AMOP
reference links on following page
2.07.18 class 8.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas
Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states

Factoring 2D-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page
UAF Physics UTube channel
2014 AMOP
2017 Group Theory for QM
\section*{2018 AMOP}

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978 (Alt Scanned version)
Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
AMOP Ch 32 Molecular Symmetry and Dynamics - 2019
AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states

Factoring 2D-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

$2 D$-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

(Mass factors $\sqrt{ } M$, spring constants K_{ij}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Class 4 to 6.)

$2 D$-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

$\left(\begin{array}{ll}\text { The } A B C D \text { matrix from Class } 4 \\ H=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)\end{array}\right.$
(Mass factors $\sqrt{ } M$, spring constants K_{i}, and Planck \hbar constants are absorbed into A, B, C, and D constants used in Class 4 to 6 .) Define a and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

$\left(\begin{array}{ll}\text { The } A B C D \text { matrix from } \\ \mathbf{H}=\left(\begin{array}{ll}H_{H 1} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)\end{array}\right.$

Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$

$$
\mathbf{a}_{2}^{\dagger}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2
$$

Solve for \mathbf{x}_{k} and \mathbf{p}_{k} operators
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{2}$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring 2D-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

$\left(\begin{array}{ll}\text { The } A B C D \text { matrix from } \\ \mathbf{H}=\left(\begin{array}{ll}H_{H 1} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)\end{array}\right.$

Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$

Define \mathbf{x}_{k} and $\boldsymbol{p}_{\mathrm{k}}$ operators
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{2}$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{2}$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other. This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

$2 D$-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

$\left(\begin{array}{ll}\text { The } A B C D \text { matrix from Class } 4 \\ \mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)\end{array}\right.$

Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$

Solve for \mathbf{x}_{k} and \mathbf{p}_{k} operators
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{2}$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 $\left(\mathrm{x}_{1}\right)$ or space-2 $\left(\mathrm{x}_{2}\right)$ space are those of a 1D-oscillator. Class-7

$$
\left[\mathbf{a}_{1}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

The $A B C D$ matrix from Class 4
$\mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)$

Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
Solve for \mathbf{x}_{k} and \mathbf{p}_{k} operators
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{ } 2$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 (x_{1}) or space-2 $\left(\mathrm{x}_{2}\right)$ space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.
$\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}$

$$
\left[\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1}
$$

$$
\left[\mathbf{a}^{\dagger}{ }_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}^{\dagger}=\mathbf{0}
$$

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

$\mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)$

Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{2} \quad \mathbf{a}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{2}$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
Solve for \mathbf{x}_{k} and \mathbf{p}_{k} operators
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{ } 2$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{1}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{2}$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 (x_{1}) or space-2 $\left(\mathrm{x}_{2}\right)$ space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.

$$
\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}
$$

$$
\left[\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1}
$$

$$
\left[\mathbf{a}_{m}^{\dagger}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}^{\dagger}=\mathbf{0}
$$

New symmetrized $\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical \mathbf{H} matrix.

$$
\begin{array}{rlrl}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+ & H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} & \\
& =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right) & & +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{array}
$$

$$
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)
$$

2D-Oscillator basic states and operations

First rewrite a classical 2-D Hamiltonian (Class-4 p16) with a thick-tip pen! (They're operators now!)

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

$\mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)$

Define \mathbf{a} and \mathbf{a}^{\dagger} operators
$\mathbf{a}_{1}=\left(\mathbf{x}_{1}+\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2 \quad \mathbf{a}_{1}^{\dagger}=\left(\mathbf{x}_{1}-\mathrm{i} \mathbf{p}_{1}\right) / \sqrt{ } 2$
$\mathbf{a}_{2}=\left(\mathbf{x}_{2}+\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
$\mathbf{a}^{\dagger}{ }_{2}=\left(\mathbf{x}_{2}-\mathrm{i} \mathbf{p}_{2}\right) / \sqrt{ } 2$
Solve for \mathbf{x}_{k} and \mathbf{p}_{k} operators
$\mathbf{x}_{1}=\left(\mathbf{a}^{\dagger}{ }_{1}+\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{p}_{1}=\mathrm{i}\left(\mathbf{a}^{\dagger}-\mathbf{a}_{1}\right) / \sqrt{2}$
$\mathbf{x}_{2}=\left(\mathbf{a}^{\dagger}{ }_{2}+\mathbf{a}_{2}\right) / \sqrt{ } 2$
$\mathbf{p}_{2}=\mathrm{i}\left(\mathbf{a}^{\dagger}{ }_{2}-\mathbf{a}_{2}\right) / \sqrt{2}$

Each system dimension \mathbf{x}_{1} and \mathbf{x}_{2} is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

$$
\left[\mathbf{x}_{1}, \mathbf{p}_{2}\right]=\mathbf{0}=\left[\mathbf{x}_{2}, \mathbf{p}_{l}\right], \quad\left[\mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{0}=\left[\mathbf{a}_{2}, \mathbf{a}_{l}^{\dagger}\right]
$$

Commutation relations within space-1 (x_{1}) or space-2 $\left(\mathrm{x}_{2}\right)$ space are those of a 1D-oscillator.

$$
\left[\mathbf{a}_{l}, \mathbf{a}_{l}^{\dagger}\right]=\mathbf{1}, \quad\left[\mathbf{a}_{2}, \mathbf{a}_{2}^{\dagger}\right]=\mathbf{1}
$$

This applies in general to N-dimensional oscillator problems.

$$
\left[\mathbf{a}_{m}, \mathbf{a}_{n}\right]=\mathbf{a}_{m} \mathbf{a}_{n}-\mathbf{a}_{n} \mathbf{a}_{m}=\mathbf{0}
$$

$$
\begin{aligned}
& {\left[\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}=\delta_{m n} \mathbf{1}} \\
& \text { ators replace the old ket-bras }|m\rangle\langle n| \\
& =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}
\end{aligned}
$$

$$
\left[\mathbf{a}_{m}^{\dagger}, \mathbf{a}_{n}^{\dagger}\right]=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}^{\dagger}-\mathbf{a}_{n}^{\dagger} \mathbf{a}_{m}^{\dagger}=\mathbf{0}
$$

New symmetrized $\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical \mathbf{H} matrix.

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} & & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right) & & +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

$$
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)
$$

Both are elementary "place-holders" for parameters $H_{m n}$ or $A, B \pm i C$, and D.

$$
|m\rangle\langle n| \rightarrow\left(\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}+\mathbf{a}_{n} \mathbf{a}_{m}^{\dagger}\right) / 2=\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}+\delta_{m, n} \mathbf{1} / 2
$$

Operator arithmetic detailed:

$$
\begin{aligned}
& \mathbf{a}_{1} \mathbf{a}_{1}^{\dagger}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{1}+i \mathbf{p}_{1}\right) \frac{1}{\sqrt{2}}\left(\mathbf{x}_{1}-i \mathbf{p}_{1}\right)=\frac{1}{2}\left(\mathbf{x}_{1}^{2}+\mathbf{p}_{1}^{2}-i\left(\mathbf{x}_{1} \mathbf{p}_{1}-\mathbf{p}_{1} \mathbf{x}_{1}\right)\right)=\frac{1}{2}\left(\mathbf{x}_{1}^{2}+\mathbf{p}_{1}^{2}+\frac{\hbar}{2} \mathbf{1}\right) \\
& \mathbf{a}_{2} \mathbf{a}_{2}^{\dagger}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{2}+i \mathbf{p}_{2}\right) \frac{1}{\sqrt{2}}\left(\mathbf{x}_{2}-i \mathbf{p}_{2}\right)=\frac{1}{2}\left(\mathbf{x}_{2}^{2}+\mathbf{p}_{2}^{2}-i\left(\mathbf{x}_{2} \mathbf{p}_{2}-\mathbf{p}_{2} \mathbf{x}_{2}\right)\right)=\frac{1}{2}\left(\mathbf{x}_{2}^{2}+\mathbf{p}_{2}^{2}+\frac{\hbar}{2} \mathbf{1}\right) \\
& \mathbf{x}_{1} \mathbf{x}_{2}=\frac{1}{\sqrt{2}}\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right) \frac{1}{\sqrt{2}}\left(\mathbf{a}_{2}^{\dagger}+\mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{\dagger}+\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}+\mathbf{a}_{1} \mathbf{a}_{2}^{\dagger}+\mathbf{a}_{1} \mathbf{a}_{2}\right) \\
& \mathbf{p}_{1} \mathbf{p}_{2}=\frac{i}{\sqrt{2}}\left(\mathbf{a}_{1}^{\dagger}-\mathbf{a}_{1}\right) \frac{i}{\sqrt{2}}\left(\mathbf{a}_{2}^{\dagger}-\mathbf{a}_{2}\right)=\frac{-1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{\dagger}-\mathbf{a}_{1}^{\left.\dagger \mathbf{a}_{2}-\mathbf{a}_{1} \mathbf{a}_{2}^{\dagger}+\mathbf{a}_{1} \mathbf{a}_{2}\right)}\right. \\
& \mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}+\mathbf{a}_{1} \mathbf{a}_{2}^{\dagger}\right)=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}+\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\right) \\
& \mathbf{x}_{1} \mathbf{p}_{2}=\frac{1}{\sqrt{2}}\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right) \frac{i}{\sqrt{2}}\left(\mathbf{a}_{2}^{\dagger}-\mathbf{a}_{2}\right)=\frac{i}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{\dagger}-\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}+\mathbf{a}_{1} \mathbf{a}_{2}^{\dagger}-\mathbf{a}_{1} \mathbf{a}_{2}\right) \\
& -\mathbf{x}_{2} \mathbf{p}_{1}=\frac{-1}{\sqrt{2}}\left(\mathbf{a}_{2}^{\dagger}+\mathbf{a}_{2}\right) \frac{i}{\sqrt{2}}\left(\mathbf{a}_{1}^{\dagger}-\mathbf{a}_{1}\right) \\
& \qquad \mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}=-i \mathbf{a}_{1}^{\dagger}\left(\mathbf{a}_{2}^{\dagger}+i \mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}^{\dagger}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2} \mathbf{a}_{1}\right) \\
&
\end{aligned}
$$

