Relativity of 15" Quantization and electromagnetic fields
(Ch. 2-5 of CMwBang-Unit 8 Ch. 6 of QTforCA Unit 2 )

Ist Quantization: Quantizing phase variables w and k
Understanding how quantum transitions require “‘mixed-up "’ states
Closed cavity vs ring cavity
2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”)
Analogy with molecular Born-Oppenheimer-Approximate energy levels
Introducing coherent states (What lasers use)
Analogy with (w,k) wave packets
Wave coordinates need coherence
Relativistic effects on charge, current, and magnetic fields
Current density changes by Lorentz asynchrony
Magnetic B-field is relativistic sinhp 1% order-effect
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Ist Quantization: Quantizing phase variables w and k
Understanding how quantum transitions require “mixed-up "’ states

Closed cavity vs ring cavity
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www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if infegral numbers n of their “kinks™ fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) e N TN N\ N\
S — AN = VARV,
ome
NOT OK numbers: n=0.67 n=4
too fat! -
/l\.\ / ~ '
— ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn 't mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
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www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if infegral numbers n of their “kinks™ fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) e N TN N\ N\
S — — X =\ VARV
ome

NOT OK numbers: n=0.67 n=1.7 n=4

too fat! too thin! B

PR 5\ / —~
i 4
| N ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn 't mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
In fact its state can be a linear combination of any of the “OK” waves |E1>, |E>>, |E3>, |E4>, ...
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Ist Quantization: Quantizing phase variables w and k
* Understanding how quantum transitions require “mixed-up "’ states

Closed cavity vs ring cavity
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Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) ECOAN x A N\
"~ — = VARV,

Some
NOT OK numbers: n=0.67 n=1.7 n=4

too fat! too thin! B

PR RN / ~
I )/
| N ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn 't mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
In fact its state can be a linear combination of any of the “OK” waves |E1>, |E>>, |E3>, |E4>, ...

That s the only way you get any light in or out of the system to “see’ it.
Es>

E3>

frequency hwss= EsE>»
E>>
W\

frequency hwai= E»E; EA NN
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www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) ECOAN x A N\
"~ — = VARV,

Some
NOT OK numbers: n=0.67 n=1.7 n=4

too fat! too thin! B

PR RN / ~
I )/
| N ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn t mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
In fact its state can be a linear combination of any of the “OK” waves |E1>, |E>>, |E3>, |E4>, ...

That s the only way you get any light in or out of the system to “see’ it.
Es>

These eigenstates are the only

E3>A ways the system can “play dead” ...
frequency wse= (Es-E»)/h Er> V\/\/\/\ ... "“sleep with the fishes”...
frequency wa; = (Eo>-E1)/h 75
]> W
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Consider two lowest E-states by themselv
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Consider two lowest E-states by themselves in time
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Ist Quantization: Quantizing phase variables w and k
Understanding how quantum transitions require “mixed-up "’ states

Closed cavity vs ring cavity

Wednesday, March 12, 2014

14



www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if infegral numbers n of their “kinks™ fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) ECRN BN D/ SNVA
— — X =\ VAR,

Some
NOT OK numbers: n=0.67 n=4

too fat! -

/I\.\ / ~ '
— ...not tolerated !

NOTE: We’re using “false-color” here.

Rings tolerate a zero (kinkless) quantum wave but require *integral wave number.
OK ring quantum numbers: m=0 m==x1 m==£2

(+ integral number
of wavelengths) |

Bohr’s models of atomic spectra (1913-1923) are beginnings of quan_t;tm wave mechanics
built on Planck-Einstein (1900-1905) relation E=hv. DeBroglie relation p=h/A comes around /923.
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Consider two lowest E-states by themselves
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Consider two lowest E-states by themselves

Now combine (add) them and let time roll!

(| Ep) +e | Esp)) /ve

Oth Fourie
1st Fourie:

Oth Fourie
1st Fourne
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Consider two lowest E-states by themselves Now combine (add) them and let time roll!

