AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{S} = \bigcup(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli identity: U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$ $\mathcal{S} = \bigcup(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ by geometry (It's all done with } \sigma_{\mu} \text{ mirrors})$ $Mirror \text{ reflections by } \sigma_{\mu}\text{-operators make rotations} \qquad The famous Clothing Store Mirror Hamilton-turns do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ geometrically}$ $Hamilton-turn \text{ slide rule and sundial} \qquad U(2) \text{ products and } (\alpha, \beta, \gamma) - [\varphi, \vartheta, \Theta] \text{ conversions}$ $Finite \text{ group products by turns or by group link diagrams} \qquad D_3 \text{ example.} \qquad O_h \text{ example}$

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [\mathbf{H}, \rho]$

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page

2014 AMOP

2017 Group Theory for QM

UAF Physics UTube channel

2018 AMOP

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978 (Alt Scanned version) Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984 Galloping waves and their relativistic properties - ajp-1985-Harter

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979 Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Double group theory on the half-shell and the two level system -Harter-Santos-1978-AJP.

- I) Rotation and half integral spin states (Alt scan)
- II) Optical polarization (Alt scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989
- III) Half-integral angular momentum harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

AMOP Ch 32 Molecular Symmetry and Dynamics - 2019

AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) https://kb.osu.edu/dspace/handle/1811/52324
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan) Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001 Review of Class-5 showing that dynamics of $i\partial \Psi / \partial t = \mathbf{H} \Psi$ may be reduced to mechanics: Crank $\Theta = \Omega t$ of Hamiltonian **H** rotates

Spin vector $S = \frac{1}{2}\sigma$ of state Ψ .

Darboux $[\varphi, \vartheta, \Theta]$ crank-axis angles Polar coordinates for unit axis vector $\hat{\Theta}$

 $\hat{\Theta}_{X} = \cos\phi \sin\vartheta$ $\hat{\Theta}_{Y} = \sin\phi \sin\vartheta$ $\hat{\Theta}_{Z} = \cos\vartheta$

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{S} = \bigcup(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli identity: U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$ $\mathcal{S} = \bigcup(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ by geometry (It's all done with } \sigma_{\mu} \text{ mirrors})$ $Mirror \text{ reflections by } \sigma_{\mu}\text{-operators make rotations} \qquad The famous Clothing Store Mirror Hamilton-turns do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ geometrically}$ $Hamilton-turn \text{ slide rule and sundial} \qquad U(2) \text{ products and } (\alpha, \beta, \gamma) - [\varphi, \vartheta, \Theta] \text{ conversions}$ $Finite \text{ group products by turns or by group link diagrams} \qquad D_3 \text{ example.} \qquad O_h \text{ example}$

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [\mathbf{H}, \rho]$

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_Y	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$	2	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{Y}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_Y	$-i\sigma_Z$	1	i σ_X
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

†Class 4 p. 28 link

Product algebra Multiplication rules[†] for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

٠	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_Y$	2	σ_X	σ_X	1	i σ_Z	$-i\sigma_{\gamma}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_{Y}	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{Y}$	$-i\sigma_X$	1

$$\mathbf{q}_{\mu} \mathbf{q}_{\nu} = -\delta_{\mu\nu} \mathbf{1} + \varepsilon_{\mu\nu\lambda} \mathbf{q}_{\lambda} \\ \sigma_{\mu} \sigma_{\nu} = \delta_{\mu\nu} \mathbf{1} + i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$$

†Class 4 p. 28 link

Product algebra Multiplication rules[†] for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	i σ_Z	$-i\sigma_{Y}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_{Y}	σ_{Y}	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_Y	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_Y$	$-i\sigma_X$	1

$\mathbf{q}_{\mu} \mathbf{q}_{\nu} =$	$-\delta_{\mu\nu} 1 +$	$\epsilon_{\mu\nu\lambda} \mathbf{q}_{\lambda}$
$\sigma_{\mu} \sigma_{\nu} =$	$\delta_{\mu\nu} 1 + 1$	$i \epsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

†Class 4 p. 28 link

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{\gamma}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_Y	$-i\sigma_Z$	1	i σ_X
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_Y	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{Y}$	$-i\sigma_X$	1

 $\mathbf{q}_{\mu} \mathbf{q}_{\nu} = -\delta_{\mu\nu} \mathbf{1} + \varepsilon_{\mu\nu\lambda} \mathbf{q}_{\lambda} \\ \sigma_{\mu} \sigma_{\nu} = \delta_{\mu\nu} \mathbf{1} + i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \epsilon_{\mu\nu\lambda} \sigma_{\lambda}$ Jordan's spin-ops: $J_{\mu} = S_{\mu} = \sigma_{\mu/2}$. $S_{\mu}S_{\nu} - S_{\nu}S_{\mu} = [S_{\mu}, S_{\nu}] = i \epsilon_{\mu\nu\lambda} S_{\lambda}$

†Class 4 p. 28 link

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli identity: U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$ $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ by geometry (It's all done with } \sigma_{\mu} \text{ mirrors})$ $Mirror \text{ reflections by } \sigma_{\mu}\text{-operators make rotations} \qquad The famous Clothing Store Mirror Hamilton-turns do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ geometrically}$ $Hamilton-turn \text{ slide rule and sundial} \qquad U(2) \text{ products and } (\alpha,\beta,\gamma)\text{-}[\varphi,\vartheta,\Theta] \text{ conversions}$ $Finite \text{ group products by turns or by group link diagrams} \quad D_3 \text{ example}. \quad O_h \text{ example}$ $\mathcal{G} = \mathbf{U}(2) \text{ class transformation } \mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta']\mathbf{R}[\Theta''] \text{ geometry}$

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [\mathbf{H}, \rho]$

Product algebra Multiplication rules[†] for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$	>	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{Y}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_{Y}	$-i\sigma_Z$	1	i σ_X
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

 $\mathbf{q}_{\mu} \mathbf{q}_{\nu} = -\delta_{\mu\nu} \mathbf{1} + \varepsilon_{\mu\nu\lambda} \mathbf{q}_{\lambda}$ $\sigma_{\mu} \sigma_{\nu} = \delta_{\mu\nu} \mathbf{1} + i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \epsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) \equiv \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$

†Class 4 p. 28 link

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$	>	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{\gamma}$
\mathbf{q}_Y	\mathbf{q}_{Y}	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_{Y}	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \epsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) = \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{\gamma}$
\mathbf{q}_Y	\mathbf{q}_{Y}	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_{Y}	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) = \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

$$\mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = \left(1\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(1\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab})$$

†Class 4 p. 52 link

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	i σ_Z	$-i\sigma_{\gamma}$
\mathbf{q}_Y	\mathbf{q}_{Y}	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_{Y}	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{Y}$	$-i\sigma_X$	1

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \epsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) = \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

$$\mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = \left(\mathbf{1}\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(\mathbf{1}\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab})$$
$$= \cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}\mathbf{1} - i\left[\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\right] \cdot \vec{\sigma} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\vec{\sigma} \cdot \hat{\Theta}_{a})(\vec{\sigma} \cdot \hat{\Theta}_{b})$$

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$	>	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{\gamma}$
\mathbf{q}_Y	\mathbf{q}_{Y}	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_Y	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

 $\begin{aligned} & Group \ products: \ \mathbf{R}_{ab}(\vec{\Theta}_{ab}) = \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2} & This \ \underline{NOT} \ just \ e^{ia} e^{ib} = e^{i(a+b)} \ !\\ & \stackrel{\dagger \text{Class } 4 \text{ p. } 28 \ \text{link}}{\mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = \left(\mathbf{1}\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(\mathbf{1}\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab}) \\ & = \cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}\mathbf{1} - i \left[\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\right] \cdot \vec{\sigma} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\vec{\sigma} \cdot \hat{\Theta}_{a})(\vec{\sigma} \cdot \hat{\Theta}_{b}) \\ & \text{Jordan-Pauli}^{\dagger} \ identity \ (\vec{\sigma} \cdot \mathbf{a})(\vec{\sigma} \cdot \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b})\mathbf{1} + i(\mathbf{a} \times \mathbf{b}) \cdot \vec{\sigma} \ reduces \ (\vec{\sigma} \cdot \hat{\Theta}_{a})(\vec{\sigma} \cdot \hat{\Theta}_{b}) \ \text{to: } \left(\hat{\Theta}_{a} \cdot \hat{\Theta}_{b}\right)\mathbf{1} + \left(\hat{\Theta}_{a} \times \hat{\Theta}_{b}\right) \cdot \vec{\sigma} \end{aligned}$

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_{Y}	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_Y$,	σ_X	σ_X	1	i σ_Z	$-i\sigma_{\gamma}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_Y	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) \equiv \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

$$\begin{aligned} \mathbf{R}_{a}(\vec{\Theta}_{a})\cdot\mathbf{R}_{b}(\vec{\Theta}_{b}) &= \left(\mathbf{1}\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(\mathbf{1}\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab}) \\ &= \cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}\mathbf{1} - i\left[\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\right] \cdot \vec{\sigma} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\vec{\sigma}\cdot\hat{\Theta}_{a})(\vec{\sigma}\cdot\hat{\Theta}_{b}) \\ &\text{Jordan-Pauli}^{\dagger} \text{ identity } (\vec{\sigma}\cdot\mathbf{a})(\vec{\sigma}\cdot\mathbf{b}) = (\mathbf{a}\cdot\mathbf{b})\mathbf{1} + i(\mathbf{a}\times\mathbf{b})\cdot\vec{\sigma} \text{ reduces } (\vec{\sigma}\cdot\hat{\Theta}_{a})(\vec{\sigma}\cdot\hat{\Theta}_{b}) \text{ to: } \left(\hat{\Theta}_{a}\cdot\hat{\Theta}_{b}\right)\mathbf{1} + \left(\hat{\Theta}_{a}\times\hat{\Theta}_{b}\right)\cdot\vec{\sigma} \\ &= \left(\cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\left(\hat{\Theta}_{a}\cdot\hat{\Theta}_{b}\right)\right)\mathbf{1} \end{aligned}$$

$$\cdot i \left\{ \hat{\Theta}_a \sin \frac{\Theta_a}{2} \cos \frac{\Theta_b}{2} + \hat{\Theta}_b \cos \frac{\Theta_a}{2} \sin \frac{\Theta_b}{2} - \sin \frac{\Theta_a}{2} \sin \frac{\Theta_b}{2} \left(\hat{\Theta}_a \times \hat{\Theta}_b \right) \right\} \cdot \vec{\sigma}$$

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_Y	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{Y}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_Y	σ_Y	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_{Y}	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

 $\mathbf{q}_{\mu} \mathbf{q}_{\nu} = -\delta_{\mu\nu} \mathbf{1} + \varepsilon_{\mu\nu\lambda} \mathbf{q}_{\lambda}$ $\sigma_{\mu} \sigma_{\nu} = \delta_{\mu\nu} \mathbf{1} + i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \epsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) \equiv \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

$$\begin{aligned} \mathbf{R}_{a}(\vec{\Theta}_{a})\cdot\mathbf{R}_{b}(\vec{\Theta}_{b}) &= \left(\mathbf{1}\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(\mathbf{1}\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab}) \\ &= \cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}\mathbf{1} - i\left[\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\right] \cdot \vec{\sigma} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\vec{\sigma}\cdot\hat{\Theta}_{a})(\vec{\sigma}\cdot\hat{\Theta}_{b}) \\ &\text{ordan-Pauli}^{\dagger} \text{ identity } (\vec{\sigma}\cdot\mathbf{a})(\vec{\sigma}\cdot\mathbf{b}) = (\mathbf{a}\cdot\mathbf{b})\mathbf{1} + i(\mathbf{a}\times\mathbf{b})\cdot\vec{\sigma} \text{ reduces } (\vec{\sigma}\cdot\hat{\Theta}_{a})(\vec{\sigma}\cdot\hat{\Theta}_{b}) \text{ to: } \left(\hat{\Theta}_{a}\cdot\hat{\Theta}_{b}\right)\mathbf{1} + \left(\hat{\Theta}_{a}\times\hat{\Theta}_{b}\right)\cdot\vec{\sigma} \\ &= \left(\cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\left(\hat{\Theta}_{a}\cdot\hat{\Theta}_{b}\right)\right)\mathbf{1} \end{aligned}$$

$$-i\left\{\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}+\hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}-\sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\hat{\Theta}_{a}\times\hat{\Theta}_{b})\right\}\cdot\vec{\sigma}$$

$$= \left(\cos \frac{\Theta_{ab}}{2} \right) \mathbf{1} - i \left\{ \hat{\Theta}_{ab} \sin \frac{\Theta_{ab}}{2} \right\} \cdot \vec{\sigma} = \mathbf{R}_{ab} (\vec{\Theta}_{ab}) = \mathbf{R}_{a} (\vec{\Theta}_{a}) \cdot \mathbf{R}_{b} (\vec{\Theta}_{b})$$

