AMOP
reference links on following page
2.05.18 class 7.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Creation-Destruction ata algebra of $U(1)$ operatorss
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states

Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators,
boost-translation combinations

Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page
UAF Physics UTube channel
2014 AMOP
2017 Group Theory for QM
$$
2018 \text { AMOP }
$$

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978 (Alt Scanned version)
Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - aip-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59-jcp-Reimer-Harter-1997 (HiRez)
Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013
Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-icp-1991

QTCA Unit 10 Ch 30-2013

AMOP Ch 32 Molecular Symmetry and Dynamics - 2019
AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) https://kb.osu.edu/dspace/handle/1811/52324
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - ims - 2001

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ a operators, 1D HO wave eigenfunctions Ψ_{n}, and coherent α-states

Factoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators

Eigenstate creationism (and destructionism)
Vacuum state $|0\rangle$, $\quad 1$ st excited state $|1>| 2,\rangle, \ldots$

Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states

Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

1-D oscillator $\mathbf{a} \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

1-D oscillator $\mathbf{a} \ddagger \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { (with: } \mathbf{p}=\mathbf{h k} \text {) }
$$

1-D oscillator $\mathbf{a} \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\mathbf{h} \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

1-D oscillator $\mathbf{a} \dagger \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\mathbf{h} \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!
(Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

1-D oscillator $\mathbf{a} \dagger \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\mathbf{h} \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen! (Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

1-D oscillator $\mathbf{a} \dagger \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\mathbf{h} \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen! (Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

1-D oscillator $\mathbf{a} \dagger \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\mathbf{h} \mathbf{k}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen! (Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! нata! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P})
$$

(Use $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

1-D oscillator $\mathbf{a} \dagger \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen! (Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! нata! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don't ${ }_{\text {quite }}$ commute... (Use $\mathbf{X} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.

1-D oscillator $\mathbf{a} \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2 \quad \text { with: } \mathbf{p}=\mathbf{h} \mathbf{k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen! (Shows $\mathbf{x} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! HaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don’t ${ }_{\text {quite }}$ commute... (Use $\mathbf{X} \rightleftarrows \mathbf{p}$ symmetry)
$\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots$ so make symmetric factors.
Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

1-D oscillator $\mathbf{a} \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

$$
\text { with: } \mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! нaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}!\quad$ But, recall that \mathbf{X} and \mathbf{P} don’t ${ }_{\text {quite }}$ commute... (Use $\mathbf{X} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots \text { so make symmetric factors. }
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$
Proof:

$$
\langle x| \mathbf{x p}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)
$$

1-D oscillator $\mathbf{a} \mathbf{} \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

$$
\text { with: } \mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! нaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}!\quad$ But, recall that \mathbf{X} and \mathbf{P} don’t ${ }_{\text {quite }}$ commute... (Use $\mathbf{X} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots \text { so make symmetric factors. }
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$
Proof:

$$
\langle x| \mathbf{x p}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-x \frac{\partial}{\partial x} \psi(x)-\frac{\partial x}{\partial x} \psi(x)\right)
$$

1-D oscillator $\mathbf{a} \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

$$
\text { with: } \mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

A:Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! нaHa! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don’t ${ }_{\text {quite }}$ commute... (Use $\mathbf{X} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots \text { so make symmetric factors. }
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$
Proof:

$$
\langle x| \mathbf{x p}-\mathbf{p x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-x \frac{\partial}{\partial x} \psi(x)-\frac{\partial x}{\partial x} \psi(x)\right)=-\frac{\hbar}{i} \psi(x)
$$

1-D oscillator $\mathbf{a} \mathbf{a}$ algebra of $U(1)$ representations

Q: How to convert classical HO Hamiltonian to quantum HO Hamiltonian?

$$
E=H(x, p)=\frac{1}{2 M} p^{2}+\frac{1}{2} M \omega^{2} x^{2}
$$

A:Rewrite classical $H(x, p)$ with a thick pen!

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{p}^{2} / 2 M+V(\mathbf{x})=\mathbf{p}^{2} / 2 M+M \omega^{2} \mathbf{x}^{2} / 2
$$

Q: How to solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

$$
\text { with: } \mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}
$$

A: Rewrite $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with a THICKER pen!

$$
\mathbf{H}=\mathbf{P}^{2}+\mathbf{X}^{2} \text { where: } \mathbf{X}=\sqrt{ } M \omega \mathbf{X} / \sqrt{ } 2 \text { and } \mathbf{P}=\mathbf{p} / \sqrt{ }(2 M)
$$

Q: OK! нана! But, really how do you solve a quantum HO Hamiltonian $\mathbf{H}(\mathbf{x}, \mathbf{p})$?

A:Factor $\mathbf{P}^{2}+\mathbf{X}^{2}$! But, recall that \mathbf{X} and \mathbf{P} don’t ${ }_{\text {quite }}$ commute... (Use $\mathbf{X} \rightleftarrows \mathbf{p}$ symmetry)

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\mathbf{P}^{2}+\mathbf{X}^{2}=(\mathbf{X}-i \mathbf{P})(\mathbf{X}+i \mathbf{P}) / 2+(\mathbf{X}+i \mathbf{P})(\mathbf{X}-i \mathbf{P}) / 2 \ldots \text { so make symmetric factors. }
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$ (They only miss commuting by $0.00000000000 \times$ an

Proof:

QED:

$$
\langle x| \mathbf{x p}-\mathbf{p} \mathbf{x}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-\frac{\partial}{\partial x} x \psi(x)\right)=\frac{\hbar}{i}\left(x \frac{\partial}{\partial x} \psi(x)-x \frac{\partial}{\partial x} \psi(x)-\frac{\partial x}{\partial x} \psi(x)\right)=-\frac{\hbar}{i} \psi(x)=\hbar i \psi(x)=\langle x|[\mathbf{x}, \mathbf{p}]|\psi\rangle
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ a operators, 1D HO wave eigenfunctions Ψ_{n}, and coherent α-states

Factoring 1D-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $|0\rangle, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger n}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Creation-Destruction $\mathbf{a}+\mathbf{a}$ algebra

$$
\text { Define } \begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{x}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})
$$

Creation-Destruction $\mathbf{a} \dagger \mathbf{a}$ algebra

$$
\begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { and } \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\begin{aligned}
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})} \\
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]}
\end{aligned}
$$

Creation-Destruction $\mathbf{a} \dagger \mathbf{a}$ algebra

$$
\begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Define } \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\begin{aligned}
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})} \\
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1}}
\end{aligned}
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction $\mathbf{a} \dagger \mathbf{a}$ algebra

$$
\begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:

$$
\begin{aligned}
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})} \\
& {\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1} \quad\left(\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1} \quad \text { or } \quad \mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right.}
\end{aligned}
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction $\mathbf{a} \dagger \mathbf{a}$ algebra

$$
\text { Define } \begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})$ $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p} \mathbf{x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1} \quad\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1 \quad$ or $\quad \mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}$

1D-HO Hamiltonian in terms of $\mathbf{a}^{\dagger} \mathbf{a}$ operator
Recall: $\quad \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) / 2$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction $\mathbf{a} \dagger \mathbf{a}$ algebra

$$
\text { Define } \begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})$
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1}$

$$
\left[a, a^{\dagger}\right]=1
$$

$$
\text { or } \mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}
$$

$1 D$-HO Hamiltonian in terms of $\mathbf{a}^{\dagger} \mathbf{a}$ operator

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) / 2=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right) / 2
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Creation-Destruction $\mathbf{a} \dagger \mathbf{a}$ algebra

$$
\begin{aligned}
& \mathbf{a}=\frac{(\mathbf{X}+i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Destruction operator }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\frac{(\mathbf{X}-i \mathbf{P})}{\sqrt{\hbar \omega}}=\frac{(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})}{\sqrt{2 \hbar}} \\
& \text { Creation Operator }
\end{aligned}
$$

Commutation relations between $\mathbf{a}=(\mathbf{X}+i \mathbf{P}) / 2$ and $\mathbf{a}^{\dagger}=(\mathbf{X}-i \mathbf{P}) / 2$ with $\mathbf{X} \equiv \sqrt{M \omega \mathbf{X}} / \sqrt{ } 2$ and $\mathbf{P} \equiv \mathbf{p} / \sqrt{2 M}$:
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right] \equiv \mathbf{a} \mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})-\frac{1}{2 \hbar}(\sqrt{M \omega} \mathbf{x}-i \mathbf{p} / \sqrt{M \omega})(\sqrt{M \omega} \mathbf{x}+i \mathbf{p} / \sqrt{M \omega})$
$\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\frac{2 i}{2 \hbar}(\mathbf{p x}-\mathbf{x p})=\frac{-i}{\hbar}[\mathbf{x}, \mathbf{p}]=\mathbf{1} \quad\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1} \quad$ or $\quad \mathbf{a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}$
ID-HO Hamiltonian in terms of $\mathbf{a}^{\dagger} \mathbf{a}$ operator

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) / 2=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right) / 2=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1} \hbar \omega / 2
$$

Recall commutator $[\mathbf{x}, \mathbf{p}]$ relation: $[\mathbf{x}, \mathbf{p}] \equiv \mathbf{x p}-\mathbf{p x}=\hbar i \mathbf{1}$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ a operators, 1D HO wave eigenfunctions Ψ_{n}, and coherent α-states

Factoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $|0\rangle, \quad \quad 1$ st excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Eigenstate creationism (and destructionism) Given1D-HO Hamiltonian: $\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1} \hbar \omega / 2$ and commutation: $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1}$ or $\mathbf{a a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}$

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

Eigenstate creationism (and destructionism)

