5.08.18 class 29: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra

<u>Alternative_Basis_for_the_Theory_of_Complex_Spectra_I_-harter-pra-1973</u>

Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976

Alternative_Basis_for_the_Theory_of_Complex_Spectra_III - patterson-harter-pra-1977

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989 (Alt.)
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989 (Alt scan)
- III) Half-integral angular momentum harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum) Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

<u>QTCA Unit 10 Ch 30 - 2013</u>

AMOP Ch 0 Space-Time Symmetry - 2019

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5,

Intro spin ½ coupling Unit 8 Ch. 24 p3

H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>

Hyperf. theory Ch. 24 p48.

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

> Intro 2p3p coupling Unit 8 Ch. 24 p17.

Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>.

CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>.

CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>.

> Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables <u>Unit 8 Ch. 25 p12</u>.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. *Intro 3-particle coupling.* <u>Unit 8 Ch. 25 p28</u>.

PSDS Ch. 7

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

AMOP reference links (Updated list given on 2nd and 3rd and 4th pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification

Group Theory - PUP_Lucy_Day_- Diagrammatic_notation_- Ch4-2008 Group Theory - Birdtracks_Lies_and_Exceptional_Groups_- Cvitanovic-2011 Simplification_Rules_for_Birdtrack_Operators_- Alcock-Zeilinger-Weigert-zeilinger-jmp-2017 Birdtracks for SU(N) - 2017-Keppeler Chaos_Classical_and_Quantum_- 2018-Cvitanovic-ChaosBook

Frank Rioux's: UMA method of vibrational induction

Quantum_Mechanics_Group_Theory_and_C60_-_Frank_Rioux_-_Department_of_Chemistry_Saint_Johns_U Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux Quantum_Mechanics-Group_Theory_and_C60_-_JChemEd-Rioux-1994 Group_Theory_Problems-_Rioux-_SymmetryProblemsX Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017 Symmetry and Chirality - Continuous_Measures_-_Avnir

Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017

Contributions to the International Symposia on Molecular Spectroscopy

Columbus 2002 Columbus 2004 Columbus 2006 Columbus 2007(II)

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with *I_h* symmetryHuman rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clusters D_5 modes check C_{60} modesTensor centrifugal effects for high-J rotation of C_{60} Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$ Octahedral-cubic O symmetry

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with *I_h* symmetry
 Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clusters D_5 modes check C_{60} modesTensor centrifugal effects for high-J rotation of C_{60} Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

Three famous (but rare) molecules with I_h symmetry (in 3D "wall-eye" stereo)

Weeks,Harter JCP90 pdf p.2

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas? Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries Are there Buckyballs at the University of Arkansas? Are there Buckyballs at the University of Arkansas?

Yes, Two of them!

Visit the $\chi \omega = X\Omega$ Greek Theatre

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral \ rotation \ operation \ classes \ in \ subgroup \ I \subset I_h \qquad I-group \ product \ table \ and \ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60} \text{ superfine cluster structure prediction} Insight by Rotational Energy Surfaces (RES)$ $^{13}C^{12}C_{59} \text{ isotopomers and their RES} Some history of C_{60} \text{ discoveries}$

$I_h \supset I$ Symmetry : Rare in physics (But, all too common in public life)

See <u>Virology</u>

Human rhinovirus 3 PDB ID: 1rhi

Zhao, R., Pevear, D.C., Kremer, M.J., Giranda, V.L., Kofron, J.A., Kuhn, R.J., Rossmann, M.G. (1996) *Human rhinovirus 3 at 3.0 Å resolution.* Structure 4: 1205-1220 A cause (one of many) of the Common Cold.

20Å

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with *I_h* symmetryHuman rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries I_h⊃I Symmetry slide rules (Dodecahedral version)

200

Ø

64

LS

r4,

5-22

Ð

\$2

99

G Y

RI

15

Ri

r₅

5002

i₅

013

162

OHO.

CS-CS-

87

i3

011

015

8 224

2

der.

E

Į

14

See and a second

A A A

r₂

1₂,

r₁

TE

Alent

(D) 12 (53)

20.00

K.S.

a constant

E

r₃

2

014

012

R1

13

5.1 .22

1 See

Here is a link to the new scenario at: <u>https://modphys.hosted.uark.edu/markup/MolVibesWeb.html?scenario=OhXY6</u>

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$ Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas? Human rhinovirus 3: Rare in physics (But, all too common in public life) I_h⊃I Symmetry slide rules (Dodecahedral and Icosahedral versions) Icosahedral rotation operation classes in subgroup $I \subset I_h$ — I-group product table and classes Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$ C₆₀ Cartesian coordination at Carbon atom vertices Force vectors and matrices I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations. Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbits F-matrices projected for diagonalization C₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-active Scalar Coriolis effects of IR-active C₆₀ PQR-bands Varying parameters p=1-h makes frequency clusters D₅ modes check C₆₀ modes Tensor centrifugal effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES) Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$... Total nuclear spin-weights of each ¹³C₆₀ symmetry species $^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

Icosahedral rotational operation classes in subgroup $I \subset I_h$ of $I_h = I \times C_i = I \times \{\mathbf{1}, \mathbf{I}\}$

Weeks, Harter JCP90 pdf p.3

List of	1
Icosahedral I	Ľ
group operators	
by class]

Icosa	hedral	{I} Class			
C1 =	1	Structure			
C _R	C_{R^2}	Cr	Ci		
0=72	ω =144	ω=120	ω =180		
R_1	R_1^2	r ₁	\mathbf{i}_1		
R ₂	R_2^2	r ₂	i2		
R ₃	R_3^2	r ₃	i3		
R ₄	R_4^2	r ₄	i4		
R ₅	R_5^2	r ₅	i5		
R ₆	R_6^2	r ₆	i ₆		
R_1^4	R_1^3	r ₇	i7		
R_2^4	R_2^3	r ₈	i ₈		
R_3^4	R_3^3	r,	i,		
R_4^4	R_4^3	r ₁₀	i 10		
R_5^4	R_5^3	r 2	i 11		
R_6^4	R_6^3	r 2 2	i 12		
		r 2 3	i 13		
		r ² ₄	i 14		
		r ² ₅	i 15		
		r 6 2	, i		
		r_{7}^{2}			
		r 2 8			
		r 2 9			
		r 2 10			

Listof	Icosahedral {I} Class		Icosahedral {I _h } Class						
List of Loogahadual I	C ₁ = 1		Structure		Structure			Complete list of	
Icosanearal I	C _R	C_{R^2}	Cr	Ci	$C_I = I$	500			Icosahedral I _h
group operators	ω=72	ω =144	ω=120	ω =180	Ср	Cp ²	Cη	Cσ	group operators
by class	R_1	R_1^2	r ₁	\mathbf{i}_1	$I R_1 = P_1$	$I R_1^2 = \rho_1^2$	$I r_1 = \eta_1$	$I i_1 = \sigma_1$	by class
•	R_2	R_2^2	r ₂	i2	$I R_2 = \rho_2$	$I R_2^2 = \rho_2^2$	$I r_2 = \eta_2$	$I i_2 = \sigma_2$	
	R_3	R_3^2	r ₃	i3	$I R_3 = P_3$	$I R_3^2 = \rho_3^2$	$I r_3 = \eta_3$	$I i_3 = \sigma_3$	
	R_4	R_4^2	r ₄	i4	$I R_4 = \rho_4$	$I R_4^2 = \rho_4^2$	$I r_4 = \eta_4$	$I i_4 = \sigma_4$	
	R_5	R_5^2	r ₅	i5	$I R_5 = P_5$	$I R_5^2 = \rho_5^2$	$I r_5 = \eta_5$	$I i_5 = \sigma_5$	
	R ₆	R_6^2	r ₆	i6	$I R_6 = P_6$	$I R_6^2 = \rho_6^2$	$I r_6 = \eta_6$	$I i_6 = \sigma_6$	
	R_1^4	R_1^3	r ₇	i7	$I R_1^4 = \rho_1^4$	$I R_1^3 = \rho_1^3$	$I r_7 = \eta_7$	$I i_7 = \sigma_7$	
	R_2^4	R_2^3	r ₈	i ₈	$I R_2^4 = \rho_2^4$	$I R_2^3 = \rho_2^3$	$I r_8 = \eta_8$	$I i_8 = \sigma_8$	
	R_3^4	R_3^3	r,	i,	$I R_3^4 = \rho_3^4$	$I R_3^3 = \rho_3^3$	$I r_9 = \eta_9$	I $i_9 = \sigma_9$	
	R_4^4	R_4^3	r ₁₀	i 10	$I R_4^4 = \rho_4^4$	$I R_4^3 = \rho_4^3$	$I r_{10} = \eta_{10}$	$I i_{10} = \sigma_{10}$	
	R_5^4	R_5^3	r 2	i 11	$I R_5^4 = \rho_5^4$	$I R_5^3 = \rho_5^3$	$I r_{1}^{2} = \eta_{1}^{2}$	$I i_{11} = \sigma_{11}$	
	R_6^4	R_6^3	r 2 2	i 12	$I R_6^4 = \rho_6^4$	$I R_6^3 = \rho_6^3$	$I r_{2}^{2} = \eta_{2}^{2}$	$I i_{12} = \sigma_{12}$	
$ r_{3}^{2} i_{13} \\ r_{4}^{2} i_{14} $		Ih Class Operators	$I r_{3}^{2} = \eta_{3}^{2}$	$I i_{13} = \sigma_{13}$					
		r 4 2	i ₁₄	$cR = \sum_{k=1}^{6} R_{k} + R_{k}$	$d^{4} = l cR$	$I r_{4}^{2} = \eta_{4}^{2}$	$I i_{14} = \sigma_{14}$		
			r ₅ ²	i 15	n=1	n	$I r_{5}^{2} = \eta_{5}^{2}$	$I i_{15} = \sigma_{15}$	
			r ₆ ²		$cR^{2} = \sum_{n=1}^{6} R_{n}^{2} + R_{n}^{2}$	$c\rho^2 = I cR^2$	$I r_6^2 = \eta_6^2$		
			r_{7}^{2}		n=1		$I r_{7}^{2} = \eta_{7}^{2}$		
			r 2		$cr = \sum_{n=1}^{10} r_n + r_n^2$	cη= <i>I</i> cr	$I r_8^2 = \eta_8^2$		
Waaka Hartar ICD00 - 46 - /	1		r ₉ ²		15		$I r_{9}^{2} = \eta_{9}^{2}$		
weeks, namer <u>JCP90 pdf p.</u> 2	<u>+</u>		r ² ₁₀		$c_{n=1} \sum_{n=1}^{n} c_{n}$	c ⁰ =/ c1	$I r_{10}^2 = \eta_{10}^2$		

