4.30.18 class 27: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination SF₆ octahedral ($O_h \supset C_{4v}$) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF_6 , UF_6 , etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

<u>Web Resources - front page</u> <u>UAF Physics UTube channel</u> Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

Classical Mechanics with a Bang!

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I_-_harter-pra-1973

Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976

Alternative_Basis_for_the_Theory_of_Complex_Spectra_III_-_patterson-harter-pra-1977

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989 (Alt scan)
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989 (Alt scan)
- III) Half-integral angular momentum harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum) Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- I) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

<u>QTCA Unit 10 Ch 30 - 2013</u>

AMOP Ch 0 Space-Time Symmetry - 2019

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26), (PSDS - Ch. 5, 7)

Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

Intro spin ¹/₂ coupling <u>Unit 8 Ch. 24 p3</u> H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>

Hyperf. theory <u>Ch. 24 p48.</u>

Hyperf. theory Ch. 24 p48. Deeper theory ends p53

> Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>.

> > Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>.

CG coupling derived (start) Unit 8 Ch. 24 p39.

CG coupling derived (formula) Unit 8 Ch. 24 p44.

> Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables Unit 8 Ch. 25 p12.

Wigner-Eckart tensor Theorem. Unit 8 Ch. 25 p17.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. Unit 8 Ch. 25 p63. *Intro 3-particle coupling. Unit 8 Ch. 25 p28.*

Intro 3,4-particle Young Tabl <u>*GrpThLect29 p42.*</u>

Young Tableau Magic Formu <u>GrpThLect29 p46-48</u>.

AMOP reference links (Updated list given on 2nd and 3rd and 4th pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification

Chaos Classical and Quantum - 2018-Cvitanovic-ChaosBook Group Theory - PUP Lucy Day - Diagrammatic notation - Ch4 Simplification Rules for Birdtrack Operators - Alcock-Zeilinger-Weigert-zeilinger-jmp-2017 Group Theory - Birdtracks Lies and Exceptional Groups - Cvitanovic-2011 Simplification rules for birdtrack operators- jmp-alcock-zeilinger-2017 Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux's: UMA method of vibrational induction

Quantum Mechanics Group Theory and C60 - Frank Rioux - Department of Chemistry Saint Johns U Symmetry Analysis for H20- H20GrpTheory- Rioux Quantum Mechanics-Group Theory and C60 - JChemEd-Rioux-1994 Group Theory Problems- Rioux- SymmetryProblemsX Comment on the Vibrational Analysis for C60 and Other Fullerenes Rioux-RSP

Supplemental AMOP Techniques & Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016) High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017 Symmetry and Chirality - Continuous_Measures_ - Avnir

Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017

4.30.18 class 27: Symmetry Principles for AMOP *reference links* Advanced Atomic-Molecular-Optical-Physics on pages 2-4 William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination SF₆ octahedral ($O_h \supset C_{4v}$) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF₆, UF₆, etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry

Intro-O-symmetry Lect.11 p.28.

Figure 4.1.2 The five classes of octahedral operations. (a) The identity class (no rotation). (b) The threefold rotations (120°). (c) The tetragonal twofold rotations (180°). (d) The fourfold rotations (90°). (e) The diagonal twofold rotations (180°).

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h , T_d , and O. The Abelian D_2 subgroup of T is indicated also.

	$\ell^{A_{I=}}$ $\ell^{A_{2=}}$ $\ell^{E} =$ $\ell^{T_{I=}}$	= 1 = 1 = 2 = 3 = 3	Exa Cub Gro	ample ic-Octa up O	e: G= hedral	= <mark>0</mark> Cen Ran Ord	trum: k: er:	$\kappa(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$ $\rho(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{I}} = 1$ $\circ(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$	$1^{0}+1^{0}+2^{0}+3^{0}$ $1^{1}+1^{1}+2^{1}+3^{1}$ $1^{2}+1^{2}+2^{2}+3^{2}$	$+3^{0}=5$ $+3^{1}=10$ $2^{2}+3^{2}=24$
<i>s-orbital r²</i> <i>d-orbitals</i> {x ² +y ² -2z ² ,x ² <i>p-orbitals</i> {x, {xz,yz,xy} <i>d-orbitals</i>	$O \ grow \\ \chi^{\alpha}_{\kappa_g}$ $\alpha = A$ A_2 $(y, z) T_1$ T_2		g = 1 1 2 3 3	$r_{1-4} \ ilde{r}_{1-4} \ 1 \ 1 \ -1 \ 0 \ 0 \ 0$	$ ho_{xyz}$ 1 1 2 -1 -1 -1	$\begin{array}{c} R_{xyz} \\ \tilde{R}_{xyz} \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array}$	i_{1-6} 1 -1 0 -1 1	P) Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr P	R, r ₂ =r ₂ ² r ₂	
$O \supset C_{4}(0)_{2}$ $A_{1} \begin{bmatrix} 1 \\ \bullet \\ A_{2} \\ \bullet \\ E \\ T_{1} \\ 1 \\ T_{2} \end{bmatrix} \bullet$	4 (1) ₄ (• • 1 1	2) ₄ • 1 1 • 1	(3) ₄ =(- • • 1 1	$O \supset C_3$ A_1 A_2 E T_1 T_2	(0) ₃ (1 1 1 1 1 1	1) ₃ (2) • • 1 1 1 1 1 1	3=(-1)	$\widetilde{\mathbf{R}}_{x} = \mathbf{R}_{x}$	Ra Par Ra Ra Ra Ra Ra Ra Ra	

Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral-cubic O symmetry *Order* $^{\circ}O=6$ *hexahedron squares* \cdot *4 pts* =24 =8 octahedron triangles \cdot 3 pts =24 =12 lines \cdot 2 pts =24 positions 13 Octahedral group O operations Class of 1: 1 RI R₂² R., $\mathbf{r}_k = \mathbf{r}_k$ B $\mathbf{R}_{x,y,z} = \mathbf{R}_{1,2,3}$ Pr Class of 8: $\tilde{\mathbf{r}}_2 = \mathbf{r}_2^2$ Class of 66 $\pm 120^{\circ}$ rotations $\pm 90^{\circ}$ rotations on [111] axes R12 14 4 Re as on[100] axes 14 r2 Class of 6: R2 RZ r²3 R3 180° rotations Class of 3: 722 on [110] diagonals 86 180° rotaRons $\mathbf{i}_k = \mathbf{i}_k$ on [100] axes R i₁-R $\rho_{x,y,z} = \mathbf{R}_{1,2,3}^2$ R₃ $\tilde{\mathbf{r}}_{k} = \mathbf{r}_{k}^{2} = \mathbf{r}_{k}^{-1} \mathbf{r}_{4}^{2}$ $\widetilde{\mathbf{R}}_{x} = '$ $\tilde{\mathbf{R}}_{x,y,z} = \mathbf{R}_{1,2,3}^3 = \mathbf{R}_{1,2,3}^{-1}$ R_{χ}^{3} R P ŀ i2 $\tilde{r}_4 = r_4^2$ \mathbf{R}_{z} i, Rr LB er. Int.J.Mol.Sci p.62.

Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral-cubic O symmetry *Order* $^{\circ}O=6$ *hexahedron squares* \cdot *4 pts* =24 =8 octahedron triangles \cdot 3 pts =24 =12 lines \cdot 2 pts =24 positions ĺ3 Octahedral group O operations Class of 1: 1 R.J R₂² R., $\mathbf{r}_k = \mathbf{r}_k'$ B $\mathbf{R}_{x,y,z} = \mathbf{R}_{1,2,3}$ Pr Class of 8: $\tilde{\mathbf{r}}_2 = \mathbf{r}_2^2$ Class of 66 $\pm 120^{\circ}$ rotations $\pm 90^{\circ}$ rotations on [111] axes Re co on[100] axes 14 r2 Class of 6: R2 R2 r23 180° rotations R3 on [110] diagonals Class of 3:_ 22 86 180° rotations $\mathbf{i}_k = \mathbf{i}_k$ on [100] axes R 12 $\rho_{x,y,z} = \mathbf{R}_{1,2,3}^2$ Rz $\tilde{\mathbf{r}}_k = \mathbf{r}_k^2 = \mathbf{r}_k^{-1} \mathbf{r}_4^2$ $\widetilde{\mathbf{R}}_{x} = \mathbf{R}_{x}$ $\tilde{\mathbf{R}}_{x,y,z} = \mathbf{R}_{1,2,3}^{\overline{3}} = \mathbf{R}_{1,2,3}^{-1}$ \mathbf{R}_{x}^{3} Tetrahedral symmetry becomes Icosahedral P R 5 mg T symmetry T_h symmetry I_b symmetry i, (If rectangles have R, *Golden Ratio* $\underline{1\pm\sqrt{5}}$ えっ Int.J.Mol.Sci p.62.

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral groups $O_h \supset O \sim T_d$ and $O_h \supset T_h \supset T$

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h T_d , and O. The Abelian D_2 subgroup of T is indicated also. Fig. 4.1.5 from <u>Principles of Symmetry</u>, <u>Dynamics and Spectroscopy</u>

4.30.18 class 27: Symmetry Principles for AMOP *reference links* Advanced Atomic-Molecular-Optical-Physics on pages 2-4 William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination SF₆ octahedral ($O_h \supset C_{4v}$) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF₆, UF₆, etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

Figure 4.4.1 Octahedral hexafluoride $(UF_6, SF_6, ...)$ molecular model Cartesian coordinates for each atom are labeled by orbit (A, B, or C) and coset leaders. $(1 = R_3, r_1, R_2, ... \text{ etc.})$ Spring constants are equal to (k) for (F-F) bonds and j for radial (F-central) bonds. Bending spring constant is b.

Figure 4.4.1 Octahedral hexafluoride $(UF_6, SF_6, ...)$ molecular model Cartesian coordinates for each atom are labeled by orbit (A, B, or C) and coset leaders. $(\mathbf{1} = R_3, r_1, R_2, ... \text{ etc.})$ Spring constants are equal to (k) for (F-F) bonds and j for radial (F-central) bonds. Bending spring constant is b.

Figure 4.4.1 Octahedral hexafluoride $(UF_6, SF_6, ...)$ molecular model Cartesian coordinates for each atom are labeled by orbit (A, B, or C) and coset leaders. $(1 = R_3, r_1, R_2, ... \text{ etc.})$ Spring constants are equal to (k) for (F-F) bonds and j for radial (F-central) bonds. Bending spring constant is b.

Figure 4.4.1 Octahedral hexafluoride $(UF_6, SF_6, ...)$ molecular model Cartesian coordinates for each atom are labeled by orbit (A, B, or C) and coset leaders. $(\mathbf{1} = R_3, r_1, R_2, ... \text{ etc.})$ Spring constants are equal to (k) for (F-F) bonds and j for radial (F-central) bonds. Bending spring constant is b.

(axial-vector)

Figure 4.4.1 Octahedral hexafluoride $(UF_6, SF_6, ...)$ molecular model Cartesian coordinates for each atom are labeled by orbit (A, B, or C) and coset leaders. $(1 = R_3, r_1, R_2, \dots$ etc.) Spring constants are equal to (k) for (F—F) bonds and j for radial (F-central) bonds. Bending spring constant is b.

4.30.18 class 27: Symmetry Principles for AMOP reference links Advanced Atomic-Molecular-Optical-Physics on pages 2-4 William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination SF₆ octahedral ($O_h \supset C_{4v}$) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF₆, UF₆, etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

O-C4v correlation *Lect.16 p.14.*

Classical vibrator model and analogous Quantum tunneling model

Figure 4.3.1 Examples of physical systems with octahedral symmetry. (a) Coupled oscillating beads sliding on octahedral axes are described by six classical coordinates $x_j = \langle j | x \rangle$. (b) A six-state quantum system could describe a particle capable of tunneling between six equivalent potential valleys.

O-C4v levels <u>*Lect.16 p.79.</u>*</u>

subgroup										
correlation										
$O_h \supset C_{4v}$	↓									
$O_h \supset C_{4v}$	A'	B'	$A^{\prime\prime}$	<i>B</i> ″′	E					
$A_{lg} \downarrow C_{4v}$	1	•	•	•						
$A_{2g} \downarrow C_{4v}$		1	•	•	•					
$E_g \downarrow C_{4v}$	1	1	•	•						
$T_{1g} \downarrow C_{4v}$		•	1	•	1					
$T_{2g} \downarrow C_{4v}$		•		1	1					
$A_{lg} \downarrow C_{4v}$		•	1	•						
$A_{2u} \downarrow C_{4v}$		•	•	1						
$E_u \downarrow C_{4v}$		•	1	1	•					
$T_{1u} \downarrow C_{4v}$	1	•	•	•	1					
$T_{2u} \downarrow C_{4v}$	•	1	•	•	1					

O-C4v correlation *Lect.16 p.14*.

4.30.18 class 27: Symmetry Principles for AMOP reference links Advanced Atomic-Molecular-Optical-Physics on pages 2-4 William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination \blacksquare SF₆ octahedral (O_h \supset C_{4v}) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF₆, UF₆, etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

PSDS Ch.4 p.65.

