Relativity of lightwaves and Lorentz-Minkowski coordinates IV.
(Ch. 0-3 of Unit 8)

More connections to conventional approach to relativity and old-fashioned formulas
Catching up to light (Coyote finally triumphs! Rest-frame at last.)
The most old-fashioned form(ula) of all: Thales & Euclid means
Galileo wins one! (...in gauge space) That “old-time” relativity (Circa 600BCE- 1905CE)

“Bouncing-photons” in smoke & mirrors
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They both are area!)
Galilean velocity addition becomes rapidity addition

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
Catching up to light (Coyote finally triumphs! Rest-frame at last.)
The most old-fashioned form ula of all: Thales & Euclid means
Galileo wins one! (...in gauge space) That “old-time” relativity (Circa 600BCE- 1905CE)
Catching up to light (Coyote finally triumphs! Rest-frame at last.)
The most old-fashioned form ula of all: Thales & Euclid means Galileo wins one! (...in gauge space) That “old-time” relativity (Circa 600BCE-1905CE)
Suppose you see two counter-propagating laser beams $\omega_R \rightarrow$ going right and $\omega_L \leftarrow$ going left.

Catching up to light (Coyote finally triumphs! Rest-frame at last.)

$$(\omega_R \rightarrow, c k_R \rightarrow) \text{ meets } (\omega_L \leftarrow, -c k_L \leftarrow)$$

$$= (4, +4c) \quad \quad = (1, -1c)$$
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_{R\to}$ going right and $\omega_{L\leftarrow}$ going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency ω)?

\[
(\omega_{R\to}, \ c k_{R\to}) \text{ meets } (\omega_{L\leftarrow}, -c k_{L\leftarrow}) = (4, +4c) = (1, -1c)
\]
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega \rightarrow$ going right and $\omega \leftarrow$ going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency ω_A)?

Q2: What is that color (frequency ω_A)?

$$(\omega_{R\rightarrow}, c k_{R\rightarrow}) \text{ meets } (\omega_{L\leftarrow}, -c k_{L\leftarrow})$$

$$= (4, +4c) = (1, -1c)$$
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_{R\rightarrow}$ going right and $\omega_{L\leftarrow}$ going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency ω_A)?

Q2: What is that color (frequency ω_A)?

“Jeopardy” answers:

A1: How fast is the group velocity?
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams \(\omega_R \rightarrow \) going right and \(\omega_L \leftarrow \) going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency \(\omega_A \))?

Q2: What is that color (frequency \(\omega_A \))?

“Jeopardy” answers:

A1: How fast is the group velocity?

\[
\frac{V_{\text{group}}}{c} = \frac{\omega_{R \rightarrow} - \omega_{L \leftarrow}}{ck_{R \rightarrow} - ck_{L \leftarrow}} = \frac{\omega_{R \rightarrow} - \omega_{L \leftarrow}}{\omega_{R \rightarrow} + \omega_{L \leftarrow}} = \frac{4 - 1}{4 + 1} = \frac{3}{5}
\]
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams \(\omega_{R\rightarrow} \) going right and \(\omega_{L\leftarrow} \) going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency \(\omega_A \))?

Q2: What is that color (frequency \(\omega_A \))?

“Jeopardy” answers:

A1: How fast is the group velocity?

\[
V_{\text{group}} = \frac{\omega_{R\rightarrow} - \omega_{L\leftarrow}}{c k_{R\rightarrow} - c k_{L\leftarrow}} = \frac{\omega_{R\rightarrow} - \omega_{L\leftarrow}}{\omega_{R\rightarrow} + \omega_{L\leftarrow}} = \frac{4 - 1}{4 + 1} = \frac{3}{5}
\]

A2: What is the geometric mean of \(\omega_{R\rightarrow} \) and \(\omega_{L\leftarrow} \)?
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_R \rightarrow$ going right and $\omega_L \leftarrow$ going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency ω_A)?

Q2: What is that color (frequency ω_A)?

“Jeopardy” answers:

A1: How fast is the group velocity?

$$V_{\text{group}} = \frac{\omega_R \rightarrow - \omega_L \leftarrow}{ck_R \rightarrow - ck_L \leftarrow} = \frac{\omega_R \rightarrow - \omega_L \leftarrow}{\omega_R \rightarrow + \omega_L \leftarrow} = \frac{4 - 1}{4 + 1} = \frac{3}{5}$$

A2: What is the geometric mean of $\omega_R \rightarrow$ and $\omega_L \leftarrow$?

$$\omega_A = \sqrt{\omega_R \rightarrow \cdot \omega_L \leftarrow} = \sqrt{4 \cdot 1} = 2$$
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_R \rightarrow$ going right and $\omega_L \leftarrow$ going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency ω_A)?

Q2: What is that color (frequency ω_A)?

“Jeopardy” answers:

A_1: How fast is the group velocity?

$$V_{\text{group}} = \frac{\omega_{R\rightarrow} - \omega_{L\leftarrow}}{c} = \frac{\omega_{R\rightarrow} - \omega_{L\leftarrow}}{c k_{R\rightarrow} - c k_{L\leftarrow}} = \frac{\omega_{R\rightarrow} - \omega_{L\leftarrow}}{\omega_{R\rightarrow} + \omega_{L\leftarrow}} = \frac{4 - 1}{4 + 1} = \frac{3}{5}$$

A_2: What is the geometric mean of $\omega_{R\rightarrow}$ and $\omega_{L\leftarrow}$?

$$\omega_A = \sqrt{\omega_{R\rightarrow} \cdot \omega_{L\leftarrow}} = \sqrt{4 \cdot 1} = 2$$

If you accelerate to $V_{\text{group}} = \frac{3}{5} c$ then you see...