Match with "Crazy-Thing" form of product $\mathbf{R}_{ab}(\Theta_{ab})$

†Class 4 p. 52 link

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_Y	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{Y}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_{Y}	σ_Y	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_Y	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

=

 $\mathbf{q}_{\mu} \mathbf{q}_{\nu} = -\delta_{\mu\nu} \mathbf{1} + \varepsilon_{\mu\nu\lambda} \mathbf{q}_{\lambda} \\ \sigma_{\mu} \sigma_{\nu} = \delta_{\mu\nu} \mathbf{1} + i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) \equiv \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

$$\mathbf{R}_{a}(\vec{\Theta}_{a})\cdot\mathbf{R}_{b}(\vec{\Theta}_{b}) = \left(1\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(1\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab})$$
$$= \cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}\mathbf{1} - i\left[\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\right] \cdot \vec{\sigma} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\vec{\sigma}\cdot\hat{\Theta}_{a})(\vec{\sigma}\cdot\hat{\Theta}_{b})$$

Jordan-Pauli[†] identity $(\vec{\sigma} \cdot \mathbf{a})(\vec{\sigma} \cdot \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b})\mathbf{1} + i(\mathbf{a} \times \mathbf{b}) \cdot \vec{\sigma}$ reduces $(\vec{\sigma} \cdot \hat{\Theta}_a)(\vec{\sigma} \cdot \hat{\Theta}_b)$ to: $(\hat{\Theta}_a \cdot \hat{\Theta}_b)\mathbf{1} + (\hat{\Theta}_a \times \hat{\Theta}_b)\mathbf{0} + \vec{\sigma} = (\cos \frac{\Theta_a}{\Theta_b} - \sin \frac{\Theta_b}{\Theta_b} - \sin \frac{\Theta_b}{\Theta_b} + (\widehat{\Theta}_a \cdot \widehat{\Theta}_b)\mathbf{0}$

$$=\left(\frac{\cos\frac{a}{2}\cos\frac{b}{2} - \sin\frac{a}{2}\sin\frac{b}{2}(\Theta_{a} \cdot \Theta_{b})}{-i\left\{\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\hat{\Theta}_{a} \times \hat{\Theta}_{b})\right\} \cdot \vec{\sigma}$$

$$\left(\underbrace{\cos\frac{\Theta_{ab}}{2}}_{\text{(atch)with "Crazy-Thing" form of product } \mathbf{B}_{ab} \sin\frac{\Theta_{ab}}{2} \right) \mathbf{1} - i \left\{ \widehat{\Theta}_{ab} \sin\frac{\Theta_{ab}}{2} \right\} \mathbf{0} \mathbf{\sigma} = \mathbf{R}_{ab} (\mathbf{\Theta}_{ab}) = \mathbf{R}_{a} (\mathbf{\Theta}_{a}) \cdot \mathbf{R}_{b} (\mathbf{\Theta}_{b})$$

Match with "Crazy-Thing": form of product $\mathbf{H}_{ab}(\mathbf{\Theta}_{ab})$ †Class 4 p. 52 link *1st Step:* Coefficient () of **unit 1** derives *angle of rotation*: $\mathbf{\Theta}_{ab}$

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_Y	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{Y}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_{Y}	σ_Y	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_Y	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

=

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) = \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

$$\begin{aligned} \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) &= \left(\mathbf{1}\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(\mathbf{1}\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma} \cdot \hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab}) \\ &= \cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}\mathbf{1} - i\left[\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\right] \cdot \vec{\sigma} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\vec{\sigma} \cdot \hat{\Theta}_{a})(\vec{\sigma} \cdot \hat{\Theta}_{b}) \\ &\text{ordan-Pauli}^{\dagger} \text{ identity } (\vec{\sigma} \cdot \mathbf{a})(\vec{\sigma} \cdot \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b})\mathbf{1} + i(\mathbf{a} \times \mathbf{b}) \cdot \vec{\sigma} \text{ reduces } (\vec{\sigma} \cdot \hat{\Theta}_{a})(\vec{\sigma} \cdot \hat{\Theta}_{b}) \text{ to: } (\hat{\Theta}_{a} \cdot \hat{\Theta}_{b})\mathbf{1} + (\hat{\Theta}_{a} \times \hat{\Theta}_{b}) \cdot \vec{\sigma} \\ &= \left(\cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\hat{\Theta}_{a} \cdot \hat{\Theta}_{b})\right)\mathbf{1} \end{aligned}$$

$$\cos\frac{\Theta_{ab}}{2} = \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\left(\hat{\Theta}_{a}\times\hat{\Theta}_{b}\right)\right) \cdot \vec{\sigma}$$

$$\cos\frac{\Theta_{ab}}{2} = 1 - i\left\{\hat{\Theta}_{ab}\sin\frac{\Theta_{ab}}{2}\right\} \cdot \vec{\sigma} = \mathbf{R}_{ab}(\vec{\Theta}_{ab}) = \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b})$$

Match with "Crazy-Thing" form of product $\mathbf{R}_{ab}(\vec{\Theta}_{ab})$ †Class 4 p. 52 link1st Step: Coefficient () of unit 12nd Step: Coefficient { } of -i• $\vec{\sigma}$ derives angle of rotation: Θ_{ab} derives unit-vector $\hat{\Theta}_{ab}$ of rotation:

Product algebra Multiplication rules for Pauli's " σ_{μ} -quaternions" and Hamilton's $\mathbf{q}_{\mu} = -i\sigma_{\mu}$.

•	1	\mathbf{q}_X	\mathbf{q}_Y	\mathbf{q}_Z		•	1	σ_X	σ_Y	σ_Z
1	1	\mathbf{q}_X	\mathbf{q}_{Y}	\mathbf{q}_Z		1	1	σ_X	σ_{Y}	σ_Z
\mathbf{q}_X	\mathbf{q}_X	-1	\mathbf{q}_Z	$-\mathbf{q}_{Y}$,	σ_X	σ_X	1	$i\sigma_Z$	$-i\sigma_{Y}$
\mathbf{q}_Y	\mathbf{q}_Y	$-\mathbf{q}_Z$	-1	\mathbf{q}_X		σ_{Y}	σ_Y	$-i\sigma_Z$	1	$i\sigma_X$
\mathbf{q}_Z	\mathbf{q}_Z	\mathbf{q}_Y	$-\mathbf{q}_X$	-1		σ_Z	σ_Z	$i\sigma_{\gamma}$	$-i\sigma_X$	1

Commutation rules for Pauli ops: σ_{μ} $\sigma_{\mu}\sigma_{\nu} - \sigma_{\nu}\sigma_{\mu} = [\sigma_{\mu}, \sigma_{\nu}] = 2i \varepsilon_{\mu\nu\lambda} \sigma_{\lambda}$

Group products: $\mathbf{R}_{ab}(\vec{\Theta}_{ab}) \equiv \mathbf{R}_{a}(\vec{\Theta}_{a}) \cdot \mathbf{R}_{b}(\vec{\Theta}_{b}) = e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{a})/2} e^{-i(\vec{\sigma} \cdot \vec{\Theta}_{b})/2}$ This <u>NOT</u> just $e^{ia}e^{ib} = e^{i(a+b)}$!

$$\mathbf{R}_{a}(\vec{\Theta}_{a})\cdot\mathbf{R}_{b}(\vec{\Theta}_{b}) = \left(\mathbf{1}\cos\frac{\Theta_{a}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{a})\sin\frac{\Theta_{a}}{2}\right) \left(\mathbf{1}\cos\frac{\Theta_{b}}{2} - i(\vec{\sigma}\cdot\hat{\Theta}_{b})\sin\frac{\Theta_{b}}{2}\right) = \mathbf{R}_{ab}(\vec{\Theta}_{ab})$$

$$= \cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2}\mathbf{1} - i\left[\hat{\Theta}_{a}\sin\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} + \hat{\Theta}_{b}\cos\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\right] \cdot \vec{\sigma} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}(\vec{\sigma}\cdot\hat{\Theta}_{a})(\vec{\sigma}\cdot\hat{\Theta}_{b})$$
ordan-Pauli[†] identity $(\vec{\sigma}\cdot\mathbf{a})(\vec{\sigma}\cdot\mathbf{b}) = (\mathbf{a}\cdot\mathbf{b})\mathbf{1} + i(\mathbf{a}\times\mathbf{b})\cdot\vec{\sigma}$ reduces $(\vec{\sigma}\cdot\hat{\Theta}_{a})(\vec{\sigma}\cdot\hat{\Theta}_{b})$ to: $\left(\hat{\Theta}_{a}\cdot\hat{\Theta}_{b}\right)\mathbf{1} + \left(\hat{\Theta}_{a}\times\hat{\Theta}_{b}\right)\cdot\vec{\sigma}$

$$= \left(\cos\frac{\Theta_{a}}{2}\cos\frac{\Theta_{b}}{2} - \sin\frac{\Theta_{a}}{2}\sin\frac{\Theta_{b}}{2}\left(\hat{\Theta}_{a}\cdot\hat{\Theta}_{b}\right)\right)\mathbf{1}$$

 1^{st} Step: Coefficient () of unit 1derives angle of rotation: Θ_{ab}

2^{*nd*} Step: Coefficient { } of $-i\bullet\vec{\sigma}$ derives *unit-vector* $\hat{\Theta}_{ab}$ *of rotation*:

Now easy to find the *product angle* Θ_{ab} and *crank unit vector* $\hat{\Theta}_{ab}$.

$$\frac{\Theta_{ab}}{2} = \cos^{-1} \left(\cos \frac{\Theta_a}{2} \cos \frac{\Theta_b}{2} - \sin \frac{\Theta_a}{2} \sin \frac{\Theta_b}{2} \hat{\Theta}_a \cdot \hat{\Theta}_b \right) \qquad U(2) \text{ and } R(3) \text{ Group Product Formulae}$$
$$\vec{\Theta}_{ab} = \left[\sin \frac{\Theta_a}{2} \cos \frac{\Theta_b}{2} \hat{\Theta}_a + \cos \frac{\Theta}{2} \sin \frac{\Theta'}{2} \hat{\Theta}_b + \sin \frac{\Theta'}{2} \sin \frac{\Theta}{2} \hat{\Theta}_a \times \hat{\Theta}_b \right] / \sin \frac{\Theta_{ab}}{2}$$

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 \$\mathcal{G} = U(2) product R[\overline{O}]R[\overline{O}''] algebra (It's all done with σ_µ spinors) Jordan-Pauli identity: U(2) product algebra of spinor σ_µ-operators U(2) "Crazy-Thing" forms do products R[\overline{O}]R[\overline{O}'] = R[\overline{O}'''] algebraically

 \$\mathcal{G} = U(2) product R[\overline{O}]R[\overline{O}'] = R[\overline{O}'''] by geometry (It's all done with σ_µ mirrors)
 Mirror reflections by σ_µ-operators make rotations The famous Clothing Store Mirror Hamilton-turns do products R[\overline{O}]R[\overline{O}'] = R[\overline{O}'''] geometrically
 Hamilton-turn slide rule and sundial U(2) products and (\alpha,\beta,\beta)-[\overline{O},\overline{O}] conversions
 Finite group products by turns or by group link diagrams D₃ example. O_h example
 \$\mathcal{G} = U(2) class transformation R[\overline{O}]R[\overline{O}']R[\overline{O}]^{-1}=R[\overline{O}'''] geometry
 \$\mathcal{G} = U(2) class transformation R[\overline{O}]R[\overline{O}]^{-1}=R[\overline{O}'''] geometry
 \$\mathcal{G} = U(2) class transformation R[\overline{O}]R[\overline{O}]^{-1}=R[\overline{O}'''] geometry
 \$\vee class transformation

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [\mathbf{H}, \rho]$

$$\boldsymbol{\sigma}_{A} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) , \quad \boldsymbol{\sigma}_{B} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

$$\boldsymbol{\sigma}_A = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) , \quad \boldsymbol{\sigma}_B = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

$$-\sigma_A = \left(\begin{array}{cc} -1 & 0 \\ 0 & +1 \end{array}\right)$$

$$\boldsymbol{\sigma}_A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \boldsymbol{\sigma}_B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $+\sigma_A$ is an *x*-plane *mirror*

s an ne r $\sigma_{A}|x\rangle = |x\rangle$ $\sigma_{A}|x\rangle = -|y\rangle$ $-\sigma_{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = ?$ Note that $-\sigma_{A}$ is a y-plane mirror

$$-\sigma_A = \left(\begin{array}{cc} -1 & 0 \\ 0 & +1 \end{array}\right)$$

$$-\sigma_A = \left(\begin{array}{cc} -1 & 0 \\ 0 & +1 \end{array}\right)$$

$$\sigma_{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{\phi} = \begin{pmatrix} \cos\phi & \sin\phi \\ \sin\phi & -\cos\phi \end{pmatrix} = \sigma_{A}\cos\phi + \sigma_{B}\sin\phi$$

$$\int_{and i} \frac{y}{|\sigma_{\phi}|x|} = \cos\phi$$

$$and : \langle y|\sigma_{\phi}|x| = \sin\phi$$

$$and : \langle y|\sigma_{\phi}|y| = -\cos\phi$$

Rotation angle ϕ *is TWICE the angle* $\phi/2$ *between mirror* σ_A *and mirror* σ_{ϕ}