 Given 1 -HO Hamiltonian: $\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1} \hbar \omega / 2$ and commutation: $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1}$ or $\mathbf{a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}$Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Eigenstate creationism (and destructionism)

 Given1D-HO Hamiltonian: $\mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1} \hbar \omega / 2$ and commutation: $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1}$ or $\mathbf{a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}$Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\mathbf{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

Eigenstate creationism (and destructionism) Given1D-HO Hamiltonian: $\mathbf{H (\mathbf { x } , \mathbf { p }) = \hbar \omega \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } \hbar \omega / 2 \text { and commutation: } [\mathbf { a } , \mathbf { a } ^ { \dagger }] = \mathbf { 1 } \text { or } \mathbf { a a } ^ { \dagger } = \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } , - \cdots \cdots \cdots}$

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{\theta}$).

$$
\mathbf{a}|0\rangle=\mathbf{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0}$. $\quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$
Proof:

$$
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{-} \mathbf{a}^{\dagger}|0\rangle \quad+\hbar \omega / \mathbf{2} \mathbf{a}^{\dagger}|0\rangle
$$

Eigenstate creationism (and destructionism)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{\theta}$).

$$
\mathbf{a}|0\rangle=\mathbf{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

But, \mathbf{a}^{\dagger} acts on ground ket to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$
Proof:

$$
\begin{aligned}
& \mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{+} \mathbf{a}^{\dagger}|0\rangle \quad+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& \mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle=\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\top}|0\rangle
\end{aligned}
$$

Eigenstate creationism (and destructionism)

 Given1D-HO Hamiltonian: $\mathbf{H (\mathbf { x } , \mathbf { p }) = \hbar \omega \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } \hbar \omega / 2 \text { and commutation: } [\mathbf { a } , \mathbf { a } ^ { \dagger }] = \mathbf { 1 } \text { or } \mathbf { a } ^ { \dagger } = \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } , - \cdots \cdots}$Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

But, \mathbf{a}^{\dagger} acts on ground kett to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{I}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{P}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\boldsymbol{0} \quad+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle
\end{array}
$$

Eigenstate creationism (and destructionism)

Given1D-HO Hamiltonian: $\mathbf{H (x , \mathbf { p }) = \hbar \omega \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } \hbar \omega / 2 \text { and commutation: } [\mathbf { a } , \mathbf { a } ^ { \dagger }] = \mathbf { 1 } \text { or } \mathbf { a n } ^ { \dagger } = \mathbf { a } ^ { \dagger } \mathbf { a } + \mathbf { 1 } , - \cdots \cdots}$
Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

But, \mathbf{a}^{\dagger} acts on ground kett to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\mathbf{a}} \mathbf{a}^{\dagger}|0\rangle & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\mathbf{0} & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & Q E D: \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & +\hbar \omega / 2)|1\rangle=E_{1}|1\rangle \text { where: } E_{l}=\hbar \omega+E_{0}
\end{array}
$$

Eigenstate creationism (and destructionism)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

But, \mathbf{a}^{\dagger} acts on ground kett to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{1}=\hbar \omega+E_{0} . \quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\top} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\boldsymbol{0} & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & \text { QED: } \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & +\hbar \omega / 2)|1\rangle=E_{1}|1\rangle \text { where: } E_{I}=\hbar \omega+E_{0}
\end{array}
$$

One-quantum or 1 st excited eigenket $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$

Eigenstate creationism (and destructionism)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

But, \mathbf{a}^{\dagger} acts on ground kett to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{I}=\hbar \omega+E_{0}$. $\quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}|0\rangle & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a} \mathbf{a}^{\top} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\mathbf{0} & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & Q E D: \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & +\hbar \omega / 2)|1\rangle=E_{1}|1\rangle \text { where: } E_{I}=\hbar \omega+E_{0}
\end{array}
$$

One-quantum or 1 st excited eigenket $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$
For kets, \mathbf{a}^{\dagger} is creation operator while \mathbf{a} is destruction operator.

$$
\mathbf{a}|1\rangle=\mathbf{a a}^{\dagger}|0\rangle=\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle=|0\rangle
$$

Eigenstate creationism (and destructionism)

Define ground state $|0\rangle$ as the eigenstate of $\mathbf{H}(\mathbf{x}, \mathbf{p})$ with the zero point eigenvalue $E_{0}=\hbar \omega / 2$.

$$
\mathbf{H}(\mathbf{x}, \mathbf{p})|0\rangle=\hbar \omega / 2|0\rangle \quad\langle 0| \mathbf{H}(\mathbf{x}, \mathbf{p})=\hbar \omega / 2\langle 0|
$$

Action by \mathbf{a} on ground ket $|0\rangle$ (or \mathbf{a}^{\dagger} on ground bra $\langle 0|$) gives nothing (zero vectors $\boldsymbol{0}$).

$$
\mathbf{a}|0\rangle=\boldsymbol{0} \quad\langle 0| \mathbf{a}^{\dagger}=\mathbf{0}
$$

But, \mathbf{a}^{\dagger} acts on ground kett to give $|1\rangle=\mathbf{a}^{\dagger}|0\rangle$ with \mathbf{H} eigenvalue $E_{I}=\hbar \omega+E_{0}$. $\quad\left(|1\rangle=\mathbf{a}^{\dagger}|0\rangle,\langle 0| \mathbf{a}=\langle 1|.\right)$

$$
\begin{array}{rlrl}
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}^{\dagger}|0\rangle & +\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
\mathbf{H}(\mathbf{x}, \mathbf{p}) \mathbf{a}^{\dagger}|0\rangle & =\hbar \omega \mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle \\
& =\hbar \omega \mathbf{a}^{\dagger}|0\rangle+\boldsymbol{0} \quad+\hbar \omega / 2 \mathbf{a}^{\dagger}|0\rangle & \text { QED: } \\
\mathbf{H}(\mathbf{x}, \mathbf{p})|1\rangle & =(\hbar \omega & +\hbar \omega / 2)|1\rangle=E_{l}|1\rangle \text { where: } E_{l}=\hbar \omega+E_{0} \\
\text { One-quantum or 1st excited eigenket }|1\rangle=\mathbf{a}^{\dagger}|0\rangle
\end{array}
$$

For kets, \mathbf{a}^{\dagger} is creation operator while \mathbf{a} is destruction operator.

$$
\mathbf{a}|1\rangle=\mathbf{a a}^{\dagger}|0\rangle=\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)|0\rangle=|0\rangle
$$

For bras, \mathbf{a}^{\dagger} is destruction operator while \mathbf{a} is creation operator.

$$
\langle 1| \mathbf{a}^{\dagger}=\langle 0| \mathbf{a a}^{\dagger}=\langle 0|\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{1}\right)=\langle 0|
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ a operators, 1D HO wave eigenfunctions Ψ_{n}, and coherent α-states

Factoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>,<1$ st excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger n}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$
with: $\mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=0
$$

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$ with: $\mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle= & \frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})
\end{aligned}=0, \begin{array}{r}
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}
\end{array}
$$

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$ with: $\mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega}) & =0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega} & =0 \\
\psi_{0}^{\prime}(x) & =-\frac{M \omega}{\hbar} x \psi_{0}(x)
\end{aligned}
$$

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$ with: $\mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega}) & =0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega} & =0 \\
\psi_{0}^{\prime}(x) & =-\frac{M \omega}{\hbar} x \psi_{0}(x) \\
\int \frac{d \psi}{\psi}=\int \frac{-M \omega}{\hbar} x d x, \quad \ln \psi+\ln \text { const. }=\frac{-M \omega}{\hbar} \frac{x^{2}}{2}, \quad \psi & =\frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}
\end{aligned}
$$

Wavefunction creationism (Vacuum state)

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$
with: $\mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega}) & =0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega} & =0 \\
\psi_{0}^{\prime}(x) & =-\frac{M \omega}{\hbar} x \psi_{0}(x) \\
\int \frac{d \psi}{\psi}=\int \frac{-M \omega}{\hbar} x d x, \quad \ln \psi+\ln \text { const. }=\frac{-M \omega}{\hbar} \frac{x^{2}}{2}, \quad \psi & =\frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}
\end{aligned}
$$

Wavefunction creationism (Vacuum state)

Coordinate representation of the "nothing" equation $\langle x| \mathbf{a}|0\rangle=\mathbf{0}$
with: $\mathbf{p}=\mathbf{h k}=\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
\begin{aligned}
\langle x| \mathbf{a}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle+i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega}) & =0 \\
\sqrt{M \omega} x \psi_{0}(x)+i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega} & =0 \\
\psi_{0}^{\prime}(x) & =-\frac{M \omega}{\hbar} x \psi_{0}(x) \\
\int \frac{d \psi}{\psi}=\int \frac{-M \omega}{\hbar} x d x, \quad \ln \psi+\ln \text { const. }=\frac{-M \omega}{\hbar} \frac{x^{2}}{2}, \quad \psi & =\frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}=\frac{e^{-M \omega x^{2} / 2 \hbar}}{\left(\frac{\pi \hbar}{M \omega}\right)^{1 / 4}}
\end{aligned}
$$

The normalization const. is evaluated using a standard Gaussian integral: $\int_{-\infty}^{\infty} d x e^{-\alpha x^{2}}=\sqrt{\frac{\pi}{\alpha}}$

$$
\left\langle\psi_{0} \mid \psi_{0}\right\rangle=1=\int_{-\infty}^{\infty} d x \frac{e^{-M \omega x^{2} 2 / 2 \hbar}}{\text { const. }^{2}}=\sqrt{\frac{\pi \hbar}{M \omega}} / \text { const. }^{2} \Rightarrow \text { const. }=\left(\frac{\pi \hbar}{M \omega}\right)^{1 / 4},
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ a operators, 1D HO wave eigenfunctions Ψ_{n}, and coherent α-states

Factoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>$,
$1^{\text {st }}$ excited state $\mid 1>, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger n}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Wavefunction creationism (1st Excited state)
1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Wavefunction creationism (1st Excited state)
1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Wavefunction creationism (1st Excited state)
1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representations generate the first excited state
wavefunction.

$$
\langle x \mid 1\rangle=\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} \downarrow \psi_{0}(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right)
$$

Wavefunction creationism (1st Excited state)
1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representations generate the first excited state

$$
\begin{aligned}
\langle x \mid 1\rangle & =\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} \downarrow_{0}(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}-i \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }} / \sqrt{M \omega}\right)
\end{aligned}
$$

$$
=\hbar \omega / 2
$$

Wavefunction creationism (1st Excited state)
1st excited state wavefunction $\psi_{1}(x)=\langle x \mid 1\rangle$

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\langle x \mid 1\rangle=\psi_{1}(x)
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representati申ns generate the first excited state
wavefunction.

$$
\begin{aligned}
\langle x \mid 1\rangle & =\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} \downarrow \psi_{0}(x)-i \frac{\hbar}{i} \frac{\partial \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}-i \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}\left(\sqrt{M \omega} x+i \frac{\hbar}{i} \frac{M \omega x}{\hbar} / \sqrt{M \omega}\right)
\end{aligned}
$$

Expanding the creation operator

$$
\langle x| \mathbf{a}^{\dagger}|0\rangle=\frac{1}{\sqrt{2 \hbar}}(\sqrt{M \omega}\langle x| \mathbf{x}|0\rangle-i\langle x| \mathbf{p}|0\rangle / \sqrt{M \omega})=\langle x \mid 1\rangle=\psi_{1}(x)
$$

The operator coordinate representatiqns generate the first excited state

$$
\begin{aligned}
\langle x \mid 1\rangle & =\psi_{1}(x)=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \psi_{0}(x)-i \frac{\hbar}{i} \frac{\hbar \psi_{0}(x)}{\partial x} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{M \omega} x \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}-i \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }} / \sqrt{M \omega}\right) \\
& =\frac{1}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}\left(\sqrt{M \omega} x+i \frac{\hbar}{i} \frac{M \omega x}{\hbar} / \sqrt{M \omega}\right) \\
& =\frac{\sqrt{M \omega}}{\sqrt{2 \hbar}} \frac{e^{-M \omega x^{2} / 2 \hbar}}{\text { const. }}(2 x)=\left(\frac{M \omega}{\pi \hbar}\right)^{3 / 4} \sqrt{2 \pi}\left(x e^{-M \omega x^{2} / 2 \hbar}\right)
\end{aligned}
$$

$$
=\hbar \omega / 2
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction a'a algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $|0\rangle, \quad \quad l^{\text {st }}$ excited state $\left.|1>| 2,\right\rangle, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities,

Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.

Normal ordering for matrix calculation

Normal ordering: move destructive \mathbf{a} operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[\mathrm{f}(\mathrm{a}), \mathrm{g}\left(\mathrm{a}^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[\mathrm{f}(\mathrm{a}), \mathrm{g}\left(\mathrm{a}^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D Ho Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $|0\rangle, \quad \quad l^{\text {st }}$ excited state $\left.|1>| 2,\right\rangle, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B A C}-\mathbf{B C A}$ $=[A, B] C+B[A, C]$
$[\mathbf{A B}, \mathbf{C}]=-[\mathbf{C}, \mathbf{A B}]=-[\mathbf{C}, \mathbf{A}] \mathbf{B}-\mathbf{A}[\mathbf{C}, \mathbf{B}]$ $=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=A B C-B C A=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

$[\mathbf{A B}, \mathbf{C}]=-[\mathbf{C}, \mathbf{A B}]=-[\mathbf{C}, \mathbf{A}] \mathbf{B}-\mathbf{A}[\mathbf{C}, \mathbf{B}]$ $=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots,,\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=A B C-B C A=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\begin{aligned}
\mathbf{a a}^{\dagger n}= & n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \longleftarrow+\mathbf{a}^{\dagger n} \mathbf{a} \\
\mathbf{a}^{2} \mathbf{a}^{\dagger n}= & n \mathbf{a} \mathbf{a}^{\dagger n-1} \\
& =n(n-1) \mathbf{a}^{\dagger n-2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& =n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2}
\end{aligned}
$$

$$
=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]
$$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\begin{array}{rlrl}
\mathbf{a a}^{\dagger n}= & n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \longleftrightarrow & \\
\mathbf{a}^{2} \mathbf{a}^{\dagger n} & =n \mathbf{a}^{\dagger n-1} & & \mathbf{a} \mathbf{a}^{\dagger n} \mathbf{a} \\
& =n(n-1) \mathbf{a}^{\dagger n-2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& =n(n-1) \mathbf{a}^{\dagger n-2} & +2 n \mathbf{a}^{\dagger n-1} \mathbf{a} & +\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
\mathbf{a}^{3} \mathbf{a}^{\dagger n} & =n(n-1) \mathbf{a} \mathbf{a}^{\dagger n-2} & +2 n \mathbf{a} \mathbf{a}^{\dagger n-1} \mathbf{a} & +\mathbf{a} \mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& =n(n-1)(n-2) \mathbf{a}^{\dagger n-3}+n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+\mathbf{a}^{\dagger n} \mathbf{a}^{3} \\
& =n(n-1)(n-2) \mathbf{a}^{\dagger n-3} & +3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} & +3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{3}
\end{array}
$$

$$
=[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]
$$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots,, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=A B C-B C A=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\begin{aligned}
\mathbf{a a}^{\dagger n}= & n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a} \longleftarrow \mathbf{a a}^{\dagger n} \mathbf{a} \\
\mathbf{a}^{2} \mathbf{a}^{\dagger n}= & n \mathbf{a} \mathbf{a}^{\dagger n-1} \\
& =n(n-1) \mathbf{a}^{\dagger n-2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a}^{\dagger n} \mathbf{a}^{2} \\
& =n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2}
\end{aligned}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a} \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a} \mathbf{a}^{\dagger n-1} \mathbf{a}
$$

$$
=n(n-1)(n-2) \mathbf{a}^{\dagger n-3}+n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}+2 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2}+\mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

$$
=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3} \quad+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{\downarrow!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $|0\rangle, \quad \quad 1$ st excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities,

Binomial expansion identities

$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger n}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=A B C-B C A=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:

$$
\mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

$$
\begin{aligned}
{[\mathbf{A B}, \mathbf{C}] } & =-[\mathbf{C}, \mathbf{A B}]=-[\mathbf{C}, \mathbf{A}] \mathbf{B}-\mathbf{A}[\mathbf{C}, \mathbf{B}] \\
& =[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]
\end{aligned}
$$

$\mathbf{a}^{2} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a}^{\dagger n-2}+2 n \mathbf{a}^{\dagger n-1} \mathbf{a}+\mathbf{a}^{\dagger n} \mathbf{a}^{2}$

$$
\mathbf{a}^{2} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

$$
\begin{aligned}
& \mathbf{a}^{\prime}=n(n-1)(n-2) \mathbf{a}^{n-5} \\
& \text { Use binomial coefficients }\binom{+3 n(n-1) \mathbf{a}^{n-2}}{r}=\frac{m!}{r!(m-r)!} \text { in expansion for power } m=. .3,4 \ldots
\end{aligned}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3}+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{n!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots,, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[A, B] C+B A C-B C A$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:
$\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
$\mathbf{a}^{2} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2}$
$\mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{3}$
Use binomial coefficients $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ in expansion for power $m=. .3,4$..

$$
\begin{aligned}
{[\mathbf{A B}, \mathbf{C}] } & =-[\mathbf{C}, \mathbf{A B}]=-[\mathbf{C}, \mathbf{A}] \mathbf{B}-\mathbf{A}[\mathbf{C}, \mathbf{B}] \\
& =[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]
\end{aligned}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3}+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{n!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

Normal order $\mathbf{a}^{\mathrm{m}} \mathbf{a}^{\dagger \mathrm{n}}$ to $\mathbf{a}^{\dagger} \mathbf{a}^{\mathrm{b}}$ power formula

$$
\mathbf{a}^{m} \mathbf{a}^{\dagger n}=\sum_{r=0}^{m}\binom{m}{r} \frac{n!}{(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}=\sum_{r=0}^{m} \frac{m!}{r!(m-r)!(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}
$$

Normal ordering for matrix calculation

Normal ordering: move destructive a operators to the right of creation \mathbf{a}^{\dagger} to zero out on vacuum $|0\rangle$.

$$
\mathrm{f}(\mathbf{a}) \mathrm{g}\left(\mathbf{a}^{\dagger}\right)|0\rangle=\left[\mathrm{f}(\mathbf{a}), \mathrm{g}\left(\mathbf{a}^{\dagger}\right)\right]|0\rangle+\mathrm{g}\left(\mathbf{a}^{\dagger}\right) \mathrm{f}(\mathbf{a})|0\rangle
$$

Commutator matrix $\langle 0|\left[f(a), g\left(a^{\dagger}\right)\right]|0\rangle$ needs to be evaluated.
Generalizations of basic relation $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=\mathbf{1}$ are useful.