T_{1u} translation (discarded)

PSDS Ch.4 p.65.

T_{1u} translation (discarded)

4.30.18 class 27: Symmetry Principles for AMOP reference links Advanced Atomic-Molecular-Optical-Physics on pages 2-4 William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination SF₆ octahedral ($O_h \supset C_{4v}$) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF₆, UF₆, etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

Ireps for $O \supset D_4 \supset D_2$ *subgroup chain and coset factored projectors*

$\mathscr{D}^{T_1}(1) =$	$R_1^2 =$	<i>r</i> ₁ =	<i>r</i> ₂ =	$r_1^2 =$	$r_2^2 =$	$\mathcal{D}^{T_2}(1) = R_1^2 =$	<i>r</i> ₁ = <i>r</i> ₂ =	$r_1^2 =$	$r_2^2 =$
$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} D_2$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \qquad \begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\left \begin{array}{cccc} \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \\ \cdot & -1 \end{array}\right \left \begin{array}{c} \cdot & \cdot \\ -1 & \cdot \\ \cdot & 1 \end{array}\right $	$ \begin{array}{c c} -1 \\ \cdot \\ \cdot \\ 1 \end{array} \begin{vmatrix} \cdot & -1 \\ \cdot & -1 \\ 1 \\ \cdot & \cdot \end{vmatrix} $	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{vmatrix}$
$\mathcal{D}^{T_1}(R_3^2) =$	$R_2^2 =$	$r_4 = $	<i>r</i> ₃ =	$r_{3}^{2} =$	$r_4^2 =$	$\mathcal{D}^{T_2}(R_3^2) = \qquad R_2^2 =$	$r_4 = r_3 =$	$r_{3}^{2} =$	$r_4^2 =$
$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} \begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\left \begin{array}{ccc} \begin{vmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}\right \left \begin{array}{ccc} \cdot & \cdot \\ 1 & \cdot \\ \cdot & -1 \end{array}\right $	$ \begin{vmatrix} -1 \\ \cdot \\ -1 \end{vmatrix} \begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \end{vmatrix} $	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{vmatrix}$
$\mathcal{D}^{T_1}(R_3) =$	<i>i</i> ₄ =	<i>i</i> ₁ =	<i>i</i> ₂ =	$R_1^3 =$	$R_1 =$	$\mathscr{D}^{T_2}(R_3) = i_4 =$	<i>i</i> ₁ = <i>i</i> ₂ =	$R_1^3 =$	$R_1 =$
$\begin{vmatrix} \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\left \begin{array}{ccc} \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \end{array}\right $	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccc} & \cdot & \cdot & -1 \\ & \cdot & 1 & \cdot \\ & -1 & \cdot & \cdot \end{array}\right \left \begin{array}{c} \cdot & \cdot \\ \cdot & 1 \\ 1 & \cdot \end{array}\right $	$\begin{vmatrix} 1 \\ \cdot \\$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \end{vmatrix}$
$\mathcal{D}^{T_1}(R_3^3) =$	$i_3 = D4$	$R_2 =$	$R_2^3 =$	<i>i</i> ₆ =	<i>i</i> ₅ =	$\mathscr{D}^{T_2}(R_3^3) = i_3 =$	$R_2 = R_2^3 =$	$i_{\ell} = j_{\ell}$	$i_{\varepsilon} =$
$\begin{vmatrix} \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \end{vmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix} \begin{vmatrix} \cdot & \cdot \\ \cdot & -1 \\ -1 & \cdot \end{vmatrix}$	$ \begin{vmatrix} 1 \\ 1 \\ \cdot \\ \cdot \end{vmatrix} \begin{vmatrix} 1 & \cdot \\ \cdot & \cdot \\ \cdot & 1 \end{vmatrix} $	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \end{vmatrix}$
T_1	Vec x,y,2	tor Z	$\begin{array}{c c c} O & T_1 \\ \text{Asis:} & D_4 & E \\ D_2 & B_1 \end{array}$	$ \begin{array}{c c} \mathbf{T}_{1} \\ \mathbf{E} \\ \mathbf{B}_{2} \end{array} \begin{array}{c} \mathbf{T}_{1} \\ \mathbf{A}_{2} \\ \mathbf{A}_{2} \end{array} $		T_2	Tensor yz,xz,xy	$\begin{array}{c c c} O & T_2 \\ \text{basis:} D_4 & E \\ D_2 & B_1 \end{array} \begin{array}{c} T_2 \\ E \\ B_2 \end{array}$	$\left \begin{array}{c} \mathbf{T}_{2} \\ \mathbf{B}_{2} \\ \mathbf{A}_{2} \end{array}\right $

$\mathcal{D}^{E}(1) \qquad \qquad R_1^2 =$	$r_1 = r_2 =$	$r_1^2 = r_2^2 =$	
$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$	$\begin{vmatrix} -1 & -\sqrt{3} \\ 2 & 2 \\ \frac{\sqrt{3}}{2} & -1 \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix} \begin{vmatrix} -1 & -\sqrt{3} \\ 2 & 2 \\ \frac{\sqrt{3}}{2} & -1 \\ \frac{1}{2} & 2 \end{vmatrix}$	$\begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix}$	E
$\mathscr{D}^{E}(R_{3}^{2}) \qquad R_{2}^{2} =$	$r_4 = r_3 =$	$r_3^2 = r_4^2 =$	Tensor
$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$	$\begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix} \begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{vmatrix}$	$\begin{vmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{vmatrix} \begin{vmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{vmatrix}$	$x^2 + y^2 - 2z^2$ ($x^2 - y^2$) $\sqrt{3}$
$\mathcal{D}^{E}(R_{3})$ $i_{4} =$	$i_1 = i_2 =$	$R_1^3 = R_1 =$	
$\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$	$\begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix} \qquad \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix}$	$\begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix} \begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix} \begin{vmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$	$O \mid E \mid E \mid E \mid B_{1}$
$\mathcal{D}^{E}(R_{3}^{3}) \qquad i_{3} =$	$R_2 = R_2^3 =$	<i>i</i> ₆ = <i>i</i> ₅ =	$\begin{bmatrix} D_{11} & D_{11} \\ D_{21} \end{bmatrix} \begin{bmatrix} A_{11} \\ A_{11} \end{bmatrix} \begin{bmatrix} A_{11} \\ A_{11} \end{bmatrix}$
$\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$	$\begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix} \qquad \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix}$	$\begin{vmatrix} -1 & -\sqrt{3} \\ 2 & -\sqrt{3} \\ \sqrt{3} & 1 \\ 2 & -\sqrt{3} \\ 2 $	~ * / * /

AMOPclass17 p.85. PSDS TablesF pdf p.12.

