
Guide to AMOP Handbook graphics !1
Guide to animation and user-controlled Relawavity graphics on AMOP DVD  

It has been traditional for the AMOP Handbook to order first the more fundamental and elementary chapters. The 
following is a unique electronic presentation of the most fundamental pillars underlying all of modern physics, 
namely quantum theory originated by Planck (1900) and special relativity originated by Einstein (1905). 

Relativity and quantum theory are now an established part of popular culture. They appear in a famous movie 
(screenshot in Fig. 1) based on a hilarious answer to Fermi’s famous SETI question, “Why is it so quiet out 
there?” The movie, Men in Black assumes it is not! Rather secret black-suited immigration officers manage a 
ribald alien population from within an enormous intergalactic spaceport hidden in Manhattan. 

Fig. 1 1997 MIB Screenshot of first-grader, Suzy, carrying her AMOP homework. 

An opening scene of MIB has the protagonist (played by Will Smith) undergo a simulated gun fight to see if he 
can quickly distinguish alien from innocent, whereupon he shoots little Suzy for carrying relativity and quantum 
physics texts. Asked why, he answers, “…clearly up to no good!”  

As silly as MIB is, it provides a profound lesson about postmodern physics and how its intellectual property is to 
be created and transferred. Most of us grow up finding books to be intellectually richer than their screenplays. 
MIB, however, would be a flop as a book. Its dynamics and humor would be lost on static ink and paper. 

As will be shown below, relativity and quantum theory have much to gain if presented in motion by computer 
animation. Both are a story about light waves in space and time. The time has come to let the light waves tell their 
own story more clearly using several active space-time displays combined with per-space-time (ω,ck) controls. 

One outcome of this is a realization that relativity and quantum theory make much more sense if presented as the 
same subject. Separately, they each have unnecessary conundrums that resolve when combined into a subject we 
have named Relawavity. Thinking in a wavelike way changes concepts such as Lagrangian or Hamiltonian from 
graduate student nightmares into simple ruler&compass trigonometry, all while making trigonometry fun to learn. 

Perhaps Suzy would be better off with just one book and a lighter one at that. We can speculate that future AMOP 
Handbooks may be made lighter than the current version, and perhaps contain a virtual reality viewer. 



Guide to AMOP Handbook graphics !2
Space-time Cartesian wave-zero-grids 

The sum! of two CW (Continuous Wave) laser beams trace (x,ct)-space-time grids shown in Fig. 2, an 
animated view of a λ=0.5µm laser cavity mode for an (n=2)-mode at 600THz. White lines are real zeros found by 
factoring sum! into a phase factor labeled by vector P or P and a group wave factor labeled by vector G or G. 

   !        (1) 

P and G vectors in reciprocal (ck,ω) wavevector-frequency per-space-time define space-time P and G vectors. 
Zero slope of G maps to zero group velocity on G. Infinite slope of P maps to infinite phase velocity along P.   
 

   

Fig. 2 Rest (x,ct) frame Cartesian grid for colliding pair of 600THz continuous waves.  

 Web Simulation - RelaWavity: Time-Space plots - Minkowski coordinates w/ zero tracers, β = u/c = 0 
 Clicking the Wavevector ck axis near a positive integer shifts that n-mode for the Right-moving (R) CW.  
 Clicking the Wavevector ck axis near a negative integer shifts that n-mode for the Left-moving (L) CW.  

The result is generally a Minkowski (x,ct) grid that has non-zero group velocity and so is not a rest-frame.  Fig. 3 
below shows a frame traveling to the right with a wave group velocity of  u=3c/5 as is derived below the figure. 

Space-time Minkowski wave-zero-grids 
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Let Doppler factor eρ=2 blue-shift R-wave to 1200THZ. This implies a red-shift of L-wave by inverse e-ρ=½ to 
300THz. Right moving R-wave has velocity +c so ωR=+ckR. Left moving L-wave has velocity -c so ωL=-ckL.  
Both frequency ω and k-vector must shift in concert to maintain CW light speed c. 

!

Fig. 3 Minkowski (x,ct)-frame grid for colliding pair of R=1200THz and L=300THz waves.  
 Web Simulation - RelaWavity: Time-Space plots - Minkowski grid w/insert of shifted axis , β = u/c = 3/5 

Fig. 3 grid moves left-to-right at group velocity 3c/5, the slope of G versus ck-axis or G versus ct-axis. 
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Details of Fig. 3 in Fig. 4 show 16 group and phase wave parameters listed in Table 1. This begins with 
Doppler shifts e±ρ and wave velocities given as functions of rapidity ρ or the well known ratio. 
Numerical values for case ! occupy the lowest row of Table 1 (See also Tables 2a-b on p.22). 

!  
 Fig. 4. Relawavity parameters given as ρ-functions as they appear in (a) Per-space-time and (b) Space-time 
Table 1. Relawavity parameter formulae. Last row gives numeric values for blue-shift ! =2 or !  

              !  

Web Simulations - RelaWavity: Time-Space, Per-space-time, space-time, and tabular display of Relawavity parameters 
  RelativIt App: Space-space and time-space plots of passing ship and lighthouses (Lighthouse frame) 
  RelativIt App: Space-space and time-space plots of passing ship and lighthouses (Ship frame) 
            

 Column-(1+n) is inverse to column-(8-n) for n<8. Two ratios in Table 1 are famous: Lorentz x-
contraction ( ! ) or Einstein t-dilation ( ! ) and seen in Fig. 4b as ! reduced x-spacing or 
! increased ct-ordinate. However, all eight wave sizes ( ! to ! ) serve equally to clearly define  
geometry of (x,ct) or (cκ,υ) in Fig. 4a-b and the wave dynamics that leads to quantum theory.  
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Thales-Euclid means and geometry of hyperbolic invariants 

 Imagine you detect counter-propagating laser beams of frequency ωR going left-to-right and ωL 
going right-to-left. Consider two questions:  
 (1.) To what velocity uE must you accelerate to see beams with equal frequency ωE?  
 (2.) What is that frequency ωE ? 
Query (1.) has a Jeopardy-style answer-by-question: What beam group velocity do you see? 