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger 2}\right]=2 \mathbf{a}^{\dagger},\left[\mathbf{a}, \mathbf{a}^{\dagger 3}\right]=3 \mathbf{a}^{2 \dagger}, \cdots,, \quad\left[\mathbf{a}, \mathbf{a}^{\dagger n}\right]=n \mathbf{a}^{\dagger n-1} \quad \text { (Power-law derivative-like relations) }
$$

Commutator derivative identities:
$[A, B C]=\mathbf{A B C}-\mathbf{B C A}=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B A C}-\mathbf{B C A}$

$$
=[\mathbf{A}, \mathbf{B}] \mathbf{C}+\mathbf{B}[\mathbf{A}, \mathbf{C}]
$$

Binomial power expansion identities:
$\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
$\mathbf{a}^{2} \mathbf{a}^{\dagger n}=n(n-1) \mathbf{a}^{\dagger n-2} \quad+2 n \mathbf{a}^{\dagger n-1} \mathbf{a} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{2}$
$\mathbf{a}^{3} \mathbf{a}^{\dagger n}=n(n-1)(n-2) \mathbf{a}^{\dagger n-3} \quad+3 n(n-1) \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+3 n \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\mathbf{a}^{\dagger n} \mathbf{a}^{3}$
Use binomial coefficients $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ in expansion for power $m=. .3,4$..

$$
\begin{aligned}
{[\mathbf{A B}, \mathbf{C}] } & =-[\mathbf{C}, \mathbf{A B}]=-[\mathbf{C}, \mathbf{A}] \mathbf{B}-\mathbf{A}[\mathbf{C}, \mathbf{B}] \\
& =[\mathbf{A}, \mathbf{C}] \mathbf{B}+\mathbf{A}[\mathbf{B}, \mathbf{C}]
\end{aligned}
$$

$$
\mathbf{a}^{3} \mathbf{a}^{\dagger n}=\binom{3}{0} \frac{n!}{(n-3)!} \mathbf{a}^{\dagger n-3}+\binom{3}{1} \frac{n!}{(n-2)!} \mathbf{a}^{\dagger n-2} \mathbf{a} \quad+\binom{3}{2} \frac{n!}{(n-1)!} \mathbf{a}^{\dagger n-1} \mathbf{a}^{2} \quad+\binom{3}{3} \frac{n!}{(n-0)!} \mathbf{a}^{\dagger n} \mathbf{a}^{3}
$$

Normal order $\mathbf{a}^{\mathrm{m}} \mathbf{a}^{\dagger \mathrm{n}}$ to $\mathbf{a}^{\dagger \mathrm{a}} \mathbf{a}^{\mathrm{b}}$ power formula

$$
\mathbf{a}^{m} \mathbf{a}^{\dagger n}=\sum_{r=0}^{m}\binom{m}{r} \frac{n!}{(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}=\sum_{r=0}^{m} \frac{m!}{r!(m-r)!(n-m+r)!} \mathbf{a}^{\dagger n-m+r} \mathbf{a}^{r}
$$

$\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}$ to $\mathbf{a}^{\dagger \mathrm{r}} \mathbf{a}^{\mathrm{r}}$ case

$$
\mathbf{a}^{n} \mathbf{a}^{\dagger n}=\sum_{r=0}^{n}\binom{n}{r} \frac{n!}{r!} \mathbf{a}^{\dagger r} \mathbf{a}^{r}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\frac{n(n-1)(n-3)}{3!3!} \mathbf{a}^{\dagger 3} \mathbf{a}^{3}+\ldots\right)
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities,

Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator:

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
\begin{aligned}
& \text { So: }(\text { const. })^{2}=n! \\
& (\text { const } .)=\sqrt{n!}
\end{aligned}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
\begin{array}{r}
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }} \text {, where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}} \\
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
\end{array}
$$

$$
\begin{array}{r}
\text { So: } \begin{array}{r}
(\text { const } .)^{2}=n! \\
(\text { const } .)
\end{array}=\sqrt{n!}
\end{array}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
\begin{array}{r}
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }} \text {, where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a} \mathbf{a} \mathbf{a}+.|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}} \\
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
\end{array}
$$

Apply creation \mathbf{a}^{\dagger} :
Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
\begin{array}{r}
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}} \\
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
\end{array}
$$

Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$

Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}
$$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{\left(\text { const. }^{2}\right.}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{cccccc}
\cdot & 1 & & & & \\
& \cdot & \sqrt{2} & & & \\
& & \cdot & \sqrt{3} & & \\
& & & \cdot & \sqrt{4} & \\
& & & & \cdot & \ddots \\
& & & & & \cdot
\end{array}\right)
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} \quad \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}$

$\mathbf{a}^{\dagger}\|n\rangle=\sqrt{n+1}\|n+1\rangle$	$\mathbf{a}\|n\rangle=\sqrt{n}\|n-1\rangle$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

Many quantum operators* obey

$\mathbf{N}+\mathbf{N}=\mathbf{N N}+$

Here is a case where $\mathbf{a}^{\dagger} \mathbf{a}$ does not quite equal aa ${ }^{\dagger}$ $a a^{\dagger}-a^{\dagger} a=1$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{\left(\text { const. }^{2}\right.}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

(Here is a case
where $\mathbf{a}^{\dagger} \mathbf{a}$ does not quite equal $\mathbf{a}^{\mathbf{a}}$)
(Welcome to ∞-dimensional... quantum space!)

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation Number operator

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator
Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}
$$

$\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$

$$
\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{ccccc}
\cdot & 1 & & & \\
& \cdot & & \\
& & \sqrt{2} & & \\
& & & & \\
& & & \cdot & \\
& & & & \\
& & & \ddots \\
& & & & \ddots
\end{array}\right)
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation Number operator

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator
Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{cccccc}
\cdot & 1 & & & & \\
& \cdot & \sqrt{2} & & & \\
& & \cdot & \sqrt{3} & & \\
& & & \cdot & \sqrt{4} & \\
& & & & \cdot & \ddots \\
& & & & & \cdot
\end{array}\right)
$$

Number operator and Hamiltonian operator Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation Number operator

Derive normalization for $n^{t h}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator
Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!\cdot 2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$

Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}
$$

$$
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

$$
\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$\langle\mathbf{a}\rangle=\left(\begin{array}{cccccc}\cdot & 1 & & & & \\ & \cdot & \sqrt{2} & & & \\ & & \cdot & \sqrt{3} & & \\ & & & \cdot & \sqrt{4} & \\ & & & & \cdot & \ddots \\ & & & & & \cdot\end{array}\right)$
Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation Number operator

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(\mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \mathbf{a}^{\dagger n-1}|0\rangle
$$

$$
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

$$
\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{ccccc}
& 1 & & & \\
& \cdot \sqrt{2} & & & \\
& \ddots & \sqrt{3} & & \\
& & & \sqrt{4} & \\
& & & \ddots & \ddots
\end{array}\right) \quad \text { Use: } \mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation Number operator

Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}
$$

$\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$

$$
\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$\langle\mathbf{a}\rangle=\left(\begin{array}{cccccc}\cdot & 1 & & & & \\ & \cdot & \sqrt{2} & & & \\ & & \cdot & \sqrt{3} & & \\ & & & \cdot & \sqrt{4} & \\ & & & & \cdot & \ddots \\ & & & & & \cdot\end{array}\right)$
Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$

Number operator and Hamiltonian operator Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n|n\rangle
$$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation Hamiltonian operator
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}}$

$$
\mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}}
$$

$$
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

$$
\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{ccccc}
& 1 & & & \\
& \cdot \sqrt{2} & & & \\
& \cdot & \sqrt{3} & & \\
& & & \sqrt{4} & \\
& & & \ddots & \ddots
\end{array}\right) \quad \text { Use: } \mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n|n\rangle
$$

Hamiltonian operator
$\mathbf{H}|n\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}|n\rangle+\hbar \omega / 2 \mathbf{1}|n\rangle=\hbar \omega(n+1 / 2)|n\rangle$

Matrix $\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ calculation Hamiltonian operator
Derive normalization for $n^{\text {th }}$ state obtained by $\left(\mathbf{a}^{\dagger}\right)^{n}$ operator: Use: $\mathbf{a}^{n} \mathbf{a}^{\dagger n}=n!\left(\mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+\frac{n(n-1)}{2!2!} \mathbf{a}^{\dagger 2} \mathbf{a}^{2}+\ldots\right)$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\text { const. }}, \quad \text { where: } \quad 1=\langle n \mid n\rangle=\frac{\langle 0| \mathbf{a}^{n} \mathbf{a}^{\dagger n}|0\rangle}{(\text { const. })^{2}}=n!\frac{\langle 0| \mathbf{1}+n \mathbf{a}^{\dagger} \mathbf{a}+. .|0\rangle}{(\text { const. })^{2}}=\frac{n!}{(\text { const. })^{2}}
$$

$$
|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}} \quad \text { Root-factorial normalization }
$$

Use: $\mathbf{a} \mathbf{a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}$
Apply creation \mathbf{a}^{\dagger} :

Apply destruction \mathbf{a} :

$$
\begin{array}{ll}
\mathbf{a}^{\dagger}|n\rangle=\frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{n!}}=\sqrt{n+1} \frac{\mathbf{a}^{\dagger n+1}|0\rangle}{\sqrt{(n+1)!}} & \mathbf{a}|n\rangle=\frac{\mathbf{a a}^{\dagger n}|0\rangle}{\sqrt{n!}}=\frac{\left(n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}\right)|0\rangle}{\sqrt{n!}}=\sqrt{n} \frac{\mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{(n-1)!}} \\
\mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle & \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{array}
$$

Feynman's mnemonic rule: Larger of two quanta goes in radical factor

$$
\langle\mathbf{a}\rangle=\left(\begin{array}{ccccc}
& 1 & & & \\
& \cdot & & & \\
& \ddots & \sqrt{3} & & \\
& & & & \\
& & & \sqrt{4} & \\
& & & \ddots
\end{array}\right) \quad \text { Use: } \mathbf{a a}^{\dagger n}=n \mathbf{a}^{\dagger n-1}+\mathbf{a}^{\dagger n} \mathbf{a}
$$

Number operator and Hamiltonian operator
Number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ counts quanta.

