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(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 
[2,1] tableau states lowered by L-=√2(E21+E32) 
       Top-(J,M) states            to mid-level states 
 ℓ=1 p=shell LS states combined to states of definite J  
J=3/2 at L=0  (4S),                J=5/2 at L=2  (2D)  
 C-G coupling; J=3/2 at L=2 (2D),       J=3/2 at L=1 (2P),     J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
          Extra assembly table 
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
         Slater functions for  J=5/2,                  J=3/2  (2D) 
         Slater functions for J=3/2 (2P),            J=1/2 (2P) 
 Summary of states and level connection paths  
         Symmetry dimension accounting 
Spin-orbit Hamiltonian matrix calculation  
         Individual matrix components      
Application to spin-orbit and entanglement break-up scattering            
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Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra 

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I_-_harter-pra-1973

Alternative_Basis_for_the_Theory_of_Complex_Spectra_II_-_harter-patterson-pra-1976

Alternative_Basis_for_the_Theory_of_Complex_Spectra_III_-_patterson-harter-pra-1977


Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.  

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)


Rotation–vibration spectra of icosahedral molecules. 
I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989 (Alt scan)

II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989 (Alt scan)

III) Half-integral angular momentum - harter-reimer-jcp-1991


Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez)

Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals 

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

QTCA Unit 10 Ch 30 - 2013

AMOP Ch 0 Space-Time Symmetry - 2019
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Quantum Theory for the Computer Age

Modern Physics and its Classical Foundations
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https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Galloping_waves_and_their_relativistic_properties_-_ajp-1985-harter.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20harter%20-%20weeks%20-%20cpl%20-%201986.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20scan%20-%20RovibeIcosCPL132p387-392(1986).pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20Trigonal%20and%20tetrahedral%20molecules%3a%20Elementary%20spin-1%3a2%20cases%20in%20vibronic%20ground%20states%20-%20pra%20-1979-Harter-Patterson.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.I%20CF4.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20II.%20Elementary%20cases%20in%20octahedral%20hexafluoride%20molecules%20-%20Harter-PRA-1981.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.II%20SF6.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._I._Icosahedral_symmetry_analysis_and_fine_structure_-_harter-weeks-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation-vibration_spectra_of_icosahedral_molecules._I._Icosahedral_symmetry_analysis_and_fine_structure_-_harter-weeks-jcp-scan-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._II._Icosahedral_symmetry%2c_vibrational_eigenfrequencies%2c_and_normal_modes_of_buckminsterfullerene_-_weeks-harter-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/JCP_C60_VibeModesHiRes.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._III_-_Half-integral_angular_momentum_-_harter-reimer-jcp-1991.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation-vibration%20scalar%20coupling%20zeta%20coefficients%20and%20spectroscopic%20band%20shapes%20of%20buckminsterfullerene%20-%20weeks-harter-cpl-1991.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLBzetaCoeff%20C60.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLC60SpinWts%20HiRes%2bErrata.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Reimer%20-%20harter1992.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Erratum%20-%201-s2.0-000926149285077N-main.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Gas%20Phase%20Level%20Structure%20of%20C60%20Buckyball%20and%20Derivatives%20Exhibiting%20Broken%20Icosahedral%20Symmetry%20-%20reimer-diss-1996.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Fullerene%20symmetry%20reduction%20and%20rotational%20level%20fine%20structure:%20the%20Buckyball%20isotopomer%2012C%2013C59%20-%20jcp%20-%20reimer%20-%20harter%20-%201997.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/C60symmReduct&fine%20structure12C13C59%20ReimerHarter1997hiRes.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Wave%20Node%20Dynamics%20and%20Revival%20Symmetry%20in%20Quantum%20Rotors%20-%20harter%20-%20jms%20-%202001.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Springer_Handbooks_of_Atomic_Molecular_and_Optical_Physics_-_Harter-Ch32_-_2006.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20And%20Revivals%20%20I.%20Quantum%20Rotor%20And%20Infinite-Well%20Dynamics%20-%20Harter-Li-ISMS-Columbus-2012.pdf
https://kb.osu.edu/dspace/handle/1811/52324
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Resonant%20Beats%20and%20Revivals%20in%20the%20Morse%20Oscillators%20and%20Rotors%20-%202013-Li-Diss.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Molecular_Eigensolution_Symmetry_Analysis_and_Fine_Structure_-_IJMS-harter-mitchell-2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Revivals%20of%20Morse%20Oscillators%20and%20Farey-Ford%20Geometry%20-%20Li%20-%20Harter%20-%20cpl%20-%202013%20-%201308.4470.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_10_Ch.30_2013.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/AMOP%20Ch%200%20SpaceTimeSymm.pdf
https://modphys.hosted.uark.edu/markup/AMOP_References.html
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H atom hyperfine-B-level crossing 
Unit 8 Ch. 24 p15

