4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) J=3/2 (2D) Slater functions for J=5/2, Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Individual matrix components Application to spin-orbit and entanglement break-up scattering

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I - harter-pra-1973

Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976

Alternative Basis for the Theory of Complex Spectra III - patterson-harter-pra-1977

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high-J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989 (Alt scan)
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989 (Alt scan)
- III) Half-integral angular momentum harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum) Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

<u>QTCA Unit 10 Ch 30 - 2013</u>

AMOP Ch 0 Space-Time Symmetry - 2019

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26), (PSDS - Ch. 5, 7)

Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u> H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>

Hyperf. theory <u>Ch. 24 p48.</u>

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>. Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>. CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>. Lande' g-factor

<u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables Unit 8 Ch. 25 p12.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. Intro 3-particle coupling. <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

AMOP reference links (Updated list given on 2nd and 3rd and 4th pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification

Chaos_Classical_and_Quantum_- 2018-Cvitanovic-ChaosBook Group Theory - PUP_Lucy_Day_- Diagrammatic_notation_- Ch4 Simplification_Rules_for_Birdtrack_Operators_- Alcock-Zeilinger-Weigert-zeilinger-jmp-2017 Group Theory - Birdtracks_Lies_and_Exceptional_Groups_- Cvitanovic-2011 Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017 Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux's: UMA method of vibrational induction

Quantum_Mechanics_Group_Theory_and_C60 - Frank_Rioux - Department_of_Chemistry_Saint_Johns_U Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux Quantum_Mechanics-Group_Theory_and_C60 - JChemEd-Rioux-1994 Group_Theory_Problems-_Rioux-_SymmetryProblemsX Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017 Symmetry and Chirality - Continuous_Measures_-_Avnir

Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

(2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation

	$\exists = \begin{bmatrix} 2 \\ M=2 \end{bmatrix}$	[1] ta	ublea	u state M=	s lower	red b _{M=-}	$y \mathbf{L}_{-1}$	$=\sqrt{2}$	$(E_{21}+E_{})$	32)	1	0	•	$=(E_{u}-E_{u})=\sqrt{2}\mathbf{v}_{u}^{1}$ dipole (k=1)
E _{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$		z	•	•	-1) C II 337 C C-momentum L-operators
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$				<i>E_{jk}-matrix</i> <i>Lect.23</i>	$L_{\perp} \equiv \sqrt{2}$		1	·) 1	$=\sqrt{2}(E_{12}+E_{23})=L_{x}+iL_{y}=-\sqrt{2}\mathbf{v}_{1}^{1}$
$\begin{pmatrix} 12\\2 \end{bmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		p. <u>7-16</u> and p. <u>74</u>	T	(.	•	•)	× 12 23' x y 1
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1				$L \equiv \sqrt{2}$	$\overline{2}$	· ·	•	$=\sqrt{2}(E_{21}+E_{22})=L_{1}-iL_{2}=\sqrt{2}\mathbf{v}_{-1}^{1}$
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$				• 1		$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31)}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$		•	$ \begin{array}{ccc} {}^{(11)} & (22) & (33) \\ 1+1+1 & +1 \end{array} $	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$						
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•		(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[32]{\frac{3}{2}}$	(11) (33) 1+2		(12) 1	1					
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$	•	(31) -1		$\sqrt[(21)]{2}$		•	$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1						
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•		•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2						
<i>L</i> _	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	L + M	(L-M)	$\overline{(I+1)}\Big _{M-1}^{L}\Big\rangle$	Start w	vith top	[2,1]-sta	ite:	_					
<i>L</i> _	$\begin{vmatrix} 2\\2 \end{vmatrix} = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\overline{0} \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle = 2 \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^2 D_{M=2}$	>						

Number of levels in fermionic spin-1/2 p^3 $U(6) \supset U(3) \times U(2)$ $\begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$

$$N = \frac{\frac{5}{4}}{\frac{2}{2}} = \frac{120}{6} = 20$$

	$\square_{=}[2,$,1] <i>ta</i>	blea	u state	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}($	$(E_{21}+E_{32}) = \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \end{pmatrix} (E_{21}+E_{21}) \text{dipole } (k=1)$						
E_{jk}	$M=2$ $\begin{vmatrix} 11\\2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{vmatrix}$	$=I$ $\begin{vmatrix} 11\\3 \end{vmatrix}$	$M = \begin{pmatrix} 12 \\ 3 \end{pmatrix}$	$\begin{vmatrix} 13\\2 \end{vmatrix}$	M = -	$ \begin{vmatrix} 22 \\ 3 \end{vmatrix} $	$M = -2$ $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$L_{z} \equiv \left(\begin{array}{ccc} \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{array}\right) = \left(\begin{array}{ccc} E_{11} - E_{33}\right) = \sqrt{2} \mathbf{V}_{0} \angle -momentum \\ \mathbf{L} - operators \end{array}$						
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•			$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{+} \equiv \sqrt{2} \end{bmatrix} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ = \sqrt{2}(E_{12}+E_{23}) = L_{x} + iL_{y} = -\sqrt{2}\mathbf{v}_{1}^{1}$						
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{2}}$		(13) -1		$\begin{bmatrix} p.\underline{7-16} \\ and p.\underline{74} \end{bmatrix} \xrightarrow{\mathbf{r}} \begin{bmatrix} \dots \\ \dots \\ \dots \end{bmatrix} \xrightarrow{\mathbf{r}} \begin{bmatrix} \dots \\ \dots$						
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L_{1} - iL_{1} = \sqrt{2} \mathbf{v}_{-1}^{1}$						
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$-\sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} - \\ \cdot \\ 1 \end{array}\right) \left(\begin{array}{c} \end{array}\right) \left(\begin{array}{c} \end{array} \right) \left(\begin{array}{c} \cdot \\ 1 \end{array}\right) \left(\begin{array}{c} \cdot \\ $						
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$		•		$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$							
$\begin{pmatrix} 13\\3 \end{pmatrix}$	•		(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1							
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1							
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•		•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2							
<i>L</i> _	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	(L-M)	$\overline{(I+1)}\Big _{M-1}^{L}\Big\rangle$	Start w	rith top	[2,1]-sta	ite:	_						
<i>L</i> _	$\binom{2}{2} = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$^{2}D_{M=2}$)							
		Numł	Number of levels in fermionic spin- $1/2 p^3$												

$$U(6) \supset U(3) \times U(2)$$

$$N = \frac{6}{5} = \frac{120}{6} = 20$$

$$V = \frac{120}{6} = 20$$

$$P = \frac{120}{6} = 20$$

$$P = \frac{120}{6} = 20$$

$$D = \frac{120}{6} = 20$$

$$P = \frac{120}{6} = 20$$

$$D = \frac{100}{6} = 20$$

$$D = \frac{100}$$

	$\exists = \begin{bmatrix} 2 \\ M = 2 \end{bmatrix}$	$[1] ta_{M}$	blea	u state	s lower	red b	$y \mathbf{L}$	$=\sqrt{2}$	$E_{21} + E_{21}$	' <i>32)</i>		1 · · 0	•	$= (F_{-}F_{-}) = \sqrt{2} \mathbf{v}^{1} dipole (k=1)$)
E _{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11\\3 \end{vmatrix}$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13\\2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$		L_z –			-1	$\int_{-\frac{11}{2}}^{-\frac{11}{2}} \frac{2}{3} \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{2}{1} \int_{-\frac{1}{2}}^{-\frac{1}{2}} $	т 5
$\begin{pmatrix} 11\\2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{13}{2}}$	$\sqrt{\frac{3}{2}}^{(13)}$	•		•	E_{jk} -matrix Lect.23	$L \equiv $	$\overline{2}$	·] 	• 1	$=\sqrt{2}(E_{12}+E_{22})=L+iL=-\sqrt{2}\mathbf{v}_{1}^{1}$	
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		<i>p.<u>7-16</u></i> <i>and p.<u>74</u></i>	+		• •	•	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{2}$		(13) 1		•		$L \equiv \sqrt{1}$	$\sqrt{2}$	1	· ·	$=\sqrt{2}(E_{21} + E_{22}) = L - iL = \sqrt{2}\mathbf{v}^{1}$	
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$				•	1 .	$\int (x + y) = 1$	
$\begin{pmatrix} 13\\2 \end{bmatrix}$	$\sqrt{\frac{31}{2}}^{(31)}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$				$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$							
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[32]{\frac{3}{2}}$	(11) (33) 1+2		(12) 1							
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{2}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1							
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•		•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2							
L_	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	rith top	[2,1]-sta	ite:	_						
<i>L</i> _	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\left \begin{array}{c} 2 \\ 1 \end{array} \right = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{vmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^{2}D_{M=2}\rangle$	\rangle							

Number of levels in fermionic spin-1/2 p³ $U(6) \supset U(3) \times U(2)$ $p^{3} (Nitrogen)$ ${}^{4}S \text{ 4-levels}$ $N = \frac{4}{3} = \frac{120}{6} = 20$ ${}^{2}P \text{ 6-levels}$ ${}^{2}D \text{ 10-levels}$ Number of levels in bosonic spin-1 p³ $U(9) \supset U(3) \times U(3)$ $N = \frac{9 \cdot 10 \cdot 11}{3 \cdot 2 \cdot 1} = \frac{3 \cdot 5 \cdot 11}{1 \cdot 1 \cdot 1} = 165$

	□₌[2,	,1] <i>ta</i>	blea	u state	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}$	$(E_{21}+E_{32}) (1 \cdot \cdot) (E_{1} \cdot E_{21}) (E$			
E_{jk}	M=2	M: $\begin{vmatrix} 12\\2 \end{pmatrix}$	$=I$ $\begin{vmatrix} 11\\3 \end{vmatrix}$	$M = \begin{pmatrix} 12 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 13\\2 \end{pmatrix}$	M = -1	$\begin{vmatrix} 22\\3 \end{vmatrix}$	M = -2	$L_{z} \equiv \left(\begin{array}{cc} \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{array}\right) = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{T} \frac{dupore}{\angle -momentum} \frac{\mathbf{L} - operators}{\mathbf{L} - operators}$			
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{13}{2}}$	$\sqrt[(13)]{\frac{3}{2}}$	•		•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L \equiv \sqrt{2} \end{bmatrix} = \sqrt{2} \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2} (E_{12} + E_{22}) = L_1 + iL_2 = -\sqrt{2} \mathbf{v}_1^1$			
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1	•	$\begin{bmatrix} p.\underline{7-16} \\ and \ p.\underline{74} \end{bmatrix} \xrightarrow{+} \begin{bmatrix} \ddots & \ddots \\ & & & \\ \end{bmatrix} \xrightarrow{(-1)} (-1$			
$\begin{pmatrix} 11\\ 3 \end{pmatrix}$	(32)		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1		•	$ L_{=} = \sqrt{2} \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{y} - iL_{y} = \sqrt{2} \mathbf{v}_{=1}^{1} $			
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} \cdot & 1 \\ \cdot & 1 \end{array}\right) = \left(\begin{array}{c} \cdot & 21 \\ \cdot & 32 \\ \cdot & 32 \\ \cdot & 32 \\ \cdot & 1 $			
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$		•	$ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$				
$\begin{pmatrix} 13\\3 \end{bmatrix}$			(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1				
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			⁽²²⁾ (33) 2+1	(23) 1				
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $				$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	$ \begin{array}{c} (22) & (33) \\ 1 + 2 \end{array} $				
$\frac{U_{-}}{L} = \sqrt{(L+M)(L-M+1)} \begin{bmatrix} L \\ M-1 \end{bmatrix}$ Start with top [2,1]-state:												
<i>L</i> _	$\begin{vmatrix} 2\\2 \end{vmatrix} = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle = \left \begin{array}{c} 2 \\ 2 \end{array} \right\rangle$	${}^{2}D_{M=2}$)				
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$= \frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$2(E_{21})+$	$\left \frac{1}{2} \right =$	$\begin{pmatrix} 1 \\ \sqrt{2} \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ \sqrt{2} \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ \sqrt{2} \\ \sqrt{2} \end{pmatrix} + \begin{pmatrix} 1 \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{pmatrix} + \begin{pmatrix} 1 \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{pmatrix} + \begin{pmatrix} 1 \\ \sqrt{2} \\ $	$\left \begin{array}{c} 1 \\ \hline 2 \\ \hline 2 \\ \hline 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle				

	$\Box = \begin{bmatrix} 2 \\ M = 2 \end{bmatrix}$,1] <i>ta</i>	blea	u state	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}$	$(E_{21}+E_{})$	$32)_{L} = 0$	1	· ·		= $(E_{-}E_{-}) = \sqrt{2} \mathbf{v}^1$ dipole (k=1)
E _{jk}	$\begin{vmatrix} 11\\2 \end{pmatrix}$	$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13\\2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$		$L_z =$		• -	1	$(L_{11}, L_{33}) = \sqrt{2} \sqrt{6}$ \angle -momentum L-operators
$\begin{pmatrix} 11\\2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{13}{2}}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•			<i>E_{jk}-matrix</i> <i>Lect.23</i>	$L \equiv \sqrt{2}$	$\overline{2}$ $\left(\begin{array}{c} \cdot\\ \cdot\\ \cdot\end{array}\right)$	1 · · 1)=	$=\sqrt{2}(E_{12}+E_{22})=L_{1}+iL_{2}=-\sqrt{2}\mathbf{v}_{1}^{1}$
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21)	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		<i>p.<u>7-16</u></i> <i>and p.74</i>	+	(.			× 12 23' x y 1
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{2}$		(13) 1		•		$L \equiv \sqrt{2}$	$\frac{1}{2}$	 [.	·)	$=\sqrt{2}(E_{21}+E_{22})=L-iL=\sqrt{2}\mathbf{v}^{1}$
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$(32) \\ \sqrt{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$				- 1	.)	x = 1
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$(32) \\ \sqrt{\frac{3}{2}}$				$\sqrt{\frac{3}{2}}^{(23)}$		$\sqrt{\frac{13)}{2}}$						
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1						
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1						
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•			$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2						
<i>L</i> _	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = \sqrt{1}$	(L+M)	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	rith top	[2,1]-sta	nte:						
<i>L</i> _	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{2}$	(2+2)(2	2 - 2 + 1	$\overline{0} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$^{2}D_{M=2}$	\rangle						
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} \left(E_{21} + E_{32} \right) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ - 1 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} $													
Or	thogona	al <i>M=1</i> s	state: $ ^2$	$\left P_{M=1} \right\rangle = \left \begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle						

	$\square = \begin{bmatrix} 2 \\ M = 2 \end{bmatrix}$	$,1] ta_{M=1}$	iblea	u state. M=	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}(M)$	$(E_{21}+E_{32})$	2)	1	0		$=(E_{\dots}-E_{\dots})=\sqrt{2}\mathbf{v}_{\perp}^{1}$ dipole (k=1)
E _{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\left \begin{array}{c}23\\3\end{array}\right\rangle$		\mathbf{L}_{z} –	•	• -	1	L-momentum L -operators
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{13}{2}}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•			<i>E_{jk}-matrix</i> <i>Lect.23</i>	$L_{\perp} \equiv \sqrt{2}$		1 •	.) 1 =	$=\sqrt{2}(E_{12}+E_{23})=L_{r}+iL_{r}=-\sqrt{2}\mathbf{v}_{1}^{1}$
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{2}}$		(13) -1		p. <u>7-16</u> and p. <u>74</u>		(.	•	.)	12 25 x y 1
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1				$L \equiv \sqrt{2}$	$\frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	•	· ·	$=\sqrt{2}(E_{21}+E_{22})=L_{1}-iL_{1}=\sqrt{2}\mathbf{v}_{-1}^{1}$
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$-\sqrt{\frac{1}{2}}$	$(32) \\ \sqrt{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{ccc} {}^{(11)} & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$		_	(.	1	.)	$x 21 32^{y} x y -1$
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$(31) \\ \sqrt{\frac{3}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$				$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$						
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•		(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1						
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1						
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $			•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31}{2}}$	(21) 1	(32) 1	(22) (33) 1+2						
	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	L + M	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	vith top	[2,1]-sta	ate:	_					
L_{-}	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{2}$	(2+2)(2	2 - 2 + 1	$\overline{0} \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle = 2 \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle$	$\begin{vmatrix} 2\\2 \end{vmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^2D_{M=2}$	\rangle						
2 \ 1 /	$\rangle = \frac{1}{2} L_{-}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32})\Big \frac{11}{2} \Big\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle						
Or	thogona	al $M=1$ s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 3 \end{vmatrix} =$	$ ^2 P_{M=1}$	\rangle						

