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1 = (x1 - i p1)/√2 a2 = (x2 + i p2)/√2     a†

2 = (x2 - i p2)/√2   
Define a and a† operators 

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other. 
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†
2] = 0 = [ a2 , a†

1] 

Commutation relations within space-1 (x1) or space-2 (x2) space are those of a 1D-oscillator.
 [ a1, a†

1] = 1 ,   [ a2, a†
2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†
n] = ama†

n - a†
nam= δmn1      [ a†

m, a†
n] = a†

ma†
n - a†

na†
m= 0   

New symmetrized a†
man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

H = H11 a1
†a1 +1/ 2( ) +     H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            
H = H11 a1

†a1 +1/ 2( ) +     H12a1
†a2             = A a1

†a1 +1/ 2( ) + B − iC( )a1
†a2

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
Both are elementary "place-holders" for parameters Hmn or A, B±iC, and D.

m n → am
† an + anam

†( ) / 2 = am† an +δm,n1/ 2

x1 = (a†
1 + a1 )/√2       p1 = i (a†

1 - a1 )/√2 x2 = (a†
2 + a2 )/√2     p2 = i (a†

2 - a2 )/√2

H =
H11 H12
H21 H22

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

A B−iC
B+iC D

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Solve for xk and pk operators 

H =
H11 H12
H21 H22

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

A B−iC
B+iC D

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

The ABCD matrix from Class 4

https://hosted.uark.edu/~modphys/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-4-1.24.18.pdf#page=16


a1a1
† = 1

2 x1 + ip1( ) 1
2 x1 − ip1( ) = 1

2 x1
2 +p1

2 − i(x1p1 −p1x1 )( ) = 1
2 x1

2 +p1
2 + !21( )

a2a2
† = 1

2 x2 + ip2( ) 1
2 x2 − ip2( ) = 1

2 x2
2 +p2

2 − i(x2p2 −p2x2 )( ) = 1
2 x2

2 +p2
2 + !21( )

x1x2 = 1
2 a1

† +a1( ) 1
2 a2

† +a2( ) = 1
2 a1

†a2
† +a1

†a2 +a1a2
† +a1a2( )

p1p2 = i
2 a1

† −a1( ) i
2 a2

† −a2( ) = −1
2 a1

†a2
† −a1

†a2 −a1a2
† +a1a2( )

x1x2 +p1p2 = (a1
†a2 +a1a2

† )= (a1
†a2 +a2

†a1 )

x1p2 = 1
2 a1

† +a1( ) i
2 a2

† −a2( ) = i
2 a1

†a2
† −a1

†a2 +a1a2
† −a1a2( )

-x2p1= −1
2 a2

† +a2( ) i
2 a1

† −a1( ) = −i
2 a2

†a1
† +a2a1

† −a2
†a1 −a2a1( )

x1p2 −x2p1 = -ia1
†a2+ia1a2

† )= -ia1
†a2+ia2

†a1

New symmetrized a†
man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

H = H11 a1
†a1 +1/ 2( ) +     H12a1

†a2             = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
H =

H11 H12
H21 H22

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

A B−iC
B+iC D

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Operator arithmetic detailed:

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

Weird 2D HO Hamiltonian cooked up to match U(2) quantum H-equation with classical K-equation   

https://hosted.uark.edu/~modphys/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-4-1.24.18.pdf#page=10


           2D-Oscillator basic states and operations  
                 Commutation relations  
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry 
                       Anti-commutation relations 
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras 
                      Outer product arrays 
                      Entangled 2-particle states 
            Two-particle (or 2-dimensional) matrix operators 
                 U(2) Hamiltonian and irreducible representations 
                 2D-Oscillator states and related 3D angular momentum multiplets 
R(3) Angular momentum generators by U(2) analysis 
Angular momentum raise-n-lower operators s+ and s-  
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors  

Factoring 2D-HO Hamiltonian

Symmetry group G =U(2) representations, 2D HO Hamiltonian H=      aa†ab operators,  
2D HO wave eigenfunctions Ψn,m, and coherent [α] states 

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

!ωab

Mostly 
Notation 
and 
Bookkeeping :



Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry



Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

If a†
m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.



Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

If a†
m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†
m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.



Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

If a†
m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†
m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a†
m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.



           2D-Oscillator basic states and operations  
                 Commutation relations  
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry 
                       Anti-commutation relations 
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras 
                      Outer product arrays 
                      Entangled 2-particle states 
            Two-particle (or 2-dimensional) matrix operators 
                 U(2) Hamiltonian and irreducible representations 
                 2D-Oscillator states and related 3D angular momentum multiplets 
R(3) Angular momentum generators by U(2) analysis 
Angular momentum raise-n-lower operators s+ and s-  
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors  

Factoring 2D-HO Hamiltonian

Symmetry group G =U(2) representations, 2D HO Hamiltonian H=      aa†ab operators,  
2D HO wave eigenfunctions Ψn,m, and coherent [α] states 

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

!ωab

Mostly 
Notation 
and 
Bookkeeping :



Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

If a†
m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†
m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a†
m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

    {cm,cn}=cmcn+cncm=0             {cm,c†
n}=cmc†

n+c†
ncm=δmn1            {c†

m,c†
n}=c†

mc†
n+c†

nc†
m =0  



Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

If a†
m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†
m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a†
m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

    {cm,cn}=cmcn+cncm=0             {cm,c†
n}=cmc†

n+c†
ncm=δmn1            {c†

m,c†
n}=c†

mc†
n+c†

nc†
m =0  

Fermi c†
n has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.



Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

If a†
m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†
m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a†
m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

    {cm,cn}=cmcn+cncm=0             {cm,c†
n}=cmc†

n+c†
ncm=δmn1            {c†

m,c†
n}=c†

mc†
n+c†

nc†
m =0  

Fermi c†
n has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

c†
mc†

m |0〉 = - c†
mc†

m |0〉 = 0
Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0.



    {cm,cn}=cmcn+cncm=0             {cm,c†
n}=cmc†

n+c†
ncm=δmn1            {c†

m,c†
n}=c†

mc†
n+c†

nc†
m =0  

Fermi c†
n has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

c†
mc†

m |0〉 = - c†
mc†

m |0〉 = 0
Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0.

That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle. 

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta.  
(am, a†

n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

If a†
m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†
m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.

If a†
m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.



    {cm,cn}=cmcn+cncm=0             {cm,c†
n}=cmc†

n+c†
ncm=δmn1            {c†

m,c†
n}=c†

mc†
n+c†

nc†
m =0  

Fermi c†
n has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

c†
mc†

m |0〉 = - c†
mc†

m |0〉 = 0
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That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle. 

 c†
mcm |0〉 = 0  ,  c†

mcm |1〉 = |1〉 ,  c†
mcm |n〉 = 0  for: n>1 

Quantum numbers of n=0 and n=1 are the only allowed eigenvalues of the number operator c†
mcm.
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Must ask a perennial modern question: "How are these structures stored in a computer program?"  
The usual answer is in outer product or tensor arrays. Next pages show sketches of these objects.
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Mostly 
Notation 
and 
Bookkeeping :
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Start with an elementary ket basis for each dimension or particle type-1 and type-2.
Outer product arrays
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Start with an elementary ket basis for each dimension or particle type-1 and type-2.
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Kronecker  
outer (   ) product  
notation

⊗=

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0
0
1
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,



 

Type−1                                                         Type− 2                                           !

01 =

1
0
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , !        02 =

1
0
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , !

Start with an elementary ket basis for each dimension or particle type-1 and type-2.
Outer product arrays
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard 
∞-D analysis and finite computers
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Start with an elementary ket basis for each dimension or particle type-1 and type-2.
Outer product arrays
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard 
∞-D analysis and finite computers

Make adjustable-size finite phasor  
arrays for each particle/dimension.
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Convergence is achieved by orderly  
upgrades in the number of phasors to  
a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

Herein lies conflict between standard 
∞-D analysis and finite computers

Make adjustable-size finite phasor  
arrays for each particle/dimension.
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 , !        02 =

1
0
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , !

Start with an elementary ket basis for each dimension or particle type-1 and type-2.
Outer product arrays

 

01 02 =

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0
!
0
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0
!
0
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , " 11 02 =

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0
!
1
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , " 11 22 =

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0
!
0
0
1
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

 

Ψ1 Ψ2 =

0 Ψ1

1 Ψ1

2 Ψ1

!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0 Ψ2

1 Ψ2

2 Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 Ψ1 0 Ψ2

0 Ψ1 1 Ψ2

0 Ψ1 2 Ψ2

!
1 Ψ1 0 Ψ2

1 Ψ1 1 Ψ2

1 Ψ1 2 Ψ2

!
2 Ψ1 0 Ψ2

2 Ψ1 1 Ψ2

2 Ψ1 2 Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0102 Ψ1Ψ2

0112 Ψ1Ψ2

0122 Ψ1Ψ2

!
1102 Ψ1Ψ2

1112 Ψ1Ψ2

1122 Ψ1Ψ2

!
2102 Ψ1Ψ2

2112 Ψ1Ψ2

2122 Ψ1Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Least significant digit at (right) END

"Little-Endian" indexing  
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

Convergence is achieved by orderly  
upgrades in the number of phasors to  
a point where results do not change.

Herein lies conflict between standard 
∞-D analysis and finite computers

Make adjustable-size finite phasor  
arrays for each particle/dimension.



 

Type−1                                                         Type− 2                                           !

01 =

1
0
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , !        02 =

1
0
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , !