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=\frac{\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger} \mathbf{a}^{\dagger n-1}|0\rangle}{\sqrt{n!}}=n \frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}=n|n\rangle
$$

Hamiltonian operator
$\mathbf{H}|n\rangle=\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}|n\rangle+\hbar \omega / 2 \mathbf{1}|n\rangle=\hbar \omega(n+1 / 2)|n\rangle \quad\langle\mathbf{H}\rangle=\hbar \omega\left\langle\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2}\right\rangle=\hbar \omega$
$\left(\begin{array}{lllll}0 & & & & \\ & 1 & & & \\ & & 2 & & \\ & & & 3 & \ddots\end{array}\right)+\hbar \omega$ $1 / 2$

Hamiltonian operator is $\hbar \omega \mathbf{N}$ plus zero-point energy $\mathbf{1} \hbar \omega / 2$.

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$ Harmonic oscillator beat dynamics of mixed states

Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$ Operator for position $\mathbf{X}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$
expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{X}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$
expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:
$\left.\overline{\mathbf{x}^{2}}\right|_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$ expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{X}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$
expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\begin{gathered}
{\overline{\mathbf{x}^{2}}}_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle
\end{gathered}
$$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$ expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\begin{gathered}
\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle \\
\quad=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle
\end{gathered}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{X}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\begin{aligned}
& \left.\overline{\mathbf{x}}^{2}\right|_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
& =\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \\
& =\frac{\hbar}{2 M \omega}(2 n+1)
\end{aligned}
$$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$ expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\begin{aligned}
& \overline{\mathbf{p}}^{2}\left.\right|_{n} \\
&=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle \\
&=-\frac{\hbar M \omega}{2}\left\langle n \|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right) \mid n\right\rangle \\
&=\frac{\hbar M \omega}{2}(2 n+1)
\end{aligned}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$ Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$ expectation for position $\langle\mathbf{x}\rangle$:
$\overline{\mathbf{x}}_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\begin{aligned}
& \left.\overline{\mathbf{x}}^{2}\right|_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
& =\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \\
& =\frac{\hbar}{2 M \omega}(2 n+1)
\end{aligned}
$$

expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

$$
\text { expectation for (momentum) }{ }^{2}\left\langle\mathbf{p}^{2}\right\rangle \text { : }
$$

$$
\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle
$$

$$
=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle
$$

$$
=\frac{\hbar M \omega}{2}(2 n+1)
$$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
(\Delta q)^{2}=\sqrt{(q-\bar{q})^{2}} \quad \text { or: } \Delta q=\sqrt{(q-\bar{q})^{2}}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\left.\overline{\mathbf{x}}\right|_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:

$$
\begin{aligned}
& \left.\overline{\mathbf{x}}^{2}\right|_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle \\
& =\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger 2}\right)|n\rangle \\
& =\frac{\hbar}{2 M \omega}(2 n+1)
\end{aligned}
$$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$ expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\left.\overline{\mathbf{p}}\right|_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\begin{aligned}
&\left.\overline{\mathbf{p}^{2}}\right|_{n}=\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle \\
&=-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle \\
&=\frac{\hbar M \omega}{2}(2 n+1)
\end{aligned}
$$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \text { or: } \Delta q=\left.\sqrt{\overline{(q-\bar{q})^{2}}} \quad \Delta p\right|_{n}=\sqrt{\left.\overline{\mathbf{p}^{2}}\right|_{n}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\overline{\mathbf{x}} \mathrm{I}_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$: $\overline{\mathbf{x}^{2}}{ }_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle$
$=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{+2}\right)|n\rangle \quad \quad \mathbf{a a}^{\dagger}=\mathbf{U s e}=\mathbf{1} \mathbf{a}^{\dagger} \mathbf{a}$
$=\frac{\hbar}{2 M \omega}(2 n+1)$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a - a}}{2 i}$ expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\overline{\mathbf{p}} ।_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\begin{aligned}
\overline{\mathbf{p}^{2}} I_{n} & =\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle \\
& =-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle \\
& =\frac{\hbar M \omega}{2}(2 n+1)
\end{aligned}
$$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
\begin{aligned}
(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \text { or: } \Delta q=\sqrt{\overline{(q-\bar{q})^{2}}} \\
\left.\quad \Delta p\right|_{n}=\sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
\end{aligned}
$$

Heisenberg uncertainty product for the n-quantum eigenstate $|n\rangle$

$$
\left.(\Delta x \cdot \Delta p)\right|_{n}=\sqrt{\overline{\mathbf{x}^{2}}} \sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar(2 n+1)}{2 M \omega}} \sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\overline{\mathbf{x}} \mathrm{I}_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:
$\overline{\mathbf{x}^{2}}{ }_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle$
$=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{+2}\right)|n\rangle \quad \mathbf{a a}^{\dagger}=\mathbf{U s e}+\mathbf{a}^{\dagger} \mathbf{a}$
$=\frac{\hbar}{2 M \omega}(2 n+1)$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a}-\mathbf{a}^{\dagger}}{2 i}$ expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\overline{\mathbf{p}} ।_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\begin{aligned}
\overline{\mathbf{p}^{2}} I_{n} & =\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle \\
& =-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle \\
& =\frac{\hbar M \omega}{2}(2 n+1)
\end{aligned}
$$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \quad \text { or: } \Delta q=\left.\sqrt{\overline{(q-\bar{q})^{2}}} \quad \Delta p\right|_{n}=\sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
$$

Heisenberg uncertainty product for the n-quantum eigenstate $|n\rangle$

$$
\begin{aligned}
\left.(\Delta x \cdot \Delta p)\right|_{n}= & \sqrt{\overline{\mathbf{x}^{2}}} \sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar(2 n+1)}{2 M \omega}} \sqrt{\frac{\hbar M \omega(2 n+1)}{2}} \\
& \left.\left.(\Delta x \cdot \Delta p)\right|_{n}=\hbar\left(n+\frac{1}{2}\right)\right)
\end{aligned}
$$

Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$

Operator for position $\mathbf{x}: \sqrt{\frac{M \omega}{2 \hbar}} \mathbf{x}=\frac{\mathbf{a}+\mathbf{a}^{\dagger}}{2}$ expectation for position $\langle\mathbf{x}\rangle$:
$\overline{\mathbf{x}} \mathrm{I}_{n}=\langle n| \mathbf{x}|n\rangle=\sqrt{\frac{\hbar}{2 M \omega}}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)|n\rangle=0$ expectation for (position) ${ }^{2}\left\langle\mathbf{x}^{2}\right\rangle$:
$\overline{\mathbf{x}^{2}} I_{n}=\langle n| \mathbf{x}^{2}|n\rangle=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}|n\rangle$
$=\frac{\hbar}{2 M \omega}\langle n|\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}+\mathbf{a}^{+2}\right)|n\rangle \quad \mathbf{a a}^{\dagger}=\mathbf{U s e}: \mathbf{a}^{\dagger} \mathbf{a}$
$=\frac{\hbar}{2 M \omega}(2 n+1)$

Operator for momentum $\mathbf{p}: \sqrt{\frac{1}{2 \hbar M \omega}} \mathbf{p}=\frac{\mathbf{a - a}}{2 i}$
expectation for momentum $\langle\mathbf{p}\rangle$:

$$
\overline{\mathbf{p}} \mathrm{I}_{n}=\langle n| \mathbf{p}|n\rangle=i \sqrt{\frac{\hbar M \omega}{2}}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)|n\rangle=0
$$

expectation for (momentum) ${ }^{2}\left\langle\mathbf{p}^{2}\right\rangle$:

$$
\begin{aligned}
\overline{\mathbf{p}^{2}} I_{n} & =\langle n| \mathbf{p}^{2}|n\rangle=i^{2} \frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2}|n\rangle \\
& =-\frac{\hbar M \omega}{2}\langle n|\left(\mathbf{a}^{\dagger 2}-\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{2}\right)|n\rangle \\
& =\frac{\hbar M \omega}{2}(2 n+1)
\end{aligned}
$$

Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

$$
\left.\Delta x\right|_{n}=\sqrt{\overline{\mathbf{x}^{2}}}=\sqrt{\frac{\hbar(2 n+1)}{2 M \omega}} \quad(\Delta q)^{2}=\overline{(q-\bar{q})^{2}} \quad \text { or: } \Delta q=\left.\sqrt{\overline{(q-\bar{q})^{2}}} \quad \Delta p\right|_{n}=\sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar M \omega(2 n+1)}{2}}
$$

Heisenberg uncertainty product for the n-quantum eigenstate $|n\rangle$

$$
\begin{aligned}
\left.(\Delta x \cdot \Delta p)\right|_{n}= & \sqrt{\overline{\mathbf{x}^{2}}} \sqrt{\overline{\mathbf{p}^{2}}}=\sqrt{\frac{\hbar(2 n+1)}{2 M \omega}} \sqrt{\frac{\hbar M \omega(2 n+1)}{2}} \\
& \left(\left.(\Delta x \cdot \Delta p)\right|_{n}=\hbar\left(n+\frac{1}{2}\right)\right)
\end{aligned}
$$

Heisenberg minimum uncertainty product occurs for the 0 -quantum (ground) eigenstate.

$$
\left.(\Delta x \cdot \Delta p)\right|_{0}=\frac{\hbar}{2}
$$

We pause for sobering considerations of the quantum world vs. the classical one. Consider a "high"-quantum ($n=20$) eigenstate wavefunction:

We pause for sobering considerations of the quantum world $v s$. the classical one. Consider a "high"-quantum ($n=20$) eigenstate wavefunction:

We pause for sobering considerations of the quantum world $v s$. the classical one. Consider a "high"-quantum ($n=20$) eigenstate wavefunction:

$n=20$ wave is still a long way from a classical energy value of 1 Joule. For a 1 Hz oscillator, 1 Joule would take a quantum number of roughly

$$
n=100,000,000,000,000,000,000,000,000,000,000,000=10^{35}
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D Ho Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states

Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi 1
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi 1
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth

$$
\begin{aligned}
|\Psi(x, t)|= & \sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right) / 2}
\end{aligned}
$$

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi 1
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth

$$
\begin{aligned}
|\Psi(x, t)|= & \sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right) / 2} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
\end{aligned}
$$

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi 0+\psi_{1}(x) \Psi 1
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth

$$
\begin{aligned}
|\Psi(x, t)| & =\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right) / 2} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2} \\
& =0 \\
& =\tau / 2
\end{aligned}
$$

Harmonic oscillator beat dynamics of mixed states

$$
|\Psi\rangle=|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1}
$$

$$
\Psi(x)=\langle x \mid \Psi\rangle=\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi 1
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth

$$
|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}
$$

$$
\begin{aligned}
& =\sqrt{\left.\left(\mid \psi_{0}(x)\right)^{2}+\mid \psi_{1}(x)\right)^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\right.}\right.} \\
& =\sqrt{\left.\left.\left(\mid \psi_{0}(x)\right)^{2}+\mid \psi_{1}(x)\right)^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right)^{\prime 2}} \\
& t=0 \\
& t=\tau / 2, t=\tau / 4)
\end{aligned}
$$

Need some overlap
somewhere
to get some wiggle

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi 1
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth

$$
|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}
$$

$$
=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right)^{1 / 2}}
$$

Need some overlap
somewhere
to get some wiggle

Beat frequency is eigenfrequency difference

$$
\omega_{\text {beat }}=\omega_{1}-\omega_{0}=\omega
$$

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi 0+\psi_{1}(x) \Psi_{1}
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth

$$
|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}
$$

$$
\begin{aligned}
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\right.}\right.\right.} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
\end{aligned}
$$

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi 1
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth

$$
|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}
$$

$$
\begin{aligned}
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\right.}\right.\right.} \\
& =\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
\end{aligned}
$$

$$
t=0
$$

$$
\omega_{\text {beat }}=\omega_{1}-\omega_{0}=\omega
$$

Beat frequency $\omega=$ Transition frequency ω Transition frequency is transition energy/ \hbar

$$
\Delta E=E_{1 \leftarrow 0} \text { transition }=E_{1}-E_{0}=\hbar \omega
$$

Harmonic oscillator beat dynamics of mixed states

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle\langle 0 \mid \Psi\rangle+|1\rangle\langle 1 \mid \Psi\rangle=|0\rangle \Psi_{0}+|1\rangle \Psi_{1} \\
\Psi(x)=\langle x \mid \Psi\rangle & =\langle x \mid 0\rangle\langle 0 \mid \Psi\rangle+\langle x \mid 1\rangle\langle 1 \mid \Psi\rangle=\psi_{0}(x) \Psi_{0}+\psi_{1}(x) \Psi 1
\end{aligned}
$$

The time dependence $\Psi(x, t)$ of the mixed wave is then

$$
\Psi(x, t)=\psi_{0}(x) e^{-i \omega_{0} t} \Psi_{0}+\psi_{1}(x) e^{-i \omega_{1} t} \Psi_{1}=\left(\psi_{0}(x) e^{-i \omega_{0} t}+\psi_{1}(x) e^{-i \omega_{1} t}\right) / \sqrt{ } 2
$$

Probability distribution "beats" back-and-forth
$|\Psi(x, t)|=\sqrt{\Psi^{*} \Psi}=\sqrt{\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right)^{*}\left(e^{-i \omega_{0} t} \psi_{0}(x)+e^{-i \omega_{1} t} \psi_{1}(x)\right) / 2}$

$$
=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\psi_{0}(x) \psi_{1}(x)\left(e^{i\left(\omega_{1}-\omega_{0}\right) t}+e^{-i\left(\omega_{1}-\omega_{0}\right) t}\right)\right\rangle / 2}
$$

$$
=\sqrt{\left(\left|\psi_{0}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+2 \psi_{0}(x) \psi_{1}(x) \cos \left(\omega_{1}-\omega_{0}\right) t\right) / 2}
$$

Beat frequency is eigenfrequency difference

$$
\omega_{\text {beat }}=\omega_{l}-\omega_{0}=\omega
$$

Beat frequency $\omega=$ Transition frequency ω Transition frequency is transition energy/ \hbar

$$
\Delta E=E_{1 \leftarrow 0} \text { transition }=E_{1}-E_{0}=\hbar \omega
$$

ω is frequency of radiating antenna of a transmitter or of a receiver, i.e., of an emitter or an absorber
(Usually of a dipole symmetry)

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators and generators: (A "shove")
Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions
$\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions
$\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions
$\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$

Shoves ψa-units to right or x-space a-units left $\langle x| \mathbf{T}(a)=\langle x-a|$ or: $\mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$
Increases momentum of ket-state by b units $\langle p| \mathbf{B}(b)=\langle p-b|$, or: $\mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$
$\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$
is generator of translations

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions $\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle$
Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$
$\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$
is generator of boosts

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$
$\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$
is generator \mathbf{G} of translations
$\mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}}$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$
$\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$
is generator \mathbf{K} of boosts
$\mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}}$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$

$$
\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad \text { where: } \mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}
$$

is generator \mathbf{G} of translations

$$
\begin{aligned}
& \mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}} \\
& \mathbf{T}(a) \cdot \psi(x)=e^{a \mathbf{G}} \cdot \psi(x)=e^{-a \frac{\partial}{\partial x}} \cdot \psi(x) \\
& =\psi(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots
\end{aligned}
$$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$

$$
\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad \text { where: } \mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}
$$

is generator \mathbf{K} of boosts

$$
\begin{aligned}
& \mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}} \\
& \mathbf{B}(b) \cdot \psi(p)=e^{b \mathbf{K}} \cdot \psi(p)=e^{-b} \frac{\partial}{\partial p} \\
& =\psi(p) \\
& =\psi(p)-b \frac{\partial \psi(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \psi(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \psi(p)}{\partial p^{3}}+\ldots
\end{aligned}
$$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$

$$
\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad \text { where: } \mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}
$$

is generator \mathbf{G} of translations

$$
\begin{aligned}
& \mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}} \\
& \mathbf{T}(a) \cdot \psi(x)=e^{a \mathbf{G}} \cdot \psi(x)=e^{-a \frac{\partial}{\partial x}} \psi(x) \\
& =\psi(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots
\end{aligned}
$$

\mathbf{G} relates to $\underset{i}{\text { momentum }} \mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x}$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$ $\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator \mathbf{K} of boosts

$$
\begin{aligned}
& \mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}} \\
& \mathbf{B}(b) \cdot \psi(p)=e^{b \mathbf{K}} \cdot \psi(p)=e^{-b} \frac{\partial}{\partial p} \cdot \psi(p) \\
& =\psi(p)-b \frac{\partial \psi(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \psi(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \psi(p)}{\partial p^{3}}+\ldots
\end{aligned}
$$

\mathbf{K} relates to position $\mathbf{x} \rightarrow \hbar i \frac{\partial}{\partial p}=i \frac{\partial}{\partial k}$
$\mathbf{K}=\frac{i}{\hbar} \mathbf{x} \rightarrow-\frac{\partial}{\partial p}=\frac{-1}{\hbar} \frac{\partial}{\partial k}$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$

$$
\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad \text { where: } \mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}
$$

is generator \mathbf{G} of translations

$$
\begin{aligned}
& \mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}} \\
& \mathbf{T}(a) \cdot \psi(x)=e^{a \mathbf{G}} \cdot \psi(x)=e^{-a \frac{\partial}{\partial x}} \psi(x) \\
& =\psi(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots
\end{aligned}
$$

\mathbf{G} relates to momentum $\mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x}$
$\mathbf{G}=-\frac{i}{\hbar} \mathbf{p} \rightarrow-\frac{\partial}{\partial x}$
$\mathbf{T}(a)=e^{-a \frac{i}{\hbar} \mathbf{p}}=e^{a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}}$

Boost operators and generators: (A "kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$ $\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator \mathbf{K} of boosts

$$
\begin{aligned}
& \mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}} \\
& \mathbf{B}(b) \cdot \psi(p)=e^{b \mathbf{K}} \cdot \psi(p)=e^{-b \frac{\partial}{\partial p}} \cdot \psi(p) \\
& =\psi(p)-b \frac{\partial \psi(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \psi(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \psi(p)}{\partial p^{3}}+\ldots
\end{aligned}
$$

\mathbf{K} relates to position $\mathbf{x} \rightarrow \hbar i \frac{\partial}{\partial}=i \frac{\partial}{\partial k}$
$\mathbf{K}=\frac{i}{\hbar} \mathbf{x} \rightarrow-\frac{\partial}{\partial p}=\frac{-1}{\hbar} \frac{\partial}{\partial k}$
$\mathbf{B}(b)=e^{b \frac{i}{\hbar} \mathbf{x}}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}}$

Oscillator coherent states ("Shoved" and "kicked" states)

Translation operators and generators: (A "shove") Translation operator $\mathbf{T}(a)$ shoves x-wavefunctions

$$
\mathbf{T}(a) \cdot \psi(x)=\psi(x-a)=\langle x| \mathbf{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle
$$

