$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Individual matrix components
Application to spin-orbit and entanglement break-up scattering

AMOP reference links (Updated list given on $2^{\text {nd }}$ and $3^{\text {rrd }}$ pages of each class presentation)

Web Resources - front page
 UAF Physics UTube channel

Quantum Theory for the Computer Age
2014 AMOP
Principles of Symmetry, Dynamics, and Spectroscopy
2017 Group Theory for QM
> Classical Mechanics with a Bang! > Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-imp-1973

Alternative Basis for the Theory of Complex Spectra

Alternative Basis for the Theory of Complex Spectra I - harter-pra-1973
Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976
Alternative Basis for the Theory of Complex Spectra III - patterson-harter-pra-1977
Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989 (Alt scan)
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989 (Alt scan)
III) Half-integral angular momentum - harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
QTCA Unit 10 Ch 30-2013
AMOP Ch 0 Space-Time Symmetry - 2019
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information displav. and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

AMOP reference links (Updated list given on $2^{\text {nd }}$ and $3^{\text {rd }}$ pages of each class presentation)
(Int.J.Mol.Sci, 14, 714(2013) p.755-774,
QTCA Unit 7 Ch. 23-26),
(PSDS - Ch. 5, 7)
Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch.23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

Intro spin $1 / 2$ coupling Unit 8 Ch. 24 p 3	Irrep Tensor building Unit 8 Ch. 25 p5.	Intro 3-particle coupling. Unit 8 Ch. 25 p28.
H atom hyperfine-B-level crossing Unit 8 Ch. 24 p15 Hyperf. theory Ch. 24 p48.	Irrep Tensor Tables Unit 8 Ch. 25 pl2.	Intro 3,4-particle Young Tableaus GrpThLect29 p42.
Hyperf. theory Ch. 24 p48. Deeper theory ends p53 Intro 2 p 3 p coupling Unit 8 Ch. 24 p17. Intro LS-jj coupling Unit 8 Ch. 24 p22.	Wigner-Eckart tensor Theorem. Unit 8 Ch. 25 p17. Tensors Applied to d,f-levels. Unit 8Ch. 25 p21.	Young Tableau Magic Formulae GrpThLect29 p46-48.
CG coupling derived (start) Unit 8 Ch. 24 p39.	Tensors Applied to high J levels. Unit 8 Ch. 25 p63.	
CG coupling derived (formula) Unit 8 Ch. 24 p44. Lande' g-factor Unit 8 Ch. 24 p26.		

AMOP reference links (Updated list given on $2^{\text {nd }}$ and $3^{\text {rd }}$ and $4^{\text {th }}$ pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification
Chaos Classical_and_Quantum_-_2018-Cvitanovic-ChaosBook
Group Theory - PUP_Lucy Day_-_Diagrammatic_notation_-_Ch4
Simplification_Rules_for_Birdtrack_Operators_-_Alcock-Zeilinger-Weigert-zeilinger-imp-2017
Group Theory - Birdtracks_Lies_and_Exceptional_Groups_-_Cvitanovic-2011
Simplification_rules_for_birdtrack_operators-_imp-alcock-zeilinger-2017
Birdtracks for SU(N) - 2017-Keppeler
Frank Rioux's: UMA method of vibrational induction
Quantum_Mechanics_Group_Theory_and_C60_-_Frank_Rioux_-_Department_of_Chemistry_Saint_Johns_U
Symmetry_Analysis_for_H20-_H2OGrpTheory_-_Rioux
Quantum_Mechanics-Group_Theory_and_C60 - JChemEd-Rioux-1994
Group_Theory_Problems-_Rioux-_SymmetryProblemsX Comment_on the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques \& Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016)
Hiah-resolution_spectroscopy_and_global_analysis_of_CF4 rovibrational_bands to model_its_atmospheric_absorption-_carlos-Boudon-igsrt-2017
Symmetry and Chirality - Continuous_Measures - Avnir

Special Topics \& Colloquial References

r-process_nucleosynthesis_from_matter_eiected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017

Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right), \mathrm{J}=5 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$), $\mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from J=3/2 (${ }^{4}$ S)
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P}), \quad \mathrm{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

2)

$M=2 \quad M=1$ M=0

1

$$
\left.L_{-}=\sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right)
$$

$\left.L_{-}\left|\begin{array}{l}L \\ M\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle$
Start with top [2,1]-state:
$\left.L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left.\sqrt{(2+2)(2-2+1)}\right|_{1} ^{2}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle$

$$
\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
\text { DI } \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

Number of levels in fermionic spin-1/2 p^{3}

$$
U(6) \supset U(3) \times U(2)
$$

$$
N=\frac{\begin{array}{c}
6 \\
5 \\
4 \\
2 \\
1
\end{array}}{\substack{6 \\
1}}=\frac{120}{6}=20
$$

$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
$M=2 \quad M=1$ M=0

$$
M=-1 \quad M=-2
$$

$$
L_{z} \equiv
$$

$$
L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
$$

$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle$
Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle$

$$
\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

Number of levels in fermionic spin-1/2 p^{3}

$$
\begin{aligned}
& U(6) \supset U(3) \times U(2) \\
& N=\frac{\begin{array}{c}
6 \\
5 \\
4
\end{array}}{4}=\frac{120}{6}=20 \\
& \mathrm{p}^{3} \text { (Nitrogen) } \\
& { }^{4} S \text { 4-levels } \\
& { }^{2} P \text { 6-levels } \\
& { }^{2} D \text { 10-levels }
\end{aligned}
$$

$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{2}\left(E_{21}+E_{32}\right)$
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2 \quad L_{z} \equiv$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{c}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\sqrt[(23)]{ }$ $\stackrel{(23)}{\sqrt{\frac{3}{2}}}$ $\sqrt[(12)]{2}$ $\sqrt{\frac{1}{2}}$.	$\begin{array}{cc} & (13) \\ . & -1 \\ (13) & \\ 1 & \text {. } \end{array}$. .
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{c}13 \\ 2\end{array}\right\|$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\begin{array}{ll} \begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(32)]{\frac{3}{2}} & \\ \hline \end{array} \\ \hline \end{array}$	$\begin{gathered} (11) \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & (13) \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & (31) \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\stackrel{(32)}{ }$ $\stackrel{(32)}{\frac{1}{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{2}$	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & \\ \hline & (22)(33) \\ \hline \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$. -	$\sqrt{\left.\frac{1}{2} 1\right)} \quad \stackrel{(31)}{\sqrt{\frac{3}{2}}}$	$\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$	$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle$
Start with top [2,1]-state:
$\left.L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left.\sqrt{(2+2)(2-2+1)}\right|_{1} ^{2}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle$
$\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}{[1]} \\ 2\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle$

Number of levels in fermionic spin-1/2 p^{3}
$U(6) \supset U(3) \times U(2)$

p^{3} (Nitrogen)
${ }^{4} S$ 4-levels
${ }^{2} P$ 6-levels
${ }^{2} D$ 10-levels

Number of levels in bosonic spin-1 p^{3} $U(9) \supset U(3) \times U(3)$
$N=\frac{9 \cdot 10 \cdot 11}{3 \cdot 2 \cdot 1}=\frac{3 \cdot 5 \cdot 11}{1 \cdot 1 \cdot 1}=165$
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

M=0

$$
L_{z} \equiv
$$

 1

$$
\left.L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right)
$$

$$
\begin{aligned}
& \left.L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left.\sqrt{(2+2)(2-2+1)}\right|_{1} ^{2}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
2 \\
D_{M=2}
\end{array}\right\rangle \\
& \left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}\right)+\left(E_{32}\right)\left|\frac{11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{112}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle
\end{aligned}
$$

$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
${ }_{M=2} \quad M=1$ $M=0$

$$
M=-1 \quad M=-2
$$

$$
\left.L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right)
$$

$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}\right)+\left(E_{32}\right)\left|\frac{11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right| \frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$

$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

$M=2 \quad M=1$ M=0

$E_{j k \text {-matrix }}(, 1$,
Lect. 23

- 1

$$
\left.L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right)
$$

$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\frac{1}{2} L_{-}\left|{ }_{2}^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{ll}{\left[\frac{11}{2}\right.} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 / 2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{111}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| \frac{12}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states \longrightarrow to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right), \mathrm{J}=5 / 2$ at $\mathrm{L}=2$ ($\left.{ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from J=3/2 (${ }^{4}$ S)
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P}), \quad \mathrm{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