(| Ep) +e | Esp)) /ve

Oth Fourie
1st Fourie:

Oth Fourie -
1st Fourne
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Consider two degenerate E-states by themselves
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Consider two degenerate E-states by themselves
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Consider more than two E-states combined...
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’ 2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”)
Analogy with molecular Born-Oppenheimer-Approximate energy levels
Introducing coherent states (What lasers use)
Analogy with (w,k) wave packets
Wave coordinates need coherence

Wednesday, March 12, 2014
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude (“photon” num@r)

These are the fu

m=1 m=2

N=0—1

3] levels

_point” or “vacti

ndamental

m=3 m—=4

Quantized Wavenumber (“kink” or momentum number)

Wednesday, March 12, 2014
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he

tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude (“photon” num@r)

N =1

red photon

N,=0

m=1

— ==

— |~

N =1
violgt photon
blue photon \ WO\“
0}
e g
i \NM Quantum field definitions have been called
B _ = a0 “2nd quantization” or “wave-waves”’
g I; een photon st Q)QC NOTE: We're using “false-color” here.
Ve W/ \
Q
Tnes -
N =0
_ 4
N, =0 |t — R
N =0 ] o vacuum” 1€V
, Y [— o or0-POIN
These are the fundamental zero-p
es
m=2 m=23 m=4

Quantized Wavenumber (“kink” or momentum number)
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude (“photon” num@r)

N =2

red photons

N =1

|
N

red photon

N,=0

m=1

— | ¢ 4
N,=2 = T f@\@* violet photon
green photons A\ oo
& N=1[ = "
wd 3 U
N blue photon \ WO\“
& A ..
‘W@ ,S-\mav Quantum field definitions have been called

N =] <>. &@a" o “2nd quantization” or “wave-waves”

’ jﬁcx NOTE: We're using “false-color” here.

m=2

These are the

>

3] levels

) €€ uum
it or vac

fi Jamental “zor0-pOint

un

m=3 m—=4

Quantized Wavenumber (“kink” or momentum number)
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical

| field amplitude. We

picture this below as N-photon wave states for each box-moc

e of m wave kinks.

£ $ \S N=1] o
;E, N=2 |~ = ,\@@\@ violgt photon
c A )
| green phOtonz © e \@\7@
c=) ’L‘(\d N3 )| S.\)“O“
° W
.g_ _ /~ N\ W blue photona\ L
8 N=3== R et
8| red photons (i\(\@@ ’3‘\)\“&0 Quantum field definitions have been called
2 | N o] [~ —= &@é" oY “2nd quantization” or “wave-waves”
g N ; =2 [N g;een D Toton \S}‘ Q)QCX NOTE: We're using “false-color” here.
o e
() 0\(@
N ¢
c _ 1 —
S| N=/ %; N,=0
d re d p hO Z_On SR e . levels
N =0 m:> 1 t” or “Vacuum
B 2 | “zero-pout
N =0 r—— fundamenta
These are the
m=1 m=2 m=3 m=4
Quantized Wavenumber (“kink” or momentum number)
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

I
W/

|
N
!
\

Quantized Amplitude (“photon” num@r)

red photon

N,=0

m=1

m=2
Quantized Wavenumber (“kink” or momentum number)

These are the

— "2 &@@\ vzo{gt photon
reen photons v ¢
A\ 3 !
N A\ K blue photon \ WO\V\S
(i\(\%@ JS-\)\\(\()v(m\Quantum field definitions have been called
N=] [ ~= <>. Wd of “2nd quantization” or “wave-waves”
’ jﬁcx NOTE: We're using “false-color” here.
green photon s\ ¢
¢
o O &
1\
% 1 N,=0 -
) levels

fundamentd

m=3 m—=4
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A Quantum numbers N of field or n, m,.. of modes are invariants and not changed by boosting velocity.

g
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N 270
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7 3 \\\\\\
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cp

1
N—

E=hN;v;

cp

n=4

N

Each mode fundamental frequency v, =nv, and its N-photon multiples belong to invariant hyperbolas.

/\

MVARY

E=hN,v,

AV

P

c-Momentum or hc-Wavenumber

Boosted observers see distorted frequencies and lengths, but
will agree on the numbers n and N of mode nodes and photons.

This 1s how light waves can “fake” some of the properties of
classical “things” such as invariance or object permanence.

