis, or spin-up the X axis. This also suggests ways to classify and control optical polarization for an
arbitrary state of elliptical polarization as will be shown a few pages ahead.

7 <«b |—
S(final)T. <4 A Y
a
Y

S(final)

"Direct"
rotation
axis

r e
Py

Fig. 10.B.1(a) Map of three different sets of Euler polar angles (oY) , (abg), and (ABG).

Three examples of ways to relate a state with an arbitrary spin S(a.,) to the state of spin-up-Z are
sketched below in Fig. 10.B.1. The paths shown are all done using single or double applications of only X
and Y generators Gx = -iJx and Gy = -idy (or, in the first "direct" case, a linear combination of them) to
relate the two states.

| S)=Rirect [BIl Tz)= Ry(@)R(6-90°) 1 Tz) = Ry (A-90°)R(90°-B) | Tz)
| Tz) | Tz)— 90°-b | Tz)

8 [a]  [90°-B

| S> v| S> v 9OO-A—>| S>

2-operations
Fig. 10.B.1(b) Map of 1-and 2-op transformations that connect spin-up-Z to an arbitrary spin state.

1-operation

The "direct" rotation is done using an axis-angle rotation made from a crank vector lying in the X-

Y plane with an azimuth of o—7m/2 as shown on the left hand side of Fig. 10.B.1a.
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R [9] _ exp—i(@cos(a—n/z)JX +0sin(a-7/2)dy) , where: © = 8 (10.B.6a)

The resulting matrix is found from the axis-angle matrix (10.5.15).

Binod J cosﬁ e siné
R[ﬂ direct] = expﬂ(ﬁsma x~Ocosady) 2 2 (10.B.6b)
—e® sin = cosé
2 2

We check that the desired transformation "erects" a general spin state (10.A.1a) back to spin-up-Z.

cosg e sinE cosﬁe_"o‘/2 ‘ i ‘
2 2 2 =] e e (10.B.6¢)
—e'® sin 5 cos g sin g &2 0

Indeed, it does, and it does not change the phase ¢=—(0+y)/2 of the first component. This transformation
is "twist-free" in the sense of moving a rigid body attached to spin vector S without changing the y-dial.
The other transformations in Fig. 10.B.1b will affect the overall phase differently. One may set a desired

state and its overall phase to a particular value by applying the X and Y rotations three times, following

paths like the ones in Fig. 10.B.2. The same can be done by a single operator made up of X, Y, and Z
generators such that its crank vector € lies in the Z-S bisection plane and has an azimuthal angle
measured from the "direct" rotation axis equal to the desired phase. This phase is related to the so-called
the "Berry phase" but the geometry behind it goes back to the time of Thales of Miletus around 600 BCE.

112) v > | Tz)

w

o {2 v
Vl

3-operations | m >

Fig. 10.B.2 Map of 3-op transformations that connect spin-up-Z to an arbitrary spin state and phase.

A multitude of Euler angles may be used singly or together to give various kinds coordinates for
photon polarization states. An (over complete) example is shown in Fig. 10.B.3 in which several
competing types of angles are drawn at once to characterize the polarization ellipse. Perhaps, the most
commonly used set of coordinates are the Faraday tip angle ¢ and elliptical shape angle y shown in Fig.
10.B.3a. Twice these angles (2@, 2y) or more precisely (a=2¢,b=m/2-2y) are Y or C-based polar angles
in R(3) space for the resulting spin vector S. In other words (a=2¢, b=m/2-2vy) are Euler angles (a,b)
measured relative to the Y-axis or C-type basis of circular polarization states.
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No less useful, however, are a set of coordinates (21,2v) based upon the Z-axis or A-type basis of
x and y plane polarization. These are the standard Euler angles (o) introduced previously. Not shown in
the Fig. 10.B.3 is a third set of angles based upon the bilaterally symmetric basis of +45° plane
polarization states or NH3 eigenstates. All these possible coordinates have varying advantages and
disadvantages which depend on what Hamiltonian and physics is being studied.
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(a)
Stokes Vector
ABC-Space

(b)
Polarization
Xy-Space

Fig. 10.B.3 Examples of Euler-like coordinates for (a)U(2) polarization ellipse and (b)R(3) spin vector.
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(a). Polarization ellipsometry coordinate angles
Optical polarization is analogous to the 2D-harmonic oscillator shown in Section 10.1.