$\mathrm{O}: \chi^{\mu}_{\mathbf{g}}$	g=1	\mathbf{r}_{1-4} $\mathbf{\tilde{r}}_{1-4}$	$ ho_{xyz}$	$f R_{xyz}$ $f ilde R_{xyz}$	i ₁₋₆
$\mu = A_1$	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

4.30.18 class 27: Symmetry Principles for AMOP reference links Advanced Atomic-Molecular-Optical-Physics on pages 2-4 William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination SF₆ octahedral ($O_h \supset C_{4v}$) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF₆, UF₆, etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors

Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors

Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors

PSDS Ch.4 p.67.

Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum

x-translation in A space

PSDS Ch.4 p.67.

Combining A and B space to zero momentum

 $|c_{j1}^{T_{1u}}0\rangle = \sqrt{2}|e_{j3}^{T_{1u}}A\rangle - |e_{j1}^{T_{1u}}B\rangle = 2\mathbf{P}_{j3}^{T_{1u}}|A\rangle - 2\mathbf{P}_{j1}^{T_{1u}}|B\rangle$

Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum

x-translation in A space

PSDS Ch.4 p.67.

Combining A and B space to zero momentum $|c_{j1}^{T_{1u}}0\rangle = \sqrt{2}|e_{j3}^{T_{1u}}A\rangle - |e_{j1}^{T_{1u}}B\rangle = 2\mathbf{P}_{j3}^{T_{1u}}|A\rangle - 2\mathbf{P}_{j1}^{T_{1u}}|B\rangle$

Combining A, B and C space to zero momentum $|c_{j1}^{T'_{1u}}0\rangle = M\sqrt{2}|e_{j3}^{T_{1u}}A\rangle + 2M|e_{j1}^{T_{1u}}B\rangle - 6m|C_{j}\rangle$

Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum

x-translation in A space

PSDS Ch.4 p.67.

Combining A and B space to zero momentum $|c_{j1}^{T_{1u}}0\rangle = \sqrt{2}|e_{j3}^{T_{1u}}A\rangle - |e_{j1}^{T_{1u}}B\rangle = 2\mathbf{P}_{j3}^{T_{1u}}|A\rangle - 2\mathbf{P}_{j1}^{T_{1u}}|B\rangle$

Combining A, B and C space to zero momentum $|c_{j1}^{T_{1u}}0\rangle = M\sqrt{2}|e_{j3}^{T_{1u}}A\rangle + 2M|e_{j1}^{T_{1u}}B\rangle - 6m|C_{j}\rangle$

A third state is one of rigid translation

T_{1u} translation (discarded)

Having non-orthonormal states involves non-Hermitian mass and force operator equations Newton-like mode equations: $\mathbf{m} |\ddot{\mathbf{x}}\rangle = -\mathbf{F} |\mathbf{x}\rangle$ give (frequency)² eigenvalues: $(\omega^{(\alpha)})^2 |\mathbf{x}^{(\alpha)}\rangle = \mathbf{F} \cdot \mathbf{m}^{-1} |\mathbf{x}^{(\alpha)}\rangle$

 $\langle F \rangle =$ $\left|R_2^3\right\rangle$ $\left| R_{1}^{2} \right\rangle$ $|R_1^3\rangle$ $\left| r_{1}^{2} \right\rangle$ $|r_4^2\rangle$ $\left| R_2^2 \right\rangle$ $|R_1^3\rangle$ $\left| R_2^3 \right\rangle$ $|i_3\rangle$ $|2\rangle$ $|1\rangle_A$ $|R_1\rangle$ $|R_2\rangle$ $|1\rangle_{B}$ $|r_1\rangle$ $|r_2\rangle$ $|R_1\rangle$ $|R_2\rangle$ $|R_3\rangle$ $|1\rangle_{C}$ $|3\rangle$ $\frac{k}{2}$ $\frac{k}{2}$ $\frac{k}{2}$ $\frac{-k}{2}$ $\frac{k}{2}$ $\frac{-k}{2}$ $\frac{k}{2}$ $\frac{-k}{2}$ 0 $\langle A |$ 0 0 2k + j0 0 0 0 0 0 0 0 -j $\frac{-(k+b)}{2}$ -(k+b) $\frac{-b}{2}$ $\langle B |$ 0 0 0 0 0 0 0 0 *k*+*b* 0 0 0 2 $\langle C |$ 2(j+b)0 0 $\langle m \rangle =$ $\left| R_{2}^{3} \right\rangle$ $\left| R_{1}^{2} \right\rangle$ $|R_1^3\rangle$ $|r_1^2\rangle$ $\left|r_{4}^{2}\right\rangle$ $\left| R_{2}^{2} \right\rangle$ $|R_1^3\rangle$ $\left| R_2^3 \right\rangle$ $|i_3\rangle$ $|2\rangle$ $|1\rangle_{B}$ $|R_2\rangle$ $|1\rangle_{C}$ $|3\rangle$ $|1\rangle_A$ $|R_1\rangle$ $|R_2\rangle$ $|r_1\rangle$ $|R_1\rangle$ $|R_3\rangle$ $|r_2\rangle$ $\langle A |$ 0 m $\langle B |$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m $\langle C |$ 0 M0

PSDS Ch.4 p.72.

Having non-orthonormal states involves non-Hermitian mass and force operator equations Newton-like mode equations: $\mathbf{m} |\ddot{\mathbf{x}}\rangle = -\mathbf{F} |\mathbf{x}\rangle$ give (frequency)² eigenvalues: $(\omega^{(\alpha)})^2 |\mathbf{x}^{(\alpha)}\rangle = \mathbf{F} \cdot \mathbf{m}^{-1} |\mathbf{x}^{(\alpha)}\rangle$ $\langle F \rangle =$

