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32.1. Dynamics and spectra of molecular rotors
Molecules are aggregates of two or more nuclei bound by at least one electron. The 

nuclei of most stable molecules can be imagined to be points in a more or less rigid body whose 
relative positions are constrained by an electronic bonding potential. This potential depends 
strongly upon the electronic state as described elsewhere in this volume. Most of this discussion 
is about stable molecules in their electronic ground state. The high symmetry molecules CF4 and 
SF6 are discussed in Sec. 32.5 and compared to C60 or “Buckyball” a recently discovered case of 
the highest 3D symmetry. Sec. 32.6 introduces molecules with highly excited or “loose” parts.

Motions that stretch or compress the bonds are called vibrational motions and give rise to 
spectral resonances in the infrared region of the spectrum. Typical fundamental vibrational 

quanta (ν0) lie between 80 cm-1 (the lowest GeBr4 mode) and 3020 cm-1 (the highest CH4 
mode). (A 1000  cm-1 wave has a wavelength of 10 µm and a frequency defined by speed of 
light: 29.9 792 458 THz.) Vibrational amplitudes are usually tiny since zero-point motions or 
vibrations involving one or two quanta (ν = 0, 1, 2,..) are constrained by the steep bonding 
potential to less than a few percent of the bond lengths, but high overtones may lead to 
dissociation, i.e., molecular breakup.

Overall rotation of molecules in free space is unconstrained and gives rise to far-infrared 
or microwave pure rotational transitions or sidebands on top of vibrational spectra. Typical 

rotational quanta (2B) lie between 0.18 cm-1 (5.4 GHz) for SF6 and 10.6 cm-1 for CH4. 
Individual molecules are free to rotate or translate as a whole while undergoing their tiny but 
rapid vibrations.  Vibrating molecules may be thought of as tumbling collections of masses held 
together by 'springs' (the electronic vibrational potential or force field) and are known as semi-
rigid rotors. The coupling of rotational and vibrational motion is called rovibrational coupling 
and includes centrifugal and coriolis coupling as introduced in 32.6 at the end of this chapter. 

 This discussion of molecular dynamics and spectra mainly involves molecular rotation 
and properties of rotationally excited molecules particularly those with high rotational quanta J. 
(J = 10 - 200) However, the discussion also applies to molecules in excited vibrational states and 
even certain cases of molecules in excited electronic states. The analysis of vibronic (vibrational-
electronic), rovibrational (rotation-vibration), or rovibronic (all three) types of excitation are 
very complicated and is beyond the scope of this article [32. , , , , ], but these problems can also 1 2 3 4 5

benefit from the elementary considerations to be introduced here.



�232.1.1 Rigid rotors
As a first approximation, and for the purposes of discussing basic molecular dynamics 

and spectra, one may ignore vibrations and model stable molecules as stick-and-ball structures or 
rigid rotors.  Then the Hamiltonian has just three terms.

 �  . (32.1)
 Here [Jx, Jy, Jz] are rotational angular momentum operators and the rotational constants are half 
the inverses of the principal moments of inertia  of the body.

� (32.2)

This simple form follows if the J-coordinate system is assumed fixed to the rotor's body and 
aligned to its principal axes, an elementary body or Eckart frame.

Many molecules and particularly all diatomic molecules have two of the three rotational 
constants equal, say, A = B.  Such rotors are called symmetric tops, and their Hamiltonian 
involves the usual total angular momentum squared J·J with one body z-axial component Jz.

� (32.3)

This gives a simple formula for the symmetric top rotational energy levels in terms of the 
quantum numbers J of total angular momentum and K of the body z-component. 

� (32.4)
However, this eigenvalue formula may be a little too simple since it hides the structure of 

the eigenstates or eigenfunctions. Indeed, the full Schrodinger angular differential equation based 
upon Hamiltonian (32.1) is more lengthy.  Note that H is written in a rotating body �  
coordinate frame moving relative to a star-fixed or laboratory frame {x,y,z}.

32.1.2 Molecular states inside and out
Rotor angular momentum eigenfunctions can be expressed as a continuous linear 

combination of rotor angular position states  defined by Euler angles of lab azimuth α , polar 
angle β of body z-axis, and body azimuth or 'gauge twist' γ .  The eigenfunctions are

� . (32.5)

Here the rotor wave functions �  are just the conjugates of standard Wigner rotation matrices 
and row and column indices M and K, respectively, are the lab and body components of angular 
momentum. [32. , ] It may surprise atomic physicists that polyatomic molecular angular 6 7

momentum states have two kinds of azimuthal quantum numbers. In addition to the usual lab 

component of momentum M associated with the lab coordinate α (usually α and β are labeled φ 
and θ), there is a body component K associated with the Euler coordinate γ. (-γ is the body 
azimuthal angle of the lab-z axis relative to the body � -axis.) 

The physics of atomic or diatomic angular momentum states has no internal or 'body' 
structure so the K-quantum number is always zero. Unless one sets K=0, the energy formula 
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�3(32.4) blows up for a point particle because z-inertia for a point is zero and C is infinite. Also, the 
dimension of the angular momentum state multiplet of a given J is larger than the usual (2J+1) 
found in atomic or diatomic molecular physics. In polyatomic rotors the number of states for 
each J is (2J+1)-squared since both M and K quantum numbers range between -J and J.

Also surprising, and this is a more pleasant surprise, is that the molecular rotor wave 
functions contain, as a special (K=0) case, all the usual atomic spherical harmonics complete 
with correct normalization and phase.

� (32.6)
This is part of a powerful symmetry principle: group representations are quantum wave 
functions, and symmetry analysis is an extension of Fourier of plane eikx waves for cyclic Cn 
group translations as in Fourier's original work, but for any group of symmetry operations. The 
usual Fourier coefficients are replaced by D functions in rotational Fourier transforms embodied 
by eq. (32.5).

Molecular rotational analysis displays another important but little known aspect of 
symmetry analysis in general. For every group of symmetry operations like the external lab 
based rotations familiar to atomic physics, there is an independent dual group of internal or 
body-based operations. The external symmetry of the environment or laboratory is independent 
of the internal symmetry of the molecular body, and all the operations of one commute with all 
those of the other. So the molecular rotation group is written as an outer product R(3)LAB ⊗ 
R(3)BODY of the external and internal parts, and the degeneracy associated with this group's 

representations for a single J is (2J+1)2 as mentioned above. It is a special ⊗-product, however, 
since the J-number is shared.

The inversion or parity operator I (r→ -r) can be defined to be the same for both lab and 
body frames. Including I in the rotational group R(3) gives the orthogonal group 
O(3)=R(3)⊗{1,I}. If parity is conserved (no weak neutral currents!) the fundamental molecular 
orthogonal group is O(3)LAB ⊗ O(3)BODY .

How this symmetry breaks down and which levels split depends upon both the 
perturbative laboratory environment and the internal molecular structure. A spherical top 
Hamiltonian is eq. (32.1) with A=B=C. This has a full O(3)BODY  (spherical) symmetry since it's 
just BJ·J.  Given that the rotor is in an O(3)LAB laboratory (empty space) the original symmetry  

O(3)LAB⊗O(3)BODY  remains intact and the (2J+1)2  degeneracy is to be expected. However, a 
symmetric rotor in a lab vacuum has its internal symmetry broken down to O(2)BODY if A=B≠C, 
and the energies given by eq. (32.4) consist of internal quantum singlets for K=0 and doublets 

±K for K≠0. But, each of these levels still has a lab degeneracy of (2J+1)  if O(3)LAB  is still in 
effect. So the (2J+1)2 level degeneracies are each split into multiplets of degeneracy (2J+1) and 
2(2J+1) for K=0 and K≠0, respectively. The resulting levels are often labeled Σ, Π, Δ, Φ, Γ, ...in a 
somewhat inappropriate analogy with the atomic s, p, d, f, g, .. labels of Bohr model electronic 
orbitals.

 4πYm
ℓ ϕϑ( ) = Dm0

ℓ ϕϑ ⋅( )* 2ℓ +1



�4Only by perturbing the lab environment can one reduce an O(3)LAB symmetry and split 
the M-degeneracies. For example, a uniform electric field would reduce the O(3)LAB  to O(2)LAB  
and give Stark splittings which consist of external quantum singlets for M=0 and ±M doublets 
for M≠0. A uniform magnetic field would reduce the O(3)LAB  to R(2)LAB  and give Zeeman 
splittings into of external quantum singlets for each M. The analogy between atomic external 
field splitting and internal molecular rotational structure splitting is sometimes a useful one and 
will be used later.

32.1.3 Rigid asymmetric rotor eigensolutions and dynamics
The general case for the rigid rotor Hamiltonian (32.1) has three unequal principal inertia 

( A≠B≠C).  This is called the rigid asymmetric top Hamiltonian and provides a first 
approximation for modeling rotation of low symmetry molecules such as H20. Also, a number of 
properties of its eigensolutions are shared by more complicated systems. The dynamics of an 
asymmetric top is quite remarkable as anyone will find if they toss a tennis racquet in the air 
starting flat side up. The corresponding quantum behavior of such a molecule is also non-trivial.

 Given the total angular momentum J one may construct a (2J+1)-dimensional matrix 
representation of H using standard matrix elements of angular momentum operators Jx, Jy, and Jz 
such as are given in Chapter 2. The H matrix connects states with (2J+1)-different body quantum 
numbers K , but the matrix is independent of the lab quantum numbers M, so there are (2J+1) 
identical H matrices; one for each value of the lab quantum number M .

A plot of the 21 eigenvalues of (32.1) for J=10 is shown in Figure 32.1. Here, the 

constants are set to A=0.2 cm-1 and C=0.6 while B is varied between B=A, which corresponds to 
a prolate symmetric top (an elongated cylindrical object) and B=C, which corresponds to an 
oblate symmetric top (a flattened cylindrical object or discus). For all B values in between A and 
C the object is asymmetric.

The left hand end (A=B=0.2 cm-1, C=0.6 cm-1) of the plot in Figure 32.1 corresponds to a 
prolate symmetric top. The symmetric-top level spectrum is given by eq. (32.4). It consists of a 
lowest singlet corresponding to K=0 and an ascending quadratic ladder of doublets 

corresponding to K=±1, ±2,...,±J. The right hand end (A=0.2 cm-1, B=C=0.6 cm-1) of the plot 
corresponds to an oblate symmetric top with a descending quadratic ladder of levels, the K=0 
level is highest. Also, the internal K-axis of quantization switches from the body z-axis for 

(A=B=0.2 cm-1, C=0.6) to the body x-axis for (A=0.2 cm-1, B=C=0.6 cm-1) . The lab M-
degeneracy is invisible here, but exists nevertheless.