Rotation angle ϕ is TWICE the angle $\phi/2$ between mirror σ_A and mirror σ_{ϕ}

Rotation angle ϕ *is TWICE the angle* $\phi/2$ *between mirror* σ_A *and mirror* σ_{ϕ}

 $\sigma_{A}\sigma_{B} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & +1 \\ -1 & 0 \end{pmatrix} = i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = i\sigma_{C}$ xy -rotation imaginary $by -90^{\circ} \text{ reflection?}$

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli \text{ identity: } U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$

 $\mathcal{G} = U(2)$ product $\mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta''']$ by geometry (It's all done with σ_{μ} mirrors)

Mirror reflections by σ_{μ} -operators make rotations The famous Clothing Store Mirror Hamilton-turns do products $\mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta''']$ geometrically

Hamilton-turn slide rule and sundial U(2) products and $(\alpha,\beta,\gamma)-[\varphi,\vartheta,\Theta]$ conversions

Finite group products by turns or by group link diagrams D_3 example. O_h example

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [\mathbf{H}, \rho]$

Reflections in clothing store <u>mirrors</u>

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli \text{ identity: } U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$

 $\mathcal{G} = U(2)$ product $\mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta''']$ by geometry (It's all done with σ_{μ} mirrors)

Mirror reflections by σ_{μ} -operators make rotations The famous Clothing Store Mirror

> Hamilton-turns do products $\mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta''']$ geometrically

Hamilton-turn slide rule and sundialU(2) products and $(\alpha,\beta,\gamma)-[\varphi,\vartheta,\Theta]$ conversionsFinite group products by turns or by group link diagrams D_3 example. O_h example

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [H,\rho]$

Hamilton-turns do U(2) products $\mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta''']$ *geometrically*

Fig. 10.A.7 Mirror reflection planes, normals, and Hamilton-turn arc vector.

QTforCA Fig. 10.A.8 Adding Hamilton-turn arcs to compute a U(2) product $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta']\mathbf{R}[\Theta]$. Each arc $\Theta/2$, $\Theta'/2$, or $\Theta''/2$ is 1/2 actual angle Θ , Θ' , or Θ'' of rotation $\mathbf{R}[\Theta]$, $\mathbf{R}[\Theta']$, or $\mathbf{R}[\Theta'']$.

QTforCA Fig. 10.A.8 Adding Hamilton-turn arcs to compute a U(2) product $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta']\mathbf{R}[\Theta]$.

Each arc $\Theta/2$, $\Theta'/2$, or $\Theta''/2$ is 1/2 actual angle Θ , Θ' , or Θ'' of rotation $\mathbb{R}[\Theta]$, $\mathbb{R}[\Theta']$, or $\mathbb{R}[\Theta'']$. Arc $\Theta/2$ between N1 and N2 and its supplement $(\Theta \pm 2\pi)/2 = \Theta/2 \pm \pi$ between N1 and -N2 represent the same <u>classical</u> rotation by Θ .

 $R[\Theta]$

N1

QTforCA Fig. 10.A.8 Adding Hamilton-turn arcs to compute a U(2) product $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta']\mathbf{R}[\Theta]$.

Each arc $\Theta/2$, $\Theta'/2$, or $\Theta''/2$ is 1/2 actual angle Θ , Θ' , or Θ'' of rotation $\mathbb{R}[\Theta]$, $\mathbb{R}[\Theta']$, or $\mathbb{R}[\Theta'']$. Arc $\Theta/2$ between N1 and N2 and its supplement $(\Theta \pm 2\pi)/2 = \Theta/2 \pm \pi$ between N1 and -N2 represent the same <u>classical</u> rotation by Θ .

-**R**[⊖]

N1

 $R[\Theta]$

For <u>quantum</u> spin-1/2 object, the arc pointing from N1 to the antipodal normal -N2 represents a Θ -rotation with an extra π -phase factor $e^{\pm i\pi} = -1$, that is, -**R**[Θ].

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli \text{ identity: } U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$

 $\mathcal{G} = U(2)$ product $\mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta''']$ by geometry (It's all done with σ_{μ} mirrors)

Mirror reflections by σ_{μ} *-operators make rotations*

Hamilton-turns do products $\mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta''']$ *geometrically*

Hamilton-turn slide rule and sundialU(2) products and $(\alpha,\beta,\gamma)-[\varphi,\vartheta,\Theta]$ conversionsFinite group products by turns or by group link diagrams D_3 example. O_h example

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [H,\rho]$

R(*3*)-*U*(*2*) *slide rule for converting* $\mathbf{R}(\alpha\beta\gamma) \leftrightarrow \mathbf{R}[\varphi\vartheta\Theta]$

Figure 5.3.7 Setting the rotational slide rule. (a) Darboux or axis angles. (b) Euler angles.

Harter and Dos Santos Double-Group Theory on the Half-Shell I and II Am. J. Phys. 46 251 (1978) Double group theory on the half-shell and the two level system -Harter-Santos-1978-AJP. I) <u>Rotation and half integral spin states</u> (<u>Alt scan</u>)

II) Optical polarization (Alt scan)

Harter and Dos Santos Double-Group Theory on the Half-Shell I and II Am. J. Phys. 46 251 (1978) Double group theory on the half-shell and the two level system -Harter-Santos-1978-AJP.

 <u>Rotation and half integral spin states</u> (Alt scan)
 <u>Optical polarization</u> (Alt scan)

Harter and Dos Santos Double-Group Theory on the Half-Shell I and II Am. J. Phys. 46 251 (1978) Double group theory on the half-shell and the two level system -Harter-Santos-1978-AJP.

 <u>Rotation and half integral spin states</u> (Alt scan)
 <u>Optical polarization</u> (Alt scan)

R(3)-*U*(2) slide rule for converting $\mathbf{R}(\alpha\beta\gamma) \leftrightarrow \mathbf{R}[\varphi\vartheta\Theta]$

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli identity: U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$ $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ by geometry (It's all done with } \sigma_{\mu} \text{ mirrors})$ $Mirror \text{ reflections by } \sigma_{\mu}\text{-operators make rotations} \qquad The famous Clothing Store Mirror$ $Hamilton-turns \ do \ products \ \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \ geometrically$ $Hamilton-turn \ slide \ rule \ and \ sundial$ $U(2) \ products \ and (\alpha, \beta, \gamma) - [\varphi, \vartheta, \Theta] \ conversions$

Finite group products by turns or by group link diagrams D_3 example. O_h example

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [H,\rho]$

1	\mathbf{r}^1	r ²	ρ_1	ρ2	ρ ₃
h^4	-1	$-h^2$	$-\rho_2$	$-\rho_3$	ρ_1
h^2	h^4	-1	$-\rho_3$	ρ_1	ρ_2
ρ_1	ρ_2	ρ_3	-1	$-h^2$	$-h^4$
ρ ₂	ρ_3	$-\rho_1$	h^4	-1	$-h^2$
ρ3	$-\rho_1$	$-\rho_2$	h^2	h^4	-1

Note $h^2 = r^1$ *and* $h^4 = r^2$ *for* D_6 *notation*

Note $h^2 = r^1$ and $h^4 = r^2$ for D_6 notation

Octahedral \supset *Tetrahedral symmetry* $O_h \supset O \sim T_d \supset T$, $O_h \supset O \sim T_d$, and $O_h \supset T_h \supset T$

Fig. 4.1.5 from Principles of Symmetry, Dynamics and Spectroscopy

The symmetry group of Sulfur Hexafluoride SF₆

Octahedral O and spin- $O \subset U(2)$ rotation nomogram from Fig. 4.1.3-4 Principles of Symmetry, Dynamics and Spectroscopy