Start with an elementary ket basis for each dimension or particle type-1 and type-2.
Outer product arrays

 

01 02 =

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0
!
0
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0
!
0
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , " 11 02 =

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0
!
1
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , " 11 22 =

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0
!
0
0
1
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

 

Ψ1 Ψ2 =

0 Ψ1

1 Ψ1

2 Ψ1

!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0 Ψ2

1 Ψ2

2 Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 Ψ1 0 Ψ2

0 Ψ1 1 Ψ2

0 Ψ1 2 Ψ2

!
1 Ψ1 0 Ψ2

1 Ψ1 1 Ψ2

1 Ψ1 2 Ψ2

!
2 Ψ1 0 Ψ2

2 Ψ1 1 Ψ2

2 Ψ1 2 Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0102 Ψ1Ψ2

0112 Ψ1Ψ2

0122 Ψ1Ψ2

!
1102 Ψ1Ψ2

1112 Ψ1Ψ2

1122 Ψ1Ψ2

!
2102 Ψ1Ψ2

2112 Ψ1Ψ2

2122 Ψ1Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Least significant digit at (right) END

"Little-Endian" indexing  
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

or anti-lexicographic  
(00, 10, 20, ...01, 11, 21,..., 02, 12, 22, ..)  
array indexing
"Big-Endian" indexing  
(...00,10,20..01,11,21,31 ...
02,12,22,32...) Most significant digit at (right) END

Convergence is achieved by orderly  
upgrades in the number of phasors to  
a point where results do not change.

Herein lies conflict between standard 
∞-D analysis and finite computers

Make adjustable-size finite phasor  
arrays for each particle/dimension.



 

Type−1                                                         Type− 2                                           !

01 =

1
0
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , !        02 =

1
0
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1
"

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , !

Start with an elementary ket basis for each dimension or particle type-1 and type-2.
Outer product arrays

 

01 02 =

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0
!
0
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0
!
0
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , " 11 02 =

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0
!
1
0
0
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , " 11 22 =

0
1
0
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1
!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0
!
0
0
1
!
0
0
0
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

 

Ψ1 Ψ2 =

0 Ψ1

1 Ψ1

2 Ψ1

!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0 Ψ2

1 Ψ2

2 Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 Ψ1 0 Ψ2

0 Ψ1 1 Ψ2

0 Ψ1 2 Ψ2

!
1 Ψ1 0 Ψ2

1 Ψ1 1 Ψ2

1 Ψ1 2 Ψ2

!
2 Ψ1 0 Ψ2

2 Ψ1 1 Ψ2

2 Ψ1 2 Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0102 Ψ1Ψ2

0112 Ψ1Ψ2

0122 Ψ1Ψ2

!
1102 Ψ1Ψ2

1112 Ψ1Ψ2

1122 Ψ1Ψ2

!
2102 Ψ1Ψ2

2112 Ψ1Ψ2

2122 Ψ1Ψ2

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

 

Ψ =

0102 Ψ
0112 Ψ
0122 Ψ
!

1102 Ψ
1112 Ψ
1122 Ψ
!

2102 Ψ
2112 Ψ
2122 Ψ
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 =

Ψ00

Ψ01

Ψ02

!
Ψ10

Ψ11

Ψ12

!
Ψ20

Ψ21

Ψ22

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

shorthand  
big-bra-big-ket  
notation

Least significant digit  
at (right) END

"Little-Endian" indexing  
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

Convergence is achieved by orderly  
upgrades in the number of phasors to  
a point where results do not change.

Herein lies conflict between standard 
∞-D analysis and finite computers

Make adjustable-size finite phasor  
arrays for each particle/dimension.
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A general n-by-n matrix M operator is a combination of n2 terms:  
   
M = M j,k j k
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n
∑
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∑

ANALOGY:

...that might be diagonalized to a combination of n projectors:
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∑
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When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
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a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1
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Two-particle (or 2-dimensional) matrix operators

General definition of the 2D oscillator base state.

n1n2 =
a1
†( )n1 a2†( )n2
n1!n2!

0 0



When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

Two-particle (or 2-dimensional) matrix operators

General definition of the 2D oscillator base state.

n1n2 =
a1
†( )n1 a2†( )n2
n1!n2!

0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.
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⎜
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⎜
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⎟
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Rearrangement of rows and columns brings the matrix to a block-diagonal form.  

U(2)-2D-HO Hamiltonian and irreducible representations "Little-Endian" indexing  
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)

 

00 01 02 ! 10 11 12 ! 20 21 22 !

00 0 ! ⋅ ! !

01 D ! B + iC ⋅ ! !
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†a2 02 = 0+1 2 0+12−1 = 2 11

a1
†a2 n1n2 = n1+1 n2 n1+1n2−1

Example:

Rearrangement of rows and columns brings the matrix to a block-diagonal form.  
Base states |n1〉|n2〉 with the same total quantum number ν= n1 + n2 define each block.
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00 01 10 02 11 20 03 12 21 30 !

00 0

01 D B + iC

10 B − iC A

02 2D 2 B + iC( )
11 2 B − iC( ) A + D 2 B + iC( )
20 2 B − iC( ) 2A

03 3D 3 B + iC( )
12 3 B − iC( ) A + 2D 4 B + iC( )
21 4 B − iC( ) 2A + D 3 B + iC( )
30 3 B − iC( ) 3A
"

 H = A(1/ 2)+ D(1/ 2)+

Fundamental (ν=1)  
vibrational sub-space

Vacuum (ν=0) 

Overtone (ν=2)  
vibrational sub-space

Overtone  
(ν=3)  
vibrational  
sub-space

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2
A = A n1 +

1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )

Group reorganized 
"Little-Endian" indexing  
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)
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H υ=1
Fundamental =

n1,n2 1,0 0,1

1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates 
 The first step is to diagonalize the fundamental 2-by-2 matrix .

