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The theory of transformation relations between states of Born Oppenheimer and weak coupling
approximations is developed for polyatomic molecules. The relations are a generalization of frame
transformation relations used by Chang and Fano for symmetric-top molecules, and they lead to a more
convenient symmetry labeling system than was previously available. A key internal symmetry label
(named "soul") is defined so that it remains a constant label for frame transformation relations, and is
conserved during vibronie transitions, ionization, and even dissociation provided the nuclear spin —rotation
interaction is relatively small. Various nomograms, graphs, and tableaus associated with the soul label
make it easy to predict and visualize the form of many types of complex high-resolution spectra.
Simplified procedures are given for obtaining selection rules, statistical weights, and matrix elements of
multipole operators for common molecules having various point symmetries. Simplification s of
computational theory using the new level cluster bases for high J are discussed.
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(~a~) or ke&6
A or (+)

Euler Angles (Sec. II%)
Activity label for vibronic wave functions used
in BOA bases. Usually finite symmetry IR
label (viz.

A=B2 s or =, )

[a]
A„
I3 or (+~)

Dimension of IR(A) (viz: [B2]= 1, [T&„]= 3, . . . )
Rotational constant 1/I-
Bare rotor label for finite symmetry rotation-
al wave functions. May be accompanied by
correlated Young Tableau:
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[~]
V

C or (~)

Dimension of IR(B)
Rotation constant 1/Ig
Constricted rotor label for finite symmetry
rotational wave function of a rotor carrying a
BOA vibronic state. C must be contained in
the Clebsch-Gordan series of A x J3.
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02
02~
03
0
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JPp

Dimension of IR(C)

R3 Clebsch-Gordan coefficient

03 Clebsch-Gordan coefficient

Finite symmetry coupling coefficient
Cyclic group of order n
Inversion group $1,Ij
Label for finite symmetry IR tensor operator,
usually dipole operator
Dihedral or polygonal symmetry group

Irreducible representation of R3 symmetry
(Also rigid rotor wave function)
Irreducible representation of 03 symmetry

Irreducible representation of finite (9) sym-
metry
Energy of Z and H electronic waves in the ab-
sence of rotation
Correlation frequency between bare rotor
label B and Young tableau [psl (See for exam-
ple Appendix D)
Order of, or number of, elements in finite
group 9
Hamiltonian oper ator (matrix)
Inversion which reflects all particles effected
by it through the origin. May be defined to ef-
fect only select particles or activity: I~ in-
verts nuclei, I, inverts vibronic activity
Nuclear spin
Rotational inertia constants for rotors
Lab components of total angular momentum
operators. Usually J= L+ N
Body components of J
Total momentum label of R3 IR
Total momentum-parity label of 03 IR
= 2 4+ 1
Body or ~ component of total angular momen-
tum, usually K= A+ n
Multipolarity of R3 tensor operator
Multipolarity-parity of 03 tensor operator (1-
= electric dipole, 1'=magnetic dipole, 2'
= electric quadrupole etc.)
Lab components of vibronic angular Inomen-
tum operators
Body components of L
Total electronic or vibronic angular momen-
tum quantum number
Spin degeneracy of Young tableau state (see
Fig. 28)
Body component of electronic or vibronic an-
gular momentum in BOA state
Lab or z component of total angular momentum
Lab component of rotor angular momentum
= {uqu2. . .p„) Young tableau with p; bo~es in jth
row (see Fig. 26)
Young tableau associated with nuclear spin
states (see Fig. 26)
Nuclear orbital or rotor angular momentum
(and parity q) numbers
=2K+ 1

,Body component of rotor angular momentum
Body operator in 0&
Lab operator in 03
Orthogonal group of two dimensions
Infinite dihedral group D z
Orthogonal group in three dimensions R3 x C;
Octahedral group
=0 xC;
R3 projection operator

03 projection operator

p
~ ~b(~Pe)

R(~Pe)
R(~P V)
Rev~ Rx~ R J

+ev ~ +N ~ J'

U

vk
WB

Parity index (even: p=+ 1; odd: p=-1)
Rotor wave function adjusted for finite symme-
try and centrifugal distortion [see Eq. 2.33]
Lab rotation operator in R3
Body rotation operator in R3
Finite rotation operators defined in body
frame. H„effects vibronic activity, R& ef-
fects rotor, R J effects the whole molecule
(see Fig. 23)
Rotation group in two dimensions
Rotation group in three dimensions
Symmetric group or permutation group for n
particles
Reflection operators defined in the same way
as Re„etc. (see Fig. 24)
Nearest-neighbor tunneling amplitude
(r)th component of irreducible 2"-pole tensor
operator (T~& is z-component of dipole opera-
tor)
{d)th component of irreducible D-tensor opera-
tor defined by finite symmetry
Unitary group in m dimensions
Vibronic wave function (BOA)
Irreducible tensors like T„
Statistical weight of bare rotor state B [see
Eq. 3.331
Lab coordinates
Body coordinates
(E)th spherical harmonic with axial momentum
'Nl

Finite symmetry harmonic belonging to IR(A)
Coriolis or. effective angular momentum con-
stant
Transformation coefficients between angular
momentum (and parity) eigenstates defined by
R3(03) symmetry, and finite symmetry states
See Co++elation in Synopsis.
See Induced Representation in Synopsis.

I. INTRODUCTION

The invention and development of lasers has led to a
tremendous increase in the number of applications and
analyses of molecular spectra. The spectral properties
of one type of molecule are used to design a laser which
is then used to study some other molecular structures.
This knowledge in turn is used to study more nonlinear
optical devices, and so or. . When added to the new
developments for isotope separation, plasma diagnos-
tics, molecular collisions, chemical lasers, frequency
standards, electron scattering, or astrophysics, it be-
gins to look like the beginning of a revolution in molecu-
lar spectroscopy.

In short, quite a number of physicists and chemists,
who are not specialists in any area of spectroscopy, are
having to study certain molecular structures. Very often
they do it with more detail and precision than was ever
possible before. Most of the workers who are getting in-
volved in spectroscopy now have not had the years of ex-
perience it requires to become "old friends" with every
line in an interesting spectrum. Therefore, it is im-
perative that a comprehensive theoretical framework be
assembled that is as simple as possible and unpre-
judiced by any specialized area of molecular physics or
any single type of molecule.

It is hoped that the present work will be another step
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in this direction for a large number of molecular sys-
tems which have some sort; of geometrical symmetry in
their structure. This work is meant to expose the sim-
plest and most powerful symmetry analysis methods
which are now available. Some of the methods reviewed
are quite standard, or slight variations of standard
ones, while some others are brand new. (In this re-
spect it is hoped our referencing is ample enough, but
we apologize for not being able to make it encyclopedic. )
In fact, one of the advantages of a "new" labeling
scheme which is introduced is that it allows one to more
easily use the "standard" Appendices I-IV of Herz-
berg's text III (Herzberg, 1966; see also Steinfeld,
1974). One may now more easily understand rovibronic
structure of symmetric molecules of complexity ranging
from that of H, to that of NH„CH4, or SF, . A simpler
and more powerful basis for deriving molecular levels,
transitions, statistical weights, perturbations and so
forth, can be made using only standard symmetry
representations.

The new scheme arises from a generalization of
Chang —Fano frame transformation relations (Fano,
1970; Chang and Pano, 1972) from diatomic molecules
to polyatomic molecules. 'These relations smoothly
transform from weakly coupled electron-rotor scatter-
ing or Rydberg states to tightly bound states of the
Born-Oppenheimer approximation. To accomplish this,
one must make physically clear how symmetry opera-
tions, particularly inversions, relate to the space or
"lab" coordinates as well as the molecular or "body"
coordinates. The new scheme makes those transfor-
mations quite simple; to begin with, Fano s original H,
transformations for multichannel quantum defect theory
(Herzberg and Jungen 1972) are perhaps easier to under-
stand.

Previously, inversion and reflection symmetry trans-
formations have not been presented clearly even in re-
gard to simple diatomic molecules. In a modern, other-
wise lucid text (Steinfeld 1974) we still read the follow-
ing: "1. The operation of (axial plane reflection) in the
molecule fixed system is equivalent to inversion of co-
ordinates in the space fixed system. 2. 'The operation
of co-ordinate inversion in the molecule-fixed system
is equivalent to interchange of nuclei in the space fixed
system. " (See also Hougen, 1963.) The new scheme
will define one inversion operator $ which obeys much
simpler rules. Using I and other standard symmetry
operations, it will be shown how diatomic selection
rules, statistical weights, and so forth can be derived
cleay'ly in a minute or two. Furthermore, the same
rules are then used for polyatomic molecules.

The key to the labeling scheme is to divide molecular
quantum labels into "external" or "lab" labels and "in-
ternal" or "body" labels. For the free molecule the ex-
ternal labels (Z~, M, m, k', . . . ) are angular momenta
which are treated more or less according to standard
rules of atomic spectroscopy. The internal labels
( AB„, re, . . . ) are finite symmetry irreducible
representation labels which are treated according to
standard rules of group theory. The prerequisite for
using the labeling is some acquaintance with atomic
rules (viz: The k' rnultipole transition of J'i" -Zi' is
forbidden unless J' is contained in k J and the- parities

satisfy p'=imp) and finite symmetry rules (viz: The A'
-A. transition due to perturbation D is forbidden unless
ASD contains A'. ) The prerequisite for understanding
the derivation of the labeling will be some acquaintance
with couplirig coefficients and the Wigner Eckart theo-
ries of the orthogonal spatial symmetry (viz:("

(
T" [' &

=C' ' " « Il~ll J&)

and some finite symmetries

(viz: (
~

+
~

&
= Cy (A [[D[[A)

Many texts discuss these two problems separately
(Heine, 1960; Tinkham, 1967).

Upon assembling these two parts, we will find ex-
ternal and internal quantum labels which are variously
"good" ones or "bad" ones depending upon the closeness
to a weak coupling approximation on one hand or a
Born —Oppenheimer Approximation (BOA) on the other.
However, the key to the labeling scheme involves
finding one external and one internal label which are
"best" for either approximation. The best external
label will be an overall or total angular momentum and
parity label (J'~), while the best internal label will be an
"underall" or "bare rotor" finite symmetry label (B)
which might well be called the "soul" of the molecule.
The (B) is a generalization of what is commonly known
as the rovibronic species label, but is probably simpler
than any previous definition.

We shall try to keep to a minimum the number of
mathematical concepts introduced. Indeed all symmetry
transformations will be made from a rotation R(o.j3y) and
inversion I, i.e., the orthogonal group (0,). More
rigorous mathematical treatments of rotations and mo-
lecular frames are contained in a recent review (Louck
and Galbraith, 1976) and text (Judd, 1975) both of which
describe lab and body based rotation operations. We
shall be content to give heuristic physical arguments for
the properties of the lab and body operators in Sec. II as
well as the symmetry analysis of the bare rigid and
semi-rigid rotor which is to be surrounded with elec-
tronic or vibronic excitations in Sec. III.

However, in the process of including excitations, care
will be taken to distinguish between the standard coupling
of products of independent wave functions of the form

0, (&,)0„(&,)0, (&,) = (&, ~V, &(&, ~V, &(&,
~ V, &

and product wave functions such as

(x g ~BOA & =q "-'"""(x,q„, g„)

~ yvibratton(@ g )protation(g )

which are used in BOA bases. In the latter the co-o~di-
nates of each factor may depend upon those contained in
the factors to its right, while the quantum /abels of each
factor may depend upon those held by factors on the left.
The dependence of the coordinates in the BOA wave func-
tions is a result of the assumption that the electron and
vibrational wave functions are fixed to a body co-ordinate
system which rotates relatively slowly so that the vi-
bronic waves ride around with the rotor. The vibrational
motions are in turn much slower than those of the elec-
trons so one imagines adjusting for a new manifold of
electron eigenstates with each change of nuclear co-
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ordinates. The quantum number dependence occurs be-
cause the vibronic activity tightly embraces the rotor
and so the internal vibronic momentum must be included
in the quantum numbers of the rotor in the third factor
p. Also, it is well known that the vibrational v depends
on the electronic excitation E through the molecular po-
tential.

Products g~(x, )ps~(x, ) of independent wave functions are
convenient bases for describing weakly coupled systems.
For small A.—B interactions the coupled wave functions

I

@C Q gABCqAyB

made using appropriate Clebsch-Gordan coefficients
C~~, are approximate eigenfunctions. However, some-
thing more than ordinary coupling will be needed if the
two systems interact strongly, particularly if one part
is constricting the coordinate axes used by the other as
in a BOA state. In Sec. III various polyatomic BOA
states are given in terms of a stronger version of cou-
pling, which is named BOA-constriction, and BOA bases
are related to weakly coupled bases through a general-
ization of Chang-Fano theory. The key to this relation
is the (B) label which is valid for either set of bases.

The (B) label is correlated with Young tableau
labels ( p) of nuclear permutation symmetry in a way
which has several advantages over previous labeling
systems (Longuet Higgins, 1963; Hougen, 1963; Bunker,
1975.. Louck and Galbraith, 1976) for common symmetric
molecules. First, (B) labels are the standard repre-
sentation labels of the common point groups. Second,
one is able to use the powerful tableau algorithms which
have recently been discovered (Robinson, 1964; Harter,
1971; Harter and Patterson, 1976) to derive statistical
weights and properties of hyperfine structure. Third,
selection rules for multipole transitions are simpler
partly because (B) is conserved as shown in Sec. Pl-V'.
Finally, since the labeling scheme is based upon Chang-
Fano frame transformation theory it is probably a more
natural one for treating ionization, scattering, and pos-

sibly dissociation or molecular collisions as discussed
in Sec. VI.

Exceptional molecules or transitions such as the
"Berry rotating" PF, (Dalton, 1971) or other "floppy"
molecules are not discussed. (The most "floppy" mole-
cule to be discussed here is NH, .) The exceptional
molecules require internal group operations outside of
the ordinary 0, orthogonal group for their symmetry
analysis (Higgins, 1963; Hougen, 1964; Bunker, 1975).
The present work is intended to'provide the sim-
plest possible framework for discussing most of the
spectra of common symmetric molecules which is show-
ing up in modern high resolution experiments.

Since there are many more lines involving high angu-
lar momentum (J= 10—100) it is important to emphasize
simplifications which are possible in these cases.
These include a new theory of rotor level clusters which
is derived in Sec. II following a review of the basic theo-
ry of symmetric rotors.

II. REVIEW GF QUANTUlVI ROTOR THEORY

A. Analysis of pure rotations {Its)
In the description of the quantum rotor, we use Euler

angles (o.Py) as rotor coordinates (n =@, P =9,y =X) and
as parameters in rotation operators R(nPy).

Figure 1 shows a machine which clearly defines the
rotational position of a rotor for body frame (xyz)
relative to a. laboratory (xyz) frame, for a given setting
of the Euler angle dials. The original position (see in-
sert) n = P =y =0 is where x points along x, y along y,
and z along z.

We shall define a molecular frame position state
using these angles. Here l$9X) shall be that state in
which the molecule is tipped in the lab like the machine
with the setting o. = @, P =9, and y =X.

Figure 2(a) shows a machine which can be used to de-
fine rotation operators. Operator R(o.Py) is defined so
that it gives position state

l
o.py) when applied to

l
000)

R(~py) looo& = le py& . (2.1)

The y and z cranks in Fig. 2(a) may be used to perform
the operations R(OPO) and R(o.oo) =R(oon), respectively.
Done consecutively and in the right order, they will give
the general rotation

R(~py) = R(~00)R(0po)R(yoo), (2 .2)

la dia(t

Position Definition of Euler
angles (&, P, ~ )

Star t ing Position
a=P= &=a

FIG. 1. Definition of Euler angles as coordinates of rotational
position state l spy&. o = "Azimuth, "p ="Polar angle, " and y

Twls t.

where we mean the rightmost factor to act first. One
can visualize this equation as follows: first R(yoo) sets
the twist dial (y), then R(OPO) sets the polar angle dial
(P), and finally R(o.oo) sets the azimuthal dial (n).

Figure 2(b) shows a machine which would perform
operations R(nPy) defined with respect to body coordi-
nates. One may imagine that R(nPy) operators rotate
the whole universe. In other words, for each R(o.'Py)
that makes a particular tipping of the x y z frame in the
lab, let R(nPy) make the same tipping of xyz in the body
frame. Then the multiplication rules, i.e., g, group
structure of the two kinds of operators are identical.
Furthermore, the lab operators commute with the body
operators since they are operationally independent:

R(oP y)R(~'P'y') = R(~'P'y')R(~P y ) . (2.3)

Rev. Mod. Phys. , Vol. 50, No. 1, Part I, January 1978
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(a) La b operotor
oefinition

z CRANK

Does R( a 00 j

~ody operator
oe f inition

which are eigenvectors of various rotor Hamiltonians
If H has high enough symmetry, i.e., if enough oper-

ators R(npy) and R(spy) commute with H, then it may
be convenient to find eigenvectors in terms of symmetry
projection oPexatoxs P~„defined as follows:

Discrete symmetry
group 9'. P"„=( [A] /'9) g X)"„*(R)R (2.5a)

FIG. 2. Definition of Euler angles as parameters of rotational
operator R(~Py). (a) Lab based rotation operators like "rota-
tion by X around z" (R($00) or H(00X)) or "rotation by P around
y" (R(0PO)) are represented by cranks with suction cups which
can slide along z or y axes respectively and perform the rota-
tion. The operator R(&pp) which converts starting position
(000) in Fig. 1 (see inset) to the (O.'Pp) position is the product
(R(~P'Y) =R(&00)R(0P0)R(00 j/)). (b) Body based rotation opera-
tors R(&P&) are defined similarly by body based cranks. The
difference is that the invev. se (R ~(oPp)=R(-p —P -)) converts
position (000) to (~(8y).

However, moving the universe is fictitious, and the
only. thing that matters is the relative rotational position
of the lab and the body (this reminds one of Mach's
Principle). Therefore we shall demand that

Continuous rotation
group R, : P"„=([N] /Bar')

d(~P ~)&.„*(~P~)R(c P r) .

(2.5b)

Here, [A] and [N] are dimensions of irreducible repre-
sentations Q and X) of groups 9 and B, respectively
([N] =2N+1 for R,), 9 is the order or number of opera-
tors B in group 9, and the Euler integral is given by

d(npy) =
off 3r

d& sinpdp . (2.5c)

Most of the theory of symmetry projection operators
can be found in standard texts (Hamermesh, 1960), and
in Lowdin's review article (Lowdin, 1967). Neverthe-
less, the convenience of I' operators for calculation and
for theoretical analysis is still not appreciated as much
as it could be. For one thing the inverse of Eqs. (2.5),
the so- called symmetry "completeness" relations:

I
~p~ & =R(~pr) I000& =R-'(~») l000&

R(—y —p —n)
l
000& (2 .4)

tangg Pa
A tn= 1

(2.6a.)

for any Euler angles. [This does not mean R(nPy)
=R '(oPy). Only the original state &j&=0=X =0 which
lines up body cranks with lab cranks is affected in the
same way by R(nP&) or R "(nP&).]

A more widely known set of rotation operator param-
eters are the axis angles (R[P&~]) which are schema-
tized by the machine in Fig. 3. Generally, one knows
the polar angles P and 0 of a given n-fold symmetry
axis, and the angle &u =2m/n of the allowed rotation in-
stead of Euler angles. However, [&f&8~] do not make
convenient coordinates for rotational position. [ For-
tunately, there is a slide rule which allows one to con-
veniently convert [@gco] to (nPZ) (Harter and de Santos,
1978).]

Rotation operators R(nPy) and orthogonal transforma-
tions in general can aid in the task of finding energy
eigenvectors. For the rotor problem one needs com-
binations of position states (000&, . . .

l
c'py& =R(&py)(000&,

(u CRANK

FIG. 3. Definition of axis
angles as parameters of rota-
tional operator R[$0u]. A
single crank turn by ~ around
[qbo] axis may be used to define
an arbitrary rotation.