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$ Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas? Human rhinovirus 3: Rare in physics (But, all too common in public life) I_h⊃I Symmetry slide rules (Dodecahedral and Icosahedral versions) Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$ C₆₀ Cartesian coordination at Carbon atom vertices Force vectors and matrices I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations. Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbits F-matrices projected for diagonalization C₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-active Scalar Coriolis effects of IR-active C₆₀ PQR-bands Varying parameters p=1-h makes frequency clusters D₅ modes check C₆₀ modes Tensor centrifugal effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES)

Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ${}^{13}C_{60}$ symmetry species ${}^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ${}^{13}C^{12}C_{59}$ isotopomers and their RES Some history of C₆₀ discoveries

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation* group $A_5 \subset S_5$

W.Harter, N.DosSantos, Double-Group Theory on the Half-Shell I ,Am. J. Phys. 46, 251 (1978) pdf p.9

https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Doublegroup_theory_on_the_halfshell_and_the_twolevel_system_I_Rotation_and_half_integral_spin_states - Santos - AJP - harter1978.pdf https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Doublegroup_theory_on_the_halfshell_and_the_twolevel_system_II_Optical_polarization - Santos - AJP - harter - 1978.pdf

Fig. 10. Icosahedral vector addition nomogram.

Hamilton-turn-arcs for "Buckyball" C₆₀

Fig. 9. Hamilton arcs for icosahedral symmetry. Stereo drawings of arcs paths for (a) 120°, (b) 180°, (c) 72° and 144° rotations all show icosahedral symmetry. All the arcs are drawn together in (d). This forms the icosahedral "lattice" which is projected to make the nomogram (Fig. 10). (e) The 72° arc paths are selected parts of the 180° arc paths form the elementary geodesic dome structure of Fuller.

W.Harter, N.DosSantos, Double-Group Theory on the Half-Shell I and II , Am. J. Phys. 46, 251 (1978)

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$ Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas? Human rhinovirus 3: Rare in physics (But, all too common in public life) I_h⊃I Symmetry slide rules (Dodecahedral and Icosahedral versions) Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$ C₆₀ Cartesian coordination at Carbon atom vertices Force vectors and matrices I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations. Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbits F-matrices projected for diagonalization C₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-active Scalar Coriolis effects of IR-active C₆₀ PQR-bands Varying parameters p=1-h makes frequency clusters D₅ modes check C₆₀ modes Tensor centrifugal effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES) Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$... Total nuclear spin-weights of each ¹³C₆₀ symmetry species $^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

FIG. 6. Icosahedral vertex labels and the body-fixed x, y, and z axes.

FIG. 6. Icosahedral vertex labels and the body-fixed x, y, and z axes.

Fig. 7 Orthonormal triad of coordinate axes relative to radial A-axis at pentagon vertex

Fig. 7 Orthonormal triad of coordinate axes relative to radial A-axis at pentagon vertex

FIG. 7. Orientation and labeling of the symmetrically defined coordinate axes located at the unit vertex. The σ_5 reflection plane used to reflect 1*B* into $\sigma_5 B$ is illustrated.

Weeks,Harter JCP90 pdf p.7

at Carbon atom vertices at Carbon atom vertices

Fig.8

-60 orthonormal triads of coordinate axes. Unit cell used to define force matrix has thicker lines

Cartesian coordination Cartesian coordination

60 orthonormal triads of coordinate axes. Unit cell used to define force matrix has thicker lines

Unit cell used to define force matrix has thicker lines

60 orthonormal triads of coordinate axes. Unit cell used to define force matrix has thicker lines

Springs of the dark-lined unit cell in Fig. 8 involve single-bond parameters (p,π) and double-bond parameters (h, η) .

Springs of the dark-lined unit cell in Fig. 8 involve single-bond parameters (p,π) and double-bond parameters (h, η) .

Weeks,Harter JCP90 pdf p.8

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$ Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas? Human rhinovirus 3: Rare in physics (But, all too common in public life) I_h⊃I Symmetry slide rules (Dodecahedral and Icosahedral versions) Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$ C₆₀ Cartesian coordination at Carbon atom vertices Force vectors and matrices I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations. Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbits F-matrices projected for diagonalization C₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-active Scalar Coriolis effects of IR-active C₆₀ PQR-bands Varying parameters p=1-h makes frequency clusters D₅ modes check C₆₀ modes Tensor centrifugal effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES) Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$... Total nuclear spin-weights of each ¹³C₆₀ symmetry species $^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

involve single-bond parameters (p,π) and

double-bond parameters (h, η) .

Force vectors and matrices

Springs of the dark-lined unit cell in Fig. 8 involve single-bond parameters (p,π) and double-bond parameters (h, η) .