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation

	$\Box_{=} \begin{bmatrix} 2 \\ M = 2 \end{bmatrix}$,1] ta	iblea	u state M=	s lower	red b _{M=-}	$y \mathbf{L}_{1}$	$=\sqrt{2}(M)$	$ \begin{array}{c} (E_{21}+E_{32}) \\ L \equiv \left(\begin{array}{cc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{array}\right) = (E_{1}-E_{1}) = \sqrt{2} \mathbf{v}_{1}^{1} \ dipole \ (k=1) \end{array} $
E_{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\left \begin{array}{c} 12\\ 3 \end{array} \right\rangle$	$\left \begin{array}{c} 13\\2 \end{array} \right\rangle$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\begin{bmatrix} -2z \\ \cdot & \cdot & -1 \end{bmatrix} = \begin{bmatrix} -2z \\ -2z$
$\begin{pmatrix} 11\\2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{13}{2}}$	$\sqrt{\frac{3}{2}}^{(13)}$				$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{\perp} \equiv \sqrt{2} \end{bmatrix} \stackrel{(\cdot 1 \cdot)}{=} \sqrt{2} (E_{12} + E_{22}) = L_{\mu} + iL_{\mu} = -\sqrt{2} \mathbf{v}_{1}^{1}$
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{2}}$		(13) -1		$p.\underline{7-16}$ and $p.74$ $(\cdot \cdot \cdot \cdot)$ $(\cdot \cdot \cdot \cdot)$ $(\cdot \cdot \cdot \cdot)$
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L = \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L_{1} - iL_{2} = \sqrt{2} \mathbf{v}_{-1}^{1}$
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$-\sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left[\begin{array}{c} - \\ \cdot \\ 1 \end{array}\right] $
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$(32) \\ \sqrt{\frac{3}{2}}$				$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[32]{\frac{3}{2}}$			(12) 1	
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•	•	•	$\sqrt[(31)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	(22) (33) 1+2	
	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	L + M	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	rith top	[2,1]-sta	ite:	
L_{-}	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{2}$	(2+2)(2	2 - 2 + 1	$\overline{0} \left \begin{smallmatrix} 2\\1 \end{smallmatrix} \right = 2 \left \begin{smallmatrix} 2\\1 \end{smallmatrix} \right $	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^2 D_{M=2}$	\rangle	
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$=\frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32}\left \begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right\rangle =$	$\frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \end{vmatrix}$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	
Or	thogona	al <i>M=1</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2P_{M=1}$	\rangle	

	$\Box = \begin{bmatrix} 2 \\ M = 2 \end{bmatrix}$,1] ta	iblea	u state M=	s lower	red b	$y \mathbf{L}_{l}$	$=\sqrt{2}$	$ \underbrace{E_{21} + E_{32}}_{L \equiv} \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{array} \right)_{= (E_{11} - E_{12}) = \sqrt{2} \mathbf{v}_{1}^{1} \text{ dipole } (k=1) $
E _{jk}	$\begin{vmatrix} 11\\2 \end{pmatrix}$	$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\left \begin{array}{c}13\\2\end{array}\right\rangle$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23\\3 \end{vmatrix}$	$ \begin{bmatrix} -z \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} (-1) & -33 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} (-1) & -33 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} (-1) & -33 \\ \cdot & \cdot & -1 \\ L-operators \end{bmatrix} $
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•		•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{\pm} \equiv \sqrt{2} \end{bmatrix} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{2}}$	•	(13) -1		$\begin{bmatrix} p.\underline{7-16} \\ and p.\underline{74} \end{bmatrix} \begin{pmatrix} \cdot & \cdot & \cdot \\ - & \cdot & \cdot \\ - & - & \cdot \\ - & - & - \\ - & - & - \\ - & - & - \\ - & - &$
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L_{2} - iL_{2} = \sqrt{2} \mathbf{v}_{-1}^{1}$
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$-\sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{ccc} {}^{(11)} & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} - \\ \cdot \\ 1 \end{array}\right) = \left(\begin{array}{c} - \\ \cdot \\ 1 \end{array}\right) = \left(\begin{array}{c} - \\ - \\ - \\ 1 \end{array}\right)$
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31}{2}}$	$(32) \\ \sqrt{\frac{3}{2}}$				$\sqrt{\frac{23}{2}}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 2\\2 \end{vmatrix} \right) + \begin{vmatrix} 1 1\\3 \end{vmatrix} \right)$
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $		(31) -1		$\sqrt[(21)]{2}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $			•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2	
	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	(L+M)	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	ith top	[2,1]-sta	ite:	
<i>L</i> _	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\overline{\left \begin{array}{c} 2 \\ 1 \end{array} \right } = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right $	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$^{2}D_{M=2}$	>	
$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$=\frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32}\left \begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{2} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	
Or	thogona	al <i>M=1</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	>	

	$\Box_{=}[2,$,1] <i>ta</i>	blea	u state	s lower	red b	$y \mathbf{L}$	$=\sqrt{2}($	$(E_{21}+E_{32}) (1 \cdot \cdot \cdot) (E_{11} \cdot E_{11}) (E_{11} \cdot E_{1$
E_{jk}	$M=2$ $\begin{vmatrix} 11\\2 \end{vmatrix}$	$\begin{pmatrix} 12\\2 \end{pmatrix}$	$=I$ $\begin{vmatrix} 11\\3 \end{vmatrix}$	$M = \begin{pmatrix} 12 \\ 3 \end{pmatrix}$	$\begin{vmatrix} 13\\2 \end{vmatrix}$	M = -	$ \begin{vmatrix} 22 \\ 3 \end{vmatrix} $	$M = -2$ $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$L_{z} \equiv \left(\begin{array}{ccc} \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{array}\right)^{=(E_{11}-E_{33})=\sqrt{2V_{0}}} \frac{dependent }{\angle -momentum} \\ L-operators$
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt[(13)]{\frac{3}{2}}$	•		•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 & L_{\pm} \equiv \sqrt{2} \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2}(E_{12}+E_{23}) = L_{x}+iL_{y}=-\sqrt{2}\mathbf{v}_{1}^{1}$
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{2}}$		(13) -1		$\begin{bmatrix} p.\underline{7-16} \\ and p.\underline{74} \end{bmatrix} \begin{bmatrix} . & . & . \\ - & . & . \end{bmatrix}$
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L \equiv \sqrt{2} \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L_{1} - iL_{1} = \sqrt{2} \mathbf{v}_{-1}^{1}$
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$-\sqrt{\frac{1}{2}}$	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\sqrt{21}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} - \\ \cdot \\ 1 \end{array}\right) = \left(\begin{array}{c} \cdot \\ 1 \end{array}\right) = \left(\begin{array}{c} - \\ - \\ 1 \end{array}\right)$
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$		•		$\sqrt{\frac{3}{2}}^{(23)}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\ 3 \end{pmatrix}$	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[32]{\frac{3}{2}}$	(11) (33) 1+2		(12) 1	$ \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 2 \rangle + \begin{vmatrix} 3 \\ 2 \end{vmatrix} \right) $
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$		•	$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 & 2 \\ 2 \end{vmatrix} \right) + \left(E_{21} \begin{vmatrix} 1 & 1 \\ 3 \end{vmatrix} \right) + \left(E_{32} \begin{vmatrix} 1 & 2 \\ 2 \end{vmatrix} \right) + \left(E_{32} \begin{vmatrix} 1 & 2 \\ 3 \end{vmatrix} \right)$
$\begin{pmatrix} 23\\ 3 \end{bmatrix}$			•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	(22) (33) 1+2	
	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	ith top	[2,1]-sta	ite:	
L_{-}	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^2 D_{M=2}$	\rangle	
$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$= \frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32})\left \begin{array}{c} 11\\ 2 \end{array} \right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{2} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	
Or	thogona	al $M=l$ s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle	

	$\Box_{=} \begin{bmatrix} 2 \\ M=2 \end{bmatrix}$	[1] ta	iblea	u state M=	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}(M)$	$ \begin{array}{c} (E_{21}+E_{32}) \\ L \equiv \left(\begin{array}{cc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{array}\right) = (E_{1}-E_{1}) = \sqrt{2} \mathbf{v}_{1}^{1} \ dipole \ (k=1) \end{array} $
E _{jk}	$\begin{vmatrix} 11\\2 \end{pmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\begin{bmatrix} 2z \\ \cdot & \cdot & -1 \end{bmatrix} \xrightarrow{(211 \ 233)} \xrightarrow{(210 \ -1)} (210 $
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{3}{2}}^{(13)}$	•			$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{\perp} \equiv \sqrt{2} \end{bmatrix} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \end{pmatrix} = \sqrt{2} (E_{12} + E_{22}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		$p.\underline{7-16}$ and $p.\underline{74}$ $(\cdot \cdot \cdot \cdot)$ $(\cdot \cdot \cdot \cdot)$
$\begin{pmatrix} 11\\ 3 \end{pmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L \equiv \sqrt{2} \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L_1 - iL_2 = \sqrt{2} \mathbf{v}_{-1}^1$
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$-\sqrt{\frac{1}{2}}$	$\underbrace{\begin{pmatrix} (32) \\ \sqrt{\frac{1}{2}} \end{pmatrix}}$	$\begin{pmatrix} (21) \\ \sqrt{2} \end{pmatrix}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left[\begin{array}{c} - \\ \cdot \\ 1 \end{array}\right] \left[\begin{array}{c} \cdot \\1 \end{array}\right] \left[\end{array}] \left[\begin{array}{c} \cdot \\1 \end{array}\right] \left[\begin{array}{c} \cdot \\1 \end{array}\right] \left[\end{array}] \left[\end{array}] \left[\end{array}] \left[\begin{array}{c} \cdot \\1 \end{array}\right] \left[\end{array}] \left[$
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$		•		$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\ 3 \end{pmatrix}$	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{(32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1	$ \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 2 \\ 2 \end{vmatrix} + \begin{vmatrix} 3 \\ 3 \end{vmatrix} \right) $
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{2}$		•	$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 & 2 \\ 2 \end{pmatrix} + \left(E_{21} \begin{vmatrix} 1 & 1 \\ 3 \end{pmatrix} \right) + \left(E_{32} \begin{vmatrix} 1 & 2 \\ 2 \end{pmatrix} \right) + \left(E_{32} \begin{vmatrix} 1 & 2 \\ 3 \end{pmatrix} \right)$
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•		•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	$(22) (33) \\ 1+2$	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \frac{\sqrt{2}}{3} \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \frac{\sqrt{2}}{3} \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \frac{\sqrt{3}}{2} \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + 0 \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \right)$
L_	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	rith top	[2,1]-sta	ate:	-
<i>L</i> _	$\begin{vmatrix} 2\\2 \end{vmatrix} = \sqrt{(}$	(2+2)(2)	2 - 2 + 1	$\overline{0} \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle = 2 \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$^{2}D_{M=2}$	\rangle	
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$= \frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32}\left \frac{11}{2}\right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	
Or	thogona	al <i>M=1</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle	

	□ ₌ [2,	,1] <i>ta</i>	blea	u state	s lower	red b	$y \mathbf{L}_{\cdot}$	$=\sqrt{2}$	$(E_{21}+E_{32})$ $(1 \cdot \cdot)$ $(1 \cdot \cdot)$				
	<i>M</i> =2		=1		0	M=-	1	M=-2	$L_{z} \equiv \cdot 0 \cdot = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \operatorname{dipole}(k-1)$				
E_{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$ \begin{bmatrix} \cdot & \cdot & -1 \end{bmatrix} \qquad $				
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•		•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 & L_{+} \equiv \sqrt{2} \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2}(E_{12}+E_{23}) = L_{x}+iL_{y}=-\sqrt{2}\mathbf{v}_{1}^{1}$				
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1	•	$\begin{bmatrix} p.\underline{7-16} \\ and \ p.\underline{74} \end{bmatrix} \left(\begin{array}{c} \cdot & \cdot & \cdot \\ \end{array} \right) = \begin{bmatrix} n & 1 \\ 2 & n \\ \end{array} \right)$				
$\begin{pmatrix} 11\\ 3 \end{pmatrix}$	(32) 1	•	(11) (33) 2+1	$\sqrt[12]{\sqrt{2}}$		(13) 1			$L_{\underline{=}}\sqrt{2} \begin{vmatrix} \cdot \cdot \cdot \\ 1 & \cdot \end{vmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2}\mathbf{v}_{=1}^{1}$				
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\sqrt{\frac{(21)}{\sqrt{2}}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$(\cdot 1 \cdot)$				
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$	•		$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 \\ \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$\begin{pmatrix} 13\\3 \end{pmatrix}$			(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{32}{2}}$			(12) 1	$ \left \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right = \frac{1}{\sqrt{6}} L_{-} \left \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{bmatrix} -1 \\ 2 \end{bmatrix} \right) + \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right) $				
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 112 \\ 2 \end{vmatrix} + \left(E_{21} \begin{vmatrix} 111 \\ 3 \end{vmatrix} \right) + \left(E_{32} \begin{vmatrix} 112 \\ 2 \end{vmatrix} \right) + \left(E_{32} \begin{vmatrix} 112 \\ 3 \end{vmatrix} \right) \right)$				
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $		•		$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{2}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \left(\begin{array}{c} 1 \\ 3 \end{array} \right) + \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \left(\begin{array}{c} 1 \\ 3 \end{array}$				
L_{-}	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M))(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	ith top	[2,1]-sta	ite:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \\ \frac{11}{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{11}{2} \\ \frac{3}{2} \end{array} \right) = \frac{\sqrt{3}}{2} \\ \frac{11}{3} \\ \frac{3}{2} \\ \frac{11}{3} \\ \frac{3}{2} \\ \frac{11}{2} \\ \frac$				
<i>L</i> _	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = ($	(2+2)(2	2 - 2 + 1	$\overline{0} \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle = 2 \left \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \frac{11}{2} \right\rangle =$	$ ^{2}D_{M=2}\rangle$	\rangle					
$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{2}L_{-}\begin{vmatrix} 2\\2 \end{vmatrix} = \frac{1}{2}\sqrt{2}(E_{21} + E_{32})\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} + \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \begin{vmatrix} 2\\M = 1 \end{vmatrix}$												
Or	thogona	al $M=l$ s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle					

	$\Box = \begin{bmatrix} 2 \\ M = 2 \end{bmatrix}$,1] <i>ta</i>	blea	u state	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}($	$\underbrace{E_{21}+E_{32}}_{I=1}\left(\begin{array}{cc}1&\cdot&\cdot\\&0&\end{array}\right)=\underbrace{E_{21}-\sum_{i=1}^{n}dipole\ (k=1)}_{I=1}$				
E _{jk}	$ \begin{vmatrix} 11 \\ 2 \end{vmatrix} $	$\begin{vmatrix} 12\\2 \end{vmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13\\2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$L_{z} = \begin{bmatrix} \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{bmatrix} - (L_{11} - L_{33}) - \sqrt{2} v_{0} \angle -momentum \\ L-operators$				
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•			$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{\perp} \equiv \sqrt{2} \end{bmatrix} \stackrel{\cdot}{\leftarrow} \stackrel{\cdot}{\leftarrow} \stackrel{\cdot}{\leftarrow} \stackrel{\cdot}{} \stackrel{\cdot}{\phantom$				
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{2}}$		(13) -1		$p.\underline{7-16}$ and $p.\underline{74}$ $(\cdot \cdot \cdot \cdot)$				
$\begin{pmatrix} 11\\ 3 \end{pmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$ L_{\underline{=}}\sqrt{2} \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \end{pmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_{y} - iL_{y} = \sqrt{2}\mathbf{v}_{\underline{=}1}^{1} $				
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\sqrt{\frac{(21)}{\sqrt{2}}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} \cdot & 1 \\ \cdot & 1 \end{array}\right) = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $				
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$		•	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$\begin{pmatrix} 13\\3 \end{pmatrix}$			(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1	$ \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 \\ 2 \end{vmatrix} + \begin{vmatrix} 3 \\ 3 \end{vmatrix} \right) $				
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 112 \\ 2 \end{vmatrix} + \left(E_{21} \begin{vmatrix} 111 \\ 3 \end{vmatrix} \right) + \left(E_{32} \begin{vmatrix} 112 \\ 2 \end{vmatrix} \right) + \left(E_{32} \begin{vmatrix} 112 \\ 3 \end{vmatrix} \right) \right)$				
$\begin{pmatrix} 23\\ 3 \end{pmatrix}$	•	•	•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \left(\begin{array}{c} 1 \\ 3 \end{array} \right) + \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \left(\begin{array}{c} 1 \\ 3 \end{array} \right) + \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \left(\begin{array}{c} 1 \\ 3 \end{array} \right) + \left(\begin{array}{c} 1 \\ 3 \end{array} \right) + \left(\begin{array}{c} 1 \\ 3 \end{array} \right) \right)$				
	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	(L-M)	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	ith top	[2,1]-sta	ate:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \\ \frac{1}{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{1}{2} \end{array} \right) = \frac{\sqrt{3}}{2} \\ \frac{1}{3} \end{array} \right) + \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{3} \end{array} \right) = \begin{vmatrix} 2 \\ 2 \\ 0 \end{vmatrix}$				
L_{-}	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = ($	(2+2)(2	2 - 2 + 1	$\left \begin{array}{c} 2 \\ 1 \end{array} \right = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^{2}D_{M=2}\rangle$	\rangle	Orthogonal (L=1, M=0) state: $\left \frac{-1}{2}\right \frac{1}{3}\right\rangle + \frac{\sqrt{3}}{2}\left \frac{1}{3}\right\rangle = \left {}^{2}P_{M=0}\right\rangle = \left {}^{1}_{0}\right\rangle$				
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$\begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{2}L_{-}\begin{vmatrix} 2\\2 \end{vmatrix} = \frac{1}{2}\sqrt{2}(E_{21} + E_{32})\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} + \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \begin{vmatrix} 2\\M \end{vmatrix} = \begin{vmatrix} 2\\M \end{vmatrix}$												
Or	thogona	al $M=l$ s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle					