R=ggP ~"„(R)P".„ (2 .6b)

RP „=gG, (R)P,„,
tnl

(2.6a)

P".„R= P &„"„(R)P."„,. (2.6b)

These, in turn, will give the "laboratory" and "body"
transformation rules as we will see shortly.

While it is inappropriate to give a complete derivation
of the I' operator properties here, we can at least give
some elementary examples for which the relations are
more or less obvious. The simplest examples are the
bilateral symmetry groups of order two (C„C„C„,S„
etc.) each consisting only of the identity 1 and a "reflec-
tion" operation R where R'= 1. There are two irreduci-
ble representations X)~: one "even" (A =A„A,A'; s,
etc.), and one "odd" (A =A.„A„,A. ",a, etc.) as given by
Table I. It is easy to see that the P operators [Eq.
(2.5a)]

are not as widely known as the "orthogonality" relations

(2.7)

Both are helpful toward understanding and applying sym-
metry analysis. For example, we obtain the left and
right transformation properties of P operators by sub-
stituting Eq. (2.6b) for R and using Eq. (2.7)

Rev. Mod. Phys. , Vol. 50, No. 1, Part I, January 1978
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TABLE I. Irreducible representations DA(I;) of various bi-
lateral symmetries (various notations are shown).

„[(N+m)!(N- m)!(N+n)!(N n)!]'~'
(N+ m —k)!k!(N- n —k)!(n —m+0)!

Cg
180

rotation

C„
mirror S)

inversion reflection permutation g = (1 9)

2N+ m- n- 2k q n- my2k
& e- i(mCf+ny) COS—

2 ""2
(2.15)

A =A& or (02) A~ or (+)

A2 or (12) A„or (—) A"
s or (2)
a or (ll} The X) are unitary

= —.'(1.+ R),
P"2 = —.'(1 —R),

satisfy Eq. (2.6)

pAy + pA~

(2 .9a)

(2.9b)

(2.1o)
pA~ pA~

)

as well as Eqs. (2."I) and (2.8). Furthermore, any bi-
stable or two-level quantum system with basis $ I 1), I2)
=—R

I
1)] must have eigenstates given by P projection,

i.e.,

I~, &
=P" Il& m2 =(Il&+ I2&)/m2,

I&.& =P"'l»~2 =(I'& —I2&)/~2,
(2.11)

=0 HA gA. . (2.12)

Another simple example of I' operator application in-
volves any cyclic n-stable quantum system with a basis

the Hamiltonian has symmetry C„=fl rr'. . . r" 'j where
x" = 1. The irreducible representations of C„are the
nth roots of unity

if its Hamiltonian commutes with B. This is because off-
diagonal (A„A.,) matrix elements of a bisymmetric H
must vanish

-=p 000 N

d(spy )X)"„(o.py )4 [N] R(opy) Iooo)

d( Pny)&"„*( Poy)&[N] I~Py & . (2.1'I)

Note that the rotor wave function, i.e., the amplitude for
the rotor in state I~„& to be found at position (o.'Py ) is
proportional to the IR matrix element

(~Py I'.„)=~".„*(~ Py)~[N] . (2.18)

We now identify the row (I) and column (n) indices with
external "laboratory" and internal "body" momenta, re-
spectively. If the rotor Hamiltonian II~ commutes with
all external lab operators R(o.py) then it commutes with
all I' operators, as well. Using this and the unitarity
condition

pmn pnm

which follows from Eq. (2.16) we deduce that the H~ ma-
trix must be reduced to diagonal form with respect to m
and N

&„*( Py) =&g( Py) =& „'( Py) =& „(—y —P — ) .

(2.16)

[See F eynman (1963) or Hamermesh (1960) for deriva-
tion of 5) .] Nevertheless, the procedure is quite the
same. Applying P operators (Eq. 2.5b) to the first rotor
position state Iooo) gives rotor angular momentum
eigenbases

~)) (rP) ef)))))P

where k is an integral multiple (m) of 2z/n

=m(2m/n) .

(2.13a)

(2.13b)

The energy eigenstates will be the P-projected states

(N
I
H

I

N'
& (000

I

PN H PÃ'
I
000)

=(000 IP„".H P"„',„.Iooo&,
= (ooo IH I „".P".', „.Iooo),
= 5»'5 (ooo IH I „"„,

I
ooo& . (2.19)

Iu ) =P' Il) Wn

=(Il) +e " I2)+e '" I3&+. . . )/Wn (2.14)

which are just the Bloch or Fourier-analyzed wave
states.

The main idea of symmetry analysis, or "group the-
ory" as it is usually called, is to extend Fourier analy-
sis to problems in which the symmetry operators do not
necessarily commute with each other. Most R, rota-
tional operators R(o.py) are of this type, i.e. , generally

R(~Py)R(~'P'y')~ (R~' 'Py) (R~P)y.

The irreducible representations I)" are [N] x [N] ma-
trices and more complicated than the simple 1 && 1
Fourier coefficients in Eq. (2.13) or Table I. We shall
use R, IR defined by the standard formula

Further reduction depends upon which of the body
frame or internal symmetry operators 8, commute with
the Hamiltonian. The effect of R on a projected state is
as follows

R(o'Py ) I"„&= R(~P y )P~„
I
000&/& [N]

=P"„R(npy ) Iooo) /v'[N] (using 2.3)

=P~„R(—y —P —n) Iooo) /V'[N] (using 2.4)

P."„.Iooo&n"„( y P - n)/v'[N]
n

(using 2.8b)

(2.20)
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The unitarity of G [Eq. (2.16)] was used in the last step.
This should be compared with the similarly derived
laboratory transf ormation

R(ciPy )
I

vzQ
& ..(oipy) . (2.21)

To relate this last equation to more standard relations
involving spherical harmonics &r!„")= I'"(r), let Ir) be
a position state for a particle located at r =(x, y, z) in the
lab system or r =(x,y, z ) in the body system. Then Eq.
(2.21) reads

yN( ) g IzÃ~ (r )+K+ (&Py)
m

(2.22b)

R(oPy) = euNz / s eBNv / i eyNz/ i

R(&Py) euN-/ i eiiN-/ i eyNz/i

(2.23a)

(2.23b)

The matrices of the generators follow from the rotation
matrices or vice versa. For example, we have

will be required later.
If the usual definition of angular momentum genera-

tors N, and N, are combined with Eq. (2.2), then we have

r Rn y , &". (~py)

/

N
mn

|N
mls (2.24a)

which becomes

I'" (r) = g I'".(r)&". (cip y ), (2.22a)

N=n
, mn

where we shall define (Van Vleck, 1951)

(2 .24b)

where we use the definitions N„- =- —N-, N-—:—N-, N~ =- —Nq (2.25)

&r
I

= &r
I
H(o'Py ) .

The inverse

Here N- are the body components of angular momentum.
(The sign change is necessary if we want a molecule
spinning counter clockwise around its z axis to give
positive (N, ) .) Othe-r relations are the following:

N, = ——[(N m)(N+m—+1)]' 'N i ~/~
~N

~ mn m+1 n
+ —[(N+ m)(N- m+1)]'"

I

(2 .26a)

N-, = —[(N n)(N+n+1)]'/' —[(N+n)(N n+1)]'"
vl'B 2 Ul %+1 2 'vl tl —1 (2.26b)

= —[(N m)(N+m+1)]' ' + -[(N+m)(N —m+1)]' 'N 1 N 1 IN
2 WL+1 R 2 m —1 ll

= — [(N n)(N+n+1)]' 'N 1
+ —[(N+n)(N- n+1)]' '1 ~~~1 N

KPl'Pl 2 ma+1 2
~

im D-1

(2.2 Va)

(2.2Vb)

For a rigid spherical rotor Hamiltonian

H»"zzz = (N ~ +N - + N )/

which commutes with all internal R, it is clear that the
energy spectrum consists of (2N+ 1)(2N+ 1) degenerate
N levels (see center of Fig. 4) of energy

(2.28)

N(N+ I)/2I
m~ " m'n'

The symmetric rigid rotor Hamiltonian

Hs~ = (N 2 + N g) /2I~, + N ~ /2I

(2.29)

= (N ';+ N ',-+ N ',—)/2I ~ -+ N2~ (1/2I~ —1/2I» ,)-
commutes with internal z axis rotations R(y00), and its
energy levels are given by

(2.30)

¹H„'" =6 ' 6 6,[N(N 1)/2I—

+ n'(1/2I; —1/2I „—)]

(2.31)
i.e. , (2N+1)-fold degenerate levels with n =0, and (if
Ir )0) 2(2N+ 1)-fold degenerate levels for each 0 ( In I

&N (see Fig. 4).

The symmetry of any rotor can be written K(external)
x8 (internal). If the rotor is free then K is R, (or 0, as
explained in the following section) since all external
operations R(o.Py) are symmetry operators. If the rotor
is in a crystal matrix then K is the site group of the
lattice. If the rotor is in a homogeneous electric (or
magnetic) field then K is 0, (or R,). K is the "applied"
symmetry.

Meanwhile, 9 is the interna, l or basic symmetry of the
rotor structure. However, rotors are made of nuclear
points so the real internal symmetry is finite, usually
some molecular point group.

It is well known how externally applied fields split l
orbitals into various finite symmetry 4 orbitals. Since
the invention of "crystal field theory" (Bethe, 1929) many
methods have been given for finding the crystal field
transformation coefficients (' I", ) in expansions of the
form

(2.32)

The relations convert spherical harmonics Y' of a given
E into "cubic" or "trigonal" harmonics 'JJ~ belonging to
some IH X)~ of a. point group.

Now we may use the same theory for the internal sym-
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Inl= 5 BI

B2

Br3( )M

B3( 2)
M3 M3) ~~

=
~,=( 3- M, ) ~~

j' 1
=

'LZ M3 "14-3 " 0 j1$ M-1)g~

r,pr(&) =;i'&(D + g ) + j "((D D )]»7

E2

)=D

r(3) ID,$»"7 El M(1, ) =
DM, ~&

3

z(&") = I-$(D — D ) + $(Di — D )

r(2) = i )(D + D ) -i $(D + D )j » 7

=~'z "z &

T2

A2

N= 5
0 A2

( i) = D ~7

A~
) =-

DMO

r( ) = &(D- -D )~P
A~

zz zm
DMO ~5

(~) = —(D& + D ) ~5
E

Inl = 2 E2

El

M&Z ) =
DM2 P5

(&)=D

T2r(„}

r(3)

—(O + D

=( -D )g5

&(D, — D ~)»51

T2
'~

r

N=2 0
A

N MO

Inl= I

M(, )
1 '1 1 1

M1
- DM1) /3

~(D1 + D )

D

0 A2

3

Al 0

SEMI-RIGID CUBIC R IGID

OR OCTAHEDRAL FRAME
(SHIFTS 8 SPLITS EXAGGERATED) TOP

R&x 0 RBXR5 R5XO2

r ( '}= D~ OO

SE IVI I- R I 6 ID
HEXAGONAL F R AME
(SHIFTS 8 SPLITS EXAG-

GERATED)
R~x D~

X

"SOFT" AX IS "HARD" AX I S
x6

"HARD" AX I S "SOFT" A X I S

FIG. 4. (a) Correlation of lowest levels of rigid spherical and symmetric rotors with semirigid rotors. (b) Centrifugal distortion
of semirigid rotors. Amount of distortion depends on direction of rotation axis. Some directions are softer than others. This
directional anisotropy must have the symmetry of the rotor. Hence the levels and wave functions must be defined by represen-
tations of that symmetry as shown in the figure and explained in Secs. G.A.&-4.
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(2.33)

where [N] =2N+1.
We insert the normalization factor v'[N] so that

sin8 d8 dg (~ N' A~
) g ~ N A

5¹N5 5A'A5 (2 34)

metry. According to (2.11), the internal transformation
differs only by a complex conjugate from the external
one. So we may take our finite rotor functions to be

TABLE II. IR and characters of C6 (e=e"' ~ 6=e ' )

Operation = 1 I- . r' r' r4 r'
Rotation angle n = 0 60 120 180 240 300

A =06

ej =16

E2 2g

B =36

e( =56

follows from the standard R, orthogonality relation

sin8 d8 d X&.,'„*.(@OX)&"..(4 ~X )

=5"'"6., 5„,„/([N]), (2.35)

and the assumption that each crystal field transforma-
tion is orthonormal and complete

(2.36a)

(2.36b)

For low N the finite symmetry projection operators
[Eq. (2.5a)] may be used to derive the coefficients (N I", )
to make finite symmetry rotor functions. Results for
cubic-octahedral (0) symmetric XY, rotors, and hexa-
gonal (C, or D, ) symmetric 2C, rotors are shown in Fig.
4 for momentum N =0-3. Tables of functions for N & 20
are given by Jahn (1938), Hecht(1960), and Moret-Bailly
(1965).

However, for larger N the standard approaches to
symmetry projection become mathematically more com-
plicated and more tedious. For one thing, two or more
independent states with the same symmetry label will
appear, and it is difficult to distinguish them. (In N= 30
there are seven independent T, levels, for example. )

The following sections (1-4) discuss a way out of this
difficulty. A new approximate scheme for finding finite-
symmetry bases from angular momentum states is dis-
cussed. The scheme becomes easier to apply as the
angular momentum increases, and is perhaps easier
to understand physically than other schemes.

1. Semirigid symmetric rotors: Redocing R2 to
polygonal symmetry (C 0 )

It is very useful to draw analogies between rotor Ham-
iltonians with anisotropic centrifugal perturbations and

~ the Hamiltonians of an orbiting electron with anisotropic
crystal field perturbations. Consider an electron orbiting
in a cylindrical geometry, i.e., R, symmetry. The eigen-
functions are the elementary Bohr waves

$„(Bohr)-e"~(n = 0, +1, +2, . . .),
where @ is the azimuthal coordinate, and quantum
number In I

gives the number of wave crests in the
range 0 & P & 2m, while nh is the angular momentum
in (energy) (time) units. The Bohr energy spec-

trum is given by

E =an'+b,

where a and b are constant. Its energy levels are
doubly degenerate for InI&0. The spectrum looks like
that of the rigid symmetric rotor for each N provided
n is restricted by In I

&N. [See the Rigid Symmetric Top
column of Fig. 4(a). ]

Now suppose we introduce P equivalent point charges
or potential wells each centered on the vertices of a
regular p-gon. This reduces the symmetry from R, to
C~ and perturbs the Bohr levels in a systematic fashion.
Let us discuss the hexagonal (P =6) case since that is
complex enough to contain all the relevant structure.
The six potential wells will be analogous to a hexagonally
anisotropic centrifugal perturbation for the X, rotor.
Well bottoms and tops correspond to "soft." and "hard"
rotation axes, respectively, in the plane of the rotor
as shown on the right side of Fig. 4(b).

Now each Bohr state In) belongs to one of the C, IR
(a, ) shown in Table II where n =a mod 6. (Note the cor-
respondence between our notation and the usual alpha-
betical one. ) The lowest'Bohr level which is split by a
hexagonal perturbation is the In I=3 level. Since both the
right- and left-handed moving wave states (In =3) and

In = —3)) belong to the B = (3,) IR of C, they can be mixed
and split by the perturbation. Physically, these (In I=3,
B = (3 )) waves have exactly one half-wavelength per well
spacing and are called Brillouin zone boundary or band
boundary states in crystal physics. (The coincidence
of B's here is probably just that. ) If each well is bila-
terally symmetric, then the moving waves will mix to
form the two standing waves labeled B, and B, in Fig.
4(a). The antisymmetric wave state

IBg = (I» —I-»)/~2-»n3@
has higher energy since it hovers over the hills and has
nodes at well centers. The symmetric wave state

IB,& = (I»+ I-3))/~2™c»3e
is lower in energy since it sits in the wells, (see Fig.
5a).

B, and B, are standard labels for IH of D, symmetry
which includes subgroup C, plus two-fold rotation oper-
ations, around axes through well centers and well tops.
Table III gives the IR characters of D, . Comparing
Tables II and III gives the correlation table between D,
and C, [Table 1V(A)]. We say that B, and B2 are both
correlated with B =(3,) since they both have the same
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TABLE III. D6 characters.

120'(Z) 180 (y. . )
1 rotations rotations

180 (Z) 60'(~) 180 (x. . )
rotations rotations rotations

2nd

Band Gap

(b.)
A,

1
A2 1
E~ 2

1
-1

E'j 2

1
1

—1
1
1

—1

1
—1

0
1

—1
0

1
1
2

—1
—1
—2

1
1

—1
—1
—1

1

1
—1

0
—1

1
0

Band Gap

B

Es

TABLE IV A. Correlation table between representations of
hexagonal symmetry (D6) and C6.

D, C, (06) (26)

A. g

A. 2

Bj
Bp
jV(

TABLE IV B. Correlation table between representations of
hexagonal symmetry (D6) and C&(y axis).

L"
A. g

A.2

Bj
B2

numbers a,s (3,) under C, operations in Table III. Note
also the degenerate IR S', and E, are correlated with
moving waves of angular momentum +1 and +2 respec-
tively, i.e., with pairs [(1,), (5,) ] and [(2,), (4,)].

The 'D„. symmetry properties of the wave functions do
not change as the potential increases provided its sym-
metry is maintained. However, the wave functions will
be squeezed out of the regions of high potential as shown
in Fig. 5(b). Furthermore, the lowest bands will shrink
into nearly degenerate level configurations (A,E,E+,)
and (B,E.,E,A, ) which .we will call the (0)th and (1)st
clusters. In the limit of infinitely deep wells, tunneling
between wells becomes "unfeasible" and the cluster de-
generacy is exact. Then the only symmetry that mat-
ters is the local symmetry of each well, i.e., the group
C, involving the two-fold axis that goes through each
potential well center. The waves in a given well will be
classified as symmetry'ic which is labeled (0,) in our no-
tation, or else antisymmetric which is labeled (1,).

There is a simple way to tell which IH of the bigger
group Ds belongin a cluster made of (0,) or (1,) waves.
One simply correlates (0,) and (1,) IR of the appropriate
subgroup C, with IR of "super" group D, . The (0,)
column of Table IV(B) contains the IR. (A,E,Eg, ) which
are just the ones in the (0)th cluster, and the (1,) column
contains (A,E,EP,). In the same way we found that the
C,. axis clusters (A,A, ), (E,), (E,), and (B,B,) showed up

t 2 3 4
A, X

E2-- Cl ste (0) E, t- L'I

(Stronq V)

in the (0,), (1,), (2,), and (3,) columns of Table IV(A)
and represented degenerate or nearly degenerate levels
when the six fold potential was weak [Fig. 5(a)].

The contents of a cluster like (A,E,EQ, ) mal e up
what is called an induced xejxesentation (1,) 0 D, of the
"super" group. The theory of induced representation is
turning out to be very important for quantum mechanics
(Mackey, 1968). It is the basis of the "correlation meth-
od" (Fately et al. , 1972) used for deriving space group
selection rules. It. underlies the theory of the important
Young tableau labeling of unitary and permutation group
representations, (Coleman, 1966; Barter and Patter-
son, 1976b) whose applications will be introduced in Sec.
III.D-E. It is probably the key to convenient analyses
of internal rotations (Watson, 1965) or of "Berry rota-
tions" (Berry, 1960; Dalton, 1971). In a very elemen-
tary way, we will use correlation methods to analyze
rotation and inversion spectra in the second half of this
paper. Now we use them to derive cluster properties.

Series of (a,) &Ds or (b, ) 0 D, level clusters may appear
in the spectrum of any D, -symmetric rotor Hamiltonians
evaluated in an angular momentum (N) manifold. Since
an N-ma. nifold has only [N] =2N+1 states (we are count-
ing only internal, or else only external quantum states
now), its series of levels may begin or else end in the
middle of some cluster. Nevertheless, simple circular
monograms or "cluster wheels" (Fig. 6) can be made to
show which D, levels and clusters are correlated with
any given orbital (J =N) level. For example, for J=3
we read the D, IR between the (J = 1, 3, 5, . . .) arrow on
the outside of the odd-J wheel and the (J= 3, 9, . . .) arrow
in the inside. The IR. may be grouped into either (a, kD, )
clusters:

(J = 3) tr D, = (A, BE, EBE, EBB,), B(B, ),
or (a, ) 4D, clusters:

FIG. 5. (A) and (B) Type standing wave eigenfunctions in D„
symmetric potential. ((E) Type moving waves are not drawn. )
(a) Weak Potential. Energy differences are determined by po-
tential energy only in this limit. Waves which hover over poten-
tial hills belong to higher energy levels. (b) Strong Potential.
Energy differences are determined by the number of nodes in
the wave. Waves with more nodes must have more total energy
even if it means having less potential energy. For a given
band or "cluster" the wave form within the wells are identical
for all levels AE&E~. . . except for phase. Nodes within the
wells tell to which cluster the wave belongs.
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TABLE V. 0 characters. TABLE VIA. C3 characters (e =e2~'~ ).

