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Appendix 4.A Relativistic Space-time Coordinates

The nature of space-time coordinate transformation will be described here using a fictional spaceship

traveling at half the speed of light past two lighthouses. In Fig. 4.A.1 the ship is just passing the Main

Lighthouse as it blinks in response to a signal from the North lighthouse located at one light second (about

186,000 miles or EXACTLY 299,792,458 meters) above Main. (Such exactitude is the result of 1970-80 work

by Ken Evenson's lab at NIST (National Institute of Standards and Technology in Boulder) and adopted by

International Standards Committee in 1984.) Now the speed of light c is a constant by civil law as well as

physical law!  This came about because time and frequency measurement became so much more precise

than distance measurement that it was decided to define the meter in terms of c.

Fig. 4.A.1 Ship passing Main Lighthouse as it blinks at t=0.

This arrangement is a simplified model for a 1Hz laser resonator. The two lighthouses use each other

to maintain a strict one-second time period between blinks. And, strict it must be to do relativistic timing.

(Even stricter than NIST is the universal agency BIGANN or Bureau of Intergalactic Aids to Navigation at

Night.) The simulations shown here are done using RelativIt.
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Fig. 4.A.2 Main and North Lighthouses blink each other at precisely  t=1.

At p   recisel   y t=1 sec. the two lighthouses blink again because that is how long it takes their respective

t=0 blink waves to reach each other. This is shown in Fig. 4.A.2. The ship, meanwhile, has only traveled half

this far since its speed is c/2. Its velocity is -c/2, that is,    negative   , since it is going right to left.

Next, at p   recisel   y t=2 sec. the two lighthouses blink again. Also, the first (t=1) blink catches up to the

ship and hits it, that is, the ship    sees   the first blink. This is shown in Fig. 4.A.3. Much of the discussion will

center on two happenings or events labeled Happening-1 and Happening-2. ("Event" is accepted physics

terminology. "Happening" is oh-so-60's.)

The coordinates of Happening-1 are, according to the Lighthouses, (x1=-1, ct1=2) while for

Happening-2 they are, according to the Lighthouses, (x2=0, ct2=2). Next, we will see how the ship views all

this, that is what are ship coordinates (x 1, ct 1) and (x 2, ct 2) for the events. From that we deduce the essential

transformation matrix for all events in special relativity. The ship has a very different transcription of these

events as shown in the following figures beginning with Fig. 4.A.4.
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Fig. 4.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Fig. 4.A.4 Beginning (t =0) snapshot for ship's view.

Now in Fig. 4.A.4, the ship is stationary and that means that the lighthouses are going in the opposite

direction with a positive velocity of v=+c/2. Fig. 4.A.4 looks the same as Fig. 4.A.1 except the previous (t=-1)

blink wave appears to have been "left behind" by the speeding lighthouses. Therein lies a secret of relativity.

Snapshots of light pulses always appear to be circles expanding around the points where they were emitted.

This is true no matter how fast you are going, or, more importantly, no matter how fast the emitter is going.

You cannot speed up or slow down light by jerking your laser back and forth!

So Fig. 4.A.4 and several subsequent figures show previous blink waves expanding around points

where the lighthouses were when that light was emitted and all expansions take place at a uniform speed of c.

It's the law! And, it's one we can live with. Consequences of this law are quite remarkable. We explore

consequences shortly including the fact that the ship sees the North blink-wave tipped by a so-called stellar

aberration angle =60° relative to a vertical North-to-South wave ray track seen by the Main Lighthouse.
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Fig. 4.A.5 Early (t =0.5) snapshot from ship's view.