Weird 2D HO Hamiltonian cooked up to match $\mathrm{U}(2)$ quantum \mathbf{H}-equation with classical \mathbf{K}-equation

$$
\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)
$$

New symmetrized $\mathbf{a}_{m}^{\dagger} \mathbf{a}_{n}$ operators replace the old ket-bras $|m\rangle\langle n|$ that define semi-classical \mathbf{H} matrix.

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} & & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right) & & +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

$$
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)
$$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring 2 D-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring 2 D-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations \qquad
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Mostly
Notation
and
Bookkeeping

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.
Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use anti-commutators $\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A}$.

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{c}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.
Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use anti-commutators $\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A}$.

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{c}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Fermi \mathbf{c}_{n}^{\dagger} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.
Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use anti-commutators $\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A}$.

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{c}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Fermi \mathbf{c}_{n}^{\dagger} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all. Creating two Fermions of the same type is punished by death. This is because $x=-x$ implies $x=0$.

$$
\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=-\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=\mathbf{0}
$$

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}_{n}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.
Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use $\underline{\text { anti-commutators }\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A} \text {. }}$

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{c}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Fermi \mathbf{c}_{n}^{\dagger} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all. Creating two Fermions of the same type is punished by death. This is because $x=-x$ implies $x=0$.

$$
\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=-\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=\mathbf{0}
$$

That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. $\left(\mathbf{a}_{m}, \mathbf{a}^{\dagger}\right)$ operators called Boson operators create or destroy quanta or "particles" known as Bosons.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises electromagnetic mode quantum number m to $m+1$ it is said to create a photon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises crystal vibration mode quantum number m to $m+1$ it is said to create a phonon.
If $\mathbf{a}^{\dagger}{ }_{m}$ raises liquid ${ }^{4} \mathrm{He}$ rotational quantum number m to $m+1$ it is said to create a roton.

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.
Fermi operators $\left(\mathbf{c}_{m}, \mathbf{c}_{n}\right)$ are defined to create Fermions and use anti-commutators $\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A}$.

$$
\left\{\mathbf{c}_{m}, \mathbf{c}_{n}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}+\mathbf{c}_{n} \mathbf{c}_{m}=\mathbf{0} \quad\left\{\mathbf{c}_{m}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}=\delta_{m n} \mathbf{1} \quad\left\{\mathbf{c}_{m}^{\dagger}, \mathbf{c}_{n}^{\dagger}\right\}=\mathbf{c}_{m}^{\dagger} \mathbf{c}_{n}^{\dagger}+\mathbf{c}_{n}^{\dagger} \mathbf{c}_{m}^{\dagger}=\mathbf{0}
$$

Fermi \mathbf{c}_{n}^{\dagger} has a rigid birth-control policy; they are allowed just one Fermion or else, none at all. Creating two Fermions of the same type is punished by death. This is because $x=-x$ implies $x=0$.

$$
\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=-\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}^{\dagger}|0\rangle=\mathbf{0}
$$

That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle. Quantum numbers of $n=0$ and $n=1$ are the only allowed eigenvalues of the number operator $\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}$.

$$
\mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}|0\rangle=\mathbf{0}, \mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}|1\rangle=|1\rangle, \mathbf{c}_{m}^{\dagger} \mathbf{c}_{m}|n\rangle=\mathbf{0} \text { for: } n>1
$$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\left\langle\left\langle n_{l}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}\right.\right.$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\left\langle\left\langle n_{l}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}\right.\right.$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left.\left.\left|x_{1}\right\rangle\right\rangle x_{2}\right\rangle$ and $\left\langle x_{2}\right\rangle\left\langle x_{1}\right.$, , coherent states $\left.\mid \alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\left\langle\left\langle\alpha_{1}\right|\right.\right.$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"|n$\left.n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\left\langle\left\langle n_{l}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}\right.\right.$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left.\left.\left|x_{1}\right\rangle\right\rangle x_{2}\right\rangle$ and $\left\langle x_{2}\right\rangle\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\left\langle\left\langle\alpha_{1}\right|\right.\right.$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{1}\right|\right| \Psi_{1}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{1}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"|n$\rangle\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\left\langle\left\langle n_{n}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}\right.\right.$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left.\left.\left|x_{1}\right\rangle\right\rangle x_{2}\right\rangle$ and $\left\langle x_{2}\right\rangle\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\left\langle\left\langle\alpha_{1}\right|\right.\right.$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{l}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{1}\right|\right| \Psi_{l}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{l}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Product of individual probabilities $\left|\left\langle x_{l} \mid \Psi_{I}\right\rangle\right|^{2}$ and $\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}$ respects standard Bayesian probability theory.

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket"|n$\rangle\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\left\langle\left\langle n_{n}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}\right.\right.$
This applies to all types of states $\left|\Psi_{i}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\left\langle\left\langle n_{1}\right|\right.\right.$, position states $\left.\left.\left|x_{1}\right\rangle\right\rangle x_{2}\right\rangle$ and $\left\langle x_{2}\right\rangle\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\left\langle\left\langle\alpha_{1}\right|\right.\right.$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{1}\right|\right| \Psi_{1}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{l}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Product of individual probabilities $\left|\left\langle x_{l} \mid \Psi_{1}\right\rangle\right|^{2}$ and $\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}$ respects standard Bayesian probability theory.
Note common shorthand big-bra-big-ket notation $\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle=\left\langle x_{2}\right|\left\langle x_{1}\right|\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$

Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ It is outer product of the kets for each single dimension or particle.
The dual description is done similarly using "bra-bras" $\left\langle n_{2}\right|\left\langle n_{1}\right|=\left(\left|n_{1}\right\rangle\left|n_{2}\right\rangle\right)^{\dagger}$
This applies to all types of states $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$: eigenstates $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$, or $\left\langle n_{2}\right|\left\langle n_{1}\right|$, position states $\left|x_{1}\right\rangle\left|x_{2}\right\rangle$ and $\left\langle x_{2}\right|\left\langle x_{1}\right|$, coherent states $\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle$ and $\left\langle\alpha_{2}\right|\left\langle\alpha_{1}\right|$, or whatever.

Scalar product is defined so that each kind of particle or dimension will "find" each other and ignore the presence of other kind(s). $\quad\left\langle x_{2}\right|\left\langle x_{1} \| \Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left\langle x_{1} \mid \Psi_{1}\right\rangle\left\langle x_{2} \mid \Psi_{2}\right\rangle$

Probability axiom-1 gives correct probability for finding particle-1 at x_{1} and particle-2 at x_{2}, if state $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ must choose between all $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left.\left|\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle\right|^{2}=\left|\left\langle x_{2}\right|\left\langle x_{1}\right|\right| \Psi_{1}\right\rangle\left.\left|\Psi_{2}\right\rangle\right|^{2} \\
=\left|\left\langle x_{1} \mid \Psi_{l}\right\rangle\right|^{2}\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}
\end{gathered}
$$

Product of individual probabilities $\left|\left\langle x_{l} \mid \Psi_{1}\right\rangle\right|^{2}$ and $\left|\left\langle x_{2} \mid \Psi_{2}\right\rangle\right|^{2}$ respects standard Bayesian probability theory.
Note common shorthand big-bra-big-ket notation $\left\langle x_{1}, x_{2} \mid \Psi_{1}, \Psi_{2}\right\rangle=\left\langle x_{2}\right|\left\langle x_{1}\right|\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$

Must ask a perennial modern question: "How are these structures stored in a computer program?" The usual answer is in outer product or tensor arrays. Next pages show sketches of these objects.