	R2-	5,		Y=>		division of the second	4E 18(1213141	d°class 5 ¹ 6			-782	(R ² Y			Rg 		1	4	+15	_Y=x		N)
Ī	7=	×2:	1				Mi	nus	(-)si	igns	A .	RZP	\leq		R	R		$X = x_1$	Z	-ra		1.	12	1	$X = x_1$
1		<i>л</i> у				2	fo	r Fe	rmi	ons	2				1		1			1)		×		1	/
		1	Lis	-	/	Y	Ignor	e (-) f	for Bo	sons	or		Ri.		1	1	-R 3		ŀ	K		-	V)	
		9	Me	T	[±1±	=1±1]	clas	ssical	parti	cles)			-	R2.	-R3					-	-	A	P'		
	Г		+1	$\underbrace{20^{\circ}}_{[1,\overline{1},\overline{1},\overline{1}]}$				00	1 1 1	± 18	$\int_{0}^{\circ} X$		+9			- <u>9</u>	$\frac{0^{\circ}XY}{10101}$	$Z_{\overline{1}}$	[101]	$\begin{bmatrix} 1 & \overline{1} \end{bmatrix}$	± 180	$^{\circ}i_{k}$	[01]]	011	
Γ	1	<u> </u>				1111 "2	-2	1 1 1	-2	P^2						P ³	p3	D01	[<u>101</u>]	;	<u>[[[[</u>]			,	
-	r_1	$\frac{r_1}{r_1^2}$	$r_2 - r_4^2$	r_{3} $-r_{2}^{2}$	$r_4 - r_3^2$	$\frac{r_1}{-1}$	$r_2 = -R_2^2$	$-R_{3}^{2}$	$r_4 = -R_1^2$	$-r_2$	$\frac{r_2}{-r_3}$	r_3	<i>i</i> ₃	<i>R</i> ₂ <i>i</i> ₆	$\frac{K_3}{i_1}$	$-R_3$	$-R_1$	$-R_2$	r_1 R_1^3	<i>i</i> ₂ <i>i</i> ₅	R_2^3	<i>i</i> ₄	$\frac{i_{5}}{-i_{4}}$	$\frac{r_6}{R_3^3}$	
	r ₂	$-r_{3}^{2}$	r_{2}^{2}	$-r_{4}^{2}$	$-r_1^2$	R_{2}^{2}	-1	R_{1}^{2}	$-R_{3}^{2}$	r ₁	<i>r</i> ₄	$-r_{3}$	R_3	$-R_{1}^{3}$	<i>i</i> ₂	<i>i</i> ₃	- <i>i</i> ₅	R_2^3	<i>i</i> ₆	$-R_1$	R_2	$-i_{1}$	R_{3}^{3}	<i>i</i> ₄	
	r ₃	$-r_4^2$ $-r_2^2$	$-r_1^2$ $-r_2^2$	r_{3}^{2}	$-r_{2}^{2}$	R_3^2 R_1^2	$-R_{1}^{2}$ R_{2}^{2}	-1 $-R_{2}^{2}$	R_{2}^{2} -1	$-r_4$	r_1	r ₂	$-i_4 - R_3^3$	R_1	$-R_2^3$ R_2	R_3^3	i_6 R_1^3	<i>i</i> ₂ <i>i</i> ,	i_5 R.	$-R_1^3$	i_1 $-i_2$	R_2 R_2^3	$-i_3$ R_2	R_3	
	r_1^2	-1	R_1^2	R_2^2	R_{3}^{2}	$-r_1$	r ₃	r ₄	r ₂	r_{4}^{2}	r_{2}^{2}	r_{3}^{2}	R_2^3	R_3^3	R_1^3	$-i_1$	$-i_3$	$-i_{6}$	$-R_3$	$-i_{4}$	$-R_1$	<i>i</i> ₅	$-i_2$	$-R_2$	
	r_2^2	$-R_{1}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	r_4	$-r_{2}$	r_1	<i>r</i> ₃	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	i ₂	$-i_3$	$-R_1$	R_2	$-R_{3}^{3}$	- <i>i</i> ₅	i ₄	$-R_3$	$-R_{1}^{3}$	$-i_{6}$	R_{2}^{3}	$-i_1$	
	r_{3}^{2}	$-R_{2}^{2}$	$-R_{3}^{2}$	-1	R_1^2	<i>r</i> ₂	<i>r</i> ₄	$-r_{3}$	<i>r</i> ₁	r_2^2	$-r_4^2$	$-r_1^2$	$-R_2$	$-i_4$	$-i_{6}$	i_2	<i>R</i> ₃	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	i ₅	R_1	$-i_1$	$-R_{2}^{3}$	
-	$r_{\overline{4}}$	-R3	<i>R</i> ₂	$-R_{\tilde{1}}$	-1	r ₃	r_1	r ₂	$-r_4$	$-r_{1}$	r ₃	$-r_2^2$	$-l_1$	-R ₃	-1 ₅	$-R_2$	- <i>i</i> ₄	<i>R</i> ₁	$-R_3$	13 D3	-1 ₆	<i>R</i> ₁	<i>R</i> ₂	-12	
	R_2^2	$-r_{4}$	r ₃	$-r_2$	$-r_{2}$	r_{2}^{2}	$-r_1^2$	$-r_{1}^{2}$	$-r_{3}$ r_{2}^{2}	-1 $-R_{2}^{2}$	-1	$-R_2$ R_1^2	$-i_5$	R_2^3	-14 i2	$-\kappa_1 - i_6$	$-R_{2}$	$-i_{3}$	$-\kappa_2$ $-i_2$	$-\kappa_2$ i_1	$-R_3$	R_3^3	$-\iota_6$ R_1	R_1^3	
	R_3^2	$-r_{3}$	$-r_{4}$	r ₁	r ₂	r_{4}^{2}	r_{3}^{2}	$-r_{2}^{2}$	$-r_{1}^{2}$	R_2^2	$-R_{1}^{2}$	-1	i ₆	<i>i</i> ₂	R_3^3	$-i_{5}$	$-i_1^2$	$-R_3$	R_{2}^{3}	$-R_{2}$	i4	$-i_{3}$	R_{1}^{3}	$-R_1$	
	R_1	<i>i</i> ₁	$-R_{2}^{3}$	- <i>i</i> ₂	R_2	R_3^3	- <i>i</i> ₃	$-R_3$	<i>i</i> ₄	R_{1}^{3}	<i>i</i> ₆	i ₅	R_{1}^{2}	<i>r</i> ₁	$-r_{4}^{2}$	-1	$-r_{3}$	r_{2}^{2}	$-r_{4}$	<i>r</i> ₂	r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_3^2	
	R ₂	i ₃	R_3	$-R_{3}^{3}$	<i>i</i> ₄	R_1^3	i 5	$-i_{6}$	$-R_1$	$-i_{2}$	R_{2}^{3}	<i>i</i> ₁	$-r_{2}^{2}$	R_{2}^{2}	<i>r</i> ₁	r_{3}^{2}	-1	$-r_{4}$	R_{1}^{2}	R_{3}^{2}	$-r_{2}$	$-r_{3}$	$-r_{4}^{2}$	r_1^2	
	R_3	<i>i</i> ₆	<i>i</i> ₅	R_1	$-R_{1}^{3}$	R_2^3	$-R_2$	$-i_{2}$	$-i_1$	i ₃	<i>i</i> ₄	R_3^3	<i>r</i> ₁	$-r_{3}^{2}$	R_{3}^{2}	$-r_{2}$	r_4^2	-1	r_{1}^{2}	r_2^2	R_{2}^{2}	$-R_1^2$	$-r_4$	$-r_{3}$	
	R1 R3	$-R_2$	-12 i.	R ₂	l_1 R^3	$-i_{3}$	$-R_3$ R.	$-R^{3}$	R ₃	$-R_1$	$-R_{2}$	$-\iota_6$	-1	$-r_4$ -1	$r_{\overline{3}}$	$-R_{1}^{2}$	$r_2 - R_2^2$	$-r_1$	$-r_1 - R_2^2$	r_3 R_1^2	$r_{\overline{2}}$	$-r_4$	$-R_{\bar{3}}^2$ $-r_{\bar{2}}^2$	$-R_{2}^{2}$	
	R_3^3	$-R_1$	R_{1}^{3}	i ₆	i5	$-i_1$	$-i_{2}$	R_2	$-R_{2}^{3}$	i_4	$-i_{3}$	$-R_{3}$	$-r_{3}$	r_{2}^{2}	-1^{1}	r_4	$-r_1^2$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}$	$-r_1$	
	<i>i</i> ₁	R_{3}^{3}	$-i_{4}$	<i>i</i> ₃	R_3	$-R_1$	$-i_{6}$	-i ₅	$-R_1^3$	R_2^3	<i>i</i> ₂	$-R_{2}$	r_1^2	R_{3}^{2}	$-r_{4}$	r_{4}^{2}	$-R_{1}^{2}$	$-r_{1}$	-1	$-R_{2}^{2}$	$-r_{3}$	<i>r</i> ₂	r_{3}^{2}	r_{2}^{2}	
	<i>i</i> ₂	<i>i</i> ₄	R_{3}^{3}	R_3	$-i_{3}$	$-i_{5}$	R_{1}^{3}	R_1	$-i_{6}$	R_2	$-i_{1}$	R_{2}^{3}	$-r_{3}^{2}$	$-R_{1}^{2}$	$-r_{3}$	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_{2}^{2}	-1	r_4	$-r_{1}$	r_{1}^{2}	r_4^2	
	i3	R_1^3	<i>R</i> ₁	$-i_{5}$	i ₆	$-R_2$	$-R_{2}^{3}$	$-i_1$	i ₂	$-R_3$	R3 P	-i ₄	$-r_{2}$	r_1^2	R_1^2	$-r_{1}$	r_{2}^{2}	$-R_{2}^{2}$	r ² ₃	$-r_{4}^{2}$	-1	R_{3}^{2}	<i>r</i> ₃	$-r_4$	
	14 is	-15 io	$-R_{2}$	-R1	$-R_1^3$	-12 i.	$-R_{2}$	-R ₂	$-R_2$ $-R_2^3$	-R3	$-R_{3}^{3}$	$-R_1$	R_2^2	r4	r_2^2	R_2^2	r ₃	r_1^2	$-r_{2}$	$-r_{1}$	$-r_{2}^{2}$	$-r_{1}^{2}$	-1	$-R_{1}^{2}$	
	i ₆	R_2^3	<i>i</i> ₁ •	R_2	i2	$-R_{3}$	$-i_{4}$	$-R_{3}^{3}$	$-i_{3}$	$-i_{5}$	$-R_1$	R_1^3	R_2^2	$-r_{3}$	r_1^2	$-R_{3}^{2}$	$-r_1$	r_{3}^{2}	$-r_{2}$	$-r_{4}$	r_{4}^{2}	r_{2}^{2}	R_{1}^{2}	-1	

Octahedral O and spin- $O \subset U(2)$ rotation product Table F.2.1 from Principles of Symmetry, Dynamics and Spectroscopy

The symmetry group of "Buckyball" C₆₀

Fig. 10. Icosahedral vector addition nomogram.

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli identity: U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$ $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ by geometry (It's all done with } \sigma_{\mu} \text{ mirrors})$ $Mirror \text{ reflections by } \sigma_{\mu}\text{-operators make rotations} \qquad The famous Clothing Store Mirror$ $Hamilton-turns \ do \ products \ \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ geometrically}$ $Hamilton-turn \ slide \ rule \ and \ sundial \qquad U(2) \ products \ and (\alpha, \beta, \gamma) - [\varphi, \vartheta, \Theta] \ conversions$ $Finite \ group \ products \ by \ turns \ or \ by \ group \ link \ diagrams \qquad D_3 \ example. \qquad O_h \ example$

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

<u>GrpThLect 15 p.36</u>.

Transforming D_3 operators using D_3 operators Example 1: Rotating ρ_3 axis crank using \mathbf{r}^1 puts it down onto ρ_1

Seems to imply: $\mathbf{r}^{1}\rho_{3}(\mathbf{r}^{1})^{-1} = \mathbf{r}^{1}\rho_{3}\mathbf{r}^{2} = \rho_{1}$

Transforming D_3 operators using D_3 operators Example 1: Rotating ρ_3 axis crank using \mathbf{r}^1 puts it down onto ρ_1

Seems to imply: $\mathbf{r}^{1}\rho_{3}(\mathbf{r}^{1})^{-1} = \mathbf{r}^{1}\rho_{3}\mathbf{r}^{2} = \rho_{1}$

 ρ_3

axis

Seems to imply: $\mathbf{r}^{1}\rho_{3}(\mathbf{r}^{1})^{-1} = \mathbf{r}^{1}\rho_{3}\mathbf{r}^{2} = \rho_{1}$

Transforming D_3 operators using D_3 operators Example 2: Rotating ρ_3 axis crank using ρ_1 puts it down onto ρ_2

Seems to imply: $\rho_1 \rho_3 (\rho_1)^{-1} = \rho_1 \rho_3 \rho_1 = \rho_2$

Also:
$$\mathbf{r}^{2}\rho_{3}(\mathbf{r}^{2})^{-1} = \mathbf{r}^{2}\rho_{1} = \rho_{2}$$

Equivalence transformations and equivalence classes

Vectors added in the reverse order give $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta] \mathbf{R}[\Theta']$ instead of $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta'] \mathbf{R}[\Theta]$.


```
A similarity transformation of rotation \mathbf{R}[\Theta''] by rotation \mathbf{R}[\Theta] gives rotation \mathbf{R}[\Theta'']
\mathbf{R}[\Theta''] \mathbf{R}[\Theta''] \mathbf{R}[\Theta''] = \mathbf{R}[\Theta''']
\mathbf{R}[\Theta']
```


Vectors added in the reverse order give $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta] \mathbf{R}[\Theta']$ instead of $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta'] \mathbf{R}[\Theta]$.

A similarity transformation of rotation $\mathbb{R}[\Theta'']$ by rotation $\mathbb{R}[\Theta]$ gives rotation $\mathbb{R}[\Theta''']$ and *vice-versa*: $\mathbb{R}[\Theta] \underbrace{\mathbb{R}[\Theta'']}_{\mathbb{R}[\Theta'']} \mathbb{R}[\Theta''] = \mathbb{R}[\Theta''']$ $\mathbb{R}[\Theta''] \underbrace{\mathbb{R}[\Theta'']}_{\mathbb{R}[\Theta'']} \mathbb{R}[\Theta''] = \mathbb{R}[\Theta''']$

A similarity transformation of rotation $\mathbb{R}[\Theta'']$ by rotation $\mathbb{R}[\Theta]$ gives rotation $\mathbb{R}[\Theta''']$ and *vice-versa*: $\mathbb{R}[\Theta] \underbrace{\mathbb{R}[\Theta'']}_{\mathbb{R}[\Theta'']} \mathbb{R}[\Theta'''] = \mathbb{R}[\Theta''']$ $\mathbb{R}[\Theta''] \underbrace{\mathbb{R}[\Theta'']}_{\mathbb{R}[\Theta']} \mathbb{R}[\Theta''] = \mathbb{R}[\Theta'']$

Everything associated with rotation $\mathbf{R}[\Theta'']$ is rotated by full angle Θ around axis Θ .

A similarity transformation of rotation $\mathbf{R}[\Theta'']$ by rotation $\mathbf{R}[\Theta]$ gives rotation $\mathbf{R}[\Theta''']$ and *vice-versa*: $\mathbf{R}[\Theta] \underbrace{\mathbf{R}[\Theta'']}_{\mathbf{R}[\Theta']} = \mathbf{R}[\Theta''']$ $\underbrace{\mathbf{R}[\Theta'']}_{\mathbf{R}[\Theta']} = \mathbf{R}[\Theta'']$

Everything associated with rotation $\mathbb{R}[\Theta'']$ is rotated by full angle Θ around axis Θ . Crank vector Θ and its turn arc moved by <u>two</u> $\mathbb{R}[\Theta]$ turn arcs into turn arc of $\mathbb{R}[\Theta''']$ below it.

Vectors added in the reverse order give $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta] \mathbf{R}[\Theta']$ instead of $\mathbf{R}[\Theta''] = \mathbf{R}[\Theta'] \mathbf{R}[\Theta]$.