The (t  =0.5) view by ship shows the (t  =0) blink waves expanded to exactly half the distance

between their emission points. Also, the lighthouses have moved half this distance, that is, a quarter of a light-

second, and so Main will not be anywhere near the ship at (t  =1.0) when the (t  =0) blink wave from the

North comes down to trigger Main to do its first or (t=1) blink. In fact it’s (t  =1.15) before the (t  =0) blink

from the North finally catches the speeding Main Light to make it blink as shown in the next Fig. 4.A.6.
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Fig. 4.A.6 Later (t  =1.15) snapshot from ship's view finally registers the first lighthouse blinks.
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Fig. 4.A.7 Later (t  =1.75) snapshot from ship's first registers Happening-1.

This shows Einstein time dilation. The ship perceives that the lighthouse is running about 15% late at

this speed of v=c/2. The next Figs. 4.A.7 and 4.A.8 show something even more surprising to a Newtonian

worldview, the relativity of simultaneity where, unlike Fig. 4.A.3, Happening-1 is not simultaneous with

Happening-2. Happening-1 (ship hit by 1st blink) happens early at (t  =1.75) and before Happening-2 (2nd

blink) that occurs at (t  =2.30). (Recall Main cannot blink until a blink from the North hits it so Happening-2

doesn't happen until (t  =2.30), or twice the time (t  =1.15) for the first blink as shown in Fig.  4.A.8.)
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Fig. 4.A.8 Much later (t  =2.30) snapshot from ship's finally registers Happening-2 .
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The time  observed between unit-time blinks by a moving ship is called the Einstein dilation factor .

Its classical derivation follows from a simple right triangle whose altitude is c or one light second as shown in

Fig. 4.A.9. The triangle base v  is the distance traveled by the lighthouse before the North blink wave finally

hits it after traveling a distance c  along the hypotenuse as seen by ship. This gives the following.

c2 2
= c2

+ v2 2      or:  2 c2 v2( ) = c2     or:   =
1

1
v2

c2

(4.A.1)

Note that the ship or any co-moving ship sees the c  hypotenuse ray tipped in the direction of travel by the

Stellar aberration angle  whose sine is sin  = v/c. This is =60° for v/c=1/2 in Fig. 4.A.9 or Fig. 4.A.4.

Fig. 4.A.9 Derivation of Einstein time dilation factor  or time between blinks .

For the above the lighthouse velocity relative to the ship is v=c/2. (4.A.1) gives a time dilation factor of

=1/ 0.75 = 1.1547 very close to the 15% "lateness" in the Fig. 4.A.6 simulation. This lateness grows rapidly

and without limit as v approaches c. For v=4c/5, (4.A.1) gives =5/3 = 1.67 that is a 67% lateness or dilation.

From this we construct an event table to summarize discrepancies or disagreements between space

and time coordinates used by the lighthouses and those used by the ship. This is shown below.
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Happening 0:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by

first blink from Main Lighthouse.

Happening 2: Main Lighthouse

blinks second time.

(Lighthouse space)       x = 0

(Lighthouse time)         t  = 0

              x = - 1.00 c

              t  =   2.00

              x =  0

              t  =   2.00

(Ship space)                 x = 0

(Ship time)                   t = 0

              x =   0

              t =  1.75

              x =  c 

              t =   2   = 2.30

One of the most important things to remember about the space coordinate x is that each observer

frame carries its own origin (x=0) with it wherever it goes. If a 'Happening' happens to the Lighthouse then it

happens at x=0, but if it happens to the ship then it happens at x  =0 no matter what the time is. Remembering

this saves lots of confusion!  Note also: the table above is for a    positive    lighthouse velocity: v=c/2 relative to

the ship. You must always give velocity as one thing relative to another. Absolute velocity is meaningless.

We need a table like the one above for the case of a general velocity v of the lighthouse relative to the

ship. (Note that if we base ourselves in the frame in which the ship is stationary then the lighthouse moves

with a positive velocity v=c/2.) The zero entries stay the same for any value of v. The times for the second

blink are t=2 and t   = 2  by definition. The ship's reading for the position of the second blink has to be

velocity times travel time or v times 2 . (x   = 2v ). This becomes x   = c  for v=c/2 as entered above.

