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Unit 10 Molecular Dynamics

Classical and quantum theory of molecular spectroscopy and dynamics is developed using
the classical and quantum electrodynamics, vibrational dynamics, rotational dynamics,
electronic orbital dynamics and symmetries introduced in Units 5 thru 9. Quantum molecular
dynamics (QMD) involves the Born-Oppenheimer Approximation (BOA) and perturbations of
it. BOA based QMD attempts to define a molecular body or BOD frame rotating more or less
freely in a laboratory or LAB frame with wave functions based on Wigner-D’mn» waves
developed in Unit 8 (Ch. 23). QMD states and transitions are characterized by how LAB and
BOD perturbations mix BOA bases and ultimately redefine them. Much of modern classical
and quantum mechanics as well as their correspondence principles are sorely challenged by

these effects.
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Molecular Rovibrational

States and Dynamics

W. G. Harter

Quantum molecular dynamics (QMD) shares with quantum electrodynamics (QED) an intrinsic
classical prerequisite framework. For QED it is Maxwell-Hamiltonian and Lorentz symmetry.
For QMD it is the Wilson-Howard-Watson (WHM) Hamiltonian and rotational symmetry. The
WHM Hamiltonian is constructed in a way that introduces a rotational-vibrational-electronic or
rovibronic hierarchy in the analysis of rovibrational effects such as Coriolis and centrifugal
dynamics. Model molecular systems include XY3, XYs, and XYg rotational and vibrational

structures used to develop more detailed quantum analyses in later chapters.
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Chapter 30. Molecular Rovibrational Mechanics

30.1 Classical equations of molecular motion

Some of the most complex and theoretically challenging experiments involve the rotational, vibrational,
and electronic motions of polyatomic molecules. In this chapter we will use ideas that have been given in
preceding chapters to begin describing molecular rovibronic dynamics and spectroscopy. Molecular theory
involves rotation and spin states and operators introduced in Ch. 10 and 23, vibrational modes and symmetry of
Ch. 15, 20, and 21, electromagnetic transitions of Ch. 22, electronic orbital and tensor operators introduced in Ch.
23, 24 and 25. Quantum molecular dynamics (QMD) has a strong classical Lagrangian and Hamiltonian

prerequisite as does quantum electrodynamics (QED) in Ch. 22.

a. Lagrangian description of molecular motion
Elementary classical molecular Lagrangians begin with Cartesian nuclear or atomic coordinates x; (v)

and their time derivatives or velocities v )= X; ).

J

dx .
L =T-V=3mi(a)i(a)-V(x), where: x; :d—t’: v.  (30.1.1)

Greek letters denote particle indices a=v =1,2,...,N for nuclei or a=¢ =1,2,...,N. for electrons. Cartesian
components x, y, or z are labeled by indicial letters i, j, £, ..., n that range over /, 2, and 3 . A sum over the range
of an index, such as i from / to 3 above, is implied if and only if it is repeated within an expression on one side of
an equation. (We do not sum j above but repeated o is summed over N+N..)

Lagrangian L is to be transformed to a function of the body frame components x;(e) for electrons and
xp(v) for nuclei for which the following notation of Fig. 30.1.1 is to be used.
xp(&)=r.(8) (30.1.2) xp(v)=a,(v)+d, (v) (30.1.3)
The ax(v) are the constant body-fixed nuclear equilibrium positions and di(v) are (usually much smaller)

vibrational displacements. These quantities are sketched in Fig. 30.1.1(a), and an example involving an XY3

molecule is shown in Fig. 30.1.1(b). This example and an octahedral XY model in discussions in this unit.

Lab coordinates x, transform to BOD coordinates xj thru coordinate and velocity vectors .
X =X,€,=Xpep (30.1.4)
X=xe,+x,,=x5e; +x5¢€z (30.1.5)
Lab unit vectors are assumed fixed €, =0, while BOD unit vectors rotate at angular velocity ¢ .

ey =MXey =0 €, Xey =E -0 €. (30.1.6)

The antisymmetric Levi-Civita tensor € ik = ~€jik = € and ] = g, ,; gives cross-product (30.1.6) that turns
(30.1.5) into a lab-to-BOD velocity relation.

X =X, =xpe; +x5€5 =xXpe; +XpE -0 €, = (xg + eﬁgwaxg)eg (30.1.7)
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(a) Molecular BOD coordinates (b) XY ; Example

BOD nuclear

| . ac)
X3 axis displacement A

nucleus

electron

€ o

Fig. 30.1.1 Molecular BOD coordinate vectors for classical rovibrational models.

The velocity relation applies to each particle—a in the kinetic term of (30.1.1). (For typographical convenience we

delete index overlines. Until otherwise stated, all components are BOD-defined.)

T = max(a).x(a) — ma I:xk(OC) + 8l.nka)l-xn(06)] |:xk(a) + gjlﬂkwjxm(a)} (30 1 8)

=m,, [xk(a)xk(a) +2¢, 0x, ()X, () + einkejmkwixn(a)xm(a)wj}

The definitions (30.1.2) of body coordinates may be used to simplify (30.1.7). In particular, the cross-term for
nuclear coordinates reduces as follows.

2m,€,,0,x,(0)x, (V) = 2m,€,,0,(a,(0)+d,(0))d, (V)

v&ink i

=2m,€,,0d, (0)d, ()

vV in

(30.1.9)

The last line uses so-called rotational Eckart conditions. (Zero total rotation is seen in BOD frame.)

m, [x(0)x d(V)]. =0 = m,&,,a,(V)d, (V) (30.1.10a)

BOD coordinates are also constrained by translational Eckart conditions. (Zero translation in BOD frame.)

my[x(@)]. =0=mx,(e)+m, (a,(V)+d, (V)  (i=12,3) (30.1.10b)
0=m,d,(v) (i=1,2,3) (30.1.10c)

If electronic mass m, is negligible, approximate translational Eckart conditions(30.1.10c) may be used.
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The translational conditions (30.1.10b) fix the center of total mass (nuclei and electrons) at COM origin of

the body frame. Body coordinates x(v) and x(g) can only change in such a way that the molecule as a whole does
not translate. However, the rotational conditions (30.1.10a), like approximate translation conditions (30.1.10c),
involve only the nuclear displacements. The displacements di(v) are constrained to change in such a way that no
overall rotation of the nuclei occurs in the body frame. Together the Eckart conditions provide six independent
constraints on the internal coordinates. The resulting loss of six internal degrees of freedom is supposed to be
made up by three overall translational coordinates, and three rotational coordinates such as Euler angles for the
nuclear frame. Note that the rotational conditions do not prevent the internal coordinates from having rotational

momentum. While the mass-weighted sums of a(v) x d(v) or a(v)Xx x(v) are constrained to zero, no such

constraint exists for sums of x(v) x x(v) or d(v) x d(v) present in (30.1.8). Electrons are treated differently. We

do not restrict rotational motion and momentum of the electrons except possibly by (30.1.10b). Their spin is
modeled by add-on terms later.