A similarity transformation of rotation $\mathbb{R}[\Theta'']$ by rotation $\mathbb{R}[\Theta]$ gives rotation $\mathbb{R}[\Theta''']$ and *vice-versa*: $\mathbb{R}[\Theta] \underbrace{\mathbb{R}[\Theta'']}_{\mathbb{R}[\Theta']} \mathbb{R}[\Theta''] = \mathbb{R}[\Theta''']$ $\mathbb{R}[\Theta''] \underbrace{\mathbb{R}[\Theta'']}_{\mathbb{R}[\Theta']} \mathbb{R}[\Theta''] = \mathbb{R}[\Theta'']$

Everything associated with rotation $\mathbf{R}[\Theta'']$ is rotated by full angle Θ around axis Θ . Crank vector Θ and its turn arc moved by two $\mathbf{R}[\Theta]$ turn arcs into turn arc of $\mathbf{R}[\Theta''']$ below it. Another similarity transformation of rotation $\mathbf{R}[\Theta''']$ by rotation $\mathbf{R}[\Theta']$ to $\mathbf{R}[\Theta'']$ $\mathbf{R}[\Theta''] \mathbf{R}[\Theta'''] \mathbf{R}[-\Theta''] = \mathbf{R}[\Theta'']$

Another similarity transformation of rotation $\mathbf{R}[\Theta'']$ by rotation $\mathbf{R}[\Theta']$ to $\mathbf{R}[\Theta'']$ $\mathbf{R}[\Theta''] \mathbf{R}[\Theta'''] \mathbf{R}[\Theta''] = \mathbf{R}[\Theta'']$ $\mathbf{R}[\Theta''] \mathbf{R}[\Theta''] \mathbf{R}[\Theta''] = \mathbf{R}[\Theta''']$

 $\mathbf{R}[\Theta'] \; \mathbf{R}[\Theta''] \; \mathbf{R}[\Theta''] = \mathbf{R}[\Theta'']$ $\mathbf{R}[\Theta'']$

$$\underbrace{\mathbf{R}[-\Theta'] \ \mathbf{R}[\Theta'']}_{\mathbf{R}[\Theta]} \ \mathbf{R}[\Theta'] = \mathbf{I}$$

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors}) \\ \text{Jordan-Pauli identity: } U(2) \text{ product algebra of spinor } \sigma_{\mu} \text{-operators} \\ U(2) ``Crazy-Thing'' forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically} \\ \mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ by geometry (It's all done with } \sigma_{\mu} \text{ mirrors}) \\ \text{Mirror reflections by } \sigma_{\mu} \text{-operators make rotations} \qquad The famous Clothing Store Mirror \\ \text{Hamilton-turns do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ geometrically} \\ \text{Hamilton-turn slide rule and sundial} \qquad U(2) \text{ products and } (\alpha, \beta, \gamma) \text{-}[\varphi, \vartheta, \Theta] \text{ conversions} \\ \end{aligned}$

Finite group products by turns or by group link diagrams D_3 example. O_h example

 $\mathcal{G} = U(2)$ class equivalence transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group equivalence classes

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [H,\rho]$
$U(2) \text{ density operator approach to symmetry dynamics} Euler phase-angle coordinates <math>(\mathbf{\alpha}, \beta, \gamma)$ and norm N of quantum state $|\Psi\rangle$ $|\Psi\rangle = \begin{pmatrix}\Psi_1\\\Psi_2\end{pmatrix} = \sqrt{N} \begin{pmatrix}x_1 + ip_1\\x_2 + ip_2\end{pmatrix} = \sqrt{N} \begin{pmatrix}e^{-i\alpha/2}\cos\beta/2\\e^{i\alpha/2}\sin\beta/2\end{pmatrix} e^{-i\gamma/2}$ $i^{(\alpha/2)}\sin\beta/2 = e^{-i\gamma/2}$ $i^{(\alpha/2)}a^{(\alpha/2)$ $\begin{array}{l} U(2) \ density \ operator \ approach \ to \ symmetry \ dynamics \\ Euler \ phase-angle \ coordinates \ (\alpha, \beta, \gamma) \\ and \ norm \ N \ of \ quantum \ state \ |\Psi\rangle \\ \hline V = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2}\cos\beta/2 \\ e^{i\alpha/2}\sin\beta/2 \end{pmatrix} e^{-i\gamma/2} \\ \frac{e^{-i\gamma/2}}{2} \\ \frac{e^{-i\gamma$

U(2) density operator approach to symmetry dynamics $x_1 = \cos[(\gamma + \alpha)/2] \cos\beta/2$ $p_1 = -\sin[(\gamma + \alpha)/2]\cos\beta/2$ Euler phase-angle coordinates (α, β, γ) and norm N of quantum state $|\Psi\rangle$ $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2} \cos \beta/2 \\ e^{i\alpha/2} \sin \beta/2 \end{pmatrix} e^{-i\gamma/2}$ $x_2 = \cos[(\gamma - \alpha)/2] \sin\beta/2$ $p_2 = -\sin[(\gamma - \alpha)/2] \sin\beta/2$ 1/2 times σ -operator expectation values $\langle \Psi | \sigma_{\mu} | \Psi \rangle$ gives: Spin S-vector components: $\langle \Psi | \mathbf{1} | \Psi \rangle = N = \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = N \begin{pmatrix} p_1^2 + x_1^2 + p_2^2 + x_2^2 \end{pmatrix}$ scaled by $\frac{1}{2}$: $\frac{1}{2} \left(\left| \Psi_1 \right|^2 + \left| \Psi_2 \right|^2 \right) = \frac{N}{2}$ $\left\langle \Psi \middle| \boldsymbol{\sigma}_{Z} \middle| \Psi \right\rangle = 2S_{\mathcal{A}} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} \Psi_{1} \\ \Psi_{2} \end{array} \right) = N \left(p_{1}^{2} + x_{1}^{2} - p_{2}^{2} - x_{2}^{2} \right) \begin{array}{c} \text{scaled} \\ \text{by } \frac{1}{2} \end{array}$ $S_{Z} = S_{A} = \frac{1}{2} \left(\left| \Psi_{1} \right|^{2} - \left| \Psi_{2} \right|^{2} \right) = \frac{N}{2} \left(\cos^{2} \frac{\beta}{2} - \sin^{2} \frac{\beta}{2} \right) = \frac{N}{2} \cos \beta$ scaled by $\frac{1}{2}$: $\left\langle \Psi \middle| \mathbf{\sigma}_{X} \middle| \Psi \right\rangle = 2S_{B} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}x_{2} + p_{1}p_{2} \right)$ $S_X = S_B = \operatorname{Re} \Psi_1^* \Psi_2 \qquad = N \cos \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \cos \alpha \sin \beta$ $\left\langle \Psi \middle| \sigma_{Y} \middle| \Psi \right\rangle = 2S_{C} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}p_{2} - x_{2}p_{1} \right)$ scaled by $\frac{1}{2}$: $S_Y = S_C = \operatorname{Im} \Psi_1^* \Psi_2 = N \sin \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \sin \alpha \sin \beta$

$$U(2) \text{ density operator approach to symmetry dynamics}}_{Euler phase-angle coordinates } (\alpha, \beta, \gamma) | \Psi \rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + i\rho_1 \\ x_2 + i\rho_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2} \cos\beta/2 \\ e^{i\alpha/2} \sin\beta/2 \end{pmatrix} e^{-i\gamma/2} x_2^{2} \cos\beta/2 | e^{-i\gamma/2} x_2^{2} \sin\beta/2 | e^{-i\gamma/2} x_2^{2} \sin\beta/2 | e^{-i\gamma/2} x_2^{2} \cos\beta/2 | e^{-i\gamma/2} x_2^{2} \sin\beta/2 | e^{-i\gamma/2} x_2^{2} \cos\beta | e^{-i\gamma/2} x_2^{2} \sin\beta/2 | e^{-i\gamma/2} x_2^{2} \sin\beta/2$$

U(2) density operator approach to symmetry dynamics $x_1 = \cos[(\gamma + \alpha)/2]\cos\beta/2$ $p_1 = -\sin[(\gamma + \alpha)/2]\cos\beta/2$ Euler phase-angle coordinates (α, β, γ) and norm N of quantum state $|\Psi\rangle$ $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2} \cos \beta/2 \\ e^{i\alpha/2} \sin \beta/2 \end{pmatrix} e^{-i\gamma/2}$ $x_2 = \cos[(\gamma - \alpha)/2] \sin\beta/2$ $p_2 = -\sin[(\gamma - \alpha)/2] \sin\beta/2$ *1/2 times* σ *-operator expectation values* $\langle \Psi | \sigma_{\mu} | \Psi \rangle$ Spin S-vector components: gives: $\langle \Psi | \mathbf{1} | \Psi \rangle = N = \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = N \begin{pmatrix} p_1^2 + x_1^2 + p_2^2 + x_2^2 \end{pmatrix}$ scaled by $\frac{1}{2}$: $\frac{1}{2} \left(\left| \Psi_1 \right|^2 + \left| \Psi_2 \right|^2 \right) = \frac{N}{2}$ $\left\langle \Psi \middle| \boldsymbol{\sigma}_{Z} \middle| \Psi \right\rangle = 2S_{A} = \left(\begin{array}{c} \Psi_{1}^{*} & \Psi_{2}^{*} \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ \Psi_{2} \end{array} \right) \left(\begin{array}{c} \Psi_{1} \\ \Psi_{2} \end{array} \right) = N \left(p_{1}^{2} + x_{1}^{2} - p_{2}^{2} - x_{2}^{2} \right) \begin{array}{c} scaled \\ by \frac{1}{2} \end{array} \right) \\ S_{Z} = S_{A} = \frac{1}{2} \left(\left| \Psi_{1} \right|^{2} - \left| \Psi_{2} \right|^{2} \right) = \frac{N}{2} \left(\cos^{2} \frac{\beta}{2} - \sin^{2} \frac{\beta}{2} \right) = \frac{N}{2} \cos \beta$ scaled by $\frac{1}{2}$: $\left\langle \Psi \middle| \mathbf{\sigma}_{X} \middle| \Psi \right\rangle = 2S_{B} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}x_{2} + p_{1}p_{2} \right)$ $S_X = S_B = \operatorname{Re} \Psi_1^* \Psi_2 \qquad = N \cos \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \cos \alpha \sin \beta$ scaled by $\frac{1}{2}$: $S_Y = S_C = \operatorname{Im} \Psi_1^* \Psi_2 = N \sin \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \sin \alpha \sin \beta$ $\left\langle \Psi \middle| \sigma_{Y} \middle| \Psi \right\rangle = 2S_{C} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}p_{2} - x_{2}p_{1} \right)$ $\underline{\text{The density operator } \rho = |\Psi\rangle\langle\Psi| = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \otimes \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} = \begin{pmatrix} \Psi_1\Psi_1^* & \Psi_1\Psi_2^* \\ \Psi_2\Psi_1^* & \Psi_2\Psi_2^* \end{pmatrix} = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} = \begin{pmatrix} \Psi_1^*\Psi_1 & \Psi_2^*\Psi_1 \\ \Psi_1^*\Psi_2 & \Psi_2^*\Psi_2 \end{pmatrix}$ $\rho_{11} = \Psi_1^* \Psi_1 \qquad \rho_{12} = \Psi_2^* \Psi_1$ $\frac{\rho_{11} - \mathbf{r}_{1} \mathbf{r}_{1}}{\left| = \frac{1}{2}N + S_{\mathbf{Z}} \right|^{2}} = S_{\mathbf{X}} - iS_{\mathbf{Y}}, = \begin{pmatrix} \frac{1}{2}N + S_{\mathbf{Z}} & S_{\mathbf{X}} - iS_{\mathbf{Y}} \\ = S_{\mathbf{X}} - iS_{\mathbf{Y}}, \\ \rho_{21} = \Psi_{1}^{*}\Psi_{2} & \rho_{22} = \Psi_{2}^{*}\Psi_{2} \\ = \begin{pmatrix} \frac{1}{2}N + S_{\mathbf{Z}} & S_{\mathbf{X}} - iS_{\mathbf{Y}} \\ S_{\mathbf{X}} + iS_{\mathbf{Y}} & \frac{1}{2}N - S_{\mathbf{Z}} \end{pmatrix}$ $= S_{\mathbf{X}} + iS_{\mathbf{Y}} \qquad = \frac{1}{2}N - S_{\mathbf{Z}}$ *Norm:* $N = \Psi_1 * \Psi_1 + \Psi_2 * \Psi_2$...2-by-2 *density operator* ρ