For intermediate values of B one has an asymmetric-top level structure and, strictly 
speaking, no single axis of quantization. As a result, the eigenlevel spectrum is quite different. A 

detailed display of asymmetric top levels for the case (A=0.2 cm-1, B=0.4 cm-1, C=0.6 cm-1) is 
given at the bottom of Figure 32.2, and they are shown to correspond to semiclassical orbits to be 



�5discussed shortly. This example is the most asymmetric top since parameter B is midway 
between symmetric top limits of B=A and B=C.

The twenty-one J=10 asymmetric top levels are arranged into roughly ten asymmetry 
doublets and one singlet that resemble symmetric top levels except that doublets are split by 
varying amounts and the singlet is isolated from other levels in the middle of the band instead of 
being crowded at the top or bottom. The doublet splittings are magnified in circles drawn next to 
the levels, and these indicate that the splitting decreases quasi-exponentially with each doublet's 
distance from the central singlet.

Asymmetric doublet splitting is also called superfine structure and can be viewed to be 
the result of a dynamic tunneling process in a semiclassical model of rotation.[32. , , ] Such a 8 9 10

model clarifies the classical-quantum correspondence for polyatomic rovibrational dynamics in 
general. It can also help to derive simple approximations for eigenvalues and eigenvectors.

The figures 32.1 and 32.2 contain the most elementary rotational energy surfaces (RES) that are 
introduced in the following section and used throughout this chapter.  
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 Editor:Add to caption:Since species levels do not cross in Fig. 32.1, species ordering A1B1A2B2 is maintained throughout.
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32.2  Rotational energy surfaces and semiclassical rotational dynamics

A semiclassical model of molecular rotation can be based upon what is called a rotational 
energy surface.[32.7,8,9,10, , , , ] Examples of RE surfaces for an asymmetric top are shown in 11 12 13 14

the previous Figure 32.2 and for prolate and oblate symmetric tops in Figure 32.1. Each surface 
is a radial plot of the classical energy derived from the Hamiltonian (32.1) as a function of the 
polar direction of the classical angular momentum J-vector in the body frame. The magnitude |J| 
of J is fixed for each surface. Note, that the J-vector in the lab frame is a classical constant of the 
motion if there are no external perturbations. However, J may gyrate considerably in the moving 
body frame, but the magnitude |J| stays the same in all frames for free rotation.

The RE surface differs from what is called a CE or constant energy surface which is 
obtained by simply plotting E = H = constant in J-space using eq. 32.1. A rigid rotor CE surface 
is an ellipsoid covering a range of |J|-values at a single energy. An RE surface, on the other hand, 
is a spherical harmonic plot at a single |J|-value for a range of energies so it is is better for 
spectroscopic studies of fine structure where one value of the rotational quantum number J 
corresponds to a multiplet of energy levels or transitions. An RE surface also shows loci of high 
and low energy rotations. Also, it has roughly the shape of the body it represents, that is, an RES 
is long in directions that its molecule is long (but vice-versa for CES).

For a freely rotating molecule the laboratory components of the classical total angular 
momentum J are constant. If one chooses to let J define the lab Z-axis then the direction of the J-

vector in the body frame is given by polar and body azimuthal coordinates β and γ, which are the 
second and third Euler angles, respectively. (It is conventional to use the negatives -β and -γ as 
polar coordinates but this will not be necessary here.) Then the body components of the J-vector 
are written as follows.

� (32.7)

Here we take the magnitude to be the quantum value � .
Substituting this into the Hamiltonian (32.1) gives an expression for the general rigid 

rotor RE surface radius in polar coordinates.

 �  . (32.8)

The prolate symmetric top (A=B<C) expression is independent of azimuthal angle γ.
  � (32.9)

The 3-dimensional plots of these expressions were shown in figs. 32.1 and 32.2 
The RE surfaces have topography lines of constant energy (E= constant) that are the 

intersection of the RE surface (constant |J|) with spheres of constant energy. The topography 
lines are allowed classical paths of the angular momentum J-vector in the body frame since these 
paths conserve both energy and momentum. 

The trajectories in the figures are special ones. They are the quantizing trajectories for 
total angular momentum J=10. For the prolate symmetric top the quantizing trajectories have 

  
Jx = J sinβ cosγ , J y = J sinβ sinγ , Jz = J cosβ( )

J = J (J+1)

E(β,γ ) = H = J(J +1) sin2 β A cos2 γ + B sin2 γ( ) + C cos2 β( )

E(β) = H = J(J +1) B + C − B( )cos2 β( )



�8integral values for the body z-component K of angular momentum. Using a Dirac vector model, 
angular momentum vectors trace out a cone of altitude K and slant height |J| = √J(J+1). 
Quantizing polar angles  are given by

�  (32.10)

These are the latitude angles of the paths on the RE surfaces in Figure 32.1 for K=10, 9, 
8, ...,-10. (For the oblate RE surface the angles are relative to the x-axis.) If β=ΘJK is substituted 
into the symmetric top RE surface equation (32.9) the result is

 � , (32.11)
which is, precisely the symmetric top eigenvalue equation (32.4). The quantizing paths are 
circles lying at the intersections of the Dirac angular momentum cones and the RE surface. Angle  

(ΘJK) is a measure of the angular momentum uncertainty ΔJx or ΔJy transverse to the z-axis of 
quantization. Clearly, K=±J states have minimum uncertainty.

For the asymmetric top the classical paths which (conserve both  |J| and E) fall into one 
of two types. First there are those pairs of equal-energy orbits which go around the hills on the 
plus or minus end of the body z-axis and correspond to the ±K pairs of levels in the upper half of 
the level spectrum drawn in Figure 32.2. Then there are the pairs of levels belonging to the 
equal-energy orbits in either of the two valleys surrounding the body x-axis and are associated 
with the pairs of levels in the lower half of the level spectrum. Different eigensolutions occupy 
different geography.

The upper pairs of paths are seen to be distorted versions of the prolate top orbits seen on 
the left hand side of Figure 32.1, while the lower pairs are distorted versions of the oblate top 
orbits seen on the right hand side of Figure 32.1. The distortion makes Jz deviate from a constant 
K-value and corresponds to K-mixing in the quantum states. This also shows that one needs to 
consider more than one axis of quantization; the prolate-like paths are based on the z-axis, while 
the oblate-like paths belong to the body x-axis.

The two types of orbits, x-and-y, are separated by a so-called separatrix curve crossing 
the saddle points on either side of the body y-axis. In the example shown in Figure 32.2, the 
separatrix is associated with a single level that separates the upper and lower energy doublets. 
The doublets that are closer to the separatrix level are split more than those farther away. Apart 
from the splitting, the energy levels can be obtained by generalized Bohr quantization of the 
classical paths on the RE surface. The quantization condition is

�         (32.12a)
where

� (32.12b)

follows from eqs. (32.7) and (32.8). The resulting EK-values are obtained by iteration.

 
ΘK

J = cos−1 K
J(J +1)

     (K=J, J-1,!,-J )

E(ΘK
J ) = J(J +1)B + C − B( )K 2
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�9The doublet or superfine splitting is a quantum effect that may be associated with 
tunneling between orbits that would have had equal energies EK in the purely classical or semi-
classical model. Approximate tunneling rates are integrals over the saddle point between each 
pair of equal-energy quantizing paths. The K-th rate, or amplitude, is

� (32.13)
where ,

� (32.14)

is the saddle path integral between closest approach points γ+ and γ−, and νΚ is the classical 
precession frequency or quantum level spacing around energy level EK. Since there are two 
tunneling paths, amplitude SK is doubled in a tunneling Hamiltonian matrix for the K-th 
semiclassical doublet of z and �  paths.

� (32.15)

The resulting tunneling energy eigensolutions are given in Table 32.1 below.

� Table 32.1 (32.15) eigensolutions

A-or B-states correspond to symmetric and anti symmetric combinations of waves localized on 
the two semiclassical paths.  Rotational symmetry is considered below.

The total doublet splitting is 4SK and decreases exponentially with the saddle point 
integral (32.13b). Superfine A-B splittings in Figure 32.2 range from several GHz near the 
separatrix to only 26 kHz for the highest-K doublets at the upper band edges. 

Meanwhile the typical inter-doublet level spacing or classical precessional frequency is 
about 150 GHz for the J=10 levels shown in Figure 32.2. This K-level spacing is called 
rotational fine structure splitting, and is present in the symmetric top case, as well. (Superfine 
splitting of the symmetric-top doublets is exactly zero since they have O(2)BODY symmetry if 
A=B or B=C and tunneling amplitudes cancel.)

Classical precession of J in the body frame follows a “left hand rule” quite like what 
meteoroligists use to determine Northern Hemisphere cyclonic rotation. A left “thumbs-down” or 
“low” has anti-clockwise precession as does an oblate rotor valley, but a prolate RE surface 
“high” supports clockwise motion just like a weather “high.”

Finally, consider the spacing between adjacent J-levels that is called rotational structure 
in a spectrum. This spacing is

� (32.16)

according to the symmetric top energy formulas (32.4). For this example 2BJ is about 10 cm-1 or 
300 GHz. It corresponds to the actual rotation frequency of the body. It is the only kind of 
rotational dynamics or spectra that is possible for a simple diatomic rotor. However, a diatomic 

SK = νKe
−PK

PK = i dγ
γ −

γ +

∫
J(J +1)(C cos2 γ + Bsin2 γ ) − EK

(C cos2 γ + Bsin2 γ ) − A

−z = z

H K =
EK 2SK
2SK EK

⎛

⎝⎜
⎞

⎠⎟
z
z

Eigenvectors z z Eigenvalues

A 1 1 EA (K ) = EK + 2SK
B 1 −1 EB (K ) = EK − 2SK

E(J,K ) − E(J −1,K ) = 2BJ



�10molecule may have internal electronic or nuclear spin rotation which gives additional fine 
structure as discussed later. [32.1, 6, ]15

To summarize, polyatomic molecules can be expected to exhibit all three types of 
rotational motion and spectra. Noted above were three types of motion (from faster to slower ): 
rotational, precessional, and precessional tunneling. These were related to three kinds of spectral 
structure (from coarser to finer spectra): rotational structure, fine structure, and superfine 
structure, respectively. Again, this neglects internal rotational and spin effects which can have 
abnormally strong rotational resonance coupling due to the superfine structure. [32.9, ] 16

Examples of this are discussed further along in this chapter.