Intro spin ½ coupling 
Unit 8 Ch. 24 p3

Hyperf. theory Ch. 24 p48.         

Intro 2p3p coupling 
Unit 8 Ch. 24 p17.          
Intro LS-jj coupling 
Unit 8 Ch. 24 p22.          

CG coupling derived (start) 
Unit 8 Ch. 24 p39.          

CG coupling derived (formula) 
Unit 8 Ch. 24 p44.          

Hyperf. theory Ch. 24 p48.   
Deeper theory ends p53        

Lande’ g-factor 
Unit 8 Ch. 24 p26.         

Irrep Tensor building 
Unit 8 Ch. 25 p5.          

Irrep Tensor Tables 
Unit 8 Ch. 25 p12.          

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

Wigner-Eckart tensor Theorem.    
Unit 8 Ch. 25 p17.          

Tensors Applied to high J levels.    
Unit 8 Ch. 25 p63.          

Intro 3-particle coupling.    
Unit 8 Ch. 25 p28.          

Intro 3,4-particle Young Tableaus   
GrpThLect29 p42.          

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

Int.J.Mol.Sci, 14, 714(2013),            QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 ,               QTCA Unit 7 Ch. 23-26 ),                         (PSDS - Ch. 5, 7 )

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,  
and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=15
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=15
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=3
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=15
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=48
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=48
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=22
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=22
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=39
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=39
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=44
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=44
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=53
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=53
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=26
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=26
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=5
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=5
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=12
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=12
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=63
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=63
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=28
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=28
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=42
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=42
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
https://modphys.hosted.uark.edu/markup/AMOP_References.html


Predrag Cvitanovic’s: Birdtrack Notation, Calculations, and Simplification
Chaos_Classical_and_Quantum_-_2018-Cvitanovic-ChaosBook

Group Theory - PUP_Lucy_Day_-_Diagrammatic_notation_-_Ch4
Simplification_Rules_for_Birdtrack_Operators_-_Alcock-Zeilinger-Weigert-zeilinger-jmp-2017

Group Theory - Birdtracks_Lies_and_Exceptional_Groups_-_Cvitanovic-2011
Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017

Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux’s: UMA method of vibrational induction
Quantum_Mechanics_Group_Theory_and_C60_-_Frank_Rioux_-_Department_of_Chemistry_Saint_Johns_U

Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux
Quantum_Mechanics-Group_Theory_and_C60_-_JChemEd-Rioux-1994

Group_Theory_Problems-_Rioux-_SymmetryProblemsX
Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & Experiment
Many Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017
Symmetry and Chirality - Continuous_Measures_-_Avnir

*
Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017

AMOP reference links (Updated list given on 2nd and 3rd  and 4th  pages of each class presentation) 