   
     

(4) 

Query (2.) similarly: What ωE is blue-shift bωL of ωL and red-shift ωR /b of ωR ? 

                                           (5) 

 is ratio of difference mean  to arithmetic mean . Frequency ωE =B  is 
the geometric mean  of left and right-moving frequencies defining the geometry in Fig.4 as 
detailed in Fig.5a.  Line sum of ωL = ωE e-ρ and ωL = ωE e+ρ is bisected at center C of a circle connecting 
shifted phase vector P′ to its original P.  

 
 Original P (Pitcher's mound) is the geometric mean point  at Alice's base frequency of 
B=υA=600THz. (Fig.5 units are 300 THz.). That lets you construct points  P′, P′′, P′′′,... on a hyperbola 
that all frames will claim to also be their 600 THz invariant curve. Geometry begins by choosing to prick 
a C-point ck′ with compass needle. Then compass pencil is set to point-P, and arc P P′ is drawn to the 
next hyperbola point ω′(k′) on the new axis ck′. (Arc is optional if graph paper locates vertical P′C line.) 

 Time-symmetry axiom (e-ρ e+ρ = r ·b =1) implies phase points P′, P′′, P′′′,…  lie upon equilateral 
hyperbolas (xy=const. or ! ) whose ±45° asymptotes frame Doppler-shifted rectangles that all 
have the same area ! of the initial (ρ=0) baseball diamond in Fig.4a and Fig. 2. Fig. 5b shows plots 
of upper branches for two (ω′, ck′ )-hyperbolas belonging to constants ! and ! . This oblique 
±45° view of the invariant hyperbolas emphasizes the Doppler shift (r·b =const.) relations that are not 
immediately obvious from the usual straight-up Cartesian invariant equation such as ! . 

 The geometry behind Fig. 5a or Fig. 5b is ancient and goes back to Thales of Miletus (circa 
600BCE) about three centuries before Euclid. Thales construction of means follows from his proof by 
symmetry that each point on a circle subtends a right (90°) angle which in turn is based on inscribed 
rectangles (dashed lines in Fig. 5a). The same geometry applies to half-sum and half differences of 
phase angles involved in the wave interference sum sketched in Fig. 5c for each pair of phasors added in 
Fig. 5d. That is the geometry of factoring equations (1) and (2) giving Minkowski grids due to wave 
interference in Fig.3. 
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Fig. 5 (a)Thales-Euclid geometric and arithmetic means (b) Hyperbola construction step for circle radius CP′. 

Web Simulation - RelaWavity: Thales-Euclid geometric relations of Per-space-time
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Fig. 5 (c) Sum ψAB = ψA +ψB.    (d) Sum of individual phasors.    (e) Phasor A moves relative to B and vice-

versa. 
Pirelli Challenge Site animations: Phasor Addition, Phasor Description of Wave Interference  
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A novel review of trigonometry and some relawavity applications 

Every scientific calculator has an SIN button and, as we tell our home-churched students, this is not such 
a bad thing. In fact it stands for Slope of INcline and (multiplied by 100) gives the percent of grade or 
ratio of altitude gained over road distance traveled along the freeway by their town. Next to SIN is a 
COS or COmplimentary Slope giving ratio of level distance over road distance.  Fig. 6a is a plot of sine 
( ! ) and cosine ( ! ) of angle ∠σ=36.87° that makes 3:4:5 triangles. Angle in radians σ= 
0.6435=!  is also total sector area for a unit (B=1) circle. (That is π for σ=π.) Fig. 6 use a non-
standard convention to plot complimentary cosσ as a vertical projection while sinσ is horizontal. This is 
to match Minkowski plots like Fig. 4b where space x is plotted on horizontal axis and time t on the 
vertical axis. It is complimentary to a standard Newtonian plot of x (vertical) versus time (horizontal).    
 The result of pressing a calculator TAN button for angle ∠σ=36.87° is the TANgent or tanσ=¾ 
(the ratio ! ) labeling the hypotenuse of a smaller 3:4:5 triangle on top of Fig. 6a. That tangent 
line is also the altitude of the largest 3:4:5 triangle in Fig. 6a, and it encloses the upper σ-sector. The 
three circular functions ! , ! , and !  are sufficient for elementary physics but it helps to have 
three more that are inverses of the primary three. The secant ( ! ), cosecant ( ! ), 
and cotangent ( ! ) as plotted in Fig. 6b to show two additional (and larger) 3:4:5 triangles. 

!  
Fig. 6. Circular TRM’s (a) Primary circular function triplet. (b) Full TRM sextet of circular functions.  

 Trigonometry suitable for SR and QM functional theory involves replacing six circular functions 
in Fig. 6b with six hyperbolic functions as shown in Fig. 7 and Fig. 8 that play similar roles in labeling 
coordinates, tangents, and their intercepts around an equilateral hyperbola. Each circular function (such 
as ! ) is like an “urban dweller” that has a “country cousin” (for ! =! ) with same 
numerical value ( ! here) that is a function of hyperbolic sector area ( ! with angle!
in this example) as listed on top of Fig. 7 and plotted nearby. For each country-urban pair there is a 
flipped pair (here: ! ) that shares a value ( ! in that example) for the same hyper sector 
( ! or angle! ) and corresponding circle sector (σ=0.6435 or angle ∠σ=36.87° ). 
 A circle-hyperbolic (“urban-country”) pair !  and ! is listed on top left of 
Fig. 7 and plotted to the right below. (Fig.7 plots hyperbolic ρ-labels. Fig.6b plots circular σ-labels.) 
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Total area ρ of paired sectors connecting opposite sides of a hyperbola is derived by an integral similar 
to one giving total sector area σ connecting sides of a circle. 
    