...a standing wave... (assuming equal amplitudes, coherence, etc.)
Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams \(\omega_R \rightarrow \) going right and \(\omega_L \leftarrow\) going left.

Q1: How fast do you go to “catch up” to see both as the same color (frequency \(\omega_A\))?

Q2: What is that color (frequency \(\omega_A\))?

“Jeopardy” answers:

A1: How fast is the group velocity?
\[
V_{\text{group}} = \frac{\omega_{R \rightarrow} - \omega_{L \leftarrow}}{c k_{R \rightarrow} - c k_{L \leftarrow}} = \frac{\omega_{R \rightarrow} - \omega_{L \leftarrow}}{\omega_{R \rightarrow} + \omega_{L \leftarrow}} = \frac{4 - 1}{4 + 1} = \frac{3}{5}
\]

A2: What is the geometric mean of \(\omega_R \rightarrow\) and \(\omega_L \leftarrow\)?
\[
\omega_A = \sqrt{\omega_{R \rightarrow} \cdot \omega_{L \leftarrow}} = \sqrt{4 \cdot 1} = 2
\]

If you accelerate to \(V_{\text{group}} = \frac{3}{5} c\) then you see...

...a standing wave...(assuming equal amplitudes, coherence, etc.)

\[(\omega_{A \rightarrow}, ck_{A \rightarrow})\] meets \[(\omega_{A \leftarrow}, -ck_{A \leftarrow})\]
\[
= (2, +2c) \quad \rightarrow \quad (2, -2c)
\]

\[
(\omega_{\text{phase}}, ck_{\text{phase}}) \quad \text{and} \quad (\omega_{\text{group}}, ck_{\text{group}})
\]
\[
= (2, 0c) \quad \text{and} \quad (0, 2c)
\]
Catching up to light (Coyote finally triumphs! Rest-frame at last.)
The most old-fashioned form ula of all: Thales & Euclid means
Galileo wins one! (...in gauge space) That “old-time” relativity (Circa 600 BCE- 1905 CE)
Euclid’s 3-means (300 BC)
Geometric “heart” of wave mechanics

Thales (580BC) rectangle-in-circle
Relates to wave interference by (Galilean) phasor angular velocity addition

geometric mean: $\frac{1/2}{1 \cdot 4} = 2$
difference mean: $\frac{1/2}{[4-1]} = \frac{3}{2}$
(HALF-DIFFERENCE)
arithmetic mean: $\frac{1/2}{[4+1]} = \frac{5}{2} = \frac{5}{2}$
(HALF-SUM)
frequency

Linear velocity $V_{\text{group}}/c = u/c$
is (HALF-DIFF./HALF-SUM) = $\frac{3}{5}$

Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Sites for animation:
http://www.uark.edu/ua/pirelli/php/means_1.php
http://www.uark.edu/ua/pirelli/php/half_sum_2.php
Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors. (c) Phasor-relative views

Galileo’s revenge!
Galileo wins one (in gauge space)
Now we use Galilean relativity to add angular velocity, that is frequency \(\omega_a \) and \(\omega_b \), in phasor or "gauge" space. No "c-limit" evident. (So far at 18-fig. precision.)

\[\sum \Psi_{A+B} = \Psi_A + \Psi_B \]

\[\sum \Psi_{A-B} = \Psi_A - \Psi_B \]
That “old-time” relativity *(Circa 600BCE- 1905CE)*

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition

Introducing the *Sin-Tan Rosetta Stone*” *(Thanks, Thales!)*

Introducing the *stellar aberration angle* σ vs. *rapidity* ρ

How Minkowski’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
The ship and lighthouse saga

Comparing Ship and Lighthouse views: Happening tables

<table>
<thead>
<tr>
<th>Happening 0: Ship passes Main Lighthouse.</th>
<th>Happening 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Happening 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) $x = 0$</td>
<td>$x = -1.00 , c$</td>
<td>$x = 0$</td>
</tr>
<tr>
<td>(Lighthouse time) $t = 0$</td>
<td>$t = 2.00$</td>
<td>$t = 2.00$</td>
</tr>
<tr>
<td>(Ship space) $x' = 0$</td>
<td>$x' = 0$</td>
<td>$x' = c \Delta$</td>
</tr>
<tr>
<td>(Ship time) $t' = 0$</td>
<td>$t' = 1.75$</td>
<td>$t' = 2\Delta = 2.30$</td>
</tr>
</tbody>
</table>

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.
The ship and lighthouse saga

Happening 0.5: Main Lite blinks first time.

| Lighthouse | x = 0 | t = 1.00 |
| Ship | x' = 0 | t' = ?? |

Ship v/c (rel. to lighthouse) = -0.50

Ship v/c (rel. to lighthouse) = -0.50

Comparing Ship and Lighthouse views: Happening tables

<table>
<thead>
<tr>
<th>Happening 0: Ship passes Main Lighthouse.</th>
<th>Happening 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Happening 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) x = 0</td>
<td>x = -1.00 c</td>
<td>x = 0</td>
</tr>
<tr>
<td>(Lighthouse time) t = 0</td>
<td>t = 2.00</td>
<td>t = 2.00</td>
</tr>
<tr>
<td>(Ship space) x' = 0</td>
<td>x' = 0</td>
<td>x' = c Δ</td>
</tr>
<tr>
<td>(Ship time) t' = 0</td>
<td>t' = 1.75</td>
<td>t' = 2Δ = 2.30</td>
</tr>
</tbody>
</table>

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
The ship and lighthouse saga

Happening 0.5:
Main Lite blinks first time.