	$ 1\rangle_A$	$\left R_{1}^{2} \right\rangle$	$ R_1\rangle$	$\left R_{2} \right\rangle$	$\left R_{1}^{3} \right\rangle$	$\left R_{2}^{3} \right\rangle$	$ 1\rangle_{B}$	$ r_1\rangle$	$ r_2\rangle$	$\left r_{1}^{2}\right\rangle$	$\left r_{4}^{2}\right\rangle$	$\left R_{2}^{2} \right\rangle$	$ R_1\rangle$	$\left R_{2} \right\rangle$	$ R_3\rangle$	$\left R_{1}^{3} \right\rangle$	$\left R_{2}^{3} \right\rangle$	$ i_3\rangle$	$ 1\rangle_{C}$	$ 2\rangle$	3
$\langle A $	2k+j	0	$\frac{k}{2}$	$\frac{k}{2}$	$\frac{k}{2}$	$\frac{k}{2}$	0	0	0	$\frac{-k}{2}$	$\frac{-k}{2}$	0	0	$\frac{k}{2}$	0	0	$\frac{-k}{2}$	0	0	0	-j
$\langle B $							<i>k</i> + <i>b</i>	0	0	0	0	0	0	$\frac{-(k+b)}{2}$	0	0	$\frac{-(k+b)}{2}$	0	$\frac{-b}{2}$	0	0
$\langle C $																			2(j+b)	0	0

For A and B spaces the eigenvalues are simple projector sums

$$\left(\omega^{A_{1g}}\right)^{2} = \frac{1}{m} \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{F} | \mathbf{g}_{\ell} A \rangle D^{A_{1g}}(\mathbf{g}_{\ell}) = \left[(4k+j) \right] / m$$

$$\left(\omega^{E_{g}}\right)^{2} = \frac{1}{m} \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{F} | \mathbf{g}_{\ell} A \rangle D^{E_{g}}(\mathbf{g}_{\ell}) = \left[(k+j) \right] / m$$

$$\left(\omega^{T_{2u}}\right)^{2} = \frac{1}{m} \sum_{\mathbf{g}_{\ell}} \langle B | \mathbf{F} | \mathbf{g}_{\ell} B \rangle D^{T_{2u}}_{11}(\mathbf{g}_{\ell}) = \left[(k+b) D^{T_{2u}}_{11}(1) - \frac{k+b}{2} \left(D^{T_{2u}}_{11}(\mathbf{R}_{2}) + D^{T_{2u}}_{11}(\mathbf{R}_{2}^{3}) \right) \right] / m = \frac{k+b}{m}$$

$$\omega^{T_{2g}}\right)^{2} = \frac{1}{m} \sum_{\mathbf{g}_{\ell}} \langle B | \mathbf{F} | \mathbf{g}_{\ell} B \rangle D^{T_{2g}}_{22}(\mathbf{g}_{\ell}) = \left[(k+b) D^{T_{2g}}_{22}(1) - \frac{k+b}{2} \left(D^{T_{2g}}_{22}(\mathbf{R}_{2}) + D^{T_{2g}}_{22}(\mathbf{R}_{2}^{3}) \right) \right] / m = 2 \frac{k+b}{m}$$

PSDS Ch.4 p.72.

 $T_{1u} \text{ vector symmetry involves } A, B \text{ and } C \text{ space 2-by-2 matrices of } Q=F \text{ and } Q=m.$ in zero-p basis: $|c_{j_{1}3}^{T_{1u}}0\rangle = \sqrt{2}|e_{j_{3}}^{T_{1u}}A\rangle - |e_{j_{1}}^{T_{1u}}B\rangle = 2P_{j_{3}}^{T_{1u}}|A\rangle - 2P_{j_{1}}^{T_{1u}}|B\rangle$ and: $|c_{j_{1}3}^{T_{1u}}0\rangle = M\sqrt{2}|e_{j_{3}}^{T_{1u}}A\rangle + 2M|e_{j_{1}}^{T_{1u}}B\rangle - 6m|C_{j}\rangle$ $11-Matrix \langle T_{1u}|Q|T_{1u}\rangle \langle c_{j_{1}3}^{T_{1u}}0\rangle = (2\langle A|P_{3j}^{T_{1u}} - 2\langle B|P_{1j}^{T_{1u}}\rangle)Q(2P_{j_{3}}^{T_{1u}}|A\rangle - 2P_{j_{1}}^{T_{1u}}|B\rangle)$ $= 4\langle A|P_{33}^{T_{1u}}Q|A\rangle - 4\langle A|P_{31}^{T_{1u}}Q|B\rangle - 4\langle B|P_{13}^{T_{1u}}Q|A\rangle - 4\langle B|P_{11}^{T_{1u}}Q|B\rangle = 2Q_{AA} - \sqrt{2}Q_{AB} + 2Q_{BB} - \sqrt{2}Q_{BA}$

Each term reduces to group coset leader sums:

$$Q_{AA} = \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{Q} | \mathbf{g}_{\ell} A \rangle D_{33}^{T_{1u}}(\mathbf{g}_{\ell}), \qquad Q_{AB} = \frac{1}{\sqrt{2}} \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{Q} | \mathbf{g}_{\ell} A \rangle D_{31}^{T_{1u}}(\mathbf{g}_{\ell}) = Q_{BA}, \qquad Q_{BB} = \sum_{\mathbf{g}_{\ell}} \langle B | \mathbf{Q} | \mathbf{g}_{\ell} B \rangle D_{11}^{T_{1u}}(\mathbf{g}_{\ell})$$

PSDS Ch.4 p.72.

 $T_{1u} \text{ vector symmetry involves } A, B \text{ and } C \text{ space 2-by-2 matrices of } Q=F \text{ and } Q=m.$ in zero-p basis: $|c_{j_{1}3}^{T_{u}}0\rangle = \sqrt{2}|e_{j_{3}}^{T_{u}}A\rangle - |e_{j_{1}}^{T_{u}}B\rangle = 2P_{j_{3}}^{T_{u}}|A\rangle - 2P_{j_{1}}^{T_{u}}|B\rangle$ and: $|c_{j_{1}3}^{T_{u}}0\rangle = M\sqrt{2}|e_{j_{3}}^{T_{u}}A\rangle + 2M|e_{j_{1}}^{T_{u}}B\rangle - 6m|C_{j}\rangle$ $11-\text{Matrix } \langle T_{1u}|Q|T_{1u}\rangle$ $\langle c_{j_{1}3}^{T_{u}}0|Q|c_{j_{1}3}^{T_{u}}0\rangle = (2\langle A|P_{3j}^{T_{u}} - 2\langle B|P_{1j}^{T_{u}}\rangle)Q(2P_{j_{3}}^{T_{u}}|A\rangle - 2P_{j_{1}}^{T_{u}}|B\rangle)$ $= 4\langle A|P_{33}^{T_{u}}Q|A\rangle - 4\langle A|P_{31}^{T_{u}}Q|B\rangle - 4\langle B|P_{13}^{T_{u}}Q|A\rangle - 4\langle B|P_{11}^{T_{u}}Q|B\rangle = 2Q_{AA} - \sqrt{2}Q_{AB} + 2Q_{BB} - \sqrt{2}Q_{BA}$