Fig. 7 Labeling of Fig.3 coordinate geometry by hyperbolic functions of rapidity ρ=ln[υreceiver/υsource].  
 Web Sim - RelaWavity: Hyper-circular geometry w/hyperbolic labeling (Note: Web plot is reflected about  x= y) 

Relativity and quantum physics connects to this hyper-trigonometry through the hyper-parameter ρ or rapidity that 
is the logarithm of Doppler frequency ratio (ρ=ln[υreceiver/υsource]) in Fig. 4 and Table 1. ρ is related by Eq.(3a) to 
the old-fashioned relativistic velocity parameter ( ! ) as follows.  

�      (6a) 

�         (6b) 
�         (6c) 

 Rapidity ρ is a longitudinal measure of group velocity along observer velocity u. An alternative speed 
parameter, namely stellar aberration angle σ in Fig.6, measures k-vectors transverse to observer velocity u. σ 
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appears in Fig. 8 and is physically defined in Fig. 9 below. A third speed parameter is angle ν subtended by a ρ-
sector in Fig.7 or Fig.8. It is the angle !  between rest ct (or x) and ρ-moving ct′ (or x′) axes in space-time.  !P

ʹP
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Fig. 8 Expanded ρ-labeling showing e-ρ vector (P-G)=L, e+ρ vector (P+G)=R, and Stellar vector S at angle σ.  
 UAF link to hyper-circular geometry with added detail 
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  Fig. 9 Stellar aberration angle σ of light beam normal to direction of velocity u. 

Lewis C. Epstein  developed a novel alternative to Minkowski-(x,ct)-plots that involves flipping proper-time 1

definition !  as follows into a Cartesian Pythagorean relation ! .  
 A Pythagorean geometry for space-proper-time or (x,cτ)-plots is shown by Fig. 10. There it is imagined 
all things travel at light-speed c including a stationary object (x′= 0) that “moves” parallel to the (cτ)-axis. 
Moving object P is indicated by an vector (ct′ ) that is inclined at aberration angle σ and also grows at rate c as 
given by !  with (x′ = u·t′ ). Fig. 10 animations relate (x,cτ) to (x,ct).   
 Combining longitudinal rapidity ρ for hyperbolic geometry with transverse σ of circular geometry is 
useful and insightful. Applications to wave guide and cavity relawavity and quantum wave mechanics follow a 
use of ρ and σ relations developed in Fig. 7 and Fig. 8 and further in Fig. 11 below or later in Fig. 12.  
 At low group speed u (u<<c) the angles ν, ρ, and σ in (3) converge to the old parameter β=u/c. 

Fig. 10 Epstein space-proper-cτ geometry of relativistic effects in terms of ρ or σ. 
UAF link to Epstein waves 
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c2τ A
2+ ʹx 2=c2 ʹt 2

 L. C. Epstein, Relativity Visualized. (Insight Press 1981) Transverse rotation provides an alternative view of relativity. 1
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https://modphys.hosted.uark.edu/markup/RelativItWeb.html?scenario=600
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 Fig.11 below combines the geometry of stellar aberration angle σ with a detailed rapidity ρ geometry of 
Fig.8 in a per-spacetime (υ,cκ)-plot of frequency (υ=ω/2π) versus wavenumber (κ=k/2π). The latter is rescaled to 
cκ to give unit slope υ/cκ =1=ω/ck for light cone line OR of the blue laser. 

!  
Fig. 11. (υ′,cκ′ )-view of  rest frame (υA,cκA) tangent geometry and (inset) Occam-Sword pattern relating σ, ρ, and ν angles. 
 UAF link to hyper-circular per-spacetime geometry 

 A pattern-recognition aid labeled Occam’s Sword in Fig.11(inset) focuses on geometry of  (sin ! tan) and 
(cos ! sec) columns in Table 1. The (cot ! csc) intercepts are outliers for low to moderate u/c values. The 
sword has a staircase whose steps belong to a (coshρ)n-geometric series: (Bcoshρ,B,Bsecρ,...). Extensions of the 
tangents have κ-axis (cot! csc)-intercepts on either side of the sword in Fig.11. The sword's lower k-edge 
defines wave vectors for waveguides and free-electron laser waves to aid analysis and visualization.  

TE-Waveguide mode geometry 
 Consider a sum of plane waves with wave-vectors k(+)=(ksinσ,+kcosσ)=(kx,ky) slanted up in Fig. 12a and 
k(-)=(ksinσ,-kcosσ)=(kx,ky) slanted down, each at an angle ±σ relative to the y-axis in  Fig 12. 

       (7) 

The result in xy-plane is a Transverse-Electric-(TE)-mode E-field with plane-normal z-component Ez that vanishes 
on metallic floor and ceiling (y=±Y/2) of the waveguide. 
  

  
(8) 

Fig.12 shows two cases of lowest (n =1) guide modes with Occam-sword geometry of Fig.11. Projection Ycosσ in 
Eq. (8) of floor-to-ceiling Y onto k(±)-vectors is shown by right triangles at guide ends to be , that is a half  
wave !  . Waveguide angle σ and  dispersion function υ(κ) follows. 
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(9) 

Some insight into Fig.12 waves results if we note it is what you see if υA= 600THz 2-CW beams are directed 
across x-line of motion at angle σ to y and not along x as in Fig. 2. You may adjust your speed so that wave-
number κx and angle σ drop to zero and frequency υ in (9) reduces to υ = υA. Such an x-flat (κx =0) wave is a cut-
off-frequency mode where υCUTOFF = = υA is the lower bound to the υ(κx) hyperbola that allows for waves 
entering a waveguide of width Y. Fig.12a mode is further above cut-off than one in Fig.12b.  