<table>
<thead>
<tr>
<th>Lighthouse:</th>
<th>$x = 0$</th>
<th>$t = 1.00$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship:</td>
<td>$x' = 0$</td>
<td>$t' = \Delta = ????$</td>
</tr>
</tbody>
</table>

Ship Time $t' = \Delta = ???$

Lighthouse $t = 1.00$

Ship v/c (rel. to lighthouse) = -0.50

Ship Time $t' = \Delta = ???$

Comparing Ship and Lighthouse views: Happening tables

<table>
<thead>
<tr>
<th>Happening 0: Ship passes Main Lighthouse.</th>
<th>Happening 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Happening 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) $x = 0$</td>
<td>($Lighthouse$ space) $x = -1.00 ; c$</td>
<td>($x = 0$)</td>
</tr>
<tr>
<td>(Lighthouse time) $t = 0$</td>
<td>($Lighthouse$ time) $t = 2.00$</td>
<td>($t = 2.00$)</td>
</tr>
<tr>
<td>(Ship space) $x' = 0$</td>
<td>($Ship$ space) $x' = 0$</td>
<td>($x' = c ; \Delta$)</td>
</tr>
<tr>
<td>(Ship time) $t' = 0$</td>
<td>($Ship$ time) $t' = 1.75$</td>
<td>($t' = 2\Delta = 2.30$)</td>
</tr>
</tbody>
</table>

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Thursday, January 30, 2014
The ship and lighthouse saga

Happening 0.5:
Main Lite blinks first time.

<table>
<thead>
<tr>
<th>Lighthouse:</th>
<th>x = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighthouse:</td>
<td>t = 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ship:</th>
<th>x' = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship:</td>
<td>t' = Δ = ???</td>
</tr>
</tbody>
</table>

Comparing Ship and Lighthouse views: Happening tables

<table>
<thead>
<tr>
<th>Happening 0: Ship passes Main Lighthouse.</th>
<th>Happening 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Happening 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) x = 0</td>
<td>(Lighthouse space) x = - 1.00 c</td>
<td>(Ship space) x' = 0</td>
</tr>
<tr>
<td>(Lighthouse time) t = 0</td>
<td>(Lighthouse time) t = 2.00</td>
<td>(Ship time) t' = 0</td>
</tr>
<tr>
<td>(Ship space) x' = 0</td>
<td>(Ship space) x' = 0</td>
<td>(Ship time) t' = 1.75</td>
</tr>
<tr>
<td>(Ship time) t' = 0</td>
<td>(Ship time) t' = 0</td>
<td>(Ship time) t' = 2Δ = 2.30</td>
</tr>
</tbody>
</table>

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
The ship and lighthouse saga

Happening 0.5:
Main Lighthouse blinks first time.

| Lighthouse: x = 0 |
| Lighthouse: t = 1.00 |
| Ship: x' = 0 |
| Ship: t' = Δ = ?? |

Ship Time $t' = Δ = 1/\sqrt{1-v^2/c^2} = \cosh ρ$

$c^2Δ^2 = c^2 + v^2Δ^2$

$(c^2 - v^2)Δ^2 = c^2$

$Δ^2 = \frac{c^2}{(c^2 - v^2)} = \frac{1}{1 - v^2/c^2}$

Comparing Ship and Lighthouse views: Happening tables

<table>
<thead>
<tr>
<th>Happening 0: Ship passes Main Lighthouse.</th>
<th>Happening 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Happening 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) x = 0</td>
<td>x = - 1.00 c</td>
<td>x = 0</td>
</tr>
<tr>
<td>(Lighthouse time) t = 0</td>
<td>t = 2.00</td>
<td>t = 2.00</td>
</tr>
<tr>
<td>(Ship space) x' = 0</td>
<td>x' = 0</td>
<td>x' = c Δ</td>
</tr>
<tr>
<td>(Ship time) t' = 0</td>
<td>t' = 1.75</td>
<td>t' = 2Δ = 2.30</td>
</tr>
</tbody>
</table>

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
Comparing Ship and Lighthouse views: Happening tables

<table>
<thead>
<tr>
<th>Happening 0: Ship passes Main Lighthouse.</th>
<th>Happening 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Happening 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) $x = 0$</td>
<td>$x = -1.00c$</td>
<td>$x = 0$</td>
</tr>
<tr>
<td>(Lighthouse time) $t = 0$</td>
<td>$t = 2.00$</td>
<td>$t = 2.00$</td>
</tr>
<tr>
<td>(Ship space) $x' = 0$</td>
<td>$x' = 0$</td>
<td>$x' = c\Delta$</td>
</tr>
<tr>
<td>(Ship time) $t' = 0$</td>
<td>$t' = 1.75$</td>
<td>$t' = 2\Delta = 2.30$</td>
</tr>
</tbody>
</table>

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.
Happening 0:
Ship passes Main Lighthouse.
(Lighthouse space) \(x = 0 \)
(Lighthouse time) \(t = 0 \)
(Ship space) \(x' = 0 \)
(Ship time) \(t' = 0 \)

Happening 1: Ship gets hit by first blink from Main Lighthouse.

\[\frac{c}{\Delta} = \sqrt{\frac{c^2 + v^2 \Delta^2}{c^2}} \]

\[\Delta = \sqrt{\frac{c^2}{1-v^2/c^2}} = \cosh \rho = 1.15 \]

For \(u/c = 1/2 \)
\[\Delta = \sqrt{\frac{1}{1-1/4}} = \sqrt{3} = 1.15.. \]

Happening 2: Main Lighthouse blinks second time.

\[x = 0 \]
\[t = 2.00 \]
\[x' = 0 \]
\[t' = 1.75 \]
\[x' = c \Delta \]
\[t' = 2\Delta = 2.30 \]

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at \(t=2 \).
\[\text{Ship Time } t' = \Delta = 1/\sqrt{(1-v^2/c^2)} = \cosh \rho = 1.15 \]

For \(u/c = 1/2 \)
\[\Delta = 1/\sqrt{(1-1/4)} = 2/\sqrt{3} = 1.15 \ldots \]

Comparing Ship and Lighthouse views:

<table>
<thead>
<tr>
<th>Happening 0: Ship passes Main Lighthouse.</th>
<th>Happening 1: Ship gets hit by first blink from Main Lighthouse</th>
<th>Happening 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) (x = 0)</td>
<td>(Lighthouse space) (x = -vc/(c-v))</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(Lighthouse time) (t = 0)</td>
<td>(Lighthouse time) (t = c/(c-v))</td>
<td>(t = 2.00)</td>
</tr>
<tr>
<td>(Ship space) (x' = 0)</td>
<td>(Ship space) (x' = 0)</td>
<td>(x' = 2\Delta)</td>
</tr>
<tr>
<td>(Ship time) (t' = 0)</td>
<td>(Ship time) (t' = (v+c)\Delta/c)</td>
<td>(t' = 2\Delta)</td>
</tr>
</tbody>
</table>

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at \(t = 2 \). Lecture 24 ended here
That “old-time” relativity (Circa 600BCE- 1905CE)

("Bouncing-photons" in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
Light-conic-sections make invariants

Fig. 2.B.5 Space-Space-Time plot of world lines for Lighthouses. North Lighthouse blink waves trace light cones.
That “old-time” relativity (Circa 600BCE-1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(US surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 0$</td>
<td>$x = 0.5$</td>
<td>$x = 0$</td>
</tr>
<tr>
<td>$y = 0$</td>
<td>$y = 1.0$</td>
<td>$y = 1.0$</td>
</tr>
<tr>
<td>(French surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x' = 0$</td>
<td>$x' = 0$</td>
<td>$x' = -0.45$</td>
</tr>
<tr>
<td>$y' = 0$</td>
<td>$y' = 1.1$</td>
<td>$y' = 0.89$</td>
</tr>
</tbody>
</table>
A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.
Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(US surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 0$</td>
<td>$x = 0.5$</td>
<td>$x = 0$</td>
</tr>
<tr>
<td>$y = 0$</td>
<td>$y = 1.0$</td>
<td>$y = 1.0$</td>
</tr>
<tr>
<td>(2nd surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x' = 0$</td>
<td>$x' = 0$</td>
<td>$x' = -0.45$</td>
</tr>
<tr>
<td>$y' = 0$</td>
<td>$y' = 1.1$</td>
<td>$y' = 0.89$</td>
</tr>
</tbody>
</table>

$x = x' \cos \theta + y' \sin \theta$

$y = -x' \sin \theta + y' \cos \theta$

$\cos \theta = \frac{1}{\sqrt{1 + \frac{b^2}{c^2}}}$

$\sin \theta = \frac{b / c}{\sqrt{1 + \frac{b^2}{c^2}}}$

$x' = x \cos \theta - y \sin \theta = \frac{x}{\sqrt{1 + \frac{b^2}{c^2}}} + \frac{-(b / c)y}{\sqrt{1 + \frac{b^2}{c^2}}}$

$y' = x \sin \theta + y \cos \theta = \frac{(b / c)x}{\sqrt{1 + \frac{b^2}{c^2}}} + \frac{y}{\sqrt{1 + \frac{b^2}{c^2}}}$
A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Object 0:
Town Square.

Object 1:
Saloon.

Object 2:
Gun Shoppe.

(US surveyor)

\[
\begin{align*}
 x &= 0 \\
 y &= 0 \\
\end{align*}
\]

(2nd surveyor)

\[
\begin{align*}
 x' &= 0 \\
 y' &= 0 \\
\end{align*}
\]

\[
\begin{align*}
 x &= x' \cos \theta + y' \sin \theta \\
 y &= -x' \sin \theta + y' \cos \theta \\
\end{align*}
\]

\[
\begin{align*}
 \cos \theta &= \frac{1}{\sqrt{1 + \frac{b^2}{c^2}}} \\
 \sin \theta &= \frac{b / c}{\sqrt{1 + \frac{b^2}{c^2}}} \\
\end{align*}
\]

Reminder: Component-based derivation is clumsy!
A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!

Forget this!! It's too clumsy to generalize to 3D, 4D,...

Instead, use Dirac unit vectors $|x\rangle$, $|y\rangle$ and $|x'\rangle$, $|y'\rangle$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(US surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 0$</td>
<td>$x = 0.5$</td>
<td>$x = 0$</td>
</tr>
<tr>
<td>$y = 0$</td>
<td>$y = 1.0$</td>
<td>$y = 1.0$</td>
</tr>
<tr>
<td>(2nd surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x' = 0$</td>
<td>$x' = 0$</td>
<td>$x' = -0.45$</td>
</tr>
<tr>
<td>$y' = 0$</td>
<td>$y' = 1.1$</td>
<td>$y' = 0.89$</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\cos \theta &= \frac{1}{\sqrt{1 + \frac{b^2}{c^2}}} \\
\sin \theta &= \frac{b}{c} \frac{1}{\sqrt{1 + \frac{b^2}{c^2}}}
\end{align*}
\]
A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor’s data.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(US surveyor)</td>
<td>x = 0</td>
<td>y = 0</td>
</tr>
<tr>
<td>(2nd surveyor)</td>
<td>x' = 0</td>
<td>y' = 0</td>
</tr>
</tbody>
</table>

You may apply (Jacobian) transform matrix:

\[
\begin{pmatrix}
\langle x|x' \rangle & \langle x|y' \rangle \\
\langle y|x' \rangle & \langle y|y' \rangle
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\]

or the inverse (Kajobian) transformation:

\[
\begin{pmatrix}
\langle x'|x \rangle & \langle x'|y \rangle \\
\langle y'|x \rangle & \langle y'|y \rangle
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

to any vector \(V = |V \rangle = |x \rangle \langle x|V \rangle + |y \rangle \langle y|V \rangle \)

\[
=|x \rangle \langle x'|V \rangle + |y \rangle \langle y'|V \rangle
\]
A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Object 0: Town Square.
Object 1: Saloon.
Object 2: Gun Shoppe.