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,  
and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.
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https://modphys.hosted.uark.edu/ETC/MISC/Group_Theory-PUP_Lucy_Day_-_Diagrammatic_notation_-_Ch4.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Simplification_Rules_for_Birdtrack_Operators_-_Alcock-Zeilinger-Weigert-zeilinger-jmp-2017.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Group_Theory-Birdtracks_Lies_and_Exceptional_Groups_-_Cvitanovic-2011.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Birdtracks_for_SU-N_-_2017-Keppeler.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Quantum_Mechanics_Group_Theory_and_C60_-_Frank_Rioux_-_Department_of_Chemistry_Saint_Johns_U.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Quantum_Mechanics-Group_Theory_and_C60_-_JChemEd-Rioux-1994.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Group_Theory_Problems-_Rioux-_SymmetryProblemsX.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Molien_Sequences-1602.08774v1.pdf
https://modphys.hosted.uark.edu/ETC/MISC/High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Symmetry_and_Chirality_-_Continuous_Measures_-_Avnir.pdf
https://modphys.hosted.uark.edu/ETC/MISC/r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017.pdf
https://modphys.hosted.uark.edu/markup/AMOP_References.html


AMOP  
reference links 
 on pages 2-4

[2,1] tableau states lowered by L-=√2(E21+E32) 
       Top-(J,M) states            to mid-level states 
 ℓ=1 p=shell LS states combined to states of definite J  
J=3/2 at L=0  (4S),  J=5/2 at L=2  (2D)  
 C-G coupling; J=3/2 at L=2 (2D),    J=3/2 at L=1 (2P),     J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
         Slater functions for  J=5/2,                  J=3/2  (2D) 
         Slater functions for J=3/2 (2P),            J=1/2 (2P) 
 Summary of states and level connection paths  
         Symmetry dimension accounting 
Spin-orbit Hamiltonian matrix calculation       
Application to spin-orbit and entanglement break-up scattering            

4.25.18 class 26: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 



    M=2 M=1 M=0 M=-1 M=-2

E jk 2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(21)

1
(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 1

(32)

⋅ 2
(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 - 1

2

(31)
1
2

(32)

2
(21)

1
(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 3

2

(31)
3
2

(32)

⋅ ⋅ 1
(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 ⋅ ⋅ 1

(31)
1
2

(32)
3
2

(32)

1
(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ -1

(31)

⋅ 2
(21)

⋅ ⋅ 2
(22)

+ 1
(33)

1
(23)

3
23 ⋅ ⋅ ⋅ 1

2

(31)
3
2

(31)

1
(21)

1
(32)

1
(22)

+ 2
(33)

Lz ≡
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= (E11-E33) = 2v0

1

L−≡ 2
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E21 + E32 )=Lx− iLy= 2v=1

1

L+≡ 2
⋅ 1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E12+E23)=Lx+iLy=- 2v1

1

dipole (k=1)  
∠-momentum  
L-operators

[2,1] tableau states lowered by L-=√2(E21+E32)  =

L− M
L = (L+ M )(L− M +1) M−1

L

L− 2
2 = (2+ 2)(2− 2+1) 1

2 = 2 1
2

Start with top [2,1]-state: 

   2
2 =

2

1 1 = 2DM=2

Ejk-matrix 
Lect.23 
p.7-16      
and p.74       

Number of levels in fermionic spin-1/2 p3

U (6) ⊃U (3)×U (2)

N =

6
5
4
3
2
1

 =
120

6
= 20

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=7
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=74


    M=2 M=1 M=0 M=-1 M=-2

E jk 2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(21)

1
(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 1

(32)

⋅ 2
(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 - 1

2

(31)
1
2

(32)

2
(21)

1
(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 3

2

(31)
3
2

(32)

⋅ ⋅ 1
(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 ⋅ ⋅ 1

(31)
1
2

(32)
3
2

(32)

1
(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ -1

(31)

⋅ 2
(21)

⋅ ⋅ 2
(22)

+ 1
(33)

1
(23)

3
23 ⋅ ⋅ ⋅ 1

2

(31)
3
2

(31)

1
(21)

1
(32)

1
(22)

+ 2
(33)

Lz ≡
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= (E11-E33) = 2v0

1

L−≡ 2
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E21 + E32 )=Lx− iLy= 2v=1

1

L+≡ 2
⋅ 1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E12+E23)=Lx+iLy=- 2v1