Weeks,Harter JCP90 pdf p.9

Force vectors and matrices

	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		A COMPANY OF THE OWNER.		1		
$\langle 1A \mathbf{K} 1A \rangle$	= (0.081426)p	+(0.040713)h	+ (0.462764)	$\tau + (1.46566)\eta$	$\langle 1A \mathbf{K} r_A \rangle$	$=(0)p+(0)h+(0)\pi$	$+(0.122138)\eta$
$\langle 1A \mathbf{K} 1B \rangle$	= -(0.157533)p	+ (0.139741)h	$-(0.895307)\pi$	$+(1.09754)\eta$	$\langle 1A \mathbf{K} r_3 B \rangle$	$=(0)p+(0)h+(0)\pi$	$+(0.085289)\eta$
$\langle 1A \mathbf{K} \sigma_5 B \rangle$	= -(0.157533)p	+ (0.139741)h	$-(0.895307)\pi$	$+(1.09754)\eta$	$\langle 1A \mathbf{K} \rho_r^3 B \rangle$	$=(0)p+(0)h+(0)\pi$	$+(0.316143)\eta$
$\langle 1A \mathbf{K} i_7 A \rangle$	= (0)p	+ (0.040713)h	$+(0)\pi$	$-(0.977107)\eta$	$\langle 1A \mathbf{K} r_1^2 A \rangle$	$=(0)p+(0)h+(0)\pi$	$+(0.122138)\eta$
$\langle 1A \mathbf{K} i_7 B \rangle$	= (0)p	+ (0.139741)h	$+(0)\pi$	$-(0.294679)\eta$	$\langle 1A \mathbf{K} r_1^2 B \rangle$	$= (0)p + (0)h + (0)\pi$	$-(0.248647)\eta$
$\langle 1A \mathbf{K} \sigma_{11} B \rangle$	=(0)p	+ (0.139741)h	$+(0)\pi$	$-(0.294679)\eta$	$\langle 1A \mathbf{K} \rho_5^2 B$	$= (0)p + (0)h + (0)\pi$	$+(0.213062)\eta$
$\langle 1A \mathbf{K} R_1^4 A \rangle$	= (0.040713)p	+(0)h	$-(0.308510)\pi$	$-(0.488553)\eta$	$\langle 1A \mathbf{K} R^{3}_{1}A \rangle$	$= (0)p + (0)h + (0.077127)\pi$	$r + (0)\eta$
$\langle 1A \mathbf{K} R^{4}B \rangle$	= (0.036660)p	+(0)h	$+(0.827726)\pi$	$-(1.16149)\eta$	$\langle 1A \mathbf{K} R^{\frac{3}{4}} B \rangle$	$= (0)p + (0)h - (0.264645)\pi$	$r + (0)\eta$
$\langle 1A \mathbf{K} \sigma_{4} B \rangle$	= -(0.194194)p	+(0)h	$+(0.366017)\pi$	-(0.007219)n	$(1A \mathbf{K} \sigma, B)$	$= (0)p + (0)h - (0.033791)\pi$	(0)n + (0)n
$\langle 1A \mathbf{K} R_1 A \rangle$	= (0.040713)p	+(0)h	$-(0.308510)\pi$	$-(0.488553)\eta$	$\langle 1A \mathbf{K} R_1^2 A \rangle$	$= (0)p + (0)h + (0.077127)\pi$	$\tau + (0)\eta$
$\langle 1A \mathbf{K} R_1 B \rangle$	= -(0.194194)p	+ (0)h	$+(0.366017)\pi$	$-(0.007219)\eta$	$\langle 1A \mathbf{K} R_1^2 B \rangle$	$=(0)p+(0)h-(0.33791)\pi$	$+(0)\eta$
$\langle 1A \mathbf{K} \sigma_{10} B \rangle$	= (0.036660)p	+(0)h	$+(0.827726)\pi$	$-(1.16149)\eta$	$\langle 1A \mathbf{K} \sigma_1, B \rangle$	$= (0)p + (0)h - (0.264645)\pi$	$r + (0)\eta$
$\langle 1A \mathbf{K} r_7^2 A \rangle$	=(0)p	+(0)h	$+ (0)\pi$	$+(0.122138)\eta$	(1A K r,A)	$=(0)p+(0)h+(0)\pi$	$+(0.122138)\eta$
$\langle 1A \mathbf{K} r_7^2 B \rangle$	=(0)p	+(0)h	$+ (0)\pi$	$+(0.316143)\eta$	$\langle 1A \mathbf{K} r_7 B \rangle$	$= (0)p + (0)h + (0)\pi$	$+(0.213062)\eta$
$\langle 1A \mathbf{K} \rho_5^3 B \rangle$	=(0)p	+ (0)h	$+(0)\pi$	$+(0.085289)\eta$	$\langle 1A \mathbf{K} \rho_A^2 B \rangle$	$= (0)p + (0)h + (0)\pi$	$-(0.248647)\eta$
							(
$\langle 1B \mathbf{K} 1A \rangle$	= -(0.157533)p	+ (0.139741)h	$-(0.895307)\pi$	+(1.09754)n	$\langle 1B \mathbf{K} r A \rangle$	$= (0)p + (0)h + (0)\pi$	-(0.248646)n
$\langle 1B \mathbf{K} 1B \rangle$	= (0.959287)p	+(0.479644)h	$+(2.07763)\pi$	$+(4.26717)\eta$	$\langle 1B \mathbf{K} r_3 B \rangle$	$= (0)p + (0)h + (0)\pi$	$-(0.173629)\eta$
$\langle 1B \mathbf{K} \sigma_5 B \rangle$	= -(0.349730)p	+(0.479644)h	$+(1.38665)\pi$	$-(1.84158)\eta$	$\langle 1B \mathbf{K} \rho_4^3 B \rangle$	$=(0)p+(0)h+(0)\pi$	$-(0.643597)\eta$
$\langle 1B \mathbf{K} i_7 A \rangle$	=(0)p	+ (0.139741)h	$+(0)\pi$	$-(0.294679)\eta$	$\langle 1B \mathbf{K} r_3^2 A \rangle$	$=(0)p+(0)h+(0)\pi$	$+(0.085289)\eta$
$\langle 1B \mathbf{K} i_7 B \rangle$	= (0)p	+ (0.479644)h	$+(0)\pi$	$+(2.72462)\eta$	$\langle 1B \mathbf{K} r_3^2 B \rangle$	$=(0)p+(0)h+(0)\pi$	$-(0.173629)\eta$
$\langle 1B \mathbf{K} \sigma_{11}B \rangle$	= (0)p	+ (0.479644)h	$+(0)\pi$	$-(2.511145)\eta$	$\langle 1B \mathbf{K} \rho_5^2 B \rangle$	$=(0)p+(0)h+(0)\pi$	$+(0.148780)\eta$
$\langle 1B \mathbf{K} R^{4}_{1A} \rangle$	= -(0.194194)p	+(0)h	$+ (0.366017)\pi$	$-(0.007219)\eta$	$\langle 1B \mathbf{K} R^{\frac{3}{4}} A \rangle$	$= (0)p + (0)h - (0.033791)\pi$	$r + (0)\eta$
$\langle 1B \mathbf{K} R_{1}^{4}B \rangle$	= -(0.174865)p	+ (0)h	$-(1.15476)\pi$	$+(0.053294)\eta$	$\langle 1B \mathbf{K} R^{\frac{3}{2}}B \rangle$	$= (0)p + (0)h + (0.115945)\pi$	$r + (0)\eta$
$\langle 1B \mathbf{K} \sigma_4 B \rangle$	= (0.926276)p	+ (0)h	$-(0.261498)\pi$	$+(0.228144)\eta$	$\langle 1B \mathbf{K} \sigma_{\mathrm{s}} B \rangle$	$= (0)p + (0)h + (0.014804)\pi$	$(1) + (0) \eta$
$\langle 1B \mathbf{K} R_1 A \rangle$	= (0.036660)p	+(0)h	$+(0.827726)\pi$	$-(1.16149)\eta$	$\langle 1B \mathbf{K} R_1^2 A \rangle$	$= (0)p + (0)h - (0.264645)\pi$	$(1) + (0) \eta$
$\langle 1B \mathbf{K} R_1 B \rangle$	= -(0.174865)p	+(0)h	$-(1.15476)\pi$	$+ (0.053294)\eta$	$\langle 1B \mathbf{K} R_1^2 B \rangle$	$= (0)p + (0)h + (0.115945)\pi$	$(0)\eta$
$\langle 1B \mathbf{K} \sigma_{10}B \rangle$	= (0.033011)p	+0)h	$-(2.04803)\pi$	$-(2.73959)\eta$	$\langle 1B \mathbf{K} \sigma_1, B \rangle$	$= (0)p + (0)h + (0.908068)\pi$	$(1) + (0)\eta$
$\langle 1B \mathbf{K} r_7^2 A \rangle$	= (0)p	+(0)h	$+(0)\pi$	$+(0.213062)\eta$	$\langle 1B \mathbf{K} r_7 A \rangle$	$=(0)p+(0)h+(0)\pi$	+(0.316143)n
$\langle 1B \mathbf{K} r_7^2 B \rangle$	= (0)p	+(0)h	$+(0)\pi$	$+(0.551490)\eta$	$\langle 1B \mathbf{K} r_7 B \rangle$	$=(0)p+(0)h+(0)\pi$	+(0.551490)n
$\langle 1B \mathbf{K} \rho_5^3 B \rangle$	= (0)p	+(0)h	$+(0)\pi$	$+(0.148780)\eta$	$\langle 1B \mathbf{K} \rho_4^2 B \rangle$	$= (0)p + (0)h + (0)\pi$	-(0.643597)n
					1-1-4-1		(0.0.0007.1)4

TABLE I. Nonzero elements of the $\langle 1A |$ and $\langle 1B |$ rows of the initial force matrix as a function of spring constants p, h, π , and η .

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$ Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas? Human rhinovirus 3: Rare in physics (But, all too common in public life) I_h⊃I Symmetry slide rules (Dodecahedral and Icosahedral versions) Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$ C₆₀ Cartesian coordination at Carbon atom vertices Force vectors and matrices I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations. Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbits F-matrices projected for diagonalization C₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-active Scalar Coriolis effects of IR-active C₆₀ PQR-bands Varying parameters p=1-h makes frequency clusters D₅ modes check C₆₀ modes Tensor centrifugal effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES) Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$... Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) $^{13}C^{12}C_{59}$ isotopomers and their RES Some history of C₆₀ discoveries
Icosahedral I_h *characters* $\chi^{(\alpha)}$ *and irrep* $d^{(A)\uparrow}D^{(\alpha)}$ *and* $D^{(\alpha)\downarrow}d^{(A)}$ *correlations*