$M=2 \quad M=1$ $M=0$

$|$| E_{j} |
| :--- |
| L |
| p |
| and |
| |
| L |

$\begin{aligned} & E_{j k-\text { matrix }} \\ & \begin{array}{l}\text { Lect.23 } \\ \text { p. } 7-16\end{array} \\ & \text { and } p .74\end{aligned}$
$L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}\cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}$
$\left(\begin{array}{l}L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}\cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{-1}^{1}\end{array}\right)$
$\left.L_{-}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\sqrt{(2+1)(2-1+1)}\right|_{1} ^{2}\right\rangle=\sqrt{6}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle$
$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$\left.\left.L_{-}\right|_{2} ^{2}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\frac{1}{2} L_{-}\right|_{2} ^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{l}\frac{111}{2} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|+\frac{1}{\sqrt{2}}\right| \frac{111}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|\left[-\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| \frac{1}{3}\right\rangle=\right|{ }^{2} P_{M=1}\right\rangle$
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{2}\left(E_{21}+E_{32}\right)$
$M=2 \quad M=1$
$M=0 \quad M=-1 \quad M=-2$
1

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left.\begin{array}{\|l\|l\|}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}13 \\ 2\end{array}\right\rangle$	$\left.\left.\right\|^{13} \begin{array}{l}13\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{\|l\|} \\ \\ 3\end{array}\right\rangle$	$\begin{aligned} \cdot & -1 \end{aligned} \mathbf{L}^{L \text {-oporators }}$	
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)(22) \\ 2+1 \end{gathered}$	$\begin{array}{cc}{ }^{(12)} \\ 1 & { }^{(23)} \\ 1\end{array}$	$\begin{array}{ll} \hline(\sqrt{(13)} \\ -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$.	$\begin{array}{ll} E_{j l-\text {-matrix }} & \\ \text { Lect. } 23 & L_{+} \equiv \sqrt{2} \end{array}\left(\begin{array}{ccc} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{v}=-\sqrt{2} \mathbf{v}_{1}^{1}$	
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$	(21)	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$	$\sqrt{(23)} \sqrt{\frac{1}{2}}$ (23) ${ }^{\frac{1}{2}}$	${ }_{-1}^{(13)}$		$\begin{aligned} & p \cdot 7-16 \\ & \text { and } p \cdot 74 \end{aligned}$	
$\left\|\begin{array}{l}11 \\ 3\end{array}\right\|$	$\stackrel{(32)}{1}$	$\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\sqrt{(12)}$	$\stackrel{11}{13)}^{1}$		$L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{array}=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right.$	
$\left\langle\begin{array}{l}12 \\ 3\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \end{aligned}$	$\begin{array}{ll} \sqrt[(32)]{\frac{1}{2}} & \sqrt[(21)]{2} \\ \hline \end{array}$	$\begin{gathered} (11)^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} (23) \\ \sqrt{\frac{1}{2}} & (12) \\ \hline \end{array}$	${\sqrt{\frac{131}{13}}{ }^{\frac{1}{2}}}^{\text {a }}$		
$\left\langle\begin{array}{l}\langle 13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & \sqrt{\frac{3}{2}} \end{aligned}$	$\sqrt{\frac{132)}{3}}$	$\begin{gathered} (11)^{(22)} \\ 1+1+1 \end{gathered}$	$\begin{aligned} & (23) \\ & \sqrt{\frac{3}{2}} \end{aligned}$	${ }^{(13)}{ }^{\frac{3}{2}}$	$\left.L_{-}\left\|\begin{array}{l} 2 \\ 1 \end{array}\right\rangle=\left.\sqrt{(2+1)(2-1+1)}\right\|_{1} ^{2}\right\rangle=\sqrt{6}\left\|\begin{array}{l} 2 \\ 0 \end{array}\right\rangle$	
$\left\langle\begin{array}{l}13 \\ 3\end{array}\right\|$		${ }_{1}^{(31)}$		$\begin{gathered} (11) \\ 1+23) \end{gathered}$	${ }_{1}^{(12)}$	$\left.\left.\left\|\begin{array}{l} 2 \\ 0 \end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}^{2} \begin{array}{l} 2 \\ 1 \end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(\\| \frac{1 \mid 2]}{[2]}\right\rangle+\left\|\frac{11]}{3}\right\rangle\right)$	
$\left\langle\begin{array}{l}22 \\ 3\end{array}\right\|$		(31) -1	$\sqrt{(21)}$	$\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	${ }^{(23)} 1$		
$\left.\underline{4} \begin{aligned} & 23 \\ & 3\end{aligned} \right\rvert\,$			$\begin{array}{ll} \hline \sqrt[31)]{(31)} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{3}{2}} \\ \hline \end{array}$	(21) 1 1	$\begin{gathered} \left(\begin{array}{l} (22)(3) \\ 1+2) \end{array}\right. \\ \hline 103 \end{gathered}$		

$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\frac{1}{2} L_{-}\right|_{2} ^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{l}\frac{11}{2} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|+\frac{1}{\sqrt{2}}\right| \frac{11}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right| \begin{array}{l}2\end{array}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
$M=2 \quad M=1$
$M=0 \quad M=-1 \quad M=-2$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{\|l\|}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{\|l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)(22) \\ 2+1 \end{gathered}$	$\stackrel{(12)}{1} \stackrel{1}{13}$	$\begin{array}{\|l\|l\|} \hline(13) \\ -\sqrt{\frac{1}{2}} \end{array}$	$\begin{array}{\|c\|l\|l\|l\|l\|} \frac{13}{2} \end{array}$			
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	$\begin{gathered} (21) \\ 1 \\ (32) \\ 1 \end{gathered}$	$\begin{array}{cc} (11))^{(22)} \\ 1+2 & \cdot \\ & \cdot \\ \cdot & (11) \\ 2+13) \end{array}$	$\begin{aligned} & \begin{array}{l} (23) \\ \sqrt{\frac{1}{2}} \\ \sqrt[(12)]{2} \\ \sqrt{2} \end{array} \end{aligned}$	$\begin{array}{\|c} (23) \\ \sqrt{\frac{3}{2}} \end{array}$	$\stackrel{11}{13)}^{1}$	$\begin{aligned} & { }^{(133)} \\ & -1 \end{aligned}$	
$\begin{aligned} & \left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 13 \\ 2 \end{array}\right\| \end{aligned}$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{3}} \\ & \sqrt{\frac{3}{2}} \end{aligned}$		$\begin{gathered} (11){ }^{(22)} \\ 1+1 \end{gathered}{ }^{(3)}$	$\text { (11) }{ }^{(22)}(33)$ $1+1+1$	$\begin{aligned} & (23) \\ & \sqrt{\frac{123}{2}} \\ & (23) \\ & \sqrt{\frac{3}{2}} \end{aligned}$	$\begin{array}{\|c} (12) \\ \sqrt{2} \end{array}$	$\begin{aligned} & \mathbf{c}_{(13)}^{\sqrt{2}} \\ & \sqrt[(13)]{(13)} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\|$		(31) \cdot 1 (31) -1 .	$\begin{aligned} & (\sqrt[32)]{(2)} \\ & \sqrt{\frac{1}{2}} \\ & (21) \\ & \sqrt{2} \end{aligned}$	$\begin{aligned} & \sqrt[322]{\sqrt{2}} \\ & \sqrt{\frac{1}{2}} \end{aligned}$	$\begin{gathered} (11) \\ 1+23) \end{gathered}$	$\begin{gathered} (22)^{(33)} \\ 2+1 \end{gathered}$	$\begin{gathered} (12) \\ 1 \\ (23) \\ \left(\begin{array}{c} (23) \end{array}\right. \end{gathered}$
$\left[\left.\begin{array}{l}23 \\ 3\end{array} \right\rvert\,\right.$			$\begin{aligned} & \sqrt[311]{\sqrt{\frac{1}{2}}} \end{aligned}$	$\begin{array}{r} \begin{array}{l} (311 \\ \sqrt{\frac{3}{2}} \\ \hline \end{array} \\ \hline \end{array}$	$\stackrel{(21)}{1}$	$\begin{gathered} (322) \\ 1 \end{gathered}$	$\begin{gathered} (22){ }^{(33)} \\ 1+2 \end{gathered}$

$$
\begin{array}{ll}
E_{j k-\text { matrix }} \\
\text { Lect. } 23 \\
\text { p. } \underline{7-16} \\
\text { and } p .74
\end{array} \quad L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}
$$

$$
\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
\left.\left.L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left.\sqrt{(2+2)(2-2+1)}\right|_{1} ^{2}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left.\right|^{2} D_{M=2}\right\rangle
$$

$$
\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{111}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 / 2]}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{111}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle
$$