2D-Oscillator states and related 3D angular momentum multiplets

Group reorganized "Big-Endian" indexing  
(...00,10,20..01,11,21,31 ...02,12,22,32...)
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More important for the general solution, are the eigen-creation operators a†+ and a†- defined by
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11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +

"

 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

7
8 j=4

j=7/2

υ=0
1
2
3
4
5
6

ω Ω=ω

j=3

j=5/2

j=2

j=3/2

j=1

j=1/2

Ω=2ω/3Ω=ω/3

9
10 j=5

j=9/2

11
12 j=6

j=11/2

SU(2)

C2A,B,or C

j=3/2

j=1/2

j=2

j=1

j=0

m = +2
+1
0
-1
-2

m = +1
0
-1

m = 0

m = +3/2
+1/2
-1/2
-3/2

m = +1/2
-1/2

SU(2) Multiplets R(3) Multiplets

"spinor" "scalar"

"vector"

"tensor"

2D-Oscillator states and related 3D angular momentum multiplets Group reorganized 
"Little-Endian" indexing  
(...01,02,03..10,11,12,13 ...
20,21,22,23,...)



 

m
j = n1n2  

j = 0      0
0 = 00    "scalar"

j = 1
2

  
1/2
1/2 = 10 = ↑

-1/2
1/2 = 01 = ↓

 "spinor"

j = 1   

1
1 = 20

0
1 = 11

-1
1 = 02

 "3-vector"

j = 3
2

 

1/2
3/2 = 30

1/2
3/2 = 21

-1/2
3/2 = 12

-3/2
3/2 = 03

 "4-spinor"

j = 2 

2
2 = 40

1
2 = 31

0
2 = 22

-1
2 = 13

-2
2 = 04

  "tensor"

!

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

  
j=υ

2
= n1 + n2

2

m = n1 − n2

2

⎧

⎨
⎪⎪

⎩
⎪
⎪

       
n1 = j +m = 2υ +m
n2 = j −m = 2υ −m

1 2

1 1 1 2 2 2

1 1 1 1 1 2 1 2 2 2 2 2

1 1 1 1 1 1 1 2 1 1 2 2 1 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2

(vacuum)

1

(a) N-particle 2-level states
= |1 0〉 =a1† |0 0〉

= |0 0〉

2 = |0 1〉 =a2† |0 0〉

1 = |2 0〉 =a1†a1† |0 0〉1
2 = |1 1〉 =a1†a2† |0 0〉1

...or spin-1/2 states

N=1

N=2

N=3

N=4

MS=〈Jz〉
Spin z-component

+1/2 +3/2 +5/2
+1 +2

-1/2-3/2
-1

S=1/2

S=3/2

S=5/2

S=1

S=2

Total Spin S

1 = |↑〉 =| 〉
2 = |↓〉 =| 〉

j = 1/2
m=+1/2
j = 1/2
m=−1/2

n2n1

a1
†a2

a2
†a1 a2

a1a1
†

a2
†

Structure of U(2)
2D-Oscillator states and related 3D angular momentum multiplets
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                      Outer product arrays 
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                 U(2) Hamiltonian and irreducible representations 
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R(3) Angular momentum generators by U(2) analysis 
Angular momentum raise-n-lower operators s+ and s-  
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Factoring 2D-HO Hamiltonian

Symmetry group G =U(2) representations, 2D HO Hamiltonian H=      aa†ab operators,  
2D HO wave eigenfunctions Ψn,m, and coherent [α] states 

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

!ωab

Mostly 
Notation 
and 
Bookkeeping :



()00()10()20()30()40

()11()21()31()41
()22()32()42
()33()43 ()44

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Dimension of oscillator

N=1

N=2

N=3

N=4

N=5

N=6

N=7

N=8

υ=1
υ=2

υ=3
υ=4

υ=5
υ=6

υ=7

υ=0
Principal Quantum Number

(a) N-D Oscillator Degeneracy l of quamtum levelυ

υ

(b) Stacking numbers

triangular

numbers

tetrahedral

numbers

( )=N-1+υ
υ

N-1+υ
N-1( )(c) Binomial coefficients

(N-1+υ)!
(N-1)!υ!