The coordinates of Happening 1 (1st blink hits ship) are found. To hit the ship in the lighthouse frame

the 1st blink travels a negative distance -c times (t-1) since it doesn't start from x=0 until t=1. It hits the ship

that has gone that distance starting at t=0 from the lighthouse. That distance is -v times t. We equate these.

x = -c (t - 1) = -v t , or t = c/(c-v). (4.A.2)

The resulting x and t are entered in the first row under 'Happening 1' in the table below. At this time the ship is

located at x=-vt=-vc/(c-v) and that is entered in the table, too.

The lighthouse time for Happening 1 is based on Fig. 4.A.7. This shows that the 1st blink has to travel

the base of a right triangle that is v  long. It starts at time t  =  and goes at rate c for (t - ) seconds or

v  = c(t - ). (4.A.3)

Solving for t  gives the last entry t  = (v+c) /c=(1+v/c)/  in the Happening 1-column of the table.

(4.A.4)

Happening 0:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by

first blink from Main Lighthouse.

Happening 2: Main Lighthouse

blinks second time.

(Lighthouse space)       x = 0

(Lighthouse time)         t  = 0

              x = -vc/(c-v)

              t  =   c/(c-v)

              x =  0

              t  =   2.00

(Ship space)                 x   = 0

(Ship time)                   t   = 0

              x  =   0

              t  = (v+c) /c=(1+v/c)/

              x   =  2v

              t   =   2
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The last entry t  = (v+c) /c=(1+v/c)/  in the  Happening 1-column is the time interval or period between hits

recorded by the ship as it goes off into the night; the period in this case is longer than the BIGANN required

blink period of 1 second. On the other hand, before the ship passed the lighthouse it was getting hit in the nose

by a fast blink-blink-blink with a shorter period than 1 second. The formula for this period found by reversing

light velocity c to -c is t  = (v-c) /(-c)=(1-v/c)/

Fig. 4.A.8 shows that the ship gets hit by blinks a lot more frequently before the lighthouse passes at

t=0 than after it passes because blink waves are more densely packed in front of the lighthouse than behind it.

This frequency down-shift is analogous to what you hear as a car goes by: "..EEEEEEEeooooow..", and is

called a Doppler Shift. According to blink counters on the ship, the lighthouse period of 0 = 1 second LHT (or

blink rate of 0 = 1 Hz) is increased in period by a factor equal to the ship time t' = (v+c) /c=(1+v/c)/  for

Happening-1, that is, the time the ship sees between blink hits after t'=0. The inverse of this is a frequency 

that that is perceived to suffer a down-shift or a red-shift from the Lighthouse assigned frequency 
0
=1Hz.

Ship Time

between hits

(outbound)

= t = 0 (v +c) / c = 0

1+
v

c

1-
v2

c2

= 0

1+
v

c

1-
v

c

,

Outbound

Observed

Frequency

 =  = 1 / = 0

1
v

c

1+
v

c

  (4.A.5a)

 An inbound ship sees an Inverse Doppler or blue-shift an up-shift or increase in frequency to .

Ship Time

between hits

(inbound)

= t = 0 (c v) / c = 0

1
v

c

1-
v2

c2

= 0

1
v

c

1+
v

c

,

Outbound

Observed

Frequency

 =  = 1 / = 0

1+
v

c

1
v

c

   (4.A.5b)

Again, the difference between "inbound" and "outbound" cases is a matter of sign difference ±c of

velocity of the light perceived by the ship. The two shifts are inverses of each other as required by time

reversal symmetry that underlies relativity and electromagnetism.
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Appendix 4.B Lorentz Transformations and Minkowski Space

The disagreements seen in Table (4.A.4) are analogous to the ones seen in coordinate rotation. Given

a rotated grid such as shown in Fig. 4.B.1 one may relate the "disagreements" between a standard US

surveyor and a "tipsy" one that headed straight for the saloon. They only agree on the point (0,0) of origin.

Fig. 4.B.1 Town map according to a "tipsy" surveyor.