Each term reduces to group coset leader sums:

$$Q_{AA} = \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{Q} | \mathbf{g}_{\ell} A \rangle D_{33}^{T_{1u}}(\mathbf{g}_{\ell}), \qquad Q_{AB} = \frac{1}{\sqrt{2}} \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{Q} | \mathbf{g}_{\ell} A \rangle D_{31}^{T_{1u}}(\mathbf{g}_{\ell}) = Q_{BA}, \qquad Q_{BB} = \sum_{\mathbf{g}_{\ell}} \langle B | \mathbf{Q} | \mathbf{g}_{\ell} B \rangle D_{11}^{T_{1u}}(\mathbf{g}_{\ell})$$
For Q=F: $\begin{pmatrix} F_{AA} & F_{AB} \\ F_{BA} & F_{BB} \end{pmatrix} = \begin{pmatrix} 2k+j & -\sqrt{2}k \\ -\sqrt{2}k & k+b \end{pmatrix}$
For Q=m: $\begin{pmatrix} m_{AA} & m_{AB} \\ m_{BA} & m_{BB} \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}$
 $\langle c_{j1-3}^{T_{1u}} 0 | \mathbf{F} | c_{j1-3}^{T_{1u}} 0 \rangle = 2F_{AA} - \sqrt{2}F_{AB} + 2F_{BB} - \sqrt{2}F_{BA} = 9k + 2j + b$
 $\langle c_{j1-3}^{T_{1u}} 0 | \mathbf{m} | c_{j1-3}^{T_{1u}} 0 \rangle = 2m_{AA} - \sqrt{2}m_{AB} + 2m_{BB} - \sqrt{2}m_{BA} = 3m$

PSDS Ch.4 p.72.

 $T_{1u} \text{ vector symmetry involves } A, B \text{ and } C \text{ space 2-by-2 matrices of } Q=F \text{ and } Q=m.$ in zero-p basis: $|c_{j_{1}3}^{T_{u}}0\rangle = \sqrt{2}|e_{j_{3}}^{T_{u}}A\rangle - |e_{j_{1}}^{T_{u}}B\rangle = 2P_{j_{3}}^{T_{u}}|A\rangle - 2P_{j_{1}}^{T_{u}}|B\rangle$ and: $|c_{j_{1}3}^{T_{u}}0\rangle = M\sqrt{2}|e_{j_{3}}^{T_{u}}A\rangle + 2M|e_{j_{1}}^{T_{u}}B\rangle - 6m|C_{j}\rangle$ $11-\text{Matrix } \langle T_{1u}|Q|T_{1u}\rangle$ $\langle c_{j_{1}3}^{T_{u}}0|Q|c_{j_{1}3}^{T_{u}}0\rangle = (2\langle A|P_{3j}^{T_{u}} - 2\langle B|P_{1j}^{T_{u}}\rangle)Q(2P_{j_{3}}^{T_{u}}|A\rangle - 2P_{j_{1}}^{T_{u}}|B\rangle)$ $= 4\langle A|P_{33}^{T_{u}}Q|A\rangle - 4\langle A|P_{31}^{T_{u}}Q|B\rangle - 4\langle B|P_{13}^{T_{u}}Q|A\rangle - 4\langle B|P_{11}^{T_{u}}Q|B\rangle = 2Q_{AA} - \sqrt{2}Q_{AB} + 2Q_{BB} - \sqrt{2}Q_{BA}$

Each term reduces to group coset leader sums:

$$Q_{AA} = \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{Q} | \mathbf{g}_{\ell} A \rangle D_{33}^{T_{1u}}(\mathbf{g}_{\ell}), \qquad Q_{AB} = \frac{1}{\sqrt{2}} \sum_{\mathbf{g}_{\ell}} \langle A | \mathbf{Q} | \mathbf{g}_{\ell} A \rangle D_{31}^{T_{1u}}(\mathbf{g}_{\ell}) = Q_{BA}, \qquad Q_{BB} = \sum_{\mathbf{g}_{\ell}} \langle B | \mathbf{Q} | \mathbf{g}_{\ell} B \rangle D_{11}^{T_{1u}}(\mathbf{g}_{\ell})$$
For **Q=F**: $\begin{pmatrix} F_{AA} & F_{AB} \\ F_{BA} & F_{BB} \end{pmatrix} = \begin{pmatrix} 2k+j & -\sqrt{2}k \\ -\sqrt{2}k & k+b \end{pmatrix}$
For **Q=m**: $\begin{pmatrix} m_{AA} & m_{AB} \\ m_{BA} & m_{BB} \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}$
 $\langle c_{j1\cdot3}^{T_{u}} 0 | \mathbf{F} | c_{j1\cdot3}^{T_{u}} 0 \rangle = 2F_{AA} - \sqrt{2}F_{AB} + 2F_{BB} - \sqrt{2}F_{BA} = 9k + 2j + b$
 $\langle c_{j1\cdot3}^{T_{u}} 0 | \mathbf{m} | c_{j1\cdot3}^{T_{u}} 0 \rangle = 2m_{AA} - \sqrt{2}m_{AB} + 2m_{BB} - \sqrt{2}m_{BA} = 3m$

 $22-\text{Matrix} \langle T'_{1u} | Q | T'_{1u} \rangle \\ \langle c_{j1-3}^{T'_{1u}} 0 | \mathbf{F} | c_{j1-3}^{T'_{1u}} 0 \rangle = (2j+4b)(M+6m)^2 \qquad \langle c_{j1-3}^{T'_{1u}} 0 | \mathbf{m} | c_{j1-3}^{T'_{1u}} 0 \rangle = 6mM(M+6m)$

Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics

$$\langle \mathbf{a} \rangle = \langle \mathbf{m} \rangle^{-1} \langle \mathbf{F} \rangle = \begin{pmatrix} \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle & \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle = \\ \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle & \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle \end{pmatrix} = \begin{pmatrix} \frac{9k+2j+b}{3m} & \frac{2(j-b)(M+6m)}{3m} \\ \frac{(j-b)}{3mM} & \frac{(2j+4b)(M+6m)}{3mM} \end{pmatrix}$$

Secular equation gives square-frequency eigenvalues

Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics

$$\langle \mathbf{a} \rangle = \langle \mathbf{m} \rangle^{-1} \langle \mathbf{F} \rangle = \begin{pmatrix} \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle & \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle = \\ \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle & \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle \end{pmatrix} = \begin{pmatrix} \frac{9k+2j+b}{3m} & \frac{2(j-b)(M+6m)}{3m} \\ \frac{(j-b)}{3mM} & \frac{(2j+4b)(M+6m)}{3mM} \end{pmatrix}$$