(US surveyor) \(x = 0 \) \(y = 0 \)
(2nd surveyor) \(x' = 0 \) \(y' = 0 \)

\[\begin{align*}
\text{(Jacobian) transformation \{V_x, V_y\} from \{V'_x, V'_y\}}: \\
V_x = \langle x | V \rangle = \langle x | 1 | V \rangle = \langle x | x' \rangle \langle x' | V \rangle + \langle x | y' \rangle \langle y' | V \rangle \\
V_y = \langle y | V \rangle = \langle y | 1 | V \rangle = \langle y | x' \rangle \langle x' | V \rangle + \langle y | y' \rangle \langle y' | V \rangle
\end{align*} \]

\[\begin{align*}
\begin{array}{c|c|c}
\text{(US surveyor)} & \text{Saloon.} & \text{Gun Shoppe.} \\
\hline
x & 0.5 & 0 \\
y & 1.0 & 1.0
\end{array}
\]

\[\begin{align*}
x' = x \cos \theta + y' \sin \theta \\
y = -x' \sin \theta + y' \cos \theta
\end{align*} \]

\[\begin{align*}
\cos \theta &= \frac{1}{\sqrt{1 + \frac{b^2}{c^2}}} \\
\sin \theta &= \frac{b}{c \sqrt{1 + \frac{b^2}{c^2}}}
\end{align*} \]

Instead, use Dirac unit vectors \(|x\rangle, |y\rangle\) and \(|x'\rangle, |y'\rangle\)

You may apply (Jacobian) transform matrix:
\[
\begin{pmatrix}
\langle x | x' \rangle & \langle x | y' \rangle \\
\langle y | x' \rangle & \langle y | y' \rangle
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\]
or the inverse (Kajobian) transformation:
\[
\begin{pmatrix}
\langle x | x' \rangle & \langle x | y' \rangle \\
\langle y | x' \rangle & \langle y | y' \rangle
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

to any vector \(V = |V\rangle = |x\rangle \langle x | V \rangle + |y\rangle \langle y | V \rangle \)
\[
= |x\rangle \langle x | V \rangle + |y\rangle \langle y | V \rangle
\]
A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.
Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!

Forget this!! It's too clumsy to generalize to 3D, 4D,...

Instead, use Dirac unit vectors $|x\rangle,|y\rangle$ and $|x'\rangle,|y'\rangle$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(US surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 0$</td>
<td>$y = 0$</td>
<td></td>
</tr>
<tr>
<td>(2nd surveyor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x' = 0$</td>
<td>$y' = 0$</td>
<td></td>
</tr>
<tr>
<td>$x = 0.5$</td>
<td>$y = 1.0$</td>
<td></td>
</tr>
<tr>
<td>$x' = 0$</td>
<td>$y' = 1.1$</td>
<td></td>
</tr>
</tbody>
</table>

(Jacobian) transformation $\{V_xV_y\}$ from $\{V'_xV'_y\}$:

In matrix form:

$$
\begin{pmatrix}
V_x \\
V_y
\end{pmatrix}
= \begin{pmatrix}
\langle x|x'\rangle & \langle x|y'\rangle \\
\langle y|x'\rangle & \langle y|y'\rangle
\end{pmatrix}
\begin{pmatrix}
V'_x \\
V'_y
\end{pmatrix}
$$

You may apply (Jacobian) transform matrix:

$$
\begin{pmatrix}
\langle x|x'\rangle & \langle x|y'\rangle \\
\langle y|x'\rangle & \langle y|y'\rangle
\end{pmatrix}
= \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
$$

or the inverse (Kajobian) transformation:

$$
\begin{pmatrix}
\langle x|x'\rangle & \langle x|y'\rangle \\
\langle y|x'\rangle & \langle y|y'\rangle
\end{pmatrix}
= \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
$$

to any vector $V = |V\rangle = |x\rangle\langle x|V\rangle + |y\rangle\langle y|V\rangle$

$$
= |x\rangle\langle x'|V\rangle + |y\rangle\langle y'|V\rangle
$$
PLEASE!

Do NOT ever write

this:

\[
e_x' = |x'\rangle = \cos \theta |x\rangle - \sin \theta |y\rangle
\]

\[
e_y' = |y'\rangle = \sin \theta |x\rangle + \cos \theta |y\rangle
\]

like this:

\[
\begin{pmatrix}
 e_x' \\
 e_y'
\end{pmatrix}
= \begin{pmatrix}
 |x'\rangle \\
 |y'\rangle
\end{pmatrix}
= \begin{pmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
 |x\rangle \\
 |y\rangle
\end{pmatrix}
\]
PLEASE!

Do NOT ever write this:

\[e_x = |x'\rangle = \cos\theta |x\rangle - \sin\theta |y\rangle \equiv R |x\rangle \]
\[e_y = |y'\rangle = \sin\theta |x\rangle + \cos\theta |y\rangle \equiv R |y\rangle \]

(This is a useful abstract definition.)

like this:

\[\begin{pmatrix} e_x \\ e_y \end{pmatrix} = \begin{pmatrix} |x'\rangle \\ |y'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |x\rangle \\ |y\rangle \end{pmatrix} \]