32.3 Symmetry of molecular rotors
Molecular rotational symmetry is most easily introduced using examples of rigid rotors. 

Molecular rotor structures may have more or less internal molecular symmetry depending on 
how their nuclei are positioned relative to one another in the body frame. A molecule's rotational 
symmetry is described by one of the elementary rotational point symmetry groups. These are the 
n-fold axial cyclic groups Cn and polygonal dihedral groups Dn (n = 1, 2,...), the tetrahedral 
group T, the cubic-octahedral group O, or the icosahedral group Y. All other point groups such as 
Cnv , Td, and Oh are one of these in combination with the inversion operation I (r→-r). Each of 
these groups consist of operations that leave at least one point (origin) of a structure fixed while 
mapping identical atoms or nuclei into each other in such a way that the structure ends up 
looking the same as it did before the operation. The point groups map onto subgroups of the 
nuclear permutation groups.[32. ]17

In other words, molecular symmetry is based upon one of the most fundamental (and 
mysterious!) properties of atomic physics: the absolute identity of all atoms or, more precisely, 
nuclei of a given atomic number Z and mass number A. It is the identity of the so called 
'elementary' electronic and nucleonic constituent particles that underlies the symmetry.

A quite mysterious axiom of modern physics is the Pauli principle that states: All half-
integer spin particles are antisymmetrized with every other one of their kind in the universe. The 
Pauli-Fermi antisymmetry and related Bose-Einstein symmetrization principle determine much 
of molecular symmetry and dynamics just as the Pauli exclusion principle is fundamental to 
atomic and molecular electronic structure. 



�11Editorial Note 1: The bars (|) in three Fig. 32.3 tables should be “ones” (1)

 



�1232.3.1  Asymmetric rotor symmetry analysis
For an asymmetric rigid rotor, any rotation that interchanges x, y, or z-axes of the body 

cannot possibly be a symmetry since all three axes are assumed to have differing inertial 
constants. This restricts one to consider only 180° rotations about the body axes, and these are 
the elements of the rotor groups C2 and D2. 

The two symmetry types for C2 are even (denoted A or 02) and odd (denoted B or 12) 
with respect to a 180° rotation. For D2 which is just C2⊗C2, the four symmetry types are even-
even (denoted A1), even-odd (denoted A2), odd-even (denoted B1), and odd-odd (denoted B2) 
with respect to 180° rotations about y and x-axes, respectively. (The z-symmetry is determined 
by a product of the other two since Rz = Rx Ry.) This is summarized by the character Table 32.2 
and Table 32.3.

� Table 32.2  � Table 32.3

The rotational energy surface for a rigid rotor shown in Figure 32.2 is invariant to 180° rotations 
about each of the three body axes. Therefore its Hamiltonian symmetry is D2 and its quantum 
eigenlevels must correspond to one of the four types listed under D2 in table 32.3. The D2 
symmetry labels are called rotational (or in general rovibronic) species of the molecular state. 
The species label the symmetry of a quantum wave function associated with a pair of C2 
symmetric semiclassical paths.

The classical J-paths come in D2 symmetric pairs, but each individual classical J-path on 
the rigid rotor RE surface has a C2 symmetry that is a subgroup of D2. Each path in the valley 
around the x-axis is invariant to just the 180° rotation around the x-axis. This is C2 (x) symmetry. 
The other member of its pair that goes around the negative x-axis also has this local C2 (x) 
symmetry. The combined pair of paths has the full D2 symmetry but classical mechanics does not 
permit occupation of two separate paths. Such co-occupation is a completely quantum effect.

Similarly, each individual J-path on the hill around the z-axis is invariant to just the 180° 
rotation around the z-axis and so it has C2 (z) symmetry as does the equivalent path around the 
negative z-axis. Only the separatrix has the full D2 symmetry since its pairs are linked up on the 
y-axis to form the boundary between x and z paths. No J-paths encircle the unstable y-axis since 
it is a saddle point.

Each classical J-path near x or z axes belongs to a particular K-value through 
semiclassical quantization conditions (32.12). Depending upon whether the K-value is even 
(denoted by 02) or odd (denoted by 12) the corresponding K-doublet will be correlated with a 
pair of D2 species as shown in the columns of correlation tables in Figure 32.3. These three 
correlation tables give the axial 180° rotational symmetry of each D2 species for rotation near 

C2 1 R
A 1 1
B 1 −1

 

D2 1 Rx Ry Rz

A1 1 1 1 1
A2 1 -1 1 -1
B1 1 1 -1 -1
B2 1 -1 -1 1

   



�13each body axis x, y and z, respectively, but only the stable rotation axes x and z support stable 
path doublets for this Hamiltonian (32.1).

For example, consider K=10 paths which lie lowest in the x-axis valleys. Since K=10 is 
even (02) it is correlated with an A1 and B1 superfine doublet (see the 02 column of the C2 (x) 
table). On the high end near the z-axis hill top K=10 gives rise to an A1 and B2 doublet (see the 
02 column of the C2 (z) table). All the doublets in Figure 32.2 may be assigned in this way.

32.4  Tetrahedral-octahedral rotational dynamics and spectra
The highest symmetry rigid rotor is the spherical top for which the three inertial 

constants are equal (A=B=C). As previously mentioned the spherical top Hamiltonian
�

has full R(3)LAB⊗R(3)BODY  symmetry. Inversion parity symmetry is O(3)LAB⊗O(3)BODY . In 
any case the J-levels are (2J+1)2-fold degenerate. The resulting BJ(J+1) energy expression is the 
first approximation for molecules which have regular polyhedral symmetry of, for example, a 
tetrahedron (CF4), cube (C6H6), octahedron (SF6), dodecahedron or icosahedron (C20H20, 
B12H12, or C60 [32.24-25] discussed in later sections.). Rigid regular polyhedra have isotropic or 
equal inertial constants and rotate just like they were perfectly spherical distributions of mass.

No molecule can really have spherical O(3)BODY  symmetry since even the highest 
symmetry molecules are made of a finite number of nuclear mass points. Evidence of octahedral 
or tetrahedral symmetry shows up in fine structure splittings analogous to those for asymmetric 
tops. However, spherical top fine structure is due to symmetry breaking caused by anisotropic or 
tensor rotational distortion, and so they are called semi-rigid rotors.
32.4.1  Semi-rigid octahedral rotors and centrifugal tensor Hamiltonians

The lowest order tensor centrifugal distortion perturbation has the same form for both 
tetrahedral and octahedral molecules. It is simply a sum of fourth powers of angular momentum 
operators given in the third term below. The first two terms are scalar rotor energy (32.16) and 
scalar centrifugal energy.

� (32.16)

The tensor term includes the scalar (3/5)J4 to preserve the center of gravity of the tensor level 
splitting. Hecht [32. ] first used this type of semi-rigid rotor Hamiltonian in the study of 18

methane (CH4) spectra. 
 The scalar terms do not reduce the symmetry or split the levels, but the tensor (t044) term 

breaks the molecular symmetry from O(3)LAB⊗O(3)BODY  to a lower symmetry subgroup 

O(3)LAB⊗Td  BODY  or O(3)LAB⊗Oh BODY and splits the (2J+1)2-fold degeneracy into intricate 
fine structure patterns which are analogous to cubic crystal field splitting of atomic orbitals. The 
first calculations of tensor spectra were done by direct numerical diagonalization.[32.18, , , ] 19 20 21

As a result many subtle symmetry properties were missed. Semiclassical analyses [32. ] 22

described in the following Sections exposes these properties.

H = BJ • J

H = B J 2
+ D J 4

+10t044 Jx
4 + Jy

4 + Jz
4 − (3 / 5)J 4( )
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By substituting eq. (32.7) and plotting the energy as a function of body polar angles β and 

γ one obtains a rotational energy (RE) surface, two views of which are shown in Figure 32.4. 
Here the tensor term is exaggerated in order to exhibit the topography clearly. (In (n=0) SF6 the 

t044 coefficient is only about 5.44 Hz while the rotational constant is B=0.09 cm-1. The t244 
coefficient of (n=1) SF6 is much greater.)

A positive tensor coefficient (t044>0) gives an octahedral shaped RE surface shown in 
Figure 32.4. This is appropriate for octahedral molecules since they are least susceptible to 
distortion by rotations around the x, y, and z-axes that are the strong radial bonds. Thus rotational 
energy is highest for a J-vector near one of six body axes (±1,0,0), (0,±1,0), or (0,0,±1), that is, 
one of six RE surface hills in Figure 32.4. 

However, if the J-vector is set in any of the eight inter-axial directions (±1,±1,±1) the 
centrifugal force will more easily bend the weaker angular bonds, raise the molecular inertia, and 
lower the rotational energy to that of one of the eight valleys on the RE surface in Figure 32.4.

A negative tensor coefficient (t044<0) gives a cubic shaped RE surface. Usually this is 
appropriate for cubic and tetrahedral molecules since they are most susceptible to distortion by 
rotations around the x, y, and z-axes that lie between the strong radial bonds on the cubic 
diagonals. Instead of six hills and eight valleys one finds six valleys and eight hills on the cubic 
RE surface. Both freon CF4 and cubane C8H8 are like that.

It should be noted that a semi-rigid tetrahedral rotor may have the same form of rotational 
Hamiltonian and RE surface as a cubic rotor. The four tetrahedral atomic sites are in the same 
directions as four of the eight cubic sites. The other four cubic sites form an inverted tetrahedron 
of the same shape.

If only tetrahedral symmetry was required, the Hamiltonian might have third order terms 
like JxJyJz. However, such terms do not have time-reversal symmetry that makes energy the 
same for J and -J or rotational sense would matter. So simple rotor RE surfaces have inversion 
symmetry even if their molecules do not. Compound rotors containing spins or other rotors may 
have “lopsided” pairs of RES as shown in Sec. 32.6.

32.4.3  Octahedral and tetrahedral rotational fine structure
An example of rotational fine structure for angular momentum quantum number J=30 is 

shown in Figure 32.4. The levels consist mainly of clusters of levels belonging to the octahedral 
symmetry species A1, A2, E, T1, or T2. The characters of these species are the following Table 
32.4. (The tetrahedral Td group has a similar table where T1 and T2 are often labeled F1 and F2 ).
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� Table 32.4  O-group characters

The first column gives the dimension or degeneracy of each species; A1, A2, are singlets, E is a 
doublet, while T1 and T2  are triplets. These species form two clusters (A1, T1, T2, A2) and (T2, E, 
T1) on the low end of the spectrum and six clusters (T1, T2), (A2, T2, E), (T1, T2), (E, T1, A1), (T1, 
T2), and (A2, T2, E) on the upper part of the spectrum. (See the right hand side of Figure 32.4.)  
Note that the total dimension or (near) degeneracy for each of the two lower clusters is eight: 
(1+3+3+1) and (3+2+3), while the upper clusters each have a six-fold (near) degeneracy: 
(3+3), (1+3+2), ...etc. 