1

dipole (k=1)  
∠-momentum  
L-operators

[2,1] tableau states lowered by L-=√2(E21+E32)  =

L− M
L = (L+ M )(L− M +1) M−1

L

L− 2
2 = (2+ 2)(2− 2+1) 1

2 = 2 1
2

Start with top [2,1]-state: 

   2
2 =

2

1 1 = 2DM=2

Ejk-matrix 
Lect.23 
p.7-16      
and p.74       

Number of levels in fermionic spin-1/2 p3

U (6) ⊃U (3)×U (2)

N =

6
5
4
3
2
1

 =
120

6
= 20

 p3  (Nitrogen)
4S   4-levels
2P  6-levels
2D  10-levels

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=7
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=74


    M=2 M=1 M=0 M=-1 M=-2

E jk 2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(21)

1
(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 1

(32)

⋅ 2
(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 - 1

2

(31)
1
2

(32)

2
(21)

1
(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 3

2

(31)
3
2

(32)

⋅ ⋅ 1
(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 ⋅ ⋅ 1

(31)
1
2

(32)
3
2

(32)

1
(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ -1

(31)

⋅ 2
(21)

⋅ ⋅ 2
(22)

+ 1
(33)

1
(23)

3
23 ⋅ ⋅ ⋅ 1

2

(31)
3
2

(31)

1
(21)

1
(32)

1
(22)

+ 2
(33)

Lz ≡
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= (E11-E33) = 2v0

1

L−≡ 2
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E21 + E32 )=Lx− iLy= 2v=1

1

L+≡ 2
⋅ 1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E12+E23)=Lx+iLy=- 2v1

1

dipole (k=1)  
∠-momentum  
L-operators

[2,1] tableau states lowered by L-=√2(E21+E32)  =

L− M
L = (L+ M )(L− M +1) M−1

L

L− 2
2 = (2+ 2)(2− 2+1) 1

2 = 2 1
2

Start with top [2,1]-state: 

   2
2 =

2

1 1 = 2DM=2

Ejk-matrix 
Lect.23 
p.7-16      
and p.74       

Number of levels in fermionic spin-1/2 p3

U (6) ⊃U (3)×U (2)

N =

6
5
4
3
2
1

 =
120

6
= 20

Number of levels in bosonic spin-1 p3

U (9) ⊃U (3)×U (3)

N = 9 ⋅10 ⋅11
3⋅2 ⋅1

= 3⋅5⋅11
1⋅1⋅1

 =165
 p3  (Nitrogen)
4S   4-levels
2P  6-levels
2D  10-levels

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=7
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=74


    M=2 M=1 M=0 M=-1 M=-2

E jk 2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(21)

1
(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 1

(32)

⋅ 2
(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 - 1

2

(31)
1
2

(32)

2
(21)

1
(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 3

2

(31)
3
2

(32)

⋅ ⋅ 1
(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 ⋅ ⋅ 1

(31)
1
2

(32)
3
2

(32)

1
(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ -1

(31)

⋅ 2
(21)

⋅ ⋅ 2
(22)

+ 1
(33)

1
(23)

3
23 ⋅ ⋅ ⋅ 1

2

(31)
3
2

(31)

1
(21)

1
(32)

1
(22)

+ 2
(33)

Lz ≡
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= (E11-E33) = 2v0

1

L−≡ 2
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E21 + E32 )=Lx− iLy= 2v=1

1

L+≡ 2
⋅ 1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E12+E23)=Lx+iLy=- 2v1

1

dipole (k=1)  
∠-momentum  
L-operators

[2,1] tableau states lowered by L-=√2(E21+E32)  =

L− M
L = (L+ M )(L− M +1) M−1

L

L− 2
2 = (2+ 2)(2− 2+1) 1

2 = 2 1
2

1
2 = 1

2 L− 2
2 = 1

2 2(E21 + E32 ) 2
1 1 = 1

2 2
1 2 + 1

2 3
1 1 = 2DM=1

Start with top [2,1]-state: 

   2
2 =

2

1 1 = 2DM=2

Ejk-matrix 
Lect.23 
p.7-16      
and p.74       

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=7
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=74


    M=2 M=1 M=0 M=-1 M=-2

E jk 2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(21)