Polarization is usually defined by giving the real x and y electric field amplitudes.

Re E; = Re (x|¥) , Re Ey, = Re () . (10.B.8)
The complex amplitudes Ey = (x|'¥') and E), = (y|'¥') define the general U(2) polarization state.
) = beXx W) + )Xy [¥) (10.B.9)

Re (x [¥¥) and Re (y |'¥') are analogous to oscillator coordinates x=x; and y=x as described by (10.1.1c¢).
For an isotropic oscillator potential ¥ = k(x?+)?)/2, the general orbit is an ellipse like the one shown in
Fig. 10.B.3a. An isotropic oscillator corresponds to the A=D and B=0=C case of U(2) symmetry on the
extreme left hand table in the catalog of 2-state symmetry of Fig. 10.4.2. Any ellipse or polarization state
is an eigenstate of a Hamiltonian H=41=D1 , and any coordinate basis is equally convenient.

However, each lower symmetry case 4, AB, B, C, or U(1) in Fig. 10.4.2 has definite eigenstates
and coordinates that are most conveinient for its analysis. For example, |¥) can be written three ways

) = ) W) + ) W) = [H)CH W) + |0 W) = [n)Xr ) + [OXE 1Y) (10.B.10)
using eigenbasis of 4 (asymmetric diagonal), B (bilaterally symmmetric), or C (circular) Hamiltonians.

The corresponding transformation matrices from plane A-type or (x,y) polarization are as follows.
L L
Jz NER [<xlr> (x0) ] NN

[ (rle) o) Jz( 1o } [

X 0 1 1 -1 r I i —i

() (o)) = 7 ol (19 =7
(10.B.11a) (10.B.11b) (10.B.11¢)

These are introduced in Sections 10.2a, b, and c, respectively. An intermediate case labeled 4B-type

(x[+) 1)
) o)

polarization corresponds to plane polarization inclined at angle 3/2=0, as shown in Sec. 10.3 and Fig.
10.1.2ab. AB-transformation can be either a rotation matrix R(B/2)=R/©] or a reflection matrix 6(B/2).

R(§)=R[®:|= [ (rleas) (xlyas) J O'(g):cr[@]: [ (x[x5) (x[745) J

leas) (21yas) leas) (21745)

cos ﬁ —sin E ) cos ﬁ sin E )
_ 2 2 |_| cos ® -—sin® _ 2 2 _| cos ® sin®
) B [ sin® cos® ] . B ( sin® —cos® ]
sin= cos— sin=— —cos—
2 2 2 2
(10.B.12a) (10.B.12b)

The only difference is is the +-sign of the second column. A rotation has a determinate det|R|=+1 while a
reflection has det|G|=-1. 6(B/2) belongs to U(2) but not SU(2). Rotation R(B/2) belongs to both.
Unit-determinant or unimodular SU(2) transformations are area or volume-preserving. This is
sometimes an advantage, particularly if you are trying to apply R(®) to solid objects in a laboratory! But,
light is easier to reflect than to rotate. Transformation (10.B.11b) is a reflection 6/n/4/ through a mirror
plane half-way between x and 45°-line. Transformation (10.B.11c¢) is also a refelection and not in SU(2).

From now on we use the following SU(2) C-toA transformation. Its phase differs from (10.2.23b).
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. (10.B.13)
—1 1

N

The difference is the sign of the R-column. (This is called a Condon-Shortely phase convention.)

[<x|R> (o) J 7B

(1) Type-A ellipsometry Euler angles

Now we define Euler-angle coordinates (following (10.A.1a)) for A-type linear polarization basis.