Let us write the kinetic term with nuclear and electronic parts on separate lines.

2T = m,d, (v)d, () +2m,€,,0,d,(V)d, (V) + I} O,

L.

(30.1.11)

+mr () (8) +2me, or (e (8) + 00,

The last term in (30.1.7) is rewritten using the tensor identity €,,e,  =8.5,, — 9,0, to give

i7" mn

Ef € i @D,X, X, 0 = O.X,X,0, — O.X,X,0;

i*nm=7j i'nntTi i

30.1.12
=w, [X,,Xndy — XX, Ja)j ( )
The resulting nuclear and electronic inertial tensors are defined as follows:
% =m,[ x,(0)x, )5, - x, (V)x,0)] (30.1.13)
I, =m, rers,, ~ r@©r@e] (30.1.14)

1.Normal mode transformation: Genuine vibrational modes

Cartesian displacements dx(v) relate to normal coordinates {si, s2,... s,} thru linear relations (30.1.15a) to
di(v)(summed over k(v)) or vice-versa (30.1.15b) (summed over n). Normal XY3 mode coordinates are found by
Ch. 15 symmetry projection (Appendix 30.A) and combined to satisfy Eckart conditions (30.1.10). For example,
a Csy projection (15.3.5) shown in Fig. 15.3.2 helps to label XY3 modes in Fig. 30.1.2 that shows the
displacements di(v) of a particular n” mode or n” column of the B/ matrix. Only genuine modes (s thru ss)
satisfy Eckart conditions (30.1. 10) by having no rigid z-rotation or rigid translation. The B~/ and B-matrix

relations also have non-genuine (ss thru ss) shown in the next Fig. 30.1.3.

d,(v)= B, s, (30.1.15a) 5,= B, d(v)  (30.1.15b)
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)

M (ss=1)mode

Fig. 30.1.2 Model XY3 molecule Cartesian and genuine in-plane normal mode coordinates.

X-mass m, central Y-mass M, and total mass p=M+3m determine relative displacements of m and M in the stretch

E E
modes (s, =s',s, =sy1).
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2.Non-Genuine modes: Rotation, translation, and tunneling

Non-genuine z-axial rotation mode (s, = ™) and (x,y)-ranslation modes (s, =s'1,s. = s"1) are shown in Fig. 30.1.3.
Classical Eckart-allowed motion has zero rotation and translation coordinates ss through ss. Zero frequency

motions are purely quantum. A mode is “genuine” if it has non-zero classical frequency.

This XY3 model has so far ignored four dimensions of out-of-plane z-motion. One of these may be a
genuine vibration and that is the “inverting umbrella mode” (s, = sy . NHsso is low frequency (24Ghz) quantum
tunneling and so, perhaps, it is non-genuine! The other modes are the two (x,y)axial rotations (s, = \\/_ ,Sy =S, "1y and
a z- translation (s, = "1, all genuinely non-genuine. NH3 maser action is due to non-genuine modes. So is most of

a genuine 1970-2000 laser renaissance of molecular physics.

(a) Non-genuine XY in-plane modes
A y-rotation »0) £ x translation E -y translation
@1//#3 ! Y

~

VT (S ])mode IN3 \\\(97=1 )mode (S8: 1)mode

e
N3
(b) XY, out-of-plane modes
A y-z-translation
—— (5 ,=1)mode .
/ 9::)::;;— E ;-x rotation E -y rotation
O f (% =1)mode (s;;=1)mode

T 6 (i R Q T
,z-“umbrella” QQQ 0 98 O

Q(slz—l)mode

(5 (may be genuine)

Fig. 30.1.3 Non-genuine XY3 modes.(a) In-plane translation and rotation (b) Out-of-plane motion.

3. Kinetic terms of Lagrangian: Rovibrational Coriolis &-coefficients

The first kinetic term in (30.1.11) is transformed by substituting (30.1.15b) into the following form.

m(v)B;! =G's §

d (v)d, (v) = B! bS8, =G S5, (30.1.16a)

k(v),a

Here the G-matrix is an inverse mass matrix defined of B-!-transformed mass matrix.

G'=B"xmxB"', G=Bxm'xB"x (30.1.16b)
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The G-matrix for XY3 internal s, coordinates (30.1.15) is diagonal with the following values.

_E _E _E _ oAy
—st s3—syY s4—sxXY S5 =5 -0

|
!
111]1:
|
|

_E _E
S4—Sx = S4—Syﬂ|

1
m m 3umM — 3umM

1 1 ‘
i u

m

The G-matrix is symmetric according to its definition (30.1.16b) but not necessarily diagonal.

G' =G (30.1.17a) G,=G,  (30.1.17b)

Substituting of transformation (30.1.15b) into kinetic energy cross term (30.1.11) gives the following.

2mveznkw»dn(v)dk(v) = 2mvgmkthn(v)llB;(lv)b a b (30 1 18)
=2 élllb 5.8 B

a'b
This defines Coriolis &, xi-coefficients as follows.

v&ink

&, =me, B, B, =5, (30.1.19)

Later we see that coefficients £, give the m”-BOD-component of angular momentum that two modes s, and s

can make. XY3 modes yield two cases with non-zero z or 3?-BOD-component.
Er=m=-E}, &,=0=&;, &5 =3wmM =-E;, (30.1.19) exampte-a

Angular momentum J; transforms like C3y symmetry 4>. Products (24.2.40) has 4> contained in £ ® E

fl>‘\> J—‘ >

vibrational § , components. Coefficients involving rotation-translational motion are as follows.

E' )and A, ® A,. E® E applies to genuine modes of XY3, and 5o (30.1.19) example-« has all

1
(2

E.’16 =m, &»48 = &75 = 3(M — m)’ &78 =U (30119b) example-b
Eckart conditions demand s, = s, = 5, = 0 so these do not contribute to (30.1.18). From (30.1.1) and (30.1.11) we

arrive at the following Lagrangian for an arbitrary set of mode coordinates.

L=1G,s.s +w,s,$ +31 00,
2o v (30.1.20)

+5m i (€)7i () + wm,eE,,1, (€)i () + 35 I 0,0, = V(s,r)

Potential V(s,r) includes electrostatic nuclear-nuclear (V,), nuclear-electron(Vs,), and electron-electron (7,,)

coupling independent of velocity s, . The Vs matrix is diagonal for eigen-modes g.=tus». Spin and orbit

interactions may include velocity and spin dependent terms that will be treated later.
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30.2 Hamiltonian description of molecular motion

A Hamiltonian is a function of coordinates and momentum p :% . Canonical electronic momentum is

pi(e)= =m,[F,(e)+€,.07,)]. (30.2.1)

o, (€)
Note that p(&) has the form m,v where v=rf (BOD)+®xr equals lab measured velocity according to (30.1.6).