$I_h \supset I$	0° 1_{1}	72° $\mathbf{R}_{12}^{1,4}$	144° $\mathbf{R}_{12}^{2,3}$	120° $\mathbf{r}_{20}^{2,3}$	$\frac{180^{\circ}}{\mathbf{i}_{15}^{1}}$	\mathbf{I}_1	$72^{\circ}\mathbf{I} \ ho_{12}^{1,4}$	$144^{\circ}\mathbf{I} \\ \rho_{12}^{2,3}$	$120^{\circ}\mathbf{I} \ \eta^{2,3}_{_{20}}$	$180^{\circ}\mathbf{I}$ σ_{15}^{1}	S ₅ Characters
Ag	1	1	1	1	1	1	1	1	1	1	S_5 1 ⁵ 21 ³ 2 ² 1 31 ² 32 41 5
T_{1g}	3	$G_{_{+}}$	$G_{}$	•	-1	3	$G_{_{+}}$	G	•	-1	
T_{3g}	3	$G_{}$	$G_{_{+}}$		-1	3	$G_{}$	$G_{_{+}}$		-1	
$G_{_g}$	4	-1	-1	1	•	4	-1	-1	1	•	
H_{g}	5	•	•	-1	1	5	•	•	-1	1	
A_{u}	1	1	1	1	1	-1	-1	-1	-1	-1	
T_{1u}	3	$G_{_{+}}$	$G_{}$	•	-1	-3	$-G_{_+}$	-G_	•	1	
T_{3u}	3	$G_{}$	$G_{_{+}}$	•	-1	-3	-G_	-G ₊		1	
G_{u}	4	-1	-1	1		-4	1	1	-1		
H_{u}	5	•	•	-1	1	-5	•	•	1	-1	
	($r = \frac{1}{2}$	$\pm\sqrt{5}$								
	,	J _± –	2								

Odd=red Even

Even=green

I-Characters Harter, Weeks JCP90 pdf p.15

-

-

Weeks, Harter JCP90 pdf p.26

IC₃C₅Correlations Harter, Weeks <u>JCP90 pdf p.9</u>

Icosahedral I_h *characters* $\chi^{(\alpha)}$ *and irrep* $d^{(A)\uparrow}D^{(\alpha)}$ *and* $D^{(\alpha)\downarrow}d^{(A)}$ *correlations*

$I_h \supset I$	$egin{array}{c} 0^{\circ} \ 1_{_{1}} \end{array}$	72° $\mathbf{R}_{_{12}}^{^{1,4}}$	144° $\mathbf{R}_{_{12}}^{2,3}$	120° $r_{20}^{2,3}$	$\frac{180^{\circ}}{\mathbf{i}_{15}^{1}}$	\mathbf{I}_{1}	$72^{\circ}\mathbf{I} ho_{_{12}}^{^{1,4}}$	$144^{\circ}\mathbf{I}$ $\rho_{12}^{2,3}$	$120^{\circ}\mathbf{I} \ \eta^{2,3}_{_{20}}$	$180^{\circ}\mathbf{I}$ σ_{15}^{1}				$I_h \supset$	C_{v}	A 1	В		
A_{g}	1	1	1	1	1	1	1	1	1	1				$\frac{A}{2}$	g	1	2		
T_{1g}	3	$G_{_{+}}$	$G_{}$		-1	3	$G_{\scriptscriptstyle +}$	$G_{}$		-1				T_{2}	g	1	2		
T_{3g}	3	$G_{}$	$G_{_{+}}$		-1	3	$G_{}$	$G_{_{+}}$		-1				G	g	2	2		
G_{g}	4	-1	-1	1		4	-1	-1	1	•				H	r g	3	2		
H_{g}	5			-1	1	5	•		-1	1				A_{i}	ū	•	1		
A_{u}	1	1	1	1	1	-1	-1	-1	-1	-1				T_1	u	2	1		
T_{1u}	3	$G_{_{+}}$	$G_{}$		-1	-3	- $G_{_+}$	- <i>G</i> _	•	1				T_3	u	2	1		
T_{3u}	3	$G_{}$	$G_{_{+}}$		-1	-3	-G_	-G ₊		1				G	u	2	2		
$G_{\!\scriptscriptstyle u}$	4	-1	-1	1		-4	1	1	-1						u	Δ	5		
H_{u}	5	•	•	-1	1	-5	•	•	1	-1		Ι,		-		I		~	,
		<u> </u>	$\pm\sqrt{5}$								$I_h \supset C_{2h}$	A ₁	A_2	B_{1}	<i>B</i> ₂		$I_h \supset C$	5v	$\frac{A_1}{1}$
	,	J_{\pm}	2								A _g T	1	1	1	1		A _g T		1
											I_{1g} T		1	1	1		I_{1g} T		•
											$G^{1_{3g}}$	1	1	1	1		G		•
											H	2	1	1	1		H		1
											$\frac{1}{g}$		•	•	1	-	$\frac{1}{g}$		
											T_{1u}	1	1	1	•		T_{1u}^{u}		1
											T_{3u}	1	1	1	•		T_{3u}		1
		TT -	XX 7 1		10 15						G_{u}	1	1	1	1		G_{u}		•
I-Char	acters	Harter	, Weeks	<u>JCP90 p</u>	<u>odt p.15</u>						H_{u}	1	1	1	2		H_{u}		•

 $A_2 \quad E_1 \quad E_2$

•

1 1

.

1 · ·

•

IC₃C₅Correlations Harter, Weeks JCP90 pdf p.9

Icosahedral I_h *characters* $\chi^{(\alpha)}$ *and irrep* $d^{(A)\uparrow}D^{(\alpha)}$ *and* $D^{(\alpha)\downarrow}d^{(A)}$ *correlations*

$I_h \supset I$	0° 1_{1}	72° $\mathbf{R}_{_{12}}^{^{1,4}}$	144° $\mathbf{R}_{12}^{2,3}$	$120^{\circ} \mathbf{r}_{20}^{2,3}$	180° i_{15}^{1}	I ₁	$72^{\circ}\mathbf{I} \ ho_{_{12}}^{1,4}$	$144^{\circ}\mathbf{I}$ $\rho_{_{12}}^{^{2,3}}$	$120^{\circ}\mathbf{I} \ \eta^{2,3}_{_{20}}$	$180^{\circ}\mathbf{I}$ σ_{15}^{1}	$G_{\pm} = \frac{1\pm}{2}$	$\frac{1}{2}\sqrt{5}$		$I_h \equiv$	C_v	A 1	B			
A_{g}	1	1	1	1	1	1	1	1	1	1	1	-		T.	g	1	2			
T_{1g}	3	$G_{_{+}}$	$G_{}$	•	-1	3	$G_{_{+}}$	G		-1				T_{2}	g	1	2			
T_{3g}	3	$G_{}$	$G_{_{+}}$	•	-1	3	$G_{}$	$G_{_{+}}$		-1				G	g g	2	2			
G_{g}	4	-1	-1	1	•	4	-1	-1	1	•				Η	g	3	2			
H_{g}	5	•	•	-1	1	5		•	-1	1				A	u	•	1			
$A_{\!$	1	1	1	1	1	-1	-1	-1	-1	-1				T_1	u	2	1			
T_{1u}	3	$G_{_{+}}$	$G_{}$	•	-1	-3	$-G_{+}$	-G_		1				T_3	3 <i>u</i>	2	1			
T_{3u}	3	$G_{}$	$G_{_{+}}$	•	-1	-3	-G_	-G ₊	•	1				- O H	u I	2	$\frac{2}{3}$			
G_{u}	4	-1	-1	1		-4	1	1	-1						u	2	5			
H_{u}	5	•	•	-1	1	-5	•	•	1	-1		1	1	D	D		I - C	1	1	\overline{F}
_			$C_2 0_2$	12				$C_5 0_5$	1 ₅ 2 ₅	3 ₅ 4 ₅	$\frac{I_h \Box C_{2h}}{4}$	A ₁	<i>A</i> ₂	<i>D</i> ₁	<i>B</i> ₂		$\frac{I_h \Box C_{5v}}{4}$	A_1	<i>A</i> ₂	<i>E</i> ₁
Rotati	ona						A				T T		1	1	1		T T		1	1
for lat	ano ter 1	MS I ISP: 1		$\frac{2}{2}$			I ₁ T		· 1	\cdot $ $	T_{1g}		1	1	1		T_{1g}		1	1
<i>j</i> 0 <i>i i</i> 0 <i>i</i>			$\begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\frac{2}{2}$			I_3		\cdot 1 1 1	$1 \cdot 1$	G	1	1	1	1		r_{3g}			1
		Ŀ		$\frac{2}{2}$			H	1	1 1	1 1	Θ_g H	2	1	1	1		O_g H	1		1
				$I \supset C_3$	0_3	l ₃ 2	3				$\frac{1}{g}$	•	•	•	1		$\frac{1}{g}$		1	•
				A	1						$\frac{u}{T_{1u}}$	1	1	1			U^{u}	1		1
				T_1	1	1 1					T_{3u}	1	1	1			T_{3u}	1		
				T_3	1	1 1					G_{u}	1	1	1	1		$G_{\!\scriptscriptstyle u}$.		1
				G	2	1 1					H_{u}	1	1	1	2		H_{u}		1	1
				Н		2 2														

 E_2

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$ Famous (but rare) molecules with *I_h* symmetry Buckyballs at the U of Arkansas? Human rhinovirus 3: Rare in physics (But, all too common in public life) I_h⊃I Symmetry slide rules (Dodecahedral and Icosahedral versions) Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$ C₆₀ Cartesian coordination at Carbon atom vertices Force vectors and matrices I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations. \blacksquare Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbits F-matrices projected for diagonalization C₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-active Scalar Coriolis effects of IR-active C₆₀ PQR-bands Varying parameters p=1-h makes frequency clusters D₅ modes check C₆₀ modes Tensor centrifugal effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES) Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$... Total nuclear spin-weights of each ¹³C₆₀ symmetry species $^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