[¥) = (Xe D |x) + Ye 1O [y))ei® =I(cosv e |x) + sinv e 0 |y))e-i® (10.B.14a)

Here the magnitudes of the E-field components are defined by an 4 or Z-based Euler polar angle B=2v .
X =\Icosv=1\Icos B2 = |Ex(9,v,0)|=|(x )| (10.B.14b)
Y=~Isinv =~IsinB/2 = |Ey0.,0)|=( [¥)| (10.B.14c)

The real E-field components are defined by an 4 or Z-based Euler azimuthal angle ov2=0 and overall
phase angle y/2 = 6. (Note: Do not confuse U or ¢ used below with axis-operator angles defined before.)
x7= ReEx(9,v,0) = Re {x |[¥) = X cos(9+6) (10.B.14d)
x2= ReEy(0,v,0) = Re (y |¥) = Y cos(0-0) (10.B.14e)
Coordinates x; and x trace an ellipse in a horizontial 2X-by-2Y box where azimuth =29 determines the
orientation or shape of the ellipse in the box and overall phase angle Yy =20 ("twist") locates each orbiting
point on the ellipse. The enclosing box aspect ratio X:Y is fixed by polar angle =2v in (10.B.14b-c).

Fig. 10.B.4 shows three cases which differ only by the angle =29 which has value a=45°=2
(22.5°) in the upper Fig. 10.B.4 and increases to a=90° and then o=/80° in the successive lower figures.
In each case, the box-diagonal angle B/2 = v remains fixed at v = 30° or B=60°.

The Stokes spin S-vector diagram for each polarization ellipse is drawn in ABC space on the right
hand side of the figures. Note that polar angle of the S-vector remains fixed at = 2v =60° with respect to
the A-axis, while the azimuth oo=20 rotates from 0=45° to a=90° and finally to a=180°.

The a-evolution seen in Fig. 10.B.4 is an A-axis rotation similar to that which an A-type
(asymmetric-diagonal) Hamiltonian would cause. If the precession rate 2 =¢ of the S-vector is much

slower than phase angle "orbit" ratey/2=0 around the ellipse, then you can imagine an ellipse changing

shape slowly. However, if the precession rate 2=¢ becomes a significant fraction of the overall phase

rate y/2=60 or actually exceeds it, then each ellipse is not given time to be fully drawn before shape-

angle a.=217 changes significantly. Fig. 10.2.2 is an example of such hyper-4-rotation.
In most optical polarization experiments so far, the overall phase rate for optical polarization
evolution is hundreds of tera-Hertz and many times that of typical precession rates. However, modern

experiments may not be so slow in changing the state of polarization.
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X2
- V=22.5°
| —
| / AN
| yd \/ X1

VI

Fig. 10.B.4 A-Type polarization angles (0=20,=2v ,y=20) with rotation to 0=45°, 90°, and 180°.
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(2) Type-C ellipsometry Euler angles
Now we define Euler-angle coordinates (following (10.A.1a)) for C-type linear polarization basis.
[¥) = [Rei0)r) + Le i9|0)] e i® = [Re-i® (|x)+ily))+ Le {9(|x)-i|y))Je®A2  (10.B.15a)
The right and left circular bases |r)=(x)+i[y))/N2 and |¢)=(|x)-i[y))N2 from (10.B.11c) are expanded.
[¥) = /R0 + Le 9] [x)ei®A2 = [(R+L)cos® - i(R-L)sin@] |x)(cos®-isin®)N2
+i[Re 19 - Le 10] Ve ®A2  +i[(R-L)cos@ -i(R+L)sin®] [y)(cos®-isin®)/N2
Separating the real and imaginary parts gives a @-rotation transformation for each part.
) =/(R+L)cos@ cos® —(R-L)sin® sin® — i(R+L)sin® sin®-i(R-L)sin® cos®] [x)N2
+/[(R+L)sin@® cos®+(R-L)cos@ sin®+i(R+L)cos® cos®-i(R+L)sin® sin®] [y)/\/2 (10.B.15b)
The real E-field (x;,x2)-plots in Fig. 10.B.5 are thus given as follows

x1=ReEyx(o,y,®) = Re (x |¥) = (a cos®)cos@ - (b sin®)sin@ (10.B.15c¢)
x2=ReE)(@,y,®) = Re (y |'¥) = (a cos®)sing + (b sin®)cos@ (10.B.15d)

where the ellipse semi-major axis a and semi-minor axis b are defined using a new angle .
a=(R+LN2=\Icosy (10.B.15¢)
b=(R-DN2 =Isiny (10.B.15f)

The ellipse box aspect ratio a:b is defined by v, related below to a C-based Euler polar angle b=r/2-2y,
just as the X:Y ratio is defined by an 4-based Euler polar angle =2v in (10.B.14b-c). The real E-field
components (x;,xp) are defined by a C-based Euler azimuthal angle a=2¢ and overall phase angle g/2=®.
(10.B.15) are analogous to the defininition in (10.B.14d-e) by an A-based Euler azimuthal angle o.=2¢%
and an overall phase angle y/2 =0. Furthermore, C-type evolution or Faraday rotation in Fig. 10.B.5 is
rotation about the C-axis by azimuthal angle a=2¢ , just as A-type evolution in Fig. 10.B.4 was 4-axial
rotation by angle ao=21 . The latter is called birefringence.