It takes at least TWO CW’s to achieve such invariance. One CW
1s not enough and cannot have non-zero invariant N . Invariance
1s an interference effect that needs at least two-to-tango!

www.uark.edu/ua/pirelli/php/quantized_2.ph
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2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”)

’ Analogy with molecular Born-Oppenheimer-Approximate energy levels
Introducing coherent states (What lasers use)
Analogy with (w,k) wave packets
Wave coordinates need coherence
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A sketch of modern

axy;

molecular spectroscopy

?a}

From Fig.6.5.5.

Principles of Symmetry, Dynamics, and

"ROTATICN ION VIBRATION = ELECTRON MOTION Spectroscopy
~ W. G. Harter, Wiley Interscience, NY (1993)
&)
£ ﬂ/\ Spectral
edse NN N NI Quantities
The frequency hierarchy L |
10 cm™ ! 102 cm ! 103 em™’ 104 em=1 Frequency v
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. . , , i \ , 12¢-1
fine structure rotational spectra vibrational spectra e ic spectra THz 10 g
CF and SF, GHz 10%-
an
: V=9 MHz 10%s!
J- tunnelmg 3
%D \ YN AN — Typical kHz 10°s
= = =5\ —— ,  VISIBLE
= 2 v=71% 1= 00t Wavelength X
= — W E — |2 A2 106 m(l_ngl
£ Ammonia NH, g g g =2:10%em™  fm  10"m
Q inversion doublet = V=5 S = A=05um - pm 10712m
2 =61 5 < = =00nm - 109m
o e v=4 T | co,maser > —SOOOA 106
~ - m m
3 =1 B co, | 4 .S |INFRARED 2 Bam2aser B h
£ S MICROWAVEI \ 8 | v=30TH S or mm 10~m
v : S B(1/A)=0.2cm R v=2 19 A=10um 0 H-Lymano cm  102m
) Nuclear spin T B ; N [ S TRAVIOLET ;
= hyperfine splitting < A=5cm /i v=I |~ / 1/A=1000cm™! D) km 10°m
S e g V=60MHz = T/ E=0.124eV L Wavenumber
_> ;ial25nm er meter(m’!
/- et N - cm!t 102m!
— Y A N —~ _/
rovibrational spectra vibronic spectra Energy ehv
electonlolts
162 )
rovibronic spectra
30

Wednesday, March 12, 2014



a) CF, vibrational structure

Example of frequency

hierar Chy ' v, =908.5 cm™
v,=435.0cm™’
for 16pm spectra vi=631.2cm

of CF4

(Freon-14)
W.G Harter b) . rotational structure e e e e s R
Fig.32.7 4 ;
Springer Handbook of - P(30) R(20
Atomic, Molecular, & P@40) y P(20) ' R
Optical Physics '
Gordon Drake Editor

(2005)

v3=1283.0 cm™
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Units of frequency (Hz), wavelength (m), and energy (eV) jﬂ'i; §w
qé- § Frequency-Wavelength
CLASS FREQUENCY WAVELENGTH ENERGY Exa: 1018 8 o speedofligh
300 EHz | 1 pm 1.24 MgV Peta: 10" tore | [0 A=
Tera: 1012 (A —2.997.245810°m/s
30 EHZ 10 pm 124 keV Giga: 10° } AN
S ERZ 100 pm 12.4 keV Mega.: 106 10 —X-rays B ni;e?)lwncy Wavc;,\lingth
SOOI =Z 1.24 keV kilo: 103 1017 | 400 nm
30 PHz 10 nm 124 eV o
3PHz | 100nm | 12.4ev M 10 it o0
micro: 10
NIR 300 THz | 1 Um 2o cy nano: 10 107 543Thz jokey!| 543nm
MIR {0l Tl 10 ym 124 meV  pico: 1012 VBB e 1000 o ]
CIR 3 THz 100 um 12.4 meV femt(.):lz)(_)l-; 1014_| n | — 600 nm
300 GHz | 1 mm 1.24mev " e [T 10w
EI:”E 30 GHz 1cm 124 peV e 2 1= 100 220 700 nm
UHF 3 GHZ 1 dm 124 UeV 107 - 400Thz 750nm
VHF 300 MHz 1m 1.24 peV 1000 MHz — . ar IR _{1Orgg1um
HE 30 MHz 10 m 124 neV il . e 1o
ME 3 MHz 100 m 12.4 neV 500 MHz - 1010_ o
LE 300 kHz | 1 km 1.24 neV ] o — 10 cm
VLE 30 kHz 10 km 124 peV ] 1
VHF — Tm
V== 3 kHz 100 km 120 Al peV 7-13 108 _|Radio, TV
SLE 300 Hz 1 Mm 1.24 peV 100 mHz— Fu 10m
- 30 Hz 10 Mm 124 feV 1B 10— i
3 Hz 100 Mm | 12.4fev MKz ] o Y
F rom: Elecj[romagnetic Spectrum From: Electromagnetic Spectrum — 1000 m
Wikepedia Commons (2013) Wikepedia Commons (2013) Long-waves
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Simple
Molecular