Secular equation gives square-frequency eigenvalues

$$\lambda^2 - S\lambda + P = 0$$
 gives eigenvalues $\lambda_e = (\omega_e^{T_{1u}})^2$ in terms of their
Sum $S = \lambda_+ + \lambda_- = \frac{3k + j + b}{m} + \frac{2j + 4b}{M}$ and their Product $P = \lambda_+ \lambda_- = \frac{(kj + 2kb + jb)(M + 6m)}{m^2 M}$

Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics

$$\langle \mathbf{a} \rangle = \langle \mathbf{m} \rangle^{-1} \langle \mathbf{F} \rangle = \begin{pmatrix} \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle & \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle = \\ \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle & \langle c_{j1-3}^{T_{1u}} 0 | \mathbf{a} | c_{j1-3}^{T_{1u}} 0 \rangle \end{pmatrix} = \begin{pmatrix} \frac{9k+2j+b}{3m} & \frac{2(j-b)(M+6m)}{3m} \\ \frac{(j-b)}{3mM} & \frac{(2j+4b)(M+6m)}{3mM} \end{pmatrix}$$

Secular equation gives square-frequency eigenvalues

$$\lambda^{2} - S\lambda + P = 0 \quad \text{gives eigenvalues } \lambda_{e} = \left(\omega_{e}^{T_{1u}}\right)^{2} \text{ in terms of their}$$

$$\text{Sum } S = \lambda_{+} + \lambda_{-} = \frac{3k + j + b}{m} + \frac{2j + 4b}{M} \text{ and their Product } P = \lambda_{+}\lambda_{-} = \frac{(kj + 2kb + jb)(M + 6m)}{m^{2}M}$$

$$\omega_{\pm}^{T_{1u}} = \sqrt{\frac{S \pm \sqrt{S^{2} - 4P}}{2}}$$

Modes and energy level diagrams: SF₆, UF₆, etc.

Figure 4.4.3 Hexafluoride vibrational modes and spectrum. T_{1u} modes are not drawn precisely, since their form depends upon the choice of constants and rotational perturbations. (See Figure 4.4.7.)

Modes and energy level diagrams: SF₆, UF₆, etc.

Figure 4.4.3 Hexafluoride vibrational modes and spectrum. T_{1u} modes are not drawn precisely, since their form depends upon the choice of constants and rotational perturbations. (See Figure 4.4.7.)

Modes and energy level diagrams: SF₆, UF₆, etc.

Figure 4.4.3 Hexafluoride vibrational modes and spectrum. T_{1u} modes are not drawn precisely, since their form depends upon the choice of constants and rotational perturbations. (See Figure 4.4.7.)

Modes and energy level diagrams: SF₆, UF₆, etc.

Modes and energy level diagrams: SF₆, overtones and harmonics HIGHER FINITE SYMMETRY AND INDUCED REPRESENTATIONS

Figure 4.4.8 Sketch of SF₆ quantum vibration levels. The density of levels increases rapidly at higher energy. Standard spectroscopic notation is used. For example, two quanta of the $T_{1u}(+)$ or ν_3 vibration is labeled $2\nu_3$. The figure shows expected flow of energy during laser excitation of the ν_3 "ladder." (Due to Robin S. McDowell and Jay R. Ackerhalt of Los Alamos National Laboratory.)

Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆

Figure 4.4.7 T_{1u} fundamental motions of ${}^{32}SF_6$ for high-frequency $[\nu_3 \text{ or } (+)]$ and low-frequency $[\nu_4 \text{ or } (-)]$ vibrations. (a) Plane-polarized or standing-wave motions. (b) Circularly polarized or moving-wave motions.

Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) spectra of SF₆

Graphical approach to rotation-vibration-spin Hamiltonian

<H $> \sim v_{vib}$ +BJ(J+1)+<H^{Scalar Coriolis}>+<H^{Tensor Centrifugal}>+<H^{Nuclear Spin}>+<H^{Tensor Coriolis}>+...

<u>OUTLINE</u>

Example(s)

 ν_3 and $\nu_4\,{\rm SF}_6$

Introductory review

Rovibronic nomograms and PQR structure

- Rotational Energy Surfaces (RES) and θ_{ν} -cones $v_4 P(88) SF_6$
- Spin symmetry correlation tunneling and entanglement SF₆ Recent developments
- Analogy between PE surface and RES dynamics
- Rotational Energy Eigenvalue Surfaces (REES) v₃ SF₆

Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) spectra of SF₆

FT IR and Laser Diode Spectra

PQR structure due to Coriolis scalar interaction between vibrational angular momentum ℓ *and total momentum* $\mathbf{J} = \ell + \mathbf{N}$ *of rotating nuclei*

Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) spectra of SF₆ <H $> \sim v_{vib}$ +BJ(J+1)+<H^{Scalar Coriolis}>+<H^{Tensor Centrifugal}>+<H^{Tensor Coriolis}>+<H^{Nuclear Spin}>+... N+1 for : J=N+1 $\langle H \rangle \sim v_{vib} + BN(N+1) + 2B(1-\zeta) \cdot \langle 0$ for : J=Nfor : J=N-1 $J=3/\frac{1}{N=3}$ NN=4Racah's Trick: *Rotation-polarized* $H^{Scalar \ Coriolis} = -B\zeta 2J^{Total} \cdot \ell^{vibe}$ |x> + i|y>= $-B\zeta [J^2 - (J - \ell)^2 + \ell^2]$ mode $= -B\zeta [J^2 - N^2 + \ell^2]$ $= -B\zeta [J(J+1)-N(N+1)+\ell(\ell+1)]$ PSDS Ch.4 p.75. N=3Involves: Angular momentum ℓ of vibration "orbits" N=0angular momentum N (or R) of rotating nuclei $v_4 SF_6$ N=1total momentum $\mathbf{J} = \ell + \mathbf{N}$ of *whole molecule*. mostly goes N=2Let: $\mathbf{R} = \mathbf{N} = \mathbf{J} - \ell$, and: $\mathbf{N}^2 = \mathbf{J}^2 - 2\mathbf{J} \cdot \ell + \ell^2$ left handed *N*=1 so: $2\mathbf{J} \cdot \ell = \mathbf{J}^2 - \mathbf{N}^2 + \ell^2$ *Negative* $B\zeta$ $v_4 SF_6$ <u>lowers</u> higher N $\langle 2\mathbf{J} \cdot \ell \rangle = J(J+1) - N(N+1) + \ell(\ell+1)$ $\zeta_4 = -0.22$ N=0 N=1 ζ=0 N=2 $=-B\zeta \langle 2\mathbf{J} \cdot \ell \rangle = -B\zeta [J(J+1) - N(N+1) + \ell(\ell+1)]$ =J=J=J