	$\square = \begin{bmatrix} 2 \\ M=2 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix} ta$	blea	u state M=	s lower	red b _{M=-}	$y \mathbf{L}_{1}$	$=\sqrt{2}$	$ \begin{array}{c} (E_{21} + E_{32}) \\ L_{z} \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{pmatrix} = (E_{11} - E_{22}) = \sqrt{2} \mathbf{v}_{0}^{1} \ dipole \ (k=1) \end{array} $
E _{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\left \begin{array}{c} 11\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{pmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$ \begin{bmatrix} \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ \cdot & \cdot & -1 \\ \cdot & -1 \\$
$\begin{pmatrix} 11\\2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{3}{2}}^{(13)}$	•		•	$L_{i} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} = \sqrt{2} (E_{12} + E_{22}) = L + iL = -\sqrt{2} \mathbf{v}_{1}^{1}$
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{2}}$		(13) -1		$+ \left(\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \end{array}\right) \qquad (12 23^{2} x y 1$
$\begin{pmatrix} 11\\ 3 \end{pmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{ii} + E_{ii}) = L - iL = \sqrt{2} \mathbf{v}^{1}$
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	(32) $\sqrt{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $		$\sqrt{\frac{23)}{\sqrt{\frac{1}{2}}}}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\begin{array}{c c} - & - & - & - & - & - & - & - & - & - $
$\begin{pmatrix} 13\\2 \end{pmatrix}$	(31) $\sqrt{\frac{3}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$				$\sqrt{\frac{23}{2}}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\ 3 \end{pmatrix}$			(31) 1	$\sqrt{\frac{(32)}{\sqrt{\frac{1}{2}}}}$	$\sqrt{\frac{(32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 2\\2 \end{vmatrix} + \begin{vmatrix} 1 1\\3 \end{vmatrix} \right)$
$\begin{pmatrix} 22\\ 2 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$			$\binom{(22)}{2+1}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right) + E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right)$
$\begin{pmatrix} 23 \\ 2 \end{pmatrix}$				$\sqrt{\frac{(31)}{\sqrt{\frac{1}{2}}}}$	$\sqrt{\frac{31}{2}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ 3 \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	$\frac{1}{(L+M)}$	(L-M)		Start w	ith top	[2,1]-sta	ite:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \left \begin{array}{c} 12 \\ 3 \end{array} \right\rangle + \sqrt{\frac{3}{2}} \left \begin{array}{c} 13 \\ 2 \end{array} \right\rangle \right) = \frac{\sqrt{3}}{2} \left \begin{array}{c} 12 \\ 3 \end{array} \right\rangle + \frac{1}{2} \left \begin{array}{c} 13 \\ 2 \end{array} \right\rangle = \left \begin{array}{c} 2 \\ D_{M=0} \end{array} \right\rangle = \left \begin{array}{c} 2 \\ 0 \end{array} \right\rangle$
<i>L</i> _	$\begin{vmatrix} 2\\2 \end{vmatrix} = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\overline{0} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^{2}D_{M=2}\rangle$	>	Orthogonal (L=1, M=0) state: $\frac{-1}{2} \left \frac{1}{3} \right\rangle + \frac{\sqrt{3}}{2} \left \frac{1}{2} \right\rangle = \left {}^{2}P_{M=0} \right\rangle = \left {}^{1}_{0} \right\rangle$
$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$= \frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2}\sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32}\left \begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	$L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{(2+0)(2-0+1)} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ -1 \end{vmatrix}$
Or	thogona	ul <i>M=1</i> s	state: $ ^2$	$P_{M=1}\rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle	$\begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} $

	$\exists = \begin{bmatrix} 2 \\ M = 2 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix} ta$	blea	u state. M=	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}$	$ \begin{array}{c} (E_{21}+E_{32}) \\ L \equiv \left(\begin{array}{cc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{array}\right) = (E_{21}-E_{21}) = \sqrt{2} \mathbf{v}^{1} \ dipole \ (k=1) \end{array} $
E_{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13\\2 \end{pmatrix}$	$\begin{vmatrix} 13\\3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\begin{bmatrix} L_z \\ \cdot \\ $
$\begin{pmatrix} 11\\2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{3}{2}}^{(13)}$				$\begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2} (E_{12} + E_{22}) = L_{12} + iL_{12} = -\sqrt{2} \mathbf{v}_{12}^{1}$
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		$+ \left(\begin{array}{c} \cdot \\ \cdot $
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1	•	•	$L = \sqrt{2} \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L - iL = \sqrt{2} \mathbf{v}^{1}$
$\begin{pmatrix} 12\\ 3 \end{bmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31)}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$		•		$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\ 3 \end{bmatrix}$	•	•	(31) 1	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (32)\\ \sqrt{\frac{3}{2}} \end{pmatrix}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 2\\2 \end{vmatrix} + \begin{vmatrix} 1 2\\3 \end{vmatrix} \right)$
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt{\frac{(21)}{\sqrt{2}}}$	$\overline{\cdot}$		$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + E_{21} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle + E_{32} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + E_{32} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle + E_{32} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle \right)$
$\begin{pmatrix} 23\\ 3 \end{bmatrix}$	•	•	•	$ \begin{array}{c} (31)\\ \sqrt{\frac{1}{2}} \end{array} $	$\sqrt{\frac{31}{2}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \end{array} \right) + \sqrt{\frac{3}{2}} \\ 2 \end{array} \right) + 0 \\ 3 \end{array} \right)$
 	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	(L-M)	$(I+1) \left \begin{array}{c} L \\ M-1 \end{array} \right\rangle$	Start w	rith top	[2,1]-sta	ate:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \left \begin{array}{c} 12\\ 3 \end{array} \right\rangle + \sqrt{\frac{3}{2}} \left \begin{array}{c} 13\\ 2 \end{array} \right\rangle \right) = \frac{\sqrt{3}}{2} \left \begin{array}{c} 12\\ 3 \end{array} \right\rangle + \frac{1}{2} \left \begin{array}{c} 13\\ 2 \end{array} \right\rangle = \left \begin{array}{c} 2\\ D_{M=0} \end{array} \right\rangle = \left \begin{array}{c} 2\\ 0 \end{array} \right\rangle$
L_{-}	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{(}$	(2+2)(2)	2 - 2 + 1	$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^{2}D_{M=2}\rangle$	\rangle	Orthogonal (L=1, <i>M</i> =0) state: $\frac{-1}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ P_{M=0} \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$= \frac{1}{2} L_{-} \Big _{2}^{2}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32}\left \frac{11}{2}\right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	$L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{(2+0)(2-0+1)} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ -1 \end{vmatrix}$
Or	thogona	ul <i>M=1</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$= ^2 P_{M=1}$	\rangle	$ \begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} $
				l	<i>i i</i>	<u> </u>	$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 12 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 12 \\ 2 \end{vmatrix} \right) + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 12 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{32} \begin{vmatrix} 13 \\ 2 \end{vmatrix} \right)$		

	$\square_{=}[2,$	$\begin{bmatrix} 1 \end{bmatrix} ta$	blea	u state.	s lower	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}$	$(E_{21}+E_{32}) = \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \end{pmatrix} (E_{21}+E_{22}) = \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \end{pmatrix}$
E_{jk}	$M=2$ $\begin{vmatrix} 11\\2 \end{vmatrix}$	$\begin{pmatrix} 12\\2 \end{pmatrix}$	$=I$ $\begin{vmatrix} 11\\3 \end{vmatrix}$	$ \begin{vmatrix} 12 \\ 3 \end{vmatrix} $	$\begin{vmatrix} 13\\2 \end{vmatrix}$	$ 13 \\ 3 \\ \rangle$	$ \begin{vmatrix} 22 \\ 3 \end{vmatrix} $	$M = -2$ $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$ \begin{bmatrix} L_z \equiv \begin{bmatrix} \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{bmatrix} = (E_{11} - E_{33}) = \sqrt{2} V_0 \text{in point (in - 1)} \\ \textbf{L-operators} $
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$			•	$ L_{\pm} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1} $
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1			$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L_{1} - iL_{2} = \sqrt{2} \mathbf{v}_{-1}^{1}$
$\begin{pmatrix} 12\\ 3 \end{bmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left[\begin{array}{c} - \left(\cdot 1 \cdot \right) \right] = \left[\left(\cdot 1 \cdot \right] = \left[\left(\cdot 1 \cdot \right) \right] = \left[\left(\cdot 1 \cdot \right) \right] = \left$
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$\sqrt{\frac{32}{2}}$		•		$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•	•	(31) 1	$\begin{pmatrix} (32) \\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$	(11) (33) 1+2		(12) 1	$ \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 112 \\ 2 \end{vmatrix} + \begin{vmatrix} 111 \\ 3 \end{vmatrix} \right) $
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$	•	(31) -1		$\sqrt{\frac{21}{\sqrt{2}}}$	$\overline{\cdot}$		$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \left \begin{array}{c} 11 \\ 2 \end{array} \right\rangle + E_{21} \left \begin{array}{c} 11 \\ 3 \end{array} \right\rangle + E_{32} \left \begin{array}{c} 11 \\ 2 \end{array} \right\rangle + E_{32} \left \begin{array}{c} 11 \\ 3 \end{array} \right\rangle \right)$
$\begin{pmatrix} 23\\ 3 \end{pmatrix}$	•			$(31) \\ \sqrt{\frac{1}{2}}$	$\sqrt{\frac{31}{2}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \left \begin{array}{c} 1 \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right) + \sqrt{\frac{3}{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right) + 0 \left \begin{array}{c} 1 \\ 3 \end{array} \right) \right)$
L	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	(L-M)	$(1+1) \left {L \atop M-1} \right\rangle$	Start w	vith top	[2,1]-sta	ate:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \left \begin{array}{c} 12 \\ 3 \end{array} \right\rangle + \sqrt{\frac{3}{2}} \left \begin{array}{c} 13 \\ 2 \end{array} \right\rangle \right) = \frac{\sqrt{3}}{2} \left \begin{array}{c} 12 \\ 3 \end{array} \right\rangle + \frac{1}{2} \left \begin{array}{c} 13 \\ 2 \end{array} \right\rangle = \left \begin{array}{c} 2 \\ D_{M=0} \end{array} \right\rangle = \left \begin{array}{c} 2 \\ 0 \end{array} \right\rangle$
L_{-}	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{(}$	(2+2)(2)	2 - 2 + 1	$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{vmatrix} =$	$\left \frac{11}{2} \right\rangle =$	$^{2}D_{M=2}$	\rangle	Orthogonal (L=1, <i>M</i> =0) state: $\frac{-1}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ P_{M=0} \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$= \frac{1}{2} L_{-} \Big _{2}^{2}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32})\Big \frac{11}{2} \Big\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	$L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{(2+0)(2-0+1)} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ -1 \end{vmatrix}$
Or	thogona	ul <i>M=1</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle	$\begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$
				Ľ					$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 12 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 12 \\ 2 \end{vmatrix} \right) + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 12 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{32} \begin{vmatrix} 13 \\ 2 \end{vmatrix} \right)$
									$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{1} \frac{ 2 }{3} \right) + 0 \frac{ 2 }{2} + \frac{\sqrt{3}}{2} \sqrt{\frac{1}{2}} \frac{ 1 }{3} + \frac{1}{2} \sqrt{\frac{3}{2}} \frac{ 1 }{3} \right)$

	∃₌[2,	[1] <i>ta</i>	blea	u state.	s lower	red b	$y \mathbf{L}$:	$=\sqrt{2}$	$(E_{21}+E_{32}) (1 \cdot \cdot \cdot) \qquad $
	M=2	<i>M</i> =	=1	M=	0	<i>M</i> =-	1	<i>M</i> =-2	$L_{z} \equiv \begin{vmatrix} \cdot & 0 & \cdot \end{vmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \stackrel{alpole}{\swarrow} (k=1)$
E_{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\begin{bmatrix} \cdot & \cdot & -1 \end{bmatrix}$
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$(13) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{3}{2}}^{(13)}$	•		•	$L \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} = \sqrt{2} (E_{12} + E_{22}) = L + iL = -\sqrt{2} \mathbf{v}_1^1$
$\begin{pmatrix} 12\\ 2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{(23)}{\sqrt{\frac{1}{2}}}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		$+ \cdot \cdot \left(\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot \\ \cdot \end{array} \right) \cdot \cdot \left(\begin{array}{c} 12 & 23 \\ \cdot \\ \cdot \\ \cdot \end{array} \right) \cdot 1$
$\begin{pmatrix} 11\\ 3 \end{pmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{22}) = L - iL = \sqrt{2} \mathbf{v}^{1}$
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$(32) \\ \sqrt{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left[\begin{array}{c} -1 \\ \cdot \\ 1 \end{array}\right] \cdot \left[\begin{array}{c} 21 \\ 32 \\ x \\ y \\ y \\ z \\ z \\ y \\ z \\ z \\ z \\ z \\ z$
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$		•	$ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\ 2 \end{pmatrix}$	•	•	(31) 1	$\sqrt{\frac{(32)}{\sqrt{\frac{1}{2}}}}$	(32) $\sqrt{\frac{3}{2}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 2\\2 \end{vmatrix} + \begin{vmatrix} 1 1\\3 \end{vmatrix} \right)$
(22		(31) -1	•	$\sqrt{\frac{2}{\sqrt{2}}}$	(1_{2})		$\binom{(22)}{2+1}$	(23)	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 2\\2 \end{vmatrix} + E_{21} \begin{vmatrix} 1 1\\3 \end{vmatrix} + E_{32} \begin{vmatrix} 1 2\\2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 2\\2 \end{vmatrix} \right)$
(23)		•		(31)	(31)	(21)	(32)	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c c} 0 \\ \hline 2 \end{array} \right) + \sqrt{2} \left \begin{array}{c c} 1 \\ \hline 3 \end{array} \right) + \sqrt{\frac{1}{2}} \left \begin{array}{c} 1 \\ \hline 3 \end{array} \right) + \sqrt{\frac{3}{2}} \left \begin{array}{c} 1 \\ \hline 2 \end{array} \right) + 0 \left \begin{array}{c} 1 \\ \hline 3 \end{array} \right) \right)$
$\frac{\sqrt{3}}{L}$	$\left \begin{array}{c} L \\ L \end{array} \right\rangle = $	L + M	(L-M)	$\frac{\sqrt{2}}{(1+1)} \left \begin{array}{c} L \\ L \\ L \\ L \end{array} \right \right\rangle$	Start w	vith top	[2,1]-sta	ate:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \\ \frac{1}{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{1}{2} \\ \frac{3}{2} \end{array} \right) = \frac{\sqrt{3}}{2} \\ \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}$
_ L_	$\begin{vmatrix} M \\ 2 \\ 2 \end{vmatrix} = \sqrt{(}$	(2+2)(2	(-2+1)	$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^{2}D_{M=2}\rangle$	\rangle	Orthogonal (L=1, M=0) state: $\frac{-1}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ -1 \\ 0 \end{vmatrix}$
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$= \frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2}\sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32}\left \frac{1}{2}\right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2D_{M=1}$	\rangle	$L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{(2+0)(2-0+1)} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ -1 \end{vmatrix}$
Or	thogona	ul <i>M=1</i> s	tate: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{vmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle	$\begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$
									$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 12 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 12 \\ 2 \end{vmatrix} \right) + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 12 \\ 3 \end{vmatrix} + \frac{1}{2} E_{32} \begin{vmatrix} 13 \\ 2 \end{vmatrix} \right)$
									$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{1} \frac{ 2 }{ 3 } \right) + \left(0 \frac{ 2 }{ 2 } \right) + \frac{\sqrt{3}}{2} \sqrt{\frac{1}{2}} \frac{ 1 }{ 3 } + \frac{1}{2} \sqrt{\frac{3}{2}} \frac{ 1 }{ 3 } \right)$
									$= \frac{1}{\sqrt{3}} \left(\begin{array}{c} \sqrt{\frac{3}{2}} \\ \boxed{2} \\ \boxed{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \boxed{3} \\ \boxed{3} \end{array} \right) = \frac{1}{\sqrt{2}} \\ \boxed{2} \\ \boxed{3} \\ \boxed{2} \\ \boxed{3} \\ \boxed{2} \\ \boxed{3} \\ $