Spectra
Models

fine structure

2-well tunneling

inversion doublet

CF,and SF,
J-tunneling

Ammonia NH3

0) rotational levels _

— S < :6
GIRE:
£~ =5
Nuclear spin
hyperfine splitting

JL
0Ov

(n

N=0

rotational spectra

Bohr mass-on-ring

+2

+1
m=0

0 vibrational quantum levels,

vibrational spectra

1D harmonic oscillator
n=10

n=9

electronic quantum levels

electronic spectra

Coulomb PE models
— -
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CF 4and SF,

J-tunneling

More
Advanced =3

Ammonia NH3

M O 1 e Cul ar inversion doubl\e\t \

0) rotational levels _

0 vibrational quantum levels,
electronic quantum levels

ol s
Spectra R v=3
> _
MOdels Nuclear spin i ? V=
hyperfine splitting < v=1[
(Use symmetry AN\ . ”
group theory) S =5 V
fine structure rotational spectra vibrational spectra e Ic spectra
2-well tunneling Bohr mass-on-a-ring 1D harmonic oscillator Coulomb PE models
y n=10 —
n=9 ‘L
“ = ——
2-state U(2)-spin 3D R(3)-rotor 2D harmonic oscillator U(m)*S, analysis of
and quasi-spin and D-function and U(2) 2" quantization multi-electron states
tunneling models lab-body wave
models 2D-
Rotational Energy Surface (RES)
analysis of rovibronic tensor spectra
\

Vv: —~——
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CF 4and SF,

J-tunneling

More
Advanced =3

Ammonia NH3

Molecular mesiopsagi

0) rotational levels _

0 vibrational quantum levels,
electronic quantum levels

(=) ‘ J=6 w
Spectra Iy A £ -
> —
MOdGlS Nuclear spin J=4 ? v=2
hyperfine splitting < v=]
(Involve symmetry S ”

algebraic analysis) \_— ) -~

fine structure rotational spectra vibrational spectra e Ic spectra
2-well tunneling Bohr mass-on-a-ring 1D harmonic oscillator Coulomb PE models
4 n=10 -
n=9 ‘L
n=38
< B

2-state U(2)-spin 3D R(3)-rotor 2D harmonic oscillator U(m)*S, analysis of
and quasi-spin and D-function and U(2) 2" quantization multi-electron states
tunneling models lab-body wave

models 2D-

(closely 'connected)

Rotational Energy Surface (RES)
analysis of rovibronic tensor spectra

\ N
T —
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Lecture 30 ended here

2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”)
Analogy with molecular Born-Oppenheimer-Approximate energy levels
* Introducing coherent states (What lasers use)
Analogy with (w,k) wave packets
Wave coordinates need coherence
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www.uark.edu/ua/pirelli/php/coherent_vs_photon_|.php

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets
We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that 1s more like a classical “thing” with more localization in space x and time ¢.

m=1)  PLUS - PLUS  n5) etc. EQUALS [P, frime t
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Lecture 30 ended here

2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”)
Analogy with molecular Born-Oppenheimer-Approximate energy levels

Introducing coherent states (What lasers use)

Analogy with (w,k) wave packets

Wave coordinates need coherence
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Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that 1s more like a classical “thing” with more localization in space x and time ¢.

m=1y  PLUS - PLUS  |n-3) etc. EQUALS |pm) p fTIMe !

Space X

Analogy:

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator
Amplitude Packet) that 1s more like a classical wave oscillation with more localization 1n field amplitude.