120'
rotations

1 r = R[27r/3]

180 (xy~)
rotations
R(~00)

90 {xyZ)
rotations

3,=R —OG

180 (diagonal)
rotations

03 =A
13 = &x+iy
23 Qz «zy

—2r

Ai
Ap

2

Tf
T2 3

1
1

—1
0
0

1
1
2

—1
—1

1
—1

0
1

1
—1

0

1

TABLE VIB. C4 characters (i =e ~' ).

V'(N) = a(N'„-+N',-+ N',-)+ b (isotropic) (2.3V)

has similar properties. For fixed total momentum N
(N'=I —„'+N'—, +N',—) we find that rotation around the four-
fold axes requires the most energy while rotation around
threefold axes needs the least. This rotational aniso-
tropy is consistent with one's intuition about the bonding
of octahedral SF,. The radial "stretch" bonds are much
stronger than the "bending" ones. Therefore we expect
to have the most centrifugal distortion during rotation
around the "soft" threefold axes, and hence the least
rotation energy. [See left-hand side of Fig. 4(b). j By
the same arguments we expect that the sign of (a) should
be negative for tetrahedral CH, -like molecules for which
the "hard" rotational directions should be the three-fold
axes.

While it is true that tetrahedral (T or T, ) symmetry
does allow one lower order anisotropic operator of the
form

V = N„—N —, N,—,
this is ruled out by time reversal symmetry, i.e. , ro-
tational distortion should be the same for rotation around
axis ~ as it is for axis -~. Hence, the mathematical
problem of CH4 distortion is the same as that of SF,.
The same type of clusters show up in SF, spectra, CH4
spectra(Pine, 1976), and CF4 spectra [See Fig. V(b)].

In order to understand the cluster levels, we think of
the molecule more or less "stuck" rotating on one of
its "soft" axes or else on one of its "hard" axes. In this
situation it will be centrifugally distorted so that it no
longer has spherical or even its cubic or tetrahedral
shape. [It is interesting to note that a tetrahedral XY4
molecule distorted by threefold axis rotation could have
a "permanent" dipole moment which would otherwise be
forbidden in T„symmetry. In fact "forbidden" rotational
transitions have been observed (Oka, 1976).] An octahe-
dral rotor stuck on one of its threefold or fourfold axes
may behave as though it has only C, or C4 symmetry,
respectively. However, if it is at all feasible for it to
become unstuck and change internal axes, then it will
"remember" its full cubic symmetry, and clusters of
levels belonging to cubic IA will appear.

V'(x) =a(x'+y'+z') +b (isotropic)

on electronic orbitals. For positive (a) and fixed radius
the electron finds the highest energy on the fourfold x,
y, or z axes [(x,y, z) =x(+100), ~(0+10), or x(00+1)],
and the lowest on the threefold axes. [(x,y, z) =x(+I, +I,
+I)/v 3.] The analogous octahedral centrifugal operator

04 =A
14 = &x+iy
24 —Q
34 =+x"iy

/3=e
mn= ~~

Comparing this with 'Table VI A we see that the state
["„=r,) belongs to C, IR (a,), where

TABLE VIIA. Correlation table for 0& C3.

03

Ai
Ag

Ti
T2

TABLE VII 8. Correlation table for Oh C4.

04 24

Ai
A2

Ti
T2

To see which cubic M show up in a given level clus-
ter, we may use the correlation procedure introduced
in the preceding Sec. II.A. 1. First we use the standard
character tables of 0 (Table V), C, (Table VIA), and C,
(Table VIB) to derive the reduction or splitting of 0 IR
into C, and C, IR. The reduction (A 4 C,) or (AkC, ) of
IR(A) of group 6 is given in the (A)throw of Table VIIA or
Table VII B, respectively. (Physically, the rows of Tables
&IIA and ~8 label the Zeeman splitting of cubic levels
which would occur if a magnetic field were put along a
three- or fourfold axis, respectively, of a cubic crystal. )
Now we find the observed clusters in the columns of cor-
relation Tables VII.

Finally, it is possible to predict the relative location
of various clusters in an A pattern using the correlation
tables. Suppose the rotor is stuck on a threefold axis
with angular momentum R„ i.e. , in a state

~

„" „~). The
internal transformation relations [Eels. (2.20), (2.23b)
and (2.14b)j for a rotation r by 2z/3 gives
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basis by

H -S 0 0

-S e -S 0 0

O -S II -S O O

EVEN J
J= 2n -S 0

H -S
H

FIG. 8. - Cycles of 0 IR contained in a level of total ang;ular mo-
menturn J.

K4= amod4. (2.39)

The highest one will have A4 ——N, the next highest will
have K4—- N- 1, and so on until they split and fade into
threefold clusters on the low side of the N pattern. Ap-
proximate formulas for the cluster positions are given
in Sec. II.A. 4.

Cubic IR cycle wheels (Fig. 8) can be constructed for
cubic splitting of J or N levels. 'These wheels are analo-
gous to the D, wheels given in Fig. 6. As in the B, case
the cubic wheels work for all J, even if J is too small
to clearLy manifest clusters. For example, from the
even-4 wheel we read (J'= 2) 0 0= T, +E between the J= 2
arrows. From the odd-J wheel we find (J= 3) $0=A.,
B T, d' T, reading counterclockwise from the inside (8= 3)
arrow to the outside (J= 3)-arrow. Tbe wheels give in
this way the correct order of the split levels which are
sketched on the left-hand side of Fig. 4. For larger J
the "teeth" indicate favored clusters: (a~)-clusters
within outside teeth, and (a,)-clusters within inside
teeth.

3. Rotational feasibility and cluster splitting

If it becomes feasible for a rotor to move from one
internal rotation axis to another, then the energy level
clusters belonging to the axis may split up. However,
for "low feasibility" the clusters will split according to
simple formulas involving interaxis tunneling ampli-
tudes.

Consider for example the D„cluster wave functions
sketched on the right-hand side of Fig. 5. Let us define
tbe n base states of the first cluster (0,) to be (I 1), I2)
=r I1), I3) =r'I1), . . . , In) =r" 'Il)]. where the wave func-
tion g, (y) = ( g I 1) of state Il) is a single Gaussian-like
"lump" sitting in mell kl, while the wave functions of
states I2), I3), . . . , and In) are each the same lump
moved over to wells g2, g3, . . . , and n by C„sym-
metry operators r, r', . .. , r", respectively. Further-
more, let the Hamiltonian matrix (H) be given in this

K, = amod3,

and to the (a, ) cluster given by the (a,)th column of Table
VII A. Excluding higher order effects, the extreme octa-
hedral cluster in an N level will be the one spinning the
most, i.e. , E,=N. Indeed, we observe the K, =18 level
in the form of a (0,) cluster (A, T,T,A, ) on the extreme
right-hand side of P(18) for SF, in Fig. 7(x).

The other octahedral clusters in an N level wi11 in-
volve states of the form I „«,) internally quantized
with respect to a fourfold axis. 'They mill be associated
with C~ IR (a, ) for which

(2.4o)

with component K~ = 0 mod 4 [Eq. (2.39)] on the first four-
fold axis (say «), and R(2), . . .A(6) are each appropriate
group operators which set up the equivalent states on the
other octahedral axes numbered 2-6 in Fig. 9(a). Let
the Hamiltonian in this cluster basis be

(H&=

H 0 -S -S -S -S
0 H -S -S —S -S .

-S -S H 0 -S -S
-S -S 0 II —S -S
-S -S -S -S H 0

where (-S) is tbe nearest neighbor tunneling amplitude.
(Next-nearest or opposite neighbor tunneling 1s assumed
zero here. )

where His the local energy of each well, and -S is the
tunneling amplitude between adjacent wells. (Tunneling
between next-nearest, next-next-nearest, etc. wells is
assumed zero. )

The eigenvectors of (H) are the Ik ) states given by
C„symmetry analysis or Fourier analysis in Eqs. (2.14).
Acting on these with (H) gives the eigenvalues

(k I H I
k ) = II 2S co—sk

where k = m(2n/n) (m = 0, 1, 2, . . . , n —1). This is the
well-known dispersion relation for tightly bound elec-
tronic Bloch waves in a one-dimensional lattice. [See
Feynman (1963).] The same formula can be used to de-
scribe the second cluster (1,) of anti-symmetric "lumps"
in Fig. 5(b) using different (presumably larger) numeri-
cal values for the H and ISI parameters (S changes sign)
and so on for each succeeding cluster. Eventually,
though, this model must break down when we cannot
correctly assume that next-nearest neighbor tunneling
is zero. Note, however, that all one-dimensional peri-
odic lattice potentials must preserve the order within
each cluster since more nodes require more total energy.
If somehow we arrange to make next-nearest neighbor
tunneling larger than IS I (this requires access to two or
three dimensions), then the ordering is changed (Harter
and Patterson, 1977c).

Similar splitting and ordering rules can be made for
the cubic-octahedral or tetrahedral clusters. Consider
(0,) t 0 cluster states ( I 1&, I 2& = R(2) I1&, I 3& = R(3) Il&, I4&
= R(4) I1), I5) =R(5) I1), I6) =R(6) I 1)), where Il) is an
angular momentum state
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I",)
I

-I

A2
/292

H+SS
I

I

) IE

fzl Io

H+2S -I -I
I -I

/&2 /2

lo Io
0 0

o o,
-I '0 0

0 I 0

j4I)
I

I,
I

I

,f~ TI(x)
g/ %~

TI {Z)

')//

E (2)

+ +'

TI (y)

+r

~
H-S

I

-I
-I

I

I I

I —
I

-I —I

/2 /2
—

I I

I

I
I'„'» I(„')&

I -I
I I, I

-I I

-I

I

I

/2 ~2
I

-I

I('„,')&I('„',)& I(', „')&
T2 (yz T2 (xz) T2 (xy)

A)

H-4S Al
H —3S

pro. 9. (a) Eigenstates of octahedral cluster (04) &0= E,'9T& SA&. Eigenvalues obtained by assuming only nearest (1 3,3 2, . . .)
neighbor tunneling amplitude (—S). (b) Eigenstates of octahedral cluster (03) &0 =Ay STg(g T2 SA2. Zigenvalues obtained by assuming
only nearest (1 2, 2 3, .. . ) neighbor tunneling amplitude (-S).

The eigenvectors of (H) may be obtained by using P"
operators [Eq. (2.5a)] in which standard cubic IR (Dim-
mock et aL, 1962) are substituted for G'(B). The re-
sulting cluster eigenvector s

A = p,", I1)/norm

f1&= mn= yC,
(2.41)

and corresponding "wave functions" are sketched in
Fig. 9(a). The eigenvalues are obtained by acting on the
vectors with the (H) matrix. Note that a 2: 1 ratio is
predicted for the (A, —T,):(T, —~) splitting.

For another example, consider (0,) ~ 0 cluster states
I2& =R(2) I1&, ~ ~ ~, I8& = R(8) l1&) where

I 1& is ~ ~gu-
lar momentum state

- e -S 0 -S -S 0 0 0

-S II -S 0 0 -S 0

0 -S II -S 0 0 -S 0

-S 0 -S 0 0 0 0 -S
&H&= -s o o o e-so -s

0 -S 0 0 -S II -S 0

0 0 -S 0 0 -S II -S
0 0 0 -S -S 0 -S II~

and derive the eigenvectors and eigenvalues sketched
in Fig. 9(b).

These examples show the procedures for deriving the
splitting structure-of clusters when it is small compared
to the energy spacing between different clusters. The
latter is determined by H, and we discuss approximate
formulas for 0 as well as S in the following section.

with component K3=0 mod3 on the first threefold axis
(111), and I2) through I8) are equivalent states on the
other cubic axes numbered 2-8 in Fig. 9(b). Again, we
assume only nearest-neighbor tunneling (-S) in the
Hamiltonian matrix

4. Approximate angular momentum states
and cluster parameters

One may predict the onset of clustering by appealing
to elementary angular momentum theory. Consider

Rey. Mod. Phys. , Vol. 50, No. 1, Part I, January 197S
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(a) "--' (b) R(o 60 0) 6
6

(c) (0 60 0)
(T) 6

4=90

/

sr' &r
I

I

CD

D
CD
Oo
0

FIG. 10. Estimating semiclassical behavior of rotation matrix
amplitudes (, ~R(OPO)~ )=n ~ (OpO). (a) (4=6) states

~ ) are
represented by cones of altitude m and slant height 4J(J+ 1}
= 442. (b) Rotated state R(0 60 0~ 68). (c) Amplitudes &6 .6(060'0)
are largest within the limits defined by the rotated cone base.

standard angular momentum states
~ ) defined by the

eigenequations:

= J(J +1) J

J=m, /mJ &J .
m

6
j.o- DCP &

m'm

m= 5
m'

The equations suggest the following picture: the J vec-
tor is constrained to lie on a cone of slant height
[Z(J+1)j' ' andaltitude m'as shown in Fig. 10(a) for the
states of J= 6. Then the Jvector of a rotated state
R(OP 0)

~ ) should lie on a R(OPO)-rotated cone as shown
in Fig. 10(b) where the values ( P= 60') and (m= 6) are
chosen. The projection of the cone base (note the dotted
lines in the figure) encloses the components (m ') of the
states

~ ) which we would expect to have the greatest
overlap with the rotated state. A calculation of the
overlap amplitude s

FIQ. 11. &~ ~ (OI80) plots similar to Fig. 10(c) for.various m
and P.

m = 6. J=6seemstobe about the lower limit for cluster
theory.

To test these qualitative arguments a perturbative cal-
culation of V' eigenvalues has been compared to Krohn's
diagonalization (Patterson and Harter, 1977). The first
step is write V~ in Racah tensor form

, R(OPO), = 5) (OPO)

[recall Eqs. (2.15) and (2.21)] for J= m = 6 and various
m ' shows that the amplitudes inside the dotted lines of
Fig. 10(c) are indeed the largest. Other values of (m)
and (P) are plotted in the same way in Fig. 11. lt is seen
that the amplitudes seem to form a "lump" which lies
under the cone base and "tails off" outside the projec-
tion. This is seen much more clearly for higher J(J= 20)
in Fig. 12. In the upper part of the figure it is clear that
the cone base marks the inflection or "classical turning"
points of each lump. Inside these points there are
(J—m) reversals of amplitudes sign, i.e. , (J-m) "nodes. "

The behavior of these amplitudes seems to indicate
when various cluster states are well defined. For ex-
ample consider the octahedral fourfold axes which are
separated by at least p=90 . Figure 12 indicates that
the overlap ("(R(0 90'0) ~20) is small for m& 16. There-
fore, we may expect three or four well defined clusters
for J=20 and K~=m=20, 17, 18, and possibly 16. The
splitting of each will be increasing roughly exponentially
as m decreases. 'The three-fold axes are separated by
only 70.5 and so there are correspondingly fewer three-
fold clusters. Figure 11 shows that J= 6 cluster bases
have appreciable overlap except possibly for P= 90' and

20
) O„DC.&)

O.S
m= ZO

Oo

FIG. 12. x) ~ (OP 0) plots.

rn~ E9 ~= i8
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7 =n T +PT',
where

(2.42) where Clebsch-Gordan and Wigner coefficients are re-
lated by (Rotenberg et al. , 1959)

(7/»)" V'+ (5/24)" (V' + V')
(on fourfold axes)

—l [(7/») "V', + 2(5/24) "(V'.—V', ))

and the reduced matrix element

(N'IIT'IIN)=&[N'] &N'll T"IIN&(-1)'

(2.44)

(2.45)

(on threefold axes)

The scalar T' causes no splitting and will be ignored
here. The Wigner-Eckart Theorem gives'

is factored out of the following calculation.
In Fig. 13 the arrows labeled K4 indicate the values

of the following perturbation formula for cluster ener-
gies:

H(N, n)= -( T )/(Nll T IIN)=H'(N, n)+ 8 (N, n), (2.46)

where for fourfold clusters n= K4

=(-1)" " „, „(N'IIT" IIN), H'(N n) = (-1)" ""(7/12)'" -n 0 n
(2.47)

A' 4 4

H N, n)= 5/24 -(n+4) 4 n (n 4-) --4 n+
H'(N, n) —H '(N, n+ 4) H'(N, n) —H'(N, n —4)

For larger N and n, the Wigner coefficient

4 N ~ „6(N+ 2)(N+ 1)N(N —1) —10n (6N~+ 6N —5) + 70n4
—n 0 n

1)N-n
[(2N+ 5) !/(2N —2) !]'~'

(2.46)

—n —4 -4 n

~ „70(N+ n)! (N- n+ 4)!(2N —2)!
(N+ n —4)!(N —n)1(2N+ 5)!

(2.49}

in the first term dominates the second perturbative terms
containing the coefficients

A' 4
(n+4—) 4 n

)~ „70(N- n)!(N+n+4)! (2N —2)!
(N n —4) !(N+n)! (2—N+ 5)!

[Angular momentum cone pictures analogous to Fig. 12
exist for coupling coefficients and Racah coefficients
(Ponzano and Regge, 1968; Shultou and Gordon, 1975}.]

The levels predicted by the formulas are generally
very close to the exact fourfold cluster centers obtained
by computer diagonalization, as seen in Fig. 13. The
levels in the center of the figure are those computed by
Krohn. Notice that errors show up when the clusters
are well split. Qne can expect these errors near the
cross-over point where fourfold H values approach those
obtained from the threefold formulas. The threefold
formulas are

H (N n)=( 1) "—'(7/12)'~' -n 0 n

N 4 N 4 X'
H'(N, n = —(5 24 —, , +

16 . —(n+3) 3 n -(n-3) -3 n)
H'(N, n) —H'(N, n+ 3) H (N, n) —H (N, n —3) (2.50)

However, the threefold formulas give accurately the rest
of the (threefold) cluster spectrum beyond the cross-
over point.

Approximate formulas for the splitting or tunneling
amplitudes S can be derived (Patterson and Harter,
1977). However, the ratio of the error ~S:S is much
greater than the corresponding ratio for the H param-
eters. Qne does obtain the right order of magnitude and

sign, but it is hoped that alternative perturbation tech-
niques will be found which improve the accuracy of tun-
neling estimation.

In the results of Lea et aL. , combinations of the cubic
fourth order potential V4 and a sixth order potential

V'=+[V', —(7/2)' '(V'+V' )]+PV'

were treated. Their computer generated graphs show
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B. Analysis of proper and improper rotations (Os )

Most molecular point symmetry groups include im-
proper operators, i.e. , operators for which the deter-
minant of the vector representation is (-1). In addition,
the usual Hamiltonian for a molecule in free space will
include all inversions and reflections as well as the ro-
tational R(nPy) in R, . All such operations form the full
orthogonal group 0, =R, x C; where C,.= j1,Ij contains the
identity and inversion I only.

An improper operation converts a right-handed frame
into a left-handed one. It is quite clear that no rotation
operator will ever do such a thing, so there is no point
in trying to find ways to make Euler angle transforma-
tions that correspond to inversions. Instead we will ex-
tend our fundamental basis to include two sets. The
first set will be the one we have been using: namely
all rotational position states:

( I
OOOR& ' "

I
& PyR& = R(~ Py) I

OOOR&. . .]
of the right-handed frame [see Fig. 14(a)]. The second
set will be all position states

OOOL& = I
I
oooR)

I
»yL& = IR(~»)

I
0»

of the left-handed or inverted rotor and frame [see Fig.
14(b)]. Then we have one state O(n py) IOOOR) for each
0, operator O(nPy). This makes a basis for the "per-
fect" or "regular" representation of 03.