Fig. 12 TE-Waveguide and Occam sword geometry for stellar angle (a-b) σ = 60° and (c-d) σ = 30°. 
UAF links to waveguide animation σ=60°. https://modphys.hosted.uark.edu/markup/GuideItWeb.html?scenario=230 
                                              link to σ=30°. https://modphys.hosted.uark.edu/markup/GuideItWeb.html?scenario=260 
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Relawavity derivation of basic quantum wave mechanics 

 During the 20th century, fundamental developments of quantum mechanics have relied on concepts from 
advanced classical mechanics of Lagrange, Hamilton, Legendre, Jacobi, and Poincare that were developed mostly 
in the preceding(19th) century. The latter contain a formidable web of formalism using ecclesiastical terms such as 
canonical that once implied higher levels of truthiness, but for modern physics students, that means not so much. 
 A simpler approach connects light wave geometry of Table 1 thru Fig.11 to 17th century mechanics of 
Galileo, Kepler, and Newton. This lets us derive quantum fundamentals for the 20th and 21st centuries while 
clarifying some of those 19th century classical concepts that are so often explained poorly or not at all. 
 2-CW geometry of Fig. 11 has hyperbolic coordinates of phase frequency υphase=Bcoshρ and c-scaled 
wave number cκphase =Bsinhρ whose ratio is group velocity Vgroup/c=u/c=tanhρ. Each depends on rapidity ρ that 
approaches u/c for Galilean-Newtonian speeds u* c.  

    
   

     

(10) 

Low speed κphase  and υphase are functions of group velocity u=cρ or u2=c2ρ2. Hyperbolic base coefficient B has 
frequency units (1Hz =1s-1) of υphase or cκphase. Let B/c2 multiply u2 and u to get υphase and κphase. 
  
     (11) 

From freshman physics we recall kinetic energy KE=const.+ Mu2 and Galilean momentum p=Mu. One Joule·s 
scale factor h=Mc2/B gives υphase energy units and κphase momentum units. Such wave variables give classical KE 
and p formulas. But, an annoying (and large) constant Mc2 is added to KE! 
    
  

   
(12) 

    
One might ask, “Is this Mc2 meaningful or just a lucky coincidence? Does an “empty” box of light have an Mc2?”  

Possible answers involve the base or bottom value B=υA of the frequency hyperbola. It is also every observer’s 
bottom since that hyperbola appears the same for observers going all speeds low or high.  

 That h-scaled base coefficient const.=hB=hυA=Mc2 may be the most famous formula in physics. Here it is 
Einstein's rest-mass-energy equation. It is an add-on to Newton's kinetic energy ½Mu2 that is perhaps the second 
most famous physics formula, and the add-on does not contradict it since energy effects depend only on difference 
or change of energy that is unaffected since add-on constants cancel. 

Finally, we replace approximate υphase and κphase in (12) by exact υphase =Bcoshρ and cκphase = Bsinhρ  for all ρ. 

  

  

(13) 

 ≪

 

υ phase= Bcoshρ ≈ B + 1
2 Bρ

2 (for u≪ c)
cκ phase = Bsinhρ ≈ Bρ   (for u≪ c)
u/c  = tanhρ ≈ ρ     (for u≪ c)

 υ phase ≈ B + 1
2 [B/c2]u2 ⇐ for (u≪ c)⇒ κ phase ≈ [B/c2]u

1
2

 
hυ phase ≈ Mc

2 + 1
2
Mu2 ⇐ for (u≪ c)⇒ hκ phase ≈ M u

E = hυ phase = Mc
2 coshρ ⇐ for all ρ ⇒ p = hκ phase = Mcsinhρ

= Mc2

1− u2/c2
⇐ for u<c ⇒ = Mu

1− u2/c2



Guide to AMOP Handbook graphics !16
 An old-fashioned β=u/c form of coshρ (Table 1) is the Einstein  1905 total energy formula. Later in 1923, 2

DeBroglie   gives wave momentum formula that has a β=u/c form for sinhρ, too. Three lines above 3

derive both ρ-forms from Table 1. This allows physics students to enjoy one-button-press calculator-recall as well 
as the geometric and algebraic elegance of relawavity efficiency. 

 Underlying (13) is considerable physics and mystery of “scale factor” h (or ! ) the Planck 
constant  h=6.62607·10-34 Joule·sec that appears in his cavity energy axiom EN=hNυ. Thus (13) gives just the 
lowest quantum level (N =1) of Planck's axiom . (Modern form EN=!Nω has angular frequency ω=2πυ and 4

angular !=1.05·10-34Js.)  A quick-fix replaces h with hN, but underlying quantum oscillator theory of E&M cavity 
waves still needs discussion. (Introductory Fig.2-3 are, after all, semi-classical coherent quantum states.) 

 Apart from that, the only axioms needed to get (13) are Evenson's axiom (All colors go c!) and time 
reversal symmetry so red and blue Doppler shifts are reciprocal. These involve space, time, frequency and phase 
factors of plane light waves that are sufficient to develop the special relativity theory.  

 However, this phase approach ignores amplitude factor A of light wave ! . While phase factor 
! describes the quality aspects of the light, an amplitude factor A describes the quantity of light, or more to 
the point, an average number N of quanta or photons in a wave having the N factor of Planck's axiom. Raising N 
raises overall phase frequency Nυphase and in proportion, both total energy hNυphase and total wave quantum-mass 
! . (This “light-weight” is tiny unless N is astronomical.) 