Icosahedral irreps $D^{(\alpha)}$

Icosahedral Generator Irreps

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral \ rotation \ operation \ classes \ in \ subgroup \ I \subset I_h \qquad I-group \ product \ table \ and \ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-activeIcosahedral irreps $D^{(\alpha)}$

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60} \text{ superfine cluster structure prediction} Insight by Rotational Energy Surfaces (RES)$ $^{13}C^{12}C_{59} \text{ isotopomers and their RES} Some history of C_{60} \text{ discoveries}$

Icosahedral I_h irreps for A-orbits and B-orbits A-orbits:

Icosahedral I_h irreps for A-orbits and B-orbits A-orbits:

$I_h \uparrow C_v$	A	В	$I_h \uparrow C_1$	$ 0_1$		
A_{g}	1	•	A _g	1		
T_{1g}	1	2	T_{1g}	3		
T_{3g}	1	2	T_{3g}	3		
G_{g}	2	2	G_{g}	4		
H_{g}	3	2	H_{g}	5		
A _u		1	A_{u}	1		
T_{1u}	2	1	T_{1u}	3		
T_{3u}	2	1	T_{3u}	3		
$G_{_{u}}$	2	2	$G_{_{u}}$	4		
H_{u}	2	3	$H_{_{u}}$	5		
			-			
	A I	$_{h} =]$	$A_g \oplus 1T_{1g} \oplus$	$\ni 1T_3$	$ = 2G_g \oplus 3H_g \oplus 0A_u \oplus 2T_{1u} \oplus 2T_{3u} \oplus 2G_u \oplus 2H_u $	(60 levels)
B- 0	orbi	ts:				
	$0_1 \uparrow$	$\overline{I_h} =$	$A_g \oplus 3T_{1g} \oplus$	$\Rightarrow 3T_{2}$	$A_{g} \oplus 4G_{g} \oplus 5H_{g} \oplus 1A_{u} \oplus 3T_{1u} \oplus 3T_{3u} \oplus 4G_{u} \oplus 5H_{u}$	(120 levels)

Icosahedral I_h irreps for A-orbits and B-orbits A-orbits:

1	$C_h \uparrow C_v$	A	В	$I_h \uparrow C_1$	01		
	A_{g}	1	•	A_{g}	1		
	T_{1g}	1	2	T_{1g}	3		
	T_{3g}	1	2	T_{3g}	3		
	G_{g}	2	2	G_{g}	4		
	H_{g}	3	2	H_{g}	5		
	$A_{\!$		1	$A_{\!u}$	1		
	T_{1u}	2	1	T_{1u}	3		
	T_{3u}	2	1	T_{3u}	3		
	G_{u}	2	2	G_{u}	4		
	H_{u}	2	3	H_{u}	5		
		$A^{\uparrow}I$	h = 1	$A_g \oplus 1T_{1g} \oplus$	$\exists 1T_3$	${}_{g} \oplus 2G_{g} \oplus 3H_{g} \oplus 0A_{u} \oplus 2T_{1u} \oplus 2T_{3u} \oplus 2G_{u} \oplus 2H_{u}$	(60 levels)
	<i>B-c</i>	orbi	ts:				
	0	$1^{\uparrow}I_{h}$	=1	$A_g \oplus 3T_{1g} \oplus$	$3T_3$	$_{g} \oplus 4G_{g} \oplus 5H_{g} \oplus 1A_{u} \oplus 3T_{1u} \oplus 3T_{3u} \oplus 4G_{u} \oplus 5H_{u}$	(120 levels)
Tote	al: A	+B	2 = 2	$A_g \oplus 4T_{1g} \oplus$	04 <mark>7</mark>	$G_{3g} \oplus 6G_g \oplus 8H_g \oplus 1A_u \oplus 5T_{1u} \oplus 5T_{3u} \oplus 6G_u \oplus 7H_u$	(180 levels)

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

Icosahedral rotation operation classes in subgroup $I \subset I_h$ I-group product table and classes

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations. Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbits F-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60} \text{ superfine cluster structure prediction} Insight by Rotational Energy Surfaces (RES)$ $^{13}C^{12}C_{59} \text{ isotopomers and their RES} Some history of C_{60} \text{ discoveries}$

Force matrices projected to be diagonalized

FIG. 12. Block diagonal elements of the force matrix obtained by icosahedral symmetry projection.

 $A + B = 2A_g \oplus 4T_{1g} \oplus 4T_{3g} \oplus 6G_g \oplus 8H_g$

 \oplus 1

 $1A_{\mu} \oplus 5T_{1\mu} \oplus 5T_{3\mu} \oplus 6G_{\mu} \oplus 7H_{\mu}$

Force matrices projected to be diagonalized

FIG. 12. Block diagonal elements of the force matrix obtained by icosahedral symmetry projection.

$$A + B = 2A_g \oplus 4T_{1g} \oplus 4T_{3g} \oplus 6G_g \oplus 8H_g \qquad \oplus$$

$$1 \text{ less } T_{1g} \text{ (rotation)}$$
$$A + B = 2A_g \oplus \underbrace{4}_{3g} T_{1g} \oplus 4T_{3g} \oplus 6G_g \oplus 8H_g \quad \oplus$$

 $1A_{u} \oplus 5T_{1u} \oplus 5T_{3u} \oplus 6G_{u} \oplus 7H_{u}$

 $1 \underset{u}{less} \underbrace{T_{1u}}_{1u} (translation) \\ 1 \underset{u}{A_u} \oplus \underbrace{ST_{1u}}_{1u} \oplus 5 \underset{3u}{T_{3u}} \oplus 6 \underset{u}{G_u} \oplus 7 \underset{u}{H_u}$

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60} \text{ superfine cluster structure prediction} Insight by Rotational Energy Surfaces (RES)$ $^{13}C^{12}C_{59} \text{ isotopomers and their RES} Some history of C_{60} \text{ discoveries}$

C₆₀ Force matrix eigenfrequencies: Infrared-active and Raman-active

	[cases $(A_{lg} and \Pi_{g})$		-	Even p	arity	Odd	parity
		g)		Hg —			I _h group label	Frequency (1/cm)	I _h group label	Frequency (1/cm)
1.5	F	h)	a)	Hg T Ag	1u C)	2 Ran	nan-active (1830 Ag) 510	A _u	1243
1.5							2 -		ΔT_{1u}	1868
	F						T_{ig}	1662	4 infrared-ac	<i>tive</i> ¹⁴⁶²
	L	i)		Нд ————	- ×	rote	or-like mode	1045 S 513	(T_{lu})	618 478
ν	1			T	1u d)			010		
	F				-		T_{3g}	1900	T_{3u}	1954
								951		1543
	F	J)		Hg				724		1122
1.0	\vdash							615		526 358
	ŀ						G	2006		,
							0 _g	1813	G	2004
	Г							1327	0,,	1845
	F -	k)		Hq				657		1086
	1			-				593		876
	F							433		663
0.5	L	D		T	lu e)					360
		Ŋ	h)	Hg Ag	0		H.	2085		
	F .	m)	0)	1	iu I)		Daman acti	1910	H.	2086
	L	m)		Hg		0.	катап-асш	1575		1797
		-					(H_g)	1292		1464
	F	n)	, i	Hg				828		849
	1							526	· ·	569
	F.							413		470
0.0	L						~	274		405
		1 Ie	225	$T_{1\alpha}$ (rotation)		=	1 1		(turne al ation	
	_							ess I _{lu}	iransialloi	1)

Weeks, Harter JCP90 pdf p.15

Mode frequency variation with locked force parameters $\pi = \eta$ *versus* p = h

FIG. 13. Buckyball vibrational eigenvalue trajectories. Note the near degenerate avoided crossing of the lowest two T_{1u} trajectories at $\pi = \eta = 0.17$.

IR-active and most-Raman-active modes in 3D

4 infrared-active cases (T_{1u})

(It is amazing how such a symmetric molecule forms polar dipoles.)