=

3

6

10

4

10

Introducing U(N)
ND-Oscillator eigensolutions



(b) N-particle 3-level states ...or spin-1 states
1 = |1 0 0〉 =a1† |0 0 0〉
2 = |0 1 0〉 =a2† |0 0 0〉
3 = |0 0 1〉 =a3† |0 0 0〉

1 = |↑〉 =| 〉
2 = |↔〉 = | 〉

j = 1
m=+1
j = 1
m=0

3 = |↓〉 = | 〉j = 1
m=-1

(vacuum)
= |0 0 0〉

1 2

3

1 1 1 1 1 2 1 2 2 2 2 2

2 2 3

2 3 3

3 3 3

1 3 3

1 1 3 1 2 3

n2n1

n3

angular
momentum

z-component
M=n

1 -n
3

0

−1

−2

−3

−4

+1

+2

+3

+4

a2
†a1

a1
†a2

a2
†a3

a3
†a2a1

†a3

a3
†a1

Introducing U(3)
ND-Oscillator eigensolutions



Ψ x1, x2,t( ) = 1
2
ψ10 x1, x2( )e−iω10t +ψ01 x1, x2( )e−iω01t

2
e− x1

2+x2
2( ) = e

− x1
2+x2

2( )

2π
2x1e

−iω10t + 2x1e
−iω01t

2

                 = e
− x1

2+x2
2( )

π
x1

2 + x2
2 +2x1x2 cos ω10 −ω01( )t( ) = e

− x1
2+x2

2( )

π

x1 + x2
2

   for: t=0          

x1
2 + x2

2       for: t=τ beat / 4

x1 − x2
2

  for: t=τ beat / 2

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

    (21.1.30)
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Factoring 2D-HO Hamiltonian

Symmetry group G =U(2) representations, 2D HO Hamiltonian H=      aa†ab operators,  
2D HO wave eigenfunctions Ψn,m, and coherent [α] states 

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

!ωab

Mostly 
Notation 
and 
Bookkeeping :



R(3) Angular momentum generators by U(2) analysis
(υ=1) or (j=1/2) block H matrices of U(2) oscillator  
Use irreps of unit operator  S0 = 1 and spin operators { SX, SY, SZ }.    (also known as: { SB ,SC ,SA }) 

  

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
= A+D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 + 2B

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + 2C
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + A− D( )
1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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R(3) Angular momentum generators by U(2) analysis
(υ=1) or (j=1/2) block H matrices of U(2) oscillator  
Use irreps of unit operator  S0 = 1 and spin operators { SX, SY, SZ }.    (also known as: { SB ,SC ,SA }) 

  

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
= A+D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 + 2B

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + 2C
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + A− D( )
1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(υ=2) or (j=1) 3-by-3 block uses their vector irreps.

  

2A 2 B − iC( ) ⋅

2 B + iC( ) A+ D 2 B − iC( )
⋅ 2 B + iC( ) 2D

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= A+ D( )
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+ 2B

⋅ 2
2

⋅

2
2

⋅ 2
2

⋅ 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 2
2

⋅

i 2
2

⋅ −i 2
2

⋅ i 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
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R(3) Angular momentum generators by U(2) analysis
(υ=1) or (j=1/2) block H matrices of U(2) oscillator  
Use irreps of unit operator  S0 = 1 and spin operators { SX, SY, SZ }.    (also known as: { SB ,SC ,SA }) 

  

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
= A+D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 + 2B

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + 2C
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + A− D( )
1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(υ=2) or (j=1) 3-by-3 block uses their vector irreps.

  

2A 2 B − iC( ) ⋅

2 B + iC( ) A+ D 2 B − iC( )
⋅ 2 B + iC( ) 2D

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= A+ D( )
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+ 2B

⋅ 2
2

⋅

2
2

⋅ 2
2

⋅ 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 2
2

⋅

i 2
2

⋅ −i 2
2

⋅ i 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

3A 3 B − iC( )
3 B + iC( ) 2A+ D 4 B − iC( )

4 B + iC( ) A+ 2D 3 B − iC( )
3 B + iC( ) 3D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
3 A+ D( )

2

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 2B

⋅ 3
2

⋅ ⋅

3
2

⋅ 4
2

⋅

⋅ 4
2

⋅ 3
2

⋅ ⋅ 3
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 3
2

⋅ ⋅

i 3
2

⋅ −i 4
2

⋅

⋅ i 4
2

⋅ −i 3
2

⋅ ⋅ i 3
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )

3
2

⋅ ⋅ ⋅

⋅ 1
2

⋅ ⋅

⋅ ⋅ − 1
2

⋅

⋅ ⋅ ⋅ − 3
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

(υ=3) or (j=3/2) 4-by-4 block uses Dirac spinor irreps.
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R(3) Angular momentum generators by U(2) analysis
(υ=1) or (j=1/2) block H matrices of U(2) oscillator  
Use irreps of unit operator  S0 = 1 and spin operators { SX, SY, SZ }.    (also known as: { SB ,SC ,SA }) 

  

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
= A+D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 + 2B

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + 2C
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + A− D( )
1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(υ=2) or (j=1) 3-by-3 block uses their vector irreps.