Shoves ψa-units to right or x-space a-units left

$$
\langle x| \mathbf{T}(a)=\langle x-a| \text { or: } \mathbf{T}^{\dagger}(a)|x\rangle=|x-a\rangle
$$

Tiny translation $a \rightarrow d a$ is identity $\mathbf{1}$ plus $\mathbf{G} \cdot d a$
$\mathbf{T}(d a)=\mathbf{1}+\mathbf{G} \cdot d a \quad$ where: $\mathbf{G}=\left.\frac{\partial \mathbf{T}}{\partial a}\right|_{a=0}$
is generator \mathbf{G} of translations

$$
\begin{aligned}
& \mathbf{T}(a)=\left(\mathbf{T}\left(\frac{a}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{a}{N} \mathbf{G}\right)^{N}=e^{a \mathbf{G}} \\
& \mathbf{T}(a) \cdot \psi(x)=e^{a \mathbf{G}} \cdot \psi(x)=e^{-a \frac{\partial}{\partial x}} \psi(x) \\
& =\psi(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots
\end{aligned}
$$

\mathbf{G} relates to momentum $\mathbf{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x}$
$\mathbf{G}=-\frac{i}{\hbar} \mathbf{p} \rightarrow-\frac{\partial}{\partial x}$
$\mathbf{T}(a)=e^{-a \frac{i}{\hbar} \mathbf{p}}=e^{a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}}$
Check $\mathbf{T}(a)$ on plane-wave with $p=\hbar k$ (Move up)

Boost operators and generators: ("kick") Boost operator $\mathbf{B}(b)$ boosts p-wavefunctions

$$
\mathbf{B}(b) \cdot \psi(p)=\psi(p-b)=\langle x| \mathbf{B}(b)|\psi\rangle=\langle p-b \mid \psi\rangle
$$

Increases momentum of ket-state by b units

$$
\langle p| \mathbf{B}(b)=\langle p-b|, \text { or: } \mathbf{B}^{\dagger}(b)|p\rangle=|p-b\rangle
$$

Tiny boost $b \rightarrow d b$ is identity $\mathbf{1}$ plus $\mathbf{K} \cdot d b$
$\mathbf{B}(d b)=\mathbf{1}+\mathbf{K} \cdot d b \quad$ where: $\mathbf{K}=\left.\frac{\partial \mathbf{B}}{\partial b}\right|_{b=0}$ is generator \mathbf{K} of boosts

$$
\begin{aligned}
& \mathbf{B}(b)=\left(\mathbf{B}\left(\frac{b}{N}\right)\right)^{N}=\lim _{N \rightarrow \infty}\left(1+\frac{b}{N} \mathbf{K}\right)^{N}=e^{b \mathbf{K}} \\
& \mathbf{B}(b) \cdot \psi(p)=e^{b \mathbf{K}} \cdot \psi(p)=e^{-b} \frac{\partial}{\partial p} \cdot \psi(p) \\
& =\psi(p)-b \frac{\partial \psi(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \psi(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \psi(p)}{\partial p^{3}}+\ldots
\end{aligned}
$$

\mathbf{K} relates to position $\mathbf{x} \rightarrow \hbar i \frac{\partial}{\partial p}=i \frac{\partial}{\partial k}$
$\mathbf{K}=\frac{i}{\hbar} \mathbf{x} \rightarrow-\frac{\partial}{\partial p}=\frac{-1}{\hbar} \frac{\partial}{\partial k}$
$\mathbf{B}(b)=e^{b \frac{i}{\hbar} \mathbf{x}}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}}$
Check $\mathbf{B}(b)$ on plane-wave with $p=\hbar k$
$\mathbf{T}(a) \cdot \psi(x)=e^{a \mathbf{G}} \cdot \psi(x)=e^{-a \frac{\partial}{\partial x}} \cdot \psi(x)$
$=\psi(x)-a \frac{\partial \psi(x)}{\partial x}+\frac{a^{2}}{2!} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\frac{a^{3}}{2!} \frac{\partial^{3} \psi(x)}{\partial x^{3}}+\ldots$
\mathbf{G} relates to momentum $\mathrm{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x}$
$\mathbf{G}=-\frac{i}{\hbar} \mathbf{p} \rightarrow-\frac{\partial}{\partial x}$
$\mathbf{T}(a)=e^{-a \frac{i}{\hbar} \mathbf{p}}=e^{a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}}$
Check $\mathbf{T}(a)$ on plane-wave with $p=\hbar k \quad$ Bottom Line
$\mathbf{T}(a) e^{i k x}=e^{-i a \mathbf{p} / \hbar} e^{i k x}=e^{-i a k} e^{i k x}=e^{i k(x-a)}$

$$
\begin{aligned}
& \mathbf{B}(b) \cdot \psi(p)=e^{b \mathbf{K}} \cdot \psi(p)=e^{-b \frac{\partial}{\partial p}} \cdot \psi(p) \\
& =\psi(p)-b \frac{\partial \psi(p)}{\partial p}+\frac{b^{2}}{2!} \frac{\partial^{2} \psi(p)}{\partial p^{2}}-\frac{b^{3}}{2!} \frac{\partial^{3} \psi(p)}{\partial p^{3}}+\ldots
\end{aligned}
$$

\mathbf{K} relates to position $\mathbf{X} \rightarrow \hbar i \frac{\partial}{\partial p}=i \frac{\partial}{\partial k}$
$\mathbf{K}=\frac{i}{\hbar} \mathbf{x} \rightarrow-\frac{\partial}{\partial p}=\frac{-1}{\hbar} \frac{\partial}{\partial k}$
$\mathbf{B}(b)=e^{b \frac{i}{\hbar} \mathbf{x}}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}}$
Check $\mathbf{B}(b)$ on plane-wave with $p=\hbar k$
$\overline{\mathbf{B}}(b) e^{i k x}=e^{i b \mathbf{x} / \hbar} e^{i k x}=e^{i b x / \hbar} e^{i k x}=e^{i(k+b / \hbar) x}$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D HO Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring lD-HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, \quad boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Applying boost-translation combinations
$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first?

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / h}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathrm{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both.

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathrm{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \cdot \mathrm{~J} / \hbar}$ than Euler rotation with three factors $e^{-i J_{J} \alpha \hbar \hbar} e^{-i J_{y} \beta \hbar} e^{-i J_{z} / \hbar \hbar}$)

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a \mathbf{p} / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \boldsymbol{J}_{J} \alpha \omega \hbar} e^{-i \boldsymbol{J}_{y} \beta \hbar} e^{\left.-i \boldsymbol{J}_{z}\right\rangle / \hbar}$)

May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \mathbf{J}_{Z} \alpha \hbar} e^{-i \boldsymbol{J} y \beta \hbar} e^{\left.-i \boldsymbol{J}_{Z}\right\rangle \hbar}$)

May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.

$$
\begin{aligned}
\mathbf{C}(a, b) & =e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} \\
& =e^{\alpha \mathbf{a}^{\dagger}-\alpha * \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha * \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}}
\end{aligned}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

May evaluate with Baker-Campbell-Hausdorfidentity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2} \text {, where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x} \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase.
Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha * \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha * \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha *} \mathbf{a} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / \hbar}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

May evaluate with Baker-Campbell-Hausdorfidentity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2} \text {, where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase. Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha *} \mathbf{a} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / h}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

May evaluate with Baker-Campbell-Hausdorfidentity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2} \text {, where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase. Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha *} \mathbf{a} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0,}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
=e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0}{ }^{*} \mathbf{a}}|0\rangle
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / h}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$

May evaluate with Baker-Campbell-Hausdorfidentity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2} \text {, where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase. Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0,}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
\begin{aligned}
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0} * \mathbf{a}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}}|0\rangle
\end{aligned}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / h}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$??
A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \boldsymbol{J}_{J} \alpha \omega \hbar} e^{-i \boldsymbol{J}_{y} \beta \hbar} e^{\left.-i \boldsymbol{J}_{z}\right\rangle / \hbar}$)

May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase. Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha *} \mathbf{a} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0,}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
\begin{aligned}
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0}^{*} \mathbf{a}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty}\left(\alpha_{0} \mathbf{a}^{\dagger}\right)^{n}|0\rangle / n!
\end{aligned}
$$

Applying boost-translation combinations

$\mathbf{T}(a)$ and $\mathbf{B}(b)$ operations do not commute. Q. Which should come first? $\mathbf{T}(a)=e^{-i a p / h}$ or $\mathbf{B}(b)=e^{i b \mathbf{x} / \hbar}$?? A. Neither and Both. Define a combined boost-translation operation: $\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}$ (More like Darboux rotation $e^{-i \Theta \cdot \mathbf{J} / \hbar}$ than Euler rotation with three factors $e^{-i \boldsymbol{J}_{J} \alpha \omega \hbar} e^{-i \boldsymbol{J}_{y} \beta \hbar} e^{\left.-i \boldsymbol{J}_{z}\right\rangle / \hbar}$)

May evaluate with Baker-Campbell-Hausdorf identity since $[\mathbf{x}, \mathbf{p}]=i \hbar \mathbf{1}$ and $[[\mathbf{x}, \mathbf{p}], \mathbf{x}]=[[\mathbf{x}, \mathbf{p}], \mathbf{p}]=\mathbf{0}$.