Weeks, Harter JCP90 pdf p.16

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH_4 to SF_6 to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60} \text{ superfine cluster structure prediction} Insight by Rotational Energy Surfaces (RES)$ $^{13}C^{12}C_{59} \text{ isotopomers and their RES} Some history of C_{60} \text{ discoveries}$

Scalar Coriolis effects of IR-active C_{60} PQR-bands Comparing T_{1u} -(x+iy) mode ellipticity and zeta factors ζ

Coriolis zeta factors:

$$\zeta^{\gamma} = \sum_{i=1}^{60} \left(\left| \alpha_{i} \right\rangle \left\langle \beta_{i} \right| - \left| \beta_{i} \right\rangle \left\langle \alpha_{i} \right| \right) \text{ Body-fixed Cartesian: } \mathbf{x} = \alpha, \ \mathbf{y} = \beta, \ \mathbf{z} = \zeta_{m_{x},m_{y}}^{\gamma} = \sum_{i=1}^{60} \left(\left\langle m_{x} \right| \beta_{i} \right\rangle \left\langle \alpha_{i} \right| m_{y} \right\rangle - \left\langle m_{x} \right| \alpha_{i} \right\rangle \left\langle \beta_{i} \right| m_{y} \right\rangle \right)$$
$$\equiv \zeta_{m}^{\gamma} = \sum_{i=1}^{60} \left(Q_{m_{x},\beta_{i}}^{*} Q_{m_{y},\alpha_{i}} - Q_{m_{x},\alpha_{i}}^{*} Q_{m_{y},\beta_{i}} \right)$$

m = 1, 2, 3, or 4 indexes the T_{1u} vector modes

Scalar Coriolis effects of IR-active C_{60} PQR-bands (Methane to Buckyball) Comparing vector mode rotation properties in CH₄, CF₄, SF₆, and C₆₀

Table 1

Rovibrational constants and spectral features of CH4, CF4, SF6, and buckyball. Buckyball modes (1)-(4) correspond to modes (a)-(d) in fig. 2

	Molecule										
	CH₄	CF₄	SF ₆		buckyball $B=0.00278 \text{ cm}^{-1}$						
	$B = 5.3226 \text{ cm}^{-1}$	$B = 0.1854 \text{ cm}^{-1}$	B=0.09118	cm ⁻¹							
	$\nu_3 = 3020 \text{ cm}^{-1}$	$v_4 = 631 \text{ cm}^{-1}$	$v_3 = 948 \text{ cm}^{-1}$	$\nu_4 = 617 \text{ cm}^{-1}$	$v_1^{T_{1u}} = 1868 \text{ cm}^{-1}$	$v_2^{T_{10}} = 1462 \text{ cm}^{-1}$	$\nu_3^{T_{1u}} = 618 \text{ cm}^{-1}$	$v_4^{T_{1u}} = 478 \text{ cm}^{-1}$			
J _{max} (293 K) calculated	6	33	47	7		266					
P branch observed	7-8	≈ 30	N/A	≈45	N/A	N/A	N/A	N/A			
R branch	7-8	≈35	N/A	≈40	N/A	N/A	N/A	N/A			
$J_{\max} (30 \text{ K})$ calculated ζ $\Delta = 2B(1-\zeta) (\text{cm}^{-1})$	1 0.05 10.113	10 -0.3614 0.505	1: 0.6937 0.0559	5 -0.2156 0.222	-0.0761 0.0062	85 -0.3193 0.0076	-0.4976 0.0086	-0.1070 0.0064			
AJ _{max} (293 K) (cm ⁻¹) calculated observed	61	17	2.6	10.4	1.7	2.0	2.3	1.7			
P branch observed	≈70	≈16	N/A	≈10	N/A	N/A	N/A	N/A			
R branch	≈70	≈ 18	N/A	≈ 10	N/A	N/A	N/A	N/A			
ΔJ _{max} (30 K) (cm ⁻¹) calculated	10	5.05	0.84	3.33	0.527	0.646	0.731	0.544			
P, R branch peak to peal	k (293 K) (cm ⁻¹)									
calculated observed	122 140	34 ≈34	5.25 N/A	21 ≈20	3.4 N/A	4.0 N/A	4.6 N/A	3.4 N/A			
peak to peak (30 K) (cr calculated	n ⁻¹) 20	10.1	1.68	6.66	1.054	1.292	1.462	1.088			

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clusters Tensor centrifugal effects for high-J rotation of C₆₀ Bose exclusion in ¹²C₆₀ vs Fermi proliferation in ¹³C₆₀

D₅ modes check C₆₀ modes Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ${}^{13}C_{60}$ symmetry species ${}^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ${}^{13}C^{12}C_{59}$ isotopomers and their RES Some history of C₆₀ discoveries *Mode frequency variation with force parameters* p=1-h (fixed $\pi=0=\eta$) shows clustering

Weeks, Harter JCP90 pdf p.21

Simpler D₅ pentagonal modes help to check C₆₀ system

FIG. 19. (a) A C_{5v} symmetric spring-mass model with stretching and bending springs. (b) The unit cell of C_{5v} symmetric spring-mass model. Displacement vectors $\vec{d}(\vec{g})$, edge vectors, $\vec{a}, \vec{b}, ..., \vec{l}$, and angles $\theta(g)$ used in the calculation of the potential are labeled.

Weeks, Harter JCP90 pdf p.24

TABLE IV. (a) Displacement vectors d(g) used in the calculation of the edge vectors. (b) Edge vectors used to calculate angles.

	(a)
$ \hat{\mathbf{a}} = \hat{\mathbf{a}} - d(1) + d(\mathbf{R}_1) \hat{\mathbf{b}} = \hat{\mathbf{b}} - d(\mathbf{R}_1) + d(1) \hat{\mathbf{c}} = \hat{\mathbf{c}} - d(\mathbf{R}_1) + d(\mathbf{R}_1^2) \hat{\mathbf{e}} = \hat{\mathbf{e}} - d(\mathbf{R}_1^2) + d(\mathbf{R}_1) $	$\vec{f} = \hat{f} - d(R_1^3) + d(R_1^4) \vec{g} = \hat{g} - d(R_1^4) + d(R_1^3) \vec{h} = \hat{h} - d(R_1^4) + d(1) \vec{i} = \hat{i} - d(1) + d(R_1^4)$
(b)	
$\theta(1) = \arccos\left\{\frac{\vec{\mathbf{a}}\cdot\vec{\mathbf{i}}}{ \vec{\mathbf{a}} \vec{\mathbf{i}} }\right\}$	
$\theta(R_1) = \arccos\left\{\frac{\vec{\mathbf{b}}\cdot\vec{\mathbf{c}}}{ \vec{\mathbf{b}} \vec{\mathbf{c}} }\right\}$	
$\theta(R_1^4) = \arccos\left\{\frac{\vec{\mathbf{g}}\cdot\vec{\mathbf{h}}}{ \vec{\mathbf{g}} \vec{\mathbf{h}} }\right\}$	

TABLE V. C_{5v} force matrix elements as a function of stretching and bending. Results of numerical and analytical calculations are given where $\theta = 81^{\circ}$ and $\phi = 9^{\circ}$.

Force	Numerical results	Analytic results
elements -	stretching + bending	stretching + bending
$\langle 1A F 1A \rangle =$	$1.000\ 0000p + 2.309\ 0170\pi =$	$= p + (2 - G^{-}/2)\pi$
$\langle 1A F R_1 A \rangle =$	= -0.1545085p - 1.309017	$10\pi = pG^{-}/4 + (G^{-}/2 - 1)\pi$
$\langle 1A F R_1^2 A \rangle$	$= 0.000\ 0000p + 0.154\ 5085\pi$	$\tau = 0p - \pi G^{-}/4$
$\langle 1A F R_{\perp}^{3}A \rangle$	$= 0.000\ 0000p + 0.154\ 5085\pi$	$r = 0p - \pi G^{-}/4$
$\langle 1A F R_{1}^{4}A \rangle =$ 2 - 1) π	= -0.1545085p - 1.309017	$70\pi = pG^{-}/4 + (G^{-}/4)$
$\langle 1A F \sigma_5 A \rangle =$	$= -0.309\ 0170p + 1.618\ 034$	$40\pi = pG^{-}/2 + \pi G^{+}$
$\langle 1A F \sigma_{10} A \rangle =$	$= 0.024 4717p - 2.260 0735\pi$	$r = p\cos^2\theta + (\sqrt{2}\cos\phi/G^-)\pi$
$\langle 1A F \sigma_{15}A \rangle =$	= 0.000 0000 <i>p</i> + 0.975 5283 <i>π</i> =	$= 0p + \pi \cos^2 \phi$
$\langle 1A F \sigma_8 A \rangle =$	$0.000\ 0000p + 0.024\ 4717\pi$	$= 0p + \pi \cos^2 \theta$

 $\langle 1A|F|\sigma_4 A \rangle = 0.975\ 5283p - 0.357\ 9604\pi = p\cos^2\phi + (\sqrt{2}\cos\theta/G^-)\pi$

FIG. 20. Normal modes of the C_{5v} symmetric spring-mass model defined by the C_{5v} , C_v subgroup chain. Each mode varies as $\cos(\omega t)$ and is plotted at time t = 0, $t = \pi/2\omega$, and $t = \pi/\omega$. (a) The A_1 "breathing" mode, (b) One of two nonzero frequency vector E_1 modes, and (c) One of two nonzero frequency E_2 modes.