  

2A 2 B − iC( ) ⋅

2 B + iC( ) A+ D 2 B − iC( )
⋅ 2 B + iC( ) 2D

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= A+ D( )
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+ 2B

⋅ 2
2

⋅

2
2

⋅ 2
2

⋅ 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 2
2

⋅

i 2
2

⋅ −i 2
2

⋅ i 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

3A 3 B − iC( )
3 B + iC( ) 2A+ D 4 B − iC( )

4 B + iC( ) A+ 2D 3 B − iC( )
3 B + iC( ) 3D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
3 A+ D( )

2

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 2B

⋅ 3
2

⋅ ⋅

3
2

⋅ 4
2

⋅

⋅ 4
2

⋅ 3
2

⋅ ⋅ 3
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 3
2

⋅ ⋅

i 3
2

⋅ −i 4
2

⋅

⋅ i 4
2

⋅ −i 3
2

⋅ ⋅ i 3
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )

3
2

⋅ ⋅ ⋅

⋅ 1
2

⋅ ⋅

⋅ ⋅ − 1
2

⋅

⋅ ⋅ ⋅ − 3
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

(υ=3) or (j=3/2) 4-by-4 block uses Dirac spinor irreps.

  
H j−block

= 2 jΩ0 1
j
+               ΩX SX

j
                   +ΩY SY

j
                       +ΩZ SZ

j

(υ=2j) or (2j+1)-by-(2j+1) block uses D(j)(sµ) irreps of U(2) or R(3).
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R(3) Angular momentum generators by U(2) analysis
(υ=1) or (j=1/2) block H matrices of U(2) oscillator  
Use irreps of unit operator  S0 = 1 and spin operators { SX, SY, SZ }.    (also known as: { SB ,SC ,SA }) 

  

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
= A+D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 + 2B

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + 2C
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + A− D( )
1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(υ=2) or (j=1) 3-by-3 block uses their vector irreps.

  

2A 2 B − iC( ) ⋅

2 B + iC( ) A+ D 2 B − iC( )
⋅ 2 B + iC( ) 2D

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= A+ D( )
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+ 2B

⋅ 2
2

⋅

2
2

⋅ 2
2

⋅ 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 2
2

⋅

i 2
2

⋅ −i 2
2

⋅ i 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

3A 3 B − iC( )
3 B + iC( ) 2A+ D 4 B − iC( )

4 B + iC( ) A+ 2D 3 B − iC( )
3 B + iC( ) 3D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
3 A+ D( )

2

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 2B

⋅ 3
2

⋅ ⋅

3
2

⋅ 4
2

⋅

⋅ 4
2

⋅ 3
2

⋅ ⋅ 3
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 3
2

⋅ ⋅

i 3
2

⋅ −i 4
2

⋅

⋅ i 4
2

⋅ −i 3
2

⋅ ⋅ i 3
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )

3
2

⋅ ⋅ ⋅

⋅ 1
2

⋅ ⋅

⋅ ⋅ − 1
2

⋅

⋅ ⋅ ⋅ − 3
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

(υ=3) or (j=3/2) 4-by-4 block uses Dirac spinor irreps.

  
H j−block

= 2 jΩ0 1
j
+               ΩX SX

j
                   +ΩY SY

j
                       +ΩZ SZ

j

(υ=2j) or (2j+1)-by-(2j+1) block uses D(j)(sµ) irreps of U(2) or R(3).

  
H j−block

= 2 jΩ0 1
j
+ ΩX − iΩY( ) SX + iSY

j
+ ΩX + iΩY( ) SX − iSY

j⎡
⎣⎢

⎤
⎦⎥

/ 2+ΩZ SZ
j

All j-block matrix operators factor into raise-n-lower operators s± = sX ±isY plus the diagonal sZ 
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           2D-Oscillator basic states and operations  
                 Commutation relations  
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry 
                       Anti-commutation relations 
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras 
                      Outer product arrays 
                      Entangled 2-particle states 
            Two-particle (or 2-dimensional) matrix operators 
                 U(2) Hamiltonian and irreducible representations 
                 2D-Oscillator states            related 3D angular momentum multiplets 
R(3) Angular momentum generators by U(2) analysis 
Angular momentum raise-n-lower operators s+ and s-  
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors  

Factoring 2D-HO Hamiltonian

Symmetry group G =U(2) representations, 2D HO Hamiltonian H=      aa†ab operators,  
2D HO wave eigenfunctions Ψn,m, and coherent [α] states 

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

!ωab

Mostly 
Notation 
and 
Bookkeeping :



Angular momentum raise-n-lower operators S+ and S- 

s+ = sX +isY        and        s- = sX -isY = s+† 

s+

1
2 = D

1
2 s+( ) = D

1
2 SX + iSY( ) =

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + i
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 Starting with j=1/2  we see that S+ is an elementary projection operator e12 = |1〉〈2| = P12 

= P12

Such operators can be upgraded to creation-destruction operator combinations a†a

s+ = a1
†a2 = a↑

†a↓   ,            s− = a1
†a2( )†

= a2
†a1 = a↓

†a↑

Class.8 p82-85 (this class)



Angular momentum raise-n-lower operators S+ and S- 

s+ = sX +isY        and        s- = sX -isY = s+† 

s+

1
2 = D

1
2 s+( ) = D

1
2 SX + iSY( ) =

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + i
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 Starting with j=1/2  we see that S+ is an elementary projection operator e12 = |1〉〈2| = P12 