Tensor centrifugal and Coriolis T_{1u} effects in $v_4 P(88)$ fine structure spectra of SF₆

PQR structure due to Coriolis scalar interaction between vibrational angular momentum ℓ *and total momentum* $\mathbf{J} = \ell + \mathbf{N}$ *of rotating nuclei*

P(N)=P(88) structure due to tensor centrifugal/Coriolis due to vibrational ℓ and total momentum $\mathbf{J} = \ell + \mathbf{N}$

Tensor centrifugal and Coriolis T_{1u} effects in $v_4 P(88)$ superfine spectra of SF₆

PQR structure due to Coriolis scalar interaction between vibrational angular momentum ℓ *and total momentum* $\mathbf{J} = \ell + \mathbf{N}$ *of rotating nuclei*

P(N)=P(88) structure due to tensor centrifugal/Coriolis due to vibrational ℓ and total momentum $\mathbf{J} = \ell + \mathbf{N}$

Superfine structure modeled by **J**-tunneling in body frame (Underlying F-spin-permutation symmetry is involved, too.)
Tensor centrifugal and Coriolis T_{1u} effects in v_4 (630*cm*⁻¹) spectra of SF₆

<H $> \sim v_{vib}$ +BJ(J+1)+<H^{Scalar Coriolis}>+<H^{Tensor Centrifugal}>+<H^{Tensor Coriolis}>+<H^{Nuclear Spin}>+...

*SF*₆ Spectra of O_h Ro-vibronic Hamiltonian described by RE Tensor Topography

4.30.18 class 27: Symmetry Principles for AMOP reference links Advanced Atomic-Molecular-Optical-Physics on pages 2-4 William G. Harter - University of Arkansas Molecular rovibrational spectra : O_h symmetry, SF₆ and UF₆ examples SF₆ has octahedral ($O_h \supset O \supset C_{4v}$ or C_{3v}) symmetry SF₆ octahedral ($O_h \supset C_{4v}$) Cartesian coordination SF₆ octahedral ($O_h \supset C_{4v}$) symmetry coordination SF₆ octahedral ($O_h \supset C_{4v}$) mode labeling Ireps for $O \supset D_4 \supset D_2$ subgroup chain and coset factored projectors Sorting $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ mode vectors Combining $|T_{1u}\rangle_A$, $|T_{1u}\rangle_B$, and $|T_{1u}\rangle_C$ into two states of zero momentum Matrices of force **F**, mass **m**, and acceleration **a** for mode dynamics Acceleration matrix **a** for 2-by-2 T_{1u} ABC-mode dynamics Modes and energy level diagrams: SF₆, UF₆, etc. SF₆, overtones and harmonics Coriolis orbits of T_{1u} modes v_3 (947*cm*⁻¹) and v_4 (630*cm*⁻¹) of SF₆ Graphical interpretation of Coriolis T_{1u} effects in v₄ (630*cm*⁻¹) Rovibronic Nomogram of Coriolis T_{1u} effects Tensor centrifugal and Coriolis T_{1u} effects in v₄ P(88) fine structure Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

Nomogram of T_{1u} SF₆ v₄ P(88) fine, superfine, and hyperfine structure

Graphical approach to rotation-vibration-spin Hamiltonian

 $<H> \sim v_{vib}+BJ(J+1)+<H^{Scalar Coriolis}+<H^{Tensor Centrifugal}+<H^{Nuclear Spin}+<H^{Tensor Coriolis}+...$

<u>OUTLINE</u>

Introductory review

- Rovibronic nomograms and PQR structure
- -• Rotational Energy Surfaces (RES) and θ_{V}^{J} -cones $v_{4}P(88)$ SF₆

• Spin symmetry correlation tunneling and entanglement $_{SF_6}$

Recent developments

- Analogy between PE surface and RES dynamics
- Rotational Energy Eigenvalue Surfaces (REES)

v₃ SF₆

Example(s)

 v_3 and v_4 SF₆

 $\langle F \rangle =$

	$ 1\rangle_A$	$\left R_{1}^{2} \right\rangle$	$ R_1\rangle$	$ R_2\rangle$	$\left \boldsymbol{R}_{1}^{3} \right\rangle$	$\left R_{2}^{3} \right\rangle$	$ 1\rangle_{B}$	$ r_1\rangle$	$ r_2\rangle$	$\left r_{1}^{2}\right\rangle$	$\left r_{4}^{2}\right\rangle$	$\left R_{2}^{2} \right\rangle$	$ R_1\rangle$	R_2	\rangle	R_3	$\left \boldsymbol{R}_{1}^{3} \right\rangle$	$\left R_{2}^{3} \right\rangle$	$ i_3\rangle$	$ 1\rangle_{C}$	$ 2\rangle$	$ 3\rangle$
$\langle A $	2 <i>k</i> + <i>j</i>	0	$\frac{k}{2}$	$\frac{k}{2}$	$\frac{k}{2}$	$\frac{k}{2}$	0	0	0	$\frac{-k}{2}$	$\frac{-k}{2}$	0	0	$\frac{k}{2}$		0	0	$\frac{-k}{2}$	0	0	0	-j
$\langle B $							<i>k</i> + <i>b</i>	0	0	0	0	0	0	$\frac{-(k+1)}{2}$	- <i>b</i>)	0	0	$\frac{-(k+b)}{2}$	<u>)</u> 0	$\frac{-b}{2}$	0	0
$\langle C $																				2(j+b)	0	0
$\langle m \rangle =$:																					
	$ 1\rangle_A$	$\left R_{1}^{2} \right\rangle$	$ R_1\rangle$	$ R_2\rangle$	$\left \boldsymbol{R}_{1}^{3} \right\rangle$	R_{2}^{3}	$\rangle 1\rangle_{B}$	$ r_1\rangle$	$\rangle r $	$\left \frac{1}{2} \right\rangle $	$\left \frac{1}{2} \right\rangle$	r_4^2	$\left R_{2}^{2} \right\rangle$	$\left R_{1} \right\rangle$	$ R_2\rangle$	R	$_{3}\rangle I$	$\left R_1^3 \right\rangle \left R_2^3 \right\rangle$	$\left i_{3}\right $	$\rangle 1\rangle_{C}$	$ 2\rangle$	3
$\langle A $	т	0	0	0	0	0	0	0	()	0	0	0	0	0	C)	0 0	0	0	0	0
$\langle B $							m	0	()	0	0	0	0	0	C)	0 0	0	0	0	0
$\langle C $																				M	0	0