Orthogonal $M=1$ state: $\left.\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 /[2]}{2}\right\rangle\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{1 \pi}{3}\right\rangle|=|{ }^{2} P_{M=1}\right\rangle$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l} \\ 13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	$\begin{gathered} (21) \\ 1 \\ (32) \\ \left(\begin{array}{c} (32) \end{array}\right. \end{gathered}$	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11){ }^{(33)} \\ 2+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\frac{1}{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	(13) -1 (13) 1	.
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{gathered} \left(\frac{31)}{}\right. \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\frac{\binom{(32)}{\sqrt{\frac{1}{2}}}}{\binom{(21)}{\sqrt{2}}}$	$\begin{gathered} (11){ }^{(22)} \\ 1+1+13) \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	(31) (31) -1	$\begin{aligned} & (32) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(21)]{(21)} \\ & \sqrt{2} \end{aligned}$ $\sqrt[(32)]{\sqrt{\frac{3}{2}}}$	$\begin{gathered} (11){ }^{(33)} \\ 1+2 \end{gathered}$ $\begin{gathered} (22){ }^{(33)} \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$. .	$\sqrt{\frac{1}{2}} \quad \sqrt{(31)}{ }^{\frac{3}{2}}$	$\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\begin{array}{ll}
E_{j k} \text {-matrix } \\
\begin{array}{l}
\text { Lect. } 23 \\
\text { p. } \\
\text { and } p .74
\end{array} & L_{+} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}
\end{array}
$$

 1
 $\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{l}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\frac{1}{2} L_{-}\right|_{2} ^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{l}\frac{11}{2} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|+\frac{1}{\sqrt{2}}\right| \frac{11}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=l$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right| \begin{array}{l}2\end{array}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{c}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{c}11 \\ 3\end{array}\right\|$	$\begin{gathered} (21) \\ 1 \\ (32) \\ { }^{(32)} \end{gathered}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \\ 2+1 \end{gathered}$	(23) $\sqrt[(23)]{\sqrt{\frac{(23)}{2}}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \text {. } \end{array}$. .
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ \sqrt[(31)]{\frac{3}{2}} \end{gathered}$	$\frac{\binom{(32)}{\sqrt{\frac{1}{2}}}}{\left(\begin{array}{l} (21) \\ \sqrt{2} \\ \left(\sqrt{\frac{(32)}{2}}\right. \end{array}\right)}$		$\sqrt[(23)]{\sqrt{2}}$ $\sqrt[(12)]{2}$ $\sqrt[(23)]{\frac{3}{2}}$	$\begin{aligned} & \hline(13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	(31) (31) -1	$\stackrel{(32)}{ }$ $\stackrel{(32)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{2}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22))^{(33)} \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{\frac{(31)}{2}}$ (31) ${ }^{\frac{3}{\frac{3}{2}}}$	$\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$	$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Lect. } 23 \\
p \cdot \underline{7-16} \\
\text { and } p \cdot 74
\end{array} & L_{+} \equiv \sqrt{2}\left(\begin{array}{ll}
\cdot & \cdot \\
\cdot & 1 \\
\cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}
\end{array}
$$

$$
\left.L_{-}\left|\begin{array}{c}
L \\
M
\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{|l|}
\hline 10 \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

$$
\left.\left.\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| \frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| 1|c|{ }^{2} D_{M=1}\right\rangle
$$

Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| 2 \right\rvert\,$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(E_{j k}\) \& \(\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle\) \& \(\left|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left|\begin{array}{l}11 \\ 3\end{array}\right\rangle\) \& \(\left|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left|\begin{array}{c}13 \\ 2\end{array}\right\rangle\) \& \(\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left|\begin{array}{c}22 \\ 3\end{array}\right\rangle\) \& \(\left|\begin{array}{l}23 \\ 3\end{array}\right\rangle\) \\
\hline \(\left\langle\begin{array}{l}11 \\ 2\end{array}\right|\) \& (11) \({ }^{(22)}\)
\(2+1\) \& \(\begin{array}{cc}(12) \& (23) \\ 1 \& 1\end{array}\) \& \[
\begin{array}{ll}
-\sqrt{\frac{1}{2}} \& \sqrt[(13)]{\frac{3}{2}}
\end{array}
\] \& . . \& \\
\hline \(\left\langle\begin{array}{c}12 \\ 2\end{array}\right|\)
\(\left\langle\begin{array}{c}11 \\ 3\end{array}\right|\) \& \[
\begin{gathered}
(21) \\
1 \\
(32) \\
\left(\begin{array}{c}
(32)
\end{array}\right.
\end{gathered}
\] \& \[
\begin{gathered}
(11)(22) \\
1+2
\end{gathered}
\]
\[
\begin{gathered}
(11))^{(33)}
\end{gathered}
\] \& \begin{tabular}{lc}
\(\stackrel{(23)}{ }\) \& \(\stackrel{(23)}{\frac{1}{2}}\) \\
\(\sqrt[(12)]{\frac{3}{2}}\) \\
\(\sqrt{2}\) \& \\
\hline
\end{tabular} \& \[
\begin{array}{cc}
\& (13) \\
\cdot \& -1 \\
(13) \& \\
1 \& \cdot
\end{array}
\] \& - \\
\hline \(\left\langle\begin{array}{c}12 \\ 3\end{array}\right|\)

$\left\langle\begin{array}{c}13 \\ 2\end{array}\right|$ \& \[
$$
\begin{aligned}
& (31) \\
& -\sqrt{\frac{1}{2}} \\
& \sqrt[(31)]{\sqrt{\frac{3}{2}}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \binom{(32)}{\sqrt{\frac{1}{2}}}
\end{aligned}
$$\left($$
\begin{array}{l}
(21) \\
\sqrt{2} \\
)
\end{array}
$$\right.

\] \& \[

$$
\begin{array}{cc}
\begin{array}{c}
(11){ }^{(22)}(33) \\
1+1+1
\end{array} & . \\
& \\
& \\
\text { (11) }(22)(33) \\
(2+1+1
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
(23) & (12) \\
\sqrt{\frac{1}{2}} & \sqrt{2} \\
\sqrt[(23)]{2} & \\
\sqrt{\frac{3}{2}} & \cdot
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& (13) \\
& \sqrt{\frac{1}{2}} \\
& (13) \\
& \sqrt{\frac{3}{2}}
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& \left\langle\begin{array}{c}
13 \\
3
\end{array}\right| \\
& \left\langle\begin{array}{c}
22 \\
3
\end{array}\right|
\end{aligned}
$$ \& - \& \[

$$
\begin{array}{cc}
& { }^{(31)} \\
\cdot & 1 \\
(31) & \\
-1 & .
\end{array}
$$

\] \& | $\sqrt[(32)]{ }$ | $\sqrt[(32)]{\sqrt{2}}$ |
| :---: | :---: |
| $\sqrt{\frac{3}{2}}$ | |
| $\sqrt{2}$ | | \& \[

$$
\begin{gathered}
(11) \\
1+2
\end{gathered}
$$
\]

\[
$$
\begin{gathered}
(22)(33) \\
2+1
\end{gathered}
$$

\] \& | (12) |
| :--- |
| 1 |
| (23) |
| 1 |

\hline $\left\langle\begin{array}{c}23 \\ 3\end{array}\right|$ \& \& . . \& $\sqrt{(31)}$ ل \& $\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$ \& $$
\begin{gathered}
(22) \\
1+2
\end{gathered}
$$

\hline
\end{tabular}

$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{l}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$

Orthogonal $M=1$ state: $\left.\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\left\langle\left.\frac{1}{\sqrt{2}} \right\rvert\, \frac{1[1]}{2}\right\rangle\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{101}{3}\right\rangle|=|{ }^{2} P_{M=1}\right\rangle$

Orthogonal $(\mathrm{L}=1, M=0)$ state: $\left.\frac{-1}{2}\left|\frac{[12}{3}\right\rangle+\frac{\sqrt{3}}{2}\left|\frac{1}{2}\right| \frac{13}{2}\right\rangle=\left|{ }^{2} P_{M=0}\right\rangle=\left|\begin{array}{l}1 \\ 0\end{array}\right\rangle$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$-\sqrt[(13)]{-\sqrt{\frac{1}{2}}} \quad \sqrt[(13)]{\frac{3}{2}}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	(13) -1 (13) 1	${ }^{\cdot}$
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{\frac{3}{2}}} \end{aligned}$	$\begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (32) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{cc}\stackrel{(23)}{\sqrt{\frac{1}{2}}} & \sqrt[(12)]{2} \\ \sqrt{(23)} & \\ \sqrt{\frac{3}{2}} & .\end{array}$	$\begin{aligned} & \hline \sqrt[(13)]{\sqrt{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\binom{(21)}{\sqrt{2}}$ \cdot	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{(31)} \sqrt{\frac{1}{2}} \quad \sqrt{(31)}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\left.L_{-}\left|\begin{array}{c}
L \\
M
\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{|l|}
\hline 1 \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

$$
\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{1 \mid 1}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 \mid 2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1 \mid 1}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle
$$

Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| 2 \right\rvert\,$

$$
L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{(2+0)(2-0+1)}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle
$$

$$
\left.\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{c}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1}{3}\right| \frac{2}{3}\right\rangle+\frac{1}{2}\left|\frac{1 \mid 3}{2}\right\rangle\right)
$$

$$
\begin{aligned}
& L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{(2+1)(2-1+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle \\
& \left.\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(| | \frac{1 \mid 2}{2}\right\rangle+\left|\frac{1 \mid 1}{3}\right\rangle\right) \\
& =\frac{1}{\sqrt{6}}\left(E_{21}\left|\frac{1-2}{2}\right\rangle+E_{21}\left|\frac{1] 1}{3}\right\rangle+E_{32}\left|\frac{1-2}{2}\right\rangle+E_{32}\left|\frac{1-1}{3}\right\rangle\right) \\
& \left.=\frac{1}{\sqrt{6}}\left(0\left|\frac{1 \mid 2}{2}\right\rangle+\sqrt{2}\left|\frac{1 \mid 2}{3}\right\rangle+\sqrt{\frac{1}{2}}\left|\frac{1}{\frac{1}{3}}\right| \frac{2}{3}\right\rangle+\sqrt{\frac{3}{2}}\left|\frac{1-3}{2}\right\rangle+0\left|\frac{1-1]}{\frac{1}{3}}\right\rangle\right)
\end{aligned}
$$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$-\sqrt[(13)]{-\sqrt{\frac{1}{2}}} \quad \sqrt[(13)]{\frac{3}{2}}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	(13) -1 (13) 1	${ }^{\cdot}$
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{\frac{3}{2}}} \end{aligned}$	$\begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (32) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{cc}\stackrel{(23)}{\sqrt{\frac{1}{2}}} & \sqrt[(12)]{2} \\ \sqrt{(23)} & \\ \sqrt{\frac{3}{2}} & .\end{array}$	$\begin{aligned} & \hline \sqrt[(13)]{\sqrt{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\binom{(21)}{\sqrt{2}}$ \cdot	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{(31)} \sqrt{\frac{1}{2}} \quad \sqrt{(31)}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\left.L_{-}\left|\begin{array}{c}
L \\
M
\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{|l|}
\hline 1 \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

$$
\left.\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| \frac{1}{2}\right\rangle \left.+\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| 1 \right\rvert\,
$$

Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| 2 \right\rvert\,$

$$
L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{(2+0)(2-0+1)}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle
$$

$$
\left.\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1 \mid 2}{3}\right\rangle+\frac{1}{2}\left|\frac{1}{2}\right| \frac{3}{2}\right\rangle\right)
$$

$$
\left.=\frac{1}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}\left|\frac{\sqrt{2}}{1}\right| \frac{2}{3}\left|\frac{2}{3}\right\rangle+0\left|\frac{2}{2}\right\rangle+\frac{\sqrt{3}}{2}\left|\sqrt{\frac{1}{2}}\right| \frac{1}{3}\right\rangle+\frac{1}{2}\left|\sqrt{\frac{3}{2}}\right| \frac{1}{3}\left|{ }^{3}\right\rangle\right)
$$

$$
\begin{aligned}
& L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{(2+1)(2-1+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle \\
& \left.\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(| | \frac{1 \mid 2}{2}\right\rangle+\left|\frac{1 \mid 1}{3}\right\rangle\right) \\
& =\frac{1}{\sqrt{6}}\left(E_{21}\left|\frac{1-2}{2}\right\rangle+E_{21}\left|\frac{1] 1}{3}\right\rangle+E_{32}\left|\frac{1-2}{2}\right\rangle+E_{32}\left|\frac{1-1}{3}\right\rangle\right) \\
& \left.=\frac{1}{\sqrt{6}}\left(0\left|\frac{1 \mid 2}{2}\right\rangle+\sqrt{2}\left|\frac{1 \mid 2}{3}\right\rangle+\sqrt{\frac{1}{2}}\left|\frac{1}{\frac{1}{3}}\right| \frac{2}{3}\right\rangle+\sqrt{\frac{3}{2}}\left|\frac{1-3}{2}\right\rangle+0\left|\frac{1-1]}{\frac{1}{3}}\right\rangle\right)
\end{aligned}
$$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$-\sqrt[(13)]{-\sqrt{\frac{1}{2}}} \quad \sqrt[(13)]{\frac{3}{2}}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	(13) -1 (13) 1	${ }^{\cdot}$
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{\frac{3}{2}}} \end{aligned}$	$\begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (32) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{cc}\stackrel{(23)}{\sqrt{\frac{1}{2}}} & \sqrt[(12)]{2} \\ \sqrt{(23)} & \\ \sqrt{\frac{3}{2}} & .\end{array}$	$\begin{aligned} & \hline \sqrt[(13)]{\sqrt{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\binom{(21)}{\sqrt{2}}$ \cdot	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{(31)} \sqrt{\frac{1}{2}} \quad \sqrt{(31)}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\begin{aligned}
& \left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \\
& \text { Start with top [2,1]-state: } \\
& L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
1 \\
2
\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle
\end{aligned}
$$

Orthogonal $M=1$ state: $\left.\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\left\langle\left.\frac{1}{\sqrt{2}} \right\rvert\, \frac{1[1]}{2}\right\rangle\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{101}{3}\right\rangle|=|{ }^{2} P_{M=1}\right\rangle$

$$
\text { Orthogonal (L=1,M=0) state: } \quad \frac{-1}{2}\left|\frac{1012}{3}\right\rangle+\frac{\sqrt{3}}{2}\left|\frac{1[\sqrt{3}}{2}\right\rangle=\left|{ }^{2} P_{M=0}\right\rangle=\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle
$$

$$
\left.\left.L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\left.\sqrt{(2+0)(2-0+1)}\right|_{0} ^{2}\right\rangle=\left.\sqrt{6}\right|_{-1} ^{2}\right\rangle
$$

$$
\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1 \sqrt{2}}{3}\right\rangle+\frac{1}{2}\left|\frac{\square \sqrt{3}}{2}\right\rangle\right)
$$

$$
\begin{aligned}
& L_{+} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right]=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1} \\
& \left.\left.\left.\left.L_{-}\right|_{1} ^{2}\right\rangle=\left.\sqrt{(2+1)(2-1+1)}\right|_{1} ^{2}\right\rangle=\left.\sqrt{6}\right|_{0} ^{2}\right\rangle \\
& \left.\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\left.\frac{1}{\sqrt{6}} L_{-}\right|_{1} ^{2}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(\left|\frac{1-12}{2}\right\rangle+\left|\frac{\square 11}{2}\right\rangle\right)
\end{aligned}
$$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { [13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\left\langle\begin{array}{c}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{c}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\frac{1}{2}}$ $\sqrt[(12)]{\frac{3}{2}}$ $\sqrt{2}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \text {. } \end{array}$.
$\left\langle\begin{array}{l}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$		$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt[(13)]{\frac{1}{2}} \\ & (\sqrt{(13)}) \\ & \sqrt[3]{2} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\left(\begin{array}{l}(21) \\ \sqrt{2}\end{array}\right.$ \square	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\begin{array}{ll} \sqrt[(31)]{\sqrt{2}} & \sqrt[(31)]{\frac{3}{2}} \end{array}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$\left.L_{-}\left|\begin{array}{l}L \\ M\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle$
Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{l}\mid 11 \\ \frac{1}{2}\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{1 \mid 11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 \mid 2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| 1 \right\rvert\,$
Orthogonal $M=1$ state: $\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\left\langle\frac{1}{\sqrt{2}}\right| \frac{1}{2}\left|\frac{1}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|\begin{array}{l}\left.\frac{1}{3} \right\rvert\, 1 \\ 3\end{array}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$

Bottom [2,1]-state:
$\left|\begin{array}{c}2 \\ -2\end{array}\right\rangle=\left|\begin{array}{l}2 \sqrt{2} \\ 3\end{array}\right\rangle=\left|{ }^{2} D_{M=-2}\right\rangle$
Bottom [3,0]-state:
$\left|\begin{array}{l}0 \\ 0\end{array}\right\rangle=\left|\begin{array}{ll}\frac{1}{2} & \\ \frac{2}{3} & { }^{4} S_{M=0}\end{array}\right\rangle$
 Orthogonal $(\mathrm{L}=1, M=0)$ state: $\left.\quad \frac{-1}{2}\left|\frac{11[2}{3}\right\rangle+\frac{\sqrt{3}}{2}\left|\frac{1-1}{2}\right| \frac{2}{2}\right\rangle=\left|{ }^{2} P_{M=0}\right\rangle=\left|\begin{array}{l}1 \\ 0\end{array}\right\rangle$ $L_{-}\left|\begin{array}{l}2 \\ 0\end{array}\right\rangle=\sqrt{(2+0)(2-0+1)}\left|\begin{array}{l}2 \\ 0\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{c}2 \\ -1\end{array}\right\rangle$

$$
\left.\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{c}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1}{1 \mid 2}\right| \frac{1}{3}\right\rangle+\frac{1}{2}\left|\frac{1 \mid 3}{2}\right\rangle\right)
$$

$$
\left.\left.\left.=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{3}{2}}\left|\frac{2}{3}\right| \begin{array}{l}
2 \\
3
\end{array}\right\rangle+\sqrt{\frac{3}{2}}\left|\frac{1}{3}\right| \frac{3}{3}\right\rangle\right)=\frac{1}{\sqrt{2}}\left|\frac{2}{3}\right| \frac{2}{3}\right\rangle \left.+\frac{1}{\sqrt{2}}\left|\frac{1[3}{3}\right\rangle=\left|{ }^{2} D_{M=-1}\right\rangle=\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle \right\rvert\,
$$