 Optical axioms leading to (13) shed some light on three of the most logically opaque concepts in physics, 
namely energy, momentum and mass by expressing them as phase frequency υ (inverse time τ) and wavenumber 
κ (inverse length λ). Perhaps, the terms energy and momentum could someday go the way of phlogiston!  

What's the matter with energy? 
   Evenson axioms of optical dispersion and time symmetry imply a 2-CW light geometry that leads directly to 
exact mass-energy-momentum and frequency relations (13) with low-speed approximations (12). A light wave 
with rest mass and rest energy proportional to a proper invariant phase frequency.     
     υphase=υA=υ′A  
This is effectively a quantum matter wave that, due to its phase frequency, acquires intrinsic rest mass. 
     ! . 
 In so doing, concepts of mass or matter lose classical permanence and become fungible. We define three 
types of mass Mrest , Mmom , and Meff  distinguished by their dependence on rapidity ρ or velocity u. The first is Mrest 

= . The other two approach Mrest at low u c.  
 Einstein rest mass is invariant to ρ. It labels a hyperbola with a bottom base level BN. 
     ! . 
This is an invariant quantity for all observers. Each cavity or waveguide mode A has a base hyperbola (Recall Fig. 
12b) under a ladder of hyperbolas each with its own tiny photon rest mass ! and N-value N=1,2,3,....  
  

 p=!k=hκ

 ! ≡h/2π

ψ = Aei(k•r−ωt )

ei(k•r−ωt )

MN =(hNυ phase )/c
2

MAN
=NhυA/c

2

MAN  ≪
MAN

EN (ρ=0)=hBN=MAN
c2

MAN
=NMA0

 Albert Einstein "Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt." 2

Annalen der Physik 17: 132-148 (1905). (Translation by A.B. Aarons and M.B. Peppard, Am. J. Phys. 33, 367(1965).)

 Louis de Broglie, Nature 112, 540 (1923); Annalen der Physik (10) 2 (1923).3

 Max Planck "Zur Theorie des Gesetzes der Energieverteilung im Normal-spectrum." Deutsche Physikalische Gesellschaft. 4

Verhandlungen 2: 237-245 (1900). 
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             (14) 
          

Fig. 13a plots matter wave dispersion (13), the (E, cp)-hyperbola ! of Einstein-Planck. 
The inset Fig. 13b is a plot of approximation (12) for low p and u c. A serious problem for that Bohr -5

Schrodinger  approximation to quantum theory is that it gives a Vgroup greater than Vphase. 6

!  
Fig. 13 (a) Einstein-Planck energy-momentum dispersion (b) Bohr-Schrodinger approximation 
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E2 - c2p2 =(Mc2)2

photon:
zero µ
E =± c p

E = p2/2M

<E>= B m2
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imaginary µ
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1

 N. Bohr, Zeitschrift fur Physik, 9, 1-2, (1922).5

 E. Schrodinger, Annalen der Physik (4) 79 361 and 489 (1923); 80, 437 (1926); 81,109 (1926).Schrodinger’s protests about 6

prevailing quantum mechanical interpretations are well circulated. So far we have not located more solid references.
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 A second type of mass Mmom is momentum-mass defined by ratio p/u of p=Mc sinhρ, the relativistic 
momentum from (13) with group velocity u=c tanhρ from (3a). Mmom satisfies Galileo's very old quasi-definition 
p=Mmom u, but now using the newly defined relativistic wave quantities p and u. 

   
   

(15) 

   !  

 A third type of mass Meff is effective-mass defined by ratio dp/du of change of momentum p=Mcsinhρ 
from (13) with change of group velocity . Meff  satisfies Newton's quite old definition F=Meff a, 
but now using these relativistic wave quantities. 

   
  

(16) 

Another derivation of Meff  uses group velocity  as the independent variable. 

   

    

(17) 

 Group velocity and its tangent geometry is a crucial but hidden part of the matter wave theory. Physicists 
tend to commit to memory a derivative formula ! for group velocity and forget !  that is a finite-
difference formula from which the former is derived. The former may give wrong results while the latter is exact 
for discrete frequency spectra wherein the former may be ill-defined. The wave Minkowski coordinate geometry 
starts with half-difference ratios to give V′group in primary u-formulae (15) and (16). 

   
     

(18) 

What followed in Fig. 3 through Fig. 5 and Fig. 11 was based entirely upon the more reliable finite-difference 
definition !  that gives slope exactly.  
 Nevertheless, Nature is kind to derivative definition ! as seen in Fig.15. There hyperbolic tangent 
slope of line RL with altitude !  and base !  has a finite-difference slope exactly equal 
to the derivative of the hyperbola at tangent point P′ on phase velocity line OP′. Geometry of Doppler action (18) 
is at play. That slope  equals V′group =u and is the velocity. It is also related to the momentum/energy ratio 
!  noted before. 

   
     

(19) 

As slope !  of dispersion hyperbola ! affects velocity u and relations with momentum p, so does 
curvature !  affect acceleration a and its relation to force F or momentum time rate of change !  in the 
effective-mass Meff equations (16) and (17). One is inclined to regard Meff as a quantum mechanical result since it 
is a product of Planck constant h with inverse ! , the approximate Radius of Curvature RoC=! of 
dispersion function ! . 

p
u
≡Mmom =

Mrestc
u

sinhρ =Mrest coshρ u→c⎯ →⎯⎯ Mreste
ρ /2
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Relawavity geometry of Hamiltonian and Lagrangian functions 

    The 2-CW matter-wave in Fig. 3 has a rest frame with origin ! and !  where the invariant phase 
function !  reduces to ! , a product of proper or base frequency ! . 
The (x,t)-differential of phase is reduced as well to a similar negative mass-frequency (ϖ)-term. 

    
    

(20) 

A proper-time interval dτ dilates to ρ-moving frame time interval dt by Einstein dilation relations in Table 1. 