Fig. 10.B.5 shows three cases differing only by the angle a=2¢ which has value a=30° =2(15°) in
the upper Fig. 10.B.5 and increases to a=90° and then a=170° in the successive lower figures. In each
case, the ellipse-box-diagonal angle /2 = 7/4-y remains fixed at y= 30° or b=30° (y=30°=b is just a
coincidence!). As we will show, the C-axial Euler polar angle of the S-vector is b=n/2-2vy, in general. The
complimentary angle 2y=r/2-b=b,. is a spin polar elevation angle or latitude, not a polar angle.

As in Fig. 10.B.4, the objects in the real 4/ C S-vector 3-space move twice as fast as the ones in
the complex |W)-spinor or polarization 2-space. Ellipse rotation by @ is a rotation of the S-vector by
a=2¢. The same applies to the overall phase angle ® which is related by a factor of 2 with the Euler twist
or "gauge" angle g = 2® around the S-vector axis. Examples of normal (®>>¢) and hyper-Faraday
rotation (®~¢) are sketched in Fig. 10.2.10 and Fig. 10.2.11, respectively.

Fig. 10.B.5 C-Type polarization angles (a=2¢,b=nr/2-2y ,g=2®) with C-axial rotation to a=30°, 90°, and
170°. Polar angle of S from C-axis is fixed at b=m/2-2y=30°.
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Fig. 10.B.5 C-Type polarization angles (a=2¢,b=r/2-2y ,g=2®) with C-axial rotation to a=30°, 90°, and
170°. Polar angle of S from C-axis is fixed at b=m/2-2y=30°.
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To define polar angles of the S-vector relative to 4, /7, or C-axes we can use the transformation relations
given by (10.B.5). However, we need to be aware of the base changing transformations behind such

shortcuts. For example, suppose we define C-axis as our true Z-axis of "up" and "down" so that
(rloylr) {rlowl)
Cloy)= (10.B.16)
o { (Cloal) (ol

is the following representation of the three Pauli (Hamilton) operators in the C (circular) basis {|r),|()}.

c(aA):[ - ] (10.B.17a) C(O'B):( ; :)"J (10.B.17b) C(O'C):[ o ] (10.B.17c)

This would be the conventional definition of (Gx,6y,67 )=(64,6:,6¢ ) of Pauli operators in that order
with the third (67 or 6¢) diagonal. In this text we have had 64 be the diagonal one. But, in the 4 basis
(Asymmetric diagonal or linear) 64 is diagonal. A basis change by (10.B.11c¢) proves this as shown below.
Loy)- (xlowlx) Glowlv) | Gl 1o | | Crlowlr) (rlowle) || () (el
N
(oylx) (vloy]y) Ol ) ) oyl {elonle) )L (=) (el)

= 1.Cloy) 1! :L 12 142 } { (rlowlr) (rlowle) ] [ N2 i J

J(10.13.18)
iN2 =iz || (oylr) (doyle) |12 2

The following is the representation of the three operators in the 4 (linear) basis {|x),[y)/}.
L(GA)=[ (1) 01 ] (10.B.19a) L(O'B)z[ ? é ] (10.B.19b) L(Gc)z( 0 o J (10.B.19¢)
- 1

This has been the conventional representation for this text, so far. Relative to (10.B.17) it is a cyclic
reordering 4—/—>C—A4, that is, a /120° rotation around the [111] axis in 4/ C-space.

On -expectation values are basis-independent (provided the right representations are used for both
the states and the operator!) Consider first the linear 4-representations using (10.B.19) and (10.B.14).