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
2D-Oscillator states and related 3D angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type-1 } \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type-1 Type-2 } \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type-1 Type-2 } \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type-1 Type-2 } \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2 -wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.$) array indexing.$

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ - \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \cdots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.$) array indexing.$
$\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle=\left(\begin{array}{c}\left\langle 0 \mid \Psi_{1}\right\rangle \\ \left\langle 1 \mid \Psi_{1}\right\rangle \\ \left\langle 2 \mid \Psi_{1}\right\rangle \\ \vdots\end{array}\right) \otimes\left(\begin{array}{c}\left\langle 0 \mid \Psi_{2}\right\rangle \\ \left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots\end{array}\right)=\left(\begin{array}{c}\left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle \\ \left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 0 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle}{} \\ \left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 1 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 0 \mid \Psi_{2}\right\rangle}{\left\langle 0_{1}\right\rangle} \\ \left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 1 \mid \Psi_{2}\right\rangle \\ \left\langle 2 \mid \Psi_{1}\right\rangle\left\langle 2 \mid \Psi_{2}\right\rangle \\ \vdots\end{array}\right)=\left(\begin{array}{c}\left\langle 0_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 0_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 0_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 1_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle}{} \\ \left\langle 1_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 1_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots \\ \frac{\left\langle 2_{1} 0_{2} \mid \Psi_{1} \Psi_{2}\right\rangle}{} \\ \left\langle 2_{1} 1_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \left\langle 2_{1} 2_{2} \mid \Psi_{1} \Psi_{2}\right\rangle \\ \vdots\end{array}\right)$

$$
\begin{aligned}
& \text { "Little-Endian" indexing } \\
& (\ldots 01,02,03 . .10,11,12,13 \ldots \\
& 20,21,22,23, \ldots)
\end{aligned}
$$

Least significant digit at (right) END

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ -0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \ldots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ \overline{1} \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \ldots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.$) array indexing.$

Outer product arrays

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

$$
\begin{gathered}
\text { Type }-1 \\
\left|0_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{1}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \ldots \quad\left|0_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),\left|1_{2}\right\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right),\left|2_{2}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right), \cdots
\end{gathered}
$$

Outer products are constructed for the states that might have non-negligible amplitudes.
$\left|0_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ -0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right),\left|0_{1}\right\rangle\left|1_{2}\right\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \ldots\left|1_{1}\right\rangle\left|0_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right), \ldots\left|1_{1}\right\rangle\left|2_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$,

Herein lies conflict between standard $\infty-\mathrm{D}$ analysis and finite computers

Make adjustable-size finite phasor arrays for each particle/dimension.

Convergence is achieved by orderly upgrades in the number of phasors to a point where results do not change.

A 2-wave state product has a lexicographic ($00,01,02, \ldots 10,11,12, \ldots, 20,21,22, .$.) array indexing.

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Entangled 2-particle states (Analogy with matrix array)

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

Entangled 2-particle states (Analogy with matrix array)

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$. (Even rarer is $\left|\Psi_{l}\right\rangle\left|\Psi_{l}\right\rangle_{.}$.)

Entangled 2-particle states (Analogy with matrix array)

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$. (Even rarer is $\left|\Psi_{l}\right\rangle\left|\Psi_{l}\right\rangle$.)

$$
\begin{aligned}
& \text { ANALOGY: } \\
& \text { A general } n-b y-n \text { matrix } \mathbf{M} \text { operator is a combination of } n^{2} \text { terms: } \mathbf{M}=\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j, k}|j\rangle\langle k| \\
& \text {...that might be diagonalized to a combination of } n \text { projectors: } \quad \mathbf{M}=\sum_{e=1}^{n} \mu_{e}|e\rangle\langle e|
\end{aligned}
$$

Entangled 2-particle states (Analogy with matrix array)

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$.
(Even rarer is $\left|\Psi_{1}\right\rangle\left|\Psi_{1}\right\rangle_{\text {. }}$)

ANALOGY:

A general n-by-n matrix \mathbf{M} operator is a combination of n^{2} terms: $\mathbf{M}=\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j, k}|j\rangle\langle k|$
...that might be diagonalized to a combination of n projectors: $\quad \mathbf{M}=\sum_{e=1}^{n} \mu_{e}|e\rangle\langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of entangled products: $|\Psi\rangle=\sum_{j} \sum_{k} \psi_{j, k}\left|\Psi_{j}\right\rangle\left|\Psi_{k}\right\rangle$

Entangled 2-particle states (Analogy with matrix array)

A matrix operator \mathbf{M} is rarely a single nilpotent operator $|1\rangle\langle 2|$ or idempotent $|1\rangle\langle 1|$.

A two-particle state $|\Psi\rangle$ is rarely a single outer product $\left|\Psi_{1}\right\rangle\left|\Psi_{2}\right\rangle$ of 1-particle states $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$.
(Even rarer is $\left|\Psi_{1}\right\rangle\left|\Psi_{1}\right\rangle_{\text {. }}$)

ANALOGY:

A general n-by-n matrix \mathbf{M} operator is a combination of n^{2} terms: $\mathbf{M}=\sum_{j=1}^{n} \sum_{k=1}^{n} M_{j, k}|j\rangle\langle k|$
...that might be diagonalized to a combination of n projectors: $\quad \mathbf{M}=\sum_{e=1}^{n} \mu_{e}|e\rangle\langle e|$

So a general two-particle state $|\Psi\rangle$ is a combination of entangled products: $|\Psi\rangle=\sum_{j} \sum_{k} \psi_{j, k}\left|\Psi_{j}\right\rangle\left|\Psi_{k}\right\rangle$
...that might be de-entangled to a combination of n terms: $|\Psi\rangle=\sum_{e} \phi_{e}\left|\varphi_{e}\right\rangle\left|\varphi_{e}\right\rangle$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.

$$
\begin{array}{rlrl}
\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle= & \mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle & & \mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle \\
\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle= & \mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle & & \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle \\
& \mathbf{a}_{1} \text { "finds" its type-1 } & \mathbf{a}_{2} \text { finds" its type-2 }
\end{array}
$$

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.

$$
\begin{aligned}
\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle= & \mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle & & \mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle \\
\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle= & \mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle & & \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle \\
& \mathbf{a}_{1} \text { "finds" its type-1 } & & \mathbf{a}_{2} \text { "finds" its type-2 }
\end{aligned}
$$

General definition of the $2 D$ oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{+}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.

$$
\begin{array}{rlrl}
\mathbf{a}_{\mid}^{\dagger}\left|n_{1} n_{2}\right\rangle= & \mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle & & \mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle \\
\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle & =\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle & & \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle \\
& \mathbf{a}_{1} \text { "finds" its type-1 } & \mathbf{a}_{2} \text { "finds" its type-2 }
\end{array}
$$

General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

Two-particle (or 2-dimensional) matrix operators
When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
\mathbf{a}_{2} "finds" its type-2
The $A B C D$ matrix from Class 4
$\mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)$

General definition of the $2 D$ oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle= \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \\
n_{2}+1\left|n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

Two-particle (or 2-dimensional) matrix operators

When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
The $A B C D$ matrix from Class 4
$\mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)$
\mathbf{a}_{2} "finds" its type-2
General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

Two-particle (or 2-dimensional) matrix operators

When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
The $A B C D$ matrix from Class 4
$\mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)$
\mathbf{a}_{2} "finds" its type-2
General definition of the $2 D$ oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\begin{aligned}
\mathbf{H} & =A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+
\end{aligned}
$$

Two-particle (or 2-dimensional) matrix operators

When 2-particle operator \mathbf{a}_{k} acts on a 2-particle state, \mathbf{a}_{k} "finds" its type-k state but ignores the others.
$\mathbf{a}_{1}^{\dagger}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}^{\dagger}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}+1}\left|n_{1}+1 n_{2}\right\rangle$
$\mathbf{a}_{2}^{\dagger}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}^{\dagger}\left|n_{2}\right\rangle=\sqrt{n_{2}+1}\left|n_{1} n_{2}+1\right\rangle$
$\mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\mathbf{a}_{1}\left|n_{1}\right\rangle\left|n_{2}\right\rangle=\sqrt{n_{1}}\left|n_{1}-1 n_{2}\right\rangle$
$\mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\left|n_{1}\right\rangle \mathbf{a}_{2}\left|n_{2}\right\rangle=\sqrt{n_{2}}\left|n_{1} n_{2}-1\right\rangle$
\mathbf{a}_{1} "finds" its type-1
The $A B C D$ matrix from Class 4
$\mathbf{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)=\left(\begin{array}{cc}A & B-i C \\ B+i C & D\end{array}\right)$
\mathbf{a}_{2} "finds" its type-2
General definition of the 2D oscillator base state.