Object 0:

Town Square.

Object 1:

Saloon.

Object 2:

Gun Shoppe.

(US surveyor )       x = 0

                              y = 0

              x =   0.5

              y =  1.0

              x =   0

              y =  1.0

(2nd surveyor)      x  = 0

                             y  = 0

              x =   0

              y =  1.1

              x =  -0.45

              y =  0.89

Before the US surveyor heads for the gun shoppe (and shoots the "non-standard" surveyor) one needs

to defuse a potential argument and write a simple coordinate transformation such as derived in Fig. 4.B.2.
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Fig. 4.B.2 The diagram and formulas for reconciliation of the two surveyor's data.

In the notation given above the transformation has a form that is very much like the one we will derive

for spacetime. Note that the inverse transform is had by setting angle  to -  or slope (b/c) to -(b/c).

         

 x = x cos y sin =
x

1 +
b2

c2

+
b / c( )y

1 +
b2

c2

 y = x sin + y cos =
b / c( )x

1 +
b2

c2

+
y

1 +
b2

c2

    

x =  x cos +  y sin =
 x 

1+
b2

c2

+
b / c( )  y 

1+
b2

c2

y =  x sin +  y cos =
b / c( )  x 

1+
b2

c2

+
 y 

1+
b2

c2

     (4.B.1)

Remember that a coordinate diagram like Fig. 4.B.2 is a crummy and confusing way to derive this. See

Chapter 1 for the better derivations starting from base vectors.

Now we will suppose that the spacetime relations are also a linear transformation.
x   = A x  +  B ct (4.B.2a)
ct  = C x  +  D ct (4.B.2a)

We solve for the unknown linear coefficients A, B, C, and D using the following table from App. 2.A.
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Happening 0:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by

first blink from Main Lighthouse.

Happening 2: Main Lighthouse

blinks second time.

(Lighthouse space)       x = 0

(Lighthouse time)         t  = 0

              x = -vc/(c-v)

              t  =   c/(c-v)

              x =  0

              t  =   2.00

(Ship space)                 x  = 0

(Ship time)                   t  = 0

              x  =   0

              t  = (v+c) /c

              x  =  2v

              t  =   2

(2.A.4)repeated
To do this we stick in the values of (x',ct') and (x,ct) from the Happening Table. For Happening 1 we have

A x  +  B ct = x  , or A(-vc/(c-v))  + Bc(c/(c-v)) = 0   , or  A = Bc/v (4.B.3a)
C x  +  D ct = ct   , or C(-vc/(c-v))  + Dc(c/(c-v)) = c (v+c)/c  , (4.B.3b)

and for Happening 2 we have

A x  +  B ct = x   , or A(0)  + Bc(2) = 2v   , (4.B.4a)
C x  +  D ct= ct   , or C(0)  + Dc(2) = 2c   . (4.B.4b)

The last two equations immediately give B=v /c and D =  where you should recall from (4.A.1) that the

quantity =1/ (1-v2/c2) is the blink time interval according to the ship. Put these values of B and D back into

(4.B.3a-b) to derive A =  and C= v /c. This gives a general formula for converting lighthouse coordinates

(x,ct) into ship coordinates (x ,ct ) or vice-versa. It is the Lorentz Transformation for rapidity .

     

x =
x

1
v2

c2

+

v

c
ct

1
v2

c2

= x cosh + ysinh

ct =

v

c
x

1
v2

c2

+
ct

1
v2

c2

= x sinh + y cosh

   (4.B.5a) 

x =
x

1
v2

c2

v

c
ct

1
v2

c2

= x cosh ct sinh

ct =

v

c
x

1
v2

c2

+
ct

1
v2

c2

= x sinh + ct cosh

  (4.B.5b)

To go 'backwards' like (4.B.5b) you only have to switch the sign of velocity v. The use of hyperbolic functions

will be explained shortly. For now note that cosh2  - sinh2  = 1 is satisfied by the  A, B, C, and D, that is, A2-

B2 = 1 and D2-C2 = 1 for all speeds v.