Canonical vibrational momentum has an analogous form.

])b = g_T = Ga_[:Sa + a;bmisa (3022)
Sh
Canonical rotational momentum has both electronic and nuclear parts to be sorted out shortly.
T .
J, = T _ o +&,s,$,
Jw, (30.2.3)

+ I;a) ; +mET, (&) (e)

a. Canonical angular momentum: Coriolis {-coefficients
Velocity needs to be expressed in terms of momentum in order to derive a canonical Hamiltonian. The electronic

velocity is as follows from (30.2.1).

r.(&)=p(&)/ m,— &, 0r, () (30.2.4)
The vibrational mode velocities are given from (30.2.2) by the following:
s, =PG,, — é}cha)isf (30.2.5a) $,=PG,, - wlls, (30.2.5b)

Here we define reduced Coriolis {' zeta-coefficients . (These relate to 2"?-kind Christoffel factors.)

{,=6G,=¢,B. B (30.2.5b)

ink " i(v),a n(v),b
Choice of dummy indices have been made to facilitate later substitutions. Note that {’, = -¢; unless the B-matrix
is orthogonal. Also, note that the reduced coefficients for the XY3 example are mass-independent.
1=03, =00 =0s=-C3,, 0=0),=... (30.2.5¢)
Electronic and vibrational velocity expressions (30.2.4-5) goes into rotational J-momentum (30.2.3).

_ N i j
=10+ & nSa (Pgng - ijdbsd)

(30.2.6)
+ I;wj +me, 1, (e)(pk(e) /m,~ szjmkrm(e))
Using (30.2.5b) gives another form.
J; = [l.l.v—éé &/ 55,0 +C¢j; s, P
( i~ Sab>db d) J gag (30.2.7)

+ (1; = ME 1 E L (O, (8))60]. +eg,,1.(e)p, (&)

The first two terms of the electronic contribution cancel according to (30.1.13,14). Two of the other terms
represent total angular momenta of vibration L'” and electrons L™, respectively.
Lr=¢s B (30.2.8a) Lf’e =¢, r(e)p (e) (30.2.8b)

ink n

Electronic angular momentum is a sum over electron label € of r X p terms.
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Let bare-rotor-R inertial tensor /1 be the first two terms of the vibrational part (30.2.7).

Iif = I,;],Y - C;bé;bsasd
= 1) ~(€00B,tuy.a My Biioy ) (€ Bt aBo s ) By (AIB, g, ()
i inkPn(v).a" v Pr).b J\ € jmt Pm().aPp.ecuy )\ Pa.p)®p d.qm@q 71
Generally, the sums are taken over a// mode indices a, b, and d including rotation and translation.
However, terms with a >5 or d >5 are zero according to Eckart conditions s,=0 for @ >5. The sums simplify as
follows, where (30.1.12-13) are used again.
R N

Iy =1 =M€, 0,00 O Omw.aon @y (M, (1) (30.2.9)

= mv [ginkgjmk‘xn (v)‘xm (v) - einkgjmkdn (v)dm (v)]

The equilibrium-displacement vector sum (x =a+d) of (30.2.6) is then inserted to give a rotor inertia tensor that
varies linearly with displacements d(v) from equilibrium. The rotational Eckart condition (30.1.9) is used to
equate the sums of @, dw and an d, . Here [ ; represents the equilibrium inertia with 4 =0 .

If =my€,.€,.]a,a, ) +a,w)d,V)+d,(V)a, )]

L

. (30.2.10)
=1I; +2m.,,.E,,a,(0)d, (V)

v~ ink™ jm

Finally, the total angular momentum follows by combining (30.2.7) through (30.2.10).
_ ib l
Jm—Rm+LW + % (30.2.11a)

Here the electronic and vibrational terms are given by (30.2.8) and the rotor term.
R =I%® (30.2.11b)

mn n

The rotor term varies linearly with normal mode displacements d (1) )according to (30.2.10).

1. Legendre-Hamilton-Poincare form
The above relations can give the classical Hamiltonian function H = Zpg — L in Poincare form.
H=Ps5, +p,(e)i(e)+w,J,—L=T+V (30.2.12)
This is a general result whose verification for this particular case is left as an exercise. Instead, we shall derive H
directly below. First the terms of 7 in (30.1.20) that are quadratic in the velocities are converted to the following

functions of momentum using (30.2.5) and (30.2.6). Vibrational terms are as follows.

1.+ i -1 J
Gabsasb - (l)cha _achca(Disf k’vab Q)gng _Cdbsd('oj)

: o (30.2.13a)
=Gy b,F, =208 s B, + 05,08 ,5,0; %
The electronic terms give the following.
m,i ()i, (&)= m,(p,(€)/ m, - &,,07,©)(p.(e) m,— €,,0r,()) (302.13b)

=p.(&)p,(&)/m,-2w.¢E,, 1, ()p.(E)+wm,E, E jmkrn(e)rm (&w ;

There is a similarity between the quadratic terms above and the remaining linear velocity terms of 7.

i . _ i i~
0,&,5.8, =0{,.5.P, — 0,6,,87,5,5,0; (30.2.14a)

ag®a

w,meE, 1, (e (€)=weE,, r,(E)p,(&)—wm,E, E ikl e, (e)w i (30.2.14b)

L.
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b. Wilson-Howard-Watson Molecular Hamiltonians
All kinetic terms are collected to express 7 in terms of canonical rovibronic momenta R, P, and p.

T= éGabPuPb -, gfg f + éwigi / S S wA + %I;VU)IU)I
+a)CasaP - 0 lss o
‘ e (30.2.152)
+3 m pk (g)pk (8) o gmk n (g)pk (8) +s mewzgmk Jmk n (8)}" (E)w +s 2 Il]a)la)

+we, r(€)p (&)— mwe, €. 1 (), (e)w

i ink n e i ink ]mkn

Cancellation simplifies 7 particularly for electronic terms. Then rotor inertia matrix (30.2.10) is used.

T =41 -&.L,5,5,)00,+1G, BP +Limp ()p, (&) (30.2.15b)

T=1Ifoo, +1G, PP +Lm p,(e)p,(e) (30.2.15c¢)

Finally angular velocity o is expressed in terms of nuclear rotor momentum R by inverting (30.2.11b).
The classical Wilson-Howard-Watson molecular Hamiltonian follows if we add a potential V(s,r) to T.

=T+Vl|s,r 2.16a
H=T+V 30.2.16
= LRUSR, +LPG,P, +imp(e)p &)+ V(s;r)  (30.2.16b)

=1/ -LP - L)l (1, - L - L)+ KE™ +  KE'  +V(sr)  (30.2.160)

Here the inverse rotor inertia matrix uif is defined in terms of the original inertia tensor /v in (30.1.13).

-1 .