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$$
\begin{aligned}
\mathbf{H}= & H_{11}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+\quad H_{12} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \\
& +H_{21} \mathbf{a} \mathbf{a} \mathbf{a}_{1}^{\dagger}+H_{22}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
\end{aligned}
$$

The $\mathbf{a}_{m}{ }^{\dagger} \mathbf{a}_{n}$ combinations in the $A B C D$ Hamiltonian \mathbf{H} have fairly simple matrix elements.

$$
\begin{array}{lr}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}
$$

$$
\mathbf{H}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+(B-i C) \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}
$$

$$
+(B+i C) \mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

$$
\begin{aligned}
& \langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+
\end{aligned}
$$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states and related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

U(2)-2D-HO Hamiltonian and irreducible representations

Rearrangement of rows and columns brings the matrix to a block-diagonal form.
Base states $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ with the same total quantum number $v=n_{1}+n_{2}$ define each block.
"Little-Endian" indexing

Rearrangement of rows and columns brings the matrix to a block-diagonal form.
Base states $\left|n_{1}\right\rangle\left|n_{2}\right\rangle$ with the same total quantum number $\mathrm{v}=n_{1}+n_{2}$ define each block. "Little-Endian" indexing

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

(...00,10,20..01,11,21,31 ...02,12,22,32...)

2D-Oscillator states and related 3D angular momentum multiplets

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix . Recall decomposition of \mathbf{H} (Class-4 p16)

$$
\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=\begin{array}{c|cc|}
\hline n_{1}, n_{2} & |1,0\rangle & |0,1\rangle \\
\hline \begin{array}{c|cc}
\langle 1,0| & A & B-i C \\
\langle 0,1| & B+i C & D
\end{array}+\frac{A+D}{2} \mathbf{1} \\
\qquad
\end{array}
$$

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

Fundamental eigenstates

The first step is to diagonalize the f
Recall decomposition of \mathbf{H} (Class-4 p16)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{aligned}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} & \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} & \text { (XYZ Electron spin notation) }
\end{aligned}
$$

2D-Oscillator states and related 3D angular momentum multiplets

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of \mathbf{H} (Class-4 p16)

$$
\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=
$$

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Polar angles (φ, ϑ) of $+\boldsymbol{\Omega}$-vector (or polar angles $(\varphi, \vartheta \pm \pi)$ of $\boldsymbol{\Omega} \boldsymbol{\Omega}$-vector) gives \mathbf{H} eigenvectors.

$$
\left|\omega_{+}\right\rangle=\binom{e^{-i \varphi / 2} \cos \frac{\vartheta}{2}}{e^{i \varphi / 2} \sin \frac{\vartheta}{2}}, \quad\left|\omega_{-}\right\rangle=\binom{-e^{-i \varphi / 2} \sin \frac{\vartheta}{2}}{e^{i \varphi / 2} \cos \frac{\vartheta}{2}} \text { where: }\left\{\begin{array}{c}
\cos \vartheta=\frac{A-D}{\Omega} \\
\tan \varphi=\frac{C}{B}
\end{array}\right.
$$

Finding eigenvectors Class 5 p72

2D-Oscillator states and related 3D angular momentum multiplets

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of \mathbf{H} (Class-4 p16)

$\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=$| n_{1}, n_{2} | $\|1,0\rangle$ | $\|0,1\rangle$ |
| :---: | :---: | :---: |
| $\langle 1,0\|$ A
 $0, i C$
 $\langle 0,1\|$ $B+i C$
 Group reorganized "Big-Endian" indexing $+\frac{A+D}{2} \mathbf{1}$ | | |

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Polar angles (φ, ϑ) of $+\boldsymbol{\Omega}$-vector (or polar angles $(\varphi, \vartheta \pm \pi)$ of $-\boldsymbol{\Omega}$-vector) gives \mathbf{H} eigenvectors.

$$
\left|\omega_{+}\right\rangle=\binom{e^{-i \varphi / 2} \cos \frac{\vartheta}{2}}{e^{i \varphi / 2} \sin \frac{\vartheta}{2}}, \quad\left|\omega_{-}\right\rangle=\binom{-e^{-i \varphi / 2} \sin \frac{\vartheta}{2}}{e^{i \varphi / 2} \cos \frac{\vartheta}{2}} \quad \text { where: } \begin{cases}\cos \vartheta=\frac{A-D}{\Omega} & \text { Finding } \\ \tan \varphi=\frac{C}{B} & \text { eigenvectors }\end{cases}
$$

More important for the general solution, are the eigen-creation operators $\mathbf{a} \dagger+$ and $\mathbf{a} \dagger$ - defined by

$$
\mathbf{a}_{+}^{\dagger}=e^{-i \varphi / 2}\left(\cos \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \sin \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right), \quad \mathbf{a}_{-}^{\dagger}=e^{-i \varphi / 2}\left(-\sin \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \cos \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right)
$$

2D-Oscillator states and related 3D angular momentum multiplets

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of \mathbf{H} (Class-4 p16)

$\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=$| n_{1}, n_{2} | $\|1,0\rangle$ | $\|0,1\rangle$ |
| :---: | :---: | :---: |
| $\langle 1,0\|$ A
 $0, i C$
 $\langle 0,1\|$ $B+i C$
 Group reorganized "Big-Endian" indexing $+\frac{A+D}{2} \mathbf{1}$ | | |

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Polar angles (φ, ϑ) of $+\boldsymbol{\Omega}$-vector (or polar angles $(\varphi, \vartheta \pm \pi)$ of $-\boldsymbol{\Omega}$-vector) gives \mathbf{H} eigenvectors.

$$
\left|\omega_{+}\right\rangle=\binom{e^{-i \varphi / 2} \cos \frac{\vartheta}{2}}{e^{i \varphi / 2} \sin \frac{\vartheta}{2}}, \quad\left|\omega_{-}\right\rangle=\binom{-e^{-i \varphi / 2} \sin \frac{\vartheta}{2}}{e^{i \varphi / 2} \cos \frac{\vartheta}{2}} \quad \text { where: } \begin{cases}\cos \vartheta=\frac{A-D}{\Omega} & \text { Finding } \\ \tan \varphi=\frac{C}{B} & \text { eigenvectors } \\ \text { Class } 5 \text { p } 72\end{cases}
$$

More important for the general solution, are the eigen-creation operators $\mathbf{a} \dagger+$ and $\mathbf{a} \dagger$ - defined by

$$
\mathbf{a}_{+}^{\dagger}=e^{-i \varphi / 2}\left(\cos \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \sin \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right), \mathbf{a}_{-}^{\dagger}=e^{-i \varphi / 2}\left(-\sin \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \cos \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right)
$$

create \mathbf{H} eigenstates directly from the ground state.

$$
\mathbf{a}_{+}^{\dagger}|0\rangle=\left|\omega_{+}\right\rangle, \quad \mathbf{a}_{-}^{\dagger}|0\rangle=\left|\omega_{-}\right\rangle
$$

	$\|00\rangle$	$\|01\rangle\|10\rangle$	$\|02\rangle$	$\|11\rangle$	$\|20\rangle$	$\|03\rangle$	\|12>	$\|21\rangle$	$\|30\rangle$	\ldots
<00\|	0									
$\begin{aligned} & \hline\langle 01\| \\ & \langle 10\| \end{aligned}$		ω_{-} ω_{+}								
$\langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+\begin{aligned} & \langle 02\| \\ & \langle 11\| \\ & \langle 20\| \end{aligned}$			$2 \omega_{-}$	$\omega_{+}+\omega_{-}$	$2 \omega_{+}$					
$\begin{aligned} & \langle 03\| \\ & \langle 12\| \\ & \langle 21\| \\ & \langle 30\| \end{aligned}$							$\omega_{+}+2 \omega_{-}$	$2 \omega_{+}+\omega_{-}$	$3 \omega_{+}$	
-										