(¥]o, [¥)=( xeiv yei® ) (1) _01 ] [ );e_j J = x>y (10.B.20a)
e

(¥log[¥)=( xo yoio ) (1) (1)][ );ei;ﬂ ] = 2XY cos 20 (10.B.20a)
e

(¥loc|¥)=( xe ye ) ? ;i ] [ );e: ] = 2XYsin20 (10.B.20b)
e

Now do the same values in the circular C-representations using (10.B.17) and (10.B.15).

<‘I‘|0'A|‘I’>:( Re™® [0 )* [ (1) (1) J [ RLZ_IZ J =2RLcos2(p=(a2—b2)0052(p (10.B.21a)

(‘I‘|0'B|‘I’>=( Re™@ Lo )* [ ? _Oi ] [ };ii;(p ] =2RLsin2(p=(a2—b2)sin2(p (10.B.21b)
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(‘I‘|0'C|‘P>=( Re® [0 ) ( é _01 ] [ RLeem) ] = R*— 1% =2ab (10.B.21c¢)

Equating 4-defined and C-defined S-vector components Sy= (‘P|cpV) relates A-based and C-
based Euler angles. Use A4-definitions (10.B.14) and C-definitions (10.B.15) as follows.

S-vector A Linear Basis C Circular Basis
<‘I’|0‘A|‘I’>= x*-y* = Icos2v | =2RLcos2¢ = (az—bz)cos2(p=Icos2y/ cos2¢
<‘I—'|O'B |‘I‘> = | 2XYcos28 =1Icos2® sin2v | =2RLsin2¢= (a*>—b*)sin2¢ = Icos2y sin2¢ (10.B.22)
(¥|o.|¥)=| 2XYsin20 =Isin20 sin2v | =R* - = 2ab =Isin2y
(wli|w)= | X*+¥*= I =R*+I* = a* + b

First notice how the polar coordinates for the C-basis are defined in the right-most column of
(10.B.22). The C-azimuth plane projection is (I cos2y cos2@, I cos2y sin2@ ) while the main C-axial
projection is I sin2y . This is different from the 4-basis defined in the middle column of (10.B.22) with 4-
azimuth plane projection is (1 sin2v cos20, I sin2v sin29 ) while the main 4-axial projection is / cos2v .

For A-bases angle B=2v is a true polar angle measured from the main A-axis as shown in Fig.
10.B.4. For C-bases angle b.=2y is an elevation angle or complement b.=n/2-b of a true polar angle
b=n/2-2y measured from the main C-axis as shown in Fig. 10.B.5. This is consistent with (10.B.5) which
relates Euler polar angles 3, b, and

The C-component of the S-vector is an oscillator or "photon” angular momentum component

Sc= 1(xpy-ypx )= I(xip2-x2p1 )=2ab = R?-1° (10.B.23)
according to fundamental definitions (10.5.8c). Comparing this to (10.B.22) above shows that S¢ is
proportional to the area wab of the polarization ellipse. This makes the C-axis or Z-axis the important one
in angular momentum theory which will be treated in later chapters. Given the importance of U(2)>R(3)
isotropy and the quantum theory of angular momentum in atomic and nuclear physics, this probably
explains why the Pauli representation (10.B.17) is the most widely accepted convention.

However, for anisotropic condensed matter the 4-axis (which we have up to now called the Z-axis)
has an important anisotropy or Stark-Splitting component.

Sqa= I(x/?+p;? —x2—pr2)=X2-Y? (10.B.24)
Maximum or minimum values of the A-component correspond to pure x or pure y polarization just as
maximum or minimum values of the C-component correspond to pure R or pure L polarization.
Development of the bilateral or B-component and coordination is left as an exercise.

Transformations which change the bases-of-choice or quantization axis from A to © or C belong to
a dual or “external” U(2) group that commutes with the U(2) group from which Hamiltonian and
evolution operators are made. Dual symmetry is an important topic which will be introduced in Chapter

15 and applied again in Chapters 24, 25, and 30.
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(b) Beam evolution of polarization

Evolution of optical polarization is often a function of distance z along a propagating beam. The

evolution is described classically by Maxwell's equations which are second order in position.

2 2
VzE_v(v.E):ia_E 1 JP
? or? 0280 or’

where: P=¢gyieE (10.B.25)

This simplifies if all field E and polarization vectors P are in the x-y direction transverse to beam line z.

The polarizability o-tensor relation is then two-dimensional.