R\ _ ;R _,N i ]
=10 +2mg, €,.a (V)d, (V) (30.2.17b)
=mg,£,.|a,Wa,()+2a,)d, )] (30.2.17¢)

The form (30.2.17c¢) requires (m,n)-sums over all modes including pure rotation and translation.
For some time the quantum versions of (30.2.16) were thought to be even more complicated. Then, Louck
and Watson showed that the quantum molecular Hamiltonian could be written in the same form as the classical

Hamiltonian (30.2.16) if one includes a tiny energy shift term.

U=—(n*/8)Tracep” - (30.2.18)
It is difficult if not impossible to observe U so we hold off discussing it. Instead we consider dynamics that arise
from Hamiltonian (30.2.16) when quantum operators replace the classical canonical variables. However, the

underlying LAB to BOD rotational relativity behind the replacement of rotor KE & R* by (/- L)* in (30.2.16) is

anything but trivial. Rather it is analogous to the replacement of KE ! p* by .1 (p-e4)* in quantum

electrodynamics where field is a momentum boost (Recall Sec. 16.)
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1. LAB and BOD quantum angular momentum operators

A most important point concerns what glues an entire molecule together to allow the concept of a
molecular frame. It is assumed that electronic bonding overcomes inter-nuclear repulsion and provides a stable
effective adiabatic potential energy that has an approximate quadratic harmonic dependence on the nuclear
coordinates s, . Such a V(s,)1s called a Born Oppenheimer Approximate (BOA) eftective potential and will be
discussed at the beginning of Sec. 31.

Commutation of BOD-based momentum operators J; =—-J; (23.1.20b) adds a (-)sign to that of BOD
defined generators J; of R[@]= ¢"1'® or the standard LAB defined generators J; of R[@]= ¢ "€ .

[J..J; |=—ie, J.  (30.2.19) [7..T; |=+ie, J.  (30.2.19b)

R[®] has the same group multiplication rules as R[®] as doJ and J yet the two groups commute. A molecular
BOD turning anti-clockwise relative to LAB has positive <J :>=m>0 but negative <.T _ >=71 <0 since BOD sees LAB
turning clockwise. The (-) definition J; = -J; makes signs come out the same.

The electronic momenta (30.2.8b) satisfy the usual LAB commutation relations as long as the electrons
are constricted by BOA to be defined in the BOD frame (that they are holding together!).

|1 = ey 1 (30.2.20)
However, the vibrational momenta (30.2.8a) do not necessarily satisfy standard commutation relations. As a

result the vibrational momenta can have non-quantized expectation values resulting from an incestuous

entanglement of rovibrational modes with the rotor on which the vibrations are based.
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30.3 Applications of molecular Hamiltonians

Conventional expressions for the molecular inertia matrix such as (30.2.17a) are sums over the genuine
vibrational modes, only, and give a different expansion than (30.2.17¢). Choosing orthonormal mode variables g,

as shown next, gives a unified definition (§ = ) of Coriolis constants.

a. Orthonormal mode coordinates.

An orthonormal mode coordinate system is more convenient for quantum purposes. The objective is to simplify
the vibrational kinetic terms.

Lm,d (0)d (V) =18, (V)8,(v), where: 8,(0)=m:d (V) (30.3.1)
Mode coordinates s, in definition (30.1.15) become an orthonormal set g, .

6,(v)=|a,j)]q, q, =[b.k()]6,(v) (30.3.2)
The transformation is orthogonal.

[a,jW)][b,j()]=36, [a,j)][a k()] = 8,04 (30.33)

Orthogonality (30.3.4) means the kinetic term is preserved if the transformation is time independent.
30,(0)0,(V)=34.4, (30.3.4)
Comparing (30.1.15) and (30.3.1) relates the two transformations and simplifies preceding quantities.
B} =[a.jv)]/m, B, ., =[b.k@)]{m, (30.3.5)
A mass-orthogonal Eckart conditioned mode transformation such as B-/ of (30.1.15)y is easily made into

an orthonormal [a,j(v)] matrix by multiplying row-j(v) of B-/ by Vmy according to (30.3.5) and then normalizing
each column-s, to give column-g, of [a@,j(V)] as in the following example.

5,(1) S N (O N q,
5,(1) 0 0 £ o £ L o Jm 4,
§(2) | |2 E -4 Jx o -4 Jr o0 7
6,(2) o4+ 2 0 2 o0 2 g 3036
§(3) == % 1 JE 0 1 Jr 0| |g a
53| |-+ &+ £ 0 JE =E o0 2| g
5,(4) 0 0 0 = o o JL o 4,
5,(4) 0 0 0 0 = 0o o JL| |g4

Each row (or column) of a [b,k(v)] matrix like (30.3.6) has unit norm and is orthogonal to the others.

Orthonormal coordinates make equal Coriolis coefficients in (30.1.19) and (30.2.6b).
&, =¢, [an@)][bk)]==-& where: & =( =-( (30.3.8)

For the XY3 example we have the following.
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3 _ 3 3 _n_ 3 3 _q_ 3
Gy =—1==035, §y=0=-0, {is=1=-C,
3 _q1_ 3 3 _n_ 73 3 _q_ 3
§6l _1__4’32’ C48 _O_Cw C78 _1__§87

So far only the kinetic%qaqa terms (30.3.4) have been simplified. If the electronic bonding forces can be

(30.3.9)

approximated by harmonic potentiallk ,q ¢, then that also needs to be simplified by normal coordinates On=qa
(a|n) that bring the harmonic part of the potential to diagonal form %winz as follows.

KE"? + pEV? = %qaqa + %kabqaqb +...anharmonic q-terms (30.3.10a)

= %QaQa +%a)§Q§ +...anharmonic Q-terms (30.3.10b)

Examples for XY3 and XY vibration modes are given in Appendix 30.A. and used below to derive centrifugal

and Coriolis effects for various models including, first of all, a simple rotating spring-mass.

b. Centrifugal and Coriolis effects
1. Elementary spring-mass model

Hamiltonians of 4®"-power J:4, J,4,..terms model deformable rotors that change inertia more or less due to
centrifugal force. An example in Fig. 30.3.1 is a single rotating mass m held by a spring k = ma)f . The rotor has

vibrational kinetic and potential energy KE, and PE, plus rotational kinetic energy RE.
E=KE,+ PE, + RE,

162 (30.3.11)

Rotational inertia/=mr®=1/y , angular velocity 6 = ® ;> and momentumJ=/6 = lw, involve radius r that grows

. . _ 2 _ . _ 2
from rest value o until spring forcerp”.n ¢ =M, (r=ry) cancels centrifugal force Fpirig = MO .
2
+F =0=mw’r—mo>(r—r,) implies: r=r O (30.3.12)
spring centrif — ¥ J v 0 plies. -0 CO2 0)2 =
v YT

Centrifugal equilibrium » blows up as rotation ratew, nears vibrational frequency . 13 derivative of effective

potential PE +RE  in (30.3.11) is zero at equilibrium radius r or stretch distance d=r-r, .