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

$$
\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

Setting $(B=0=C)$ and $\left(A=\omega_{+}\right)$and $\left(D=\omega_{-}\right)$gives diagonal block matrices.

$$
\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

$$
\varepsilon_{n_{1} n_{2}}^{A}=A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right)
$$

	$\|00\rangle$	$\|01\rangle\|10\rangle$	$\|02\rangle$	\|11>	$\|20\rangle$	$\|03\rangle$	$\|12\rangle$	$\|21\rangle$	$\|30\rangle$	\ldots
<00\|	0									
$\langle 01\|$ $\langle 10\|$		ω_{-} ω_{+}								
$\langle\mathbf{H}\rangle=A(\mathbf{1} / 2)+D(\mathbf{1} / 2)+\begin{aligned} & \langle 11\| \\ & \langle 20 \end{aligned}$				$\omega_{+}+\omega_{-}$	$2 \omega_{+}$					
$\begin{aligned} & \langle 03\| \\ & \langle 12\| \\ & \langle 21\| \\ & \langle 30\| \end{aligned}$							$\omega_{+}+2 \omega_{-}$	$2 \omega_{+}+\omega_{-}$	$3 \omega_{+}$	

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

$$
\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)
$$

$$
\begin{aligned}
\varepsilon_{n_{1} n_{2}}^{A} & =A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right) \\
& =\Omega_{0}\left(n_{1}+n_{2}+1\right)+\frac{\Omega}{2}\left(n_{1}-n_{2}\right)=\Omega_{0}(v+1)+\Omega m
\end{aligned}
$$

$\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)$

$$
\begin{aligned}
\varepsilon_{n_{1} n_{2}}^{A} & =A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right) \\
& =\Omega_{0}\left(n_{1}+n_{2}+1\right)+\frac{\Omega}{2}\left(n_{1}-n_{2}\right)=\Omega_{0}(v+1)+\Omega m
\end{aligned}
$$

Define total quantum number $\mathrm{v}=2 j$ and half-difference or asymmetry quantum number m

$$
v=n_{1}+n_{2}=2 j \quad j=\frac{n_{1}+n_{2}}{2}=\frac{v}{2} \quad m=\frac{n_{1}-n_{2}}{2}
$$

$\mathbf{H}^{A}=A\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{1} / 2\right)+D\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{1} / 2\right)$

$$
\begin{aligned}
\varepsilon_{n_{1} n_{2}}^{A} & =A\left(n_{1}+\frac{1}{2}\right)+D\left(n_{2}+\frac{1}{2}\right)=\frac{A+D}{2}\left(n_{1}+n_{2}+1\right)+\frac{A-D}{2}\left(n_{1}-n_{2}\right) \\
& =\Omega_{0}\left(n_{1}+n_{2}+1\right)+\frac{\Omega}{2}\left(n_{1}-n_{2}\right)=\Omega_{0}(v+1)+\Omega m
\end{aligned}
$$

Define total quantum number $\mathrm{v}=2 j$ and half-difference or asymmetry quantum number m

$$
v=n_{1}+n_{2}=2 j \quad j=\frac{n_{1}+n_{2}}{2}=\frac{v}{2} \quad m=\frac{n_{1}-n_{2}}{2}
$$

$v+1=2 j+1$ multiplies base frequency $\omega=\Omega_{0}$

$$
m=+1 / 2
$$

$$
\omega_{+}=\Omega_{0}+\Omega\left(+\frac{l}{2}\right)
$$

m multiplies beat frequency Ω

$$
\omega_{-}=\Omega_{0}+\Omega\left(-\frac{1}{2}\right)
$$

2D-Oscillator states and related 3D angular momentum multiplets

Fundamental eigenstates

The first step is to diagonalize the fundamental 2-by-2 matrix .

Recall decomposition of \mathbf{H} (Class-4 p16)

$\langle\mathbf{H}\rangle_{v=1}^{\text {Fundamental }}=$| n_{1}, n_{2} | $\|1,0\rangle$ | $\|0,1\rangle$ |
| :---: | :---: | :---: |
| $\langle 1,0\|$ A
 $0, i C$
 $\langle 0,1\|$ $B+i C$
 Group reorganized "Big-Endian" indexing $+\frac{A+D}{2} \mathbf{1}$ | | |

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)+\frac{A+D}{2} \mathbf{1}=(A+D)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{2}+2 C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{2}+(A-D)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{2}
$$

in terms of Jordan-Pauli spin operators.

$$
\begin{array}{rlr}
\mathbf{H}=\Omega_{0} \mathbf{1}+\Omega \bullet \overrightarrow{\mathbf{S}} & =\Omega_{0} \mathbf{1}+\Omega_{B} \mathbf{S}_{B}+\Omega_{C} \mathbf{S}_{C}+\Omega_{A} \mathbf{S}_{A} \quad \text { (ABC Optical vector notation) } \\
& =\Omega_{0} \mathbf{1}+\Omega_{X} \mathbf{S}_{X}+\Omega_{Y} \mathbf{S}_{Y}+\Omega_{Z} \mathbf{S}_{Z} \quad \text { (XYZ Electron spin notation) }
\end{array}
$$

Frequency eigenvalues $\omega_{ \pm}$of $\mathbf{H}-\Omega_{0} \mathbf{1} / 2$ and fundamental transition frequency $\Omega=\omega_{+}-\omega_{-}$:

$$
\omega_{ \pm}=\frac{\Omega_{0} \pm \Omega}{2}=\frac{A+D \pm \sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}}}{2}=\frac{A+D}{2} \pm \sqrt{\left(\frac{A-D}{2}\right)^{2}+B^{2}+C^{2}}
$$

Polar angles (φ, ϑ) of $+\boldsymbol{\Omega}$-vector (or polar angles $(\varphi, \vartheta \pm \pi)$ of $-\boldsymbol{\Omega}$-vector) gives \mathbf{H} eigenvectors.

$$
\left|\omega_{+}\right\rangle=\binom{e^{-i \varphi / 2} \cos \frac{\vartheta}{2}}{e^{i \varphi / 2} \sin \frac{\vartheta}{2}}, \quad\left|\omega_{-}\right\rangle=\binom{-e^{-i \varphi / 2} \sin \frac{\vartheta}{2}}{e^{i \varphi / 2} \cos \frac{\vartheta}{2}} \quad \text { where: }\left\{\begin{array}{c}
\cos \vartheta=\frac{A-D}{\Omega} \\
\tan \varphi=\frac{C}{B}
\end{array}\right.
$$

More important for the general solution, are the eigen-creation operators $\mathbf{a} \dagger+$ and $\mathbf{a} \dagger$ - defined by

$$
\mathbf{a}_{+}^{\dagger}=e^{-i \varphi / 2}\left(\cos \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \sin \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right), \quad \mathbf{a}_{-}^{\dagger}=e^{-i \varphi / 2}\left(-\sin \frac{\vartheta}{2} \mathbf{a}_{1}^{\dagger}+e^{i \varphi} \cos \frac{\vartheta}{2} \mathbf{a}_{2}^{\dagger}\right)
$$

create \mathbf{H} eigenstates directly from the ground state.

$$
\mathbf{a}_{+}^{\dagger}|0\rangle=\left|\omega_{+}\right\rangle, \quad \mathbf{a}_{-}^{\dagger}|0\rangle=\left|\omega_{-}\right\rangle
$$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays
Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
U(2) Hamiltonian and irreducible representations
$2 D$-Oscillator states related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

2D-Oscillator states and related 3D angular momentum multiplets Setting ($B=0=C$) and $\left(A=\omega_{+}\right)$and ($D=\omega_{-}$) gives diagonal block matrices.