IN=0) PLUS IN=1) PLUS |N—2> etc. EQUALS |04P) ATime t i

e =2y b
:‘-‘BE‘I" M‘E‘" '_-‘EE-‘
‘-'ﬁ-. 1-poinguncertainty Ej %
= T+8- T8-
R 8- 18-
18- f==o 1
Bl - h _ - -
® lﬁj__ '-'%_. '.%_
R TR @
TE- TA: ) | 18
Zero-photon state [-photon state 2—p§0ton state Osczllatmg Amplitude Packet

(Vacuum state) (Fundamental) (1st overtone)

y
Field Amplitude E

Wednesday, March 12, 2014 39



www.uark.edu/ua/pirelli/php/coherent_vs_photon_|.php

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets
We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that 1s more like a classical “thing” with more localization in space x and time ¢.

m=1)  PLUS - PLUS  n5) etc. EQUALS [P, Time t

Space x
Analogy: -

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator
Amplitude Packet) that 1s more like a classical wave oscillation with more localization 1n field amplitude.

IN=0) PLUS IN=1) PLUS IN=2) etc EQUALS |OAP) ATime t
Qwunc!umy |

[-poinguncertainty

Zero-poi certainly -

- ]

@m&@m{émww

(hbbiRbbd A

N=0 * - G 1 G
Zero-photon state [-photon state 2—p50ton state OSCZZZatmg Amplitude Packet
>

(Vacuum state) (Fundamental) (1st overtone)

Field Amplitude E

Pure photon'states have localized (certain) Nbut  delocalized (uncertain) amplitude and phase. *

OAP states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

www.uark.edu/ua/pirelli/php/coherent_vs_photon_|.php
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Lecture 30 ended here

)y €«

2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”
Analogy with molecular Born-Oppenheimer-Approximate energy levels
Introducing coherent states (What lasers use)

Analogy with (w,k) wave packets

Wave coordinates need coherence
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www.uark.edu/ua/pirelli/php/coherent_vs_photon_2.php

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates
ATime t

Phtn numer N-state

S Total uncertainty of amplitude and phase makes the count pattern a wash.
i : To see grids some N-uncertainty is necessary!

s Space X
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www.uark.edu/ua/pirelli/php/coherent_vs_photon_2.php

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates
ATime t

Phtn numer N-state

S Total uncertainty of amplitude and phase makes the count pattern a wash.
i : To see grids some N-uncertainty is necessary!

s Space X

Coherent-a-states are defined by continuous amplitude-packet parameter o0 whose square 1s average
photon number N=|a|>. Coherent-states make better spacetime coordinates for larger N=|o/?.

Quantum field coherent O-states Classical limit

N=1010
AN=10 AN=10° AN=1(°
Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter AN~0~VN s0

a coherent state with N=|o*> =10° only has a 1-in-1000 uncertainty AN~0~NN=1000.
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Relativistic effects on charge, current, and Maxwell Fields

* Current density changes by Lorentz asynchrony
Magnetic B-field is relativistic sinhp [5! order-effect
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Relativistic effects on charge, current, and Maxwell Fields

Observer velocity
1s zero relative to
(+) line of charge

wire appears
neutral

(+) Charge fixed (-) Charge moving to right (Negative current density)
(+) Charge density 1s Equal to the (-) Charge density
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Relativistic effects on charge, current, and Maxwell Fields

Observer velocity
1s zero relative to
(+) line of charge

wire appears
neutral

(+) Charge fixed (-) Charge moving to right (Negative current density j(x.t))
(+) Charge density 1s Equal to the (-) Charge density (Zero p(x,t)=0)
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Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz

Asynchrony dueio off-diagonal (sinh p) (a 1¥-order effect)

( coshp (sinhp ) { 1 (vic ]
in Lorentztranform :| ~
sinhp  coshp %

/c 1

asynchrony
in PAST observer has

q[+]
“test-charge”

asynchrony
; i FUTYRE Observer velocit
+) is +v relative to

| (+)\ine of charge

(+) Charge fixed (-) Charge moving to right (Negative current densi¥ j(x.t))
(+) Charge density i1s Greater than (-) Charge density (Positive p(x,t)>0)
wire appears
postive (+)
(repulsive to
observer gp+))

47
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Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz
Asynchrony dueto off-diagonal (a 1™-order effect)

cosh 1 (vic
in Lorentztranform : ~
cosh vic 1

observer has

qi+]

asynchrony “test-charge”

" | R _ ODbserver velocit

Lo e asynchrony . relative to

"""" v \\"c of charg:

(+) Charge fixed (-) Charge moving to right (Regarive énprent denXh SRS

(+) Charge density is Greater than (-) Chargedensity * (Positive} p(x,t)> 7

yire appear
pOstive (+)
(repulsive to
observer gp+))
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Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz observer has
Asynchrony dueto off-diagonal (a 1™-order effect) ql+]
“test-charge”
cosh 1 (vic
in Lorentz tranform : ~

1

cosh v/c Observer velocity

1s -v relativeg to

asynchrony (+) line offcharge
in PAST =

2308,

asynchrony

in|FUTURE . _ - _4 wire appears

(attractive to
observer g[+])

(+) Charge fixed (-) Charge moving to right (Negative current density j(x.t))
(+) Charge density is Less than (-) Charge density (Negative p(x,1)<0)
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Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz observer has
Asynchrony dueto off-diagonal (a 1™-order effect) ql+]
“test-charge”
cosh 1 (vic
in Lorentz tranform : ~

vic 1

cosh Observer velocity
| is -v relativg to

(+) line offcharge

asynchrony
in PAST

asynchrony wire appears
in|FUTURE | , negative (-)

| T (attractive to
. observer g[+])
(+) Charge fixed (-) Charge n) Wit (Negative current density j(x,t))
(+) Charge density is Less thag{-) Charge density (Negative p(x,1)<0)
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Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
* Magnetic B-field is relativistic sinhp [5! order-effect
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Magnetic B-field is relativistic sinhp [ order-effect

p(=) _ (+) charge separation _ x(+)+x(-)

p(+) - (—) charge separation x(—)

(+) charge
separation

L T _
(-) ch |X(+)—y u/c | = ~ + 1= +
sep(;r:tri%)?l I =X(-) UV/CZI p(+)  x(=) c?
- |
vie p(=)|_ _uv
P =p()=p(1)| 1-5 === o)

Unit square: (u/c) /1 = x(+)/y
(v/c) /1 =y/x(-)
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p(—)  (+) charge separation  x(+)+ x(—)

p(+) (-) charge separation  x(-)

(+) charge
separation

(-) charge
separation

—v/ v/
y=X()|v/c

> >

Unit square: (u/c) /1 = x(+)/y
(v/ic) /1 = y/x(-)

| x(+)=y u/c | P _ x(+)+l—% 1
i=x<-) uv/c2j{ pi+)  x(=) &
v/cC

Using 4-vectors to EL Transform (charge-current)=(cp, J)
( cp’ ) ( coshp sinhp Y cp \

J sinhp coshp J

Jy Jy
N AN

Wednesday, March 12, 2014

53



Magnetic B-field is relativistic sinhp 15! order-effect

The electric force field E of a charged line varies inversely with radius. The Gauss formula for force in mks units :

2
F=qE:q|:41 2pi| , Where: 41 :9X109]Z'ml
ot "o out 147z 4=9-10°
1 2( wuv 2 qv p(+)u - ]q Ip c2=9-1(0-16
F=gF=qg| ———| — = —_2%10
! QLMO ’”( c? p(ﬂﬂ dme c” v g r 1/(4mepc?)=10"7
' [H<O 4F
S L
| >0 o+
+ g > [ see excess (+)
F (repels) " charge up there. Yuk!
' [5<0 &F
. < = A+
<

[ see excess (-) < :
charge up there. Yum! F (attracts)
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Magnetic B-field is relativistic sinhp 15! order-effect

The electric force field E of a charged line varies inversely with radius. The Gauss formula for force in mks units :

2
F:qE:q|:41 2/3} , where: 1 =9X109]\éml
o 7 o out. 1/dmey=9-10°
I 1 2—0.7()-16
F:qE:q L% _ﬂp(_*_) :_2qvp(+)u =—2><10_7 g p c*=9-10
me, r\ ¢ 4me,cr r 1/(4meoc?)=10"7
' Ip<0 AF
 T— .
| >0 o+
+ g > E_,;, [ see excess (+)
F (repels) charge up there. Yuk!
il
<€ (Suppose (+) carriers)
' Ip<0 F
: < +H++++++4+
[,<0

I see excess (-) <

charge up there. Yum!

d
T@F (attracts)

~ + + + + + + + +
<€ (Suppose (+) carriers)
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