	∃₌[2,	,1] <i>ta</i>	blea	u states	s lower	red b	$y \mathbf{L}$	=√2($(E_{21}+E_{32})$ (1 · ·)				
				$0 \qquad \qquad M=-1 \qquad M=-2$				$L_{z} \equiv \cdot 0 \cdot = (E_{11}-E_{33}) = \sqrt{2}\mathbf{v}_{0}^{1} \text{ Dipole (k=1)}$					
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot \cdot \cdot -1 \end{array}\right)$ $\left(\begin{array}{ccc} -1 \end{array}\right)$ $\left(\begin{array}{ccc} \cdot -1 \end{array}\right)$ $\left(\begin{array}{ccc} -1 \end{array}\right)$ $\left(\begin{array}{ccc} \cdot -1 \end{array}\right)$ $\left(\begin{array}{ccc} -1 $				
$\begin{pmatrix} 11\\2 \end{bmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$	•		•	$\begin{vmatrix} E_{jk}-matrix \\ Lect.23 \\ L \equiv \sqrt{2} \end{vmatrix} \stackrel{\cdot}{\leftarrow} 1 = \sqrt{2}(E_{12}+E_{22})=L_{12}+iL_{12}=-\sqrt{2}\mathbf{v}_{12}^{1}$				
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1			$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{2}}$	•	(13) -1	•	$\begin{bmatrix} p.\underline{7-16} \\ and \ p.74 \end{bmatrix}^{+} \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \cdot & 12 & 23^{2} & x & y & 1 \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$				
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1		•	$L = \sqrt{2} \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \end{pmatrix} = \sqrt{2} (E_{\alpha} + E_{\alpha}) = L - iL = \sqrt{2} \mathbf{v}^{1}$				
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\begin{bmatrix} -1 \\ \cdot \\ 1 \\ \cdot \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$				
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31)}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$		•		$\sqrt{\frac{23}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$\begin{pmatrix} 13\\ 3 \end{bmatrix}$	•	•	(31) 1	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 2 \\2 \end{vmatrix} \right) + \begin{vmatrix} 1 1 \\3 \end{vmatrix} \right)$				
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$	•	(31) -1	•	$\sqrt{\frac{(21)}{\sqrt{2}}}$				(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + E_{21} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle + E_{32} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + E_{32} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle \right)$				
$\begin{pmatrix} 23\\ 2 \end{pmatrix}$	•	•	•	(31) $\sqrt{\frac{1}{2}}$	$\sqrt{\frac{(31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ 3 \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2$				
$\frac{\sqrt{3}}{L} = \sqrt{(L+M)(L-M+1)} \begin{bmatrix} L \\ M \end{bmatrix} = \sqrt{(L+M)(L-M+1)}$													
<i>L</i> _	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{(}$	(2+2)(2	(-2+1)	$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$\left {}^{2}D_{M=2} \right\rangle$)	Orthogonal (L=1, M=0) state: $\frac{-1}{2} \left \frac{1}{3} \right\rangle + \frac{\sqrt{3}}{2} \left \frac{1}{3} \right\rangle = \left {}^{2}P_{M=0} \right\rangle = \left {}^{1}_{0} \right\rangle$				
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$= \frac{1}{2} L_{-} \Big _{2}^{2}$	$\binom{2}{2} = \frac{1}{2}\sqrt{2}$	$\overline{2}(E_{21} +$	E_{32}) $\left \begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\left \begin{array}{c} 1 \\ \hline 2 \\ \hline 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	$L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{(2+0)(2-0+1)} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ -1 \end{vmatrix}$				
Or	thogona	al <i>M=1</i> s	tate: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$= \left {}^{2}P_{M=1} \right\rangle$	>	$\begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$				
	1	2 P		L	Botto	om [2,1]	-state:		$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right) + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right)$				
		² D			$\begin{vmatrix} 2 \\ -2 \end{vmatrix} =$	$\left \frac{2}{3}\right\rangle =$	$ ^2 D_{M=-2}$	$_{2}\rangle$	$= \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{1} \left \frac{2}{2} \right\rangle \right) + \left(0 \left \frac{2}{3} \right\rangle \right) + \frac{\sqrt{3}}{2} \sqrt{\frac{1}{2}} \left \frac{1}{3} \right\rangle \right) + \frac{1}{2} \sqrt{\frac{3}{2}} \left \frac{1}{3} \right\rangle \right)$				
	Ŧ	Predic 2P 2D 1	ated		Botto	om [3,0]	-state:		$= \frac{1}{2} \left(\frac{3}{22} + \frac{3}{22} + \frac{3}{22} + \frac{1}{22} + \frac{1}{22} + \frac{1}{22} - \frac{1}{22} \right)$				
	- t.	4S	0 1 0 1 5		$\left \begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right\rangle =$	$\begin{vmatrix} 1 \\ 2 \\ 4 \end{vmatrix}$	S_{μ}		$-\sqrt{3}\left(\left \mathbf{N}_{2} \right \right] / \left \mathbf{N}_{2} \right \right] / \left \sqrt{2} \right \left 3 \right / \left \sqrt{2} \right \left 3 \right / \left \mathbf{D}_{M=-1} / \left -1 / \right \right \right $				
	·				10/	3	Orthogonal (L=1, <i>M</i> =0) state: $\frac{-1}{\sqrt{2}} \left \frac{ 2 2 }{ 3 } \right\rangle + \frac{1}{\sqrt{2}} \left \frac{ 1 3 }{ 3 } \right\rangle = \left {}^{2}P_{M=-1} \right\rangle = \left {}^{1}_{-1} \right\rangle$						

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\ell = 1 p =$ shell LS states combined to states of definite J=3/2 at L=0

$$\begin{vmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{1} \\ \mathbf{1}$$

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1 p$ = shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation

 $\ell = 1 p$ = shell LS states combined to states of definite J = 5/2 at L=2

 $\ell = 1$ p=shell LS states combined to states of definite J = 5/2 at L=2

4.25.18 class 26: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (2 D), J=3/2 at L=1 (2 P), J=1/2 at L=1 (2 P) Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\ell = 1$ p=shell LS states combined to states of definite J = 3/2 at L=2

 $\ell = 1 p$ =shell LS states combined to states of definite J = 5/2 at L=2

 $\ell = 1$ p=shell LS states combined to states of definite J = 3/2 at L=2

 $\ell = 1$ p=shell LS states combined to states of definite J = 3/2 at L=2

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation

 $\binom{2}{P_{J=\frac{3}{2}}^{2}} = \frac{p_{M=1}^{L=1}\chi_{+1/2}^{1/2}}{p_{M=1}^{L=1}\chi_{+1/2}^{1/2}} \xrightarrow{\ell=1}{p_{M=1}^{L=1}\chi_{+1/2}^{1/2}} \xrightarrow{p=\text{shell LS states combined to states of definite J = 3/2 at L=1}{Doublet {}^{2}P, J=\frac{3}{2} M_{J}=\frac{3}{2}}$

$$\begin{vmatrix} 2P_{J=\frac{3}{2}} \\ = \begin{vmatrix} p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \\ \sqrt{\frac{1}{2}} \end{vmatrix} = \begin{vmatrix} p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \\ \sqrt{\frac{1}{2}} \end{matrix} = \begin{vmatrix} p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \\ \sqrt{\frac{1}{2}} \end{matrix} = \begin{vmatrix} p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \\ \sqrt{\frac{1}{2}} \end{matrix} = \begin{vmatrix} p_{M$$

1×1/2	2	3/2 +3/2 1	3 +1	3/2 1/2	1/2 +1/2				-1	
	+1 0	-1/2 +1/2	1	1/3 2/3	2/3 -1/3	3 -1	/2 /2	1/2 -1/2		_
L				0 -1	-1/2 +1/2	2	/3 /3	1/3 -2/3	3/2 -3/2	
						ŀ	-1	-1/2	1	

$$\begin{vmatrix} e^{-1} p = \text{shell LS states combined to states of definite J} = 3/2 \text{ at } L = 1 \\ Doublet {}^{2}P, J = \frac{3}{2} M_{J} = \frac{3}{2} \\ = \left\| \left(\sqrt{\frac{1}{2}} \frac{1}{2} \right)^{2} + \sqrt{\sqrt{\frac{1}{2}}} \frac{1}{2} \frac{1}{2} \right)^{1} + \sqrt{\sqrt{\frac{1}{2}}} \frac{1}{2} \frac{1}{3} \right)^{1} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \\ = \sqrt{\frac{1}{3}} \left(\sqrt{\frac{1}{2}} \frac{1}{2} \right)^{2} + \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right)^{1} + \sqrt{\frac{1}{2}} \left(\frac{1}{2} \frac{1}{3} \right)^{1} + \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \right)^{2} + \sqrt{\frac{1}{2}} \left(\frac{1}{2} \frac{1}{3} \right)^{2} + \sqrt{\frac{1}{2}} \frac{1}{2} \right)^{2} + \sqrt{\frac{1}{2}} \left(\frac{1}{2} \frac{1}{3} \right)^{2} + \sqrt{\frac{$$

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation

Application to spin-orbit and entanglement break-up scattering

$$\begin{aligned} & \left| \begin{array}{c} 2P_{J_{-\frac{3}{2}}} \frac{3}{2} \right\rangle = \left| \begin{array}{c} p_{M=1}^{t=1} \mathcal{X}_{+1/2}^{t/2} \\ \text{Doublet }^{2}P, \text{ J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=1/2 \\ \end{array} \right| \\ & \left| \begin{array}{c} \sqrt{\frac{3}{2}} \frac{1}{2} \\ \sqrt{\frac{3}{2}} \frac{1}{2} \\ \frac{1}{2} \\$$

$$\begin{aligned} & \left| \begin{array}{c} {}^{2}P_{J_{-\frac{3}{2}}} \frac{3}{2}}{2} \right| = \left| \begin{array}{c} p^{I_{-1}} X^{1/2}_{1/2} \right\rangle & \text{Doublet } {}^{2}P, J_{-\frac{3}{2}} M_{J} = \frac{3}{2} \\ & = \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \\ & = \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \\ & = \sqrt{\frac{1}{3}} \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \\ & = \sqrt{\frac{1}{3}} \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \frac{1}{2} \\ & = \sqrt{\frac{1}{3}} \left[\sqrt{\frac{1}{2}} \frac{1}{2} \right] \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \\ & = \sqrt{\frac{1}{3}} \left[\sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \sqrt{\frac{1}{3}} \frac{1}{3} \frac{1}{2} \right] + \sqrt{\frac{1}{3}} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{2} \\ & = \sqrt{\frac{1}{3}} \left[\sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \sqrt{\frac{1}{3}} \frac{1}{3} \frac{1}{2} \frac{1}{2} \right] - \sqrt{\frac{1}{3}} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{$$

4.25.18 class 26: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow)on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number(s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

The simplest assembly:

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly (Detailed) $\ell=1$ *p*=shell LSI states transformed to Slater determinants from

 $\ell = 1 p$ =shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Application to spin-orbit and entanglement break-up scattering

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow$

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow$

The simplest assembly:

3

3

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow)on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number(s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

 $\frac{1\uparrow 3}{2\uparrow C} (-)\sqrt{\frac{2-0}{3}} \\ \mu_1=2, \mu_2=1$

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

Note change in assembly matrix for <u>two</u> spin down...

Note change in assembly matrix for <u>two</u> spin down...

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\sim \ell = 1 p = \text{shell LSJ states transformed to Slater determinants from J=3/2 (4S)$ Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\ell = 1 p$ =shell LSJ states transformed to Slater determinants fromJ= 3/2 at L=0

Slater determinant state key: $a=1\uparrow, b=1\downarrow, c=2\uparrow, d=2\downarrow, e=3\uparrow, f=3\downarrow$

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\sim \ell = 1 p = \text{shell LSJ states transformed to Slater determinants from J=3/2 (4S)$ Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\ell = 1 p$ = shell LSJ states transformed to Slater determinants from J= 3/2 at L=0

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow,e=3\uparrow,f=3\downarrow$
$\ell = 1 p$ = shell LSJ states transformed to Slater determinants from J= 3/2 at L=0

Slater determinant state key: $a=1\uparrow, b=1\downarrow, c=2\uparrow, d=2\downarrow, e=3\uparrow, f=3\downarrow$

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

$\ell = 1 p = $ shell LSJ states tr	ansformed to	o Slater determi	nants	from J=5/2	2 at L=	=2
$\begin{vmatrix} {}^{4}S_{J=\frac{3}{2}} \\ {}^{3}S_{J=\frac{3}{2}} \end{vmatrix} = \begin{vmatrix} a \\ c \\ e \end{vmatrix}, \begin{vmatrix} {}^{4}S_{J=\frac{3}{2}} \\ {}^{1}S_{J=\frac{3}{2}} \end{vmatrix} = \begin{vmatrix} a \\ c \\ f \end{vmatrix}$	$\left\rangle, \left {}^{4}S_{J=\frac{3}{2}} {}^{\frac{-1}{2}} \right\rangle = \right $	$ \begin{vmatrix} a \\ d \\ f \end{vmatrix} \right), \begin{vmatrix} 4 S_{J=\frac{3}{2}} \\ -\frac{3}{2} \end{vmatrix} = $	$\left. \begin{array}{c} b \\ d \\ f \end{array} \right\rangle$	quartet ⁴ S J= $\frac{3}{2}$, M _J = $\frac{+3}{2}$, $\frac{+1}{2}$, $\frac{-1}{2}$, $\frac{-3}{2}$.	M _J =5/2	2,.
${}^{2}D_{J=\frac{5}{2}}\left \frac{5}{2}\right = \left \frac{d_{M=2}^{L=2}\chi_{1/2}^{1/2}}{M_{M=2}}\right = \frac{5}{2}M_{J}=\frac{5}{2}$, Doublet ${}^{2}D$, $J=\frac{5}{2}M_{J}=\frac{5}{2}$,		$2 \times 1/2 \begin{array}{c} 5/2 \\ +5/2 \\ +2 \\ +2 \\ +1/2 \end{array}$	5/2 3/2 3/2 +3/2 1/5 4/5 4/5 -1/5 + +1 -1/2 0 +1/2	$ \begin{array}{c} 5/2 & 3/2 \\ 1/2 & +1/2 \\ 2/5 & 3/5 & 5/2 & 3/2 \\ 3/5 & -2/5 & -1/2 & -1/2 \\ 0 & -1/2 & 3/5 & 2/5 \\ -1 & +1/2 & 2/5 & -3/5 \\ \hline & -1 & -1/2 \\ -2 & +1/2 \\ \end{array} $	5/2 3/2 -3/2 -3/2 4/5 1/5 1/5 -4/5 -2 -1/2	5/2 -5/2 1

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow,e=3\uparrow,f=3\downarrow$

Slater determinant state key: $a=1\uparrow, b=1\downarrow, c=2\uparrow, d=2\downarrow, e=3\uparrow, f=3\downarrow$

Slater determinant state key: $a=1\uparrow, b=1\downarrow, c=2\uparrow, d=2\downarrow, e=3\uparrow, f=3\downarrow$

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, I=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 at L=2

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=5/2 at L=2 $\begin{vmatrix} {}^{4}S_{J=\frac{3}{2}} \\ {}^{3}E_{J=\frac{3}{2}} \\ {}^{3}E_{J=\frac{3}{2}} \\ {}^{2}E_{J=\frac{3}{2}} \\ {}^{2}E_{J=\frac{3}{2}$ $\begin{vmatrix} {}^{2}D_{J=\frac{5}{2}}\frac{5}{2} \end{vmatrix} = \begin{vmatrix} d_{M=2}^{L=2}\chi_{1/2}^{1/2} \rangle \quad \text{Doublet } {}^{2}D, \ J=\frac{5}{2} \ M_{J}=\frac{5}{2} \ , \\ \hline 1 1 1 \uparrow \uparrow \rangle \quad = \begin{matrix} \mathcal{A} \\ \mathcal{A}$ 2×1/2 5/2 +5/2 5/2 3/2 +2 +1/2 +3/2 +3/2 4/5 5/2 3/2 -1/5 +1/2 +1/2 +2 -1/2 1/5 +1 +1/2 4/5 +1-1/2 2/5 3/5 5/2 3/2 3/5 -2/5 -1/20 + 1/2-1/20 - 1/25/2 3/2 -3/2 -3/2 3/5 2/5 -1 + 1/22/5 -3/5 -1/2 4/5 1/5 5/2 $\left| {}^{2}D_{J=\frac{5}{2}} \frac{3}{2} \right\rangle = \sqrt{\frac{1}{5}} \left| d_{M=2}^{L=2} \chi_{-1/2}^{1/2} \right\rangle + \sqrt{\frac{4}{5}} \left| d_{M=1}^{L=2} \chi_{1/2}^{1/2} \right\rangle \text{ Doublet } {}^{2}D, \text{ J} = \frac{5}{2} \text{ M}_{J} = \frac{3}{2}$ -2 +1/2 1/5 -4/5 -2 - 1/2 $=\sqrt{\frac{1}{5}} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1}{$ $\begin{array}{c|c} |1\uparrow & 1\downarrow \\ \hline 2\downarrow & (+)\sqrt{\frac{2-1}{2-1}} \\ \mu_1=2, \mu_2=1 \end{array} \begin{array}{c} |1\uparrow & 1\downarrow \\ \hline E \\ \mu_1=1, \mu_2=1 \end{array} (+)\sqrt{1} \\ \hline E \\ \mu_1=1, \mu_2=1 \end{array}$ $=(+) \begin{vmatrix} 1\uparrow & a \\ 1\downarrow & =b \\ 2\downarrow & d \end{vmatrix}$

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=5/2 at L=2 $\begin{vmatrix} {}^{4}S_{J=\frac{3}{2}} \\ {}^{3}E_{J=\frac{3}{2}} \\ {}^{2}e_{J=\frac{3}{2}} \\ {}^{2}e_{J=\frac{3}{2}$ $\begin{vmatrix} {}^{2}D_{J=\frac{5}{2}}\frac{5}{2} \end{vmatrix} = \begin{vmatrix} d_{M=2}^{L=2}\chi_{1/2}^{1/2} \rangle \quad \text{Doublet } {}^{2}D, \ J=\frac{5}{2} \ M_{J}=\frac{5}{2} \ , \\ \hline 1 1 1 \uparrow \uparrow \rangle \quad = \begin{matrix} \mathcal{A} \\ \mathcal{A}$ 2×1/2 5/2 +5/2 5/2 3/2 +2 +1/2 +3/2 +3/2 4/5 5/2 3/2 -1/5 +1/2 +1/2 +2 -1/2 1/5 +1 +1/2 4/5 +1-1/2 3/5 2/5 5/2 3/2 3/5 -2/5 -1/20 + 1/2-1/23/5 2/5 5/2 3/2 2/5 -3/5 -3/2 -3/2 0 - 1/2-1 + 1/2-1/2 4/5 1/5 5/2 $\left| {}^{2}D_{J=\frac{5}{2}} \frac{3}{2} \right\rangle = \sqrt{\frac{1}{5}} \left| d_{M=2}^{L=2} \chi_{-1/2}^{1/2} \right\rangle + \sqrt{\frac{4}{5}} \left| d_{M=1}^{L=2} \chi_{1/2}^{1/2} \right\rangle \text{ Doublet } {}^{2}D, \text{ } \underline{J=\frac{5}{2}} \text{ } M_{J} = \frac{3}{2}$ -2 +1/2 1/5 - 4/5-2 - 1/2 $=\sqrt{\frac{1}{5}} \left[\frac{1}{2} \right] \left[\frac{1}{2} \left[\frac{$ $\begin{array}{c} 1\uparrow 2\uparrow \\ 2\downarrow \\ \\ \mu_1=2, \\ \mu_2=1 \end{array}$ $\begin{array}{c|c} |1\uparrow & |\downarrow\rangle \\ \hline 2\downarrow & (+)\sqrt{\frac{2-1}{2-1}} \\ \mu_1=2, \mu_2=1 \end{array} \begin{array}{c} |1\uparrow & 1\downarrow\rangle \\ \hline E \\ \mu_1=1, \mu_2=1 \end{array}$ $=(+) \begin{array}{c|c} |1\uparrow & a \\ \hline 1\downarrow & =b \\ \hline 2\downarrow & d \end{array}$ $=(-)\begin{bmatrix} 1\uparrow & a\\ 2\uparrow & =-c \end{bmatrix}$