In order to visualize and understand relativity it helps a great deal to plot these transformation

equations as coordinate grids. The results are called Minkowski coordinates after a Polish mathematicians

who happened also to be one of Einstein's math teachers. (It is interesting to note that Einstein himself

resisted using these graphs, indeed his papers have precious few figures of any kind.) As seen in Fig. 4.B.3

the Minkowski grids are actually quite striking and not quite as easy to grasp as those of a real rotation.
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x

ct

1.0-1.0

1.0

-1.0

x  =1.3357

ct =-1.7948

Fig. 4.B.3 Minkowski coordinates (x', ct') for ship going v=-c/2 relative to Lighthouse (x, ct) .

Note that the positive time or f    uture   , is     down    in these graphs. This is the classic Newtonian convention

in which one plots an x-ordinate versus a t-abscissa. Note that the (x , ct ) graph gets squeezed relative to the

stationary (x, ct) graph. The resulting slope of the ct' axis is equal to the velocity in c-units, that is v/c. In this

case that slope is v/c =-1/2.

This Newtonian slope-to-velocity relation happens because the ct  axis is the track of the origin (x =0)

of the ship, that is, its space-time trajectory or world line. As we will see, this slope v/c is equal to the

hyperbolic tangent tanh . However,  is called rapidity and is not an angle, but an area as will be shown.

A geometric interpretation of Lorentz transformations uses invariants of the transformations, functions

whose numerical values are unchanged by it so the two protagonists agree on them. In Fig. 4.B.4 we

compare the circular invariants of the rotated surveyors with hyperbolic ones of the ship and lighthouse.

The surveyors agree on the distance from town center or origin, that is, the    sum     of squares of

coordinates (x2+y2 = x 2+y 2). The ship and light houses agree on    difference    of squares of coordinates (x2-ct2

= x 2-ct 2) that is, the speed of light c. Expanding circles of blink waves trace out cones in space-time as in

Fig. 4.B.5. Their (x,ct) cross-section are hyperbolic conic sections called light-cone sections.
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Fig. 4.B.4 Comparison of invariants (a) Rotations invariants are circles. (b) Lorentz invariants are hyperbolas.
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Fig. 4.B.5 below is a plot of the North Lighthouse blink waves in {x, y, ct} coordinates. Blinks emitted

at t= -1/2, t=0, and t=+1/2 seconds trace three concentric light cones around the track or world line of the

North Lighthouse. All observers will see the same cones. They are invariant to one's space-time viewpoint.

ct

t= -1.0

t= 0

t= 1.0

t= -1.0

t=1.0

t=-0.5

t=0.5

t=1.5

t=1.5

North Lighthouse

Main Lighthouse

Ship

Fig. 4.B.5 Space-Space-Time plot of world lines for Lighthouses.  North Lighthouse blink waves trace light cones.
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Hyperbolic trigonometry

 We are used to circular invariants and circular functions like sine and cosine that go with Cartesian

rotation and elementary geometry and trigonometry. Relativistic Lorentz rotations have the transformation

equations (4.B.5) in terms of     hyperbolic    functions sinh  and cosh . Invert these relations to get the 'angle'

=  in terms of velocity where rapidity  is the logarithm of Doppler blue-shift factor in (4.A.5b).

cosh + sinh = e =

1+
v

c

1
v2

c2

=

1+
v

c

1
v

c

, or: =ln
1+

v

c

1
v

c

(4.B.6)

It turns out that the quantity =  is not an angle at all but an    area   . It is the gray area in Fig. 4.B.6 enclosed by

the unit hyperbolic invariant x2 - (ct)2 = 1 and the two x and x  axes. To calculate this area we form a triangle

of base x=cosh  and altitude y=sinh  which contains the area as shown below.