Here is a matrix representation of abstract definitions: \[|x'\rangle \equiv R |x\rangle, \quad |y'\rangle \equiv R |y\rangle \]

\[
\begin{pmatrix}
V_x \\
V_y
\end{pmatrix} =
\begin{pmatrix}
|\langle x' | x\rangle \rangle & |\langle x' | y\rangle \rangle \\
|\langle y' | x\rangle \rangle & |\langle y' | y\rangle \rangle
\end{pmatrix}
\begin{pmatrix}
V'_x \\
V'_y
\end{pmatrix} =
\begin{pmatrix}
|\langle x | R x\rangle \rangle & |\langle x | R y\rangle \rangle \\
|\langle y | R x\rangle \rangle & |\langle y | R y\rangle \rangle
\end{pmatrix}
\begin{pmatrix}
V_x \\
V_y
\end{pmatrix} =
\begin{pmatrix}
|\langle x' | R x\rangle \rangle & |\langle x' | R y\rangle \rangle \\
|\langle y' | R x\rangle \rangle & |\langle y' | R y\rangle \rangle
\end{pmatrix}
\begin{pmatrix}
V'_x \\
V'_y
\end{pmatrix}
\]
(a) Rotation Transformation and Invariants

\[x' = x \cos \theta - y \sin \theta = \frac{x}{\sqrt{1 + \frac{b^2}{c^2}}} - \frac{(b/c)y}{\sqrt{1 + \frac{b^2}{c^2}}} \]

\[y' = x \sin \theta + y \cos \theta = \frac{(b/c)x}{\sqrt{1 + \frac{b^2}{c^2}}} + \frac{y}{\sqrt{1 + \frac{b^2}{c^2}}} \]

(b) Lorentz Transformation and Invariants

\[x' = \frac{x}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{v}{c} \frac{ct}{\sqrt{1 - \frac{v^2}{c^2}}} = x \cosh \rho + y \sinh \rho \]

\[ct' = \frac{ct}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{v}{c} \frac{x}{\sqrt{1 - \frac{v^2}{c^2}}} = x \sinh \rho + y \cosh \rho \]
That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
The straight scoop on “angle” and “rapidity” (They both are area!)

\[
x = \cosh \theta \\
y = \sinh \theta \\
y/x = \tanh \theta = v/c
\]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line.

\[\text{Area} = \frac{1}{2} \text{base} \times \text{altitude} - \text{area under curve} = \frac{1}{2} xy - \int y \, dx\]

2005 Web version:
www.uark.edu/ua/pirelli/php/complex_phasors_1.php
The straight scoop on “angle” and “rapidity” (They both are area!)

\[
x = \cosh \theta \\
y = \sinh \theta \\
y/x = \tanh \theta = v/c
\]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line.

2005 Web version:
www.uark.edu/ua/pirelli/php/complex_phasors_1.php

2014...Web-app versions:
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html
The straight scoop on "angle" and "rapidity" (They both are area!)

\[x = \cosh \theta \]
\[y = \sinh \theta \]
\[\frac{y}{x} = \tanh \theta = \frac{v}{c} \]

\[A_{\text{area}} = 1 \cdot 1 - A_{\text{area}} - \int x \, dy \]

The "Area" being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line.

Circular Functions
- \(m_2(\sigma) = 0.8582 \)
- \(\text{Length}(\sigma) = 0.8582 \)
- \(\text{Area}(\sigma) = 0.8582 \)
- \(\sin(\sigma) = 0.7567 \)
- \(\tan(\sigma) = 1.1574 \)
- \(\sec(\sigma) = 1.5295 \)

Hyperbolic Functions
- \(q = 0.9884 \)
- \(\text{Area}(q) = 0.9884 \)
- \(\tanh(q) = 0.7567 \)
- \(\sinh(q) = 1.1574 \)
- \(\cosh(q) = 1.5295 \)
The straight scoop on “angle” and “rapidity” (They’re area!)

\[y/x = \tanh \theta = v/c \]

\[y = \sinh \rho \]

\[x = \cosh \rho \]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

Useful hyperbolic identities

\[\text{Area}_2 = \frac{1}{2} \text{base} \cdot \text{altitude} - \text{area under curve} = \frac{1}{2} xy - \int y \, dx \]

\[\frac{\text{Area}_2}{2} = \frac{1}{2} \sinh \rho \cosh \rho - \int \sinh \rho \, d(\cosh \rho) \]

\[\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} \left(e^{2\rho} + e^{-2\rho} - 2 \right) = \frac{\cosh 2\rho - 1}{2} \]

\[\sinh \rho \cosh \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right) \left(\frac{e^\rho + e^{-\rho}}{2} \right) = \frac{1}{4} \left(e^{2\rho} - e^{-2\rho} \right) = \frac{1}{2} \sinh 2\rho \]
The straight scoop on “angle” and “rapidity” (They’re area!)

\[y/x = \tanh \theta = \frac{v}{c} \]

\[y = \sinh \rho \]
\[x = \cosh \rho \]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

Useful hyperbolic identities

\[\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} (e^{2\rho} + e^{-2\rho} - 2) = \frac{\cosh 2\rho - 1}{2} \]

\[\sinh \theta \cosh \theta = \left(\frac{e^\theta - e^{-\theta}}{2} \right) \left(\frac{e^\theta + e^{-\theta}}{2} \right) = \frac{1}{4} (e^{2\theta} - e^{-2\theta}) = \frac{1}{2} \sinh 2\theta \]

\[\int \cosh a\rho \, d\rho = \frac{1}{a} \sinh a\rho \]
The straight scoop on “angle” and “rapidity” (They’re area!)

\[y/x = \tanh \theta = \frac{v}{c} \]

\[y = \sinh \rho \]
\[x = \cosh \rho \]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line.