J? 9 J? ou

0 ) u . .
—(PE +RE)=0= -7+ —— lies: d=r—r,=——— 30.3.13
ar( ) 1) ma;, (r—r,) > implies r—r, — 5 > ( )

We assume the angular velocity @, varies inversely with 7 so that momentum J is conserved as it must be since the

central spring force exerts no torque.

The inverse inertia I=1/uis approximated for small stretch (d=r-r,<1) and (30.3.13) is inserted.

N ou 3 ou J? ou
u=p, +§(V—VO)+...—‘LLO —gzmw‘% g'f' (303143)

This with (30.3.13) is inserted into energy expression (30.3.11) to approximate the effect of momentum J.
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2 2
J
E:p—v+ﬂco2(r—r0)2 Ll
2m 2V 2
2
2 2 2 2 2
J J J J
B m e M| Hl on wr .. (30.3.14b)
2m 2 7 mef or 2 or 2ma)§ or 2
2 4 2 2 4 2
LS O S A (3
2m Smwf or 2 4ma)f or

This reduces to a simpler form that lends some insight into centrifugal distortion energy.

2 2 4 2 2 2
J J J
p=br Hol [a—“J b=l Bl Mgy (30.3.15)

2m 2 8 ma)f or 2m 2 2
The rigid rotor energy is perturbed by a J*/#¢ term that reduces total energy by just the amount of work needed to
stretch the spring by distance d in (30.3.13). The spring gains PE=kd?/2 the whole system loses twice that in

rotational kinetic energy by expanding to radius r=ro+d for a net loss of kd’/2=mw,’d*/2.

m \\ \
kv \ )\ \
¥ v (J=0) \\
\\ ‘\ potential
‘\ \\ V :/c‘,,d2/2
‘ . .
| minimum
|
a’»(a’)l at r, <4, >0
7 J>0) effective
0 potential

drops by
kvd2/2

|
| |
| ,’ effective
I potential //
" minimum at r =r, td.
Fig. 30.3.1 Spring-mass model for centrifugal stretch of a model vib-rotor showing effective PE shift.

Imagine a rotor of energy E is held by a wire at its (J=0)-radius ro but has momentum J>0 tending to pull
it out to radius r=ro+d. Cutting the wire changes neither energy £ nor momentum J but lets mass m begin

vibrating around its new equilibrium of r=ro+d with an amplitude +d between ruin=ro and rmaw=ro+2d.

2. Polyatomic molecular distortion: XYs and XYs examples

Multi-mass molecular Hamiltonians have vibration normal coordinates ¢ u and BOD momentumJ_. .

1 1.2 1
H :fp‘up# +jw'uq'uq‘u +§Jﬁ1/‘£n7lﬁ‘]ﬁ (30316)

Each normal coordinate has an equilibrium shift dq i like the 4 in (30.3.13). Note:gq (u-I):g;:O:%; -I+u~g; .
ol ol
! R S N (30.3.17)

6q :——J, —
M 2 “m n 2 “m mn np* p
20, Bqu 20, aqﬂ
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=1!

Inverse inertia is represented by a 3-by-3 matrix p_. =1 _ inverse to the inertia tensor /- . The resulting effective

Hamiltonian analogous to (30.3.15) involves a 4#-degree J-tensor sum over all modes q, -

2
JeJoJ _J- O opL (,6q9,)
H=H,— kg;};’ s qué aqm” =HO—% where: H,, zépupu +%an#£7,0,7)],7 (30.3.18)
u H u

Mode gu-sums are discussed below. However, for high symmetry molecules, the allowed J-tensor forms
can be deduced by symmetry alone. For cubic, octahedral, and tetrahedral molecules CsHs, SFe, and CFa4,
respectively, there is only one linearly independent 4%-degree J-tensor or (xyz)-polynomial. Powers J# or 7 are
spherical scalars that expand into non-scalar fensors linearly dependent on scalar 4.

rt=0? =P+ + ) =yt g 20y H a4 ) (30.3.19)
An octahedral (SFe-like) molecule uses the first tensor. Cubic or tetrahedral molecules use the other.

Hocwhedral — g1, (J3 + 05 +J3) (30.3.20a) H = Hy +1,,(J3J3 +J3J% +J3J3) (30.3.20b)

The spherical scalar term H, = BJ 2y to] *hasBJ? = B(J% + J% + J%) of a rigid spherical top H**", but each RES has
an octahedral or cubic shape, respectively, as shown in Fig. 30.3.2(a) and Fig. 30.3.2(b).

T =J1+75+75 T3P ()= J2Z + 33+ J3)2

(30.3.20c)
= J*[cos* }/sin4 +sin” ]/sin4 +cos* 3] = J*[cos® 2y sin® 3 +sin® 23]
The Hamiltonians (a) and (b) of (30.3.20) and RES (a) and (b) in Fig. 30.3.2 are related in (30.3.19) by a

+sign since #22 is just —2¢4 if scalar #y is adjusted accordingly. Nevertheless, distortion of an octahedral SFs

(30.3.20d)

molecule described by 7 is quite different from a 7?>% distortion of cubic CsHg or tetrahedral CFa.

The octahedral RES has a minimum when the J is near one of the eight (111) axes of trigonal (3-fold)
symmetry. Whirling about (111) axes has maximum effect on octahedral molecules since they have relatively
weak bending bonds that are affected by centrifugal force due to (111) rotation that spreads the six arms of an SF¢
molecule relatively easily. Thus (111) is in a valley in Fig. 30.3.2(a).

However, a rotation about (100), one of six (+x,+y,+z) axes of tetragonal (4-fold) symmetry, only affects
radial bonds normal to these axes, and those stretch very little due to the high radial bond strength. Thus (100) is
on one of six octahedral RES peaks in Fig. 30.3.2(a) where SFs is least susceptible.

It is vice-versa for cubic CsHs or tetrahedral CF4 molecules that resist distortion while rotating on any of eight
(111)-axes of trigonal (3-fold) symmetry but are susceptible to rotation on any of six (£100), (0£10), or (00£1)
tetragonal axes that bend bonds and thus lie in six RES valleys of Fig. 30.3.2(b).
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(Cl) Hoctahedral =BJ 2+l J4+t4(JT4+Jj4+J§4)
(b) chbic :BJ2+l0J4+t22(J72J§2+JT2J§2+J2*2J§2)

J(111) affects

centrifugal

J(100) affects
centrifugal
stretch of XY

X=

J(111) affects
centrifugal
stretch of XY,

orXY

Radial bondsiieszstant Bend bondvlcomplzam

Fig. 30.3.2 Centrifugal 4"-degree sphere-top RES. (a) octahedral (SFs) (b) cubic (CsHs) tetrahedral (CF4)

J(100) affects
centrifugal

3. Elementary derivation of SFs distortion parameters.
Hecht model 4"-rank distortion operator for the SFs molecule are discussed in Sec. 25.4 (Recall (25.4.18).) and
above. In Hecht’s notation the operator and its parameters are written as follows.