Fig. 4.B.6 Hyperbolic angle-area =   for unit hyperbola x2-(ct)2=1=cosh2  - sinh2 .

Note that the length of the tangent line between axes is the hyperbolic tangent tanh  =sinh /cosh .

The desired area is found by subtracting the area under the hyperbola from that of the triangle. This

will give us one-half of the gray area shown in the figure. Then d(cosh ) = sinh   d  is used. Also we have
Area

2
=

1

2
base altitude area under curve =

1

2
xy y dx

Area

2
=

1

2
sinh cosh sinh d cosh( )

(4.B.7)

sinh2
=

e e

2

2

=
1

4
e2

+ e 2 2( ) = cosh 2 1

2
(4.B.8)

sinh cosh =
e e

2

e + e

2
=

1

4
e2 e 2( ) = 1

2
sinh 2 (4.B.9)
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This gives the gray area between hyperbolas subtended by radii.
Area

2
=

1

2
sinh cosh sinh2 d =

1

4
sinh 2

cosh 2 1

2
d

Using cosh a d =
1

a
sinh a  we derive that the total gray area in Fig. 4.B.6 is equal to = .

Area =   = (4.B.10)

Note that the relativistic slope or velocity parameter =v/c is the hyperbolic tangent of this area.

=
v

c
=

sinh

cosh
= tanh (4.B.11)

Adding relativistic velocities and angles

Suppose, as before, that the ship has a velocity relative to the lighthouse that is half that of light, that is

v'=c/2. Now suppose there is an observer that sees the lighthouse going at a velocity of c/2. What will that

observer see for the velocity of the ship? If we simply added the two velocities it would be 0.5c + 0.5c = c.

However, it does not work that way. As with the space-space tipping transformations we need to add

tangles not slopes. Consider the plot shown in Fig. 4.B.6 below. The figure shows angle-areas being added to

give the correct total area of  + = 0.5493 + 0.5493 = 1.0986. The =  are obtained from the hyperbolic

tangent relation (4.B.11).  = tanh-1(v/c) = tanh-1(0.5) = 0.5493. Then the hyperbolic tangent of the sum is the

desired answer: tanh(1.0986) = 0.8. The observer will see the ship going at 0.8c or 4/5 of the speed of light.

A quick way to do relativistic velocity addition is to use the angle addition identity for the hyperbolic

tangent. It is similar to the identity for the circular tangent.

tanh(x + y) =
tanh x + tanh y

1+ tanh x tanh y
(4.B.12)

Since the relative velocity ratio u/c is the hyperbolic tangent of the relative angle u the identity gives:

u

c
= tanh( u + v ) =

tanh u + tanh v

1+ tanh u tanh v

=

u

c
+

v

c

1+
u

c

v

c

(4.B.13)

or the relativistic velocity addition formula.

u =
u + v

1+
uv

c2

(4.B.14)

This is the same result as our previous calculation which added u=c/2 and v=c/2 to get 0.8c. 

u =

c

2
+

c

2

1+
1
4

=
c

5
4

=
4c

5
(4.B.14)example
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Fig. 4.B.7  Coordinate axis X' tipped by  =0.549  relative to X-axis which in turn is tipped by  =0.549 relative to O-axis.

As you add more and more hyperbolic angle area you approach the speed of light. But there is an

infinite amount of angle-area under the hyperbola. No matter how much more speed you add you will never

get any closer to the speed of light. It is like a horizon. You can approach it but you can never cross it.
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Spacetime graphs such as Fig. 4.B.8 show Doppler effects and more. The blink wave paths are the

±45° lines intersecting at blink times of t= ...-1.0, 0.0, 1.0, 2.0,...sec. In the upper portion of Fig. 4.B.8 the blink

waves from the main lighthouse are seen crossing the ship path, that is the ct -axis or x =0, every half second

or so before the ship passes the lighthouse at t=0=t . To be precise, the crossing time is 0.5/ 1.5=0.577 sec.