U(2) density operator approach to symmetry dynamics $x_1 = \cos[(\gamma + \alpha)/2]\cos\beta/2$ $p_1 = -\sin[(\gamma + \alpha)/2]\cos\beta/2$ Euler phase-angle coordinates (α, β, γ) and norm N of quantum state $|\Psi\rangle$ $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2} \cos \beta/2 \\ e^{i\alpha/2} \sin \beta/2 \end{pmatrix} e^{-i\gamma/2}$ $x_2 = \cos[(\gamma - \alpha)/2] \sin\beta/2$ $p_2 = -\sin[(\gamma - \alpha)/2] \sin\beta/2$ 1/2 times σ -operator expectation values $\langle \Psi | \sigma_{\mu} | \Psi \rangle$ Spin S-vector components: gives: $\langle \Psi | \mathbf{1} | \Psi \rangle = N = \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = N \begin{pmatrix} p_1^2 + x_1^2 + p_2^2 + x_2^2 \end{pmatrix} \quad scaled \quad by \ \frac{1}{2}:$ $\frac{1}{2} \left(\left| \Psi_1 \right|^2 + \left| \Psi_2 \right|^2 \right) = \frac{N}{2}$ $\langle \Psi | \boldsymbol{\sigma}_{Z} | \Psi \rangle = 2S_{A} = \begin{pmatrix} \Psi_{1}^{*} & \Psi_{2}^{*} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = N \begin{pmatrix} p_{1}^{2} + x_{1}^{2} - p_{2}^{2} - x_{2}^{2} \end{pmatrix} \xrightarrow{scaled} \\ = N \begin{pmatrix} p_{1}^{2} + x_{1}^{2} - p_{2}^{2} - x_{2}^{2} \end{pmatrix} \xrightarrow{scaled} \\ by \frac{1}{2}; \qquad S_{Z} = S_{A} = \frac{1}{2} \begin{pmatrix} |\Psi_{1}|^{2} - |\Psi_{2}|^{2} \end{pmatrix} = \frac{N}{2} \left(\cos^{2} \frac{\beta}{2} - \sin^{2} \frac{\beta}{2} \right) = \frac{N}{2} \cos \beta$ $\left\langle \Psi \middle| \mathbf{\sigma}_{X} \middle| \Psi \right\rangle = 2S_{B} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}x_{2} + p_{1}p_{2} \right) \qquad scaled \\ by \frac{1}{2}:$ $S_X = S_B = \operatorname{Re} \Psi_1^* \Psi_2 = N \cos \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \cos \alpha \sin \beta$ $\left\langle \Psi \middle| \boldsymbol{\sigma}_{Y} \middle| \Psi \right\rangle = 2S_{C} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}p_{2} - x_{2}p_{1} \right) \qquad scaled \\ by \frac{1}{2}; \qquad S_{Y} = S_{C} = \operatorname{Im} \Psi_{1}^{*} \Psi_{2} \qquad = N \sin \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \sin \alpha \sin \beta$ The density operator $\rho = |\Psi\rangle\langle\Psi| = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \otimes \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} = \begin{pmatrix} \Psi_1\Psi_1^* & \Psi_1\Psi_2^* \\ \Psi_2\Psi_1^* & \Psi_2\Psi_2^* \end{pmatrix} = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} = \begin{pmatrix} \Psi_1^*\Psi_1 & \Psi_2^*\Psi_1 \\ \Psi_1^*\Psi_2 & \Psi_2^*\Psi_2 \end{pmatrix}$ $\frac{1}{2} = \frac{1}{2} N + S_{Z} = S_{X} - iS_{Y}, = \left(\begin{array}{ccc} \frac{1}{2} N + S_{Z} & S_{X} - iS_{Y} \\ \frac{1}{2} P_{21} = \Psi_{1}^{*} \Psi_{2} & \rho_{22} = \Psi_{2}^{*} \Psi_{2} \\ 1 & 1 & 1 \end{array}\right) = \left(\begin{array}{ccc} \frac{1}{2} N + S_{Z} & S_{X} - iS_{Y} \\ S_{X} + iS_{Y} & \frac{1}{2} N - S_{Z} \end{array}\right) = \frac{1}{2} N \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}\right) + S_{X} \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}\right) + S_{Y} \left(\begin{array}{ccc} 0 & -i \\ i & 0 \end{array}\right) + S_{Z} \left(\begin{array}{ccc} 1 & 0 \\ 0 & -1 \end{array}\right)$ $= S_{\mathbf{X}} + iS_{\mathbf{Y}} \qquad = \frac{1}{2}N - S_{\mathbf{Z}}$ *Norm:* $N = \Psi_1 * \Psi_1 + \Psi_2 * \Psi_2$...so state *density operator* ρ has σ -expansion

U(2) density operator approach to symmetry dynamics $x_1 = \cos[(\gamma + \alpha)/2] \cos\beta/2$ $p_1 = -\sin[(\gamma + \alpha)/2]\cos\beta/2$ Euler phase-angle coordinates (α, β, γ) and norm N of quantum state $|\Psi\rangle$ $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2} \cos \beta/2 \\ e^{i\alpha/2} \sin \beta/2 \end{pmatrix} e^{-i\gamma/2}$ $x_2 = \cos[(\gamma - \alpha)/2] \sin\beta/2$ $p_2 = -\sin[(\gamma - \alpha)/2] \sin\beta/2$ 1/2 times σ -operator expectation values $\langle \Psi | \sigma_{\mu} | \Psi \rangle$ gives: Spin S-vector components: $\left\langle \Psi \middle| \mathbf{1} \middle| \Psi \right\rangle = N = \left(\begin{array}{cc} \Psi_1^* & \Psi_2^* \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} \Psi_1 \\ \Psi_2 \end{array} \right) = N \left(\begin{array}{c} p_1^2 + x_1^2 + p_2^2 + x_2^2 \end{array} \right) \begin{array}{c} scaled \\ by \frac{1}{2} \end{array}$ $\frac{1}{2}(|\Psi_1|^2 + |\Psi_2|^2) = \frac{N}{2}$ $\langle \Psi | \boldsymbol{\sigma}_{Z} | \Psi \rangle = 2S_{A} = \begin{pmatrix} \Psi_{1}^{*} & \Psi_{2}^{*} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = N \begin{pmatrix} p_{1}^{2} + x_{1}^{2} - p_{2}^{2} - x_{2}^{2} \end{pmatrix} \xrightarrow{scaled} scaled \\ by \frac{1}{2}; \qquad S_{Z} = S_{A} = \frac{1}{2} \begin{pmatrix} |\Psi_{1}|^{2} - |\Psi_{2}|^{2} \end{pmatrix} = \frac{N}{2} \left(\cos^{2} \frac{\beta}{2} - \sin^{2} \frac{\beta}{2} \right) = \frac{N}{2} \cos \beta$ $\left\langle \Psi \middle| \mathbf{\sigma}_{X} \middle| \Psi \right\rangle = 2S_{B} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}x_{2} + p_{1}p_{2} \right) \qquad scaled \\ by \frac{1}{2}:$ $S_X = S_B = \operatorname{Re} \Psi_1^* \Psi_2 = N \cos \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \cos \alpha \sin \beta$ $\left\langle \Psi \middle| \sigma_Y \middle| \Psi \right\rangle = 2S_C = \left(\begin{array}{cc} \Psi_1^* & \Psi_2^* \end{array} \right) \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_1 \\ \Psi_2 \end{array} \right) = 2N \left(x_1 p_2 - x_2 p_1 \right) \qquad \begin{array}{c} scaled \\ by \frac{1}{2} \end{array} \qquad S_Y = S_C = \operatorname{Im} \Psi_1^* \Psi_2 \qquad = N \sin \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \sin \alpha \sin \beta$ The density operator $\rho = |\Psi\rangle\langle\Psi| = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \otimes \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} = \begin{pmatrix} \Psi_1\Psi_1^* & \Psi_1\Psi_2^* \\ \Psi_2\Psi_1^* & \Psi_2\Psi_2^* \end{pmatrix} = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} = \begin{pmatrix} \Psi_1^*\Psi_1 & \Psi_2^*\Psi_1 \\ \Psi_1^*\Psi_2 & \Psi_2^*\Psi_2 \end{pmatrix}$ $\rho_{11} = \Psi_1^* \Psi_1 \qquad \rho_{12} = \Psi_2^* \Psi_1$ $\frac{\rho_{11} = \Psi_1 \Psi_1}{\frac{1}{2} N + S_Z} = S_X - iS_Y,$ $\frac{1}{2} N + S_Z = S_X - iS_Y,$ $\frac{\rho_{21} = \Psi_1^* \Psi_2}{\frac{1}{2} N + S_Z} = \frac{1}{2} N - S_Z$ $= \begin{pmatrix} \frac{1}{2} N + S_Z & S_X - iS_Y \\ S_X + iS_Y & \frac{1}{2} N - S_Z \end{pmatrix} = \frac{1}{2} N \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + S_X \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + S_Y \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + S_Z \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $= \frac{1}{2} N \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + S_X \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + S_Y \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + S_Z \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $= \frac{1}{2} N \mathbf{1} + \mathbf{S}_X \mathbf{S}_X$ *Norm:* $N = \Psi_1 * \Psi_1 + \Psi_2 * \Psi_2$...so state *density operator* ρ has σ -expansion

U(2) density operator approach to symmetry dynamics $x_1 = \cos[(\gamma + \alpha)/2] \cos\beta/2$ $p_1 = -\sin[(\gamma + \alpha)/2]\cos\beta/2$ Euler phase-angle coordinates (α, β, γ) and norm N of quantum state $|\Psi\rangle$ $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2} \cos \beta/2 \\ e^{i\alpha/2} \sin \beta/2 \end{pmatrix} e^{-i\gamma/2}$ $x_2 = \cos[(\gamma - \alpha)/2] \sin\beta/2$ $p_2 = -\sin[(\gamma - \alpha)/2] \sin\beta/2$ *1/2 times* σ *-operator expectation values* $\langle \Psi | \sigma_{\mu} | \Psi \rangle$ gives: Spin S-vector components: $\langle \Psi | \mathbf{1} | \Psi \rangle = N = \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = N \begin{pmatrix} p_1^2 + x_1^2 + p_2^2 + x_2^2 \end{pmatrix} \quad scaled \quad by \frac{1}{2}:$ $\frac{1}{2} \left(\left| \Psi_1 \right|^2 + \left| \Psi_2 \right|^2 \right) = \frac{N}{2}$ $\left\langle \Psi \middle| \boldsymbol{\sigma}_{Z} \middle| \Psi \right\rangle = 2S_{A} = \left(\begin{array}{c} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} \Psi_{1} \\ \Psi_{2} \end{array} \right) = N \left(p_{1}^{2} + x_{1}^{2} - p_{2}^{2} - x_{2}^{2} \right) \begin{array}{c} scaled \\ by \frac{1}{2} \end{array}$ $S_{\mathbf{Z}} = S_{\mathbf{A}} = \frac{1}{2} \left(\left| \Psi_1 \right|^2 - \left| \Psi_2 \right|^2 \right) = \frac{N}{2} \left(\cos^2 \frac{\beta}{2} - \sin^2 \frac{\beta}{2} \right) = \frac{N}{2} \cos \beta$ $\left\langle \Psi \middle| \mathbf{\sigma}_{X} \middle| \Psi \right\rangle = 2S_{B} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}x_{2} + p_{1}p_{2} \right)$ scaled $S_X = S_B = \operatorname{Re} \Psi_1^* \Psi_2 \qquad = N \cos \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \cos \alpha \sin \beta$ $by \frac{1}{2}$: $\left\langle \Psi \middle| \sigma_{Y} \middle| \Psi \right\rangle = 2S_{C} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}p_{2} - x_{2}p_{1} \right) \qquad scaled \\ by \frac{1}{2}:$ $S_Y = S_C = \operatorname{Im} \Psi_1^* \Psi_2 = N \sin \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \sin \alpha \sin \beta$ The density operator $\rho = |\Psi\rangle\langle\Psi| = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \otimes \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} = \begin{pmatrix} \Psi_1\Psi_1^* & \Psi_1\Psi_2^* \\ \Psi_2\Psi_1^* & \Psi_2\Psi_2^* \end{pmatrix} = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} = \begin{pmatrix} \Psi_1^*\Psi_1 & \Psi_2^*\Psi_1 \\ \Psi_1^*\Psi_2 & \Psi_2^*\Psi_2 \end{pmatrix}$ $\rho_{11} = \Psi_1^* \Psi_1 \qquad \rho_{12} = \Psi_2^* \Psi_1$...so state *density operator* ρ has σ -expansion like *Hamiltonian operator* **H** *Norm:* $N = \Psi_1 * \Psi_1 + \Psi_2 * \Psi_2$ $\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \mathbf{H} = \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\mathbf{H} = \omega_0 \quad \sigma_0 \quad + \frac{\Omega_A}{2} \quad \sigma_A \quad + \frac{\Omega_B}{2} \quad \sigma_B \quad + \frac{\Omega_C}{2} \quad \sigma_C = \omega_0 \sigma_0 + \frac{\Omega}{2} \cdot \sigma$