= P12

Such operators can be upgraded to creation-destruction operator combinations a†a

s+ = a1
†a2 = a↑

†a↓   ,            s− = a1
†a2( )†

= a2
†a1 = a↓

†a↑

sZ
1
2

⎛
⎝⎜

⎞
⎠⎟ = D

1
2

⎛
⎝⎜

⎞
⎠⎟ sZ( ) =

1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 Hamilton-Pauli-Jordan representation of sZ is:  

sZ= 2
1 a1

†a1 − a2
†a2( ) = 2

1 a↑
†a↑ − a↓

†a↓( )This suggests an a†a form for sZ. 
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Angular momentum raise-n-lower operators S+ and S- 

s+ = sX +isY        and        s- = sX -isY = s+† 

s+

1
2 = D

1
2 s+( ) = D

1
2 SX + iSY( ) =

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + i
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 Starting with j=1/2  we see that S+ is an elementary projection operator e12 = |1〉〈2| = P12 

= P12

Such operators can be upgraded to creation-destruction operator combinations a†a

s+ = a1
†a2 = a↑

†a↓   ,            s− = a1
†a2( )†

= a2
†a1 = a↓

†a↑

sZ
1
2

⎛
⎝⎜

⎞
⎠⎟ = D

1
2

⎛
⎝⎜

⎞
⎠⎟ sZ( ) =

1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 Hamilton-Pauli-Jordan representation of sZ is:  

sZ= 2
1 a1

†a1 − a2
†a2( ) = 2

1 a↑
†a↑ − a↓

†a↓( )This suggests an a†a form for sZ. 

1 = ↑ =
1/2
+1/2

=a1
† 0 =a↑

† 0

Let            create up-spin ↑          a1
†=a↑

†



Angular momentum raise-n-lower operators S+ and S- 

s+ = sX +isY        and        s- = sX -isY = s+† 

s+

1
2 = D

1
2 s+( ) = D

1
2 SX + iSY( ) =

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + i
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 Starting with j=1/2  we see that S+ is an elementary projection operator e12 = |1〉〈2| = P12 

= P12

Such operators can be upgraded to creation-destruction operator combinations a†a

s+ = a1
†a2 = a↑

†a↓   ,            s− = a1
†a2( )†

= a2
†a1 = a↓

†a↑

sZ
1
2

⎛
⎝⎜

⎞
⎠⎟ = D

1
2

⎛
⎝⎜

⎞
⎠⎟ sZ( ) =

1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 Hamilton-Pauli-Jordan representation of sZ is:  

sZ= 2
1 a1

†a1 − a2
†a2( ) = 2

1 a↑
†a↑ − a↓

†a↓( )This suggests an a†a form for sZ. 

1 = ↑ =
1/2
+1/2

=a1
† 0 =a↑

† 0

Let            create up-spin ↑          a1
†=a↑

†

2 = ↓ =
1/2
-1/2

=a2
† 0 =a↓

† 0

Let            create dn-spin ↓ a2
† =a↓

†



Angular momentum raise-n-lower operators S+ and S- 

s+ = sX +isY        and        s- = sX -isY = s+† 

s+

1
2 = D

1
2 s+( ) = D

1
2 SX + iSY( ) =

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + i
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 Starting with j=1/2  we see that S+ is an elementary projection operator e12 = |1〉〈2| = P12 

= P12

Such operators can be upgraded to creation-destruction operator combinations a†a

s+ = a1
†a2 = a↑

†a↓   ,            s− = a1
†a2( )†

= a2
†a1 = a↓

†a↑

sZ
1
2

⎛
⎝⎜

⎞
⎠⎟ = D

1
2

⎛
⎝⎜

⎞
⎠⎟ sZ( ) =

1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 Hamilton-Pauli-Jordan representation of sZ is:  

sZ= 2
1 a1

†a1 − a2
†a2( ) = 2

1 a↑
†a↑ − a↓

†a↓( )This suggests an a†a form for sZ. 

1 = ↑ =
1/2
+1/2

=a1
† 0 =a↑

† 0

Let            create up-spin ↑          a1
†=a↑

†

2 = ↓ =
1/2
-1/2

=a2
† 0 =a↓

† 0

Let            create dn-spin ↓ a2
† =a↓

†

                     destroys dn-spin ↓  
                       creates up-spin ↑  
to raise angular momentum by one ! unit
a↑

†a↓ ↓ = ↑    or:  a1
†a2 2 = 1



Angular momentum raise-n-lower operators S+ and S- 

s+ = sX +isY        and        s- = sX -isY = s+† 

s+

1
2 = D

1
2 s+( ) = D

1
2 SX + iSY( ) =

0 1
2

1
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 + i
0 − i

2
i
2

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

 Starting with j=1/2  we see that S+ is an elementary projection operator e12 = |1〉〈2| = P12 

= P12

Such operators can be upgraded to creation-destruction operator combinations a†a

s+ = a1
†a2 = a↑

†a↓   ,            s− = a1
†a2( )†

= a2
†a1 = a↓

†a↑

sZ
1
2

⎛
⎝⎜

⎞
⎠⎟ = D

1
2

⎛
⎝⎜

⎞
⎠⎟ sZ( ) =

1
2

0

0 − 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 Hamilton-Pauli-Jordan representation of sZ is:  

sZ= 2
1 a1

†a1 − a2
†a2( ) = 2

1 a↑
†a↑ − a↓

†a↓( )This suggests an a†a form for sZ. 