  
   

(21) 

One of the more interesting tales of modern physics is a first meeting  between Dirac  and the younger Richard 7 8

Feynman . Both had been working on aspects of quantum phase and classical Lagrangian mechanics. Dirac 9

mused about some formulas in one of his papers that showed similarities between a Lagrangian function and 
quantum phase. Feynman said abruptly, “That's because the Lagrangian is quantum phase!” That was a fairly 
radical bit of insight for the time. It needs its geometry clarified. 

Phase, action, and Lagrangian functions 

   Feynman's observation needs some adjustment for units since Lagrangian L has Joule units of energy while 
phase Φ is a dimensionless invariant. A quantity S called Action is quantum phase Φ scaled by Planck's angular 
constant!  and is the following time integral of L. 

  
   

(22) 

Differentials of action and phase (20) with time (21) combine to re-express Ldt. 

     (23) 

From ρ-frame time derivative dt/dτ (20) arises the Lagrangian in terms of rapidity ρ or stellar angle σ. 

       (24) 

Table 1 supplies identity sechρ = cosσ for L in (24) and tanhρ = sinσ for group velocity u. 
          (25) 

A classical convention has Lagrangian L be explicit function of velocity. This is consistent with the low- 
approximation to Lagrangian (24) that recovers the Newtonian  term in (12). 

        (26) 

 A following discussion of explicit functionality for Hamiltonian H(p) and Lagrangian L(u) involves the 
geometry of Legendre contact transformation depicted in Fig. 14 below. 

′x =0 ′k =0= kphase
Φ = kx−ωt = ′k ′x − ′ω ′t Φ=0 −ϖτ  B=ϖ =Mc2/!

 
dΦ = kdx −ωdt = 0⋅0 − Mc

2

!
dτ ≡ −ϖdτ

dt = dτ
1−u2/c2

= dτ coshρ ⇔ dτ = dt 1−u2/c2 = dt sechρ

 !=
h
2π = 1.05⋅10

−34 J ⋅s

 
S ≡ !Φ ≡ Ldt where: ! ≡ h

2π∫ = 1.05 ⋅10−34 Joule⋅Second

dS ≡ Ldt = !dΦ = −Mc2dτ = −Mc2 1−u2/c2 ⋅dt = −Mc2dt sechρ

L = −Mc2 1−u2/c2 = −Mc2sechρ = −Mc2 cosσ

u ≡Vgroup=c tanhρ =csinσ

ρ≅ u
c KE = 12Mu

2

L = −Mc2 1−u2/c2 u≪c⎯ →⎯⎯ −Mc2+ 12Mu
2+ ...

 C. Sykes, No Ordinary Genius: The Illustrated Richard Feynman , W. Norton (1994) p. 84 (Meets Dirac in July 1964)7

 P. A. M. Dirac, “Forms of Relativistic Dynamics” Rev. Mod. Physics, 21: 392 (1949).8

 Feynman’s Thesis: A New approach to Quantum Theory, Edited by Laurie M. Brown, World Scientific (2005) has edited 9

copy of 1941 thesis and discussion of RPF Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20 
(1948) pp. 367-387; and R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill 1965)
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Hamiltonian functions, Poincare invariants, and Legendre contact transformation 

       The invariant phase differential (40) with an ! -factor as in (43) is a key relation. 
         (27) 

Energy ! and momentum !  from (33) for N=1 are used. 

  
    

(28) 

Here energy E is identified with Hamiltonian function H. Results include the classical Poincare differential 
invariant  Ldt=pdx-Hdt  and the Legendre transform L=pu-H between Lagrangian L and Hamiltonian H. 
Remarkably, it shows L/Mc2 is the negative reciprocal of H/Mc2. 

  
   

   (29a) 

      (29b) 
 Except for a (-)sign, H and L are co-inverse (cos,sec)-cousin functions (mid-columns of Table 1 or 2). So 
are Einstein t-dilation and Lorentz x-contraction, respectively. H is explicit function of momentum p and L is 
explicit function of velocity u. So are u and p a 1st cousin (sin,tan) pair in Table 1 or 2. 

  
      

(30a) 

         (30b) 

Legendre contact transformation H(cp)=pu-L=cpu/c-L uses slope u/c and intercept -L of tangent line LPR 
contacting H-hyperbola in Fig. 14 at P and intercepting E-axis at point -L(u) of Lagrangian. Inverse Legendre 
contact transformation L(u)=pu-H uses slope p and intercept H of stellar tangent line HS contacting the L-circle in 
Fig. 14 while intercepting E-axis at the height H(p) of the Hamiltonian phase point P. 
 Tangent contact transformation is a concept based upon wave properties and goes back to the Huygens 
and Hamilton principles discussed below. The basics of this lie in construction of space-time (x,ct) wave-grids 
given frequency-k-vectors (υ,cκ) like P′ and G′ in Fig. 4 or Fig. 11. Each P′ or G′  coordinate pair (υ,cκ) 
determines lines with speed υ/κ and t-intercept spacing τ= 1/υ on ct-axis while x-intercept spacing is λ=1/κ on x-
axis. These phase and group grid lines make Minkowski zero-line coordinates. 
 This geometry applies as well to energy-momentum (E,cp)=h(υ,cκ)=!(ω,ck) spaces. Functional 
dependence of wave grid spacing and slopes determines classical variables, equations of motion, as well as 
functional non-dependence. For example, Lagrangian L is an explicit function of velocity u but not momentum p, 
that is, . Hamiltonian H is explicit function of momentum p but not velocity u, that is, . Such 0th-
equations combined with L=pu-H give 1st-Hamilton and 1st-Lagrange equations.  