1
(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 1

(32)

⋅ 2
(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 - 1

2

(31)
1
2

(32)

2
(21)

1
(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 3

2

(31)
3
2

(32)

⋅ ⋅ 1
(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 ⋅ ⋅ 1

(31)
1
2

(32)
3
2

(32)

1
(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ -1

(31)

⋅ 2
(21)

⋅ ⋅ 2
(22)

+ 1
(33)

1
(23)

3
23 ⋅ ⋅ ⋅ 1

2

(31)
3
2

(31)

1
(21)

1
(32)

1
(22)

+ 2
(33)

Lz ≡
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= (E11-E33) = 2v0

1

L−≡ 2
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E21 + E32 )=Lx− iLy= 2v=1

1

L+≡ 2
⋅ 1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E12+E23)=Lx+iLy=- 2v1

1

dipole (k=1)  
∠-momentum  
L-operators

[2,1] tableau states lowered by L-=√2(E21+E32)  =

L− M
L = (L+ M )(L− M +1) M−1

L

L− 2
2 = (2+ 2)(2− 2+1) 1

2 = 2 1
2

1
2 = 1

2 L− 2
2 = 1

2 2(E21 + E32 )
2
1 1 = 1

2 2
1 2 + 1

2 3
1 1 = 2DM=1

Orthogonal M=1 state: 2PM=1 = 1
1 = 1

2 2
1 2 − 1

2 3
1 1 = 2PM=1

Start with top [2,1]-state: 

   2
2 =

2

1 1 = 2DM=2

Ejk-matrix 
Lect.23 
p.7-16      
and p.74       

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=7
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=74


    M=2 M=1 M=0 M=-1 M=-2

E jk 2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(21)

1
(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 1

(32)

⋅ 2
(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 - 1

2

(31)
1
2

(32)

2
(21)

1
(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 3

2

(31)
3
2

(32)

⋅ ⋅ 1
(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 ⋅ ⋅ 1

(31)
1
2

(32)
3
2

(32)

1
(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ -1

(31)

⋅ 2
(21)

⋅ ⋅ 2
(22)

+ 1
(33)

1
(23)

3
23 ⋅ ⋅ ⋅ 1

2

(31)
3
2

(31)

1
(21)

1
(32)

1
(22)

+ 2
(33)

Lz ≡
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= (E11-E33) = 2v0

1

L−≡ 2
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E21 + E32 )=Lx− iLy= 2v=1

1

L+≡ 2
⋅ 1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2(E12+E23)=Lx+iLy=- 2v1

1

dipole (k=1)  
∠-momentum  
L-operators

[2,1] tableau states lowered by L-=√2(E21+E32)  =

L− M
L = (L+ M )(L− M +1) M−1

L

L− 2
2 = (2+ 2)(2− 2+1) 1

2 = 2 1
2

1
2 = 1

2 L− 2
2 = 1

2 2(E21 + E32 )
2
1 1 = 1

2 2
1 2 + 1

2 3
1 1 = 2DM=1

Orthogonal M=1 state: 2PM=1 = 1
1 = 1

2 2
1 2 − 1

2 3
1 1 = 2PM=1

Start with top [2,1]-state: 

   2
2 =

2

1 1 = 2DM=2

Ejk-matrix 
Lect.23 
p.7-16      
and p.74       

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=7
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=74


AMOP  
reference links 
 on pages 2-4

[2,1] tableau states lowered by L-=√2(E21+E32) 
       Top-(J,M) states            to mid-level states 
 ℓ=1 p=shell LS states combined to states of definite J  
J=3/2 at L=0  (4S),  J=5/2 at L=2  (2D)  
 C-G coupling; J=3/2 at L=2 (2D),    J=3/2 at L=1 (2P),     J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
         Slater functions for  J=5/2,                  J=3/2  (2D) 
         Slater functions for J=3/2 (2P),            J=1/2 (2P) 
 Summary of states and level connection paths  
         Symmetry dimension accounting 
Spin-orbit Hamiltonian matrix calculation       
Application to spin-orbit and entanglement break-up scattering            