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

SU(2) Multiplets

2D-Oscillator states and related 3D angular momentum multiplets Setting ($B=0=C$) and $\left(A=\omega_{+}\right)$and ($D=\omega_{-}$) gives diagonal block matrices.

$$
\begin{aligned}
& \omega_{+}-\omega_{-}=\Omega \\
& =\sqrt{(2 B)^{2}+(2 C)^{2}+(A-D)^{2}} \\
& =A-D
\end{aligned}
$$

SU(2) Multiplets

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
2D-Oscillator states related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Introducing $U(N)$

(a) N-D Oscillator Degeneracy ℓ of quamtum levelv

Principal Quantum Number Dimension of oscillator
(b) Stacking numbers

Introducing $U(3)$

(b) N-particle 3-level states ...or spin-1 states

$t=\tau_{\text {beat }} / 4$
$t=\tau_{\text {beat }} / 2$

$$
\begin{aligned}
) & \left.=\frac{1}{2}\left|\psi_{10}\left(x_{1}, x_{2}\right) e^{-i \omega_{10} t}+\psi_{01}\left(x_{1}, x_{2}\right) e^{-i \omega_{01} t}\right|^{2} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}=\frac{e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}}{2 \pi} \right\rvert\, \sqrt{2} x_{1} e^{-i \omega_{10} t}+\sqrt{2} x_{1} e^{-i \omega_{1}} \\
& =\frac{e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}}{\pi}\left(x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2} \cos \left(\omega_{10}-\omega_{01}\right) t\right)=\frac{e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}}{\pi} \begin{cases}\left|x_{1}+x_{2}\right|^{2} & \text { for: } t=0 \\
x_{1}^{2}+x_{2}^{2} & \text { for: } t=\tau_{\text {beat }} / 4 \\
\left|x_{1}-x_{2}\right|^{2} & \text { for: } t=\tau_{\text {beat }} / 2\end{cases}
\end{aligned}
$$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$R(3)$ Angular momentum generators by $U(2)$ analysis $(v=1)$ or $(j=1 / 2)$ block \mathbf{H} matrices of $\mathrm{U}(2)$ oscillator
Use irreps of unit operator $\mathbf{S}_{0}=\mathbf{1}$ and spin operators $\left\{\mathbf{S}, \mathbf{S}_{V}, \mathbf{S}_{Z}\right\}$. (also known as: $\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}$)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)^{\swarrow}+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
$$

$R(3)$ Angular momentum generators by $U(2)$ analysis $(v=1)$ or $(j=1 / 2)$ block \mathbf{H} matrices of $\mathrm{U}(2)$ oscillator
Use irreps of unit operator $\mathbf{S}_{0}=\mathbf{1}$ and spin operators $\left\{\mathbf{S}, \mathbf{S}_{V}, \mathbf{S}_{Z}\right\}$. (also known as: $\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}$)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
$$

$(v=2)$ or $(j=1) 3$-by- 3 block uses their vector, irreps.
$\left(\begin{array}{ccc}2 A & \sqrt{2}(B-i C) & \cdot \\ \sqrt{2}(B+i C) & A+D & \sqrt{2}(B-i C) \\ & \sqrt{2}(B+i C) & 2 D\end{array}\right)=(A+D)\left(\begin{array}{cc}1 & \cdot \\ \cdot & 1 \\ \cdots & \cdot \\ \cdot & 1\end{array}\right)+2 B\left(\begin{array}{ccc}\cdot & \frac{\sqrt{2}}{2} & \cdot \\ \frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\ \cdot & \frac{\sqrt{2}}{2} & \cdot\end{array}\right)+2 C\left(\begin{array}{ccc}\cdot & -i \frac{\sqrt{2}}{2} & \\ \hline i \frac{\sqrt{2}}{2} & \cdot & -i \frac{\sqrt{2}}{2} \\ & i \frac{\sqrt{2}}{2} & \cdot\end{array}\right)+(A-D)\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & 0 & 1 \\ \cdot & \cdot & -1\end{array}\right)$
$R(3)$ Angular momentum generators by $U(2)$ analysis
$(v=1)$ or $(j=1 / 2)$ block \mathbf{H} matrices of $\mathrm{U}(2)$ oscillator
Use irreps of unit operator $\mathbf{S}_{0}=\mathbf{1}$ and spin operators $\left\{\mathbf{S}, \mathbf{S}_{Y}, \mathbf{S}_{Z}\right\}$. (also known as: $\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}$)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
$$

$(v=2)$ or $(j=1) 3$-by- 3 block uses their vectorvirreps.
 $(v=3)$ or $(j=3 / 2)$ 4-by-4 block uses Dirac spinor irreps.

$R(3)$ Angular momentum generators by $U(2)$ analysis
$(v=1)$ or $(j=1 / 2)$ block \mathbf{H} matrices of $\mathrm{U}(2)$ oscillator
Use irreps of unit operator $\mathbf{S}_{0}=\mathbf{1}$ and spin operators $\left\{\mathbf{S}_{X}, \mathbf{S}_{Y}, \mathbf{S}_{Z}\right\}$. (also known as: $\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}$)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
$$

$(v=2)$ or $(j=1) 3$-by-3 block uses their vector irreps.

$(v=2 j)$ or $(2 j+1)$-by- $(2 j+1)$ block uses $\mathrm{D}^{(j)}\left(\mathbf{s}_{\mu}\right)$ irreps of $\mathrm{U}(2)$ or $\mathrm{R}(3)$.
$\langle\mathbf{H}\rangle^{j-\text { block }}=2 j \Omega_{0}\langle\mathbf{1}\rangle^{j}+$
$\boldsymbol{\Omega}_{X}\left\langle\mathbf{s}_{X}\right\rangle^{j}$
$+\Omega_{Y}\left\langle\mathbf{s}_{Y}\right\rangle^{j}$
$+\Omega_{Z}\left\langle\mathbf{s}_{Z}\right\rangle^{j}$
$R(3)$ Angular momentum generators by $U(2)$ analysis
$(v=1)$ or $(j=1 / 2)$ block \mathbf{H} matrices of $\mathrm{U}(2)$ oscillator
Use irreps of unit operator $\mathbf{S}_{0}=\mathbf{1}$ and spin operators $\left\{\mathbf{S}_{X}, \mathbf{S}_{Y}, \mathbf{S}_{Z}\right\}$. (also known as: $\left\{\mathbf{S}_{B}, \mathbf{S}_{C}, \mathbf{S}_{A}\right\}$)

$$
\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+2 B\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+2 C\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)+(A-D)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
$$

$(v=2)$ or $(j=1) 3$-by-3 block uses their vector,irreps.
$\left(\begin{array}{ccc}2 A & \sqrt{2}(B-i C) & \\ \sqrt{2}(B+i C) & A+D & \sqrt{2}(B-i C) \\ & \sqrt{2}(B+i C) & 2 D\end{array}\right)=(A+D)\left(\begin{array}{c}1 \\ 1 \\ \cdots \\ \vdots \\ \cdots\end{array}\right)$ $(v=3)$ or $(j=3 / 2) 4$-by-4 block uses Dirac spinor irreps.
${ }_{3}^{3 A} \quad \sqrt{3}(B-i C)$

$(v=2 j)$ or $(2 j+1)$-by- $(2 j+1)$ block \mid uses $D^{(j)}\left(\mathbf{s}_{\mu}\right)$ irreps of $U(2)$ or $\mathrm{R}(3)$.

$$
\langle\mathbf{H}\rangle^{j-\text { block }}=2 j \Omega_{0}\left\langle 1 \mathbf{1}^{j}+\quad \Omega_{X}\left\langle\mathbf{s}_{X}\right\rangle^{j} \quad+\Omega_{Y}\left\langle\mathbf{s}_{Y}\right\rangle^{j} \quad+\Omega_{Z}\left\langle\mathbf{s}_{Z}\right\rangle^{j}\right.
$$

All j-block matrix operators factor into raisp-n-lover opetatars $\mathbf{s}_{ \pm}=\mathbf{s} \pm i \mathbf{s}_{Y}$ plus the diagonal \mathbf{s}_{Z}

$$
\langle\mathbf{H}\rangle^{j-\text {-block }}=2 j \Omega_{0}\langle\mathbf{1}\rangle^{j}+\left[\left(\Omega_{X}-i \boldsymbol{\Omega}_{Y}\right)\left\langle\mathbf{s}_{X}+\mathbf{s}_{Y}\right\rangle^{j}+\left(\Omega_{X}+i \Omega_{Y}\right)\left\langle\mathbf{s}_{X}-i \mathbf{s}_{Y}\right\rangle^{j}\right] / 2+\Omega_{Z}\left\langle\mathbf{s}_{Z}\right\rangle^{j}
$$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring $2 D$-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}

$$
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
$$

Starting with $j=1 / 2$ we see that \mathbf{S}_{+}is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$
\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+i\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\mathbf{P}_{12}
$$

Such operators can be upgraded to creation-destruction operator combinations $\mathbf{a}^{\dagger} \mathbf{a}$

$$
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
$$

Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}

$$
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathbf{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
$$