H =101, (7 + 1+ 72 =2 ) +1,,,° (30.3.21)
We now derive the parameters #p40 and #p4+4 in terms of SFe vibrational mode frequencies.
The distortion Hamiltonian (30.3.18) depends on a sum over genuine modes of the squares 5‘1;21 of
distortions Eq“ as given by (30.3.17). The key quantity in the distortion expression is the derivative with respect
to gy of the inertial tensor Jj; or its inverse W, . Mode tensor derivatives g—‘; are evaluated at the equilibrium

positions (g 4 =0) for the molecule and therefore must be invariant to its molecular symmetry group that is

octahedral Oy, for SFs. Only modes qA‘g , q,E o qf ¢, q? “, quzg , and q?g that transform like components of an

irreducible symmetric 2™-rank spatial tensor L or /; may thereby give non-zero g;‘ .
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Symmetry selection of non-zero 3—5 components is the same as selection for non-zero derivatives aa—‘j; of

Raman polarizability tensors, only Raman-active modes affect inertia to 15 order. Each component of an allowed

Aig, Eq, and T2, mode shares its coefficient 4, E, or T with others of its kind, as follows.

—4/\3 0 0 _E/6 0 0 0 0 0
:—“A= 0  -4f3 0 ,;—‘]‘f 0 -EJ6 0 ,aa—“T=o 0o 1/\2
9 0 0 —a/3| % 0 o 2E/N6| " o T2 0
E/N2 0 0 0 o0 T/\2

Mo —pzool E_| o 0 0 [(30322)
% | o 0 ol % |r2 o o
0o T/N2 0
a—“r= /N2 0 o
9g;3 0 0 0

Coefticients 4, E, and T are to be evaluated by considering the effect of the 4;,-mode component, one E,-mode

T . .
component (say, q,Eg ), and one T»-mode component (say, ¢,*¢ ) on inertia tensor .
One must take care to use the mass normalized mode coordinates for the potential form %wiqz in

(30.3.16). The units of g in (30.3.1) are m- \/E . The radial coordinate of the F-atoms with mass m for the qA'g

mode in Fig. A.2 is a+¢* /\6m . (Here (a) is equilibrium radius.) The q,Eg mode has a+2q]Eg /N12m for polar

atoms and a— qlE ¢ /N12m for equatorial atoms. The tangential displacements of 7> modes are q3ng /N4m . The

inertia tensor derivative for each mode then follows.

oy _8am Oy _ dam O, 4dam (30.3.23)

og” _\/@ , aqlE _\/12m ’ 8q3T - Jam

Inertia is /; = 654a2m . The relation p-I=1 gives the u-derivatives in (30.3.17) by gq (pvl):O:g;L -l+u~§; .

oy, -1 oy, _ -l My 1
an 2a3\/6m3 a‘]lE 8a3\/3m3 a‘]gr 8a3\/ m

The parameters A4, E, and 7 in (30.3.22) are then given.
-1 -1 -1
A:[2a3\/2m3} , E:[4a3\/2m3} , T:I:4a3\/2m3] . (30.3.25)

Centrifugal distortion due to angular momentum (J/,J,Jz) is given in terms of 4, E, and 7 by (30.3.18).

(30.3.24)

8q" = (4120’32 + 2+ 2] 8ql =(T /0] V2)(4,.)
84 = (B 2026)( 12+ 72 -272)  8q] =(T ) 02N2)(,0.) (30.3.26)
84 = (E 1 20332)(J2 - 2] 5q7 =T @3N2)(7,7,)

Combining these yields the total distortion energy from (30.3.16b).
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2 2 2 2
pen (£ T [ L E T L (o307
8w, 8(0T 7 240’ 240)E 8coT 7
The anisotropic term involves E; and 72, modes only. Combining (30.3.17) and (30.3.19) gives
*  E? 1 11 111
10 [044 = 7~ 2 = [—2——2] [———2] . (30328)

8w 8w 256m’d®\ 07 o | 41 :

This should be compared to the measured SFe rotational constant (0.091083 cm™) in (mks) energy units.
A
B 21 B 8ma’
The radius of SFs deduced from this measurement is approximately a = 1.58 x 10-' m. (Fluorine atomic mass is m
= 19(1.6 x 10?7 kg.) The distortion constant has an 77 scale factor to match J*.

4 2 2
1014, = —2 {h T J:z#[i—ij. (30.3.30a)

=1.811072* Joule (30.3.29)

= (0.091083 cm™ Ya(J - sec)c —
100sec

4(21)3 hzw% hza)fY s% 8129
This formula was given first by Berger.
The wavenumber or energy values for the £, and 72, fundamentals, as given in Appendix 30.B, are (E,:

644 cm™ or 1.28:10°° J; Tz 524 cm™ or 1.04-10-° J) and give the anisotropic centrifugal constant.

3
s = | L L 1237410 Joute = 5.65Hz (30.3.30b)
Sl e

The t944 values deduced from experiment are 5.7 £ (.7 Hz by Borde and 5.44 + 0.5 Hz by Patterson and Herlemont,
et al. The tiny value of about 56 Hz for 10 ty4. is multiplied by J#. Hence, for /=100 this leads to tensor splitting on
the order of half a giga-Hertz. We leave as an exercise the calculation of the corresponding centrifugal atomic
distortions from (30.3.26).

Spherical tops require dipole 7}, vibrational excitations to get 1%t order optical transitions, and these v3 and
v4 modes around 615c¢m™ and 950cm™! give much greater centrifugal and Coriolis splitting parametrized by larger

and more numerous constants BC, #224, and so forth that fit the spectra.

4. Elementary derivation of SFs Coriolis parameters.

Molecular total angular momentum J=R+/ and its z-components J.=R:+/; has integral quantum values
mh but individual rotor R: or vibronic /; may have continuous expectation values m{# depending on Coriolis
coefficients ( that, in turn, vary with the summed areas of classical oscillation paths. Only vector or 7;{x,y,z}
symmetry modes V3 and V4 of SF¢ can contribute1s order vibration angular momentum.

Here we consider Corolis effects due to vibration angular momentum of v3 and v4 modes of SF¢ derived
in Appendix 30.B. Angular momentum of a Bohr circular orbit can only have integral quanta +m# while a 2D or
3D vibration may have a variety of elliptic polarized orbits noted in Ch. 10. These take various shapes ranging
from C-type (circular polarized) oscillation with integral quanta +m# , to A or B-type (linear polarized) oscillation
with no angular momentum at all.