4.25.18 class 26: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 
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https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=7
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-23-4.16.18.pdf#page=74
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Spin-orbit state assembly formula and Slater determinants 
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         Slater functions for J=3/2 (2P),            J=1/2 (2P) 
 Summary of states and level connection paths  
         Symmetry dimension accounting 
Spin-orbit Hamiltonian matrix calculation       
Application to spin-orbit and entanglement break-up scattering            

4.25.18 class 26: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 
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1 2
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↑ ↓
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1 3
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↑ ↓
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1
2
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↑ ↓ ↓
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1
2

−1
6

1
3

1↓
2↑
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−1
2

−1
6

1
3

1↓
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0 +2
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1
3

Note change in assembly matrix for two spin down… 
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↑ ↓
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↑ ↓
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1
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↑ ↓ ↓
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2↓
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1↑ 2↓
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2−1
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1↑ 3↓
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− 1− 0
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A −1
6
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A 1
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Note change in assembly matrix for two spin down… 
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J=3
2

3
2 =

1
2
3

↑↑↑ , 4S
J=3
2

1
2 =

1
2
3

↑↑↓ , 4S
J=3
2

−1
2 =

1
2
3

↑↓↓ , 4S
J=3
2

−3
2 =

1
2
3

↓↓↓

ℓ=1 p=shell LSJ states transformed to Slater determinants fromJ=

quartet  4S  J= 3
2 ,

 M J =
+3
2 , +1

2 , −1
2 , −3

2 . 

MJ=3/2,..
3/2 at L=0

Slater determinant state key: 
a=1↑,b=1↓,c=2↑,d=2↓,e=3↑,f=3↓ 
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Doublet  2D,  M=2:
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2

M=2,   µ= 1
2

1 1
2
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1 1
2

↑↓
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L=2,   S= 1
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2
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↑↑
↓ ,

L=2,   S= 1
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2
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↓

                   + 1

2
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↑↑
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2
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↑↓
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2
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↑↑
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↓ .
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1
2
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↑↑↓
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1
2
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1
2
3

↓↓↓ .

The ℓ=1 p=shell in a nutshell

• • • 
• • • 

• • • 
• • • (M=-1 row)



U(3)×U(2) approach: Coupling total orbit-L tableaus to total spin S tableaus

1 1
2
3

↑↑↑
↓ ,

1 1
2
3

↑↑↓
↓ ,

1 1
2
3

↑↓↓
↓

U(3): mℓ=+1: | 1 〉, mℓ=0: | 2 〉, mℓ=-1: | 3 〉 

U(2): ms=+½: | ↑ 〉, ms=-½: | ↓ 〉 

mL=+1 
mS=+1 

mL=+1 
mS=+0 

mL=+1 
mS=-1 

1 1
2 2

↑↑
↓↓ , 1 1

2 3
↑↑
↓↓ , 1 1

3 3
↑↑
↓↓ , 1 2

2 3
↑↑
↓↓ , 1 2

3 3
↑↑
↓↓ , 2 2

3 3
↑↑
↓↓ ,

mL=+2 
mS=+0 

mL=+1 
mS=+0 

mL=+0 
mS=+0 

mL=+0 
mS=+0 

mL=-1 
mS=+0 

mL=-2 
mS=+0 

3P spin-triplet

1D spin-singlet 
plus 

1S spin-singlet

An elementary development using U(6) combinations of so called Slater determinants is done first. 

These involve fairly complicated Sn-coupled U(3)×U(2) combinations that will be developed later. 

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by  
putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)
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U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (s=½, ℓ=1) tableaus
Six states of a single (s=½) electron in (ℓ=1) p-shell labeled by a to f. 
U (6) bases: a ≡ 1↑  , b ≡ 1↓  , c ≡ 2↑  , d ≡ 2↓  , e ≡ 3↑  , f ≡ 3↓{ }  
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Notational compaction:
1 ≡ −1, 2 ≡ −2, etc.
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p-shell Spin-orbit calculation