       (31a)           (31b) 

 !

 dS ≡ Ldt ≡ !dΦ = !kdx − !ωdt

 E=hυ phase=!ω =H  p=hκ phase=!k

 
dS ≡ Ldt ≡ !dΦ = pdx − Hdt ⇒ L = p dx

dt
− H = p "x − H

 
H = !ω =  Mc2 coshρ =  Mc2 secσ =  Mc2

1−u2/c2

 L = ! "Φ = −Mc2sechρ = −Mc2 cosσ = −Mc2 1−u2/c2

 
cp =!ck=Mc2 sinhρ = Mc2tanσ = Mcu

1−u2/c2

u ≡Vgroup = c tanhρ = csinσ

∂L
∂ p=0 ∂H

∂u =0

0 =∂L
∂p

= ∂
∂p
(pu-H )⇒ u = ∂H

∂p 1st equation
Hamilto ′n s( ) 0 =∂H

∂u
= ∂
∂u
(pu-L)⇒ p=∂L

∂u 1st equation
Lagrange( )



Guide to AMOP Handbook graphics !21

!
 Fig. 14 Geometric elements of positive-energy relativistic quantum mechanics. 

Relativistic trig map: https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=4,8
  
Hamilton-Jacobi quantization 
 Invariant phase Φ or action S differential (26) and (27) are integrable under certain conditions. 
        (32) 

That is each coefficient of a differential term dq in dS must be a corresponding partial derivative ! . 

    
      

(33) 

These are known as Hamilton-Jacobi equations for the phase action function S. Classical HJ-action theory was 
intended to analyze families of trajectories (PW or particle paths). Dirac and Feynman related this to matter-wave 
mechanics (CW phase paths) by proposing approximate semi-classical wavefunction Ψ based on Lagrangian 
action S=!Φ in its phase. 
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 dS ≡ Ldt ≡ !dΦ = pdx − Hdt = !kdx − !ωdt
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∂q

∂S
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= p, ∂S
∂t

= −H .

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=4,8
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          (34) 
 Approximation symbol (≈) indicates that phase but not amplitude is expected to vary here. The HJ form 
!  turns x-derivative of Ψ into standard quantum p-operator form ! . 

  
    

(35a) 

The HJ form ! turns t-derivative of Ψ similarly into Hamiltonian operator ! . 

  
    

(35b) 

 Action integral S=∫ Ldt is to be minimized. Feynman'’s interpretation of this is depicted in Fig. 15. Any 
mass M appears to fly so that its phase proper time τ is maximized. Proper mass-energy frequency ϖ = Mc2/  is 
constant for a mass M. Minimizing -ϖτ is thus the same as maximizing +τ. Clocks near light cone tick slowly 
compared ones near max-τ on the natural true path. Those on light cone do not tick at all! 

!  
Fig. 15 Feynman's flying wave clock contest winner has the greatest advance of time by following the ‘true’ classical path.  

 One may explain how a flying mass finds and follows its max-τ path by imagining it is first a wave that 
could spread Huygen's wavelets out over many paths. But, an interference of Huygen wavelets favors stationary 
and extreme phase. This quickly builds constructive interference in the stationary phase regions where the the 
fastest possible clock path lies. Nearby paths contain a continuum of non-extreme or non-stationary wavelet phase 
that interfere destructively to crush wave amplitude off the well-beaten max-τ path as sketched in Fig. 16. 
 The very “best” are so-called stationary-phase rays that are extremes in phase and thereby satisfy 
Hamilton's Least-Action Principle requiring that S=∫ Ldt is minimum for “true” classical trajectories. This in turn 
enforces Poincare invariance by eliminating, by de-phasing, any “false” or non-classical paths because they do not 
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have an invariant (and thereby stationary) phase. Thus “bad” rays” cancel each other in a cacophonous mish-mash 
of mismatched phases. 

!  
Fig. 16 Quantum waves interfere constructively on “True” path but mostly cancel elsewhere. 

 Each Huygen wavelet in Fig. 16 is tangent to the next wavefront being produced. That contact 
point is precisely on a ray or true classical trajectory path of minimum action and on the resulting “best” 
wavefront. Time evolution from any wavefront to the next is thus a contact transformation between  two 
wavefronts described by this geometry of Huygens Principle. 
        Thus a Newtonian clockwork-world appears to be the perennial cosmic gambling-house 
winner in a kind of wave dynamical lottery on an underlying wave fabric. Einstein'’s God may not play 
dice , but some persistently wavelike entities seem to be gaming at enormous Mc2/ -rates down in the 10

cellar! And in so doing, geometric order is created out of chaos.   

  

“False” paths:
Mostly destructive
interference

Stationary phase
gives a“True” path:
by constructive
interference

“False” paths

“False” paths:
Mostly destructive
interference

 !

  A. Einstein, "I shall never believe that god plays dice with the universe" Albert Einstein Archives, The Jewish National & 10

University Library, The Hebrew University of Jerusalem (www.albert-einstein.org), Einstein Archives Online, Volume 15, 
#294, Letter to Cornelius Lanczos, March 21, 1942,http://www.alberteinstein.info/db/ViewDetails.do?DocumentID=30893. 
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Summary of relevant relativity tables (Identical entries but very different physics) 