U(2) density operator approach to symmetry dynamics $x_1 = \cos[(\gamma + \alpha)/2]\cos\beta/2$ $p_1 = -\sin[(\gamma + \alpha)/2]\cos\beta/2$ Euler phase-angle coordinates (α, β, γ) and norm N of quantum state $|\Psi\rangle$ $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \sqrt{N} \begin{pmatrix} e^{-i\alpha/2} \cos \beta/2 \\ e^{i\alpha/2} \sin \beta/2 \end{pmatrix} e^{-i\gamma/2}$ $x_2 = \cos[(\gamma - \alpha)/2] \sin\beta/2$ $p_2 = -\sin[(\gamma - \alpha)/2] \sin\beta/2$ *1/2 times* σ *-operator expectation values* $\langle \Psi | \sigma_{\mu} | \Psi \rangle$ gives: Spin S-vector components: scaled by $\frac{1}{2}$: $\langle \Psi | \mathbf{1} | \Psi \rangle = N = \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = N \begin{pmatrix} p_1^2 + x_1^2 + p_2^2 + x_2^2 \end{pmatrix}$ $\frac{1}{2} \left(\left| \Psi_1 \right|^2 + \left| \Psi_2 \right|^2 \right) = \frac{N}{2}$ $\langle \Psi | \boldsymbol{\sigma}_{Z} | \Psi \rangle = 2S_{A} = \begin{pmatrix} \Psi_{1}^{*} & \Psi_{2}^{*} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = N \begin{pmatrix} p_{1}^{2} + x_{1}^{2} - p_{2}^{2} - x_{2}^{2} \end{pmatrix} \xrightarrow{scaled} by \frac{1}{2}:$ $S_{Z} = S_{A} = \frac{1}{2} \left(\left| \Psi_{1} \right|^{2} - \left| \Psi_{2} \right|^{2} \right) = \frac{N}{2} \left(\cos^{2} \frac{\beta}{2} - \sin^{2} \frac{\beta}{2} \right) = \frac{N}{2} \cos \beta$ $\left\langle \Psi \middle| \mathbf{\sigma}_{X} \middle| \Psi \right\rangle = 2S_{B} = \left(\begin{array}{cc} \Psi_{1}^{*} & \Psi_{2}^{*} \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} \Psi_{1} \\ \Psi_{2} \end{array} \right) = 2N \left(x_{1}x_{2} + p_{1}p_{2} \right)$ scaled $S_X = S_B = \operatorname{Re} \Psi_1^* \Psi_2 = N \cos \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \cos \alpha \sin \beta$ $by \frac{1}{2}$: scaled by $\frac{1}{2}$: $\left\langle \Psi \middle| \sigma_Y \middle| \Psi \right\rangle = 2S_C = \left(\begin{array}{cc} \Psi_1^* & \Psi_2^* \end{array} \right) \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{cc} \Psi_1 \\ \Psi_2 \end{array} \right) = 2N \left(x_1 p_2 - x_2 p_1 \right)$ $S_Y = S_C = \operatorname{Im} \Psi_1^* \Psi_2 \qquad = N \sin \alpha \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{N}{2} \sin \alpha \sin \beta$ The density operator $\rho = |\Psi\rangle\langle\Psi| = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \otimes \begin{pmatrix} \Psi_1^* & \Psi_2^* \end{pmatrix} = \begin{pmatrix} \Psi_1\Psi_1^* & \Psi_1\Psi_2^* \\ \Psi_2\Psi_1^* & \Psi_2\Psi_2^* \end{pmatrix} = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} = \begin{pmatrix} \Psi_1^*\Psi_1 & \Psi_2^*\Psi_1 \\ \Psi_1^*\Psi_2 & \Psi_2^*\Psi_2 \end{pmatrix}$ $\rho_{11} = \Psi_1^* \Psi_1 \qquad \rho_{12} = \Psi_2^* \Psi_1$ *Norm:* $N = \Psi_1 * \Psi_1 + \Psi_2 * \Psi_2$...so state *density operator* ρ has σ -expansion like *Hamiltonian operator* **H** $\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \mathbf{H} = \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\mathbf{H} = \omega_0 \quad \sigma_0 \quad + \frac{\Omega_A}{2} \quad \sigma_A \quad + \frac{\Omega_B}{2} \quad \sigma_B \quad + \frac{\Omega_C}{2} \quad \sigma_C = \omega_0 \sigma_0 + \frac{\Omega}{2} \cdot \sigma$ $\rho = \frac{1}{2}N1 + \mathbf{S} \cdot \boldsymbol{\sigma}$ **H** = $\Omega_0 = 1 + \Omega_A S_A + \Omega_B S_B + \Omega_C S_C = \Omega_0 1 + \vec{\Omega} \cdot S$ $\mathbf{H} = \Omega_0 \mathbf{1} + \frac{\mathbf{G}}{2} \cdot \boldsymbol{\sigma}$

AMOP reference links on following page 1.31.18 class 6.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Symmetry group \mathscr{G} representations=>_AMOP Hamiltonian H (or K) matrices, irreps $\mathscr{D}^{(\alpha)}$ =>_AMOP wave functions $\Psi^{(\alpha)}$, eigensolutions

 $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebra (It's all done with } \sigma_{\mu} \text{ spinors})$ $Jordan-Pauli identity: U(2) \text{ product algebra of spinor } \sigma_{\mu}\text{-operators}$ $U(2) \text{ "Crazy-Thing" forms do products } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ algebraically}$ $\mathcal{G} = \mathbf{U}(2) \text{ product } \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \text{ by geometry (It's all done with } \sigma_{\mu} \text{ mirrors})$ $Mirror \text{ reflections by } \sigma_{\mu}\text{-operators make rotations} \qquad The famous Clothing Store Mirror$ $Hamilton-turns \ do \ products \ \mathbf{R}[\Theta]\mathbf{R}[\Theta'] = \mathbf{R}[\Theta'''] \ geometrically$ $Hamilton-turn \ slide \ rule \ and \ sundial$ $U(2) \ products \ and (\alpha,\beta,\gamma)-[\varphi,\vartheta,\Theta] \ conversions$

Finite group products by turns or by group link diagrams D_3 example. O_h example

 $\mathcal{G} = U(2)$ class transformation $\mathbf{R}[\Theta]\mathbf{R}[\Theta']\mathbf{R}[\Theta]^{-1} = \mathbf{R}[\Theta''']$ geometry

Group classes and subgroup cosets

U(2) density operator ρ and $[\rho,H]$ mechanics

Density mechanics compared to spin vector **S** rotated by crank vector $\Theta = \Omega t$ Bloch equation $i\hbar\dot{\rho} = [H,\rho]$

U(2) density operator approach to symmetry dynamics $\rho = \frac{1}{2}N1 + \vec{S} \cdot \sigma$ $H = \Omega_0 1 + \frac{\vec{\Omega}}{2} \cdot \sigma$ Bloch equation for density operator

Ket equation (time *forward*) and "daggered" bra-equation (time *reversed*)

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$
 Note: $\mathbf{H}^{\dagger} = \mathbf{H}.$

U(2) density operator approach to symmetry dynamics Bloch equation for density operator

Ket equation (time *forward*) and "daggered" bra-equation (time *reversed*).

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar\frac{\partial}{\partial t}\boldsymbol{\rho} = i\hbar\dot{\boldsymbol{\rho}} = i\hbar\left|\dot{\Psi}\right\rangle\left\langle\Psi\right| + i\hbar\left|\Psi\right\rangle\left\langle\dot{\Psi}\right| = \mathbf{H}\left|\Psi\right\rangle\left\langle\Psi\right| - \left|\Psi\right\rangle\left\langle\Psi\right|\mathbf{H}$$

 $\mathbf{o}^{\dagger} = \mathbf{o}$

Note: $\mathbf{H}^{\dagger} = \mathbf{H}$.

U(2) density operator approach to symmetry dynamics Bloch equation for density operator $H = \Omega_0 1 + \frac{\bar{\Omega}}{2} \cdot \sigma$

Ket equation (time *forward*) and "daggered" bra-equation (time *reversed*).

Note: $\mathbf{H}^{\dagger} = \mathbf{H}$.

 $\mathbf{\rho}^{\dagger} = \mathbf{\rho}$

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = i\hbar |\dot{\Psi}\rangle \langle \Psi| + i\hbar |\Psi\rangle \langle \Psi| = \mathbf{H} |\Psi\rangle \langle \Psi| - |\Psi\rangle \langle \Psi| \mathbf{H}$$

The result is called a *Bloch equation*.
$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = \mathbf{H}\rho - \rho\mathbf{H} = [\mathbf{H}, \rho]$$

U(2) density operator approach to symmetry dynamics Bloch equation for density operator Wet exerction (times for a provide the second "dense of the second dense of the second d

Ket equation (time *forward*) and "daggered" bra-equation (time *reversed*).

Note: $\mathbf{H}^{\dagger} = \mathbf{H}$.

 $\mathbf{0}_{\downarrow} = \mathbf{0}$

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = i\hbar |\dot{\Psi}\rangle \langle \Psi| + i\hbar |\Psi\rangle \langle \dot{\Psi}| = \mathbf{H} |\Psi\rangle \langle \Psi| - |\Psi\rangle \langle \Psi| \mathbf{H}$$

The result is called a *Bloch equation*.
$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = \mathbf{H}\rho - \rho\mathbf{H} = [\mathbf{H}, \rho]$$

Given ρ and **H** in terms *spin* **S**-vector and *crank* Ω -vector:

$$\mathbf{H}\boldsymbol{\rho} = \left(\hbar\Omega_0\mathbf{1} + \frac{\hbar}{2}\vec{\Omega}\cdot\boldsymbol{\sigma}\right) \left(\frac{N}{2}\mathbf{1} + \vec{S}\cdot\boldsymbol{\sigma}\right) = \hbar\Omega_0\frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{\Omega}\cdot\boldsymbol{\sigma} + \hbar\Omega_0\vec{S}\cdot\boldsymbol{\sigma} + \frac{\hbar}{2}(\vec{\Omega}\cdot\boldsymbol{\sigma})(\vec{S}\cdot\boldsymbol{\sigma})$$
$$- \mathbf{\rho}\mathbf{H} = \left(\frac{N}{2}\mathbf{1} + \vec{S}\cdot\boldsymbol{\sigma}\right) \left(\hbar\Omega_0\mathbf{1} + \frac{\hbar}{2}\vec{\Omega}\cdot\boldsymbol{\sigma}\right) = \hbar\Omega_0\frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{\Omega}\cdot\boldsymbol{\sigma} + \hbar\Omega_0\vec{S}\cdot\boldsymbol{\sigma} + \frac{\hbar}{2}(\vec{S}\cdot\boldsymbol{\sigma})(\vec{\Omega}\cdot\boldsymbol{\sigma})$$

U(2) density operator approach to symmetry dynamics Bloch equation for density operator

Ket equation (time *forward*) and "daggered" bra-equation (time *reversed*).

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = i\hbar |\dot{\Psi}\rangle \langle \Psi| + i\hbar |\Psi\rangle \langle \Psi| = \mathbf{H} |\Psi\rangle \langle \Psi| - |\Psi\rangle \langle \Psi| \mathbf{H}$$

The result is called a *Bloch equation*.
$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = \mathbf{H}\rho - \rho\mathbf{H} = [\mathbf{H}, \rho]$$

Given ρ and **H** in terms *spin* **S**-vector and *crank* Ω -vector:

$$\mathbf{H}\boldsymbol{\rho} = \left(\hbar\Omega_0 \mathbf{1} + \frac{\hbar}{2}\vec{\Omega}\cdot\boldsymbol{\sigma}\right) \left(\frac{N}{2}\mathbf{1} + \vec{S}\cdot\boldsymbol{\sigma}\right) = \hbar\Omega_0 \frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{\Omega}\cdot\boldsymbol{\sigma} + \hbar\Omega_0\vec{S}\cdot\boldsymbol{\sigma} + \frac{\hbar}{2}\left(\vec{\Omega}\cdot\boldsymbol{\sigma}\right) \left(\vec{S}\cdot\boldsymbol{\sigma}\right)$$
$$- \boldsymbol{\rho}\mathbf{H} = \left(\frac{N}{2}\mathbf{1} + \vec{S}\cdot\boldsymbol{\sigma}\right) \left(\hbar\Omega_0\mathbf{1} + \frac{\hbar}{2}\vec{\Omega}\cdot\boldsymbol{\sigma}\right) = \hbar\Omega_0 \frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{S}\cdot\boldsymbol{\sigma} + \hbar\Omega_0\vec{S}\cdot\boldsymbol{\sigma} + \frac{\hbar}{2}\left(\vec{S}\cdot\boldsymbol{\sigma}\right) \left(\vec{\Omega}\cdot\boldsymbol{\sigma}\right)$$

Last terms don't cancel if the *spin* S and *crank* Ω *point in different directions*.

$$\rho = \frac{1}{2}N\mathbf{1} + \vec{\mathbf{S}} \cdot \boldsymbol{\sigma}$$
$$\mathbf{H} = \Omega_0 \mathbf{1} + \frac{\vec{\Omega}}{2} \cdot \boldsymbol{\sigma}$$

Note:
$$\mathbf{H}^{\dagger} = \mathbf{H}$$
.
 $\mathbf{\rho}^{\dagger} = \mathbf{\rho}$

U(2) density operator approach to symmetry dynamics Bloch equation for density operator $H = \Omega_0 1 + \frac{\bar{\Omega}}{2} \cdot \sigma$

Ket equation (time *forward*) and "daggered" bra-equation (time *reversed*).

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = i\hbar |\dot{\Psi}\rangle \langle \Psi| + i\hbar |\Psi\rangle \langle \Psi| = \mathbf{H} |\Psi\rangle \langle \Psi| - |\Psi\rangle \langle \Psi| \mathbf{H}$$
The result is called a
Bloch equation.
$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = \mathbf{H} \rho - \rho \mathbf{H} = [\mathbf{H}, \rho]$$
Given ρ and \mathbf{H} in terms spin S-vector and crank Ω -vector:
$$= \mathbf{A} \cdot \mathbf{B} + i(\mathbf{A} \times \mathbf{B}) \cdot \sigma$$

$$\mathbf{H} \rho = \left(\hbar\Omega_0 \mathbf{1} + \frac{\hbar}{2} \mathbf{\hat{\Omega}} \cdot \sigma\right) \left(\frac{N}{2} \mathbf{1} + \mathbf{\hat{S}} \cdot \sigma\right) = \hbar\Omega_0 \frac{N}{2} \mathbf{1} + \frac{N}{4} \hbar \mathbf{\hat{\Omega}} \cdot \sigma + \hbar\Omega_0 \mathbf{\hat{S}} \cdot \sigma + \frac{\hbar}{2} (\mathbf{\hat{\Omega}} \cdot \sigma) (\mathbf{\hat{S}} \cdot \sigma)$$

$$-\rho \mathbf{H} = \left(\frac{N}{2} \mathbf{1} + \mathbf{\hat{S}} \cdot \sigma\right) \left(\hbar\Omega_0 \mathbf{1} + \frac{\hbar}{2} \mathbf{\hat{\Omega}} \cdot \sigma\right) = \hbar\Omega_0 \frac{N}{2} \mathbf{1} + \frac{N}{4} \hbar \mathbf{\hat{S}} \cdot \sigma + \hbar\Omega_0 \mathbf{\hat{S}} \cdot \sigma + \frac{\hbar}{2} (\mathbf{\hat{S}} \cdot \sigma) (\mathbf{\hat{\Omega}} \cdot \sigma)$$
Last terms don't cancel if the spin S and crank Ω point in different directions.