Orthogonal (L=1, $M=0$) state: $\left.\left.\left\langle\left.\frac{-1}{\sqrt{2}} \right\rvert\, \frac{|2| 2}{3}\right\rangle\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| \begin{array}{c}3 \\ 3\end{array}\right\rangle=\left|{ }^{2} P_{M=-1}\right\rangle=\left|\begin{array}{c}1 \\ -1\end{array}\right\rangle$
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from J=3/2 (${ }^{4}$ S)
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P}), \quad \mathrm{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=3 / 2$ at $\mathrm{L}=0$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$), $\mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P}), \quad \mathrm{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

$$
\ell=1 p=\text { shell LS states combined to states of definite } \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2
$$

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2\left({ }^{2} \mathrm{D}\right)
$$

C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$), $\mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
$\begin{array}{ll}\text { Slater functions for } \mathrm{J}=5 / 2, & \mathrm{~J}=3 / 2\left({ }^{2} \mathrm{D}\right) \\ \text { Slater functions for } \mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), & \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)\end{array}$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering

$$
\ell=1 p=\text { shell } \mathrm{LS} \text { states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=2
$$

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$\left|{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\sqrt{\frac{4}{5}}\left|d_{M=2}^{L=2} \chi_{-1 / 2}^{1 / 2}\right\rangle-\sqrt{\frac{1}{5}}\left|d_{M=1}^{L=2} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad$ Doublet ${ }^{2} D, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2}$
$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$$
\begin{aligned}
& \left.{ }^{2} D_{J=\frac{3}{2}} \frac{\frac{3}{2}}{2}\right)=\sqrt{\frac{1}{5}}\left(d_{M=2}^{L=2} \chi_{-1 / 2}^{1 / 2}\right)-\sqrt{\frac{1}{5}}\left(d_{M=1}^{L=2} \chi_{+1 / 2}^{1 / 2}\right) \quad \quad \text { Doublet }^{2} D, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2}
\end{aligned}
$$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right)$ Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from J=3/2 (${ }^{4}$ S)
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P}), \quad \mathrm{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

$$
\left|\begin{array}{l}
{ }^{2} P_{J=\frac{3}{2}}^{\frac{3}{2}}
\end{array}\right\rangle=\underline{\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle} \quad \begin{aligned}
& \ell=\text { shell LS states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& \mathrm{MJ}_{\mathrm{J}}=3 / 2
\end{aligned}
$$

$\begin{array}{r\|r\|} 1 \times 1 / 2 & \begin{array}{r} 3 / 2 \\ +3 / 2 \\ \hline+1+1 / 2 \\ \hline \end{array} \\ \hline \end{array}$	$3 / 2$ $1 / 2$ $+1 / 2$ $+1 / 2$		
+1 1 0 0	$\begin{array}{cc}1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
	$0-1 / 2$ $-1+1 / 2$	$\begin{array}{lr}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$$
\begin{aligned}
& \left.\left.\left\lvert\,{ }^{2} P_{J=3}{ }^{\frac{3}{2}}\right.\right)+\mid p^{L=1} \chi^{1 / 2}\right)=1 p=\text { shell LS states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\underline{\left.p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle} \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=3 / 2 \\
& =\|\left[\begin{array}{lllllll}
\sqrt{\frac{1}{2}} & \frac{1}{2} & 2 & \uparrow \uparrow & \downarrow & -\sqrt{\frac{1}{2}} & 1 \\
\hline 2 & 1 & \uparrow \uparrow \\
\hline
\end{array}\right]
\end{aligned}
$$

$\begin{gathered} 1 \times 1 / 2 \sqrt{3 / 2}+3 / 2 \\ +1+1 / 2 \end{gathered}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ +1 / 2 & +1 / 2\end{array}$		
$+1-1 / 2$ $0+1 / 2$	$\begin{array}{cc}1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}$	$\begin{array}{\|rr\|}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
	\|r $\begin{array}{r}0-1 / 2 \\ -1+1 / 2\end{array}$	$\begin{array}{cc}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$$
\begin{aligned}
& \left.\left|{ }_{2} P^{3} \quad \underline{3}\right|=\mid n^{L=1} \gamma^{1 / 2}\right)^{\ell=1} p=\text { shell LS states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\underline{p_{M=1}^{L=1} \chi_{+1 / 2}} \chi^{1 / 2} \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2 \\
& =\left\lvert\,\left[\begin{array}{lllllll}
\sqrt{\frac{1}{2}} & 1 & 2 & \uparrow \uparrow \\
\hline 2 & \downarrow & -\sqrt{\frac{1}{2}} & 1 & 1 & 1 & \uparrow \uparrow \\
3 & \downarrow & \downarrow
\end{array}\right]\right.
\end{aligned}
$$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P}), \quad \mathrm{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation Application to spin-orbit and entanglement break-up scattering

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{ll}
2_{p} & 3
\end{array}\right.\right\lrcorner_{n} L=1 \quad l=1 \quad p=\text { shell LS states combined to states of definite } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}} \frac{3}{2}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.=\sqrt{\frac{1}{6}} \frac{1}{2} 2^{2} \uparrow \downarrow-\sqrt{\frac{1}{6}} \frac{1}{3} \frac{1}{3} \uparrow \downarrow \quad-\sqrt{\frac{1}{6}} \frac{1}{3}\right]^{2} \uparrow \uparrow+\frac{1}{\sqrt{2}} \frac{1}{2}\right]^{3} \uparrow \uparrow \\
& \left|{ }^{2} P_{J=\frac{1}{2}} \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}} \left\lvert\, \underline{\left.p_{M=1}^{L=1} \chi_{-1 / 2}^{1 / 2}\right\rangle-\sqrt{\frac{1}{3}}\left|p_{M=0}^{L=1} \chi_{+12}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{1}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\right|_{2_{D}} \quad\right\}_{-1}\right\rangle_{1=1}^{\ell=1}{ }^{\ell=1} p=\text { shell LS states combined to states of definite } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& { }^{2} P_{J=\frac{3}{2}} \frac{3}{2}=\left|p_{M=1}^{L=1} 1_{+1 / 2}^{1 / 2}\right\rangle \quad \operatorname{Doublet}^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{ll}
2_{p} & 3
\end{array}\right.\right\lrcorner_{n} L=1 \quad l=1 \quad p=\text { shell LS states combined to states of definite } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& { }^{2} P_{J=\frac{3}{2}} \frac{3}{2}=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \operatorname{Doublet}^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering

Introducing atomic spin-orbit state assembly formula and Slater determinants

Example :

Slater
determinants

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow)on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number(s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

The simplest assembly:

$\left(\mathrm{S}_{3}\right) *(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
\rightarrow The simplest assembly (Detailed)
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{P}$)
Application to spin-orbit and entanglement break-up scattering

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\begin{gathered}
12 \frac{\left\lvert\, \begin{array}{|c}
\downarrow \\
\downarrow
\end{array}\right.}{\left(\frac{|1,2\rangle+|2,1\rangle}{\sqrt{2}}\right)\left(\frac{|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle}{\sqrt{2}}\right)}
\end{gathered}
$$

The simplest assembly:

> 12 | 1 |
| :--- |

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle)
$$

$$
\begin{gathered}
\frac{1}{\frac{1}{2}} \uparrow \downarrow \\
\left(\frac{|1,2\rangle-|2,1\rangle}{\sqrt{2}}\right)\left(\frac{|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle}{\sqrt{2}}\right)
\end{gathered}
$$

The simplest assembly:

	1.2$\frac{\uparrow}{\downarrow}$	$\frac{1}{2}$ T \downarrow
$1 \uparrow$	1	$\sqrt{1}$
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1 $1 \downarrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\begin{aligned}
& 1\left|2 \cdot \frac{\uparrow}{\downarrow}\right| \\
& \frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle) \\
& \left.\frac{1}{2}(a d-2\rangle+|2,1\rangle\right)(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle) \\
& \sqrt{2}+d a+c b-b c)
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{2} \\
\left(\frac{|1,2\rangle-|2,1\rangle}{\sqrt{2}}\right)\left(\frac{|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle}{\sqrt{2}}\right)
\end{gathered}
$$

The simplest assembly:

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(a d-d a+c b-b c)$
$\begin{array}{ll}1 & \uparrow \mid \downarrow \\ 2 & \end{array}$

$$
\begin{aligned}
& \left(\frac{|1,2\rangle-|2,1\rangle)(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle}{\frac{1}{2}}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle-|2 \uparrow, 1 \downarrow\rangle+|1 \downarrow, 2 \uparrow\rangle)\right. \\
& \frac{1}{2}(a d-d a-c b+b c)
\end{aligned}
$$

12 | \uparrow |
| :---: |
| \downarrow |

The simplest assembly:

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(a d-d a+c b-b c)$

The simplest assembly:

	$12 .$$\uparrow$	$\frac{1}{2}$ ¢ ${ }^{\text {a }} \downarrow$
$1 \uparrow$	1	1
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
$1 \downarrow$ $2 \uparrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle)$
$\frac{1}{2}(a d-d a+c b-b c)$

The simplest assembly:

	1.2$\frac{\uparrow}{\downarrow}$	$\frac{1}{2}$ T \downarrow
$1 \uparrow$	1	$\sqrt{1}$
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1 $1 \downarrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\begin{aligned}
& \begin{array}{l|l|l|}
12 & \uparrow \\
\hline \downarrow \\
\hline
\end{array} \\
& \frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle) \\
& \frac{1}{2}(a d-d a+c b-b c)
\end{aligned}
$$

The simplest assembly:

	1.2¢ \downarrow	$\frac{1}{2} \uparrow \downarrow \downarrow$
$1 \uparrow$	1	1
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle)$
$\frac{1}{2}(a d-d a+c b-b c)$

The simplest assembly:

	1	$\frac{1}{2} \uparrow \downarrow \downarrow$
$1 \uparrow$	$\sqrt{1}$	$\sqrt{1}$
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1 $1 \downarrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2\left({ }^{2} \mathrm{D}\right)$
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering

Note change in assembly matrix for two spin down...

Note change in assembly matrix for two spin down...

	12 \uparrow 3 $\frac{\uparrow}{\downarrow} \downarrow$ 		1 2 $\uparrow \downarrow \downarrow \downarrow$ 3
$1 \uparrow$ $2 \downarrow$ $3 \downarrow$			$1 \uparrow$ $\sqrt{\frac{3-1}{}}$ $2 \downarrow$ $\sqrt{\frac{2-1}{3-0}}$ $3 \downarrow$ A (A) 1 1
$1 \downarrow$ $2 \uparrow$ $3 \downarrow$	$\begin{array}{lll} \frac{1 \downarrow \mid 2 \uparrow}{\frac{2-1}{2-1}}-\sqrt{\frac{1-0}{0+2}} \\ \frac{3 \downarrow}{0 \downarrow} \\ \text { (A) } & \text { (D) } \frac{1}{12} \end{array}$	$\begin{array}{lll} \frac{1 \downarrow \mid 3 \downarrow}{\frac{1 \downarrow}{} \downarrow} & -\sqrt{\frac{1-0}{1+2}} & \sqrt{\frac{2-1}{2-0}} \\ 2 \uparrow & \text { C } & \text { B } \left\lvert\, \frac{1}{\sqrt{6}}\right. \end{array}$	$\begin{array}{lll} \frac{1 \downarrow}{\frac{1 \downarrow}{2 \uparrow}} & \sqrt{\frac{3-1}{3-0}} & \sqrt{\frac{2-1}{2-0}} \\ \hline 3 \downarrow & \text { (A) } & \text { (B) } \sqrt{\sqrt{3}} \end{array}$
$1 \downarrow$ $2 \downarrow$ $3 \uparrow$	$\begin{array}{lll} \frac{1 \downarrow \mid 2 \downarrow}{} \sqrt{\frac{2-2}{2-1}} & \sqrt{\frac{0-0}{0+2}} \\ \hline 3 \uparrow & \text { B } & C^{0} \end{array}$		$\begin{array}{l\|l\|} \frac{1 \downarrow}{2 \downarrow} & \sqrt{\frac{3-2}{3-0}} \\ \frac{2-0}{2-0} \\ \frac{3 \uparrow}{2 \uparrow} & \text { B } \\ \text { (A) }) & \frac{1}{\sqrt{3}} \end{array}$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering

Slater determinant state key:
$a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants fromJ $=3 / 2$ at $\mathrm{L}=0$

Slater determinant state key:
$a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$

Slater determinant state key:
$a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right)$ Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$,
$\mathrm{J}=3 / 2 \quad\left({ }^{2} \mathrm{D}\right)$
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$\left.\left.{ }^{2} D_{J=\frac{5}{2}} \frac{5}{2}^{\frac{5}{2}}\right\rangle=\underline{d_{M=2}^{L=2} \chi_{1 / 2}^{1 / 2}}\right\rangle \quad$ Doublet ${ }^{2} D, \mathrm{~J}=\underline{\frac{5}{2} \mathrm{M}_{\mathrm{J}}=\frac{5}{2}}$,

Slater determinant state key: $a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow
$$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$,
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$,

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \quad\left({ }^{2} \mathrm{D}\right) \\
& \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$$
\begin{aligned}
& =(+) \begin{array}{|c}
\frac{1 \uparrow}{1 \downarrow} \\
2 \downarrow \\
2
\end{array}=\begin{array}{l}
a \\
b \\
d
\end{array} \\
& =(-) \begin{array}{r}
\frac{1 \uparrow}{2 \uparrow} \\
\frac{2 \downarrow}{} \\
=-c \\
d
\end{array}
\end{aligned}
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$$
\begin{aligned}
& \text { (A) } \mu_{\mu_{1}=2, \mu_{2}=1}^{2-1} \text { (E) } \mu_{1}=1, \mu_{2}=1 \\
& =(+)\left[\begin{array}{l}
\frac{1 \uparrow}{1 \downarrow} \\
2 \downarrow
\end{array}=\begin{array}{c}
a \\
b \\
d
\end{array}\right.
\end{aligned}
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2\left({ }^{2} \mathrm{D}\right)$
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$ $\left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left[p_{M=1}^{L=1} \chi_{+1 / 2}^{\prime 2}\right\rangle \quad$ Doublet $^{2} P, \underline{J=\frac{3}{2}} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=3 / 2$

$\begin{array}{c\|c} 1 \times 1 / 2 & \begin{array}{r} 3 / 2 \\ +3 / 2 \end{array} \\ \sqrt{+1+1 / 2} \end{array}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ +1 / 2 & +1 / 2\end{array}$		
$+1-1 / 2$ $0+1 / 2$	$\begin{array}{cc}1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
	[$\begin{array}{r}0-1 / 2 \\ -1+1 / 2\end{array}$	$\begin{array}{cc}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$ $\left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left[p_{M=1}^{L=1} \chi_{X+12}^{1 / 2}\right\rangle \quad$ Doublet $^{2} P, \frac{\mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2}}{} \quad \mathrm{MJ}=3 / 2$

$$
=\sqrt{\frac{1}{2}} \frac{1}{2}\left[\begin{array}{l}
2 \\
\downarrow
\end{array} \underset{\downarrow}{\uparrow}-\sqrt{\frac{1}{2}} \underset{\sim}{1} \frac{1}{3} 1 \underset{\downarrow}{\uparrow}\right.
$$

$$
=-\sqrt{\frac{1}{2}} \begin{gathered}
a \\
c
\end{gathered} \quad-\sqrt{\frac{1}{2}} \begin{aligned}
& a \\
& d \\
& d
\end{aligned}
$$