We then have the 03 analyzed states

=p"„'~ oooa)le[~) = f y(a()w)p" '(a))y) &pr)
~

~))„w +),
(2.51a)

lo.Py+& =—(laPyR& +jnPyL&)/0 2, (2.51b)

exactly degenerate four-foM clus'ters for certain com-
binations, i.e. , the effective tunneling parameters
vanish. [Indeed the clusters might have gone unnoticed
in the low J (J & 8) spectra if this had not occurred. ] Ap-
parently no'precise explanation exists for this behavior.

.05—

—.0 5

l.6x l0

-25 (I )

=26 (2.~

2g (I~)

C3

O
U

~ ri&=~0 (2 )

(2~) =2g

PlI
=28

78x IO

8.9x 10

l.4x l0

6.0 x 10

2.5x lO

MPR I mal
(2.52)

with all the same basic properties discussed in the pre-
ceding section, except now we have two states for each
value of N, m, and n. One haspositiveparity(+) while
the other has negative (-)parity, i.e.,

FIG. 13. Eigenvalue spectrum of (-V4) in the N= 30 manifold.
Center column shows the eigenvalues found by computer dia-
gonalization. Arrows and circles indicate level structure which
may be found by Eqs. (2.46)-(2.50). &„ is the approximate
component of angular momentum on an n-fold symmetry ass.

Again we may define internal or body frame operator Q:

o(o'P y)l4@. +& =O(~P y)R(Oex)looo+&

=R(bey)o(~py)looo+&

=R(y~y)o-'(~py)looo+& = (

R($8&)R(-y —(8 —o.)looo+&

if 0 is proper (0=R)

~R(peg)H(- y- p- a)looo+&

if 0 is improper (0 =IR) .

(2.53)
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( O(y8y)) = g ( (, ) D"„[O(y&y)]g[Ã]

where: [p = (-1)"] . (2.57)

FIG. 3.4. Rotation-inversion position states for 03 sylnmetry
analysis. (a) State

I &prR)=R(()'pr)IOOOR) (right-handed frames).
(h) State I(')'p'YL) = R(ap'Y)II OOOR) (left-handed frames).

However, for the pseudoharmonic IB R
with p =(-1) ", we will need to first form the product
of Eq. (2.57) with the 9 pseudoscalar IR X)ps. Here K s

is defined by

ps — 1 if O~ is proper

-1 if Q~ is improper.

The desired functions are

Note that there is no need to distinguish between internal
and external inversion since it commutes with all
operations. .I and I do exactly the same thing to the body
frame versus lab frame relative position.

It may seem strange to include what are called "un-
feasible" operations. Indeed, Hougen (1963) defines in-
versions for electrons but makes the frame immune to
them. This might seem reasonable since the amplitude
for most molecules (NH, excluded) to change handedness
is negligible. However, we find that allowing inversions
in some eases but not others leads to more complicated
selection rules than are really necessary.

In any case we will not lose anything. If it turns out
that the universe contains nothing but right-handed ver-
sions of our molecule, that simply means that they are
all in states

Io(pr&& =(I~pr+&+ Io'py-&)/~&.

We may use group theory to give the correct finite
(molecular) symmetry rotor functions

~""'(o( eq)) =g p c'" "'
)n n

x*Q „*(0($()y)))]'[~]

=2 ( „&.)'~ ~ ["(( ~ x)]&[~i

where: [p =(-I)~"] (2.58)

a +s sa'wwhere C~ &
* is the pseudoscalar coupling coefficients

of 9. (Note if 9 contains only proper R, then ("„ I(, )
=(". I5) )

For example, consider the internal symmetry 0„
=—D„& of the diatomic X, rotor, as sketched in Fig. 15.
The pseudoscalar IB is clearly PS =Z„. Using the char-
acters shown in the figure we derive the 0, 4 O„corre-
lation table (Table VIII). The (1,II„) standing wave func-
tions follow from the familiar x and y harmonic rela-
tions

Y,'--(x+fy) x-y"„=(-Y,'+ Y'', )/~2

B =- ~.";[0(yeX)] (2.54) Y', -(x —fy) y-'[I ~~ =f(Y', + Y',)/v 2.
(2. 59)

which transform according to IR of internal symme-
try 9 =(. . .O~. . . )

(o-. "', )=Z ..(~)( "',, )
and IR I) (P = +I) of external symmetry 0, =

(. . .0(~Pr). . . ]
N B

(2.55b)

(2.55a)

~ (o[Py) if 0 is proper:

0(o'Pr) =R(~Pr)a.",'.[0(~Pr)] =
( P& (nPy) if 0 is improper:

0(~Pr) =IR(o'Pr)

(p =+I) . (2.56)

The conjugated coefficients („(,) apply directly to the
0, IR D', Q', XF, KP, . . .with parity P=(-I)" since
spherical harmonics Y' are of parity (-1)'. (1'' is an
Eth order polynomial of x/w, y/x and z/x, and inversion
gives x —x) y —y) s —z) and r~ t'.)'

~ /2

m, -y

(2.60)

A)() =r()
I

'

Aju=X:u+

Apg=gg I

A~u=~u

Ejg= mg 2

Elu =au 2

E&g=~a

Eau=~u

3 AXIS
~ ROTATION

R(aOO)

1

2cos a
2cos a
2COS2a

2 CQs2ct

ROTAT I ON
180o

R(-a i8O. a )

INVERSION ROTAT ION
IN VE R SION

REFL ECTION

I'.R(aOO) Z.R(-a l80 a)

2COS cx

2COS a
2cos2 a

-2cos 2a

FIG. 15. Characters of D I,
——Oz; symmetry of Xz rotor.

Then complex conjugation gives the rotor functions
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TABLE VIII. 03$ (0&; ——D z) correlation of representations.
l

B= Z+ Z'„Z Z„ II II„A D„C 4„1
Only two & satisfy this, namely,

B=Z~, or B= Z„+ (2.64)

=2

0 ~ ~ ~ ~ ~

~ ~ ~

~ ~ ~

This "selection" of allowed bare quantum states is
very important for the definition of the "rovibronic spe-
cies" and the nuclear spin-permutation symmetry, as
we shall see.

Detailed discussion of labeling states of linear mole-
cules is given by Bunker and Papousek (1969).

=3
~ ~ ~

Now in order to find the II~ rotor functions, we need the
0„.pseudo-scalar coupling coefficients:

III. COUPLING, BOA CONSTRICTION AND FRAME
TRANSFORMATION RE LATIONS

A. Symmetric-top and electron

Let us begin with the weak-coupling limit in which an
electron is in a large radius E- orbit around. a relatively
small symmetric-top rotor. Suppose the rotor is in a
state described by wave functions

~ -1 ~

Combining this with E(I.. (2.58) and (2.60) gives

+. 3 ~~2
&a+1T~

& (+a+ + + +a+ +
. t

(2.61)
(3.1)

In this limit reasonable approximations for eigenstates
are obtained by standard coupling analysis.

x/2

2

C. Excluded IR and bare rotors

(2.62) Now E(I. (2.22b) gives the transformation of the harmonics
from the lab coordinates [see Fig. 16(a)] to body coor-
dinates [see Fig. 16(b)]:

(3.3)

R(00y( ) =, ) (2.63)

and derive the conse(luences of it. Combining E(I. (2.15)
and (2.20) we have

N — N) p N);„z 0')
n'

or

n=O.

Before we consider the effect of adding excited vibra-
tions or electrons to a rotor we should note that some
representations are forbidden or excluded for certain
rotors.

The diatomic rotor is one example. If we do not consi-
der the nuclear structure, then we must agree that rota-
tion R(00@) around the E axis containing the two nuclear
points has no effect on such a rotor. In other words the
third Euler angle y(or y) is superfluous.

We may express this fact by writing

Inserting this into (3.2) gives

(3.4)

Finally we use the fundamental definition of coupling:

revised slightly by coupling orthonormality as follows:

~r gz ~I,* N+ ~ ~tgg s*
Af-m ncA Af-mA+m n ~ ~AnK +ASK " (3.5b)

(3.6)

Inserting (3.5) into (3.4) gives the weakly coupled states

In other words, if the rotor has nothing to "stick out"
perpendicular to its axis to mark g rotational position
then it cannot have any momentum around this axis.
[Indeed, Eq. (2.30) shows that n 000 levels go to infinity
for I, =0.]-

Furthermore, an ~, rotor would not notice any of the
internal reflections shown on the extreme right of Fig.
15, that is

O) LAB CO-ORDINATE S (b) BODY CO-ORDINATES

FIG. 16. Coordinates of electron defined in (a} I.ab frame and
(b) Body frame. With p=0 the x~ plane is parallel to the z axis.
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in terms of BOA-constricted states, where

0 ~ + BOA + —Y& 0 ro&+ (a8$) g J
Eq. (3.7) is a BOA-constricted wave function in which

the electronic wave I'A (body) tightly embraces the rotor
body and has body momentum component A. The effect
of the electronic "load" shows up in the rotor wave func-
tion which now has a body component K =A +n generally

different from the "bare" rotor n, as well as a total
momentum J generally differing from N. One may ima-
gine that Y~ represents a flywheel riding with friction-
less bearings on an axle represented by ~~.

Eq. (3.6) is the most elementary frame transformation
relation. It relates each state on one side of Fig. 17 with
those on the opposite side which have the same J; M,
and n. For example, for J=2, l =1, n=1 and states of
a given It/I, we have from (3.6) the matrix (3.8).

%=1 J =2 ¹2J=2 %=3 J=2

(3/5)1/2

(3/] 0)1 /2

(1/10)"

(1/3)' '

(I /6)1/2

( 1/2)1 /2

(1/15)'/'

8/'15

(2/5)1/2

Y1X)

1 2':
Yp+N1

Y-1&~p (3.8)

H H +(J +L 2J»L 2J»L» 2JyWy)/2/»

+(J-,—L—.)'(I/2I-, —1/2I-„-,), (3.9)

and calculate its matrix elements using Eqs. (2.26) and

Note that orbital Coriol. is perturbations can mix only
states with the same J, Jl/I, and n. For example, the
matrix of the Hamiltonian

H =H, +H» =H, +N'/2I-„7+N —,(1/2I —,—1/2I» 7)
is easily found in the (J=2, n= 1) BOA basis. We let
J =L +N be the total momentum so we have

(2.2'7). For example the relations

follow from "body equation" (2.26b), while the relations

L ~
I", (8, P) = i /M2 I,",L-, I",(g, y)

= -2/V 2 I", +2/M2 I"„.. .

are "standard" angular momentum relations i.e. (2.26a).
(Here both the operator and the function a.re referred to
the body system so we use standard "lab" relations).
The Hamiltonian matrix is then given.

~„+1/2I-, +3/2I-„-,

-v 2/I —„y

-~Z/I-„-X y

-v 3/I„y-
~„+I/2I-, +V/2I

e, +1/2I ,+V/2I-
-M3/I-„-X y

Y,X)~2

1
Yohs1

1 2WY 1+up (3.10)

This example shows clearly when the BOA constricted
states are nearly eigenstates, i.e., when electronic
parameters are very different, say ~e„—e~ ~» 1/I —„z.
As e„approaches e~ the electrons start to "slip" from
the constriction until finally, when e, = cq, the weakly
coupled states given in (3.8) are eigenstates. Note that
even in the BOA limit there is still a splitting between
the II states. We give an explanation of this while re-
viewing the generalized symmetric-top BOA state.

Equation (3.7) may be generalized to

(3.11)

which is the general BOA wavefunction for a "loaded"
symmetric top. The "load" or flywheel" described by
VJ1(BODY)= V(2'8)e' may be any electronic, vibrational,
or vibronic disturbance with definite body (z-axis) mo-
mentum A. In an attempt to give a clear picture of mod-
el BOA states we show in Fig. 18 schematic representa-
tion of the, spectrum of symmetric tops carrying Z(A =0)

(H) = c„+B„J(J+1) +(A, —B„)K'=2A, (AK, (3.12)

where e, depends on A only, A„= 1/2I —,(&), and R„=1j
2I„&(&)are rotational co—nstants, and g is the effective
momentum parameter which is used to describe vibra-
tions that have non-integral angular momentum. The
plot of Eq. (3.12) in Fig. 18uses arbitrarily chosen con-
stant A„=1.1, A„= 1, and g =0.3.

For each value of J =2, 3 and ~n~ = 1, 2, . . . P —1
~
of ro-

tor momentum there will be two separate pairs of
II(A =+I) states as indicated in Fig. 18. For the lower
pair of states the rotor and load rotate together, while
for the higher pair the rotor rotates in the opposite di-
rection of the load. One may imagine that the II load
is like a gyrocompass which tends to allign with the
earth's spin. The corresponding energy difference is
often called Coriolis splitting. The (n = 0, II) states may

and II(A =+I) disturbances.
By dropping the nondiagonal terms Jx Lx and J' yL y fron1

Eq. (3.9) we obtain the approximate eigenvalues
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&I~ &~y I D &l~&~Y+, DI J
M+I

&IZ&~Y D
+3

m zZ J~4~~J 3 ()t =. IN 3)——~~Je2

K =+2

K*+I
+I M, +2

J

&IK&~Y IDM

——~~ =Jsl~~J 3 (I( IN ~ 2)
MKRJ~2
An+2

&IZ). YO 0 M, I

I Z

III ~
III ghg K =f2

K=O

J~3
J~2 (P=ISN=3)
Ja4
J=2
J=l (k=lSN= 2)
J=3

(a)
K-+ I

BOA ( Constricted)
States &I~& "+I'M~I

J=O
J=2 (P=ISN~I )
J~ I

fin+ I (b)
Weak ly- coupled

States~ J=4~ J=3 (l=ISN=3)~ J=2
J&IZ&"YODM 0 ~ J=3

eat J ~2 (P=ISN= 2)
J=I

K=0

—J=l~ J=2 (~= I SN= I)—Jao—= J = I (~= ISN= 0)
n*o

I~
I

FIG. 17. Correlation diagram for (l=1) rotonic levels of a
symmetric top. (a) Born-Oppenheimer approximation, and
(b) Weak-coupling approximation. On the BOA side (a) the
quantum numbers &(= Z, H) and K are good. On the opposite
side (b) total rotor or core momentum N is good. On either
side the quantum numbers J and n =K are good. The lines
across the figure connect states for which (J,n) are the same.
Solid lines indicate states which are exactly the same in the
"low l-spoiling" approximation for which only l = 1 electronic
momentum is considered. For a physical picture of the BOA
states refer ahead to Fig. 18. For a more detailed labeling of
just the n= 0 states see Fig. 19. Quantitative correlation tra-
jectories are shown in Figs. 20 and 21.

undergo a different sort of splitting (so-called "A doub-
ling" ) which is discussed in the next section.

The loaded symmetric rotor can only be an approxi-
mate or qualitative model for a molecule, and we give it
only to motivate the definition of the general rovibronic
species label. This will be denoted (~) in the following
section which is a general. ization of the rotor momen-
tum (n) in the present example. The general rovibronic
labels correspond to "internal" symmetry of the rotor.
Together with the external symmetry labels (~~) they re-
main good quantum numbers, during any transformation
from the BOA bases to weak-coupling bases or anywhere
in between. Furthermore, in Sec. IV we prove that the
properly defined rovibronic labels are conserved during
optical transitians, while the vibronic label [the vibronic
label A in Eq. (3.11)will generalize to (, ) in the next sec-
tian] and the loaded rotor label [the loaded rotor label
K generalizes to (, )] are free to change.

One advantage of the loaded-symmetric rotor model
is that we can easily understand why (n) is sacred. The
symmetric or cylindrical rotor is "slippery" for the
electron. No matter how the electron tries to "grab"
the rotor, it will always precess in such a way to keep
the (n) canstant. The electron can embrace the rotor,
become constricted by it, but if the rotor really has B,
internal symmetry nothing can change its (n).

Only linear molecules zeal/y have cylindrical internal
symmetry, and for these only e =0 is permitted. All

/nf= 0
II IIBare

3 Rotor In~= I 0 2 I 3 2 4

[KI=O

other axially symmetric molecules which have off-axis
nuclei must posess a less-than-cylindrical finite sym-
metry Then wa. ve functions such as Eq.(3.11)should be
combined to correspond to IR (A, B, or C) of finite
symmetry as explained in the following. Nevertheless,
some linear molecules with electronic core momentum
A, can be treated approximately as "bare" (n=A, ) ro-
tors. (See Sec. III.E.1.)

B. General rotor and electron

%'e start again with the weakly coupled states involving
an electron and a rotor. We let the electron be in an E

orbital, and the rotor in a state described by the wave
functions af the form (2.33)

NB+(~4)& ~
m

In this section we will suppress the parity designations
of 0, and make notational abbreviations such as

but it will be understood that they may be there.

FIG. 18. Z and II BOA states for symmetric top molecule.
The electronic or vibronic "load" is indicated by an ellipsoid
surrounding a "bare" dumb-bell rotor. Arrows indicate the
direction of rotation of moving wave states and relative amounts
of momentum n or K. Only for the (n= 0, 0) states will it be
necessary to make up standing waves to form the "A-doublet"
states which are shown in Fig. 19.
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Now we transform the electronic harmonic to the body
frame (3.3) and use the coupling relation (3.5) to obtain

g
+ ~ + + yl Cl& J' J (3.13b)

Next we use the inverses of the sphere-to-point-group
(crystal field) relations (2.32) as required by (2.36).

Inserting these into the preceding expression for
I EN, ;~), we find

Clg J - A Jcg (3.14)

In Appendix A we prove that the factor in brackets is
proportional to a product of an internal 8 symmetry
coupling coefficient C,„which couples 9 harmonics
A and & to make a C harmonic, i.e.,

g C.'„y."g, =g .(Aa),
ab

and something which we call the molecular isoscalar
factor ((/)A, (N)& II (J)C) [Buch, 1972] which is indepen-
dent of a, 5, or c.

1. /2
CAB c CAc+B &I: [ ] *(A flC)abc ac 5 [~] . P (3.18)

Here P(ABC} is an adjustable phase which we will take
to be unity (Griffith, 1962). Then the BOA-constricted
states may be defined as follows:

BOA EAC = ac ~ *'Ba
a c

(3.19)

[this is just another arrangement of fundamental coup-
ling definitions like (3.5)] to prove that

Cl/J

~] i/2
C "&(/)A, (N}& ll(&) C& (3»)

[[D] stands for the dimension of 9 IR ~]].
Inserting (3.15) into (3.14) gives the desired general

relation between weakly coupled states and BOA con-
stricted states:

g &""(g)~» (a)&.'. (v)'9

g &..(z)~.'.*(g)(&V~(dA*

~a Pb Pc/ ~jCj
(3.17)

/N = gg((/)A, (N)BII(J)C) BOA /A, C
A C 5 M

(3.16a)

where the latter are defined as follows:

+of& i/2
BOA EAC =g P C".'„' y". (6y)r„', *.

C

(3.16b)

The ordering in the coupling coefficient, namely "A.
and & gives C", would suggest that the electron in mul-
tiplet A is combined with a bare rotor in multiplet & to
give a loaded rotor frame belonging to multiplet C. In
fact, we shall see this is a very useful way to think of it
physically for spectroscopy.

However, the sum in (3.16b) is over a and &, not a and
Indeed, we may use the finite group factorization

lemma

This equation gives the BOA-constricted states of def-
inite rovibronic species (B*,b). These are obtained by
coupling an A electron to a C* rotor which has the elec-
tron "built into it" to get a bare B* rotor. We will dis-
cuss some more physical interpretations of this "sub-
tractive" coupling after we give two examples of frame
transf ormation relations.