It is convenient to use normalized classical mode coordinates ¢”. Setting one to unity (¢¢ =1) and the

others to zero gives atomic displacementd“(v) = (d;, d“ ,d?) of nucleus-v by (30.3.6).
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d(v)= B, , = +Jm,la.jw)]
A Coriolis coefficient f;b from (30.1.19) or{ib from (30.2.5) depends on a pair of modes ¢“ and ¢°.
& ==& =me  di(v)d,(v)=m, 1d (L) xd (V)]

v znk
=¢, [a.n) ] b.k@)]=¢
For normalized modes, the § or { coefficients are equal to the sum over nuclear (v) elliptic path momentum due to
z-rotationally polarized z-projected vector mode combinations (x+iy). Mass normalized coordinates in (30.3.4) are
subject to the normalization relations.

N 3 a s
33 m,ldf ) =1
v j=1
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Appendix 30.A Symmetry defined vibrational normal coordinates
A.1 C3y defined coordinates of Y3 and XY3 molecules

Hartercss—Learnit Unit 10 Molecular Dynamics

The Dj -matrices and P -projectors of trigonal symmetry Csy are given in Ch. 15 of Unit 5 and applied to
molecular orbitals of a Y3 structure. The same projections help to analyze of molecular vibrations.

Two sets of DﬁC -matrices are given. One set (15.1.8) has diagonal 120° rotations Cs(r,r?).

8= ! r r’ i i i
A (o) =
D (g) - 1 1 1 1 1 1 o
E 1 0 E 0 e 0 0 e 0 e 0 1
D!, (g)= [ ] § + 2 2 ( J (15.1.8) repear
393 0 1 0 8+ O g_ 8_ O 8+ 0 1 0

Another set (15.1.12) has diagonal x-plane reflection Ca(is). (They share the same 1-by-1 D" and D™ .)

- 2 . . .
g= 1 r r i iy i
1

(g) = 1 1 1 1 1 1
(g)=| 1 -1 -1

1 1 -1
D" (g)= (1 0] “172 =2} (-2 Var2) (12 B2 (-2 VB (1 OJ
o 01 V372 —1/2 ) \Br2 —172) (32 2 ) (Br2 172 ) \0 -

The standard projection formula: P* = (¢* /°G) 3, D! (¢) g repeats the following from (15.1.15).

mn

(15.1.12)

PA1 = pA1 1 PAI = =1+r+r2+i;+ir+i3)/6 (15.2.150) repeat
pPA2 = pA21PA2 = =A+r+r? -i; -ir- i3)/6 (15.2.15b) repear
PE_ = PE_1PE, = =Q21-r-r?-i; -iy+2i3)/6 (15.2.15¢) repear
PEyy - PEyy 1 PEyy = =Q21-r-r’+i;+iy-2i3)/6 (15.2.15d)repear
PE,, = PE, i) PE,, =DE (i) PE,, = =(01-r+r2-i;+iy-0i3)/4 (15.2.15€)repeat
PE, = PE, i, PE,, =DE (i) PE,, = =(01+r- r?-i;+iy-0i3)/4 (15.2.15f) repear

This gives modes for a Y3 ring of XY3 in Fig. A.1.1. (The X-atom adds another vector E-doublet.)

(A=pe=(1 1 11 ) T

- - xx [T /T /T w/l
A A
< 2=(pVe=(t 1) POV P2 [I0Ve PE[N PEI PE[Vs PE IS
<fx —(PEN =(2 1 e 2)e 1 1 2 0 0 2

| | . 1 . .
<fx =<1 ng/; =(O 1 1 bl O)/2 IR RIS I N U TR A O A 0 O B O B I N
<fy =(pESs =(0 -1 1 a1 o) 1 A 1 A 1 N B -11 2’ 1 Vi
(E]=Qpis =(2 -1 a0 11 2)ie | ; 5 0 0 5

Model P]‘?,‘c -symmetry configurations in Fig. A.1.1 have LAB-C; sym_mefry-(j =xor y) that is even (x) or odd (y) to
LAB x-plane is-reflection, and BOD-C, symmetry-(k=x or y) to local i, i;, or i. BOD planes.

There are 4=2° projectors for two-dimensional E-symmetry and one each for 4; and 4> symmetry, making
six P in all, and that is the total number of symmetry operators needed here. (Order=°C3=6.)
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< |#,\<"2|Y> (a) XY; Symmetry-defined
r
- (4)coordinates
2
b < AY)y-(d,(1)-d(1)N2

=d,(4) oyl Y)=(d (1) +d,(1))N2

(0 -,
A |Y)
(b) Symmetry-projected XY ; modes

P03 LIY) 0
/ -1\ (r [Y) / i
-1 (r2[Y) BE .\ -
] e Pyx(Y)>\-

scalar
base 0
ING6 x-vector A1 A2 Ty—vector
( bases -
{ — >
4,
pseudo-scalar
base
IN3
@

Fig. 30.A4.1. Vibration coordinates for Cs, symmetric XY3 molecular model.

20
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Vibration matrix and normal mode eigen-solutions

Spring-mass models of symmetric molecular vibration involves a Hooke matrix K that is reduced in stages. From

the following 1% stage primitive energy form, we seek its analytic eigen-solution using symmetry.
E=Jm, %, (D)x; (A)+ Ky, X ()%, (V) (A.1.1a)
The 15 stage k# , for a coordinate pairxj(,u) and x, (v) of mass m, and m, is a sum of each spring constant k#v
jk
hooking m, to m, times direction cosinek uv-&j(u) andk W-ﬁ (V) of unit k v with &j(,u) and X, (v).

kv, =1k R (01K Ty o ()] K, =72 Ty X (0 [ % (V)]
. . (A.1.1b) . . (A.1.1¢)
= —kuv cos Acﬂ_ cos évk = k"k#- = —% kﬂv cos ACH,_ cos A”k = k#k#.,-

J J

(A.1.1b) assumes one springk v hooks m, to m,. Self-energy ky for m, sums over all k v hooked to m..

The 27 stage energy form K., uses mass-orthonormalized §-displacements &, = 6}.# =X j(,u)m” 2

u
.. v,

E:E1 6,6, +K, 0, 6, where: 0,= 6].# = xj(u)mL/Z (A.1.2a) K = W =K, (A.1.2b)
u "ty

Next we begin transforming hook matrix K., to diagonal form while leaving kinetic form 5‘8( $, invariant. For

that, each stage needs to have only orthonormal bases and orthogonal or unitary transformation.

The 3™ stage uses symmetry-operator-labeling of K. bases. XY3 coordinate bases of Fig. A.1.2 are used

for Kunn in (A.1.3). Y-atom basesr”

il> are radial but r”

§1> are transverse. K, of (A.1.2b) hook up Y-atom bases

h

f > andh‘i > to each other and to central X-atom bases ‘ X > and ‘f > using radial spring constant j=kxy and

peripheral spring constant k=kyy divided by m/? and/or M'? according to Fig. A.1.2.

) SR D D] 1)
IR PR
I AT T T o
(& & S0 0 o |3

The 4™ stage uses symmetry P?. projection to reduce KA,,B=<A|Kr|B> in (A.1.3) above to block diagonal
projected forms Kpia pis= <Pj‘?,‘€A‘K ‘Pj‘/B> that are derived below in (A.1.4) thru (A.1.10).