Weeks, Harter JCP90 pdf p.25

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clusters D_5 modes check C_{60} modes Tensor centrifugal effects for high-J rotation of C_{60} Rotational-Energy-Surfaces (RES) Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60} \text{ superfine cluster structure prediction} Insight by Rotational Energy Surfaces (RES)$ $^{13}C^{12}C_{59} \text{ isotopomers and their RES} Some history of C_{60} discoveries}$ Tensor centrifugal tensor effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES)

Lowest rank tensor $T^{[k]}=T^{[6]}$ that has *icosahedral* symmetry:

$$\mathbf{T}^{[6]} = \frac{\sqrt{11}}{5} \mathbf{T}_0^6 + \frac{\sqrt{7}}{5} \left(\mathbf{T}_{+5}^6 - \mathbf{T}_{-5}^6 \right)$$

Tensor centrifugal tensor effects for high-J rotation of C₆₀ Rotational-Energy-Surfaces (RES)

Lowest rank tensor $T^{[k]}=T^{[6]}$ that has *icosahedral* symmetry:

$$\mathbf{T}^{[6]} = \frac{\sqrt{11}}{5} \mathbf{T}_{0}^{6} + \frac{\sqrt{7}}{5} \left(\mathbf{T}_{+5}^{6} - \mathbf{T}_{-5}^{6} \right)$$

Polar coordinate function for $T^{[6]}$ RES

$$T^{[6]}(\theta,\phi) = \int_{(\text{Saddle point)}}^{2\text{-FOLD AXIS}} \int \int_{(\text{Saddle point)}}^{2\text{-FOLD AXIS}} \int_{(\text{Saddle point)}}^{2\text{-FOLD AXIS}}$$

Tensor centrifugal tensor effects for high-J rotation of C₆₀ *Rotational-Energy-Surfaces (RES)*

Lowest rank tensor $T^{[k]}=T^{[6]}$ that has *icosahedral* symmetry:

$$\mathbf{T}^{[6]} = \frac{\sqrt{11}}{5} \mathbf{T}_{0}^{6} + \frac{\sqrt{7}}{5} \left(\mathbf{T}_{+5}^{6} - \mathbf{T}_{-5}^{6} \right)$$

Next lowest rank tensor $T^{[k]}=T^{[10]}$ is:

$$\mathbf{T}^{[10]} = \frac{\sqrt{3 \cdot 13 \cdot 19}}{75} \mathbf{T}_{0}^{10} - \frac{\sqrt{11 \cdot 19}}{25} \left(\mathbf{T}_{+5}^{10} - \mathbf{T}_{-5}^{10} \right) + \frac{\sqrt{3 \cdot 11 \cdot 17}}{75} \left(\mathbf{T}_{+10}^{10} - \mathbf{T}_{-10}^{10} \right)$$

Polar coordinate function for $T^{[6]}$ RES

$$T^{[6]}(\theta,\phi) = J^{6} \frac{\sqrt{11}}{80} \Big[\Big(231\cos^{6}\theta - 315\cos^{4}\theta - 105\cos^{2}\theta - 5 \Big) - 42\cos\theta\sin^{5}\phi\cos\phi \Big(16\cos^{4}\phi - 20\cos^{2}\phi + 5 \Big) \Big]$$

Eigenstates of $T^{[6]}$ *belong to* (m₃ of C₃) $\uparrow I$ *and (mainly) to* (m₅ of C₅) $\uparrow I$

I-Tensors Harter, Weeks JCP90 pdf p.9

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

 $^{13}C_{60} \text{ superfine cluster structure prediction} Insight by Rotational Energy Surfaces (RES)$ $^{13}C^{12}C_{59} \text{ isotopomers and their RES} Some history of C_{60} \text{ discoveries}$

_..

.

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clusters D_5 modes check C_{60} modesTensor centrifugal effects for high-J rotation of C_{60} Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ${}^{13}C_{60}$ symmetry species ${}^{13}C_{60}$ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ${}^{13}C^{12}C_{59}$ isotopomers and their RES Some history of C₆₀ discoveries

Spin-0 nuclei give extreme Bose Exclusion

Some examples of Fermi (non) Exclusion

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

r	Par			$T_{2}^{T_3}$	G	H
30	gu		l Ig u o		Ug u o	
29	g	0	1 2	1 2	2	3 2
28	g u	22 14	36 42	36 42	58 56	80 70
27	g u	280 260	804 826	804 826	1084	1354 1336
26	g	3887 3772	11238 11324	11238 11324	15125 15096	19022 18878
25	g	41528 41266	124257 124548	124257 124548	165779 165808	207307 207074
24	g	372752 371694	. 1114158 1114942	1114158 1114942	1486916 1486642	1859568 1858246
23	g	2801748 2799558	8402852 8405316	8402852 8405316	11204600 11204874	14006448 14004522
22	g u	18110340 18103410	54304371 54309474	54304371 54309474	72414711 72412884	90525051 90516294
21	ц Д	101874363 101861196	305628974 305623968	305608974 305623968	407483337 407485164	509357130
20	g u	505090980	1515266928	1515266928	2020357878	2525493654 2525449428
19	g u a	2227502850	6682705140	6682705140	8910198522 8910208020	11137710870
10	u	8805495420	26416442910	26416442910	35221938330	44027431350
16	u	101492436960	94187817780	94187817780	125583505080	156979194780
15	u a	101491992360	304475780520	304475780520	405967772880	507459765240
14	ŭ	298734348764 803453709856	896205406510	896205406510	1194939755164	1493674096176
13	ŭ	803452525816 1980110898945	2410356831830 5940332333550	2410356831830 5940332333550	3213809357756	4017261891324
12	u g	1980109351620 4481735502630	5940334271070 13445194549380	5940334271070 13445194549380	7920443622690 17926930052010	9900552974310 22408665535200
11	u g	4481732871390 9331438352730	13445196226770 27994315570980	13445196226770 27994315570980	17926929098160 37325753923710	22408661950230 46657192295880
10	u g	9331435261110 17892025439775	27994319616450 53676052490265	27994319616450 53676052490265	37325754877560 71568077929785	46657190157990 89460103369560
-	u	17892020535870	53676055391160	53676055391160	71568075926790	89460096462660
	u a	31605170531130	94815537801090	94815537801090	126420708332460	158025878824830
° 7	u u	51415123186380	154245355784100	154245355784100	205660478970480	257075602195620
,	9 u a	76925425313100	230776318887660	230776318887660	307701744200760	384627169513860
5	ŭ	105558798039270	316676367808710	316676367808710	422235165847980	527793963824370
4	ŭ	132192072923730 14975 6 091280506	396576279677184 449268197030424	396576279677184 449268197030424	528768352600518 599024288311326	660960425587128 748780379591832
3	u g	149756080818726	449268199508214 452965902231668	449268199508214 452965902231668	599024280327336 603954521378374	748780361146062
2	u g	150988613640506 130959549507485	432965915721858 392878564027270	452965915721858 392878564027270	603954529362364 523838113534755	754943142918890 654797663126220
1	u g	130959541149860 89413728633564	392878562690050 268241251090167	392878562690050 268241251090167	523838103839910 357654979723731	654797645073750 447068708357295
0	u g	89413727296344 31791575566072	268241262122232 95374646372040	268241262122232 95374646372040	357654989418576 127166221937640	447068716714920 158957797411208
	u	31791571643468	95374639953380	95374639953380	127166211596396	158957783147612

Total nuclear spin-weight of each ¹³C₆₀ *I_h symmetry species:*

A_g	9.607679885269312000e+15
T_{1g}	2.882303697092649600e+16
T_{3g}	2.882303697092649600e+16
G_{g}	3.843071685619372800e+16
Hg	4.803839674093824000e+16
Ag	9.607678793631424000c+15
$\begin{array}{c} A_g \\ T_{1g} \end{array}$	9.607678793631424000e+15 2.882303799098121600e+16
Ag T1g T3g	9.607678793631424000e+15 2.882303799098121600e+16 2.882303799098121600e+16
Ag T1g T3g Gg	9.607678793631424000e+15 2.882303799098121600e+16 2.882303799098121600e+16 3.843071678461062400e+16

Approximate species ratio: 1:3:3:4:5

Chem. Phys. Letters 194,3(1992)pdf p.14

Table 1. Frequency table relating the number of Y_h species { A_g, T_{1g}, T_{3g}, G_g, H_g, A_u, T_{1u}, T_{3u}, G_u, H_u } that correlate with each of the S₆₀ permutation group species. The g and u characters in the parity column denote even and odd parity respectively, and the I column labels each of the pertinent S₆₀ species by total nuclear spin. W.G.Harter, D.E. Weeks,

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH_4 to SF_6 to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clusters D_5 modes check C_{60} modesTensor centrifugal effects for high-J rotation of C_{60} Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES Some history of C₆₀ discoveries

I-Tensors Harter, Weeks JCP90 pdf p.11

I-Tensors Harter, Weeks JCP90 pdf p.11

I-Tensors Harter, Weeks JCP90 pdf p.13

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

In the characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.I cosahedral irreps $D^{(\alpha)}$ I cosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalizationC_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clusters D_5 modes check C_{60} modesTensor centrifugal effects for high-J rotation of C_{60} Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}$...