C=Aea=Z„Z, =Z„

C=II„(3Z, =II„

states for species & = Z~ and

C =AeB=Z„g Z„=Z,'

(3.20a)

(3.20b}

(3.21a)

(3.21b)

states for species & =Z„'.
Now each B or C corresponds to a column in Table

V1II, which gives (up-side-down} the successive levels
corresponding to that particular rotor or loaded-frame

1. D „-symmetric rotor and (/ = 1) electron

+le rederive the wave functions used in Fano's MCQD
theory of H, (Fano, 1970) and show how physical proper-
ties and symmetry labels are obtained very easily.

We noted at the end of Sec. II that the only possible
labels for a bare diatomic rotor are &=X~ and &=Z„+.
These in turn are the only two allowed rovibronic spe-
cies labels that a loaded diatomic (X,) molecule can
ever have, no matter how many electrons or vibrations
it is carrying or "constricting".

However, for each BOA electronic or vibronic state
A, we may get several loaded-frame states C according
to (3..16), namely, all those C contained in AS&. If we
suppose we are dealing with an E =1 electron, then
Table VIII shows that A = Z„' and A = II„states will show
up. This gives
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4~ ITU

{a ) WEAKLY COUPLED STATES
p-electron + X2rotor

/

p+
I gy3, ~q+

4+

{b) BOA CONSTRICTED STATES (g =I)

2- 2

matrix

i' =o') jr=2 ) ju= 1-)

(z'j=(~=z a=z, j (1/3)" -(2/3)'~' o

(II'i=(A =n„II=Z~ i (2/3)' ' (1/3)' ' 0
Ie2+

I

2+
0

jap 0
I

B=E Z+
g 0

+
4=Z:u

C= TTu

B =Z+g

3

&n-i=(A =n„II=z„'i 0 0 1 (3.24)

The 2 x 2 submatrix is precisely the U matrix in Fano's
MCQD theory (Fano, 1970).

We may verify that the weak-coupling states become
eigenvectors when e~ = e„ in the matrix

jz'& in ) jn-&

Er +4 —2~2 0
C= Z+ Z+

8= gg ~U
(H&= -2V 2 e, +2 0 /2I „y, - (3.25)

FIG. 19. Correlation diagram for l=1 electronic states in the
presence of an Xz rotor. (a) Weakly-coupled states. (N, B,
and 4+ are good labels. ) (b) BOA-constricted states. (A, B,
C, and J+ are good labels. ) States with the same B= Z+ and

=1 are connected by dotted lines. The B= Zu' and J+=1'
state (solid line) turns out to be the same for either side as
long as E= 1 is unspoiled. Note that A= II„-doublets are repre-
sented by standing waves in the body system. The lower doublet
is alternatively + and —parity.

(3.22)

state. Some of the resulting J states coming from Eq.
(3.20) are shown in the BOA level diagram on the right
of Fig. 19, while the N ' states arising from B=&g and
Z„' of the bare rotor are indicated on the left.

The diagram shows the n =0 part of Fig. 17 with label-
ing that is more detailed but easier to comprehend. It
also shows sketches of the BOA-waves (1,A =II„,J3=Z~)
and (1,A = Z„, II =. Z~) which are of interest in the
MCQD analysis along with the (1',A =II„,B= Z„')"A-doubl-
ing" partner of the first state. j The first and third
states are called II' and II respectively by Fano (Fano,
19VO)].

Let us rederive the A =Il„waves and the transformation
indicated by the dotted lines in Fig. 19 using (3.15, 16).
This will make the physics of the symmetry labelirig
more clear. To do this we need coupling coefficients

g~u~g+ &u —g —C~u~+u~g
a ~ c ac a ~ c

0 0

which is the repr esentation of

H =H, +(J' +L2 —2 J„-L—„—2J—„Ly —2J—,L—,)/2I —„y,
constructed in the BOA basis. Equati«(3 25) shows
that the two II become degenerate only if &, —e&- ~,
which is mell known.

It is important to distinguish Coriolis splitting from
A-doubling. Coriolis splitting occurs with neo (see
Sec. III.A) while A- doubling occurs withn = Ot. Coriolis
splitting separates two oppositely nzoving wave states
and is roughly analogous to the Zeeman effect in atomic
physics. Here A-doubling forms and separates two
standing mave states, and one might compare it to
"quenching" of atomic orbitals in crystal fields. For the
X, A-doubling in Fig. 19, we have sketched these two
standing waves. One state (II") is symmetric to (z —z)
plane reflections, while the other is anti-symmetric.
These standirig wave states are a direct consequence of
the total symmetry analysis. (II') and (II ) belong to
different &, and are not necessarily degenerate. We
discuss the general significance of the total symmetry
operators in the following section.

It is interesting to construct the (I =1) energy matrix
for a range of J and n values, and study the eigenvalue
spectrum as a function of (e, —eI;). The (n =0) matrix
for arbitrary J is

and the angular functions in (2.59, 60) and (2.62). Then
we obtain from (3.16b) the following BOA wave functions.

iz'&

J(J +1) +2

ill &

-2(J(J+1))' '

~ C~„z,~„&~„
ac

—(+IIuKI IIM +&gIIuX I II u)/M2

(FID1 g+ y. 1DI g)~
-(-cos(Q —II)sin8 sin p cos p+ cos8 sin'p),

(for M = 0) (3.23a)

n & QMc" "".y".
ac

-(sin(@ —o) sin8 sinp), (for M = 0) (3.23b)

Using (3-15) we obtain the isoscalar factors in the

(H) = -2(J(J+ I))'~' e„+J(J +1) 0

0 0 &~ +J'(J'+ 1)g

where we let B„=1=I/I „z, and eI -—0. The eig—envalues
of the (2 by 2) block are

a~+2(J(J+I) +1)+(e,' —4e +4(2J+1)')' '
2

Plots of the eigenvalues are given in Fig. 20. The A

doublets show up in the BOA limit II spectrum in the up-
per right-hand side of the figure, while the Z levels are
below. On the left-hand side the results for the weak
coupling limit (e, =—0) are shown, and it is instructive
to study the ordering of levels for low e . Each N level
splits into three parts: J =N+1, J=N, and J=N-1.
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levels are sketched on the left, while the %=0, 1, 2, 3
weak coupled levels are on the right.

The weakly coupled %=1 state in which we are inter-
ested is A= T2

a=I =

2 3
C= T2

J=5

J= 3

(I=2)@(N=S )

b=2 M

= g ((2)A(i) T, ll(i)C) C".E=, r.&y".~ '=,'
AC
ac

= g((2)A(1)T ll(1) T ) C
A

A= T2

B= Al
b=

!
3 ~

c=l 2 C=E

A= E o=l:= ==

c=l 2 3

2=-
c =I

/
/

/

/

i
/

/

/

A2 E Tl T2
I 2 I 23 I 2 3

/

/

B=A2
b=

E TI

2 I

(I=2)

(M=2)

T!' TI T2 T2 T2
2 3 I 2 3

according to (3.16) or (3.19), where we use only real
IR of cubic (0) symmetry, and. note that J =1 contains
only C= T

To evaluate the isoscalar factors we need the sum in
(3.iS),

2

A=E

a=l —= = =
I

2=—= =j
c= I 2 3

C= Tl

A = T2

. B= A2 E Tl T2

b= I 2 I 23 I2 3

B= AI A2 E E TI TI TI T2 T2 T2
b= I 2 I 2 3 I 2

(I-"2) g) (N=I)

=((2)A(1)T, ll(1)7',) C"."'. . (3.26)

a=i —
Q

3—j
C=AI

A=E
JRO

B=A,
b=

TI TI Tl

I 2 3

+ET g T g 1/2 (3.27)

so the sum on the left gives

For each possible A we choose one non-zero coupling
coefficient (Dimmock et a/. , 1963). For A =E we have

C=A
I

(I=2) e(N=O )

FIG. 22. Correlation diagram for l=2 electronic levels in the
presence of an octahedral rotor. BOA-constricted states are
indicated on the left. There A and C are good quantum labels.
Weakly coupled states are indicated on the right. There N is
good. On either side the labels (J, I3) are good and the dotted
lines connect those for which 8= 1 and j3= T& as discussed in
the text.

= (1/~)(~/W) (-~/W) + (1/&10)(f/~) (-i/~),
= i/~io. (3.28)

The desired isoscalar factor follows from dividing (3.28) by (3.27). We find

((2)Z(1)Tg ll(1)Ti) =-2/v 10 ~

The final frame transformation matrix analogous to 3.8 is given by

2/41O

(3/S) 1 /2 2/v'10

IN=1 B=T, J=i) IN=3 B=T~ J'=1).
(3/6) 1 /2 lBOAA. =& B= T, J = 1)

lBOAA = T B=T J =1)
(3.29)

C. Symmetry interpretations of vibronic species

In ordinary symmetry coupling theory one considers a
system in state A. coupled weakly to a system in state
B. One starts by imagining the coupling is turned off so
states (I, ) I, ), I,) I, ), . . .) are all degenerate. Then . , 1(R.S.)I. , = (&"&'). .

these states are a basis for the IR 2) of the group
b~&& bE of independent rotations of the two systems
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Then with the coupling turned on we reduce the symme-
try to the group g~s = (R„,R~). . . (S~, Ss). . . of "rigid"
rotations. Only the operators which move the two sys-
tems around together will commute with the coupling in-
teraction. Finally, we reduce (35) to IR & of 9AB
using coupling coefficients which give (1st order) coupling
eigenstates

c) P C~sc

Re

(b. j

RJ
vI
X

Now "constriction theory" is quite different in most
ways yet there are enough similarities to make the com-
parison interesting. Let us discuss the symmetry prop-
erties of a general BOA state ( c.)

BOA AC = P C~~ 'g", (7q) wu,
ac

(3.30)

which has the same form as(3.19)except now we let 'JJ,
represent a general vibxonic state involving any number
of electrons and vibrational excitations, all referred of
course, to the body frame.

Now let internal vibronic operators A,„exist for each
element R in the internal symmetry group Q. These
may include improper operations but let us consider a
proper R = 120 rotation for a three-fold symmetric mol-
ecule. The effect of this A,„ is shown in Fig. 23(a). lt
moves all the electrons and all the vibrational distur-
bances around counter-clockwise by 120 zvitk respect to
the body frame. The effect on the vibronic function is
the following:

&gA g ~A (fl) PA
a'

(3.31)

R ~ I~c Q @c (fl) ~ z~c~

c
(3.32)

We now see what these two operators do when per-
formed simultaneously on BOA state (3.30):

(R, R, ) BOA~C B J
ac

CACB R cgA. R ~JC

= g g D"...(Z)D,',,(ll)
ac .a'c'

gAQ qg
A J'

acb a' Mc' ~

ACB B A JC'b' Db'b(+) J ' +M
a'c'b'

=Q Db. b(A) BOA AC

Geometrically, we see in Fig. 23 that the erect~ons
and vibrations axe left unmoved with respect to the lab-
oratory, while the nuclei axe pexmuted. The group Bvs=. . . (R,„,R~). . . of combined rotations which defines the

Now let internal frame operators R~ be defined as they
were in Sec. II. Here R takes the whole universe, ex-
cluding our molecule, and rotates it counter-clockwise
by 120 . However this is the same thing as rotating the
molecule rigidly by -120, i.e. , clockwise, as shown in
Fig. 23(b) The effect on the frame function is the follow-
ing:

Rey x R

(AA—

PIG. 23. Effect of 120' rotation on X3 molecule. (a) R~ rotates
all vibronic disturbances with respect to the body frame. Any-
thing referred to the lab frame in the outside world is left
alone. (b) AJ rotates the lab and the whole outside world with
respect to the body frame as in»g. 2(b). The effect (shown) is
the same as rotating the molecule and everything referred to
the body frame rigidly in the opposite direction with respect to
the lab frame. (c) Combining R„and Rz gives a permutation
of the three nuclei which is the "under-all" rovibronic symme-
try.

rovibronic species, corresponds directly with the nu-
clear pe+mutation symme«p, one of the "best" symme-
tries in nature. This i's why the rovibronic species B
must be conserved. It is as though we were labeling the
"soul" of a molecule.

One may want to know why 8„is not a symmetry op-
erator by itself, i.e., why we cannot move the electrons
and vibrational distortions from one equivalent nucleus
to another. The answer is that it would be one if we had
only potentials to consider, but the kinetic Patt of the
Hamiltonian rules R„out. Note that R„(00@) (for y=90 )
would convert one "A double" into the other in Fig. 19.

The preceding analyses apply to all orthogonal opera-
tions, be they proper or improper. For example, an
improper reflection operation c7 is depicted in Fig. 24.
We see that the "under-all" operation (o„.o~) has the ef-
fect of transposing nuclei A and B.

The description of "underall" symmetry operations is
similar to that given in previous works (Louget-Hig-
gins, 1963; Hougen, 1975; Bunker, 1975; Louck and
Galbraith, 1976) as far a,s proper rotations are con-
cerned. Louck and Galbraith take particular care to de-
velop an operational formalism which preserves the
Eckart frame.

However, the standard treatment of improper opera-
tions (cf., Hougen, 1962; 1963; and 1975) formally de-
letes the "unfeasible" inversion I of the rotor. The ef-
fect is the same as reinverting the frame and content of
the lower right-hand triangle in Fig. 24. In other words
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for the (12) operations so this labels the even (s) sym-
metry species, while Z„' stands for odd or antisymme-
try (a) species, since the (12) signs are all negative.

FIG. 24. Effect of (improper) vertical plane reflection on X&
molecule. The "under-all" rovibronic symmetry operation is
the permutation of nucleus A with B.

the standard reflection puts nuclei at points in the lab
space that previously were unoccupied. Clearly, this is
a valid symmetry operation, but it is a confusing mix-
ture of our internal and external operations. We will
compare the physical labelings that result from using the
two approaches in Sec. V.

An important-point about the commutation properties
of symmetry operators should be made. Coupling coef-
ficients are designed to reduce representations X) (3X)

restricted to subgroup g of Q& 8. It is tacitly assumed
that operators belonging to the left g factor group in g
& g commute with those in the right factor, according to
the definition of the outer product (&&). This presents no
problem in ordinary coupling theory since the two fac-
tors are usually assumed to act on independent systems.
However, it is necessary to prove that each internal vi-
bronic operator like R,„generated by L commutes with
the internal operators R~ generated by total momentum
operator J', even though they are not acting on independ-
ent systems. This may be done geometrically with the
aid of diagrams like Fig. 23 and 24. Note that an opera-
tor R~ generated by N, which acts on just the nuclear
rotor but not the vibronic parts, would not commute with
R . On the other hand external operators like R„gener-
ated by L and R~ generated by N will commute, while
R„and R~ do not.

Finally, one might be concerned that a given nuclear
permutation might not be uniquely represented if it could
be performed using two or more different orthogonal op-
erations. For example, the permutation (12) of the di-
atomic nuclei may be done by any of the operations in the
third, fourth, or fifth classes of the group O„shown in
Fig. 15.

However, the exclusion of all but the two IRB =Z~ and
B = Z„' has automatically made the definition of the (12)
permutation unique. For Z~ the signs are all positive

D. Tableaus and statistical weights

The symmetry classification of even or odd for a nu-
clear wave function of a homonuclear diatomic mole-
cule is easy enough to understand. However, homo-
nuclear polyatomic molecular symmetry definition is in
general more difficult since the number (n! ) of permuta-
tions can be large. Fortunately, some powerful and al-
most magical formulas and algorithms based upon Young
tableaus are available for application and development.
We will introduce the use of tableaus by first labeling
the diatomic symmetry species. A tableau is an ar-
rangement of n boxes which is used to denote permuta-
tional symmetry of an n-particle wave function. For ex-
ample n= 2 boxes in a row [see Fig. 25(a)] denotes sym-
metry i.e. , (s) or B =Z~, while a column denotes anti-
symmetry i.e., (a) or B =Z„'. I See Fig. 25(b).]

However, most of the theory and application of the
tableaus concerns so called paxasymmetric n-box tab-
leaus (n~ 3) which belong to neither the symmetric (i.e.,
one row) nor the antisymmetric (i.e., one column) IR of
the permutation group S„. Furthermore, for n identical
nuclei, there will be one or more orbital tableau corres-
ponding to each B label of the spatial point group as we
will show. Then for each orbital tableau there will be
just one sPin tableau, which describes, among other
things, the permutational properties of the nuclear spin
wave. According to the general Pauli Principle the spin
tableau of a Bose nuclear state (i.e., integral spin nu-
clei: I= 0, 1, 2, . . .) is identical to the orbital tableau
[see Fig. 26(a)], while the spin tableau of a Fermi nu-
clear state (i.e. , half-intergral spin nuclei: I=2, 2, ~

2, . . . ) is conjugate ((P)) to orbital tableau, rsee Fig.
26(b)] that is, the columns are interchanged with the
1 ows.

The association of an IR (B) of a point group 8 with the
right tableau IH of a permutation group S„ is usually
easy to do if Q is "greater than or equal" to S„. For ex-
ample, a quick comparison of character tables of C,„
(Table X) and S, (see Hamermesh, 1960, or Appendix
C) gives the spin tableaus belonging with IR A „A.„and
E, respectively (see righthand side of Table X). Here
we find (recall Figs. 23 and 24) that the point group C,„
-is equal or isomorphic to S3. A similar relationship ex-
ists between the tetrahedral point group T„and the per-
mutation group S, (see Table XIII).

However, if the permutation group is greater than the
point group in question, then a detailed character cal-
culation may be needed. Fortunately, some convenient
and powerful formulas make this job easy. For example,
the permutation group S, of XY, molecule is much lar-
ger than its highest spatial point symmetry group 0„.

FIG. 25. Orbital tableau labeling of a homonuclear diatomic
rotor .
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(That is, 0„ is a subgroup of S,.) We use the tableau
formulas described in Appendix D to make the correla-
tion table shown in Fig. 27. Note that each IR (B) of 0„
is correlated with several spin tableaus in its column of
the table.

Now, to compute the spin statistical weights we use the
powerful Robinson formula, (Robinson, 1960) given in
Fig. 26 (see Galbraith, 1976 for similar treatment).
This formula gives directly the number f, "& of nuclear
spin states associated with each tableau $ p.,}. The sum
of these numbers taken over each tableau associated
with "soul" label B will be the desired statistical weight
W~

(G) BOSE NUCLEI

ORB)TA L SP IN

EU

LT. J H

(b ) FFRMI NUCLF l

ORBITAL SPIN

Ws = + l"~f. (3.33) n=4

Here fs& is the correlation frequency from a correlation
table like the one for 0„ in Fig. 28, i.e. , the number of
times that IR (B) appears in the I pjth IR of the permuta-
tion group.

For example, let us compute W&, W&, W2, and2S PQ, lS
W~, for 8&, in which the spin of + is I=2

F

FIG. 26. Orbital and spin tableaus used to label homonuclear
n-atolnic rnolecules (n=2, 3., 4, . . .).

234)5J

5421I 654321
21

2 3 4)5)
12
5 4 2)1)
21

The individual weights do not agree with those obtained
by standard methods (Cantrell and Galbra. ith, 1976).
However, the ratio of sums over (u) and (g) agree, i.e. ,
W&, '. W2, = 5:3 using either method. As long as inver-
sions do not play a dynamic role, either method gives the

same weights. %'e will discuss this point more fully
when we treat methane (CH, ) in Sec. V.B (example 3).

As a final example, let us calculate the weights for a
fictitious molecule XY, in which each Y nucleus has spin

5
2

' 6 7)6 )

5

3

62)1)
3
2
1~l

67
56
45
43
32
21

67)6)
5

3

6 2'1)
3
2
1

6 7 6)9)
56

6 7)6)9)
56

4

53 1)' 63)2)1)' 542TI)
31 2 21
1 1

= 280+ 175= 445 = 280+ 896+ 840+ 1134= 3150
'67

67
5 6 6 7 6)9
4 5 56 )6)7I6)9)1O)111

4 3 54 2)l) 6 5~[4 3 2)l)
32 21
21

5

3
2

~u 61
4
3
2
1

6 7'8
5

. 3

621

676)

45 4 56' 43 ' 531) 542)iJ
32 31 21
21 1

= 35+ 280+ 175+896+ 1134= 2520
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I»]= I I 1

FERM{ONS BOSONS
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II [1[I
Li

II I [ I
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I . I . I

I ~ ~ ~ I

I I I . . I I I

I

I

I

I . ~

FIG. 27. Spin tableau-(B) correlation for octahedral XY6 mole-
cule (see Appendix D).