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=5/2 at L=2 $\begin{vmatrix} {}^{4}S_{J=\frac{3}{2}} \\ {}^{3}E_{J=\frac{3}{2}} \\ {}^{2}e_{J=\frac{3}{2}} \\ {}^{2}e_{J=\frac{3}{2}$ $\begin{vmatrix} {}^{2}D_{J=\frac{5}{2}}\frac{5}{2} \end{vmatrix} = \begin{vmatrix} d_{M=2}^{L=2}\chi_{1/2}^{1/2} \rangle \quad \text{Doublet } {}^{2}D, \ J=\frac{5}{2} \ M_{J}=\frac{5}{2} \ , \\ = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \stackrel{\uparrow\uparrow}{\longrightarrow} \rangle = \begin{vmatrix} a \\ b \\ a \end{vmatrix}$ 2×1/2 5/2 +5/2 5/2 4/5 5/2 3/2 -1/5 +1/2 +1/2 +2 -1/2 1/5 +1 +1/2 4/5 +1-1/2 3/5 2/5 5/2 3/2 0 + 1/23/5 -2/5 -1/20 - 1/25/2 3/2 -3/2 -3/2 3/5 2/5 -1 + 1/22/5 -3/5 -1/24/5 1/5 5/2 $\left| {}^{2}D_{J=\frac{5}{2}} \frac{3}{2} \right\rangle = \sqrt{\frac{1}{5}} \left| d_{M=2}^{L=2} \chi_{-1/2}^{1/2} \right\rangle + \sqrt{\frac{4}{5}} \left| d_{M=1}^{L=2} \chi_{1/2}^{1/2} \right\rangle \text{ Doublet } {}^{2}D, \text{ } \underline{J=\frac{5}{2}} \text{ } M_{J} = \frac{3}{2}$ 2 +1/2 1/5 -4/5 -2 - 1/2 $=\sqrt{\frac{1}{5}} \left[\frac{1}{2} \right] \left[$ $\begin{array}{c|c} \hline 1\uparrow 1\downarrow \\ \hline 2\downarrow \\ \hline \\ \mu_1=2, \mu_2=1 \end{array} \begin{array}{c} \hline 1\uparrow 1\downarrow \\ \hline \\ \mu_1=1, \mu_2=1 \end{array} \begin{array}{c} (+)\sqrt{1} \\ \hline \\ \mu_1=1, \mu_2=1 \end{array} \begin{array}{c} \hline 1\uparrow 2\uparrow \\ \hline \\ \mu_1=2, \mu_2=1 \end{array} \begin{array}{c} \hline \\ \mu_1=2, \mu_2=1 \end{array}$ $\begin{array}{c} 1\uparrow 1\downarrow \\ 3\uparrow 0 \\ \mu_1=2, \mu_2=1 \end{array} \begin{array}{c} 1\uparrow 1\downarrow \\ 1\uparrow 1\downarrow \\ \mu_1=1, \mu_2=1 \end{array} \begin{array}{c} (+)\sqrt{1} \\ \mu_1=1, \mu_2=1 \\ \mu_1=1, \mu_2=1 \end{array}$ $=(+) \begin{array}{c|c} 1\uparrow & a\\ \hline 1\downarrow & =b\\ \hline 3\uparrow & e \end{array}$ $=(+) \begin{array}{|c|} 1\uparrow & a \\ \hline 1\downarrow & =b \\ \hline 2\downarrow & d \end{array}$ $=(-)\begin{vmatrix} |1\uparrow | & a \\ |2\uparrow | & =-c \end{vmatrix}$

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 at L=2

 $\ell = 1 p$ =shell LSJ states transformed to Slater determinants from J=3/2 at L=2

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\begin{pmatrix} e = 1 \ p = \text{shell LSJ states transformed to Slater determinants from J = 3/2 \text{ at L} = 1 \\ P_{J=\frac{3}{2}}^{2} \end{pmatrix} = \underbrace{p_{M=1}^{L=1} \chi_{+1/2}^{1/2}}_{\text{Doublet }^{2}P, \ J=\frac{3}{2} M_{J}=\frac{3}{2}}_{\text{Doublet }^{2}P, \ J=\frac{3}{2} M_{J}=\frac{3}{2}}$

2/3

1/3

0 - 1/2

+1/2

1/3

-2/3

$\ell=1$ p=shell LSJ states transformed to Slater deter	rminants from J=3/2 at L=1
$\left {}^{2}P_{J=\frac{3}{2}} \right\rangle = \left p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \right\rangle$ Doublet ${}^{2}P, J=\frac{3}{2} M_{J}=\frac{3}{2}$	$M_{J}=1/2$
$= \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \stackrel{\uparrow}{\downarrow} -\sqrt{\frac{1}{2}} \frac{1}{3} \stackrel{\uparrow}{\downarrow}$	
$= -\sqrt{\frac{1}{2}} \begin{array}{c} a \\ c \\ d \end{array} \qquad - \sqrt{\frac{1}{2}} \begin{array}{c} b \\ e \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \left {}^{2}P_{J=\frac{3}{2}} \right = \sqrt{\frac{1}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right + \sqrt{\frac{2}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$= \sqrt{\frac{1}{3}} \begin{bmatrix} \sqrt{\frac{1}{2}} & \frac{1}{2} \\ \sqrt{\frac{1}{2}} & \frac{1}{2} \end{bmatrix} \stackrel{\uparrow}{\downarrow} - \sqrt{\frac{1}{2}} \begin{bmatrix} 1 & \uparrow \\ 3 \end{bmatrix} \stackrel{\uparrow}{\downarrow} \end{bmatrix} \stackrel{\downarrow}{\downarrow} + \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{2} & \uparrow \uparrow \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} \stackrel{\uparrow}{\downarrow} + \frac{\sqrt{3}}{2} \begin{bmatrix} 1 & 3 & \uparrow \uparrow \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} \stackrel{\uparrow}{\downarrow} \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$=\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \qquad \qquad \uparrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \qquad \downarrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix} \qquad \downarrow \uparrow \uparrow \qquad +\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix} \qquad \downarrow \uparrow \uparrow$	

$\ell=1$ p=shell LSJ states transformed to Slater determin	ants	from J	5=3/2	at L=1
$\left {}^{2}P_{J=\frac{3}{2}} {}^{\frac{3}{2}} \right\rangle = \left p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \right\rangle$ Doublet ${}^{2}P, J=\frac{3}{2}$ M _J = $\frac{3}{2}$			N	/[]/2
$= \sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \stackrel{\uparrow}{\downarrow} = -\sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \stackrel{\uparrow}{\downarrow}$				
$= -\sqrt{\frac{1}{2}} \begin{array}{c} a \\ c \\ d \end{array} - \sqrt{\frac{1}{2}} \begin{array}{c} b \\ e \end{array}$	1/2 1 +1/2	3/2 +3/2 3/2 1 +1/2	1/2 +1/2	
$ \left {}^{2}P_{J_{3}} \frac{1}{2} \right\rangle = \sqrt{\frac{1}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right\rangle + \sqrt{\frac{2}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right\rangle $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$	+1 -	-1/2 1/3 +1/2 2/3	2/3 3/2 -1/3 -1/2	1/2 -1/2
$= \sqrt{\frac{1}{3}} \begin{bmatrix} \sqrt{\frac{1}{2}} & 1 & 2 \\ \sqrt{\frac{1}{2}} & 1 & 2 \\ 2 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} & 1 & 1 \\ 3 & \sqrt{\frac{1}{2}} & 1 & \sqrt{\frac{1}{2}} \end{bmatrix} + \sqrt{\frac{2}{3}} \begin{bmatrix} -\frac{1}{2} & 1 & 2 \\ -\frac{1}{2} & 3 & \sqrt{\frac{1}{2}} \\ 3 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} & \frac{1}{3} & \sqrt{\frac{1}{2}} \\ 2 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ 2 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ 2 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ 2 & \sqrt{\frac{1}{2}} $		0	-1/2 2/3 +1/2 1/3	1/3 3/2 -2/3 -3/2 -1/2 1
$= \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \stackrel{\uparrow \downarrow}{\downarrow} - \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \stackrel{\uparrow \downarrow}{\downarrow} - \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \stackrel{\uparrow \downarrow}{\downarrow} - \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix} \stackrel{\uparrow \uparrow}{\downarrow} + \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix} \stackrel{\uparrow \uparrow}{\downarrow} \stackrel{\uparrow \uparrow}{\downarrow}$				
$= -\sqrt{\frac{1}{6}} \begin{array}{c} c \\ d \end{array} - \sqrt{\frac{1}{6}} \begin{array}{c} d \\ f \end{array} - \sqrt{\frac{1}{6}} \begin{array}{c} b \\ \frac{1}{\sqrt{2}} \end{array} - \sqrt{\frac{1}{6}} \begin{array}{c} a \\ \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \begin{array}{c} c \\ e \end{array} - \frac{1}{\sqrt{2}} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \bigg(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \bigg(\frac{1}{\sqrt{2}} \bigg(\frac{1}{\sqrt{2}} \end{array} - \frac{1}{\sqrt{2}} \bigg(\frac{1}{\sqrt{2}} \bigg(\frac{1}{$				
		$\begin{array}{c}1 \\ 3\end{array} \begin{array}{c}\uparrow\uparrow\\\downarrow\end{array}$	$\begin{array}{c}1 \\ 3 \\ 2\end{array} \begin{array}{c}\uparrow\uparrow\\\downarrow\end{array}$	$ \begin{array}{c} 1\\ 2\\ 3 \end{array} \uparrow \uparrow \downarrow $
	$\begin{array}{c} a \\ c \\ f \\ \hline d \\ d \\$	0	$\frac{-2}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
	$egin{array}{c} 1 \ d \ 2 \downarrow \ e \ 3 \uparrow \end{array}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
	$\begin{array}{c c} b & 1 \\ c & 2 \\ e & 3 \\ \end{array}$	$\frac{-1}{\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$

$\ell=1$ p=shell LSJ states transformed to Slater determin	ants fro	m J = 3/2	at L=1
$\left {}^{2}P_{J=\frac{3}{2}} {}^{\frac{3}{2}} \right\rangle = \left p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \right\rangle$ Doublet ${}^{2}P, J=\frac{3}{2} M_{J}=\frac{3}{2}$			$M_{J}=1/2$
$= \sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 2 & \uparrow \uparrow \\ 2 & \downarrow \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 1 & \uparrow \uparrow \\ 3 & \downarrow \end{pmatrix}$			
$= -\sqrt{\frac{1}{2}} \begin{array}{c} a \\ c \\ d \end{array} - \sqrt{\frac{1}{2}} \begin{array}{c} b \\ e \end{array}$	$\begin{array}{c c} 1/2 & 3/2 \\ +3/2 \\ 1 & +1/2 & 1 \end{array}$	3/2 1/2 +1/2 +1/2	
$ \left {}^{2}P_{J_{3}} \frac{1}{2} \right\rangle = \sqrt{\frac{1}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right\rangle + \sqrt{\frac{2}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right\rangle $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$	+1 - 1/2 0 + 1/2	1/3 2/3 3/ 2/3 -1/3 -1/	2 1/2 2 -1/2
$= \sqrt{\frac{1}{3}} \begin{bmatrix} J = \frac{1}{2} & J = \frac{1}{2} &$		0 -1/2 2/ -1 +1/2 1/	3 1/3 3/2 3-2/3 -3/2 1-1/2 1
$=\sqrt{\frac{1}{6}} \begin{array}{c} 1 \\ 2 \end{array} \qquad \qquad \uparrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{array}{c} 1 \\ 3 \end{array} \qquad \downarrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{array}{c} 1 \\ 3 \end{array} \qquad \downarrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{array}{c} 1 \\ 3 \end{array} \qquad \downarrow \uparrow \qquad +\frac{1}{\sqrt{2}} \begin{array}{c} 1 \\ 2 \end{array} \qquad \downarrow \uparrow \qquad \downarrow \downarrow \qquad \downarrow \downarrow \qquad \downarrow \downarrow$			
$= -\sqrt{\frac{1}{6}} \begin{array}{c} c \\ d \end{array} \qquad -\sqrt{\frac{1}{6}} \begin{array}{c} b \\ b \\ f \end{array} \qquad -\sqrt{\frac{1}{6}} \begin{array}{c} a \\ \frac{1}{\sqrt{2}} \end{array} \qquad -\sqrt{\frac{1}{6}} \begin{array}{c} a \\ \frac{1}{\sqrt{2}} \end{array} \begin{array}{c} a \\ -\frac{1}{\sqrt{2}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} \begin{array}{c} -\frac{1}{\sqrt{2}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} \begin{array}{c} -\frac{1}{\sqrt{2}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{2}} \end{array} \begin{array}{c} -\frac{1}{\sqrt{2}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{6}} \end{array} \begin{array}{c} -\frac{1}{\sqrt{6}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{6}} \end{array} \end{array} \begin{array}{c} -\frac{1}{\sqrt{6}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{6}} \end{array} \end{array} \begin{array}{c} -\frac{1}{\sqrt{6}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{6}} \end{array} \end{array} \begin{array}{c} -\frac{1}{\sqrt{6}} \end{array} \begin{array}{c} c \\ \frac{1}{\sqrt{6}} \end{array} \end{array} \begin{array}{c} -\frac{1}{\sqrt{6}} \end{array} \end{array} \begin{array}{c} -\frac{1}{\sqrt{6}} \end{array} \end{array} \begin{array}{c} -\frac{1}{\sqrt{6}} \end{array} \end{array} $ \end{array}			
$= -\sqrt{\frac{1}{6}} \begin{array}{c} b \\ c \\ d \end{array} - \sqrt{\frac{1}{6}} \begin{array}{c} b \\ b \\ \frac{1}{\sqrt{3}} \begin{array}{c} c \\ e \end{array} - \frac{1}{\sqrt{3}} \begin{array}{c} c \\ \frac{1}{\sqrt{3}} \begin{array}{c} c \\ e \end{array} - \frac{1}{\sqrt{3}} \begin{array}{c} c \\ f \end{array}$	1 2 3	$ \begin{array}{c} \uparrow \uparrow \\ \downarrow \end{array} \begin{array}{c} 1 \\ 2 \end{array} \begin{array}{c} \uparrow \uparrow \\ \downarrow \end{array} $	$\begin{array}{c}1\\2\\3\end{array}\uparrow\uparrow\downarrow$
	$\begin{array}{c} a & 1 \\ c & 2 \\ f & 3 \end{array}$	$0 \qquad \frac{-2}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
	$\begin{array}{c c} a & 1 \\ d & 2 \\ e & 3 \\ \hline \end{array}$	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
	$ \begin{array}{c c} b & 1 \downarrow \\ c & 2 \uparrow \\ e & 3 \uparrow \end{array} $	$\frac{-1}{\sqrt{2}}$ $\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$

	$\begin{array}{c}1 \\ 3\end{array} \begin{array}{c}\uparrow\uparrow\\\downarrow\end{array}$	$\begin{array}{c}1 \\ 3 \\ 2\end{array} \begin{array}{c}\uparrow\uparrow\\\downarrow\end{array}$	$\begin{array}{c}1\\2\\3\end{array} \uparrow \uparrow \downarrow$
$\begin{array}{c} a \\ c \\ f \\ s \\ \end{array}$	0	$\frac{-2}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
$\begin{array}{c} a & 1^{\uparrow} \\ d & 2^{\downarrow} \\ e & 3^{\uparrow} \end{array}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
$ \begin{array}{c c} b & 1 \downarrow \\ c & 2 \uparrow \\ e & 3 \uparrow \end{array} $	$\frac{-1}{\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (2D) Slater functions for J=3/2 (²P), \blacksquare J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