Each of the two lower eight-fold clusters can be associated with a semiclassical 
quantizing paths in an RE surface valley as shown in Figure 32.4. The eight-fold dimension or 
(near) degeneracy occurs because each quantizing path is repeated eight times; once in each of 
eight identical valleys. Similarly, the six-fold cluster dimension ((3+3), (1+3+2), ...etc.) occurs 
because there are six identical hills and each quantizing path is repeated six times around the 
surface.

The majority of the paths lie on the hills because the hills are bigger than the valleys. The 
hills subtend a half angle of 35.3° to the separatrix, while the valleys only have 19.5°. To 
estimate the number of paths or clusters in hills or valleys one may calculate the angular 
momentum cone angles for J=30 using eq. (32.10). The results are displayed in Figure 32.5. The 
result is consistent with the spectrum in Figure 32.4. Only the two highest K-values of K=30 and 
29 have cones small enough to fit in the valleys, while the six states of K=30, 29, 28, 27, 26, and 
25 can fit onto the hills. 

The angular momentum cone formula also provides an estimate for each level cluster 
energy. The estimates become more precise as K increases (approaching J) so the uncertainty 
angle  decreases. Higher-K paths are more nearly circular and therefore more nearly correspond 
to symmetric top quantum states of pure K. The paths on octahedral RE surfaces are more nearly 
circular for a given K than are those on the asymmetric top RE surface, and so one can better 
approximate octahedral rotor states with those of a symmetric top. 

O 0° 120° 180° 90° 180°
A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
T1 3 0 −1 1 −1
T2 3 0 −1 −1 1
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(Ed:added)Species order (A1T1T2A2. T2ET1.  T2ET1) or (A2T2E  T1T2  ET1A1.  T1T2) is maintained independently of clustering 
spacing. 
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The octahedral RE surface has many more local hills and valleys and corresponding types 

of semiclassical paths than one finds on the rigid asymmetric top RE surface. The tunneling 
between multiple paths gives an octahedral superfine structure that is more complicated than the 
asymmetric top doublets. Still the same symmetry correlations and tunneling mechanics apply. 

First, the octahedral symmetry must be correlated with the local symmetry of the paths on 
the hills and in the valleys. The hill paths have a C4 symmetry while the valley paths have a local 
C3 symmetry. This is seen most clearly for the low-K paths near the separatrix that are less 
circular. The C3 and C4 correlations are given in Figure 32.6 with corresponding sketches of 
molecular rotation for each type of path.

To find the octahedral species associated with a K3=30 path in a C3 valley one notes that 
30 is 0 modulo 3. Hence the desired species are found in the 03 column of the C3 correlation 
table. One finds (A1, A2 ,T1, T2) and this is what appears (not necessarily in that order) on the 
extreme lower left hand side of Figure 32.4. Similarly, the species (A2, E, T2) for a K4=30 path 
on top of a C4 hill are found in the 24 column of the C4 correlation table since 30 is 2 modulo 4, 
and these appear on the other side of Figure 32.4. Similarly, clusters (T1, T2) for K4=29, and 
(A1,E,T1) for K4=28 follow. 

A multiple-path tunneling calculation analogous to the one for rigid rotors can be applied 
to approximate octahedral superfine splittings. Consider the cluster (A1,E,T1) for K4=28 for 
example. One may label six C4-symmetric paths located on octahedral vertices on opposite sides 
of ±x, ±y, and ±z-axes as on the righthand side of matrix H in (32.17) that is the  tunneling matrix 
between the six paths.

� (32.17)

Here the tunneling amplitude S is assumed between nearest neighbor octahedral vertices but is 
assumed to be zero between antipodal vertices. The eigenvectors and eigenvalues for this matrix 
are given in the Table 32.5. K-cone polar uncertainty angles for J=30 are listed in Fig. 32.5.

H K4 =28
=

H 0 S S S S
0 H S S S S
S S H 0 S S
S S 0 H S S
S S S S H 0
S S S S 0 H

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x
x
y
y
z
z
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Table 32.5 HK=28 matrix solutions

This predicts that the triplet (T1) level should fall between the singlet (A1) and the doublet (E) 
levels and the singlet-triplet spacing (4S) should be twice the splitting (-2S) between triplet and 
doublet. This 2:1 ratio is observed in (E, T1, A1) and (A2, T2, E) clusters that can be resolved and 
in numerical calculation, as well. [32.18-21]

The tunneling amplitudes can be calculated by a separatrix path integral analogous to the 
asymmetric top formula (32.13).[32.10, 11] As shown in Figure 32.4, the tunneling rates or 
superfine splittings near the separatrix are ~1 MHz which is only slightly slower than the 
classical precessional frequency. But as K approaches J on the hilltops, the tunneling rate slows 
quasi-exponentially to ~3 mHz, that is by a factor of about 10-9.

Eigenvector x x y y z z Eigenvalue

6 A1 = 1 1 1 1 1 1 EA1 = H + 4S

12 E,1 = 2 2 −1 −1 −1 −1 EE = H − 2S
2 E,2 = 0 0 1 1 −1 −1

2 T1,1 = 1 −1 0 0 0 0 ET1 = H

2 T1,2 = 0 0 1 −1 0 0

2 T1, 3 = 0 0 0 0 1 −1
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32.5  High resolution rovibrational structure
A display of spectral hierarchy for higher and higher resolution is shown in Figure 32.7 

for the 630 cm-1 or 16µm bands of CF4[32.22, , , ] This summarizes the possible rovibrational 23 24 25

spectral structures and place them in a larger context. The ν4  resonance in part (a) corresponds 
to a dipole active n4=0→1 vibrational transition and is just one of many vibrational structures to 
study. The P(54) sideband resonance in part (b) corresponds to a (J=54) → (J-1) rotational 
transition and is just one of hundreds of rotational structures within the ν4  bands. 

Each band is like a Russian doll; it contains structure within structure within structure 
down to the resolution of few tens of Hertz.  Examples of rotational fine and superfine structures 
described in Sections 32.4 are shown in Fig. 32.7c-d, but even more resolution is needed to see 
the hyperfine structure in Fig. 32.7e. [32. ] Such extreme resolution was reached with a CO2 26

saturation absorption spectrometer. [32. , ] The 10µm bands of SF6 and SiF4 have been studied 27 28

in this manner, the latter being similar to CF4.

32.5.1 Tetrahedral nuclear hyperfine structure
High resolution spectral studies of SiF4 showed unanticipated effects involving the four 

fluorine nuclear spin and magnetic moments and their associated hyperfine states. First, and this 
was well known, the Pauli principle restricts the nuclear spin multiplicity associated with each of 

the rotational symmetry species in much the same way that atomic L-S coupled states 2S+1L have 
certain spin multiplicities (2S+1) allowed for a given orbital L species involving two or more 
equivalent electrons. Secondly, and this was not so well known, since superfine splittings can 
easily be tiny, different spin species can end up close enough that hyperfine interactions, however 
small, can cause strongly resonant mixing of the normally inviolate species. Finally, one gets to 
witness a pure and simple form of spontaneous symmetry breaking in which otherwise 
equivalent nuclei fall into different subsets due to quantum rotor dynamics.

Connecting nuclear spin to rotational species is done by correlating the full permutation 
symmetry (Sn for XYn molecules) with the full molecular rotation and parity symmetry 

( O(3)LAB⊗Td   BODY for CF4 molecules or O(3)LAB⊗Oh BODY  and for SF6). For four spin-1/2 
nuclei, the Pauli principle allows a total spin of I=2 having multiplicity of five (2I+1=5) for (J+, 
A2) or (J-, A1) species, but excludes (J-, A2) or (J+, A1) species altogether. Pauli allowed spin for 
(J+, T1) or (J- , T2) species is I=1 with a multiplicity of three, but there are no allowed  (J+, T2) 
or (J-, T1) species. Finally, both (J+, E) and (J-, E) belong to singlet spin I=0 and are singlet 
partners to an inversion doublet. (None of the other species can have both + and - parity.) 

The E inversion doublet is analogous to the doublet in NH3 that is responsible for the 
ammonia maser. However, NH3 inversion is not feasible in CF4 or SiF4 and so the splitting of 
the E doublet in these molecules is due to hyperfine resonance. [32.26] and analyzed by unitary 
symmetry [32.9,16] given below and in later sections. 
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The Pauli analysis gives the number of hyperfine lines that each species would exhibit if 
it was isolated and resolved as shown in the center of Figure 32.7(e). The rotational singlets A1 
and A2 give five lines each, the rotational triplets T1 and T2 are spin triplets, and the rotational 
doublet E is a spin singlet but an inversion doublet. If the hyperfine structure of a given species 
A1 , A2 , T1 , T2 , or E  is not resolved then their line heights are proportional to their total spin 
weights of 5, 5, 3, 3, and 2, respectively.

If the unresolved species are clustered then the total spin weights of each will add to give 
characteristic cluster line height. The line heights of the C4 clusters (T1, T2), (A2, T2, E), (T1, T2), 
(E, T1, A1) are 6, 10, 6, 10, respectively. The line heights of the C3 clusters (A1, T1, T2, A2) , (T1, 
E, T2) , (T1, E, T2)  are 16, 8, 8, respectively. This is roughly what is seen in the P(54) spectrum 
in Figure 32.7 (c).  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Superfine cluster splittings (2S, 4S, etc.) are proportional to the J-precessional tunneling 

or 'tumbling' rates between equivalent C3 or C4 symmetry axes that decrease with increasing K3 
or K4. At some point the superfine splittings decrease to less than the hyperfine splittings. (That 
are meanwhile actually increasing with K.) The resulting collision of superfine and hyperfine 
structure has been called superhyperfine structure or Case 2 clusters. The following is a rough 
sketch of the phenomenology of this quite complex spectra using the results of Pfister [32.26].

As long as the tunneling rates are a megahertz or more the nuclear spins will tend to 
average over spherical top motion. The spins couple into states of good total nuclear spin I that in 
turn couple weakly with the overall angular momentum and with well defined rovibrational 
species A1 , A2 , T1 , T2 , or E as described above. The resulting coupling is called Case 1. It is 
analogous to LS-coupling in atoms. 