1 = ↑ =
1/2
+1/2

=a1
† 0 =a↑

† 0

Let            create up-spin ↑          a1
†=a↑

†

2 = ↓ =
1/2
-1/2

=a2
† 0 =a↓

† 0

Let            create dn-spin ↓ a2
† =a↓

†

                     destroys dn-spin ↓  
                       creates up-spin ↑  
to raise angular momentum by one ! unit
a↑

†a↓ ↓ = ↑    or:  a1
†a2 2 = 1

                     destroys up-spin ↑ 
                       creates dn-spin ↓  
to lower angular momentum by one ! unit

s−=a2
†a1=a↓

†a↑

a↓
†a↑ ↑ = ↓    or:  a2

†a1 1 = 2
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Factoring 2D-HO Hamiltonian

Symmetry group G =U(2) representations, 2D HO Hamiltonian H=      aa†ab operators,  
2D HO wave eigenfunctions Ψn,m, and coherent [α] states 

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

!ωab

Mostly 
Notation 
and 
Bookkeeping :



n1n2 =
a1

†( )n1 a2
†( )n2

n1!n2 !
0 0       

 U(2) boson oscillator states ⏐n1,n2〉
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors 

Oscillator total quanta: υ=(n1+n2)

Class 8 p49-54 (this class)



 U(2) boson oscillator states ⏐n1,n2〉 = R(3) spin or rotor states      
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors 

Oscillator total quanta: υ=(n1+n2)
m
j

Rotor total momenta: j= υ/2   

n1n2 =
a1

†( )n1 a2
†( )n2

n1!n2 !
0 0 =

a1
†( ) j+m a2

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j       

Class 8 p49-54 (this class)



 U(2) boson oscillator states ⏐n1,n2〉 = R(3) spin or rotor states      
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors 

Oscillator total quanta: υ=(n1+n2)
m
j

Rotor total momenta: j= υ/2 and  z-momenta: m=(n1-n2)/2     

n1n2 =
a1

†( )n1 a2
†( )n2

n1!n2 !
0 0 =

a1
†( ) j+m a2

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j       

j = υ/2 =(n1+n2)/2

m =(n1-n2)/2

n1 = j+m
n2 = j-m

Class 8 p49-54 (this class)



 U(2) boson oscillator states ⏐n1,n2〉 = R(3) spin or rotor states      
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors 

Oscillator total quanta: υ=(n1+n2)
m
j

Rotor total momenta: j= υ/2 and  z-momenta: m=(n1-n2)/2     

n1n2 =
a1

†( )n1 a2
†( )n2

n1!n2 !
0 0 =

a1
†( ) j+m a2

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j       

j = υ/2 =(n1+n2)/2

m =(n1-n2)/2

n1 = j+m
n2 = j-m

U(2) boson oscillator states =  U(2) spinor states

n↑n↓ =
a↑

†( )n1 a↓
†( )n2

n↑!n↓!
0 0 =

a↑
†( ) j+m a↓

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j       

Class 8 p49-54 (this class)



 U(2) boson oscillator states ⏐n1,n2〉 = R(3) spin or rotor states      
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors 

Oscillator total quanta: υ=(n1+n2)
m
j

Rotor total momenta: j= υ/2 and  z-momenta: m=(n1-n2)/2     

n1n2 =
a1

†( )n1 a2
†( )n2

n1!n2 !
0 0 =

a1
†( ) j+m a2

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j       

j = υ/2 =(n1+n2)/2

m =(n1-n2)/2

n1 = j+m
n2 = j-m

U(2) boson oscillator states =  U(2) spinor states

n↑n↓ =
a↑

†( )n1 a↓
†( )n2

n↑!n↓!
0 0 =

a↑
†( ) j+m a↓

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j       

a1
†a2 n1n2 = n1+1 n2 n1+1n2-1

a2
†a1 n1n2 = n1 n2+1 n1-1n2+1

Oscillator a†a...

Class 8 p49-54 (this class)



 U(2) boson oscillator states ⏐n1,n2〉 = R(3) spin or rotor states      
SU(2)⊂U(2) oscillators vs. R(3)⊂O(3) rotors 

Oscillator total quanta: υ=(n1+n2)
m
j

Rotor total momenta: j= υ/2 and  z-momenta: m=(n1-n2)/2     

n1n2 =
a1

†( )n1 a2
†( )n2

n1!n2 !
0 0 =

a1
†( ) j+m a2

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j       

j = υ/2 =(n1+n2)/2

m =(n1-n2)/2

n1 = j+m
n2 = j-m

U(2) boson oscillator states =  U(2) spinor states

n↑n↓ =
a↑

†( )n1 a↓
†( )n2

n↑!n↓!
0 0 =

a↑
†( ) j+m a↓
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n=13

Δφ Δn

Properties of 1D-HO coherent state
Coherent wave packet uncertainty relation:  Δn ·Δφ > π /n
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