Finally, it is possible to enumerate and compute all the
properties of the nuclear spin states using tableau algo-
rithms. The procedure is virtually the same as the one
used to derive the ' "L terms in a complex atomic l"
configuration (Harter, 1973; Drake, 1975; Harter and
Patterson, 1976a). Here we replace the single electron
momentum t with the internal momentum I of each nu-
cleus. Then we compute the total nuclear spins I~ that
are possible for that molecular species in the same way
thai we find the allowed total L for the atomic multiplet.
For I=2 nuclei the procedure is quite simple. Each spin
tableau must have at most two rows that define just one
total nuclear spin I~, where 2I~ equals the number of
unpaired tableau boxes.

It is possible to use the tableaus to help one determine
the form of the nuclear dipole and quadrupole hyperfine
structure, as we will mention in the following section.

E. Possibilities for {P'}or {B)failure

We briefly discuss some situations in which the
"sacred" (J~,B-tableau([j)) labels might "fail". "Fail-
ure" or nonconservation of trusted quantum variables or
labels generally occurs when some new mechanism
which was previously ignored turns out to play a crucial
role in a more accurate experiment. For example, the
orbital momentum label I for certain atoms failed when
electron spin and orbit coupling was observed in atomic
fine structure. Then it became necessary to add spin

Dimension of

m m+[m42mt5mt4 ~ ~

m-[ m m+[ ~

product of m-2m-[ ~ ~ integers

m-5 ~ ~

m=2'f + I

.. I .. I

product of:::: — hooklengths

)f

FIG. 28. Robinson formula for statistical weights. The "hook-
length" of a box in the tableau is the number of boxes in a "hook"
which includes that box and all boxes in the line to the right and
in the column below it.

momentum S to orbital momentum in order to construct
a new labeling operator: J=L+S. This worked well un-
til nuclear hyperfine structure showed that an even bet-
ter labeling operator would be the eigenvalues of I' =L
+S+I, where I is the operator of nuclear spin.

One must generally introduce new operators and a
more complete basis of states when old quantum labels
fail. The new eigenstates then turn out to be combina-
tions of states with different values of the old "failed"
label. Of course, if it turns out that the amplitude of one
old state dominates in each new eigenstate, then the old
label may still serve as an approximate label for the new
states, too. For example, many light atom electronic
states are given a Russell-Saunders labeling such as

I J ) =
~

'D, ), even though the eigenstates have small
amounts of other I. and S, 'i.e., ~'S,), ~'I, ), ~'D, ), . . .

We consider two possible sources of trouble for the
"soul" (j~,B-(p}) labeling of molecular species: core
excitation, and nuclear moment interaction.

1. Core excitation

The model "bare rotor" imagined in Secs. II.3 and
III.1 to 3 consists of some arrangement of identical
"bare" nuclei, i.e., a configuration of identical geomet-
rical points. However, most molecular cores or rotors
also have electrons orbiting between them. Therefore,
the bare rotor model will be useful only if we can ignore
the core electrons and treat them all as a single charge
"blob" having the assumed rotor symmetry.

Core electrons cannot be ignored if they are easily ex-
cited to other states, if they carry observable orbital or
spin momentum, or if they overlap appreciably with the
electron or electrons orbiting or scattering "outside" of
the core. Whenever there are two or more core states
~A, ), ~A,'), . . . , we must write them as factors in the
total vibronic states ~A, A. . .), ~A,'A. ..), . . . which will
be used finally to describe all vibronic activity.

General vibronic eigenstates may include large ex-
change correlations between core and "outside" elec-
trons. Each eigenstate may finally be labeled by permu-
tation tableaus and a total vibronic activity label A~.
Modern methods for treating multi-electron multicon-
figuration electronic states are rapidly being developed,
(Goddard, 1967; Harter, 1973; Paldus, 1976; Patterson
and Harter, 1976 b, c) and they are closely related to the
methods we are using to define the multi-nuclear label
B-(p). Nevertheless, a number of applications will have
to be worked out successfully before it is clear how to
use all these new techniques effectively in problems of
complex molecular-electron scattering, excitation, and
ionization.

In any case, it is clear that all observable vibronic
activity must be treated as such and included under the
(A) label. It must not be confused with that which be-
longs to the nuclear permutation symmetry label (B-(p})
of the bare rotor.

2. Nuclear spin or multipole effects

The (B-{p.) ) label and the underlying nuclear permutation
symmetry. canbe brokenif each nucleus comes equipped
with a magnetic dipole, electric quadrupole, or any multi-

I
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pe e PpN x o
e N

(4.2)

in the perturbation operator

clear coordinates. A simple example of T," is the elec-
tric dipole operator

V=-E d=-E d . (4.3)

This describes the effect of a static uniform E field
(Stark effect) or, in the limit of long wavelength, the ef-
fect of z -polarized radiation. [Electric dipole (El)
transitions. ]

The matrix elements of T," in the BOA basis will be

M~i~l g~(V'-5) =
A'n' An

'Aie', T, (x, q, ) VAn

u"„T,"(x, q„) )r= -0

= g ([J]&[z'])"c,"„".c„"",,„',.,„.&v', .IT„'Iv,&, (4.4)

where the T," is transformed to the body system in the
second line, and the fundamental (factor ization lemma)
definition of coupling coefficients C,"„~ is used in the
last line. In addition, the vibronic integral defined by

J J'
U), =r

L~j M=-J N'=-J A'n A n

[ ]
(c„"=. ..;„.",.)'I &v'. IT,'lv. &l'.

d(~. &.)v'* T' v~ (4.5) (4.8)

could be expanded by the Wigner-Eckart theorem to give

&v', IT,'I v, &
= c„",",. & v'IIT'llv& (4.6)

(4.7)

i.e., "internal" n is conserved no matter which "extern-
al" perturbations are applied.

To compute the kth transition probability t we need to
compute the square of the T" matrix, sum over the final
state M' and average over the initial M, as follows:

if we were to assume that each vibronic function V& = VA
belonged to a definite L. However, we shall not make
this assumption since general vibronic states are made.
of more than one l.

Nevertheless, the internal cylindrical symmetry of the
rotor requires that the body axis components in the vi-
bronic integral add up as follows: &+A =A'. The same
applies to the components in the second coupling coeffi-
cient in Eq. (4.4) i.e. , r+ A n+= A'+n'. Combining these,
we have the first rovibronic selection rule

The external coupling coefficient C,~~ disappears be-
cause of the symmetry relation

(gM J' ')2 [Zl] /[ k] (PJ z 0 )2

and the orthonormality relation

(4.9)

C
J' a' ~as'

CN-Af'-q ~kf-&'-a' qq'

(4.10)

of coupling coeffi.cients. Finally the transition line
strength I.(k) is proportional to the product

I.(k) —t~. ~Wz A(n. , temperature)
A~ P

of t and the relative population ~J& of the initial state.
~J& in turn is a product of a Boltzman factor which de-
pends on initial state energy and temperature, and the
statistical weight factor discussed in the preceding sec-
tion. (The statistical weight depends on the rovibronic
label B which is (n) for the symmetric rotor. )

We discuss briefly the important k= 1 or dipole case
of Eq. (4.8), The coefficient of the vibronic integral is
given by the formulas in Table IX, and follows from the

TABLE IX. Dipole (k=1) coefficients of vibronic integral in Eq. (4.8j.

P Branch J' =J—1 Q Branch J' =J R Branch J' =J+ 1

p sub-band (& band)
x = —1,K'' =K —1,&' = A —1

q sub-band ((I band)
y =O, K'=K, A' =A

~ sub band (~ band)
y =l,K' =K+1,A' =A. +1

(J+K —1)(J+K)
6J(2J+ 1)

(J+K)(J-K)
3J(2J+ 1)

(J-K —1)(J-K)
6J(2J+ 1)

(J-K+ 1)(J+K)
6J(J+ 1)

K
3J(J+ 1)

(J+K+1)(J K)
6J(J+ 1)

(J—K+ 2)(J—K+ 1)
6M+ 1)(2J+ 1)

M —K+ 1)(J+K+1)
3(J+ 1)(2J+1)

(J+K+ 2)(J+K+1)
6(J+ 1)(2J+ 1)
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(b} B ~ B

12 1'3

+E- E,

R band head

formation of a band head on the high side or R-branch
as shown in Fig. 30(b).

The strength of the lines in Fig. 30 would depend upon
the entries in Table IX, the vibronic matrix
(V~ =,1 T„'=,

1 V~=, ) and the initial populations. From the
table we see that the Q, branch is ruled out for r =0= k,
so the Q( j) lines should be missing in Fig. 30. For pure
rotational transitions (microwave spectra) we need a,

nonzero (V,1T,'1V,) i.e., a permanent z dipole moment.
For vibrational or vibronic transitions (infrared and op-
tical spectra) we need a, nonzero induced dipole moment
(V',1T,1V,) parallel to Z. We will show in the following
sections how more detailed symmetry analysis provides
selection rules for general types of moments very easily.

B. General matrix formula and selection rules

We consider now the matrix elements between BOA
wave functions

FIG. 30. Demonstrating the use of a rovibronic nomogram for
the model Z Z transitions by dipole excitation in a symmetric-
top molecule.

B JP
A. C

I, M =Q C» 'g, (&, q„)&u,M (4.1la)

general coupling coefficient formulas. These are re-
lated to the well known Honl-London formulas.

In order to visualize the transitions that occur in mo-
lecules it may be helpful to construct a nomogram which
converts level diagrams directly into spectra. In Fig.
30a we show the simplest examples of the Z -Z dipole
transition (A' = 0=A) between two sets of j levels with
the same rotational constants B„=B„.The idea is to
plot the initial and final levels on the x and y axes and
put a dot at (x = Ez y = Ez ) for ea.ch allowed transitionJ- J'. Then lines drawn at 45 from each of these
points give immediately a scale model of the expected
line spectra as shown in the key of the figure.

The diagram is useful to show the form of the spectra
for different rotational constants B„&B„.For B„.=B„
the transition dots form a parabola inclined at 45, while
for B„&B„,the parabola tips more. This results in the

JP C m' -(o(yex)) V[~) (4.lib)

have external (0,) a.nd internal g symmetry definitions
as we have described.

The general matrix element for an A- A. ' vibronic
transition is

B I JfP JP
M~', ~ (A,', -A, ) = A' C', , T„"(lab) AC

P T,"(body)a„",
'

(4.12)

where we have expressed abstractly the usual transfor-
mation from lab to body frame. Expanding (4.12) using
(4.11b) gives

of the multipole operator T„ that would arise in the
treatment of external (lab-fixed) perturbations or extern-
ally induced transitions. The rotor functions

M~. J (A.,' -A, ) = Q „q~ ~&+ J'~ C'* J C
(03)R~~»Issue g» NM MIgg

~ C.".', C.. .', ,'. d(x ~) y"..'*T.'W" ([~)[Z))" (4.13)

The first factor is an integral and sum over 0, which is

J' I + QQg J'p+ QC J Pg Ip
g Ogpu pp

3) N'M"' r» NAf" ' u" N"' ~[ 1 ( )

d (xi qi ) cg A ' T»~ &gA
A' „~ A.
~f S

according to the "factorization lemma". This immedi-
ately gives an external parity selection rule

(4.15)

among others. Meanwhile, internal or body-frame se-
lection rules for T, (body) between two vibronic states
depend on an integral over vibronic coordinates.

) &:."." &&'~l~l~~l~l»
Dd

(4.16)

In (4.16) we have decomposed the 0, tensor operator into
9„operators of g and then used the 8 Wigner-Ecka. rt
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theorem. This factor is zero unless " (3& contains i.e., unless C~, . is nonzero for some D in ~'.
Combining (4.16) and (4.14) gives the usual form for the external (03) Wigner-Eckart theorem.

(4.17)

It is the "internal" information which interests us inside the reduced matrix element of (4.17). (Generally the
sum over final and average over initial M states eliminates the coupling coefficient C entirely, as shown
in the preceeding section. ) We have

CC
d

(4.18)

Now we recognize the latter part of (4.18) to be a product Finally the sum over the coupling coefficient is a g
of the molecular isoscalar factor (3.15) and another g Racah coefficient which is discussed in Appendix B
coupling coefficient, (3.18) where we have the well known definition

z=g &a'llDllz& g c"' c""'c "'c
D

x&(h')D(g )C*ll(g' )C *& (4 19)

agb a'c'b' daa' dc'c ~p
acd C B C -l
a'c'

The matrix element is then

=0 if B'wB or b'cb . (4.20)

~e see that the "internal" label (8, b) of xouibmnic
a'species can never be changed by an "extexhab~ T„(lab).

This is an important difference between the selection
rules implied here and corresponding ones in the litera-
ture as we will explain in examples which follow.

Internal and external selection rules are obtained with-
out even evaluating the coefficients in (4.20). We see that
in this framework the external rules will have the same
form as the well known atomic physics rules for k' mo-
ment transition of J~ to J'~, while the internal rules
for a D transition of A to A' will be identical to the
rules used for years in crystal- field or elementary mo-
lecular spectroscopy.

However (4;20) will also provide (when squared and
summed over degenerate initial and final states) a form-
ula for the relative transition probabilities for the whole
band of the A-A' transition in terms of a few vibronic
integrals &A'llDllA&, in the same way as was done to get
Eqs. (4.4) in the preceeding section. The difficulty of nu-
merically evaluating expressions like Eq. (4.20) will de-
pend on the assumed nature of the molecule. For low
symmetry molecules, the Hacah coefficients are simp-
ler, often just 1 or 0; but the components of the molec-
ular isoscalar factor may have to be obtained from dia-
gonalization of an assumed Hamiltonian. For higher
symmetry molecules, the Hacah coefficients are needed,
but the molecular isoscalar factors may be approximated
without any diagonalization (cf., Sec. II.A.2 —4, or Pat
terson and Harter, 1977a). If the initial state A is a

scalar ground state, the Hacah coefficient reduces to 1 or 0
in any case. For high symmetry molecules the statistical
weight is the most important factor since the angular co-
efficients do not usually vary that much from line to line
of an allowed band.

1. 02,. symmetric molecules X&, XYX,XYYX, . . .
The form of the section rules, and in particular the

conservation of (B), suggests a convehient graphical
visualization for rovibronic transition spectra. We con-
sider here only the electric dipole transitions for BOA
states of symmetric (0„) linear molecules. However,
we describe simple procedures which are generally ap-
plicable.

The electric dipole (El) transition operator belongs to
the 1 IB of 0, and therefore, by Table VIII, to D = Z„
and D =~„ IR of cylindrical symmetry 0„. I et us con-
sider the (A = Z~ -A' = Z„') and the (A = Z„-A' =II~)
transitions which are internally allowed. [Because (A.
=Z~)&3(D=Z„') = (A'=Z„') the first is allowed, and be-
cause (A = Z, )(D = H„) = (A. ' = II~) the second is allowed
by Eq. (4.16).j The latter is interesting because Z„ is
dipole forbidden to go bh, ck to ground state Z~ . These
lines show up in the electron spectra of certain X, A YX,
and XVVX molecules.

The Z;-Z„' transitions are shown in Fig. 31(a). We
place the initial levels along the abscissa grouped into
rows according to their B labels. Along the ordinate, we
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(a) C,„
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0

FIG. 31. Electric dipole transitions in linear symmetric (0&,-)

molecules Xz, XVX, . . . (a) +g & (b) + +g Transitions
are only allowed between levels lying in the same B corridor.
Note that the (Z„—&~) Q branch is not A doubled since the upper
II doublet is always involved in a J J transition.

put the final levels, matching the rovibronic B label of
the final levels with those of the initial levels, since we
have shown that B is conserved. In order to find the lev-
els in each B column, we write down in each B row all
the C contained in A SB, and in each B column all the C'
contained in A'B. Then we look up the J~ levels that go
with each C from Table VIII, and place them according to
whatever model energy formula we have. [For the Z'
levels we just space them according to J(J+1).]

Now for each B we find the transitions allowed by the
external selection rules i.e. , the P branch: J'-J' —1,
Q branch: J'-J', or R branch: J'-J'+1 by placing a
dot at the co-ordinates determined by each allowed pair
of levels. The actual spectra are then obtained by exten-
ding lines at 45 from all the allowed points as shown in
Fig. 30.

Note how the Z'-Z„' transition does not allow a Q
branch, and how the P and R branches form two sides of
h parabola tipped by 45 . If the rotational constant for Z„'
was less than for Z then this parabola would tip over
more and a "band head" would form on the R side. In the
5„-II transition we have a clipped parabola with one Q
line running up the center. (A-doubling is not evident in
the Q line because just the upper doublets participate. )
Each B column and row will be associated with one or
more Young Tableau. This immediately tells us the nu-
clear spins and species population ratios if we use the
convenient formulas discussed in Sec. DI.D.

0

FIG. 32. Correlation of (a) NH3-like (C3,) molecular ground
state (A&) levels with (b) ground (A&) and excited (Az') levels of
CH3-like (D3&) molecules.

2. Ca„and Os„symmetric molecules XY3

We discuss now some states and transitions of XY3
molecules having C,„symmetry and D „sysmmetry (Fig.
32(a) and (b), respectively). The molecules CH, and CD,
are generally considered to be D» symmetric, while NH,
is said to have the lower C,„symmetry. These examples
are interesting because NH, has the well known tendency
to "invert".

We begin by recalling the C,„and D» character tables
(Tables Xa and Xb). We indicate the correspondence be-
tween the IH and tableau assignments for the bare rotor
statistics. Note that only IR A,', A,', and E' of D» can be
bare rotor (8) labels since we require that horizontal re-
flection operator a„be a unit operator.

From the character tables we may construct the nec-
essary 0, frequency or correlation tables (Tables XI) for
the reduction of angular momentum states to subgroups
C3v and D».

In order to compare the symmetry D» with its sub-
group C,„we will need the correlation Table XII.

In Fig. 33 we show the scalar A =A, vibronic manifold
of a pyramidal (C3„) molecule, and correlate the levels
with those of a planar (D,„) molecule. On the left (C,„)
side of the figure we imagine a molecule like NH3 which
can invert the central atom only relatively infrequently,
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TABLE X. Character tables of (A) C3„and (B) D3~.

A. C3„

z l"otatlons

R —00

Vertical
reflections 0„

I R(07T0)
Boson Fermions

(~)A,
A2

(x,y)E

(&}
(&H&H&)
(2H»

(~H~H6
{&)
(2HI)

B. D3I

Z rotations

m(—';on)
(xy) rotations

R(07T 0)

Horizontal
reflection oz

IR(7T00)

Rotation
inversions

IR —00

Vertical
reflections a„

IR(07T0)
Boson Fermions

Ag
(Z.)A',

(x,y)E'

1
—1

0

(3)
(Uf~H~)
(2Hj)

(zHxHI&

(2HI)

All
(~)A'2

(g g )E"

1

. 2

1
—1

0
Excluded

0

TABLE XI. Correlation tables. (A) 03$ C» and (B) 03k D3I, .

A. 03& C3„ B. 03$ D3If

if at all. On the right (Ds„) side we envision a molecule
in which the central atom oscillates quite freely through
the molecular plane. In fact we picture the first z rovi-
brations with A =A," to have much higher energies than
the unexcited A Al states.

Now each (A) rovibrational manifold is made according
to the usual '(ABC) method" outlined in preceding sec-
tions. We first write down all C in AB for allowed bare
rotor B. Then we draw the appropriate J ~ levels from
the Cth column of Table XI above each C in, Fig. 32. The
new trick here is to correlate nearly degenerate states
(J',J ) in the A, manifold of the C,„structure with those
D3„vibronic states A,' and A,"in the A, column of Tabl e
XII. These pairs are inversion doublets in NH3, but cor-

respond to well separated vibronic states in CH, or
CD, .