Stick figures for two examples of spectra observed by Pfister [32.26] are shown in Figure 
32.8 (a) and (b). The first Case-1 cluster shown in part (a) of Figure 32.8 is a C4 type (04 ) cluster 
( A1, T1, E) which was solved in Table 32.6. The other Case-1 cluster shown in part (b) is a C3 
type (±13 ) cluster (T1, E, T2). (Recall C3 correlations in Figure 32.3)  They are similar to the 
corresponding sketches shown in Figure 32.7 (e). One notable difference is that inversion doublet 
shows little or no splitting in the (A1, T1, E) cluster but does split in the (T1, E, T2) cluster.

When the tunneling rates fall below ten or twenty kilohertz the angular momentum could 
remain near a particular C3 or C4 symmetry axis for a time that is longer than the nuclear spin 
precession rates. Spin precession rates and corresponding hyperfine splittings are on the order of 
fifty kilohertz and increasing with K. Hence there would be plenty of time for each of the nuclear 
spins to align or anti-align with the C3 or C4 symmetry axes of rotation. The resulting coupling is 
called Case-2 coupling and the resulting spectra resembles that of an NMR scan of the nuclei 
with the magnetic field provided by the molecule itself through its own body frame rotation.

If SiF4 rotates uniformly on one C4 symmetry axis then all four F-nuclei occupy 
equivalent positions that are the same distance on the average from the rotation axis and 
experience the same local magnetic fields. The molecule is like a paired diatomic F2-F2 rotor 
with each one symmetrized or antisymmetrized so as to make the whole state symmetric. Table 

32.6 shows the spin-1/2 base states listed horizontally by total projection Iz of nuclear spins on 
the C4  axis. Horizontal arrays (↑↓) of spins denote symmetric states while vertical arrays ( ) 
denote antisymmetric spin states.  This symmetry analysis is expanded in following Sections.

The hyperfine energy is approximately proportional to the projection Iz. The resulting 
spectrum is (1,2,4,2,1)-degenerate pyramid of equally spaced lines as shown in Figure 32.8 (c). 

Four spin-1/2 states without symmetry restrictions would give the standard binomial (1,4,6,4,1)-
degeneracy seen in NMR spectra.

↓
↑
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� Table 32.6 Hyperfine spin states

If the molecule settles upon C3 symmetry axes of rotation the situation is markedly 
different. The four nuclei no longer occupy equivalent positions. One nucleus sits on the rotation 
axis while the other three nuclei occupy equivalent positions that are off the axis. The off-axis 
nuclei experience a different local magnetic field than the lone on-axis nucleus. (See Figure 32.8 
(d).) From the spectrum it appears that the spin-up to spin-down energy difference is much 
greater for the lone on-axis nucleus than it is for the three equatorial nuclei. The spin states for 
the three equatorial nuclei form an energy quartet of spin states. . The lone on-axis nucleus has 
an energy doublet with a large splitting, so together the four nuclei give a doublet of quartets as 
shown in the figure. 

If the off-axis nuclei had experienced the greatest splitting then the spectrum could have 
been a quartet of doublets instead of a doublet of quartets. Such effects also appear in 
superhyperfine structure of SF6 analyzed below.  For either of these molecules it is remarkable 
how different the rovibrational 'chemical shifts' can become for equivalent symmetry sites.  The 
result is a microscopic example of spontaneous symmetry breaking.

Iz = 2 Iz = 1 Iz = 0 Iz = −1 Iz = −2

↑

↓

↑

↓

↑↓ ↑↓

↑↓ ↑↑ ↓↓ ↑↑ ↓↓ ↑↓

↑↑ ↑↑ ↑↑ ↑↓ ↑↑ ↓↓ ↑↓ ↓↓ ↓↓ ↓↓
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The most common high symmetry molecules belong to either the tetrahedral Td or cubic-

octahedral O or Oh groups. The Td group of order 24 matches order °S4=4! of CF4 nuclear 
permutation. Oh symmetry is more complicated. The octahedral Oh molecule SF6 has F-spin-  
permutation symmetry S6 of order 6!=720, 15 times larger than Oh. This allows Oh species to be 
correlated with a supercluster of S6 symmetries that define nuclear spin hyperfine multiplets just 
as each C4 or C3 subgroup species correlate in Fig. 32.6 with a cluster of Oh symmetries.

  Borde' et.al.[32.27,28, ] first resolved hyperfine structure in 10μm υ3 bands of SF6. Fig. 29

32.9 displays 16μm υ4 bands [32. ] with focus on P(88) fine structures in part (b) that contain 30

superfine clusters in part (c) that in turn have hyperfine (d) and super-hyperfine structure (e). 
Like CF4 spectra in Fig. 32.7, SF6 υ4P(N)-cluster bands avoid P(N±1) neighbors, while SF6 

υ3P(N)-bands are crowded together by having lower scalar Coriolis splitting factors (ζ3<ζ4) or 
greater tensor cluster splitting factors (τ3>τ4). [32. , , ]31 32 33

Fig. 32.9 SF6 16μm υ4 P(88) spectral clusters for C4 axis rotation on left and C3 axis on right.

1
2
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In either case, a symmetry correlation is done in Fig. 32.10 between Oh subgroup species 
{A1g, …, T2u} and super-group S6 species labeled by 6-box spin- Young tableaus of 1 or 2 rows. 
Pauli-Fermi antisymmetry matches each spin tableau to its conjugate spatial tableau of 1 or 2 
columns. Each matched pair belongs to a total nuclear spin of I=0 (singlet state), I=1 (triplet), 
I=2 (quintet), or I=3 (septet). This is correlated with one or more of the 7 allowed Oh subgroup 
species {Eu, T1g, T1u, T2g, A1g, A1u, A2u} and 3 species Eg, T2u, and A2g are forbidden. They would 
be allowed if F-spin were greater than . If F-spin is less, i.e., zero, then only A1g is allowed.

Case-1 hyperfine SF6 spectra are sketched in center and lower right boxes of Fig. 32.9d-e 
as was done for CF4 in Fig. 32.7d-e. Case-1 has greater superfine cluster splitting between Oh 

species than spin multiplet splitting within them as seen by comparing these boxes to Fig. 32.10.       

Fig. 32.10 SF6  states of nuclear spin I=0-3 correlated with Oh symmetry species listed on top.

The lowest A2 boxes hold an (I=1) triplet and (I=3) septet for spin-weight 10 below A2u in 
Fig. 32.10. Above that lie T2g boxes with an (I=0) singlet and (I=2) quintet (weight 6), Eu with an 
(I=1) triplet and (I=2) quintet (weight 8), T1g or T1u triplet boxes, and finally A1g or A1u singlets.   

To form an SF6 molecule requires considerable spontaneous symmetry breaking to make 
six F atoms, free to undergo (at the very least) 6! permutations, settle into O symmetry around a 

Sulfur atom that has only 24 permutations. (A full � correlation valid for any Fermi or Bose 
XY6 octahedral molecule is given in Ref. [32.31]) Thus, SF6 spectra in Fig. 32.9 involves a more 
severe symmetry downfall than that of CF4 in Fig. 32.7.

This kind of downfall amounts to a breakdown of Herzberg’s rule concerning rovibronic 
spin species: Transitions between species are very strictly forbidden since the nuclear moments 
are so very slight. [32.2,3]In other words, if sub-kilo-Hertz interactions are negligible between 
states separated by MHZ or GHz then resonant mixing of different species is unlikely. 

1
2

1
2
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However, it was only found later how symmetric molecules have tight level clusters that 
force sub-kilo-Hertz near-degeneracy such as 6·10-12Hz for A1T1E cluster n4=88 in Fig. 32.9c.  
Here the exponential die-off of intra-cluster tunneling causes Case-2 superhyperfine mixing of 
species in a range from n4=88 down to about n4=78 where sub-kHz splitting begins. Also, on the 
righthand side of Fig. 32.9c, the C3 clusters labeled by n3=88 and 87 may fall into Case 2, too. 

When Oh species levels such as the A2T2E cluster n4=86=2 mod 4 in Fig. 32.9c are 
crushed together, the corresponding energies and states mix and reorganize as shown in Fig. 
32.11. With � symmetry of Case-1, all six O-axes � are equivalent. The three cluster 
levels are labeled by Oh symmetry species A2u (lowest J-tunneling energy: H-4S), T2g (middle: 
H), and Eu (highest H+2S) and their 6-box S6 tableaus correlated by Fig. 32.10 columns A2u, T2g, 
and Eu. The columns match each Oh species to one or two spin multiplets. A2u is the winner with 
the highest hyperfine weight of 10: (I=3)-septet+(I=1)-triplet that gives a Borde A2u spectra like 
the one shown on the lower righthand side of Fig. 32.11. (Note that the Borde spectral curve is a 
derivative of the seven peaks. Ideally seven zeros of that curve precisely locate septet peaks.)

The middle Case-1 T2g has the lowest spin weight of 6: (I=2)-quintet+(I=0)-singlet with 
an easily read Borde spectrum of 5 peaks and central peak doubled. The top Eu has a spin weight 
of 8: (I=2)-quintet+(I=1)-triplet with a more confusing Borde spectrum, possibly due to onset of 
Case-2 mixing that happens if ATE splitting S is approaching  that of hyperfine multiplets.

When the 6-axis J tunneling rate S goes to zero, the SF6 becomes stuck to rotating on 
single axis pair � so four F-atoms rotate around the equator while the other two take up a 
more sedate residence at North (z) and South (-z) poles. Such restriction of freedom or symmetry 
breaking is indicated symbolically by literally breaking the six-box tableaus of S6 into four-box 
and two-box pairs labeling subgroups of S4⊗S2 or D4⊗C2. Each orbit tableau is Fermi-matched 
to a conjugate spin tableau (Recall Fig. 32.10) as shown on Case-2 level side of Fig. 32.11.

The whirling 4-box nuclei enjoy greater spin-rotation coupling than their sedate 2-box 
cohorts. To flip one of their 4 spins from �  to �  takes more energy than to flip a 2-box spin. (The 
Borde spectra in Fig. 32.11 indicate about 4 times more.) So raising �  to �  costs the 
entire width of the super hyperfine pattern while raising �  to �  costs only a triplet width. The 

scalar paired 2-box spins �  and 4-box spins �  are invariants.