$\ell = 1 p =$ shell LSJ states transformed to Slater det	erminants from J=1/2 at L=1
$\left {}^{2}P_{J=\frac{3}{2}} {}^{\frac{3}{2}} \right\rangle = \left p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \right\rangle$ Doublet ${}^{2}P, J=\frac{3}{2}$ M _J = $\frac{3}{2}$	$M_J = 1/2$
$= \sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \stackrel{\uparrow\uparrow}{\downarrow} -\sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \stackrel{\uparrow\uparrow}{\downarrow}$	
$= -\sqrt{\frac{1}{2}} \begin{array}{c} a \\ c \\ d \end{array} \qquad - \sqrt{\frac{1}{2}} \begin{array}{c} b \\ b \\ e \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \left {}^{2}P_{\mu-\frac{3}{2}} \right = \sqrt{\frac{1}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right + \sqrt{\frac{2}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$= \sqrt{\frac{1}{6}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \qquad \uparrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \uparrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \uparrow \uparrow \qquad -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \uparrow \uparrow \qquad +\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \uparrow \uparrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$= -\sqrt{\frac{1}{6}} \begin{array}{c} b \\ c \\ d \end{array} - \sqrt{\frac{1}{6}} \begin{array}{c} b \\ b \\ f \end{array} \qquad \qquad \begin{array}{c} b \\ \frac{1}{\sqrt{3}} \begin{array}{c} c \\ e \end{array} - \frac{1}{\sqrt{3}} \begin{array}{c} c \\ f \end{array} \qquad \qquad \begin{array}{c} a \\ \frac{1}{\sqrt{3}} \begin{array}{c} c \\ e \end{array} - \frac{1}{\sqrt{3}} \begin{array}{c} c \\ f \end{array} \qquad \qquad \begin{array}{c} \end{array}$	
$ \left {}^{2}P_{M=1} \frac{1}{2} \right = \sqrt{\frac{2}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right - \sqrt{\frac{1}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right $ Doublet ² <i>P</i> , J= $\frac{1}{2}$ M _J = $\frac{1}{2}$	
$= \sqrt{\frac{2}{3}} \left[\sqrt{\frac{1}{2}} \left[\frac{1}{2} \right] \left$	
$=\sqrt{\frac{1}{3}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \qquad \qquad$	

$\ell = 1 p = $ shell LSJ state	es transformed to Sla	ter determinants from J=1/2 at L=1
$\left {}^{2}P_{J=\frac{3}{2}} {}^{\frac{3}{2}} \right\rangle = \left p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \right\rangle$ Doublet ${}^{2}P$, J=	$=\frac{3}{2} M_{\rm J} = \frac{3}{2}$	$M_J = 1/2$
$= \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \stackrel{\uparrow\uparrow}{\downarrow} -\sqrt{\frac{1}{2}} \frac{1}{3}$	$] \uparrow \uparrow \downarrow$	
$= -\sqrt{\frac{1}{2}} \begin{array}{c} a \\ c \\ d \end{array} \begin{array}{c} a \\ -\sqrt{\frac{1}{2}} \begin{array}{c} b \\ e \end{array} \end{array}$		$1 \times 1/2 \xrightarrow[+3/2]{3/2} \xrightarrow{3/2} \xrightarrow{1/2} \\ +1 + 1/2 \xrightarrow{1} + 1/2 \xrightarrow{1/2} + \frac{1}{2}$
$ \left {}^{2}P_{J=\frac{3}{2}\frac{1}{2}} \right\rangle = \sqrt{\frac{1}{3}} p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \rangle + \sqrt{\frac{2}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \rangle $	Doublet ² <i>P</i> , $J=\frac{3}{2}$ $M_J=\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$=\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \qquad \qquad \uparrow \downarrow \qquad -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \downarrow$	$-\sqrt{\frac{1}{6}} \begin{array}{c} 1 \\ 3 \end{array} \begin{array}{c} \uparrow \uparrow \\ \downarrow \end{array} + \frac{1}{\sqrt{2}} \begin{array}{c} 1 \\ 2 \end{array} \begin{array}{c} \uparrow \\ \downarrow \end{array} \begin{array}{c} \uparrow \\ \downarrow \end{array}$	$\begin{array}{c cccc} -1 + 1/2 & 1/3 - 2/3 - 3/2 \\ \hline -1 - 1/2 & 1 \end{array}$
$= -\sqrt{\frac{1}{6}} \begin{array}{c} b \\ c \\ d \end{array} \begin{array}{c} -\sqrt{\frac{1}{6}} \\ f \end{array} \begin{array}{c} a \\ b \\ f \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \left {}^{2}P_{J=\frac{1}{2}} \right = \sqrt{\frac{2}{3}} p_{M=1}^{L=1} \chi_{-1/2}^{1/2} - \sqrt{\frac{1}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} $	Doublet ² P , J= $\frac{1}{2}$ M _J = $\frac{1}{2}$	
$= \sqrt{\frac{1}{3}} \begin{array}{c} 1 \\ 2 \end{array} \qquad \qquad \uparrow \downarrow \qquad -\sqrt{\frac{1}{3}} \begin{array}{c} 1 \\ 3 \end{array} \qquad \qquad \downarrow \downarrow \qquad \downarrow \downarrow$	$+\sqrt{\frac{1}{12}} \begin{array}{c} 1 \\ 3 \end{array} \begin{array}{c} \uparrow \uparrow \\ \downarrow \end{array} \begin{array}{c} -\frac{1}{2} \\ 2 \end{array} \begin{array}{c} \uparrow \uparrow \\ \downarrow \end{array} \begin{array}{c} \uparrow \uparrow \\ \downarrow \end{array}$	
$= -\sqrt{\frac{1}{3}} \begin{array}{c} b \\ c \\ d \end{array} \begin{array}{c} -\sqrt{\frac{1}{3}} \\ f \end{array} \begin{array}{c} a \\ b \\ f \end{array}$	$ \begin{array}{ccccccc} b & a \\ -\frac{1}{\sqrt{6}} c & \frac{1}{\sqrt{6}} c \\ e & f \end{array} $	

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\ell = 1 p^3 =$ spin-orbit levels and Slater states

= 6+10+4

4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

 $\ell = 1 p^3 =$ spin-orbit levels and Slater states

 $\ell = 1 p^3 =$ configuration spin-orbit Hamiltonian in Slater determinant basis

AMOP reference links on pages 2-4 4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

$\ell = 1 p^3 =$ configuration spin-orbit Hamiltonian in Slater determinant basis

$$U(6) \text{ bases: } \left\{ \left| a \right\rangle \equiv \left| 1 \uparrow \right\rangle, \left| b \right\rangle \equiv \left| 1 \downarrow \right\rangle, \left| c \right\rangle \equiv \left| 2 \uparrow \right\rangle, \left| d \right\rangle \equiv \left| 2 \downarrow \right\rangle, \left| e \right\rangle \equiv \left| 3 \uparrow \right\rangle, \left| f \right\rangle \equiv \left| 3 \downarrow \right\rangle \right\}$$

U(6) tensors of rank-1 (Axial orbit momentum *l*-vector and spin momentum s-vector) Lect.24 <u>*p.16*</u>

$\ell = 1 p^3 =$ configuration spin-orbit Hamiltonian in Slater determinant basis

$$U(6) \text{ bases: } \left\{ \left| a \right\rangle \equiv \left| 1 \uparrow \right\rangle, \left| b \right\rangle \equiv \left| 1 \downarrow \right\rangle, \left| c \right\rangle \equiv \left| 2 \uparrow \right\rangle, \left| d \right\rangle \equiv \left| 2 \downarrow \right\rangle, \left| e \right\rangle \equiv \left| 3 \uparrow \right\rangle, \left| f \right\rangle \equiv \left| 3 \downarrow \right\rangle \right\}$$

U(6) tensors of rank-1 (Axial orbit momentum *l*-vector and spin momentum s-vector) Lect.24 <u>*p.16*</u>

$\ell = 1 p^3 =$ configuration spin-orbit Hamiltonian in Slater determinant basis

$$U(6) \text{ bases: } \left\{ \left| a \right\rangle \equiv \left| 1 \uparrow \right\rangle, \left| b \right\rangle \equiv \left| 1 \downarrow \right\rangle, \left| c \right\rangle \equiv \left| 2 \uparrow \right\rangle, \left| d \right\rangle \equiv \left| 2 \downarrow \right\rangle, \left| e \right\rangle \equiv \left| 3 \uparrow \right\rangle, \left| f \right\rangle \equiv \left| 3 \downarrow \right\rangle \right\}$$

U(6) tensors of rank-1 (Axial orbit momentum *l*-vector and spin momentum s-vector) Lect.24 <u>*p.16*</u>

Spin-Orbit Hamiltonian:

Hamiltonian:

$$H_{spin-orbit} = \xi \sum_{\alpha=1}^{n} \vec{\ell}(electron\alpha) \cdot \vec{s}(electron\alpha)$$

$$= \xi (V_{00}^{11} - V_{11}^{11} - V_{11}^{11}) = \xi \Big[\frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) + \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{bc} + E_{de}) \Big]$$

AMOP reference links on pages 2-4 4.25.18 class 26: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states to mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S), J=5/2 at L=2 (2D) C-G coupling; J=3/2 at L=2 (²D), J=3/2 at L=1 (²P), J=1/2 at L=1 (²P) Spin-orbit state assembly formula and Slater determinants Extra assembly table $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) Slater functions for J=5/2, J=3/2 (²D) Slater functions for J=3/2 (²P), J=1/2 (²P) Summary of states and level connection paths Symmetry dimension accounting Spin-orbit Hamiltonian matrix calculation Individual matrix components Application to spin-orbit and entanglement break-up scattering

Calculating p^3 spin-orbit Hamiltonian matrix for J=3/2 $\left\langle {}^2P_{J=\frac{3}{2}} \right\rangle \left\langle {}^4S_{J=\frac{3}{2}} \right\rangle$ $H_{s-o} = \xi \left[\frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) + \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \right]$

 $-\sqrt{\frac{1}{2}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \begin{pmatrix} {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} \\ \frac{1}{2} \frac{H_{s-0}}{\xi} \\ \frac{1}{2} \frac{3}{2} \frac{3}{2} \end{pmatrix} = \begin{vmatrix} a \\ c \\ e \end{pmatrix}$

$$\begin{aligned} \text{Calculating } p^{3} \text{ spin-orbit Hamiltonian matrix for J=3/2} & \left\langle {}^{2}P_{J=\frac{3}{2}} \right| H_{so} \right| {}^{4}S_{J=\frac{3}{2}} \right\rangle \\ H_{s-o} &= \xi \Big[\frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) + \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \Big] \\ &- \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| - \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| = \left\langle {}^{2}P_{J=\frac{3}{2}} \right| \frac{H_{s-o}}{\xi} \left| {}^{4}S_{J=\frac{3}{2}} \right\rangle = \left| \begin{array}{c} a \\ c \\ e \end{array} \right\rangle \\ \text{has diagonal-} E_{nn} \text{ part:} \\ &- \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| - \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| = \left\langle {}^{2}P_{J=\frac{3}{2}} \right| \frac{H_{s-o}}{\xi} \left| {}^{4}S_{J=\frac{3}{2}} \right\rangle = \left| \begin{array}{c} a \\ c \\ e \end{array} \right\rangle \\ \text{has diagonal-} E_{nn} \text{ part:} \\ &- \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| - \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) \end{aligned}$$

 $\begin{vmatrix} a \\ c \\ e \end{vmatrix}$

$$\begin{aligned} & \text{Calculating } p^{3} \text{ spin-orbit Hamiltonian matrix for J=3/2} & \left\langle {}^{2}P_{J=\frac{3}{2}} \right| H_{so} \right| {}^{4}S_{J=\frac{3}{2}} \right\rangle \\ & H_{s-o} = \xi \Big[\frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) + \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \Big] \\ & -\sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| - \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| = \left\langle {}^{2}P_{J=\frac{3}{2}} \right| \frac{H_{s-o}}{\xi} \left| {}^{4}S_{J=\frac{3}{2}} \right\rangle = \left| \begin{array}{c} a \\ e \\ e \end{array} \right\rangle & \text{has diagonal-} E_{nn} \text{ part;} \\ & -\sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| - \sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) & \left| \begin{array}{c} a \\ c \\ e \\ e \end{array} \right\rangle \end{aligned}$$

...and off-diagonal- E_{ab} part:

$$-\sqrt{\frac{1}{2}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \begin{vmatrix} a \\ c \\ e \end{pmatrix}$$

...and off-diagonal- E_{ab} part:

$$-\sqrt{\frac{1}{2}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \begin{vmatrix} a \\ c \\ e \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} a \\ c \\ d \end{vmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \left| a \\ b \\ e \right| + \left| a \\ c \\ d \end{pmatrix} + \left| a \\ c \\ d \end{pmatrix} + 0 + 0 \\ \end{pmatrix}$$

...and off-diagonal- E_{ab} part:

$$-\sqrt{\frac{1}{2}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \begin{vmatrix} a \\ c \\ e \end{pmatrix}$$
$$-\frac{1}{2} \left[\begin{pmatrix} a \\ c \\ d \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right] \qquad \left(\begin{vmatrix} a \\ b \\ e \end{pmatrix} + \begin{vmatrix} a \\ c \\ d \end{pmatrix} + 0 + 0 \right)$$
$$\frac{-1}{2} \begin{bmatrix} 0 & 1 & \begin{vmatrix} a \\ b \\ e \end{pmatrix} \\ \frac{-1}{2} \begin{bmatrix} 0 & 1 & \begin{vmatrix} a \\ b \\ e \end{pmatrix} \\ 1 & 0 & + \begin{vmatrix} a \\ c \\ d \end{pmatrix}$$

$$\begin{aligned} & \text{Calculating } p^{3} \text{ spin-orbit Hamiltonian matrix for J=3/2} \qquad \left\langle {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right| H_{so} \right| {}^{4}S_{J=\frac{3}{2}\frac{3}{2}} \right\rangle \\ & H_{s-o} = \xi \Big[\frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) + \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \Big] \\ & -\sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| = \left\langle {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right| \frac{H_{s-o}}{\xi} \left| {}^{4}S_{J=\frac{3}{2}\frac{3}{2}} \right\rangle = \left| \begin{array}{c} a \\ c \\ e \end{array} \right\rangle & \text{has diagonal-} E_{nn} \text{ part;} \\ & -\sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| -\sqrt{\frac{1}{2}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) & \left| \begin{array}{c} a \\ c \\ e \\ d \end{array} \right\rangle \\ & \dots \text{ and off-diagonal-} E_{ab} \text{ part;} \end{aligned}$$

$$-\sqrt{\frac{1}{2}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) \begin{vmatrix} a \\ c \\ e \end{pmatrix}$$
$$-\frac{1}{2} \left[\begin{pmatrix} a \\ c \\ d \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right] \qquad \left(\begin{vmatrix} a \\ b \\ e \end{pmatrix} + \begin{vmatrix} a \\ c \\ d \end{pmatrix} + 0 + 0 \right)$$
$$\frac{-1}{2} \begin{bmatrix} 0 & 1 & \begin{vmatrix} a \\ b \\ e \end{pmatrix} \\ 1 & 0 & + \begin{vmatrix} a \\ b \\ e \end{pmatrix} Result: -\frac{1}{2} -\frac{1}{2} = -1$$

$$\begin{aligned} \text{Calculating } p^{3} \text{ spin-orbit Hamiltonian matrix for J=3/2} \\ H_{s-o} &= \xi \Big[\frac{1}{2} (E_{aa} - E_{bb} - E_{ce} + E_{ff}) + \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{cd}) \Big] \\ & \begin{pmatrix} 2 & p_{-3\frac{3}{2}} \\ 2 & p_{-3\frac{3}{2}$$

_

$$\begin{array}{c} \begin{array}{c} \text{Calculating } p^{3} \text{ spin-orbit Hamiltonian matrix for } J=3/2 \\ H_{s \cdot o} = \xi \left[\frac{1}{2} (E_{aa} - E_{bb} - E_{ce} + E_{ff}) + \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{cd}) \right] \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s} \frac{1}{2} \\ & \begin{pmatrix} {}^{2} P_{J_{2}} \frac{1}{2} \\ + P_{s$$

 $\begin{array}{l} \begin{array}{c} \text{Calculating } p^{3} \text{ spin-orbit Hamiltonian matrix for J=3/2} & \left\langle {}^{2}D_{J=\frac{3}{2}} \right|^{2}H_{s,o} \right| {}^{2}P_{J=\frac{3}{2}} \right\rangle \\ \sqrt{\frac{4}{5}} \left\langle \begin{array}{c} a \\ b \\ d \end{array} \right| + \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| = \left\langle {}^{2}D_{J=\frac{3}{2}} \right|^{2} H_{s,o} \right| {}^{2}P_{J=\frac{3}{2}} \right|^{2} P_{J=\frac{3}{2}} \right\rangle = -\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{array} \right\rangle - \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{array} \right\rangle \\ \text{The diagonal-} E_{nn} \text{ part is not identically zero:} \\ \left(\sqrt{\frac{4}{5}} \left\langle \begin{array}{c} a \\ b \\ d \end{array} \right| + \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| - \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| \right) \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{array} \right) + \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{array} \right\rangle \end{array} \right) \end{array}$

Calculating p^3 spin-orbit Hamiltonian matrix for J=3/2 $\left\langle {}^2D_{J=\frac{3}{2}} \right\rangle \left\langle {}^2P_{J=\frac{3}{2}} \right\rangle$ $\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| \frac{H_{s-0}}{\xi} \left| {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right\rangle = -\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{array} \right\rangle - \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{array} \right\rangle$ Here diagonal- E_{nn} part is not identically zero: $\left(\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$ $\left(\sqrt{\frac{1}{10}}\begin{pmatrix}a\\c\\d\end{pmatrix} - \sqrt{\frac{1}{10}}\begin{pmatrix}a\\b\\e\end{pmatrix}\right) - \frac{-1}{2\sqrt{2}}(E_{aa} - E_{bb} - E_{ee} + 0)\begin{pmatrix}a\\c\\d\end{pmatrix} + \begin{pmatrix}b\\b\\e\end{pmatrix}\right)$ $(E_{aa}-E_{bb}-E_{ee}+0)\left|\begin{array}{c}a\\c\\d\end{array}\right|+\left|\begin{array}{c}a\\b\\e\end{array}\right|+\left|\begin{array}{c}a\\b\\e\end{array}\right|\right|$ diagonal- E_{nn} part changes righthand ket