Useful hyperbolic identities

\[\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} (e^{2\rho} + e^{-2\rho} - 2) = \cosh 2\rho - 1 \]

\[\sinh \rho \cosh \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right) \left(\frac{e^\rho + e^{-\rho}}{2} \right) = \frac{1}{4} (e^{2\rho} - e^{-2\rho}) = \frac{1}{2} \sinh 2\rho \]

\[\int \cosh a\theta \, d\theta = \frac{1}{a} \sinh a\theta \]

Amazing result: Area = \(\rho \) is rapidity
That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

Evenson axiom requires geometric Doppler transform: $$e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}}$$

Easy to combine frame velocities using rapidity addition: $$\rho_{u+v} = \rho_u + \rho_v$$
Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

Evenson axiom requires geometric Doppler transform:
\[e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}} \]

Easy to combine frame velocities using rapidity addition:
\[\rho_{u+v} = \rho_u + \rho_v \]

\[
\frac{u'}{c} = \tanh(\rho_u + \rho_v) = \frac{\tanh \rho_u + \tanh \rho_v}{1 + \tanh \rho_u \tanh \rho_v} = \frac{\frac{u}{c} + \frac{v}{c}}{1 + \frac{u}{c} \cdot \frac{v}{c}}
\]

or:
\[
\frac{u'}{c} = \frac{u + v}{1 + \frac{u \cdot v}{c^2}}
\]

\[\tanh(x + y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y} \]
Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

Evenson axiom requires geometric Doppler transform: \(e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}} \)

Easy to combine frame velocities using rapidity addition:

\[\frac{u'}{c} = \tanh(\rho_u + \rho_v) = \frac{\tanh \rho_u + \tanh \rho_v}{1 + \tanh \rho_u \tanh \rho_v} = \frac{u + v}{c + v} \]

or:

\[u' = \frac{u + v}{1 + \frac{u \cdot v}{c^2}} \]

No longer does \((1/2 + 1/2)c\) equal \((1)c\)...

Relativistic result is:

\[\frac{1}{2} + \frac{1}{2} c = \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{5} c = \frac{4}{5} c \]
Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

Evenson axiom requires geometric Doppler transform: $e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}}$

Easy to combine frame velocities using rapidity addition: $\rho_{u+v} = \rho_u + \rho_v$

\[
\frac{u'}{c} = \tanh(\rho_u + \rho_v) = \frac{\tanh \rho_u + \tanh \rho_v}{1 + \tanh \rho_u \tanh \rho_v} = \frac{u + v}{c} \cdot \frac{c}{c} = \frac{u}{1 + \frac{u \cdot v}{c^2}}
\]

or: $u' = \frac{u + v}{1 + \frac{u \cdot v}{c^2}}$

No longer does $(1/2 + 1/2)c$ equal $(1)c$…

Relativistic result is: $\frac{1 + 1}{2 + 2} c = \frac{1}{1 + \frac{1}{4}} c = \frac{1}{5} c = \frac{4}{5} c$

…but, $(1/2 + 1)c$ does equal $(1)c$… $\frac{1 + 1}{2 + 1} c = c$
That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
Introducing the “Sin-Tan Rosetta Stone”

(a) Circular Functions
(Plane geometry)

NOTE: Angle ϕ is now called stellar aberration angle σ

www.uark.edu/ua/pirelli/php/complex_phasors_1.php
Introducing the “Sin-Tan Rosetta Stone”

NOTE: Angle ϕ is now called stellar aberration angle σ

Fig. 5.4 in Unit 8

2005 Web version:
www.uark.edu/ua/pirelli/php/complex_phasors_1.php

2014...Web-app versions:
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html

Circular Functions
\[
\begin{align*}
\sin(\phi) &= 0.7567 \\
\cos(\phi) &= 0.6538 \\
\tan(\phi) &= 1.1574 \\
\cot(\phi) &= 0.8940 \\
\sec(\phi) &= 1.5955 \\
\csc(\phi) &= 1.2833 \\
\end{align*}
\]
That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They’re area!)
Galilean velocity addition becomes rapidity addition

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
Introducing the **stellar aberration angle** σ vs. **rapidity** ρ

Together, rapidity $\rho=\ln b$ and stellar aberration angle σ are parameters of relative velocity.

The rapidity $\rho=\ln b$ is based on longitudinal wave Doppler shift $b=e^\rho$ defined by $u/c=\tanh(\rho)$.

At low speed: $u/c\sim \rho$.

The stellar aberration angle σ is based on the transverse wave rotation $R=e^{i\sigma}$ defined by $u/c=\sin(\sigma)$.

At low speed: $u/c\sim \sigma$.

Fig. 5.6 Epstein’s cosmic speedometer with aberration angle σ and transverse Doppler shift $\cosh \upsilon$.

That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They’re area!)
Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
How Minkowski’s space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at \(t=2.00 \text{sec} \).

2005 Web versions:

www.uark.edu/ua/pirelli/php/lighthouse_scenarios.php
2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html
How Minkowski’s space-time graphs help visualize relativity (Here: \(r = \text{atanh}(1/2) = 0.549 \),

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at \(t = 2.00 \) sec.

...but, in Ship frame Happening 1 is at \(t' = 1.74 \) and Happening 2 is at \(t' = 2.30 \) sec.

Happening 1: Ship 1 is hit by Blink 1
Happening 2: Lighthouse emits Blink 2

Happening 2 won’t happen ‘til \(t = 2.00 \)

(Here: \(\rho = \text{Atanh}(1/2) = 0.55 \),
and: \(\sigma = \text{Asin}(1/2) = 0.52 \) or 30°)
How Minkowski’s space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at $t=2.00\text{sec}$.

...but, in Ship frame Happening 1 is at $t'=1.74$ and Happening 2 is at $t'=2.30\text{sec}$.

Happening 1: Ship 1 is hit by Blink 1
Happening 2: Lighthouse emits Blink 2

That is $t'=2.30\text{ ship time}$

(Here: $\rho=\text{Atanh}(1/2)=0.55$, and $\sigma=\text{Asin}(1/2)=0.52$ or 30°)
2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html
Ship time $t' = 2.313$

Ship $v/c (\text{Rel. to Lighthouse}) = 0.500$
Ship $v/c (\text{Rel. to Observer}) = 0.000$
Lighthouse $v/c (\text{Rel. to Observer}) = 0.500$

Ship Graph
Ref time $t = 2.31$ sec.
$v/c = -0.50$ litesec/sec.