O⊂S6 {xxyyzz}

{zz}

↓ ↑

↓↓↓↓ ↑↑↑↑

↓↓ ↑↑

↓
↑
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Fig. 32.11 Case-1 {A2T2E} levels mix to become Case-2 superhyperfine levels. 
[Spectra: J. Borde and Ch. Borde, Chem. Phys. 71, 471 (1982); Theory: Harter, Phys. Rev. A 24, 192(1981)]

S6⊃O C4v⊗C2h

E spin weight 3+5=8

T2 spin weight 1+5=6

A2 spin weight 3+7=10
24 cluster weight 8+6+10=24
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Until the discovery of fullerenes and the structure of virus capsids, molecules with the 

highest icosahedral symmetry were thought to be rare or non-existent in nature. [32. , ] With 34 35

discovery of Buckminsterfullerene (Buckyball) C60 with molecular point symmetry Yh or Ih one 
expects extreme dynamical symmetry effects. It helps to compare Yh-symmetric C60 to the Oh-
symmetric SF6 first by their symmetry-allowed rotation Hamiltonians of lowest rank. [32. , ]36 37

� (32.18a)

� (32.18b)

Both have large rotor inertia I and small rotor constant B . (For C60:2B = 0.0056 cm-1 or 168 
MHz. For SF6:2B=.091 cm-1) [32. ]  Both use Wigner-Eckart form for tensor matrix elements.38

 � (32.18c)

J=30 eigenvalues of � in Fig. 32.4 are to be compared to J=100 values of � in Fig. 32.12. 

Six C4 hills of RES (Rotational Energy Surface) compare to 12 C5 hills on  RES and 8 

C3 valleys of RES compare to 20 C3 valleys on RES. C3 cut-off angle for  

is half of 19.5° for . So the huge J=100 manifold has room for only two C3 clusters.

A first comparison of SF6 and 13C60 assumes Fluorine and 13C nuclei causes no hyperfine 
splitting. (Here we ignore Fig. 32.11 and assume C60 rotates slowly with 13C magnetic moments 
too weak to observe.) Just as order is maintained in a sequence of SF6 species between C3 valleys 
and C4 hills in Fig. 32.4, so also is the order of 13C60 symmetry species maintained as C3 valley 
clusters morph into C5 hill clusters on either side of the separatrix in Fig. 32.12b.

While SF6 or 13C60 level sequence is maintained their intra-and-inter-cluster level spacing 
is not. C3 valley intra-cluster level spacing in Fig. 32.12c is quite different from the C5 hill intra-
cluster level spacing in Fig. 32.12d, and similarly for SF6 cluster level eigenvalues in Table 32.5. 
Intra-cluster (superfine) eigenvalues have a quasi-exponential tunneling “sneak” factor S that 
was first defined for the asymmetric rotor by eq.(32.13). It depends on local angular momentum 

mn of each Cn cluster and J-momentum cone polar angle as diagrammed by Fig. 32.5. 

� (32.19)

Asymmetric-rotor eigenvalues in Table 32.1 and  CF4 or SF6 eigenvalues in Table 32.5 have 
numerical rationality that contrasts with the irrationality of C60 Golden ratios (G+=(1+√5)/2 and 
√13 of superfine eigenvalues in Fig. 32.12(c-d). Rational frequencies give Poincare periodicity 
while irrational ones give quasi-periodicity.

However, discussion of similarity of SF6 and 13C60 ends when the hyperfine structure of 
the latter overwhelms that of the former. This is revealed in the following section.  
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Fig. 32.12 J=100 Yh-symmetry sub-levels. 12C60 allows only the four A-species. 13C60 allows all.  
(a) T[6] RES of 26.6° C5 hills or 10.8° C3 valleys hold (b-c) many C5 levels and (d) few C3 levels.   

   I=0
allowed

       I=0
allowed

   I=0
allowed

(b) T[6] species sequence ring
C5 (outside) and  C3 (inside)

(a) T[6] rotational energy surface

(c)    C5 cluster
eigen-levels

(d)   C3 cluster
eigen-levels

   I=0
allowed
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32.5.5 12C60 versus 13C60: A world of difference in spin-½ hyperfine spectroscopy

 SF6 has one stable F-isotope. C60 chooses from two stable C isotopes; 12C (spin 0) of 
98.9% abundance or 13C (spin- ) at 1.1%. 12C spectroscopy is simpler than that of 13C. (The 
14C spin-0 isotope is even more tricky with its 5,707yr-half-life β-decay into 14N.) It helps to 
compare purely Bosonic 12C60 with purely Fermionic 13C60. In between are many mixed 
12Cn13C60-n isotopomers. The first 12C5913C is 33% likely and is an extreme example of isotopic 
symmetry breaking.[32. ] A single extra neutron reduces the very highest 3D point symmetry Yh 39

(120 operators) down to a lowly Ch (one planar reflection). [32. ]40

After comparing levels of SF6 and 13C60 above one should also compare SF6 (J=30) 
levels in Fig. 32.4 to allowed 12C60 (J=100) levels in Fig. 32.12.  Only four of its 201 levels are 
Bose-allowed A-species: K=n5=100, K=n5=95, K=n5=90, and finally K=n3=99, in the second to 
lowest cluster in the C3 valley. The upper three are K=0-mod-5=05 waves orbiting C5 hills. 
K=n3=99 is the only 0-mod-3 wave in the tiny C3 valley of the RES and thus the valley’s only 
12C60-allowed level in Fig. 32.12.

Clearly, 12C60 has a very sparse fine structure. This helps spectroscopists to assign lines 
and determine 12C60 constants that will approximate those of 13C60. (If 12C60 has molecular weight 
of 720 atomic units then 13C60 weighs in around 780.) Recently, (as this article was being written) 
the very first J-resolved 12C60 spectra was observed in its 8.4μm ν2 bands by Jun Ye’s group at 
JILA[32. ] that pioneered direct frequency comb spectroscopy. In this work they used cavity-41

enhanced comb spectroscopy along with buffer gas cooling. [32. ] This follows 27 years of 42

failed attempts by other labs around the world. Now it suggests that a “Mt. Everest” of molecular 
spectroscopy, namely the 13C60 spin-monster, might be attainable. 

There is both good and bad news concerning this. The good news: Fermi-symmetric 
13C60 has only ten times as many rotating spin-1/2 nuclei as SF6. The bad news: That factor-of-10  
lies in exponents! 

So 13C60 has about 260 hyperfine states or about 1.15·1018 spin states distributed among 
its 10 species [31] as listed in Fig. 32.13. That is in contrast to Bose-symmetric 12C60 that has 
only a handful of A-states in each J-multiplet. Yet a single neutron entering 12C60 to form 
12C5913C causes many of the excluded levels to arise under lower Ch symmetry labels.

SF6 spin-weights {8,3,3,6,1,1,10} in Oh⊂S6 correlation of Fig. 32.10 fit a sum identity of 

Oh irep dimension  times each of its spin-weights. This equals its total spin dimension 26=64. 

        � (32.20)

1
2

ℓ µ( )

8 ⋅ℓEu+3⋅ℓT1u+3⋅ℓT1g+6 ⋅ℓT2 g+1⋅ℓA1g+1⋅ℓA1u+10 ⋅ℓA2u

= 16 + 9     + 9     +18    +1     +1      +10 = 64 = 26
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A similar identity uses products of U(2) spin-  dimensions (2S+1) with ireps of group S6 whose 
tableaus match U(2) tableaus that belong to each total spin S=3,2,1,0 made by six spin-�  nuclei.   

�             (32.21)

Tableau hooklength-formulas give irep dimension for Sn and for U(m). (See [32.15] p.65)

�

The hooklength h of a tableau box is the number nr of boxes to its right plus the number nb below 
it plus 1 for itself, that is h= nr+nb+1. Numerator for Sn formula (32.22a) is n! (Here n=15) 
Denominator has exactly n-boxes with one hook length for each particle. The same denominator 
applies to U(m) irep dimension (32.22b) for an n-particle-m-state system (Here m=5), but the 
numerator fills the same tableau frame with a matrix whose corner diagonal is (m,m,m,…), and 
±1st off-diagonals are ±(m±1,m±1, m±1…), ±2nd off-diagonals are ±(m±2,m±2, m±2…), etc. 

The (32.22) fractions always yield a positive integer if the desired representation exists 

and zero otherwise. U(2) fractions (m=2) derive factors �  in (32.20).  

�  (32.23)

This is consistent with (32.21), (32.22) and the Oh⊂S6 correlation table in Fig. 32.10 if we recall 
that each Fermi spin tableau has to be the transpose of its rotor tableau factor in order to make 
the Fermi-Dirac-Pauli totally antisymmetric spin-rotor state.  The hook length formulae structure 
(32.22) shows that a tableau has the same dimensions as its transpose for both Sn and U(m).

As powerful as tableau formulae are, they do not quite prepare us for the huge tableau 

dimensions and correlations associated with 13C60 and its permutation symmetry S60 containing 
its icosahedral symmetry subgroup Yh⊂S60. The analogous spin-weights in Fig. 32.13 for a 
Yh⊂S60 correlation are truly enormous numbers when compared to the analogous Oh⊂S6 
numbers in Fig. 32.10. Most C60 spin states have no Y or Yh-symmetry. Applying all 60 Y 
operators to a typical state generally gives 60 orthogonal spin states spanning a 60-by-60 regular 

representation and reducing to 1A⊕3T1⊕3T3⊕4G⊕5H that obeys its group order sum relation.

� (32.24)
So Yh species weights in Fig. 32.13 are (to 1 part in 106) proportional to irep dimension. 

Thus the approximate weight ratios are (A:T1:T3:G:H)=(1:3:3:4:5) with relatively tiny ratio 

1
2

1
2

26 = ℓU (2) ℓ S6
+ℓU (2)  ℓ S6

+ℓU (2)   ℓ S6
+ℓU (2)    ℓ S6

    =(2S+1=7) ⋅  1       +(2S+1=5) ⋅  5     +(2S+1=3) ⋅9    +(2S+1=1) ⋅5 

      ℓ S15
= 15!

hooklength
product:

1
8 7 5 3 1
7 5 3 1
5 3 1
2 1

   (32.22a)                       ℓU (5) =

integer
product:

hooklength
product:

5 6 7 8 9
4 5 6 7
3 4 5
2 3

8 7 5 3 1
7 5 3 1
5 3 1
2 1

     (32.22b)

ℓ S6
[µ] = 1,5,9,5{ }

ℓ S6

[µ] = 1,5,9,5{ } = ℓOhA2u ,   ℓOh
Eu + ℓOh

T2 g ,   ℓOh
A2u + ℓOh

Eu + ℓOh
T1g + ℓOh

T1u ,   ℓOh
A1g + ℓOh

A1u + ℓOh
T2 g{ }

°Y = (ℓA)2+(ℓT1 )2+(ℓT3 )2+(ℓG )2+(ℓH )2=12+32+32+42+52= 60



�31variations between odd (u) and even (g) parity species. However, as Fig. 32.13 shows, the 
arithmetic variations are in the billions! This is in contrast to SF6 where u and g ratios of Oh 
species differ markedly and even leave the three species A2g, Eg, and T2u with zero weight.