Calculating p^3 spin-orbit Hamiltonian matrix for J=3/2 $\left\langle {}^2D_{J=\frac{3}{2}} \right\rangle \left\langle {}^2P_{J=\frac{3}{2}} \right\rangle$ $\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| \frac{H_{s-0}}{\xi} \left| {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right\rangle = -\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{array} \right\rangle - \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{array} \right\rangle$ Here diagonal- E_{nn} part is not identically zero: $\left(\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$ $\left(\sqrt{\frac{1}{10}}\begin{pmatrix}a\\c\\d\end{pmatrix} - \sqrt{\frac{1}{10}}\begin{pmatrix}a\\b\\e\end{pmatrix}\right) - \frac{-1}{2\sqrt{2}}(E_{aa} - E_{bb} - E_{ee} + 0)\begin{pmatrix}a\\c\\d\end{pmatrix} + \begin{pmatrix}a\\b\\e\end{pmatrix}\right)$ $(E_{aa} - E_{bb} - E_{ee} + 0) \left| \begin{array}{c} a \\ c \\ d \end{array} \right| + \left| \begin{array}{c} a \\ b \\ e \end{array} \right| \right|$ diagonal- E_{nn} part changes righthand ket $= \begin{pmatrix} a \\ E_{aa} \\ d \end{pmatrix} + E_{aa} \begin{vmatrix} a \\ b \\ e \end{pmatrix} - E_{bb} \begin{vmatrix} a \\ b \\ e \end{pmatrix} - E_{ee} \begin{vmatrix} a \\ b \\ e \end{vmatrix}$

 $\left\langle {}^{2}D_{J=\frac{3}{2}} \frac{3}{2} H_{s-o} \right| {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} \right\rangle$ Calculating p^3 spin-orbit Hamiltonian matrix for J=3/2 $\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \begin{pmatrix} 2 D_{J=\frac{3}{2}\frac{3}{2}} \\ \frac{H_{s-O}}{\xi} \\ \frac{2}{\xi} \end{pmatrix}^2 P_{J=\frac{3}{2}\frac{3}{2}} \end{pmatrix} = -\sqrt{\frac{1}{2}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix}$ Here diagonal- E_{nn} part is not identically zero: $\left(\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$ $\left(\sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \left(\frac{-1}{2\sqrt{2}} (E_{aa} - E_{bb} - E_{ee} + 0) \right) \left(\begin{array}{c} a \\ c \\ d \end{pmatrix} + \begin{array}{c} a \\ b \\ e \end{pmatrix} \right)$ $(E_{aa} - E_{bb} - E_{ee} + 0) \left(\begin{array}{c} a \\ c \\ d \end{array} \right) + \left(\begin{array}{c} a \\ b \\ e \end{array} \right) \left(\begin{array}{c} a \\ c \\ c \end{array} \right) + \left(\begin{array}{c} a \\ b \\ e \end{array} \right) \left(\begin{array}{c} a \\ c \\ c \\ c \end{array} \right) \right)$ diagonal- E_{nn} part changes righthand ket $= \begin{pmatrix} a \\ E_{aa} \\ d \end{pmatrix} + E_{aa} \begin{pmatrix} a \\ b \\ e \end{pmatrix} - E_{bb} \begin{pmatrix} a \\ b \\ e \end{pmatrix} - E_{ee} \begin{pmatrix} a \\ b \\ e \end{pmatrix}$ $= \left(\begin{vmatrix} a \\ c \\ d \end{vmatrix} + \begin{vmatrix} a \\ b \\ e \end{vmatrix} - \begin{vmatrix} a \\ b \\ e \end{vmatrix} - \begin{vmatrix} a \\ b \\ e \end{vmatrix} \right) = \left(\begin{vmatrix} a \\ c \\ d \end{vmatrix} - \begin{vmatrix} a \\ b \\ e \end{vmatrix} \right)$

 $\begin{aligned} \text{Calculating } p^{3} \text{ spin-orbit Hamiltonian matrix for J=3/2} & \left\langle {}^{2}D_{J=\frac{3}{2}} \right|^{2}H_{so} \right| {}^{2}P_{J=\frac{3}{2}} \\ \sqrt{\frac{3}{5}} \left\langle {a \atop b} \right| + \sqrt{\frac{1}{10}} \left\langle {a \atop c} \right| - \sqrt{\frac{1}{10}} \left\langle {a \atop b} \right| = \left\langle {}^{2}D_{J=\frac{3}{2}} \right|^{2} \frac{H_{s-0}}{\xi} \right| {}^{2}P_{J=\frac{3}{2}} \\ \frac{1}{\xi} \right\rangle = -\sqrt{\frac{1}{2}} \left| {a \atop c} \\ \frac{1}{d} \right\rangle - \sqrt{\frac{1}{2}} \left| {a \atop b} \\ \frac{1}{e} \right\rangle \end{aligned}$ Non-zero diagonal- E_{nn} contribution: Here diagonal- E_{nn} part is not identically zero: $\left(\sqrt{\frac{4}{5}} \left\langle {a \atop b} \right| + \sqrt{\frac{1}{10}} \left\langle {a \atop c} \right| - \sqrt{\frac{1}{10}} \left\langle {a \atop c} \right| + \sqrt{\frac{1}{10}} \left\langle {a \atop c} \right| - \sqrt{\frac{1}{10}} \left\langle {a \atop c} \right| + \sqrt{\frac{1}{$

$$\left[\left(E_{aa} - E_{bb} - E_{ee} + 0 \right) \left(\begin{vmatrix} a \\ c \\ d \end{vmatrix} + \begin{vmatrix} a \\ b \\ e \end{vmatrix} \right) \right]$$
 diagonal- E_{nn} part changes righthand ket

$$= \left(\begin{vmatrix} a \\ c \\ d \end{vmatrix} + E_{aa} \begin{vmatrix} a \\ b \\ e \end{vmatrix} + E_{aa} \begin{vmatrix} a \\ b \\ e \end{vmatrix} - E_{bb} \begin{vmatrix} a \\ b \\ e \end{vmatrix} - E_{bb} \begin{vmatrix} a \\ b \\ e \end{vmatrix} - E_{ee} \begin{vmatrix} a \\ b \\ e \end{vmatrix} + E_{ee} \begin{vmatrix} a \\ b \\ e \end{vmatrix} \right)$$

$$= \left(\begin{vmatrix} a \\ c \\ d \end{vmatrix} + \begin{vmatrix} a \\ b \\ e \end{vmatrix} - \begin{vmatrix} a \\ b \\ e \end{vmatrix} - \left| \begin{vmatrix} a \\ b \\ e \end{vmatrix} - \left| \begin{vmatrix} a \\ b \\ e \end{vmatrix} \right) = \left(\begin{vmatrix} a \\ c \\ d \end{vmatrix} - \left| \begin{vmatrix} a \\ b \\ e \end{vmatrix} \right)$$

$$\left< {}^{2}D_{J=\frac{3}{2}} \frac{3}{2} H_{s-o} \right| {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} \right>$$

$$\frac{\sqrt{4}}{5} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| \frac{H_{s-0}}{\xi} | {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right\rangle = -\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix}$$
Non-zero diagonal- E_{nn} contribution: Here diagonal- E_{nn} part is not identically zero:
$$\frac{-1}{2\sqrt{2}}\sqrt{\frac{1}{10}} \left(\begin{pmatrix} a \\ c \\ d \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) = -\sqrt{\frac{1}{2}} \left(\begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} \right) = -\sqrt{\frac{1}{2}} \left(\begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$$

$$\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \right| H_{s-o} \left| {}^{2}P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$$

$$\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| \frac{H_{s-o}}{\xi} \left| {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right\rangle = -\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{pmatrix}$$
Non-zero diagonal- E_{nn} contribution: Here diagonal- E_{nn} part is not identically zero:
$$\frac{-1}{2\sqrt{2}}\sqrt{\frac{1}{10}} \left(\begin{pmatrix} a \\ c \\ d \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) = -\sqrt{\frac{1}{20}} = \left(\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \frac{1}{2}(E_{aa} - E_{bb} - E_{ee} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right)$$

Off-diagonal- E_{nn} contributions:

$$\left(\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$$

$$\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \right| H_{s-o} \left| {}^{2}P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$$

$$\frac{\sqrt{4}}{5} \left\langle \begin{array}{c} a \\ b \\ d \end{array} \right| + \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| - \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| = \left\langle \begin{array}{c} 2D_{j=\frac{3}{2}\frac{3}{2}} \right| \frac{H_{s-0}}{\xi} \right|^2 P_{j=\frac{3}{2}\frac{3}{2}} \right\rangle = -\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{array} \right\rangle - \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{array} \right\rangle$$
Non-zero diagonal- E_{nn} contribution: Here diagonal- E_{nn} part is not identically zero:
$$\frac{-1}{2\sqrt{2}} \sqrt{\frac{1}{10}} \left(\left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| \left| \begin{array}{c} a \\ c \\ d \end{array} \right\rangle + \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| \left| \begin{array}{c} a \\ b \\ e \end{array} \right\rangle = -\sqrt{\frac{1}{20}} = \left(\sqrt{\frac{4}{5}} \left\langle \begin{array}{c} a \\ b \\ d \end{array} \right| + \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| - \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| \right) \frac{1}{2} (E_{aa} - E_{bb} - E_{ce} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{array} \right) + \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{array} \right\rangle \right)$$

Off-diagonal- E_{nn} contributions:

$$\left(\sqrt{\frac{4}{5}} \left\langle \begin{array}{c} a \\ b \\ d \end{array} \right| + \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ c \\ d \end{array} \right| - \sqrt{\frac{1}{10}} \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right| \right) \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) - \left(\sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ c \\ d \end{array} \right| + \sqrt{\frac{1}{2}} \left| \begin{array}{c} a \\ b \\ e \end{array} \right| \right) \right)$$

$$- \frac{1}{2} \left(\begin{array}{c} E_{bc} \left| \begin{array}{c} a \\ c \\ d \end{array} \right| + E_{ed} \left| \begin{array}{c} a \\ c \\ d \end{array} \right| + E_{cb} \left| \begin{array}{c} a \\ b \\ e \end{array} \right| + E_{de} \left| \begin{array}{c} a \\ b \\ e \end{array} \right| \right)$$

$$- \frac{1}{2} \left(\begin{array}{c} a \\ b \\ d \end{array} \right) + \left| \begin{array}{c} a \\ c \\ e \end{array} \right| + \left| \begin{array}{c} a \\ c \\ e \end{array} \right| + \left| \begin{array}{c} a \\ b \\ d \end{array} \right| = - \left(\begin{array}{c} a \\ b \\ d \end{array} \right) + \left| \begin{array}{c} a \\ b \\ d \end{array} \right| + \left| \begin{array}{c} a \\ c \\ e \end{array} \right| \right)$$

$$\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \left| H_{s-o} \right| {}^{2}P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$$

$$\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \sqrt{\frac{2}{D_{J=\frac{3}{2}}}} \frac{1}{2} \frac{H_{s-o}}{\xi} |^2 P_{J=\frac{3}{2}} \frac{3}{2} \rangle = -\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix}$$
Non-zero diagonal- E_{nn} contribution: Here diagonal- E_{nn} part is not identically zero:
$$\frac{-1}{2\sqrt{2}} \sqrt{\frac{1}{10}} \left(\begin{pmatrix} a \\ c \\ d \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) = -\sqrt{\frac{1}{20}} = \sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \frac{1}{2} (E_{aa} - E_{bb} - E_{ce} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$$

Off-diagonal- E_{nn} contributions:

| a |

$$\left(\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$$
$$- \frac{1}{2} \left(E_{bc} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + E_{ed} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + E_{cb} \begin{vmatrix} a \\ b \\ e \end{pmatrix} + E_{de} \begin{vmatrix} a \\ b \\ e \end{pmatrix} + E_{de} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$$

 $-\frac{1}{2}\left(\begin{array}{c}a\\b\\d\end{array}\right)+\left|\begin{array}{c}a\\c\\e\end{array}\right)+\left|\begin{array}{c}a\\c\\e\end{array}\right)+\left|\begin{array}{c}a\\c\\e\end{array}\right)+\left|\begin{array}{c}a\\b\\d\end{array}\right)=-\left(\begin{array}{c}a\\b\\d\end{array}\right)+\left|\begin{array}{c}a\\c\\e\end{array}\right)$

$$\left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| H_{s-o} \left| {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right\rangle$$

$$\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} = \left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| \frac{H_{s-0}}{\xi} |{}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \rangle = -\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix}$$
Non-zero diagonal- E_{nn} contribution: Here diagonal- E_{nn} part is not identically zero:
$$\frac{-1}{2\sqrt{2}}\sqrt{\frac{1}{10}} \left(\begin{pmatrix} a \\ c \\ d \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} + \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) = -\sqrt{\frac{1}{20}} = \left(\sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \right) \frac{1}{2} (E_{aa} - E_{bb} - E_{ee} + E_{ff}) - \left(\sqrt{\frac{1}{2}} \begin{vmatrix} a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{vmatrix} a \\ b \\ e \end{pmatrix} \right)$$

Off-diagonal- E_{nn} contributions:

$$\begin{pmatrix} \sqrt{\frac{4}{5}} \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ c \\ d \end{pmatrix} - \sqrt{\frac{1}{10}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \end{pmatrix} \sqrt{\frac{1}{2}} (E_{bc} + E_{de} + E_{cb} + E_{ed}) - \begin{pmatrix} \sqrt{\frac{1}{2}} & a \\ c \\ d \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{pmatrix} a \\ b \\ e \end{pmatrix} \end{pmatrix}$$
$$- \frac{1}{2} \begin{pmatrix} E_{bc} & a \\ c \\ d \end{pmatrix} + E_{ed} & a \\ d \end{pmatrix} + E_{cb} & a \\ b \\ e \end{pmatrix} + E_{de} & a \\ b \\ e \end{pmatrix} + E_{de} & b \\ e \end{pmatrix}$$

$$-\frac{1}{2} \left(\begin{vmatrix} a \\ b \\ d \end{vmatrix} + \begin{vmatrix} a \\ c \\ e \end{vmatrix} + \begin{vmatrix} a \\ c \\ e \end{vmatrix} + \begin{vmatrix} a \\ b \\ d \end{vmatrix} \right) = - \left(\begin{vmatrix} a \\ b \\ d \end{vmatrix} + \begin{vmatrix} a \\ c \\ e \end{vmatrix} \right)$$

$$Total Result: -\sqrt{\frac{4}{5}} - \sqrt{\frac{1}{20}} = -\frac{4}{\sqrt{20}} - \frac{1}{\sqrt{20}} = -\frac{5}{\sqrt{20}} = -\sqrt{\frac{5}{4}}$$

$$\left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| H_{s-o} \left| {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right\rangle \left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| H_{s-o} \left| {}^{4}S_{J=\frac{3}{2}\frac{3}{2}} \right\rangle$$

$$\left\langle {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right| H_{s-o} \left| {}^{4}S_{J=\frac{3}{2}\frac{3}{2}} \right\rangle$$

Secular equation:

$$\begin{array}{c|cccc} \lambda & -\frac{\sqrt{5}}{2} & 0 \\ \text{det} & -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda \end{array}$$

$$\left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| H_{s-o} \left| {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right\rangle \quad \left\langle {}^{2}D_{J=\frac{3}{2}\frac{3}{2}} \right| H_{s-o} \left| {}^{4}S_{J=\frac{3}{2}\frac{3}{2}} \right\rangle$$
$$\left\langle {}^{2}P_{J=\frac{3}{2}\frac{3}{2}} \right| H_{s-o} \left| {}^{4}S_{J=\frac{3}{2}\frac{3}{2}} \right\rangle$$

Secular equation: $\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \left| H_{s-o} \right| {}^{2}P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle \left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \right| H_{s-o} \left| {}^{4}S_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$ $\det \begin{vmatrix} \lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} + \frac{\sqrt{5}}{2} \begin{vmatrix} -\frac{\sqrt{5}}{2} & -1 \\ 0 & \lambda \end{vmatrix} = 0$ $\left\langle {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} H_{s-o} \right| {}^{4}S_{J=\frac{3}{2}} \frac{3}{2} \right\rangle$ $\lambda(\lambda^2 - 1) + \frac{\sqrt{5}}{2}(\frac{-\sqrt{5}}{2})\lambda = 0$ $\left| \left| {}^{2}D_{J=\frac{3}{2}}^{\frac{3}{2}} \right\rangle \left| {}^{2}P_{J=\frac{3}{2}}^{\frac{3}{2}} \right\rangle \left| {}^{4}S_{J=\frac{3}{2}}^{\frac{3}{2}} \right\rangle \right|$ $-\sqrt{\frac{5}{4}}$ $\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2}\right\rangle$ 0 0 $\left\langle {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} \right| -\sqrt{\frac{5}{4}}$ 0 $\begin{pmatrix} 4 S_{J=\frac{3}{2}} \\ J=\frac{3}{2} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ 0