1 Px axx axy Ex
P=¢gioE becomes: — = (10.B.26)
& Py Oy Ay Ey

Furthermore, we assume single frequency vector amplitudes depend on the z-coordinate only

P(z,t): P(z)eiiw’ R E(z,t):E(z)eiiwt
Maxwell's equations simplify under the preceding conditions.

e <x|¢(z)> ot e a, <X|¢(Z)> a
E [ e % J Db | (10.B.27a)

yx Yy

0z* <y|¢(z)> ¢

where the complex polarization field is related to the real E-field.

Re { jx(z) ]=Re éjzgi (10.B.27b)

The forward propagating wave solutions are used in the simplest beam approximation.

(x]o(=)) :e,-z[ :yx "wJ (xlo(0) (10.B.28a)

A wave-vector matrix k is the doubly-positive (++) square root of the susceptability tensor y=1+aL..

172
k. k 1+
{ kxx xy J 9( axx axy J :%(+\/Z_1P)(1 +\/ZP){2) (10B28b)

c o 1+a
ryx Yy (+,+)

In the absence of absorption or gain the eigenvalues (X;,X2) of x are assumed positive-real while the

matrix k and the projectors Py, and Py, of ) and k are assumed all to be Hermitian. (kt=Kk)
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X Xy — X2 Xox Xy =%
P = > » ., P = > ” (10.B.28¢)
4 Zl - %2 %2 Zz - Zl

In this approximation the spatial z-evolution (10.B.28a) due to e/K? proceeds quite analogously with the
temporal t-evolution due to a Hamiltonian e-"H#7 discussed previously. One difference is that a positive k
will correspond to a negative or clockwise Q=—|Q2| crank motion in ABC-space. (As you move down the
beam you are effectively "undoing" time w¢ and looking at what has already passed you.) Also, time
enters here as a simple overall e#®? phase contribution to give a polarization wave operator e’kz-i® The
opposite moving wave e-Kz-i07 ig assumed zero. Interference of counter-propagating waves is studied in

the next unit.

Problems for Appendix 10.A and B

Euler Can Canonize

10.A.1 An 2D-oscillator canonical phase state-(xs, ps, x2, p2) and a spin-state-|c, 3,7) are both defined by the Euler angles
(v, 3,7) through (10.A.1a-b) as well as by axis angles [, ¥, O] through (10.A.1c¢). (First, verify all parts of (10.A.1).) If
rotation-axis-® polar angles [@, 9] are fixed while rotation angle ©=Q¢ varies uniformly with time, Euler angles («, 3,7)
and phase point (x;, p1, x2, p2) trace spin and oscillator trajectories, respectively. Verify this for the following cases by
discussing plots requested below.

(a) [0=0,9=0], (b) [@=0,0=n/2], (c) [o=n/2,0=1/2] , (d) [@=0,0=mn/4], (e) [o=n/2,B=mn/4] .

For each case sketch 2D-paths -p; vs. x; and x2 vs. x; and sketch © sin®/2 ina 3D ( -p2,x2,-p1)-space which should also have

paths for —p2 vs. x2 and x2 vs. -p; etc. Also, indicate the paths followed by the tip of the S-spin-vector (10.5.8c) in 3D-spin space
(S, Sy, Sz) and characterize as A-type, >-type, or C-type motion, etc., in each case.

Invariantipodals

10.A.2 When an Euler sphere is rotated from origin |1) state (O=0=B=y) to some angles («, (3,7), there are always points
on the sphere which end up exactly where they were before the rotation. Verify this and express the polar-coordinates
(6,0) of all such invariant points in terms of (o, 3,7).

Spinor-Vector-Rotor
10.A.3 Prove and develop the result (10.A.15) as described below.

i
F{[@]GLR[@]Jr =(cos% l—isin% (:)KO'K]O'L(COS% l—isin% (:)NO'NJ
=0'L'=0'Lcos®—8LKM(:)KGM sin®+(l—cos®)(:)L((:)NGN)

(a) Using the o-product definitions and the Levi-Civita tensor identity
€4 Eoe = 0,40, —0,,9,, (Prove this, too!)

to derive the above result. (Equation (10.A.15))

(b) Check if the above result (Eq. (10.A.15a)) yields Eq. (10.A.15b) and sketch the resulting vectors © and e7, (before rotation)
and e'[ (after rotation) for a rotation of e, by ©®=1720° around an axis with polar angle 0=54.7° = arcos(. 1/N3) and azimuthal
angle @=45°. (As is conventional, we measure polar angles off the Z(or A) axis and azimuthal angles from the ‘(or ~) axis
counter clockwise in the 'Y (or () plane. What semi-famous-name axis is this @? Give Cartesian coordinates.)