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction
¹³C¹²C₅₉ isotopomers and their RES
¹³C¹²C₅₉ isotopomers of C₆₀ discoveries

¹³C¹²C₅₉ isotopomers

FIG. 1. Rotational energy surfaces and (J=50) levels for *Cs* symmetry breaking. (a) Rotational energy surfaces varying from pure semirigid icosahedral (left) to pure symmetric top (right) molecules for $\tau=0,\frac{1}{5},..,1$. (b) Quantum mechanical energy levels for |J|=50 varied from pure semirigid icosahedral molecule (left) to purely rigid symmetric top perturbation. The energy scale on the right applies to rigid ¹³C ¹²C₅₉ prolate top levels.

https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/C60symmReduct&fine%20structure12C13C59%20ReimerHarter1997hiRes.pdf#page=5

¹³C¹²C₅₉ isotopomers

FIG. 3. Rotational energy surfaces and (J=50) levels for $D_5 - C_{5v}$ symmetry breaking. (a) Rotational energy surfaces varying from nearly icosahedral symmetry $(\tau = \frac{1}{5}$ on left) to nearly pure symmetric top $(\tau = \frac{4}{5}$ on right). (b) Quantum mechanical energy levels for |J|=50 varied from pure semirigid icosahedral molecule ($\tau=0$ on left) to pure symmetric top structure ($\tau=1$ on right) with dopant perturbation symmetry axis on a C_{5v} site.

Reimer, Harter J.Chem.Phys 106(1997) pdf p.7

FIG. 5. Rotational energy surfaces and (J=50) levels for $C_{2h}-C_{2v}$ symmetry breaking. (a) Rotational energy surfaces varying from nearly icosahedral symmetry ($\tau = \frac{1}{5}$ on left) to nearly pure symmetric top ($\tau = \frac{4}{5}$ on right). (b) Quantum mechanical energy levels for |J|=50 varied from pure semirigid icosahedral molecule ($\tau=0$ on left) to pure symmetric top structure ($\tau=1$ on right) with dopant perturbation symmetry axis on a C_{2v} site.

5.08.18 class 29: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

From CH₄ to SF₆ to C_{60} : a study in spectacular spectral contrasts

Compare tetrahedral/octahedral symmetry $O_h \supset T_h$ to Icosahedral $I_h \supset T_h$

Famous (but rare) molecules with I_h symmetry Buckyballs at the U of Arkansas?

Human rhinovirus 3: Rare in physics (But, all too common in public life)

 $I_h \supset I$ Symmetry slide rules (Dodecahedral and Icosahedral versions)

 $Icosahedral\ rotation\ operation\ classes\ in\ subgroup\ I {\subset} I_h \qquad I-group\ product\ table\ and\ classes$

Icosahedral subgroup $I \subset I_h$ isomorphic to even-permutation group $A_5 \subset S_5$

C₆₀ Cartesian coordination at Carbon atom vertices

Force vectors and matrices

 I_h characters $\chi^{(\alpha)}$ and irreps $d^{(A)\uparrow}D^{(\alpha)}$ and $D^{(\alpha)\downarrow}d^{(A)}$ correlations.Icosahedral irreps $D^{(\alpha)}$ Icosahedral I_h irreps for A-orbits and B-orbitsF-matrices projected for diagonalization C_{60} Force matrix eigenfrequencies: Infrared-active and Raman-active

Scalar Coriolis effects of IR-active C₆₀ PQR-bands

Varying parameters p=1-h makes frequency clustersD5 modes check C60 modesTensor centrifugal effects for high-J rotation of C60Rotational-Energy-Surfaces (RES)Bose exclusion in ${}^{12}C_{60}$ vs Fermi proliferation in ${}^{13}C_{60}$ Rotational-Energy-Surfaces (RES)

Comparing SF₆ with ${}^{13}C_{60}$ and CF₄ and OsO₄ with ${}^{12}C_{60}...$

Total nuclear spin-weights of each ¹³C₆₀ symmetry species

¹³C₆₀ superfine cluster structure prediction Insight by Rotational Energy Surfaces (RES) ¹³C¹²C₅₉ isotopomers and their RES

Some history of C₆₀ discoveries

Buckyballs "Seen" in Space A brief history of C60 spectroscopy

Bill Harter UAF - Physics

Buckyballs In A Young Planetary Nebula

NASA / JPL-Caltech / J. Cami (Univ. of Western Ontario/SETI Institute)

Spitzer Space Telescope • IRS

1st Try at "Seeing" in Lab Mass spectroscopy gives something with atomic weight 720

Richard Smalley, Bob Curl, and Harry Kroto (1985) Guess structure is C60 "soccer ball"

CHEMICAL PHYSICS LETTERS

3-FOLD AXIS

William G. HARTER and David E. WEEKS

Department of Physics, J. William Fulbright College, University of Arkansas, Fayetteville, AR 72701, USA Received 26 August 1986

3.60=180 coordinates of C₆₀

"Buckyball" vibrational coordinates

David E. WEEKS and William G. HARTER

			3rd Try(contd)			
Vibra	tion spect	ra predic	cted (Easy	to see just 2 pairs of li	nes)	
olume 144, number 4			CHEMICAL PH	4 March 198		
ble 3 mmetry-labe $h = 7.6 \times 10$	eled eigenfrequ ⁵ dyn/cm, $\pi = \eta =$	encies of 0.7×10 ⁵ dyn/c	Buckyball for	2.0		
Even parity		Odd parity		-		
I _h group label	frequency (cm ⁻¹)	I _h group label	frequency (cm ⁻¹)	1.5 _ Ag Tiu	a)	
Ag	1830 510	A_u	1243	ν · · · · · · · · · · · · · · · · · · ·	b)	
T _{1g}	1662 1045 513	T _{1u}	1868 1462 618 478	1.0	0)	
T _{3g}	1900 951 724 615	T _{3u}	1954 1543 1122 526 358	Hg	0	
Gg	2006 1813 1327 657 593 433	Gu	2004 1845 1086 876 663 360	Hg	d)	
Hg	2068 1910 1575 1292 828 526 413	Hu	2086 1797 1464 849 569 470 405	Fig. 3. Spectrum of the possibly dipole and Raman a of Buckyball. The spring constants are $p=h=7.6\times$ and $\pi=\eta=0.7\times10^5$ dyn/cm. The scale is in units of Lines a-d correlate with eigenmodes in fig. 4.	tive mod 10 ⁵ dyn/c 1185 cm	

1 .

c

.

a .

ORPTION (-logT)

Carbon dust particles

*:

THE UNIVERSITY OF ARIZONA

TUCSON, ARIZONA 85721 USA

COLLEGE OF ARTS AND SCIENCES

FACULTY OF SCIENCE DEPARTMENT OF PHYSICS BUILDING #81 (602) 621-6820

May 23, 1990

Dr. William G. Harter Dept. of Physics The University of Arkansas Fayetteville, Arkansas 72701

Dear Bill,

DRH Incl.

The D.H. 2

Here is a copy of the first paper on C60 3which has just been accepted for publication in Chem. Phys. Letters.

We have had much fun with your program. It is delightful.

Things are moving very fast in the Buckyball arena. We now think we can concentrate the material and produce it in sufficient quantity for many experiments.

Thanks again for the discussions we have had and for your program.

Sincerely,

Nan

Donald R. Huffman Professor of physics a tunable laser and discovered that molecular rotation resembles just what its name implies—the rotation of a planet on its axis. As molecules spin around their cen-

Former Georgia Tech physics professor Dr. William Harter proposed a molecular rotational dynamics theory he used to make the first predictions on the rotationalvibrational spectra of the soccer ball-shaped molecule Buckminsterfullerene (C60), nicknamed "buckyball." spectra of the soccer ballshaped molecule Buckminsterfullerene (C60), nicknamed"buckyball."

This structure had been proposed in 1985 by a group

ter of gravity, they wobble in a conical pattern or "precess" as they rotate around a multitude of axes. Also, molecules execute a generally slower "tunneling" or tumbling motion that would be forbidden in a world

Physicist William Harter has come up with innovative teaching solutions to help reduce the 'physics anxiety' of students faced with galloping light waves, quantum mechanics, and the paradoxes of the physical universe. (Photo by Marc Francoeur) of Rice University researchers, who had seen a massspectra peak of atomic mass 720. Subsequently, researchers from the University of Arizona and the Max Planck Institute used Harter and Weeks' findings and their Macintosh software program to further analyze C60.

In 1989, those researchers realized from Harter and Weeks' vibrational spectral predictions that they had been making C60 since the early 1970s. Other experts were skeptical, but IBM labs at San Jose, Calif. verified the University of Arizona's results in 1990. Just two years later, *Science* named C60"Molecule of the Year," and the Rice University-led research team received a Nobel Prize in chemistry in 1996 for its work with the molecule.

Harter is now a professor of physics at the University of Arkansas, where he studies optimal control theory for quantum systems. In 1995, he was elected a fellow of the American Physical Society. Weeks is a professor at the U.S. Air Force Postgraduate School near Wright Patterson AFB in Dayton, Ohio.

 For more information, contact Dr. William Harter at wharter@comp.uark.edu.

May Buckylamp light your way always!