 Relawavity space-time variable Table 2a 

Relawavity per-space-time (quantum mechanical) variable Table 2b 

group bRED
Doppler Vgroup

c
υgroup

υA

λgroup
λA

κ group

κA

τ group
τ A

Vphase

c
bBLUE
Doppler

phase 1
bBLUE
Doppler

c
Vphase

κ phase

κA

τ phase

τ A

υphase

υA

λphase

λA

c
Vgroup

1
bRED
Doppler

     ρ
rapidity e−ρ tanhρ sinhρ sechρ coshρ cschρ cothρ e+ρ

 angle   σ
stellar   ∀ 1/e+ρ sinσ tanσ cosσ secσ cotσ cscσ 1/e−ρ

β≡
u
c

1−β
1+β

β
1

1
β −2−1

1−β 2

1
1
1−β 2

β −2−1
1

1
β

1+β
1−β

β=3/5
value for 1

2
= 0.5 3

5
=0.6 3

4
=0.75 4

5
=0.80 5

4
=1.25 4

3
=1.33 5

3
=1.67 2

1
=2.0

effects bRED
Doppler Vgroup

past-future
asymmetry
Lorentz-transform )
(off -diagonal

x-contraction(Lorentz )
τ phase-contraction

t-dilation(Einstein)
υphase-dilation
Lorentz-transform )
(on-diagonal

inverse
asymmetry Vphase bBLUE

Doppler

group bRED
Doppler Vgroup

c
υgroup

υA

λgroup
λA

κ group

κA

τ group
τ A

Vphase

c
bBLUE
Doppler

phase 1
bBLUE
Doppler

c
Vphase

κ phase

κA

τ phase

τ A

υphase

υA

λphase

λA

c
Vgroup

1
bRED
Doppler

     ρ
rapidity e−ρ tanhρ sinhρ sechρ coshρ cschρ cothρ e+ρ

 angle   σ
stellar   ∀ 1/e+ρ sinσ tanσ cosσ secσ cotσ cscσ 1/e−ρ

β≡
u
c

1−β
1+β

β
1

β

1−β 2
1−β 2

1
1
1−β 2

1−β 2

β
1
β

1+β
1−β

β=3/5
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2
= 0.5 3

5
=0.6 3

4
=0.75 4

5
=0.80 5

4
=1.25 4

3
=1.33 5

3
=1.67 2

1
=2.0

functions Vgroup=
ctanhρ

momentum
cp=Mc2sinhρ

-Lagrangian
L= -Mc2sechρ

Hamiltonian
H=Mc2coshρ

DeBroglie
λ=αcschρ

Vphase =
ccothρ
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Occam Sword geometry in (kx,ky) and (x,y) 

A remarkable feature of relawavity geometry is that it appears to transcend 2D space-time (x,ct) or per-space-time 
(ckx,ω). It applies as well to per-space-per-space (kx,ky) and plain old space-space (x,y). Some examples are below. 

 Uniform circular arrays of k-vectors undergo relativistic variation of stellar (k-vector) aberration and 
Doppler frequency shifts when observed from a frame moving along the x-axis as shown in Fig. 17.  Their ky 
components do not vary with ρ. The tip of the k-vector (lower edge of the Occam Sword) grows along an x-
parallel line while the P′-vector (upper edge) rises with its x-component identical to that of k as stellar angle σ of 
k grows. 

Fig. 17. 2D-array of 8 k-vectors on circular protractor become elliptical array around focus of elliptic protractor. 
 Web Simulation - RelaWavity: Doppler Ellipse - PerSpace-PerSpace β = u/c = 0.866 

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=6,4&velocity=-0.866&dTotCircleInd=0&protractorVectorCnt=8&protractorInd=2&meLineWidth=1&bCircleInd=1&swordTypeInd=1&swordLineWidth=2&insetInfoInd=3
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All the k-vectors that are arranged in the lab around a circular protractor as in Fig. 17(a and c) get mapped in the 
moving frame onto an ellipse as shown in Fig. 17(b and d) with each k-origin at the down-u focus of the ellipse. 
The color (frequency ω=2πυ) varies with the length k=|k|=ω/c of each k-vector. This is shown for a dense array 
of k-vectors (one per ° protractor) that form a rainbow when υ falls in the visible spectral region in Fig.18a. There 
υ-values outside of the visible region are plotted in black. Higher u/c values in Fig. 18b squeeze that color band 
between an increasing number of black k as the enclosing ellipse becomes more eccentric.  

Fig. 18. Dense 2D-array of k-vectors of 600THz (blue-green) produces spectrum bounded by infrared and uv. 
 Web Simulation - RelaWavity: Spectral Ellipse (PerSpace-PerSpace): (a) β = u/c = 1/3  (b) β = u/c = 3/4} 

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=6,3&protractorInd=0&protractorVectorCnt=720&velocity=0.3333&gCircleInd=1&asympInd=2&insetInfoInd=1&ssCurvedElementsInd=0&vertBranchInd=1&swordTypeInd=1&swordLineWidth=2
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=6,3&protractorInd=0&protractorVectorCnt=720&velocity=0.75&gCircleInd=1&asympInd=2&insetInfoInd=1&ssCurvedElementsInd=0&vertBranchInd=1&swordTypeInd=1&swordLineWidth=3
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A space-space (x,y) array of spherical waves emitted by a moving radiator is shown in Fig. 19. The wavefronts are 
related to the same OP′k-Occam Sword geometry of Fig. 17 and Fig. 18. The oldest spherical wave determines 
the center of the spectral ellipse an its major axis 2a. The very youngest (just a dot) determines its primary focus F 
under the P′ and k vector points that define the small edge of the Occam Sword and focal length  that is the 
radiator velocity u. (Major radius a is light velocity c.) Stellar aberration ray and its normal wavefront are shown 
intersecting at k. Tangent line T′TT′′ contacts spectral ellipse above focus F.  

Fig. 19. Occam Sword geometry in space-space involving expanding spherical waves of moving radiator. 
 Web Simulation - RelaWavity: Wavefronts in Space-Space w/Occam's Sword 

The phase dilation factor  is applied to each of the dimensions listed on Fig. 19 to 
give results shown in the inset rectangle below the ellipse axis. This results match the Occam Sword 
dimensions seen in per-space-time (cκ,υ)-plot of Fig. 11. 

aε

γ= coshρ =1/ 1−u2/c2

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=6,1