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-[\mathbf{A}, \mathbf{B}] / 2}=e^{\mathbf{B}} e^{\mathbf{A}} e^{[\mathbf{A}, \mathbf{B}] / 2}, \text { where: }[\mathbf{A},[\mathbf{A}, \mathbf{B}]]=\mathbf{0}=[\mathbf{B},[\mathbf{A}, \mathbf{B}]] \quad \text { (left as an exercise) }
$$

$$
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-a b[\mathbf{x}, \mathbf{p}] / 2 \hbar^{2}}=e^{i b \mathbf{x} / \hbar} e^{-i a \mathbf{p} / \hbar} e^{-i a b / 2 \hbar}
$$

$$
=\mathbf{B}(b) \mathbf{T}(a) e^{-i a b / 2 \hbar}=\mathbf{T}(a) \mathbf{B}(b) e^{i a b / 2 \hbar}
$$

Reordering only affects the overall phase. Complex phasor coordinate $\alpha(a, b)$ is defined by:

$$
\begin{array}{rll}
\mathbf{C}(a, b)=e^{i(b \mathbf{x}-a \mathbf{p}) / \hbar}=e^{i b\left(\mathbf{a}^{\dagger}+\mathbf{a}\right) / \sqrt{2 \hbar M \omega}+a\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \sqrt{M \omega / 2 \hbar}} & \alpha(a, b) \\
=e^{\alpha \mathbf{a}^{\dagger}-\alpha * \mathbf{a}}=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \mathbf{a}}=e^{|\alpha|^{2} / 2} e^{-\alpha^{*} \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} & =a \sqrt{M \omega / 2 \hbar}+i b / \sqrt{2 \hbar M \omega} \\
& =\left[a+i \frac{b}{M \omega}\right] \sqrt{M \omega / 2 \hbar}
\end{array}
$$

Coherent wavepacket state $\left|\alpha\left(x_{0}, p_{0}\right)\right\rangle: \quad\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=\mathbf{C}\left(x_{0}, p_{0}\right)|0\rangle=e^{i\left(x_{0} \mathbf{x}-p_{0} \mathbf{p}\right) / \hbar}|0\rangle$

$$
\begin{aligned}
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}} e^{-\alpha_{0}{ }^{*} \mathbf{a}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} e^{\alpha_{0} \mathbf{a}^{\dagger}}|0\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty}\left(\alpha_{0} \mathbf{a}^{\dagger}\right)^{n}|0\rangle / n! \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle, \quad \text { where: }|n\rangle=\frac{\mathbf{a}^{\dagger n}|0\rangle}{\sqrt{n!}}
\end{aligned}
$$

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D Ho Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right) Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations

\rightarrow
Time evolution of a coherent state $|\alpha\rangle$
Properties of coherent states and "squeezed" states

Time evolution of coherent state:
Time evolution operator for constant \mathbf{H} has general form $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$

> Time evolution of coherent state:

$$
\text { Time evolution operator for constant } \mathbf{H} \text { has general form } \mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}
$$

Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Time evolution of coherent state:

$$
\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle
$$

Time evolution operator for constant \mathbf{H} has general form $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Time evolution of coherent state:

$$
\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle
$$

Time evolution operator for constant \mathbf{H} has general form $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Evolution simplifies to a variable- α_{0} coherent state with a time dependent phasor coordinate α_{t} :

$$
\begin{array}{ll}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-i \omega t / 2}\left|\alpha_{t}\left(x_{t}, p_{t}\right)\right\rangle \text { where: } \quad & \begin{array}{c}
\alpha_{t}\left(x_{t}, p_{t}\right)=e^{-i \omega t} \\
{\left[\begin{array}{c}
x_{t}+i \frac{p_{t}}{M \omega}
\end{array}\right]=e^{-i \omega t}\left[x_{0}+i \frac{p_{0}}{M \omega}\right]}
\end{array}
\end{array}
$$

Time evolution of coherent state:

$$
\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}}|n\rangle
$$

Time evolution operator for constant \mathbf{H} has general form $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{i} \mathbf{H} t / \hbar}$
Oscillator eigenstate time evolution is simply determined by harmonic phases.

$$
\mathbf{U}(t, 0)|n\rangle=e^{-i \mathbf{H} t / \hbar}|n\rangle=e^{-i(n+1 / 2) \omega t}|n\rangle
$$

Coherent state evolution results.

$$
\begin{aligned}
\mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle & =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{U}(t, 0)|n\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} e^{-i(n+1 / 2) \omega t}|n\rangle \\
& =e^{-i \omega t / 2} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-i \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Evolution simplifies to a variable- α_{0} coherent state with a time dependent phasor coordinate α_{t} :

$$
\begin{aligned}
& \quad \mathbf{U}(t, 0)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-i \omega t / 2}\left|\alpha_{t}\left(x_{t}, p_{t}\right)\right\rangle \text { where: } \\
& \left(x_{t}, p_{t}\right) \text { mimics classical oscillator }
\end{aligned}
$$

$$
\begin{aligned}
x_{t} & =x_{0} \cos \omega t+\frac{p_{0}}{M \omega} \sin \omega t \\
\frac{p_{t}}{M \omega} & =-x_{0} \sin \omega t+\frac{p_{0}}{M \omega} \cos \omega t
\end{aligned}
$$

Real and imaginary parts (x_{t} and $p_{t} / M \omega$) of α_{t} go clockwise on phasor circle

Symmetry group $\mathscr{G}=\mathrm{U}(1)$ representations, 1D Ho Hamiltonian $\mathbf{H}=\hbar \omega \mathbf{a} \mathbf{a}$ operators,

 1D HO wave eigenfunctions Ψ_{n}, and coherent α-statesFactoring 1 D -HO Hamiltonian $\mathbf{H}=\mathbf{p}^{2}+\mathbf{x}^{2}$
Creation-Destruction ata algebra of $U(1)$ operators
Eigenstate creationism (and destructionism)
Vacuum state $\mid 0>, \quad \quad l^{\text {st }}$ excited state $|1>| 2>,, \ldots$
Normal ordering for matrix calculation (creation \mathbf{a}^{\dagger} on left, destruction \mathbf{a} on right)
Commutator derivative identities, Binomial expansion identities
$\left\langle\mathbf{a}^{\mathrm{n}} \mathbf{a}^{\dagger \mathrm{n}}\right\rangle$ operator calculations
Number operator and Hamiltonian operator
Expectation values of position, momentum, and uncertainty for eigenstate $|n\rangle$
Harmonic oscillator beat dynamics of mixed states
Oscillator coherent states ("Shoved" and "kicked" states)
Translation operators vs. boost operators, boost-translation combinations
Time evolution of a coherent state $\mid \alpha>$
Properties of coherent states and "squeezed" states

Properties of coherent state

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle
$$

Properties of coherent state

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{array}{r}
\mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle
\end{array}
$$

$$
t=0.3 \tau
$$

. $\|$ जब

Properties of coherent state

$$
t=0.3 \tau
$$

. $\|$ जब

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{gathered}
\mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
=\alpha_{0}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle
\end{gathered}
$$

Properties of coherent state

. \mid जब

$$
t=0.3 \tau
$$

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{aligned}
& \mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
& =\alpha_{0}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \quad \text { with eigenvalue } \alpha_{0}
\end{aligned}
$$

Properties of coherent state
Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{aligned}
& \mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
& =\alpha_{0}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \quad \text { with eigenvalue } \alpha_{0}
\end{aligned}
$$

Coherent bra $\langle\alpha(x 0, p 0)|$ is eigenvector of create-op. \mathbf{a}^{\dagger}.

$$
\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \mathbf{a}^{\dagger}=\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \alpha_{0}^{*}
$$

Properties of coherent state

Coherent ket $|\alpha(x 0, p 0)\rangle$ is eigenvector of destruct-op. \mathbf{a}.

$$
\begin{aligned}
& \mathbf{a}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \mathbf{a}|n\rangle \\
& =e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0}\right)^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle \\
& =\alpha_{0}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \quad \text { with eigenvalue } \alpha_{0}
\end{aligned}
$$

Coherent bra $\langle\alpha(x 0, p 0)|$ is eigenvector of create-op. \mathbf{a}^{\dagger}.

$$
\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \mathbf{a}^{\dagger}=\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \alpha_{0}^{*}
$$

with eigenvalue $\left(\alpha_{0}\right)^{*}$

Expected quantum energy has simple time independent form.

$$
\begin{aligned}
& \left.\langle E\rangle\right|_{\alpha_{0}}=\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right| \mathbf{H}\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \\
& =\left\langle\alpha_{0}\left(x_{0}, p_{0}\right)\right|\left(\hbar \omega \mathbf{a}^{\dagger} \mathbf{a}+\frac{\hbar \omega}{2} \mathbf{1}\right)\left|\alpha_{0}\left(x_{0}, p_{0}\right)\right\rangle \\
& \quad=\hbar \omega \alpha_{0}^{*} \alpha_{0}+\frac{\hbar \omega}{2}
\end{aligned}
$$

Properties of coherent state

Yay! Cosine trajectory! (That is "fat")

Properties of coherent state

Yay! Cosine trajectory! (That is "fat")
what happens if you apply operators with non-linear "tensor" exponents $\exp \left(s \mathbf{X}^{2}\right), \exp \left(f \mathbf{p}^{2}\right)$, etc.

Properties of coherent state

(a) Coherent wave oscillation Here is an
"unsqueezed"
coherent wave
in space-time Here is an
"unsqueezed"
coherent wave
in space-time Here is an
"unsqueezed"
coherent wave
in space-time Here is an
"unsqueezed"
coherent wave
in space-time

(b) Squeezed ground state ("Squeezed vacuum" oscillation)

Quantum-number n and phase Φ are conjugate variables

Properties of $1 \mathrm{D}-\mathrm{HO}$ coherent state

Coherent wave packet uncertainty relation: $\Delta n \cdot \Delta \phi>\pi / n$