Fig. 32.13 Total spin weights and mz-distributions for Yh⊂S60 symmetry species 

Plots of species weight vs spin z-component (-30 ≤ mz ≤30) are shown along the right 
hand side of Fig. 32.13. Height of each vertical line is proportional to the number of a given 
species A, T1, T3, G, or H that have the mz value that line represents. Each species has its tallest 
line at mz = 0 then falls quasi-exponentially on either side. They become too small to plot for mz 
values outside the interval (-12 ≤ mz ≤+12) and thereafter are just lines of dots. The dots for 
scalar icosahedral A species at extreme values of mz =+30 or mz =-30 are lines of height ℓ[60,0]=1 
for S60 tableaus below. Dots for other species are zero at maximal spin momentum |mz|=30.  

          mz=+30
            (32.25)
          mz=-30

The opposite extreme is the spin tableau [30,30] for totally paired-up zero-spin (S=0=mz).

�             (32.26)

The S60 dimension ℓ[30,30] for this zero-spin tableau is given by applying (32.22a).
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   mz= 0

9,607,679,885,269,312
9,607,678,793,631,424
28,823,036,970,926,496
28,823,037,990,981,216
28,823,036,970,926,496
28,823,037,990,981,216
38,430,716,856,193,728
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�  (32.27)

That number of zero-mz states is apportioned by ratios 1:3:3:4:5 (±0.0001%) to species A, T1, 
T3,G, and H, respectively  (Exact ratio calculation is tricky and required an erratum.[32.40]) If 
ever the resulting panoply of 13C60 super-hyperfine spectra is observed it will dwarf that of SF6 in 
Fig. 32.9 and Fig. 32.10. A plot comparing J=100 superfine levels of 13C60 to those of 12C60 in 
Fig. 32.12 only begins to relate to SF6 levels in Fig. 32.4. An attempt to relate spectra of 13C60 to 
12C60 is sketched by Fig. 32.14 as a highly speculative P(50) prognostication where only two A-
singlet 12C60 lines exist while 13C60 has seven large clusters. The (K=50)05(AT1H T3) cluster is a 
Case-1 guess for superfine structure of astronomical numbers of hyperfine lines. Resolution-
assignment of such super-hyper-spectra will require a wealth of future technology and theory.     

 Fig. 32.14 Comparison sketch of possible P(50) spectral structure for 12C60 and 13C60.  

ℓ 30,30⎡⎣ ⎤⎦ = 60 ⋅59 ⋅58 ⋅57"2 ⋅1
31⋅30 ⋅29 ⋅28 ⋅""3⋅2
30 ⋅29 ⋅28 ⋅27 ⋅""2 ⋅1

= 60!
(31!)(30!)

= 3.8149865020923⋅1015
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32.6 Composite rotors and multiple RES
So far, the discussion has focused on Hamiltonians and RE surfaces involving functions 

of even mulipolarity, that is, constant (k=0), quadratic or quadrupole (k=2), quartic or 
hexadecapole (k=4), while ignoring functions that are linear-dipole (k=1), or cubic-octupole 
(k=3) for reasons of time-reversal symmetry. However, for composite “rotor-rotors” any 
mulitpolarity is possible and the dipole is of primary utility. 

A composite rotor is one composed of two or more objects with more or less independent 
angular momenta. This could be a molecule with attached methyl (CH3) “gyro” or “pinwheel” 
sub-rotors, a system of considerable biological interest. It could be a molecule with a vibration or 
“phonon” excitation that couples strongly to rotation. Also, any nuclear or electronic spin with 
significant coupling may be regarded as an elementary sub-rotor. The classical analogy is a 
spacecraft with gyro(s) on board.

A rotor-rotor Hamiltonian has the following general interaction form.
� (32.28)

A useful approximation assumes the rotorS “gyro” is fastened to the frame of rotorR so the 
interaction VRS becomes a constraint, does no work, and is thus assumed zero. An asymmetric top 
with body-fixed spin is the following modified version of (32.1).

�        (32.29a)

The system total angular momentum is a conserved vector J=R+S in the lab-frame and a 
conserved magnitude |J| in the rotor-R body frame. So we use R=J-S in place of R. 

�   (32.29b)

Gyro-spin components Sa are treated at first as constant classical parameters Sa.
(32.29c)

This is a simple Hamiltonian multipole tensor operator expansion having here just a monopole 

�  term, three dipole �  terms, and two quadrupole �  terms shown in Fig. 32.15. Each is a 

radial plot of a spherical harmonic function �  representing a tensor operator � .
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Fig. 32.15 The six lowest order RES components needed to describe rigid gyro-rotors.

  �            �           �
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(32.31a) (32.31b) (32.31c)

The scalar monopole RES (a) is a sphere, while vector dipole RES (b) are bi-spheres 
pointing along Cartesian axes, and the RES (c) resemble quadrupole antenna patterns. Also, Fig. 
32.15(a-c) plot the six s, p, and d Bohr-Schrodinger orbitals that are analogs for the six 
octahedral J-tunneling states listed in Table 32.5.

The asymmetric and symmetric rotor Hamiltonians (32.1) and (32.2) are combinations of 
a monopole (32.30a) that, by itself makes a spherical rotor, and varying amounts of the two 
quadrupole terms (32.30c) to give the rigid rotor RES pictured previously in Fig. 32.1 and Fig. 
32.2. Both Q-coefficients (32.31c) are zero for a spherical top (A=B=C) but only one is zero for 
a symmetric top (A=B). 

Combining monopole (32.30a) with dipole terms (32.30b) gives a gyro-rotor Hamiltonian 
(32.19b) for a spherical rotor (A=B=C) that has the following form.

 H=const+ BJ2 -gµS·J (where: -gµ=2A=2B=2C) (32.32)
H resembles a dipole potential -m·B for a magnetic moment m=gJ that precesses clockwise 

around a lab-fixed magnetic field B=µS. (The PE is least for J along S.)
Here, the Hamiltonian (32.32) is a simple example of Coriolis rotational energy. It is least 

for J along S where |R|=|J-S| is least and rotor kinetic energy BR2 is least. (Magnitudes |J| and |S| 
are constant here.) The spherical rotor-gyro RES in Fig. 32.16 is minimum along body axis +S 
and maximum along –S where BR2 is greatest.

As is the case for rigid solid rotors in Fig. 32.1 and Fig. 32.2, the RES energy topography 
lines determine the precession J-paths in the body frame wherein gyro-S is fixed in Fig. 32.16. 
The left hand rule gives J-precession sense in the body S-frame, that is, all J precess anti-
clockwise relative to the “low” on the +S-axis or clockwise relative to the “high” on the –S-axis. 
In the lab, S precess clockwise around a fixed J.

Gyro-RES differ from solid rotor RES that have two opposite “highs” and/or two 
opposite “lows” separated by saddle fixed points where the precessional flow direction reverses 
as seen in Fig. 32.2. The gyro-RES in Fig. 32.16 has no saddle fixed points and only one “high” 
and one direction of flow with the same harmonic precession frequency for all J-vectors between 
the high +S and low –S-axes.This is because the spectrum of the gyro-rotor Hamiltonian (25.A.
22) is harmonic or linear in the momentum quanta K. 

� (32.33)

In contrast, even the symmetric rigid rotor spectrum (32.4) is quadratic in K. Other rotors shown 
in Fig. 32.2 and Fig. 32.4 have levels that are quite non-linear. 
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�
Fig. 32.16 The spherical gyro-rotor RES is a cardioid of revolution around gyro spin S 
32.6.1 3D-Rotor and 2D-Oscillator Analogy

Linear levels belong to harmonic oscillators not rotors, but a gyro-rotor’s linear spectrum 
highlights a 150-year-old analogy of 3D rotor motion to 2D vibration. Stokes [32. ] described 43

2D electric vibration or optical polarization, by a 3D vector later known as Stokes vector and 
labeled appropriately by the letter S. (Now we say S labels “spin.”) Stokes’ spin uses Hamilton 

quaternions [32. , ], redone 80 years later as Pauli spinor σµ components [32. ] of a general 44 45 46

2D Hermitian operator H. 
(32.34)

Our labels: A (“Asymmetric-diagonal”), B (“Bilateral-balanced”), and C(“Circular-Coriolis”) 
are mnemonic alternatives to Pauli’s z, x, and y, respectively. The 2D Hamiltonian has the S·J 
form of the Coriolis coupling (32.32). 

(32.35)

The 2D-3D analogy is helped by using elementary oscillator ladder a†a operators.

 � (32.36)

This is a Jordan-Schwinger map of 2D oscillation to 3D rotation. [32. , , ]47 48 49
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�37This easily gives Schwinger’s 3D angular momentum raising-lowering operators 

� and � , where 2D dimensions 1 and 2 are spin-up (+"/2) 
and spin-down (-"/2) instead of x-and y-polarized states envisioned by Stokes.

Angular 3D ladder operation is replaced by a simpler 2D oscillator operations.

� (32.37)

2D oscillator states are labeled by total number N=(n1+n2) of quanta and the net quantum 

population ΔN=(n1-n2). 3D angular momentum states  are similarly labeled by total momentum 

J=N/2=(n1+n2)/2 and z-component K=ΔN/2=(n1-n2)/2, just half (or "/2 ) of N and ΔN. 

     �  (32.38)

From this Schwinger [32.48] re-derived the Wigner matrices  appearing in (32.5) and 

(32.6) and Clebsch-Gordan � coefficient or Wigner-Eckart tensor relations. This helps 
clarify RES approximations such as (32.10) and (32.11) that use (J,K)-cone levels on RES.

.  

32.6.2 Gyro-Rotors and 2D-Local Mode Analogy
The 2D-3D analogy provides insight into NMR spin [32. ], laser quasi-spin (Rabi-50

rotation) [32. ], rovibrational dynamics [32. , ], and local mode formation [32. , 55]. It also 51 52 53 54 55

has computational value. Part of this involves relating single 2D oscillator (Stokes model) to a 
model of two 1D oscillators with coordinates x1=x and x2=y. 