Now an electric dipole component parallel to Z belongs
to IR D =A,"of D», or IR D =A. , of C,„(see Tables X).
This will permit a transition A =A,'-A,"in the D,„vi-
bronic label, and A, -A, in the C,„ label. (A', -A.,") tran-
sitions are indicated in the nomogram in Fig. 33 for CH,
and CD3. The levels which are drawn on the axes of the
nomogram are plotted using Eq. 3.12 for the symmetric
top. The symmetric top quantum numbers K or n are
only approximately valid, but good enough to be very
useful. In this example we would have E=n since A. ,' and
A," correspond to A= 0. It is interesting to note that n is
conserved for all the transitions in Fig. 33.which are al-
lowed by the (ABC) rules.

The statistical weight factors are indicated by line seg-
ments at the top of Fig. 33 (D is a spin-1 boson, and H is
a. spin-2 fermion). These are computed as follows using
Fig. 28.

Ag A2 E AI E1 All All El/
1 2 1 2

TABL E XII. D3I, & Ca„correlation.
1 ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4

e. —V

0 ~ ~ ~

]+ ~ ~ ~

1 ~ ~ ~ 0 ~ ~ ~ ~ ~ '~ ~ ~ ~ 1 ~ ~ ~ ~ ~

-+ ~ 0 ~ 1 ~ ~ ~ ~ 0 ~ ~ ~ ~

1 ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ 1 ~ ~ ~

Ag

A2

1 ~ ~ ~ 2+ ] o ~ ~ ] e ~ ~ ~ ~ ~

2 ~ ~ ~ 1 2 2 ~ ~ ~ ~ ~ ~ 1 1 0 ~ ~
All

1
3 1 1

1 1 1

1 ' 1

A/I
2

EIf

Rev. Mod. Phys. , Vol. 60, No. 1, Part l, January 1978



Harter, Patterson, and da Paixao: Frame transformation relations 5. multipole transitions. . .
I

. R(2) R(l) R(O)
STAT ISTICAL WEIGHTS

B= A') A'~ E'
~~D

IO i 8
0 4 2

P(l) P2) . .

+ 5+

. . R(2) R(I) R(O) Q... P(I)

=0 +
I-

+ +

Q 2
2

I

22 ——

2'
2
2:
2+

Q +
I

I

0
I

C= E" C=A" C=A"2~ ,
'

ly 2

~+6=A'I I

C=A~

C=E'

( approx. ) K = 0
J= 0

II-

I 0
I

2+a

2 I03

I +

I

I 0

345
W'~ =

FIG. 33. Electric dipole allowed (A.&
—Az') tr ansitions of CHS

and CD&. Transitions may occur between those levels which
belong to the same B corridor, but then only between those
levels for which the external rules 8' J++ 1,J, or J' —1 are
satisfied.

o

L'
ol

I-I I I+
II

FIG. 34. Electric dipole (A& —A&) transitions in NH3. Level
ordering was deduced from the two preceding figures. The re-
sults clearly show the origin of the observed alteration of inten-
sities in the inversion doubled spectra.

(CH, ). Of these, CH, has been studied the longest since
it has the least rotational inertia and therefore the most
easily resolvable rotational structure (Piyler, et al.
1960; Hecht, 1960 a. and b). Before discussing the fine
rotational structure, it is worthwhile to review briefly
the angular momentum theory of the spherical top rovi-
brational states which has been developed for some time
(Jahn, 1938; Hecht, 1960a). It is instructive to discuss
the structure of the angular momentum bases in the light
of the frame transformation relations.

One may couple a lab-defined vibronic wave function
'(lab) and a spherical top rotor wave function

IP„(nay) to construct the wave'function of a total momen-
tum (J') state as follows:

For CH, g, = —=0,0

3

234
Az 321

This was called a weakly coupled wave function in Sec.
III. It is simple to use the procedures given in Sec. III
to relate the preceding to BOA wave functions, or intern-
ally coupled states.

Finally, Fig. 34 shows a schematic of the spectral
lines which show up in an NHS (A, -A, ) transition. & l I.~&l(~)a& = 2 C~".EA&(body»~~. ..~(o'-6'y)~[&]

V. ROVIBRONIC MATRIX ELEMENTS AND
TRANSITIONS (WEAKLY COUPLED BASES)

A. Spherical top vibrational transitions

Some of the most interesting spectral results in recent
years have involved transitions in the "spherical-top"
molecules such as SF„UF„SiF4, CF4, and methane

The preceeding differs only by a phase (—1)~ ~ from the
wave function

(5.2)

If the rotor really had R3 symmetry then one could choose
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the internal (AB C) quantum labels to be A = l*, B ——N, and
C =J. Then the preceding wave function would have
practically the same form as the general BOA-constric-
ted state given in Eq. 3.19. In other words, fox a rigid
spherical top the zoeakly-coupled and BOA-constricted
states axe the same, except for an overall phase.

However, a CH4 molecule is not a rigid ball, but a de-
formable tetrahedral configuration. BOA-constricted
states will be labeled by A, B, and C equal to T„ IR, not
those of A, . In general BOA-constricted states will be
quite different from weakly coupled states for which N is
still a. good quantum number. (This was demonstrated in
Sec. III.B.2. where it was shown that for either set of
states we can still count on J~ and B to be good labels. )
So the question remains, which will be a more conven-
ient basis for starting CH4 rovibronic problems?

In order to analyze the fundamental dipole allowed vi-
brations (E = 1,E,), Hecht chose wave functions which ar e
virtually identical to the ones given in Eq. 5.2. He used
these as a basis for a very thorough analysis of the CH4
rovibrational lines observed by Plyler. The same sort
of analysis has been carried out recently for SF, (Fox
et al. , 1976). Among other things these analyses show
that generally states with different N are mixed only
slightly. Apparently then the weakly -coupled states are
a better starting point for spherical top vector (l =1) vi-
bration analysis than BOA-constricted ones.

It may be that the l = 2, 3, . . . rotonic or rovibronic

([E'J']"
I
[V "i(vib) x V 2(rot)]

I
[IJ]„"&

= C

([E'J'] N'll». &.» I
[z J]N&.

(5.3a)

The reduced matrix element is obtained by applying
Racah algebra to the internally coupled states

lines of CH, will be analyzed better starting from the
BOA-constricted bases. (We are assuming that such
lines can be resolved somehow. ) For now we shall re-
strict our attention to the weakly coupled bases only.

One advantage of the weakly coupled bases is that the
powerful Wigner —Hacah algebra (Fano and Bacah, 1959)
can be used to express the matrix elements in terms of
angular momentum 3nj coefficients or B, Racah coef-
ficients. Formulas and tables exist for these coefficients
and so they are easier to evaluate than the corresponding
point symmetry Racah coefficients which turned up in the
BOA basis calculations. Another advantage is that one
may use either of two forms

I
[LN] J& (Eq. 5.1) or [EJ]N&

(Eq. 5.2) for the base states. The first is more conven-
ient for treating lab-defined "external" operators, while
the second form is convenient for treating body-defined
"internal" oper ator s.

The analysis by Hecht (1960 a) of the internal vi-
bration-rotation operators uses the second form. From
the signer-Eckart theorem he obtains

k, k k

(5.3b)

Some examples of these operators will be discussed in Sec. III.V.C.
For external operators such as lab-fixed radiation fields, it is more convenient to use the states

I
[EN]J &

which are
coupled in terms of the external quantum numbers. Then standard Racah algebra gives the following matrix element:

&«'N']~'I [V "~(»b) "V"2(»t)]!
I
«N]'& = c",":&[I'N'] J'll [&A)'

ll [»]J&,

where

(5.4)

For an example of this fornlula consider the vibrational dipole tl'allsitlon operatol [v'(vib) && v'(rot)]"„='. acting between

vibrationaiiy unexcited states
I
[I ON] J =N&, and singly excited states 1[I 1N] J&. The 9-j coefficient in the

resulting reduced matrix element

1 0 1

&[»']J'1[1o]1
I
I»]J=N& = 3([N][J])" o N N &1 IV'(»b) llo&&N' IIV'(r«)IIN&
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. . FK2}R(l}R(0}P(l}P(2}..

Ng~ J

5l
2

FIG. 35. Bough sketch of (l =0—1)
rovibrational dipole transitions in
spheric al-top molecules. "Al-
lowed" transitions which do not
change rotor momentums are in-
dicated by slanted solid lines. The
"forbidden" tr ansitions starting
from &= 2 are indicated by slanted
dotted lines.

,—3
2C) I, 2—

I

,—2Il
0

0l I

can be evaluated immediately to give

1 0 1

0 N N = 5~ „,(NJ'1 f/3[N].

1 N'Z'
(5.5)

~here

1 if J'=N —1,N, or N+ 1
NJ'1 =

0 otherwise.

~

~

~

This gives the simplest spherical top dipole selection
rule: N remains unchanged while J may change by one
unit at the most. If N eigenstates are energy eigen
states, too, then spectral analysis is much simpler.

First to gain a rough picture of the spectra, we show
along the y-axis of Fig. 35 the weakly-coupled rovi-
brational levels. These are plotted using the diagonal
components of the first perturbation term H,' = 2B ( J ~ L—
in Hecht's Hamiltoniaq. These components are given by

BgJ L = —Bg—[J'(J'+ 1) —N'(¹+1) + l(l+ 1)]

2B g[¹+ 2] fo—r J= N'+ 1

2Bg for J=¹-
-2Bg[-N'+1] for J=N'-1,

(5.5)

where the vibrational momentum l is assumed to be unity
(/= 1) for the dipole-active fundamentals. The x axis of
Fig. 35 shows the pure rotational levels of the ground
state according to the symmetric top energy formula

E~ =BN(N+ 1).

The levels in the figure are drawn in units of B. We take
(= —0.1 which is more or less the value of the Coriolis
constant found in the experiments.

If we only consider those transitions for which the ro-
tor momentum X is conserved, we obtain a spectrum of
the simple form shown on the top of Fig. 35 which is
quite like that of the diatomic rotor (recall Fig. 30).
Apparently the transitions which change X are quite weak
in CH4, and have not been found in SF, .

Now an interesting part of the spectrum for either of
these rnolecules comes in the form of the fine structure
of each of the lines P(N), R(N) and even Q(N) which can
be resolved. We shall review the structure of the P(7)
lines of CH4 as an example in the following section.

B. Labeling fine structure of XY4 molecules

The internal symmetry of the CH4 rotor is known to be
tetrahedral (T~). The character table of T~ shown in Ta-
ble XIII is exactly the same as that of the cubic octahedral
group 0, since the last two classes I ~ B(—;00)I ~ R(—;—;—;)
of T„are just the same operators in 0 multiplied by in-
version I.

The correlation of T„ IR with 03 IR may be computed
using character theory. ' Table XIV gives the results for
J ~ 7. Let us first determine the pure rotational levels
with N= 7. The levels listed in Fig. 36 according to T„
bare rotor labels (B) are consistent with 7' entries in
Table XIV. However, the ordering and qualitative spacing
may be determined using the cubic "wheels" in Fig. 8 as
we will explain shortly. The thing to notice first is that
for each 7' level there is drawn a degenerate partner
with 7 . This is analogous to the NH, levels when the in-
version frequency goes to zero as shown on the left of
Fig. 32.
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TABLE XIII. T& characters and symmetry.

R(m 00) IR —00
Tc 7f 7l' Boson

(pal

Fermion

Ag

A2
E

&xL yL z& &g
(xyz) F2

1
1

—1
0
0

1
1
2

—1
—1

1
—1

0
1

—1

0
—1

1

(4)

(2H&)
bX1H1$
(3X&)

(2X&)
(3H1)
(&H&H&H1)

The IB B~ of an inversion partner for a given state B
will be that IB which gives the opposite sign for all op-
erations that contain the inversion I. (Remember that I
commutes with all rotations. ) Glancing at the T~ charac
ter table we see that the partner of an A, is an.4„ the
partner of an E, is an E„and the partner of an E is an-
other E.

If any single pair of H atoms in CH4 were to trade
places with some frequency vl then there would be a
splitting of these inversion partners by an energy pro-
portional to heal. Note however, that only one type of CH4
pair in Fig. 36 has both partners with non-zero sta-
tistical weight, namely the E pair. For CD4 the E, and
E, pair could show up, too, but if they did, E, would
"outweigh" E, by a factor of five.

The fact that "extra" lines have not shown up for the
lowest transitions of CH4 indicates that the operations in
T„with inversion attached do not happen very often to the
molecule. There have been some experimental results
which have been conjectured to be inversion doubling.
However, Hougen explained these without needing inver-
sion (Hougen, 1971).

Now it is interesting to compare the labeling of Fig. 36
with that of Hougen (1975). In the latter "nonfeasible" op-
erations which include inversion are treated differently
when applied to the bare rotor. The rotational part of the
operation is done, but the inversion is left undone. In
other words, T„operations become 0 operations as far
as thy rotor is concerned.

Furthermore, Hougen only considers the T„ IR that
correlate with J'. For J+= 7' there will be the following
T„ IR from Table X+7.

J =7- (T, +E+T,)+A, +(T,+T,)

If, =7-(1,) Z, =V-(8,)Cluster.

(5.8)

This is the olaserved ordering in CH4. The three-fold
axes of the tetrahedron are "hardest" so the (1,) cluster
is the highest in the CH4 vibrational ground states. (The

Conventiona I

Td 0
Labeling

Present Complete T Labeling

/

/

/

+ +'

7'

7 7

7

labeling of Fig. 36 and that of Hougen. They both give
exactly the same thing if the XY'4 structure does not "in-
vert.". For (7', B =A, ) and (V,B =A, ) read A, in Eq. (5.7)
with total weight of 5+ 0= 5 in CH4, and 0+ 15= 15 for
CD». For (7', B =E,) and (V, B =E,) read F, in Eq. (5.7)
with a total weight of 3+0= 3 for CH4, and 3+15=18 for
CD~. For (7', E) and (7,E) read E in Eq. (5.V) with a total
weight of 1+ 1=2 in CH4 and 6+6=12 in CD4.

One advantage of standard T„ labeling is that we can
use the cubic "wheel" in Fig. 8 immediately to order the
fine structure levels. This is because one is really la-
beling (0) operations. Looking up at d= 7 we have

7'-A2+ E+E~+E~+E2+E2. (5 7) 7
Hougen's assignment of CH4 statistical weights is 5 for
both A, and A„S for both E, and E„nda2 for E. (For
CD~: 15 for A», 18 for E», and 12 for E.)

Now we can see how to convert back and forth between

J =0+
1'
2'
3+
4t
5+

+

7'

1 ~ ~

~ ~ ~ 1
1 1
1 1
2 1
1 2
2 2

TABLE XIV. 03k T& correlation.

Ag A2 E I g

0 1 ~ ~ ~

~ ~ ~ ~ ~ ~

2 ~ ~ ~ ~ ' ~ ~

~ ~ E ]
4 1 o ~ ~

5 ~ ~ ~ ~ ~ ~

1 1
7 '' 1

] o ~ ~

~ ~ ~ 1
1 1
1 1
2 1
1 2
2 2

A2 A1 E +p +1

545 6 )50&2-I

2 4
CH4 0 2

—
I I

4
2 3
I 2.
0 I

2 3-4.5

23 =6

g-I

= I
i

'z
3'g

345
4 R, -

I

I

23
! 4 I -0
0

Statistical Weight Calculations

FIG. 36. Comparison of conventional CH4 labeling with present
labelirg. The latter shows clearly the "hidden" structure of
inversion doublets which has a structure very much like that
of NH3. For CH4, however, only the E levels are actually
double according to the statistical weight calculations.
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/

I

I

I

I

!

6

/
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+
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I

I

I

I
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l

I

I

I

I

+

/

7e I
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)/

/
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7@i
Il I/

lf If

I'l i~

II II

Il Ii
I I II 6
Il I

I)I +

)1

ll
'l

I

+
, ~6
I

l 6

K=7
C I utter

7 7 7 7

K= 7
C luster

It is probably possible to put the cluster selection rule
in a quantitative form now that analytic expressions for
clust:er eigenvalues and eigenvectors exist. Each cluster
is labeled by an internal angular momentum component
K= n. In this respect the labeling situation is like that of

H3 or C03 tr eate d in the pr eceding examp 1e. Ther e
each A. „A,„or E state was still made mostly from a
single K state of the fictitious symmetric top. However
the spherical top K states differ from those of the sym-
metric top. Spherical top K„may be defined with respect
to first one, then another symmetry axis. (The sym-
metric top IS is always the z component. ) It would be in-
teresting to predict the breaking of the cluster "selection
rules" in regions where threefold clusters are melting
into fourfold ones, or in transitions for which N changes.

Additional qualitative problems remain which might be
understood using simple physical and symmetry argu-
ments. One would hope that it would be possible to de-
rive the sign and order of magnitude of some of the Co-
riolis and centrifugal parameters outside of an exhaus-
tive numerical calculation. It is difficult to visualize why
( comes out small and negative in the CH~ analyses given
so far, and why the fine structure patterns invert in the
excited vibrational states.

7

PEG. 37. The P+{7) fine structure for CH4. The transitions
allowed by internal (I3—I3) and external (7 —6+) selection rules
are indicated by small circles. However, the open circles be-
long to very weak or unobserved lines. They represent transi-
tions between different clusters or axes of the rotor.

splitting of the ground levels is exaggerated in Fig. 37).
It has been stated that the main advantage of the older

labeling is that it gives less information, i.e. it ignores
inversions which do not happen. The problem is, how-
ever, that this "advantage" brings with it more work and
less elegance. It is better to use a well developed math-
ematics like 0, representation theory without adding art-
ificial constraints.

This is particularly clear when it comes to deriving
selection rules. Fig. 3V shows a nomogram of the
strongest P(7) lines of CH, for which N is conserved.
[These are called P'(7). The P'(7)(¹= 6) and P (7)(¹= 5)
lines may be treated similarly. ] Now, we have proved
that the B labels at the vertex or origin of the nomogram
must be strictly conserved. However, Hougen's rovi-
bronic labels are generally changed during optical tran-
sitions.

We consider the electric dipole transitions in Fig. 3V.
The dipole is labeled k'= 1 so the external selection
rules are V~=V'-J'~'=6', 7', or 8'. We dram only 7'
-6' transitions (P(7)) which conserve B. Comparison of
the possible lines mith experimental spectra shows that
there is an additional conservation or selection rule in
effect. This rule is approximate but nevertheless ex-
tremely important. It states that transitions between
different clusters like (8 =F„%~=&~=7'(1,))-(8 =F„N~
= 7'(3,), I = 1,JI'= 6 ) are forbidden or at least very weak.
The fine structure spectra that one observes finally in
CH4 and SF, ends up looking like the level diagram of the
ground state manifolds even for small J.

if+(n=fs, ,) = g c' "'Y„' (ey)u"„, ,(spy),

and be related to the BOA functions

(5.9)

BOA (n =K. ,) = Y,'(8@ )Q ~„,.„(aPy), (5.10)

by the relation derived in Sec. III-A

(5.11)

C. Further applications of cluster bases

Calculations of vibronic structure of spherical tops can
become laborious even for fundamental (I = 1) vibrations.
Since one is starting with a (6 4+3) && (68+3) Hamilton-
ian matrix the problem at higher and higher J gets worse
quickly. However, it is likely that most of the high J
spectral analysis can be done more easily using the
cluster bases introduced in Sec. II.2, 3, and 4. If so,
then the matrix that needs to be solved for (I = 1) is only
3 & 3. Furthermore, the results would be given analy-
tically and be understood physically.