Starting with $j=1 / 2$ we see that $\mathbf{S}+$ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$
\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+i\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\mathbf{P}_{12}
$$

Such operators can be upgraded to creation-destruction operator combinations àa

$$
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
$$

Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is:

$$
\begin{aligned}
=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow} \\
\left\langle\mathbf{s}_{Z}\left(\frac{1}{2}\right)\right.
\end{aligned} D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2} \\
\mathbf{s}_{Z} & =\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\end{array}\right.
$$

Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}

$$
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathrm{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{S}_{Y}=\mathbf{s}_{+}^{\dagger}
$$

Starting with $j=1 / 2$ we see that $\mathbf{S}+$ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$
\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+i\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\mathbf{P}_{12}
$$

Such operators can be upgraded to creation-destruction operator combinations àa

$$
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
$$

Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is:
This suggests an $\mathbf{a}^{\dagger} \mathbf{a}$ form for \mathbf{s}_{Z}.

$$
\begin{aligned}
& =\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow} \\
& \left\langle\mathbf{s}_{z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
& \mathbf{s}_{Z}=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\top} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\end{aligned}
$$

Let $\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}$ create up-spin \uparrow

$$
|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle
$$

Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}

$$
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
$$

Starting with $j=1 / 2$ we see that \mathbf{S}_{+}is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$

$$
\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+i \mathbf{S}_{Y}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)+i\left(\begin{array}{cc}
0 & -\frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\mathbf{P}_{12}
$$

Such operators can be upgraded to creation-destruction operator combinations àa

$$
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
$$

Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is:
This suggests an $\mathbf{a}^{\dagger} \mathbf{a}$ form for \mathbf{s}_{Z}.

$$
\begin{aligned}
&=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow} \\
&\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
& \mathbf{s}_{Z}=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\top} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\end{aligned}
$$

Let $\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}$ create up-spin \uparrow

$$
|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle
$$

Let $\mathbf{a}_{2}^{\dagger}=\mathbf{a}_{\downarrow}^{\dagger}$ create dn-spin \downarrow
$|2\rangle=|\downarrow\rangle=\left|\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle=\mathbf{a}_{\downarrow}^{\dagger}|0\rangle$

Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}_{-}

$$
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathbf{i} \mathbf{S}_{Y}=\mathbf{s}_{+}^{\dagger}
$$

Starting with $j=1 / 2$ we see that $\mathbf{S}+$ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$
$\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+\mathbf{S}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}$
Such operators can be upgraded to creation-destruction operator combinations àa

$$
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
$$

Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is:

This suggests an $\mathbf{a}^{\dagger} \mathbf{a}$ form for \mathbf{s}_{Z}.
Let $\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}$ create up-spin \uparrow

$$
|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle
$$

destroys dn-spin \downarrow creates up-spin \uparrow
to raise angular momentum by one \hbar unit

$$
\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}|\downarrow\rangle=|\uparrow\rangle \quad \text { or: } \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}|2\rangle=|1\rangle
$$

Angular momentum raise-n-lower operators \mathbf{S}_{+}and \mathbf{S}.

$$
\mathbf{s}_{+}=\mathbf{s}_{X}+\mathbf{i} \mathbf{s}_{Y} \text { and } \mathbf{s}_{-}=\mathbf{s}_{X}-\mathrm{i} \mathbf{s}_{Y}=\mathbf{s}_{+}^{\dagger}
$$

Starting with $j=1 / 2$ we see that $\mathbf{S}+$ is an elementary projection operator $\mathbf{e}_{12}=|1\rangle\langle 2|=\mathbf{P}_{12}$
$\left\langle\mathbf{s}_{+}\right\rangle^{\frac{1}{2}}=D^{\frac{1}{2}}\left(\mathbf{s}_{+}\right)=D^{\frac{1}{2}}\left(\mathbf{s}_{X}+\mathbf{i}_{Y}\right)=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)+i\left(\begin{array}{cc}0 & -\frac{i}{2} \\ \frac{i}{2} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\mathbf{P}_{12}$
Such operators can be upgraded to creation-destruction operator combinations àa

$$
\mathbf{s}_{+}=\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}=\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}, \quad \mathbf{s}_{-}=\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right)^{\dagger}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}
$$

Hamilton-Pauli-Jordan representation of \mathbf{s}_{Z} is:

This suggests an $\mathbf{a}^{\dagger} \mathbf{a}$ form for \mathbf{s}_{Z}.
Let $\mathbf{a}_{1}^{\dagger}=\mathbf{a}_{\uparrow}^{\dagger}$ create up-spin \uparrow

$$
\begin{aligned}
&|1\rangle=|\uparrow\rangle=\left|\begin{array}{c}
1 / 2 \\
+1 / 2
\end{array}\right\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle=\mathbf{a}_{\uparrow}^{\dagger}|0\rangle \\
& \begin{array}{c}
\text { destroys dn-spin } \downarrow \\
\text { creates up-spin } \uparrow
\end{array}
\end{aligned}
$$

to raise angular momentum by one \hbar unit

$$
\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\downarrow}|\downarrow\rangle=|\uparrow\rangle \quad \text { or: } \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}|2\rangle=|1\rangle
$$

$$
\begin{aligned}
&=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow} \\
&\left\langle\mathbf{s}_{Z}\right\rangle^{\left(\frac{1}{2}\right)}=D^{\left(\frac{1}{2}\right)}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
& \mathbf{s}_{Z}=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)=\frac{1}{2}\left(\mathbf{a}_{\uparrow}^{\dagger} \mathbf{a}_{\uparrow}-\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\downarrow}\right)
\end{aligned}
$$

Let $\mathbf{a}_{2}^{\dagger}=\mathbf{a}_{\downarrow}^{\dagger}$ create dn-spin \downarrow
$|2\rangle=|\downarrow\rangle=\left|\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle=\mathbf{a}_{\downarrow}^{\dagger}|0\rangle$
$\mathbf{s}_{-}=\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}=\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}$ destroys up-spin \uparrow creates dn-spin \downarrow
to lower angular momentum by one \hbar unit $\mathbf{a}_{\downarrow}^{\dagger} \mathbf{a}_{\uparrow}|\uparrow\rangle=|\downarrow\rangle$ or: $\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}|1\rangle=|2\rangle$

Symmetry group $\mathscr{G}=\mathrm{U}(2)$ representations, 2D HO Hamiltonian $\mathbf{H}=\hbar \omega_{a b} \mathbf{a}_{a}{ }^{\dagger} \mathbf{a}_{b}$ operators, 2D HO wave eigenfunctions $\Psi_{\mathrm{n}, \mathrm{m}}$, and coherent $[\boldsymbol{\alpha}]$ states
Factoring 2 D-HO Hamiltonian $\mathbf{H}=\frac{A}{2}\left(\mathbf{p}_{1}^{2}+\mathbf{x}_{1}^{2}\right)+B\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{p}_{1} \mathbf{p}_{2}\right)+C\left(\mathbf{x}_{1} \mathbf{p}_{2}-\mathbf{x}_{2} \mathbf{p}_{1}\right)+\frac{D}{2}\left(\mathbf{p}_{2}^{2}+\mathbf{x}_{2}^{2}\right)$
2D-Oscillator basic states and operations
Commutation relations
Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry Anti-commutation relations
Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
Outer product arrays

Entangled 2-particle states
Two-particle (or 2-dimensional) matrix operators
$U(2)$ Hamiltonian and irreducible representations
$2 D$-Oscillator states related $3 D$ angular momentum multiplets
$R(3)$ Angular momentum generators by $U(2)$ analysis
Angular momentum raise-n-lower operators \mathbf{s}_{+}and \mathbf{s}_{-}
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle$
Oscillator total quanta: $\mathrm{v}=\left(n_{1}+n_{2}\right)$

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle
$$

$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=R(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
$$

$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=R(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle \quad\left(\begin{array}{l}
j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
m=\left(n_{1}-n_{2}\right) / 2
\end{array} \quad \begin{array}{l}
n_{1}=j+m \\
n_{2}=j-m
\end{array}\right.
$$

$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $\mathrm{v}=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
$$

$$
\begin{gathered}
j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
m=\left(n_{1}-n_{2}\right) / 2
\end{gathered}
$$

$$
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left.\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{i-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
$$

$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=R(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
$$

$$
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{i-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
$$

Oscillator $\mathbf{a}^{\dagger} \mathbf{a} .$.
$\mathbf{a}_{1}^{+} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle$
$\mathbf{a}_{2}^{+} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle$
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=R(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
$$

$$
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0\rangle=\left|{ }_{m}^{j}\right\rangle
$$