Two identical side-by-side oscillators have bilateral or B-symmetry and a HB Hamiltonian 

commutes with both σB (a +45° mirror reflection of axes ) and with -σB (a -45° mirror 
reflection of axes � ) both of which interchange oscillators.

This means that to first order the Hamiltonian is HB=2BσB, that is, a gyro rotor  with S along 

the B-axis as shown in Fig. 32.17. (Added �  affects eigenvalues, not states.)  
Eigenvectors of HB are the symmetric and antisymmetric normal modes that belong to the 

fixed points on the S-vector and ±B-axes of the Stokes space. If instead, the S-vector lies on the 
A-axis, the Hamiltonian is an asymmetric diagonal HA= 2AσA matrix. From (32.34) we see that 
operator σA reflects y into –y but leaves x alone, so eigenvectors of HA are localized on the x-
oscillator or the y-oscillator but not both. Such motions are local modes, but are not modes of HB, 
which does not commute with HA.  

Hamiltonian HB precesses a J-vector from +A-axis (local x-mode) around to the –C axis 
to the –A (local y-mode), then to the+C axis, and then home to +A. The J-path is the largest 
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�38equator of Fig. 32.17(a). The ±C-axes are what Stokes would label circular polarization with 
chirality right and left, respectively. In a B-beat, ±C belong to resonant transitions where one 
vibrator’s phase is 90° ahead and pumping up the other.

Simple mode beat transfer dynamics is disrupted by adding anharmonic �  or �  terms 

to existing B-symmetry terms �  and � , as shown in Fig. 32.17(b-c).

Fig. 32.17 A spherical gyro-rotor becomes a symmetricgyro-rotor by adding � .  

In molecular rotation theory, the �  term along with �  make the initial unperturbed 

Hamiltonian (32.3) of a symmetric top, and gyro terms �  are viewed as perturbations. For 

vibration theory, the latter make up a normal mode Hamiltonian and the former �  term is 
viewed as an anharmonic perturbation. 

The effect of � , seen in Fig. 32.17(c), is to replace the stable fixed point +B 
(representing the (+)-normal mode) by a saddle point as B bifurcates (splits) into a pair of fixed 
points that head toward the ±A-axes. So one normal mode dies and begats two stable local modes 
wherein one mass may keep its energy without losing it to the other through the usual B-beating 
process. (The A-modes become anharmonically detuned.)

Pairs of classical modes that each localize energy on one side of an RES in Fig. 32.17 are 
analogous to asymmetric top ±K-precession pairs in Fig. 32.2. However, one must consider more 
than the classical aspects of RES pictures. Quantum-tunneling Hamiltonians such as (32.15) give 
a superfine doublet for each trajectory pair with (±)-combination eigenstates (Recall Table 32.1), 
and they occupy both paths just as each gyro-spin doublet would have J both up and down the A-
axis in a quantum picture.
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32.6.3 Multiple Gyro-Rotor RES and Rotational Energy Eigen-surfaces (REES)
Just as quantum rotor theory allows J to occupy multiple paths so also may J occupy 

multiple RES. In this way gyro-rotors differ from the analogous J precession around a lab-fixed 
B-field or around the body-fixed S of a classical gyro. By allowing the S to be a quantum entity, 
the possibility arises for distribution over multiple RES. [32. , ]56 57

A simple quantum theory of S allows both +S and -S at once. The RES for each is plotted 
one on top of other as in Fig. 32.18 (a) while component RES are shown in Fig. 32.18(b) for +S 
and in Fig. 32.18(c) for -S. An energy sphere is shown intersecting an RES pair for an 
asymmetric gyro-rotor. If the spin S is set to zero, the pair of RES collapse to a rigid asymmetric 
top RES shown in Fig. 32.2. having angular inversion (time-reversal J→-J) and reflection 
symmetry. The composite RES in Fig. 32.18(a) has inversion  symmetry but lacks reflection 
symmetry. Its parts in Fig. 32.18 (b) and in Fig. 32.18 (c) have neither symmetry due to their 
body-fixed gyro-spins ±S.

�
Fig. 32.18 Asymmetric gyro-rotor RES. . (Classical body-fixed-spin case.)
(a) Composite ±S. (b) Forward spin ± S. (c) Reversed spin – S.

      

-S

S SS

Jz

Jx

Jy
-S

(c) Time
reversed gyro
-S=(-1,-1,-1)

(b) Forward
gyro-spin
+S=(1,1,1)

(a) Composite
±S Rotational
Energy Surface



�40Gyro-rotor Hamiltonians (32.39) allow tunneling or mixing of multiple RES. A two-state 
spin-1/2 gyro-spin model has a 2-by-2 Hamiltonian matrix and two base-RES. 

(32.39)

As in eq. (32.7), J is approximated by classical vector components in the body frame. 

� (32.40a)

But, the gyro spin S uses its quantum representation S=|S|σ/2=√3σ/2 from eq. (32.34).

  � (32.40b)

where: � and: � (32.40c)

The semi-classical  �  makes spin expectation �  to precess around an angular velocity 
crank-vector Ω with the following J-dependent body frame components. 

� (32.40c)

A quantum REES shown in Fig. 32.20 results from substituting quantum spin S=½σ 
matrices ½σx, ½σy, or ½σz in for each algebraic Hamiltonian factor Sx, Sy, and Sz of (32.39) to 
make a matrix Hamiltonian (32.40) that is then diagonalized. The resulting pair of eigenvalues 
are plotted to make a pair of REES functions of polar body frame angles β and γ. 
 In comparing the classical composite RES in Fig. 32.18a or Fig. 32.19 with the quantum 
REES in Fig. 32.20 one may note that have similar shapes in regions where classical ±J-surfaces 
of Fig. 32.19 are well separated. Wherever the classical RES cross the quantum REES differ 
most markedly due to their inter-surface resonance.  
 Each REES resembles a warped asymmetric top RES that is most perturbed at points 
where the two classical RES cross. The RES pair intersection along the horizontal x-axis (in 
figure plane) becomes an REES avoided crossing. The RES pair intersection along the y-axis 
(out of figure plane) becomes an REES diabolical point so-named after a toy top called a diablo. 
A current term for such a dual-cone singularity is Dirac point. 
 Near-crossing RES are the rotational equivalent of near-crossing vibrational-potential 
(VES) employed in treatments of Jahn-Teller effects [32. , 59] The classical, semi-classical and 58 59

quantum theory for such loosely bound or fluxional systems is a rapidly growing sub field of 
atomic, molecular, and optical physics. 
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 !  
Fig. 32.19 Classical gyro-rotor c-RES views of Fig. 32.18 (a) based on (32.39). 

 !  
Fig. 32.20 Quantum gyro-rotor REES views based on eigenvalues of (32.40) with S=σ/2. 



�4232.6.4 Multi-quantum CF4 rovibrational polyads and REES visualization
Molecular quantum data comes first in the form of spectral line frequencies that are 

correlated with theory derived from Hamiltonian energy operator eigenvalues or differences 
thereof. Second comes a much larger data set that includes spectral transition rates and intensities 
that are correlated with eigenvector matrices or density operators. As more AMOP phenomena 
become available researchers try to understand this deluge of data and find ways to visualize it. 
Section 32.4 provides a theory for level-clustering of octahedral and tetrahedral molecules and 
shows a way to visualize underlying eigenstates using rotational energy surfaces (RES).

A possibility for visualizing ever more complex spectral phenomena involves rovibronic 
energy eigenvalue surfaces (REES) introduced in preceding section 32.6.3. An example involves 
the CF4 ν3/2ν4 rovibrational polyad. It begins with a plot versus total angular momentum J=0-70 
in Fig. 32.21 of level cluster bands found in this polyad as calculated by Boudon et. al. [32. , ]60 61

The plot uses squares(#) as boundary points containing C4-level clusters such as are 
shown in Fig. 32.4(right) and C4-correlated in Fig. 32.6(right). Triangular points(△) mark bands 
of C3-clusters shown in Fig. 32.4(left) and C3-correlated in Fig. 32.6(left).

Fig. 32.21 also has C2-cluster regions marked by diamond (◊) points where C2-correlated 
species in Fig. 32.6(center) might appear. These are rare in Oh or Td spectra as their RES have 
saddle points at their C2 axes as in Fig. 32.4 so they are unstable. The asymmetric rotor in Fig. 
32.2 is a prime example of an RES with unstable C2 ±y-saddle points.

However, overtone and combination resonances give rise to the larger clusters that have 
lower local symmetry of C2 and C1 (no symmetry). The ν3/2ν4 REES for (J=57)-states has 5 of 
its 9 shells showing in Fig. 32.22.[32. ] The innermost and lowest REES shell is nearly 62

spherical at the scale of figure and corresponds to the lowest cluster levels in Fig. 32.21 that, if 
expanded, would reveal usual ordering C3-below-C4 separated by C2 saddle as in Fig. 32.4. The 
shell above that has a cubic (as opposed to octahedral) shape with inverted ordering C4-below-C3 
clearly shown by levels in the next-to-lowest J=57 cluster bunch in Fig. 32.21.

The three highest REES shells shown in Fig. 32.22 involve a level-cluster mash-up at the 
middle of Fig. 32.21. A pair of shells form diabolic points on C2 axes and avoided-crossing pairs 
of orbits on both C3 and C4 axes. Above that is an extraordinary REES shell with 24 C1 orbits 
indicated by arrows emerging from their loops. This 5th shell also supports many C3 orbits, a few 
C4 orbits, and a bizarre saddle shape on the C2 axes. 

The 24-cluster of C1 orbits belongs to species correlation 01↑O=A1⊕A2⊕E⊕T1⊕T2 of a 
regular representation of the isomorphic groups S4~Td~O that now uses the identity subgroup 
C1={1}. The relevant C1, C2, C3, and C4, correlation tables are matched to corresponding cluster 
orbits in Fig. 32.22. While each of the 24 C1 orbits lack rotational symmetry they each do 
maintain a local reflection symmetry Cv={1, σv}. At much higher J one should expect to find Oh 
clusters of 48 species levels, indeed, a majority of them in analogy to the majority of regular S60 
spin states of unit S1 symmetry in the correlation table of Fig. 32.13.
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Fig32.21 CF4 Molecular rovibrational level-clusters for ν3/2ν4 polyad J=0 to J=70
        Adapted from Boudon [32.60] .  Energy units are 1 Kayser (1 cm-1).
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Fig. 32.22 CF4 Molecular (J=57) REES-1-to-5 for ν3/2ν4 polyad levels plotted in Fig. 32.21.
        Adapted from Harter and Mitchell, Int. J. Mol. Sci.[32.62]
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