according to Doppler blue-shift formula (2.A.5) But, after passage, it's not until t  = 1.73 that the ship

encounters another blink hit. This is the red-shift crossing time of t = 1.5/ 0.5= 3=1.732 sec. The lighthouse

claims the first hit (Happening 1) occurs at t=2 according its clocks, the same time as its second blink

(Happening 2). This lighthouse moment of t=2 has a p   ast  (t<2 indicated by gray area) and a    future    (t>2 is the

white area below the t=2 line.) The t=2 line is the space-time location of the lighthouse x-axis or "now-line"

at this moment. The ship and lighthouse icons are a little misleading. A 3-dimensional object cannot be really

drawn on one spatial dimension. Also, note that the North lighthouse lies below the page containing the Main

lighthouse in Fig. 4.B.8. This was sketched in Fig. 4.B.5.
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Fig. 4.B.8  Spacetime graph of ship passing lighthouse. (Lighthouse moment t=2 indicated.)

The ship draws its moments differently as seen in Fig. 4.B.9. Here the moment of Happening 1 is

indicated by the ship x -axis at the moment t  = 1.732 sec. This ship moment of t  = 3 has a p    ast    (t  < 3

indicated by gray area) and a    future     (t  > 3 is the white area below the t  = 3 line.) Note that the ship's past

overlaps with the lighthouse future in the leftward direction to which it is traveling, while behind the ship, the

lighthouse has regions of its past that correspond to the ship's future. Very strange!
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These graphs show why the ship does not regard Happening 1 and Happening 2 to be simultaneous in

the way that the lighthouse does. As far as the ship is concerned, points behind it belong to a lighthouse past,

and so a 2nd blink (Happening 2) will come later, in fact not until t   = 2.3 sec.
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Fig. 4.B.9  Spacetime graph of ship passing lighthouse. (Ship moment t'=1.73 indicated.)

A ship or any observer moving with positive velocity relative to the lighthouse (that is, left to right) will

record an opposite time order for Happening 1 and 2. For such a reference frame, Happening 2 will come

before     Happening 1 since its x-axis will tip down to the right in Fig. 4.B.9. This event reversal could present a

serious philosophical conundrum if, for example, Happening 1 caused Happening 2. Generally, we prefer

causes to precede effects, and this is known as the causality principle. Violations of causality are regarded

with the same suspicion reserved for violation of energy conservation or the 2nd Law of Thermodynamics.

Such violations are tolerated in microscopic quantum fluctuations but not in macroscopic classical averages.
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For Happening 1 to actually     cause     Happening 2, it must send some kind of message, particle, or

"force" at a speed greater than light. If a "cause" or particle goes from 1 to 2 it must cut across the light cone!

After Fig. 4.B.7 we noted that hyperbolic asymptotes or light cones were like horizons that one could

approach indefinitely but should not expect to cross. This light barrier is considerably more serious than the

so-called "sound-barrier." It cannot be broken by ordinary matter by simply having the "right-stuff." Anything

that crosses the barrier however briefly pays a great price; it will be seen by many observers to be located at

three or more places at one time! Doing this involves (possibly painful) annihilations and recreations as

shown below.

Consider a case where Happening 1 comes just a little earlier than Happening 2 as shown in Fig.

4.B.10 so that faster-than-light travel is required to connect or "cause" the second Happening. Then the Ship's

view of this is pretty strange as seen in Fig. 4.B.11 where Happening 2 occurs     before     Happening 1. Any

"cause" connecting the two goes "backwards in time." The lighthouse sees the causative particle shown in

Fig. 4.B.10 ride down to Happening 1 then leap faster-than-light to Happening-2 but the ship finds it at three

places during the time between Happening 2 and Happening 1 in Fig. 4.B.11. It is as though a particle-anti-

particle pair is created at Happening 2 and the anti-particle is annihilated at Happening 1!
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Fig. 4.B.10 Lighthouse plot of Happenings
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Fig. 4.B.11 Ship plot of two Happenings