 $\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \left| H_{s-o} \right| {}^{2}P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle \left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \left| H_{s-o} \right| {}^{4}S_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$ Secular equation: $\det \begin{vmatrix} \lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} + \frac{\sqrt{5}}{2} \begin{vmatrix} -\frac{\sqrt{5}}{2} & -1 \\ 0 & \lambda \end{vmatrix} = 0$ $\left\langle {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} H_{s-o} \right| {}^{4}S_{J=\frac{3}{2}} \frac{3}{2} \right\rangle$ $\lambda(\lambda^2 - 1) + \frac{\sqrt{5}}{2}(\frac{-\sqrt{5}}{2})\lambda = 0$ $\lambda(\lambda^{2} - 1) + \frac{\sqrt{5}}{2}(\frac{-\sqrt{5}}{2})\lambda = 0$ $\lambda^{3} - \lambda - \frac{5}{4}\lambda = 0 = \lambda(\lambda^{2} - \frac{9}{4}) = \lambda(\lambda - \frac{3}{2})(\lambda + \frac{3}{2})$ $\left| 2D_{J=\frac{3}{2}}\frac{3}{2} \right| 2P_{J=\frac{3}{2}}\frac{3}{2} \right| 4S_{J=\frac{3}{2}}\frac{3}{2} \right|$ $-\sqrt{\frac{5}{4}}$ $\left\langle {}^{2}D_{J=\frac{3}{2}}^{\frac{3}{2}} \right| = 0$ 0 $\left\langle {}^{2}P_{J=\frac{3}{2}} \right| -\sqrt{\frac{5}{4}}$ 0 4 —1 $\left\langle {}^{4}S_{J=\frac{3}{2}} \right| \qquad 0$ 0

Secular equation: $\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \left| H_{s-o} \right| {}^{2}P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle \left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \right| H_{s-o} \left| {}^{4}S_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$ $\det \begin{vmatrix} \lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} + \frac{\sqrt{5}}{2} \begin{vmatrix} -\sqrt{5} & -1 \\ \frac{\sqrt{5}}{2} & -1 \\ 0 & \lambda \end{vmatrix} = 0$ $\left< {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} H_{s-o} \right| {}^{4}S_{J=\frac{3}{2}}$ $\lambda(\lambda^2 - 1) + \frac{\sqrt{5}}{2}(\frac{-\sqrt{5}}{2})\lambda = 0$ $\lambda(\lambda - 1) + \frac{1}{2}(\frac{1}{2})\lambda = 0$ $\lambda^{3} - \lambda - \frac{5}{4}\lambda = 0 = \lambda(\lambda^{2} - \frac{9}{4}) = \lambda(\lambda - \frac{3}{2})(\lambda + \frac{3}{2}) \qquad \left| 2D_{J=\frac{3}{2}}\frac{3}{2} \right| 2D_{J=\frac{3}{2}}\frac{3}{2} = 0$ Projectors: Eigenvalues: $P_{0} = \begin{pmatrix} \frac{4}{9} & 0 & \frac{-2\sqrt{5}}{9} \\ 0 & 0 & 0 \\ \frac{-2\sqrt{5}}{9} & 0 & \frac{5}{9} \end{pmatrix} \qquad \begin{pmatrix} \lambda = \\ 0 & \sqrt{2} D_{J=\frac{3}{2}\frac{3}{2}} \\ & \sqrt{2} D_{J=\frac{3}{2}\frac{3}{2}} \\ & \sqrt{2} P_{J=\frac{3}{2}\frac{3}{2}} \\ -\sqrt{\frac{5}{4}} & 0 \\ P_{+3/2} = \begin{pmatrix} \frac{5}{18} & \frac{-\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{-\sqrt{5}}{6} & \frac{1}{2} & \frac{-1}{3} \\ \frac{\sqrt{5}}{9} & \frac{-1}{3} & \frac{2}{9} \end{pmatrix} \qquad \begin{pmatrix} \lambda = \\ +3/2 & \sqrt{4} S_{J=\frac{3}{2}\frac{3}{2}} \\ & 0 & -1 \end{pmatrix}$ $-\sqrt{\frac{5}{4}}$ 0 0 $P_{-3/2} = \begin{pmatrix} \frac{5}{18} & \frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{\sqrt{5}}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{\sqrt{5}}{9} & \frac{1}{3} & \frac{2}{9} \end{pmatrix} \qquad \lambda = -3/2$

Secular equation: $\left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \left| H_{s-o} \right| {}^{2}P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle \left\langle {}^{2}D_{J=\frac{3}{2}}\frac{3}{2} \right| H_{s-o} \left| {}^{4}S_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$ $\det \begin{vmatrix} \lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} + \frac{\sqrt{5}}{2} \begin{vmatrix} -\frac{\sqrt{5}}{2} & -1 \\ 0 & \lambda \end{vmatrix} = 0$ $\left\langle {}^{2}P_{J=\frac{3}{2}} \frac{3}{2} \middle| H_{s-o} \middle| {}^{4}S_{J=\frac{3}{2}} \right\rangle$ $\lambda(\lambda^2 - 1) + \frac{\sqrt{5}}{2}(\frac{-\sqrt{5}}{2})\lambda = 0$ $\lambda(\lambda - 1) + \frac{1}{2}(\frac{1}{2})\lambda = 0$ $\lambda^{3} - \lambda - \frac{5}{4}\lambda = 0 = \lambda(\lambda^{2} - \frac{9}{4}) = \lambda(\lambda - \frac{3}{2})(\lambda + \frac{3}{2})$ $\left| 2D_{J=\frac{3}{2}}\frac{3}{2} \right\rangle \left| 2P_{J=\frac{3}{2}}\frac{3}{2} \right\rangle \left| 4S_{J=\frac{3}{2}}\frac{3}{2} \right\rangle$ Projectors: Eigenvalues: $-\sqrt{\frac{5}{4}}$ $P_{0} = \begin{pmatrix} \frac{4}{9} & 0 & \frac{-2\sqrt{5}}{9} \\ 0 & 0 & 0 \\ \frac{-2\sqrt{5}}{9} & 0 & \frac{5}{9} \end{pmatrix} \begin{pmatrix} \lambda = & \lambda = & \lambda \\ 0 & \lambda \\ 0$ 0 $\left\langle {}^{2}P_{J=\frac{3}{2}} \right| -\sqrt{\frac{5}{4}}$ 0 $P_{+3/2} = \begin{pmatrix} \frac{5}{18} & \frac{-\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{-\sqrt{5}}{6} & \frac{1}{2} & \frac{-1}{3} \\ \frac{\sqrt{5}}{9} & \frac{-1}{3} & \frac{2}{9} \end{pmatrix} \begin{pmatrix} \lambda = & \lambda \\ +3/2 & \lambda \\ -\frac{\sqrt{5}}{9} & \frac{-1}{3} & \frac{2}{9} \end{pmatrix} \begin{pmatrix} \lambda = & \lambda \\ +3/2 & \lambda \\ -\frac{\sqrt{5}}{9} & \frac{-1}{3} & \frac{2}{9} \end{pmatrix} = 0$ 0 $P_{-3/2} = \begin{pmatrix} \frac{5}{18} & \frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{\sqrt{5}}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{\sqrt{5}}{9} & \frac{1}{3} & \frac{2}{9} \end{pmatrix} \qquad \lambda = |0\rangle = \frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ \sqrt{5} \end{pmatrix}, \ |\frac{+3}{2}\rangle = \frac{1}{3\sqrt{2}} \begin{pmatrix} -\sqrt{5} \\ 3 \\ -2 \end{pmatrix}, \ |\frac{-3}{2}\rangle = \frac{1}{3\sqrt{2}} \begin{pmatrix} -\sqrt{5} \\ 3 \\ -2 \end{pmatrix}$

quartet ${}^{4}S$:

The $\ell=1$ *p*=shell in a nutshell

$ \begin{array}{c c} L=0 & S=\frac{3}{2} \\ M=0 & \mu=\frac{3}{2} \end{array} \left \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right \uparrow \uparrow \uparrow \right\rangle, \begin{array}{c} L=0 & S=\frac{3}{2} \\ M=0 & \mu=\frac{1}{2} \end{array} \left \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right \uparrow \uparrow \downarrow $	$\left \begin{array}{ccc} L=0 & S=\frac{3}{2} \\ M=0 & \mu=\frac{-1}{2} \end{array} \right \left \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right \uparrow \downarrow \downarrow \right\rangle, \begin{array}{c} L=0 & S=\frac{3}{2} \\ M=0 & \mu=\frac{-3}{2} \end{array} \left \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right \downarrow \downarrow \downarrow \right\rangle.$
---	--

Doublet ${}^{2}D$, M=2:

$$\begin{array}{c|c|c} L=2, & S=\frac{1}{2} \\ M=2, & \mu=\frac{1}{2} \end{array} \begin{array}{c|c|c} 1 & \uparrow \uparrow \\ \hline 2 & \downarrow \end{array} \end{array} \right\rangle, & L=2, & S=-\frac{1}{2} \\ M=2, & \mu=\frac{1}{2} \end{array} \begin{array}{c|c|c} 1 & \uparrow \downarrow \\ \hline 2 & \downarrow \end{array} \right\rangle.$$

Doublet ^{2}D , M=1:

Doublet ^{2}D , M=0:

Doublet ${}^{2}D$, M = -2:

$$L=2, S=\frac{1}{2} | 2 3 \uparrow \uparrow \rangle, L=2, S=\frac{1}{2} | 2 3 \uparrow \downarrow \rangle, M=-2, \mu=\frac{-1}{2} | 3 \downarrow \rangle \rangle$$

$U(3) \times U(2)$ approach: Coupling total orbit-L tableaus to total spin S tableaus

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

These involve fairly complicated S_n -coupled U(3)×U(2) combinations that will be developed later. An elementary development using U(6) combinations of so called *Slater determinants* is done first.
AMOP reference links on pages 2-4 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (*s*=½, ℓ=1) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states Review of Mach-Mock (particle-state) principle Tableau P-operators on orbits Tableau P-operators on spin Fermi-Dirac-Pauli anti-symmetric p^3 -states Boson operators and symmetric p^2 -states Connecting to angular momentum Projecting to angular momentum U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single ($s=\frac{1}{2}$) electron in ($\ell=1$) p-shell labeled by *a* to *f*. U(6) bases: $\{|a\rangle \equiv |1\uparrow\rangle, |b\rangle \equiv |1\downarrow\rangle, |c\rangle \equiv |2\uparrow\rangle, |d\rangle \equiv |2\downarrow\rangle, |e\rangle \equiv |3\uparrow\rangle, |f\rangle \equiv |3\downarrow\rangle\}$ U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single ($s=\frac{1}{2}$) electron in ($\ell=1$) p-shell labeled by *a* to *f*. U(6) bases: $\{|a\rangle \equiv |1\uparrow\rangle, |b\rangle \equiv |1\downarrow\rangle, |c\rangle \equiv |2\uparrow\rangle, |d\rangle \equiv |2\downarrow\rangle, |e\rangle \equiv |3\uparrow\rangle, |f\rangle \equiv |3\downarrow\rangle\}$ U(6) tensor operators are outer products of U(3) $\mathbf{v}_q(orbit)$ with U(2) $\mathbf{v}_{\sigma}(spin)$ operators

$$\left\langle \begin{smallmatrix} \ell & \frac{1}{2} \\ m'\mu' \end{smallmatrix} \middle| \begin{matrix} \nu_{q\,\sigma}^{k\,\lambda} \middle| \begin{smallmatrix} \ell & \frac{1}{2} \\ m\,\mu \end{matrix} \right\rangle = \left\langle \begin{smallmatrix} \ell \\ m' \end{smallmatrix} \middle| \begin{matrix} \nu_{q}^{k} \middle| \begin{smallmatrix} \ell \\ m \end{matrix} \right\rangle \left\langle \begin{smallmatrix} \frac{1}{2} \\ \mu' \end{smallmatrix} \middle| \begin{matrix} \nu_{\sigma}^{\lambda} \middle| \begin{smallmatrix} \frac{1}{2} \\ \mu \end{matrix} \right\rangle$$

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single $(s=\frac{1}{2})$ electron in $(\ell=1)$ p-shell labeled by *a* to *f*. U(6) bases: $\{|a\rangle \equiv |1\uparrow\rangle, |b\rangle \equiv |1\downarrow\rangle, |c\rangle \equiv |2\uparrow\rangle, |d\rangle \equiv |2\downarrow\rangle, |e\rangle \equiv |3\uparrow\rangle, |f\rangle \equiv |3\downarrow\rangle\}$ U(6) tensor operators are outer products of U(3) $\mathbf{v}_q(orbit)$ with U(2) $\mathbf{v}_{\sigma}(spin)$ operators $\left\langle \begin{pmatrix} \ell & \frac{1}{2} \\ m'\mu' \end{pmatrix} v_{q\sigma}^{k\lambda} \middle| \begin{pmatrix} \ell & \frac{1}{2} \\ m\mu \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} \ell \\ m' \end{pmatrix} v_{q}^{k} \middle| \begin{pmatrix} \ell \\ m \end{pmatrix} \left\langle \begin{pmatrix} \frac{1}{2} \\ \mu' \end{pmatrix} v_{\sigma}^{\lambda} \middle| \frac{1}{2} \\ \mu \end{pmatrix} \right\rangle$ $\left\langle \mathbf{v}_{\overline{2}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ 1 \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{\overline{1}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{2} \right\rangle = \left(\begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot \overline{2} \end{array} \right) \frac{1}{\sqrt{6}} \left\langle \mathbf{v}_{1}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{2} \right\rangle = \left(\begin{array}{c} 1 \cdot \cdot \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right$ $\langle \mathbf{v}_{\overline{1}}^{1} \rangle = \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix}_{\overline{\sqrt{2}}} \langle \mathbf{v}_{0}^{1} \rangle = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & \overline{1} \end{pmatrix}_{\overline{\sqrt{2}}} \langle \mathbf{v}_{1}^{1} \rangle = \begin{pmatrix} \cdot & \overline{1} & \cdot \\ \cdot & \cdot & \overline{1} \\ \cdot & \cdot & \cdot \end{pmatrix}_{\overline{\sqrt{2}}}$ Notational compaction: $\overline{1} \equiv -1, \ \overline{2} \equiv -2, \ etc.$ $\left\langle \mathbf{v}_{0}^{0}\right\rangle = \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ & & 1 \end{array}\right) \frac{1}{\sqrt{3}}$

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single $(s=\frac{1}{2})$ electron in $(\ell=1)$ p-shell labeled by a to f. $U(6) \text{ bases: } \left\{ \left| a \right\rangle \equiv \left| 1 \uparrow \right\rangle, \left| b \right\rangle \equiv \left| 1 \downarrow \right\rangle, \left| c \right\rangle \equiv \left| 2 \uparrow \right\rangle, \left| d \right\rangle \equiv \left| 2 \downarrow \right\rangle, \left| e \right\rangle \equiv \left| 3 \uparrow \right\rangle, \left| f \right\rangle \equiv \left| 3 \downarrow \right\rangle \right\}$ U(6) tensor operators are outer products of U(3) $\mathbf{v}_q(orbit)$ with U(2) $\mathbf{v}_{\sigma}(spin)$ operators $\left\langle \begin{pmatrix} \ell & \frac{1}{2} \\ m'\mu' \end{pmatrix} v_{q\sigma}^{k\lambda} \middle| \begin{pmatrix} \ell & \frac{1}{2} \\ m\mu \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} \ell \\ m' \end{pmatrix} v_{q}^{k} \middle| \begin{pmatrix} \ell \\ m \end{pmatrix} \left\langle \begin{pmatrix} \frac{1}{2} \\ \mu' \end{pmatrix} v_{\sigma}^{\lambda} \middle| \begin{pmatrix} \frac{1}{2} \\ \mu \end{pmatrix} \right\rangle$ $\left\langle \mathbf{v}_{\overline{2}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ 1 \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{\overline{1}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \\ \cdot \cdot \overline{1} \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{2} \right\rangle = \left(\begin{array}{c} 1 \cdot \cdot \\ \cdot \cdot \overline{2} \cdot \\ \cdot \cdot 1 \end{array} \right) \frac{1}{\sqrt{6}} \left\langle \mathbf{v}_{1}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle =$ $\langle \mathbf{v}_{\overline{1}}^{1} \rangle = \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \\ \cdot \cdot 1 \cdot \end{pmatrix}^{\frac{1}{\sqrt{2}}} \langle \mathbf{v}_{0}^{1} \rangle = \begin{pmatrix} 1 \cdot \cdot \cdot \\ \cdot \cdot 0 \cdot \\ \cdot \cdot \cdot \overline{1} \end{pmatrix}^{\frac{1}{\sqrt{2}}} \langle \mathbf{v}_{1}^{1} \rangle = \begin{pmatrix} \cdot \cdot \overline{1} \cdot \cdot \\ \cdot \cdot \cdot \overline{1} \\ \cdot \cdot \cdot \cdot \end{pmatrix}^{\frac{1}{\sqrt{2}}}$ Notational compaction: $\overline{1} \equiv -1, \ \overline{2} \equiv -2, \ etc.$ $\frac{1}{\sqrt{2}}(-\mathbf{E}_{cb}-\mathbf{E}_{ed}) = \begin{pmatrix} \mathbf{1} & \cdot & \cdot \\ \cdot & \mathbf{1} & \cdot \\ \cdot & \cdot & \mathbf{1} \end{pmatrix}^{\frac{1}{\sqrt{3}}}$

p-shell Spin-orbit calculation