Only select rows of matrix Ks=(4|Kr|B) are given in (A.1.3). If K has r-symmetry then a matrix row

for a base r|B> that is a rotation r of base |B) is redundant. Also, this choice of basis separates BOD-symmetric-

(k:x)-radial‘ r > from BOD-antisymmetric-(k:y)-transverse‘ i > so that only P]‘;‘C have non-zero projection on ‘)f > or
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‘f > and only P§ have non-zero projection on | > or [ > . BOD label-k of P, has to match the primitive statef,f> t

projects to get a nonzero projection as shown below.

XY

S Fig. 304.1.2 Symmetry labeled radial and angular base vectors

A K-matrix <",‘€X ‘K‘ by > has P -projected bra<]‘,’,‘€X ‘ and P/ -projected ket‘ B Y>with norms N and N,
(a¥[=vF(*[pat=nE(*[pg (Alda)  [EY)=RE|"INT =P oGz, DL (o] )N (A.1.4b)

Scalar 4; “breathing” ket and pseudo-scalar 4> “rotation” ket are shown in Fig. A.1.1 (left).

D= DB arsa) =) er 1)) (A.1.5b)

Wy
Then come 22=4 vector E-Kets involving peripheral Y-atoms of XY3 shown in Fig. A.1.1(center).

P

XX

PELONE =) -r ) - ihfE ar6a)  PEPNE = =)L (A.1.6b)
PENE=C P[D-2liE (aee  RE[TNE =i )-r 1) - (A.1.6d)

Included also is another pair of vector E-kets for the central X-atom shown in Fig. A.1.1 (bottom).
f): X> (A.1.6¢) pt ij) (A.1.6f)

x e
Symmetry (Kg=gK) and P-rules (P"‘Pﬁ 5"‘ﬁ6 P2 give < ‘K p Y> in terms of<X‘Kg‘Y> in (A.1.3).

E
XX

()= (e = i (el | ) v = v s, (e )

= NFNISPs,, (% °G)s, D (o)(* | Ke| ) (A.1.7)
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Mismatch of Csy symmetry (a#B) or LAB index (j#/) blocks off a K matrix (A.1.7) into two /-by-1 blocks for

symmetry irrep species 4; and 4> and a pair of 3-by-3 blocks for vector species E.

AY
xx

K

Ay
xx

Ay
]

K )A_;_Y>

(IR (Rl (IR
71K

el R ) )

(eler) Gy CIR]ET)

([ i) ()
GO Gy i)
(el o)y i)

BOD(k.m)-labeled matrix for equal-atom (X=Y) is simple since norms N; cancel group-g-sum terms.

(A.1.8)

() gpsn(ol2) 19

Also, we sum only a coset ‘@ or coordinate-labeling-subset of Csy. For Y it is: ‘@={ h=1,r,r*}.

<xj‘gY K ;QY> A" (1)< >+DA1*(r)<§ Kr §>+ Dxﬁl*(r2)<§ X>
N e (A.1.10a)

(k| ) =pE (T |1 D)+ DE @) (¥ ke D)+ DE ) (¥ e | V)

j ] T S I L) _ 3k (A.1.10)

mt2m 3 G 3 G mtam

B s e A R
S R R e I N T T

<£Y Kln > D, (1)< Kl §>+Dw (r)<§ Kr y>+Dy€*(r2)<§ ke §> (A.1.10d)

_ 1k - Lk -1 Lk =3k
= 1'(§m) + ) (4m) + 2 (4) 4 m

X> in (A.1.6a).

X

Central atom X has ket ‘ X > that is already the irreducible E. base‘ - > =P

EX Ex\_/x
<jx Jx > - <x
The remaining two components coupling X and Y-atomic coordinates use (A.1.7).

EY EX YArX EY EX YA XY
<-ix x > NNy <x > <xx ‘K xy >:NxNy <x Kl

R (J_)_IJ»{_M =F =0

These Csy-projected K matrix elements are collected in the form of the 8-by-8 matrix (A.1.8).

K

N4 (A.1.10¢)

K

‘f>(A.l.10f)
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0 . .
ik 3k B
m- 4 m 4m «/EW
. ‘% L1 % L4 0 . . .
o “g)= L A.1.10
<ijA|K P.MB>_ : N 0 31 . . (A.1.10g)
V2 mM 2 M
I3k 3k B
m' 4 m 4 m V2Jmm
-3k 3k
Z m Z m 0
-3 0 34
N2 mm 2 M

Diagonal 41 and 4> values are (j+3k)/m and 0, but E-type 3-by-3 matrix K has to be diagonalized. Due to the J;, in
(A.1.7) the first 3-by-3 matrix for (j=/=x) is identical to the second 3-by-3 E-matrix for (j=¢=y). Thus, all E-

eigenvalues must come in LAB 2-fold-degenerate pairs if K has Cs, symmetry.

EY> ‘EY> EX>
Jx Jy Jx
I3k 3k V3 1 -10
= e A | 3kl 0| (AL1.10h)
3k J 3k -
“im  mTam 0 0 0 0
R 0 37
2 mM 2 M

L ~1') combination of Y-bases with eigen-value 34/2m

E-type eigensolutions for no radial spring (j=0) are ( 20
L +1)Y-base translations for j=0

(o =+/3k/2m ) and are genuine s: or s3 modes in Fig. 11.1.2 (top). Orthogonal (JE’JE

have zero frequency as do s or s5 in Fig. 11.1.2 (bottom) or s7 or ss in Fig. 11.1.3 (top).

The 5™ and final stage of eigensolution is to diagonalize the 3-by-3 <K >E in (A.1.10g). Its secular equation

is of 31-degree but a translation mode gives a zero root to (K >E and makes der|(K >E =0.
a-A b ¢
O=—det| -b  b-A 0 |where:a=L +3%  p=3K c=—£ﬁ ,d=5 L
c 0 d-A
(A.1.11a)

=2 - Tracey, 2+ [Zz'by'zminorK 1A —3'by'3detK

==l arbed W+l G+ IghA —pld—c[
=2 Jesam L [ 3hAeEm i o

Two remaining roots are found by 2"d-degree solution. Special cases lend consistency checks.
0’5 k L=
2w JorsJ (A.1.11b)

2 .
A® :4lm j(zM;f’”)Jrgki\/[j(zMAJ}3m)+3k] _12jkA(7[M+3m) =1 "
(0,243 ){7[) Jor: k=0

’m
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E-x Y base(1), ( E-x+iy Circular
base(1)

x+iy

E-x+iy Circular
base(2)

x+iy

E-x+iy Circular

base(+)

x+iy

-x+iy Circular

base(-)

x+iy
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Problems for Chapter 30
Zeno Redux
23.1.1.

30-

26