(b) Use the above to write down a general 3-by-3 matrix in terms of axis angles [¢, 9, ©], and test it using angles in (b).

(c) Derive the Euler angles («, (3, ) for this rotation matrix.

(d) Compare formulas and numerics for 3-by-3 R(3) matrices to the corresponding 2-by-2 U(2) matrices for the same rotations.
(e) Find 3-by-3 R(3) and 2-by-2 U(2) matrices for rotation R, by 90° around Y (or C)-axis.

(f) Do products R, R[@, 9, O] and R, ¥, ©]R, numerically and check with product formula (10.A.10). Describe results.
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Spinor-Vector-Rotor Polarized
10.B.1. Suppose a Hamiltonian H has an Q-vector pointing along the ©-vector in a preceding problem 10.A.3b. Here we
will let =1, and let ©=Q¢ with ©=27/3 at t=1.

(a) Write down the 2-by-2 Hamiltonian matrix H.

(b) Give at least two sets of values for Euler angles which give an eigenstate of H.

(c)Write out the corresponding complex U(2) eigenstates of H obtained using (b) and sketch their polarization
ellipse-orbit (the real spinor space picture), U(2) phasor picture, and S-vectors.

(d) Describe what happens to the initial A-state |¥(#=0)) = |x) (x-polarization or spin-up) given this Hamiltonian H.
Does [¥(¥)) ever return 100% to |x)?

(e) Does x-polarization ever get close to y-(-A4)-polarization? ...45°-(B)-polarizaton? ...R-(C)-polarizaton?

How long does it take to get from |W(¢=0)) to the closest approach to each?

Spin erection. Does it phase U(2)?
10.B.2. The following general problem may certainly become relevant if the mythical quantum computer materializes. It
involves erecting an arbitrary state with spin vector S to the spin-up Z (or A) position with a particular overall phase @. In
each case make the description of your solution as simple as possible as though you needed to explain it to engineers.

(a) For a state of 0-phase with spin on the X (or 12), describe a single operator that does the above.

(b) For a state of 0-phase with spin at 3 in the X Z (or AB) plane, describe a single operator that does the above.

The trouble with &

10.B.3. The polarization angle ¢ defies placement in the U(2) diagram of Fig. 10.B.3. (That is, it's not there!) Is it easier
to locate if v=45°=¢ ? Discuss contact points on XY box. Let a cardboard cut-out ellipse of a given I and v rotate 360° on
the floor in the corner of a room always tangent to two walls. What simple curve does its center describe? Does it change
radically as v—0 ? (It's a lot easier to answer this using U(2) ellipse geometry than by algebraic machination.)

Strange susceptibility

1.8 -0.9+0.9i

-0.9-0.9: 2.7

2
10.B.4. A solid has an xy-susceptibility tensor w—2(1 +a)= [
c

J for a z-beam.

(a) Derive (@, y) and sketch ellipses for all polarization states whose ellipses go unchanged.

(b) A circular |R)-state (v=45°) enters at z=0. Discuss its z-evolution. How far is a "n-pulse" (Half-wave plate or &
rotation of S)?

To B or not
10.B.5. A B-axial description applies to NH3 states or a +45° polarization eigenvector medium. First, write the form of
the B-type (bilaterally symmetric) Hamiltonian or xy-susceptability tensor.
(a) Given an algebraic description of U(2) bases and R(3) spin vectors using B-type Euler angles (A,B,G).
(b) Give a geometric sketch of U(2) ellipses and R(3) spin vectors like Fig. 10.B.4-5 as they might evolve under a B-
type Hamiltonian or susceptibility tensor. Start with the case (¢=45°, y=30°, ®=0°) in center of Fig. 10.B.5, convert
it to (A,B,QG) angles, then sketch result of subsequent 45°, 90°, and 180° rotations of S around B-axis.
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