Let us assume the extreme case of degenerate cluster
states, i.e. , let the sp itting or tunneling factors in Sec.
II.A. 3 vanish. Then states lf z ) or lN ~ ) are rotor
eigenstates. The rotor is stuck rotating, on one axis;
either a threefold or a fourfold axis, with high total mo-
mentum N and high axis component n=(K, or K~)=N, N 1, —
N —2, . . . One may forget the spherical or cubic sym-
metry of the rotor and assume it has cylindrical. or axial
symmetry due to the dominant centrifugal distortion.
Clearly, vibronic states of the "not-so-spherical-top"
assume the same form as those for the symmetric mole-
cule in Sec. III.A. 'The weakly coupled wave functions
mill have the form
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The tranformation for the / = 1 case is given by the following orthogonal matrix

(BOAiweak coupling) =

&II„.„I

&11&.- .) I

(
(Z+n)(Z+n+1)) '1'

2J(2 J+ 1)

(Z.n)(J -n))"
J(2J + 1)

(
(J —n)(Z —n+ 1))'1'

2 J(2J+1)

iN= J)

(
(Z —n)(Z+ n+ 1))

'*
2J(J+1)

[J (J + 1)]'

(Z+n)(J -n+1))"
2 J (J'+ 1)

iN= J +1)

(J —n)(J —n+ 1)
(2J+ 2)(2J+1)

(1+ n + 1)(Z —n + 1)
)

'1*
(J + 1)(2J + 1)

(
(J+n)(J +n+ 1)
(2 J'+ 2)(2J + 1)

(5.12)

(BOA
I
weak coupling) =
(J =30, n=3 1)

iN =31&

0 0 0

0 0 0

0 0 1

Note that as J and n become larger, the difference be-
tween BOA and weakly coupled states diminishes. For
example consider J=30. For n=31 there is no differ-
ence since only one state is possible

0

iN=30) IN =31)

0 0

(BOA Iweak coupling) (Z&~ » I

o —0.984 —.0.180
( J=30, n=30)

(Il&~, ) I

0 —0.180 —0.984

For n = 29 or less three states are present

For n = 30 there are two states but off-diagonal compon-
ents are small.

«&.~.) I

(BOA
I
weak coupling) =(Z
( J =30, n=29 )

&11&.--.) I

0.992 0.180 0.023

0.180 —0.951 —0.252

0.023 —0.2 52 0.967

he off-diagonal components increase as n decreases for
a given J.

The (/ = 1) vibrational problem in the degenerate clust-
er approximation reduces to finding for given J and n
what combinations of IN =J —1), IN = J), and IN =J+ 1),
or else Ill&~ »), IZ&~.»), and

I
II«. ») are eigenvectors of

the centrifugal-coriolis Hamiltonian. In this way we may
learn to what extent the vibration has "settled into" the in-
ternal rotation axis, i.e. , to what extent the BOA label A is
a good quantum number. It has been conventional to set
up the Hamiltonian in the weak coupling (good N) basis,
We shall briefly sketch the procedure given by Hecht
(1960) for obtaining the matrix elements needed here.

Hecht considers several cubically symmetric combin-
ations of tensors [V~&(vib) x V~2(rot)]~ of order 0 =4 or
less. The most important (k=4) operator for the vibra-
tionally excited state involves [V' x V']' and is roughly
equivalent to L,'- J„-'+ L„-'J',-+ I t-, J,'-. This is responsible for
most of the cluster splitting that is observed in the ex-
cited (/ = 1) states. Contributions from operators of the
form [P' x V'], i.e. , J~4+ J-+ J,'- are initially less import-
ant but grow more rapidly with increase of J.

The evaluation of these operators in the weak coupling
basis begins with Eq. 5.3 where the k =4 coupling coef-
ficients have been given already by Eqs. 2.48, 49, and

50. 'The reduced matrix elements are

&r «» Ii[~,~.]4 II[«»& =

k,

3([/][J][N])'~ / J
J

&/ III"1(»b) II/) « llv" (rot) IIJ) .

(5.13)

(Rotenberg e/ a/. , 1959) recursively. For example we
have

1 1 J
= [(2J + 3)(2J + 2)2J (2J —1)/24] '~ ' .

'The 9-j symbols can be reduced for most of the cases

'The reduced matrix factors can be evaluated further
using Racah algebra. For exainple, given that (J IIJ' IIJ)
= (j(j +1))'~' and assuming that V'(rot) = [J' x J']', V'(rot)
= [V'(rot) x J']', etc. we may use the formula
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to 6-j symbols and expressed as polynomials. For /=1,
k, =O, and k, =9 =4 the gj coefficient in Eq. 5.13 is

while l = 1, 0, = 2 = k» and 0 = 4 one has

Each of these 6-j coefficients is a different rational
root of polynomials in J [see for example Rotenberg
(1959, pp. 18—19) for different values of (N', 1V) =4 —1,

and J+ 1.]
For 3 && 3 Hamiltonian in the degenerate cluster basis

we need only the matrix elements

if we ignore mixing of different clusters, i.e. , different
n. In this case there is considerable cancellation be-
tween the (@=4) coupling coefficient and reduced matrix
elements, and so these Hamiltonian components are
much simpler than the factors that produce them. Ad-
ditional scalar terms evaluated by Hecht including the
term 2B(J ~ L w—hich gives the zeroth order diagonal va-
lues (recall Fig. 35) must be included in the Hamilton-
ian matrix.

Approximate Hamiltonians constructed according to the
degenerate cluster approximation are being tested for a
wide range of spherical tops and (8, n) cluster lines.
First the mathematical accuracy of the approximation
must be checked using results obtained by tour de force
diagonalization. 'The behavior of the spectrum as vari-
ous terms are increased or decreased must be under-
stood. We speculate that whenever an approximate mod-
el plot shows two clusters crossing, the true spectrum
will exhibit super level crossing" the shared (&) com-
ponents mix with each other. Several interesting effects
will probably be found when cluster bases are examined
in detail.

gl 9 17

(o) ~i z TEGRAL J I/2- INT
= 2n+ I/2 J= 2

general can be made which is based upon some old ideas
found by Hamilton (Harter and dos Santos, 1978).
One advantage of this approach is that integral spin and
half-integral spin representations are treated on a near-
ly equal footing. If anything, the mathematics of the lat-
ter actually becomes simpler than ordinary representa-
tion theory was before. %'e show some results of this
approach by giving in Fig. 38 the half-integral equival-
ents to the symmetry reduction wheels of Figs. 6 and8.

his type of wheel and the theory behind it will be use-
ful whenever a constricted rotor (C) label or vibronic
activity (A) label is to be related to a half-integral an-
gular momentum. It is hard to see exactly where this
will come up in the theory of symmetric polyatomic
molecules. It is possible that electron spin orbit in-
teraction may be strong in an odd electron radical
or ion, or in some disassociation process. Neverthe-
less, our procedures for separating the internal mole-
cular excitations into well defined (A), (B), and (C) parts
will be directly applicable whenever it becomes neces-
sary to relate any of them to any externally defined an-
gular momentum states.

Finally, we mention the interesting problem of what
happens to the "soul" (B, (u)) of a molecule when it
' dies" i.e., when it disassociates in some way. We
conjecture that it stays around l.ong enough to be useful
in predicting the distribution of "sub souls" amongst
any of the symmetric daughter molecules or radicals.
'The problem is quite analogous to that of fast disassoci-
ation, or more correctly, ionization of atoms in x-ray
photoelectron spectroscopy (XPS or ESCA). There, if
an atom is not given time to readjust from one electronic
tableau state to another, then the tableau algorithms can
be used directly to predict the distribution of states
amongst the stripped or ionized atoms. The tableau
label (u) describes the permutational symmetry of the
identical particle wavefunction of the rotor, and this will
be conserved as long as the spin rotation interaction is
small. Using tableau algorithms (Harter, 1973, Harter
and Patterson, 1976a and b), it is a, simple matter to
express n-particle tableau states in terms of (n —1)-

Vl. CONCLUSION AND POSSIBLE FUTURE
DEVE LOPMENTS

One logical extension of the theory given in the pre-
ceeding will be the development of a whole network of
transformations between all the various Hund's cases
and sub-cases for molecular electronic coupling. 'The
generalization of the Fano-Chang transformation which
we developed takes us from Hund's case (a.) to case (d),
if we choose to ignore electron spin.

Indeed, we have not said much about electron spin, or
about any half-integral representations of rotation or
their relation to molecular symmetry species. In the
past this topic has generally meant having to deal with
double group representations. This often meant double
trouble both for computing and for visualizing the physi-
cal problem.

However, a new approach to group representations in

(b)

HALF I

FIG. 38. Progressions of symmetry species in J-angular mo-
mentum levels. (Half-integral J). (a) cubic-octahedral symme-
try. {b) Hexagonal symmetry.
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Writing ~,"(l))g(N )) as ~, (l)(, (f{/)) and using Eq. (2.36b),
we find

Symrnetrized

5 particle

State

Symmetrize d Exit
2 particle + particle

States

b
I

~~ a
+— ai b~~

xb Lb 2 b
7

x]

particle tableau states as indicated in Fig. 39, for an
(n = 3) example.

For symmetric molecules we have indicated that the
tableau soul" label is much better than its atomic equi-
valent since nuclear spin-rotation interactions are much
smaller than the analogous atomic spin-orbit coupling.
In short, this label promises at least as many applica-
tions and developments as its religious namesake.

FIG. 39. Unitary tableau representation of fast-ionization or
dissociation. Unitary "destruction-creation" operator E b

—a„ab
converts an n-particle tableau state into a combination of
(n —1)-partic1e tableau states with the nth particle removed.
Combination coefficients give the relative amplitudes for the
states left behind.

(A4)

The scalar product on the right of Eq. (A3) can be anal-
yzed using group elements g of 8. Thus,

l N J = l N g~g J

= Q &"..*,(g)&', *,(g)&...(g)
a' b'c'

B (,((),(N), (N()

Since Eq. (A6) is independent of g, we may sum over all
group elements g and divide by the order of the group
'9.

N J =. — + i* grab. *b ge g

X, i, Ã, J . A5

Using the finite group factorization lemma (3.17), we
find
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(A6)

From Eqs. (A4) and (A6) it follows that

NJ
m'nM'

(. /2 c.;.'((f)A. (A/)a ii(z)c) (AV)[c]
where

APPENDIX A. IVIOLECULAR ISOSCALAR
FACTORS

Coupling the electron and rotor angular momentum
states, we find

(A8)

(A1)

We now use the crystal field transformation coefficients
to expand each angular momentum state as a linear c'om-
bination of internal finite symmetry states of group 9.
For example, we have

(A2)

where the parentage of the finite symmetry states are
noted in parentheses. From these two expressions we
find

= Q ( ) (J)) . (I{3(

is a molecular isoscalar factor which is independent of
indices a', b', and e'.

APPFNPIX B. RACAH COEFFICIENTS
FOR FINITE GROUPS

We shall couple the product states ~,")
i ~) i,.) of the

finite symmetry group 8 in two different ways. Coupling
the states i~) and i„) first, we find

(AD(C ')=g (:""'C"' ) ) ')
a' c'

Coupling the states i„) and i,.) first, we find

Q{D( ( ) Q {ACB( DC'C
) ) )ac

Cc
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The scalar product of the states in Eqs. (Bl) and (B2)
gives

Ql
(AD)C 'A(DC') )=Q C" C" 'C "C

acda'c'

Def. 1:

+ + 0 ~

where we assume a sign convention such that

gA DA' g DAA'
ada' daa'

Analyzing this scalar product, we find for elements
g of 8, that Def. 2:

8 B
=&BB &bb r

= ~s a~v. && I» (a4)

((&D)c a iA. (ac )a) =
A DA.
C' & C

(B6)

and using Eels. (B3) and (B4), we have the result given
in Sec. III.

thus (~
~
~) is independent of b.

Defining the Racah coefficient in terms of this scalar
product,

Def. 3:

a

C
== 0 if any two numbers in the column are equal,

or if any number is less than zero;

CACB/A C B C DAA /Dc C
acb a' c' b' daa' dc' c

acd
a' c'

A. D A'
~B' B~b'b 'c'ac Def 4:.

AppENDIX C. S„CHARACTER FORMULA

We give a, formula (Coleman, 1966) for S„characters
Here the S„ IR is labeled by a tableau symbol

[g, ' ' ' g~] wherein g~ means that row j has p& boxes.
The S„classes are labeled by the notation 1 2~3' n
wherein n, P, y, . . . are the number of permutation 1-
cycles, - 2-cycles, 3-cycles, . . . respectively. For ex-
ample, the permutation (1)(3)(2, 5)(4, '7, 6, 8) would be in
the class 1'2'3'4'5'6'7'8' of S,. 'The character thenis
given by the following formula and definitions. Note that the
formula starts with a column of number s that are the
hooklengths of the first column of the tableau. 'Then the
definitions are used to whittle it down to a sum of se-
quentially numbered columns which each contribute unity
according to Def. 2.

interchanging any two numbers gives a
change of sign.

I.56~ 13 j ,
57 1

X2qll~ 56 2 ll 56 2 ll
13;

1= 82
1 =1.

For example, here is the character of the [56, 13] IR of
class 2, 11,56 of S6~:

t gl ~ ~ ogP] ggfegg g
Ala'283 Y ~ ~ 1 2 3 ~ ~ ~

p~, +1

APP END I X D. THE O~ -S~ TABLEAU GOR R E LATI ON

To obtain the octahedral (0„)to permutations (S,) corre-
lation for the XY6 molecule we need only those S6 classes
which correspond to O„operations when the Y atoms are
numbered 1—6. The necessary S, characters are found
using the formula from Appendix C, and are recorded
in the upper part of Table XV. 'The well known O„char—
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TABLE XV. Characters of permutation group (S6) and octahedral (Oz) subgroup.

22 41 23 23 6f 21 2f4f 22

s)
5, 1)
4, 2}.
4, 1, 1)
3.3)
3, 2, 1}

(2, 2, 2}
3, 1, 1, 1)
2, 2, 1,1)
2, 1, 1, 1, 1}.
1, 1, 1, 1, 1, 1)

Apg

Tf g
+2 g
Af„
A~u

Eu
Tfu
+2Q

1 1 1
5 1
9 0 —1

10 1 0
5 2 —1

16 —2 0
5 2 1

10 1 0
9 0 1
5 —1
1 1 -1
1 1 1
1 1 -1
2 —1 0
3 0 1
3 0
1 1 1
1 1 -1
2 —1 0
3 0 1
3 0 -1
1 120' 90

Class Class

1
1
3

—2
—3

0

—3
1

—1
1

—1
0

—1
1
1

—1
0

—1

180'
Class

1
—1

3
—2
—3

0
3
2

—3
1

—1
1
1
2
3
3

—1
-1

—3
—3

1 1
—1 3

0 3
1 2
0 1
0 0
0 1

—1 —2
0 —3
1 —3

—1 —1
1 1
1 1

—1 2
0 —1
0 —1

—1 —1
—1 —1

1 -2
0 1
0 1

1 1
—1

1 1
0 —2

-1 1
0 0

—1 1
0 —2
1 1

—1 1
1 1
1 1

—1 —1
0 0
1 —1

—1 1
—1 -1

1 1
0 0

—1 1
1 —1

acters are given in the lower part of the same table.
Finally, standard character matching gives the desired
correlation table of Fig. 2V.

SYNOPSIS OF TERIVllNOLOGY

(A8C) Rules for labeling 8OA states

(A) Label internal (9) symmetry A of electronic, vi-
brational, or vibronic activity or excitation. %'hen relat-
ing BOA states to weakly coupled or scattering state of
momentum (I), the labels considered will be those 4
correlated with l: &' 4 9 = . .S A S . .

(B) Label internal (9) symmetry B of bare rotor.
There must be one or more Young tableau (g} labels
correlated with each IR(B) of 9 in order that it be used
(Section III.C, D) [Any (B.) without unique correlation is
excluded (Sec. II.C).] Nuclear spin '*statistical" weights
(Sec. III.D) and hyperfine states (Sec. III.E.2) are deter-
mined by spin tableau

(p.] for Bose nuclei.

g] for Fermi nuclei.

(C) Label internal (9) symmetry C of constricted rotor
by writing all IR contained in tensor product A B
=. . .SCS. . . Then the total rotational angular momen-
tum levels J~ belonging to each (ABC) triad are just
those correlated with C: 48=. . .SCS. . .
(A8C) Rules for multi pole (T"& (lab)) selection rules for
BOA states

(D) Determine internal (9) symmetry labels D corre-
lated with the multipolarity-parity P: ~a 4 9 =. . .SD
EB. . . Then transition [ABC,J~]-[A'B'O', 8'~ ] is allowed
if

(a) A' is contained in an A D product

(b) B'=B

(c) C' is contained in a O't3D product

(d) & is contained in a. &~a'L)~ product.

Bare rotor

A rotating configuration of (nuclear) points imagined to
be held in an equilibrium position for the molecule being
considered. In principle no electronic or vibronic states
or excitations are supposed to be present in a bare rotor
but in practice the bare rotor may usually be less than
totally bare. Generally one has a reasonable approxi-
mation of the bare rotor by simply removing the most
easily activated electrons or vibrations fr'om the mole-
cule being considered. The wave function of the bare
rotor is [Eq. (2.33)]

~";(A~x)= X,(„&) ~".(A~x)&tnq,

where the coefficients („g ) are determined by consid-
erations of internal 9 symmetry and the inertial and cen-
trifugal distortion Hamiltonian.

BOA Born-Oppenhei mer approxi mation

BQA constriction

Coupling process using a sum over internal angular
momentum or symmetry variables to make a state in
which the vibronic wave is attached to the rotor and
rides with it. Process is intended to produce Born-
Oppenheimer approximate states.

Clusters (of levels)

Degeneracy of near-degeneracy beyond that expected
by standard symmetry analysis (Secs. II.A).
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Constr/Icted rotor

A rotating configuration of points with (BOA) vibronic
excitations locked into the assumed symmetry of the
rotor so they ride around with it. The wave function of
the BOA molecular state is [Eq. (3.16b)]

(
J'

vibronie, &f&8y (BOA)AC

Z/2
= g C,~, '9", (vibronic)y~~c*(@8y),

Qy C

where the rotor part y~, has the same form of definition
as the ba, re rotor wave function.

Correlation (of symmetry representationsj

'The process by which IR+ of a group 9 are related
to those D of a subgroup K. Generally, an IR of 9 is a.

reducible representation (RR) of K, and each IR D~ is
repeated some number f~(= 0, 1, 2, . . . ) of times in the
RR& of 9

& ave = (D"eD"e. . . )e (D e. . . )

=f~D" +fsD'

f~ is the correlation frequency. fg fs . . . define the row
(a) of a Correlation Table. The columns of a correla-
tion table give the decomposition of induced representa-
tions

D" ~~=fa~ f~&' +. -.
according to the Frobenius Reciprocity 'Theorem.

Coupling or weak couphng

Standard coupling process using a sum over external
momentum variables to make a state of definite total
rotational momentum. (See also Sec. III-C.)

Induced representatfons O~ t g
Suppose a symmetry analysis problem in which the

base states O1), ~2) =R(2)
~
1), ~3) =R(3) ~1), . . .f are ob-

tained by select symmetry operators $1, R(2), R(3), . . . )
in 9 (viz. examples treated in Fig. 9). Suppose further
that the operations in a subgroup SC=(1, b, . . . j of 9 leave

~

1) unchanged except to multiply it by a constant, i.e. ,

h
~
I) = D"(h)

~
1)

where the constant D"(h) is an IR component of 3C. Sup-
pose further that all elements outside of do change

~

1). Then the basis $~1),
~
2), . . .) is a. basis of the in-

duced representation D 0 9 of 9.

Rov/ bron/~c species

Molecular states characterized by internal nuclear
spin-permutation symmetry properties. Here we use the
notation B (Bare rotor symmetry) and Young tableau
(ii) when applicable.

Rovi bron/ic nomogram

Graphical procedure for visualizing spectra given ini-
tial and final levels. Initial and final levels are plotted
on x and y axes, respectively. Allowed transitions are
located by dots at the right coordinates and lines of unit
slope through these coordinates represent spectra (see

Fig. 30). Different species or (B) states are kept separ-
ate (see Fig. 31).

Spherical top

Rotor with spherical symmetry.

SYmmetric top

Rotor with cylindrical symmetry.

Tableaus or Young tableaus

An array of n boxes in a pattern (ti)=(p., ti, . . . p.„)of r
rows with ti, (~ p.„,) boxes in the ith row. The Young
pattern is a powerful labeling device for permutation and
unitary r epres entations, and is rec ently been shown to
serve as a source of convenient digital algorithms (viz.
Fig. 28).
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