Note: $\mathbf{H}^{\dagger} = \mathbf{H}$.

 $\mathbf{o}^{\dagger} = \mathbf{o}$

$$\mathbf{H}\boldsymbol{\rho} - \boldsymbol{\rho}\mathbf{H} = \frac{\hbar}{2} (\vec{\Omega} \cdot \boldsymbol{\sigma}) (\vec{\mathbf{S}} \cdot \boldsymbol{\sigma}) - \frac{\hbar}{2} (\vec{\mathbf{S}} \cdot \boldsymbol{\sigma}) (\vec{\Omega} \cdot \boldsymbol{\sigma})$$

U(2) density operator approach to symmetry dynamics Bloch equation for density operator

Ket equation (time forward) and "daggered" bra-equation (time reversed).

 $\rho = \frac{1}{2}N1 + \vec{S} \cdot \sigma$ $H = \Omega_0 1 + \frac{\vec{\Omega}}{2} \cdot \sigma$

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = i\hbar |\Psi\rangle \langle \Psi| + i\hbar |\Psi\rangle \langle \Psi| = \mathbf{H} |\Psi\rangle \langle \Psi| - |\Psi\rangle \langle \Psi| \mathbf{H}$$
The result is called a
Bloch equation.
$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = \mathbf{H} \rho - \rho \mathbf{H} = [\mathbf{H}, \rho]$$
Given ρ and \mathbf{H} in terms spin S-vector and crank Ω -vector:
$$= \mathbf{A} \cdot \mathbf{B} + i(\mathbf{A} \times \mathbf{B}) \cdot \sigma$$

$$\mathbf{H} \rho = (\hbar \Omega_0 \mathbf{1} + \frac{\hbar}{2} \mathbf{\Omega} \cdot \sigma) (\frac{N}{2} \mathbf{1} + \mathbf{S} \cdot \sigma) = \hbar \Omega_0 \frac{N}{2} \mathbf{1} + \frac{N}{4} \hbar \mathbf{\Omega} \cdot \sigma + \hbar \Omega_0 \mathbf{S} \cdot \sigma + \frac{\hbar}{2} (\mathbf{\Omega} \cdot \sigma) (\mathbf{S} \cdot \sigma)$$

$$\mathbf{H} \rho = (\frac{N}{2} \mathbf{1} + \mathbf{S} \cdot \sigma) (\hbar \Omega_0 \mathbf{1} + \frac{\hbar}{2} \mathbf{\Omega} \cdot \sigma) = \hbar \Omega_0 \frac{N}{2} \mathbf{1} + \frac{N}{4} \hbar \mathbf{\Omega} \cdot \sigma + \hbar \Omega_0 \mathbf{S} \cdot \sigma + \frac{\hbar}{2} (\mathbf{S} \cdot \sigma) (\mathbf{\Omega} \cdot \sigma)$$
Last terms don't cancel if the spin S and crank Ω point in different directions.
$$\mathbf{H} \rho - \rho \mathbf{H} = \frac{\hbar}{2} (\mathbf{\Omega} \cdot \mathbf{\sigma}) (\mathbf{S} \cdot \sigma) - \frac{\hbar}{2} (\mathbf{S} \cdot \sigma) (\mathbf{\Omega} \cdot \sigma)$$

U(2) density operator approach to symmetry dynamics $\rho = \frac{1}{2} N \mathbf{1} + \vec{\mathbf{S}} \cdot \boldsymbol{\sigma}$ Bloch equation for density operator

Ket equation (time forward) and "daggered" bra-equation (time reversed)

 $\mathbf{H} = \Omega_0 \mathbf{1} + \mathbf{I}$

Note: $\mathbf{H}^{\dagger} = \mathbf{H}$.

 $\mathbf{0}^{\dagger} = \mathbf{0}$

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar\frac{\partial}{\partial t}\rho = i\hbar\dot{\rho} = i\hbar|\dot{\Psi}\rangle\langle\Psi| + i\hbar|\Psi\rangle\langle\Psi| = \mathbf{H}|\Psi\rangle\langle\Psi| - |\Psi\rangle\langle\Psi|\mathbf{H}$$
The result is called a
$$Bloch equation.$$

$$i\hbar\frac{\partial}{\partial t}\rho = i\hbar\dot{\rho} = \mathbf{H}\rho - \rho\mathbf{H} = [\mathbf{H},\rho]$$

$$(\mathbf{A} \cdot \sigma)(\mathbf{B} \cdot \sigma) = A_{a}B_{\beta}\sigma_{a}\sigma_{\beta} = A_{a}B_{\beta}(\delta_{a\beta} + i\epsilon_{a\beta\gamma}\sigma_{\gamma})$$

$$= A_{a}B_{a} + i\epsilon_{a\beta\gamma}A_{a}B_{\beta}\sigma_{\gamma}$$
Given ρ and \mathbf{H} in terms spin \mathbf{S} -vector and crank Ω -vector:
$$= \mathbf{A} \cdot \mathbf{B} + i(\mathbf{A} \times \mathbf{B}) \cdot \sigma$$

$$\mathbf{H}\rho = (\hbar\Omega_{0}\mathbf{1} + \frac{\hbar}{2}\vec{\Omega} \cdot \sigma)(\frac{N}{2}\mathbf{1} + \vec{S} \cdot \sigma) = \hbar\Omega_{0}\frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{\Omega} \cdot \sigma + \hbar\Omega_{0}\vec{S} \cdot \sigma + \frac{\hbar}{2}(\vec{\Omega} \cdot \sigma)(\vec{S} \cdot \sigma)$$

$$\mathbf{H}\rho = (\frac{N}{2}\mathbf{1} + \vec{S} \cdot \sigma)(\hbar\Omega_{0}\mathbf{1} + \frac{\hbar}{2}\vec{\Omega} \cdot \sigma) = \hbar\Omega_{0}\frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{\Omega} \cdot \sigma + \hbar\Omega_{0}\vec{S} \cdot \sigma + \frac{\hbar}{2}(\vec{S} \cdot \sigma)(\vec{\Omega} \cdot \sigma)$$

$$\mathbf{L}$$
ast terms don't cancel if the spin \mathbf{S} and crank Ω point in different directions.
$$\mathbf{H}\rho - \rho\mathbf{H} = \frac{\hbar}{2}(\vec{\Omega} \cdot \sigma)(\vec{S} \cdot \sigma) - \frac{\hbar}{2}(\vec{S} \cdot \sigma)(\vec{\Omega} \cdot \sigma)$$

$$i\hbar \frac{\partial}{\partial t} \mathbf{\rho} = i\hbar \dot{\mathbf{\rho}} = \frac{i\hbar}{2} \left(\vec{\Omega} \times \vec{S} \right) \cdot \boldsymbol{\sigma} - \frac{i\hbar}{2} \left(\vec{S} \times \vec{\Omega} \right) \cdot \boldsymbol{\sigma}$$
$$i\hbar \frac{\partial}{\partial t} \left(\frac{N}{2} \mathbf{1} + \vec{S} \cdot \boldsymbol{\sigma} \right) = i\hbar \dot{\vec{S}} \cdot \boldsymbol{\sigma} = i\hbar \left(\vec{\Omega} \times \vec{S} \right) \cdot \boldsymbol{\sigma}$$

U(2) density operator approach to symmetry dynamics Bloch equation for density operator

Ket equation (time forward) and "daggered" bra-equation (time reversed).

$$i\hbar |\dot{\Psi}\rangle = \mathbf{H} |\Psi\rangle, \quad \Leftarrow Daggar^{\dagger} \Rightarrow -i\hbar \langle \dot{\Psi} | = \langle \Psi | \mathbf{H}\rangle$$

Combining these gives a time derivative of the density operator $\rho = |\Psi\rangle\langle\Psi|$

$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = i\hbar |\dot{\Psi}\rangle \langle \Psi| + i\hbar |\Psi\rangle \langle \Psi| = \mathbf{H} |\Psi\rangle \langle \Psi| - |\Psi\rangle \langle \Psi| \mathbf{H}$$
The result is called a
$$\begin{array}{l} Bloch \ equation.\\ i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = \mathbf{H} \rho - \rho \mathbf{H} = [\mathbf{H}, \rho] \end{array}$$

$$(\mathbf{A} \cdot \sigma) (\mathbf{B} \cdot \sigma) = A_{\alpha} B_{\beta} \sigma_{\alpha} \sigma_{\beta} = A_{\alpha} B_{\beta} (\delta_{\alpha\beta} + i\varepsilon_{\alpha\beta\gamma} \sigma_{\gamma}) = A_{\alpha} B_{\alpha} + i\varepsilon_{\alpha\beta\gamma} A_{\alpha} B_{\beta} \sigma_{\gamma}$$

$$= A_{\alpha} B_{\alpha} + i\varepsilon_{\alpha\beta\gamma} A_{\alpha} B_{\beta} \sigma_{\gamma}$$

$$= \mathbf{A} \cdot \mathbf{B} + i (\mathbf{A} \times \mathbf{B}) \cdot \sigma$$

Given ρ and **H** in terms *spin* **S**-vector and *crank* Ω -vector:

$$\mathbf{H}\boldsymbol{\rho} = \left(\hbar\Omega_0\mathbf{1} + \frac{\hbar}{2}\vec{\Omega}\cdot\boldsymbol{\sigma}\right)\left(\frac{N}{2}\mathbf{1} + \vec{S}\cdot\boldsymbol{\sigma}\right) = \hbar\Omega_0\frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{\Omega}\cdot\boldsymbol{\sigma} + \hbar\Omega_0\vec{S}\cdot\boldsymbol{\sigma} + \frac{\hbar}{2}(\vec{\Omega}\cdot\boldsymbol{\sigma})(\vec{S}\cdot\boldsymbol{\sigma})$$

$$\rho \mathbf{H} = \left(\frac{N}{2}\mathbf{1} + \vec{\mathbf{S}} \cdot \boldsymbol{\sigma}\right) \left(\hbar\Omega_0 \mathbf{1} + \frac{\hbar}{2}\vec{\mathbf{\Omega}} \cdot \boldsymbol{\sigma}\right) = \hbar\Omega_0 \frac{N}{2}\mathbf{1} + \frac{N}{4}\hbar\vec{\mathbf{\Omega}} \cdot \boldsymbol{\sigma} + \hbar\Omega_0 \vec{\mathbf{S}} \cdot \boldsymbol{\sigma} + \frac{\hbar}{2}(\vec{\mathbf{S}} \cdot \boldsymbol{\sigma})(\vec{\mathbf{\Omega}} \cdot \boldsymbol{\sigma})$$

Last terms don't cancel if the *spin* S and *crank* Ω *point in different directions*.

$$H\rho - \rho H = \frac{\hbar}{2} (\vec{\Omega} \cdot \sigma) (\vec{S} \cdot \sigma) - \frac{\hbar}{2} (\vec{S} \cdot \sigma) (\vec{\Omega} \cdot \sigma)$$
$$i\hbar \frac{\partial}{\partial t} \rho = i\hbar \dot{\rho} = \frac{i\hbar}{2} (\vec{\Omega} \times \vec{S}) \cdot \sigma - \frac{i\hbar}{2} (\vec{S} \times \vec{\Omega}) \cdot \sigma$$
$$i\hbar \frac{\partial}{\partial t} (\frac{N}{2} \mathbf{1} + \vec{S} \cdot \sigma) = i\hbar \vec{S} \cdot \sigma = i\hbar (\vec{\Omega} \times \vec{S}) \cdot \sigma$$

 ∂t

Factoring out $\cdot \sigma$ gives a classical/quantum gyro-precession equation. $\frac{\sigma \sigma}{\sigma} = \vec{S} = \vec{\Omega} \times \vec{S}$

$$\rho = \frac{1}{2}N\mathbf{1} + \vec{\mathbf{S}} \cdot \boldsymbol{\sigma}$$
$$\mathbf{H} = \Omega_0 \mathbf{1} + \frac{\vec{\Omega}}{2} \cdot \boldsymbol{\sigma}$$

Note: $\mathbf{H}^{\dagger} = \mathbf{H}$.