Oscillator $\mathbf{a}^{\dagger} \mathbf{a}$ give \mathbf{s}_{+}matrices.
$\left.\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{\left.n_{2}-1\right\rangle}^{\Longrightarrow} \mathbf{s}_{+}\right| \begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle$
$\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle$
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left.\right|_{m} ^{j}\right\rangle
$$

$$
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0\rangle=\left|{ }_{m}^{j}\right\rangle
$$

Oscillator $\mathbf{a}^{\dagger} \mathbf{a}$ give $\mathbf{s}_{ \pm}$matrices.
$\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \underset{\left.\mathbf{s}_{+}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle}{ }\right\rangle$
$\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}_{-}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle$
$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=R(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left.\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}} 00\right\rangle=\left|{ }_{m}^{j}\right\rangle
$$

$$
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0\rangle=\left|{ }_{m}^{j}\right\rangle
$$

Oscillator $\mathbf{a}^{\dagger} \mathbf{a}$ give $\mathbf{s}_{ \pm}$matrices.
$\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle$
$\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}_{\mid}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle$

1/2-difference of number-ops is $\mathbf{s}_{\text {}}$ eigenvalue.

$$
\left.\left.\begin{array}{l}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}\right\} \mathbf{s}_{Z}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\frac{n_{1}-n_{2}}{2}\left|\begin{array}{c}
j \\
m
\end{array}\right\rangle=\left.m\right|_{m} ^{j}\right\rangle
$$

$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=\mathrm{R}(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
$$

$$
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}=j+m \\
& n_{2}=j-m
\end{aligned}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0\rangle=\left|{ }_{m}^{j}\right\rangle
$$

Oscillator $\mathbf{a}^{\dagger} \mathbf{a}$ give $\mathbf{s}_{ \pm}$matrices.

$\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\left|\begin{array}{|c}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle$
$\left.\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{s}_{-\left|\begin{array}{c}j \\ m\end{array}\right\rangle}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle$

1/2-difference of number-ops is \mathbf{s}_{Z} eigenvalue.

$$
\left.\left.\left.\begin{array}{l}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}\right\} \mathbf{s}_{Z}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)\left|\begin{array}{|c}
j \\
m
\end{array}\right\rangle=\left.\frac{n_{1}-n_{2}}{2}\right|_{m} ^{j}\right\rangle=\left.m\right|_{m} ^{j}\right\rangle
$$

$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors
$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=R(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
$$

$$
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
$$

$$
\begin{gathered}
n_{1}=j+m \\
n_{2}=j-m
\end{gathered}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0\rangle=\left|{ }_{m}^{j}\right\rangle
$$

Oscillator $\mathbf{a}^{\dagger} \mathbf{a}$ give $\mathbf{s}_{ \pm}$matrices.
$\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle$
$\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{S}_{-}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle$

1/2-difference of number-ops is $\mathbf{s}_{\text {}}$ eigenvalue.

$$
\left.\left.\left.\begin{array}{l}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}\right\} \mathbf{s}_{Z}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)\left|\begin{array}{|c}
j \\
m
\end{array}\right\rangle=\left.\frac{n_{1}-n_{2}}{2}\right|_{m} ^{j}\right\rangle=\left.m\right|_{m} ^{j}\right\rangle
$$

$j=3 / 2$ spinor \mathbf{S}_{+}
\ldots and $\mathbf{s}_{Z}\left(\frac{3}{2}\right.$
$D^{\frac{3}{2}}\left(\mathbf{s}_{+}\right)=\left(\begin{array}{cccc}\cdot & \sqrt{3} & \cdot & \cdot \\ 0 & \cdot & \sqrt{4} & \cdot \\ \cdot & 0 & \cdot & \sqrt{3} \\ \cdot & \cdot & 0 & \cdot\end{array}\right)=\left(D^{\frac{3}{2}}\left(\mathbf{s}_{-}\right)\right)^{\dagger}, \quad D^{\frac{3}{2}}\left(\mathbf{s}_{Z}\right)=\left(\begin{array}{cccc}2 & \frac{1}{2} & & \\ \cdot & \frac{1}{2} & \cdot & \cdot \\ \cdot & \cdot & -\frac{1}{2} & \cdot \\ \cdot & \cdot & \cdot & -\frac{3}{2}\end{array}\right)$

$S U(2) \subset U(2)$ oscillators vs. $R(3) \subset O(3)$ rotors

$U(2)$ boson oscillator states $\left|n_{1}, n_{2}\right\rangle=R(3)$ spin or rotor states $\left|\begin{array}{l}j \\ m\end{array}\right\rangle$
Oscillator total quanta: $v=\left(n_{1}+n_{2}\right) \quad$ Rotor total momenta: $j=v / 2$ and z-momenta: $m=\left(n_{1}-n_{2}\right) / 2$

$$
\left|n_{1} n_{2}\right\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{1}!n_{2}!}}|00\rangle=\frac{\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle
$$

$$
\begin{aligned}
& j=v / 2=\left(n_{1}+n_{2}\right) / 2 \\
& m=\left(n_{1}-n_{2}\right) / 2
\end{aligned}
$$

$$
\begin{gathered}
n_{1}=j+m \\
n_{2}=j-m
\end{gathered}
$$

$U(2)$ boson oscillator states $=U(2)$ spinor states

$$
\left|n_{\uparrow} n_{\downarrow}\right\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{n_{1}}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{\uparrow}!n_{\downarrow}!}}|00\rangle=\frac{\left(\mathbf{a}_{\uparrow}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{\downarrow}^{\dagger}\right)^{j-m}}{\sqrt{(j+m)!(j-m)!}}|00\rangle=\left|{ }_{m}^{j}\right\rangle
$$

Oscillator $\mathbf{a}^{\dagger} \mathbf{a}$ give $\mathbf{s}_{ \pm}$matrices.
$\left.\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1 n_{2}-1\right\rangle \Rightarrow \mathbf{s}_{+}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m+1} \sqrt{j-m}\right|_{m+1} ^{j}\right\rangle$
$\left.\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=\sqrt{n_{1}} \sqrt{n_{2}+1}\left|n_{1}-1 n_{2}+1\right\rangle \Rightarrow \mathbf{S}_{-}\left|\begin{array}{l}j \\ m\end{array}\right\rangle=\left.\sqrt{j+m} \sqrt{j-m+1}\right|_{m-1} ^{j}\right\rangle$

1/2-difference of number-ops is $\mathbf{s}_{\text {L }}$ eigenvalue.

$$
\left.\left.\left.\begin{array}{l}
\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\left|n_{1} n_{2}\right\rangle=n_{1}\left|n_{1} n_{2}\right\rangle \\
\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\left|n_{1} n_{2}\right\rangle=n_{2}\left|n_{1} n_{2}\right\rangle
\end{array}\right\} \mathbf{s}_{Z}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle=\frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)\left|\begin{array}{|c}
j \\
m
\end{array}\right\rangle=\left.\frac{n_{1}-n_{2}}{2}\right|_{m} ^{j}\right\rangle=\left.m\right|_{m} ^{j}\right\rangle
$$

$j=1 \text { vector } \mathbf{S}_{+}$ $D^{1}\left(\mathbf{s}_{+}\right)=D^{1}\left(\mathbf{s}_{X}+i \mathbf{s}\right.$	$\left.\begin{array}{ccc}\cdot & \frac{\sqrt{2}}{2} & \cdot \\ \frac{\sqrt{2}}{2} & \cdot & \frac{\sqrt{2}}{2} \\ \cdot & \frac{\sqrt{2}}{2} & \cdot\end{array}\right)$		$\begin{array}{ccc}\cdot & -i \frac{\sqrt{2}}{2} & \\ i \frac{\sqrt{2}}{2} & \cdot & -i \frac{\sqrt{2}}{2} \\ \text {. } & i \frac{\sqrt{2}}{2} & \end{array}$	$\left(\begin{array}{ccc} \\ \cdot & \sqrt{2} & \cdot \\ 0 & \cdot & \sqrt{2} \\ \cdot & 0 & \cdot\end{array}\right), \quad \begin{aligned} & \text { and } \mathbf{S}_{Z} \\ & \end{aligned}$		$\left.\begin{array}{cc}\cdot & \cdot \\ 0 & \cdot \\ \cdot & -1\end{array}\right)$

Properties of $1 \mathrm{D}-\mathrm{HO}$ coherent state

Coherent wave packet uncertainty relation: $\Delta n \cdot \Delta \phi>\pi / n$