2014... Web-app versions:

http://www.uark.edu/ua/modphys/Markup/RelativItWeb.html
That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They’re area!)
Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
Introducing the ‘‘Sin-Tan Rosetta Stone’’

NOTE: Angle ϕ is now called stellar aberration angle σ

Fig. 5.4 in Unit 8

(a) Circular Functions (plane geometry)

(b) Hyperbolic Functions (spacetime geometry)

Circular arc area
$\varphi = 0.8934 = \text{angle}$
$\sin \varphi = 0.7792$
$\cos \varphi = 0.6267$
$\tan \varphi = 1.2433$
$\csc \varphi = 1.2833$
$\sec \varphi = 1.5955$
$\cot \varphi = 0.8043$

Hyperbolic arc area
$\rho = 1.0434 = \text{rapidity}$
$\sinh \rho = 1.2433$
$\cosh \rho = 1.5955$
$\tanh \rho = 0.7792$
$\csch \rho = 0.8043$
$\sech \rho = 0.6267$
$\coth \rho = 1.2833$

2005 Web version:
https://www.uark.edu/ua/pirelli/php/hyper_constrct.php
Introducing the “Sin-Tan Rosetta Stone”

NOTE: Angle ϕ is now called stellar aberration angle σ.

(a) Circular Functions
(plane geometry)

ϕ
$cot \phi$
$csc \phi$
$\sin \phi$
$\cos \phi$
$\tan \phi$

Circular arc area
$\phi = 0.8934$ = angle
$\sin \phi = 0.7792$
$\cos \phi = 0.6267$
$\tan \phi = 1.2433$
$csc \phi = 1.2833$
$sec \phi = 1.5955$
$cot \phi = 0.8043$

(b) Hyperbolic Functions
(spacetime geometry)

ρ
$csc \rho$
$coth \rho$
$\sinh \rho$
$\cosh \rho$
$\tanh \rho$
$\coth \rho$

Hyperbolic arc area
$\rho = 1.0434$ = rapidity
$\sinh \rho = 1.2433$
$\cosh \rho = 1.5955$
$\tanh \rho = 0.7792$
$csc \rho = 0.8043$
$sech \rho = 0.6267$
$coth \rho = 1.2833$

2005 Web version:
https://www.uark.edu/ua/pirelli/php/hyper_constrct.php
Hyperbolic Functions

\(q = 1.1714 \)

Area(\(q \)) = 1.1714
\(\sinh(q) = 1.4582 \)
\(\cosh(q) = 1.7682 \)
\(\tanh(q) = 0.8247 \)
\(\csc(q) = 0.6858 \)
\(\sech(q) = 0.5656 \)
\(\coth(q) = 1.2125 \)

Circular Functions

m(\(\sigma \)) = 0.9697
\(\text{Length}(\sigma) = 0.9697 \)
\(\text{Area}(\sigma) = 0.9697 \)
\(\sin(\sigma) = 0.8247 \)
\(\cos(\sigma) = 0.5656 \)
\(\tan(\sigma) = 1.4582 \)
\(\csc(\sigma) = 1.2125 \)
\(\sec(\sigma) = 1.7682 \)
\(\cot(\sigma) = 0.6858 \)

2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html

Thursday, January 30, 2014
Laser frequency = $B = 2 = 600\text{THz}$
Doppler blue shift factor = $b = 2.005$
Doppler red shift factor = $r = 0.499$
$q = 0.696$

CW Light Axioms
All colors go c: $\omega/k = c$ or L& R on diagonals
Time Reversal $(r \leftrightarrow b)$: $r = 1/b$

2014...Web-app versions:
http://www.uark.edu/ua/modphys/markup/RelativityWeb.html
Light Axioms

All colors go: $\omega/k = c$ or L&R on diagonals

Time Reversal ($r \leftrightarrow b$): $r = 1/b$
Frequency = $B = 2 = 600 \text{ THz}$

Doppler blue shift factor = $b = 2.005$

Doppler red shift factor = $r = 0.499$

Light Axioms

All colors go $c: \omega/k = c$ or L&R on diagonals

Time Reversal ($r \leftrightarrow b$): $r = 1/b$
\[\frac{v}{c} = \beta = 0.600 \]
\[\text{Doppler blue shift factor} = b = 2.000 \]
\[\text{Doppler red shift factor} = r = 0.500 \]
\[\nu = 0.540 = 30.964^\circ \]
\[\eta = 0.693 \]
\[\sigma = 0.644 = 36.870^\circ \]
\[v/c = \beta = 0.600 \]
Doppler blue shift factor = \(b = 2.000 \)
Doppler red shift factor = \(r = 0.500 \)
\[\nu = 0.540 = 30.964^\circ \]
\[\eta = 0.693 \]
\[\sigma = 0.644 = 36.870^\circ \]
\[v/c = \beta = 0.600 \]

Doppler blue shift factor = \(b = 2.000 \)

Doppler red shift factor = \(r = 0.500 \)

\[\nu = 0.540 = 30.964^\circ \]

\[q = 0.693 \]

\[\sigma = 0.644 = 36.870^\circ \]
Energy (E)

- Coordinate angle $\theta = \arctan(u/c)$
- Stellar aberration angle $\sigma = \arcsin(u/c)$

Momentum $p = B \sinh(\varphi)$

Hamiltonian $H(p) = B \cosh(\varphi)$

Lagrangian $L(u) = B \text{sech}(\varphi)$

Group Velocity $u/c = B \tanh(\varphi)$

Phase Velocity $c/u = B \coth(\varphi)$

DeBroglie Wavelength $\lambda/c = B \text{csch}(\varphi)$

Shirt factor $b = 2.000$

Shirt factor $r = 0.500$

964°

870°