$\begin{array}{r} 1 \times 1 / 2 \\ \begin{array}{rr} 3 / 2 \\ +3 / 2 \\ +1+1 / 2 & 1 \end{array} \\ \hline \end{array}$	$\begin{array}{\|rr\|}3 / 2 & 1 / 2 \\ +1 / 2 & +1 / 2\end{array}$		
$+1-1 / 2$ $0+1 / 2$	$\begin{array}{ccc}1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}$	$\begin{array}{\|rr\|}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
		$\begin{array}{lll}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$ $\left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{X+12}^{1 / 2}\right\rangle \quad$ Doublet ${ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2$

$$
=\quad \sqrt{\frac{1}{2}} \frac{1}{2}\left[\left.\begin{array}{l}
2 \\
2
\end{array} \stackrel{\uparrow}{\downarrow}-\sqrt{\frac{1}{2}} \frac{1}{3} \right\rvert\, \begin{array}{l}
1 \\
\hline
\end{array}\right.
$$

$$
=-\sqrt{\frac{1}{2}} \begin{array}{r}
a \\
c
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{r}
a \\
d
\end{array}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
b \\
e
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
e
\end{array}
\end{aligned}
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$

$$
\begin{aligned}
& \left({ }^{2} P_{J=\frac{3}{2}}^{\frac{3}{2}}\right)=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
b \\
e
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 暘 } \\
& =(+) \begin{array}{|c}
\frac{1 \uparrow}{1 \downarrow} \\
\hline 3 \downarrow \\
\end{array} \begin{array}{r}
a \\
b \\
f
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{l}
a \\
d
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{6}} \begin{array}{c}
b \\
c
\end{array} \quad-\sqrt{\frac{1}{6}} \begin{array}{l}
a \\
d
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& M_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
e
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
b \\
e
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{6}} \begin{array}{l}
\begin{array}{c}
b \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{6}} \\
\\
\\
\end{array} \\
& -\sqrt{\frac{1}{6}}\left(\begin{array}{ccc}
a & b \\
\frac{1}{\sqrt{2}} & d & -\frac{1}{\sqrt{2}} \\
& c \\
e & e
\end{array}\right)+\frac{1}{\sqrt{2}}\left(\begin{array}{rrrrr}
& a & & a & \\
\frac{-2}{\sqrt{6}} & c & +\frac{1}{\sqrt{6}} & d & +\frac{1}{\sqrt{6}} \\
c \\
& f & & e & \\
& & & &
\end{array}\right) \\
& =-\sqrt{\frac{1}{6}} \begin{array}{cccccc}
b & c & -\sqrt{\frac{1}{6}} & a & b & \\
& d & f & \frac{1}{\sqrt{3}} & c & -\frac{1}{\sqrt{3}} \\
c \\
& d \\
& & e & f
\end{array}
\end{aligned}
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$

$$
\begin{aligned}
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& =\quad \sqrt{\frac{1}{2}} \begin{array}{l|l|l|l|l}
\hline 1 & 2 & \begin{array}{l}
\uparrow \uparrow \\
\downarrow
\end{array} & -\sqrt{\frac{1}{2}} & 1 \\
\hline 3 & 1 & \begin{array}{c}
\uparrow \uparrow \\
\downarrow
\end{array}
\end{array} \\
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
b \\
e
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{6}} \begin{array}{c}
b \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{6}} \begin{array}{c}
a \\
b \\
f
\end{array} \\
& \begin{array}{cccc}
& b & & a \\
\frac{1}{\sqrt{3}} & c & -\frac{1}{\sqrt{3}} & c \\
& e & & f
\end{array}
\end{aligned}
$$

	$\underbrace{}_{\frac{12}{3}}{ }^{\text {a }}$	$\frac{13}{2} \frac{1}{2} \uparrow$	2. $\uparrow \uparrow \downarrow$
$\begin{array}{ll} a & \bar{a} \\ c & \overline{1 \uparrow} \\ f & 3 \downarrow \\ \hline 3 \downarrow \end{array}$	0	$\frac{-2}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$
	$\frac{-1}{\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2\left({ }^{2} \mathrm{D}\right)$
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \boldsymbol{J}=1 / 2\left({ }^{(2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=1 / 2$ at $\mathrm{L}=1$

$$
\begin{aligned}
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& \mathrm{M}_{\mathrm{J}}=1 / 2 \\
& =\quad \sqrt{\frac{1}{2}} \begin{array}{ll|l|l|lll}
1 & 2 & \begin{array}{ll}
\uparrow \\
\hline 2 & \\
\downarrow
\end{array} & -\sqrt{\frac{1}{2}} & 1 & 1 & \begin{array}{l}
\uparrow \\
\downarrow
\end{array} \\
\downarrow
\end{array} \\
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{l}
a \\
b \\
e
\end{array} \\
& \left|{ }^{2} P_{J=\frac{3}{2}} \frac{1}{2}_{2}\right\rangle=\sqrt{\frac{1}{3}}\left|p_{M=1}^{L=1} \chi_{-1 / 2}^{1 / 2}\right\rangle+\sqrt{\frac{2}{3}}\left|p_{M=0}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{6}} \begin{array}{c}
b \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{6}} \begin{array}{c}
a \\
b \\
\end{array} \\
& \begin{array}{cccc}
\frac{1}{\sqrt{3}} & c & -\frac{1}{\sqrt{3}} & c \\
e & & f
\end{array} \\
& \left|{ }^{2} P_{J=\frac{1}{2}} \frac{1}{2}^{\frac{1}{2}}\right\rangle=\underline{\left.\sqrt{\frac{2}{3}}\left|p_{M=1}^{L=1} \chi_{-1 / 2}^{1 / 2}\right\rangle-\sqrt{\frac{1}{3}} p_{M=0}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle} \quad \text { Doublet }{ }^{2} \underline{P, \mathrm{~J}=\frac{1}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& M_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{l}
a \\
b \\
e
\end{array} \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{1}{2}}\right\rangle=\sqrt{\frac{1}{3}}\left|p_{M=1}^{L=1} \chi_{-1 / 2}^{1 / 2}\right\rangle+\sqrt{\frac{2}{3}}\left|p_{M=0}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}} \begin{array}{c}
a \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{2}} \begin{array}{l}
a \\
e \\
e
\end{array} \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{1}{2}}\right\rangle=\sqrt{\frac{1}{3}}\left|p_{M=1}^{L=1} \chi_{-1 / 2}^{1 / 2}\right\rangle+\sqrt{\frac{2}{3}}\left|p_{M=0}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{6}} \begin{array}{ccc}
b \\
c & -\sqrt{\frac{1}{6}} & b \\
d & & f
\end{array} \\
& \begin{array}{cccc}
\frac{1}{\sqrt{3}} & c & -\frac{1}{\sqrt{3}} & c \\
e & & f
\end{array} \\
& \text { } \\
& \text { b }
\end{aligned}
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=1 / 2$ at $\mathrm{L}=1$

$$
\begin{aligned}
& \left|{ }_{2}^{2} P_{J=\frac{3^{\frac{3}{2}}}{2}}\right\rangle=\left\{p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P \text {, J=3 } \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& \mathrm{M}_{\mathrm{J}}=1 / 2 \\
& =\sqrt{\frac{1}{2}} \frac{1}{2}\left[\begin{array}{l}
2 \\
\downarrow
\end{array}\right. \\
& =-\sqrt{\frac{1}{2}}{ }^{a} c \quad-\sqrt{\frac{1}{2}}{ }^{a}{ }^{a} \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right|=\sqrt{\frac{1}{3}}\left|p_{M=1}^{L-1} \chi_{-12}^{1 / 2}\right\rangle+\sqrt{\frac{2}{3}}\left|p_{M=0}^{L=1} \chi_{+12}^{1 / 2}\right\rangle \\
& \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{6}} \begin{array}{c}
b \\
c
\end{array} \quad-\sqrt{\frac{1}{6}} \begin{array}{l}
a \\
d
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left|{ }^{2} P_{J=\frac{1}{2}}{ }^{\frac{1}{2}}\right\rangle=\sqrt{\frac{2}{3}} p_{M=1}^{L=1} \chi_{-12}^{1 / 2}\right\rangle-\sqrt{\frac{1}{3}} p_{M=0}^{L=1} \chi_{X+1 / 2}^{\prime 2}\right\rangle \quad \text { Doublet }{ }^{2} P_{, ~ \mathrm{~J}=\frac{1}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{3}} \begin{array}{c}
b \\
c \\
d
\end{array} \quad-\sqrt{\frac{1}{3}} \begin{array}{l}
a \\
b
\end{array} \\
& -\frac{1}{\sqrt{6}} c \quad \begin{array}{cc}
\frac{1}{\sqrt{6}} & c \\
e & \\
e & \\
f
\end{array}
\end{aligned}
$$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2\left({ }^{2} \mathrm{D}\right)$
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering

$\ell=1 p^{3}=$ spin-orbit levels and Slater states

$$
=6+10+4
$$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p^{3}=$ spin-orbit levels and Slater states

$U(2) \quad \ell=1 p^{3}=$ spin-orbit levels and Slater states
$(2) \quad$ dimension $=\frac{1}{31}=2$
Number of
Zeeman-split
levels

$U(2) \square^{\square}$ dimension $=\frac{1}{31}=2$

$$
\ell=1 p^{3=} \text { spin-orbit levels and Slater states }
$$

$\ell=1 p^{3}=$ configuration spin-orbit Hamiltonian in Slater determinant basis

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$) Spin-orbit state assembly formula and Slater determinants

Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p^{3}=$ configuration spin-orbit Hamiltonian in Slater determinant basis

$$
U(6) \text { bases: }\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}
$$

$\mathrm{U}(6)$ tensors of rank-1 (Axial orbit momentum ℓ-vector and spin momentum s-vector) Lect. 24 p. 16
$\ell=1 p^{3}=$ configuration spin-orbit Hamiltonian in Slater determinant basis

$$
U(6) \text { bases: }\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}
$$

$\mathrm{U}(6)$ tensors of rank-1 (Axial orbit momentum ℓ-vector and spin momentum s-vector) Lect. 24 p. 16

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}}\left(E_{c b}+E_{e d}\right) \\
& =\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right) \\
& =-\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}\right)
\end{aligned}
$$

$\ell=1 p^{3}=$ configuration spin-orbit Hamiltonian in Slater determinant basis

$$
U(6) \text { bases: }\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}
$$

$\mathrm{U}(6)$ tensors of rank-1 (Axial orbit momentum ℓ-vector and spin momentum s-vector) Lect. 24 p. 16

$$
\begin{aligned}
& =-\sqrt{\frac{1}{2}}\left(E_{c b}+E_{e d}\right) \quad=\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right) \quad=-\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}\right)
\end{aligned}
$$

Spin-Orbit Hamiltonian:

$$
\begin{aligned}
& H_{\text {spin-orbit }}=\xi \sum_{\alpha=1}^{n} \vec{\ell}(\text { electron } \alpha) \cdot \overrightarrow{\mathbf{s}}(\text { electron } \alpha) \\
& =\xi\left(V_{00}^{11}-V_{11}^{11}-V_{11}^{11}\right)=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{b c}+E_{d e}\right)\right]
\end{aligned}
$$

$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states to mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0\left({ }^{4} \mathrm{~S}\right), \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
C-G coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right), \quad \mathrm{J}=3 / 2$ at $\mathrm{L}=1\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2$ at $\mathrm{L}=1$ (${ }^{2} \mathrm{P}$)
Spin-orbit state assembly formula and Slater determinants
Extra assembly table
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2, \quad \mathrm{~J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right), \quad \mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Summary of states and level connection paths
Symmetry dimension accounting
Spin-orbit Hamiltonian matrix calculation
Individual matrix components
Application to spin-orbit and entanglement break-up scattering

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right]
$$

$$
-\sqrt{\frac{1}{2}}\left\langle\begin{array}{c}
a \\
c \\
d
\end{array}\right|-\sqrt{\frac{1}{2}}\left(\begin{array}{c}
a \\
b \\
e
\end{array}\left|=\left\langle{ }^{2} P_{J=\frac{3}{2}}\right| \frac{H_{S-O}}{\xi}\right|{ }^{4} S_{J=\frac{3^{\frac{3}{2}}}{2}}\right\rangle=\left|\begin{array}{c}
a \\
c \\
e
\end{array}\right\rangle
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right]
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right]
$$

...and off-diagonal- $E_{a b}$ part:

$$
-\sqrt{\frac{1}{2}}\left(\begin{array}{c}
a \\
c \\
d
\end{array} \left\lvert\,-\sqrt{\frac{1}{2}}\left(\begin{array}{c}
a \\
b \\
e
\end{array}\left|\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right| \begin{array}{l}
a \\
c \\
e
\end{array}\right\rangle\right.\right.
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right]
$$

...and off-diagonal- $E_{a b}$ part:

$$
\begin{aligned}
& -\sqrt{\frac{1}{2}}\left(\begin{array}{l}
a \\
c \\
d
\end{array} \left\lvert\,-\sqrt{\frac{1}{2}}\left(\begin{array}{l}
a \\
b \\
e
\end{array} \left\lvert\, \sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\left(\begin{array}{l}
a \\
c \\
e
\end{array}\right\rangle\right.\right.\right.\right. \\
& \left.-\frac{1}{2}\left(\left\langle\begin{array}{l}
a \\
c \\
d
\end{array}\right|+\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right) \quad\left(\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|+\begin{array}{l}
a \\
c \\
d
\end{array}\right)+0+0\right)
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right]
$$

...and off-diagonal- $E_{a b}$ part:

$$
\begin{aligned}
& -\sqrt{\frac{1}{2}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}}\left(\begin{array}{c}
a \\
b \\
e
\end{array} \left\lvert\, \sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\left(\begin{array}{l}
a \\
c \\
e
\end{array}\right)\right.\right. \\
& -\frac{1}{2}\left(\left(\begin{array}{l}
a \\
c \\
d
\end{array} \left\lvert\,+\left\langle\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right.\right) \quad\left(\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|+\begin{array}{l}
a \\
c \\
d
\end{array}\right\rangle+0+0\right) \\
& \begin{array}{|c|c|c}
\hline-1 & 1 & \left|\begin{array}{l}
a \\
b \\
e
\end{array}\right| \\
\hline 0 & 1 & 0
\end{array}+\begin{array}{l}
\left|\begin{array}{l}
a \\
c \\
d
\end{array}\right\rangle \\
\hline
\end{array}
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right]
$$

...and off-diagonal- $E_{a b}$ part:

$$
\begin{aligned}
& -\sqrt{\frac{1}{2}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}}\left(\begin{array}{c}
a \\
b \\
e
\end{array} \left\lvert\, \sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\left(\begin{array}{l}
a \\
c \\
e
\end{array}\right)\right.\right. \\
& \left.-\frac{1}{2}\left(\left\langle\begin{array}{l}
a \\
c \\
d
\end{array}\right|+\left\langle\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right) \quad\left(\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|+\begin{array}{l}
a \\
c \\
d
\end{array}\right\rangle+0+0\right) \\
& \begin{array}{|c|c|c}
\hline-1 & 1 & \left|\begin{array}{l}
a \\
b \\
e
\end{array}\right| \\
\hline 2 & 1 & 0 \\
\hline & \left.+\begin{array}{l}
a \\
c \\
d
\end{array} \right\rvert\, \\
\hline
\end{array} ~ R e s u l t:-1 / 2-1 / 2=-1
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right] \quad\left\langle\left.\left.{ }^{2} D_{J=\frac{3^{\frac{3}{2}}}{}}\right|^{2} H_{s o l} \right\rvert\,{ }^{4} S_{J=\frac{z^{\frac{3}{2}}}{2}}^{2}\right\rangle
$$

$$
\begin{aligned}
& \text { has diagonal- } E_{n n} \text { part: }{ }_{a}\left|{ }_{a}\right| \text {...t that gives zero } \\
& \frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)
\end{aligned}
$$

...and off-diagonal- $E_{a b}$ part:
$\sqrt{\frac{4}{5}}\left(\begin{array}{c}a \\ b \\ d\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}a \\ c \\ d\end{array} \left\lvert\,-\sqrt{\frac{1}{10}}\left(\begin{array}{c}a \\ b \\ e\end{array}\left|=\left\langle{ }^{2} D_{J=\frac{3}{2}}\right| \frac{H_{S-O}}{\xi}\right|{ }^{4} S_{J=\frac{3}{2}} \frac{\frac{3}{2}}{2}\right)=\left\lvert\, \begin{array}{l}a \\ c \\ e\end{array}\right.\right.\right)\right.\right.$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right] \quad\left\langle\left.\left.{ }^{2} D_{J=\frac{3^{\frac{3}{2}}}{}}\right|^{2} H_{s o l} \right\rvert\,{ }^{4} S_{J=\frac{z^{\frac{3}{2}}}{2}}^{2}\right\rangle
$$

$\sqrt{\frac{4}{5}}\left(\begin{array}{c}a \\ b \\ d\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}a \\ c \\ d\end{array} \left\lvert\,-\sqrt{\frac{1}{10}}\left(\begin{array}{c}a \\ b \\ e\end{array} \left\lvert\,=\left\langle{ }^{2} D_{J=\frac{3}{2}}\right| \frac{H_{S-O}}{\xi}\left|{ }^{4} S_{J=\frac{3}{2}} \frac{\frac{3}{2}}{2}\right\rangle=\begin{array}{c}a \\ c \\ e\end{array}\right.\right)\right.\right.\right.\right.$
$\left(\sqrt{8}\left(\begin{array}{l|c|c|}a \\ b \\ d\end{array} \left\lvert\,+\left(\left.\begin{array}{l|l|l}a \\ c \\ d\end{array} \right\rvert\,\right.\right.\right.\right.$$\left|-\left(\left.\begin{array}{l}a \\ b \\ e\end{array} \right\rvert\,\right)\right|$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
H_{s-o}=\xi\left[\frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)+\sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)\right] \quad\left\langle\left.\left.{ }^{2} D_{J=\frac{3^{\frac{3}{2}}}{}}\right|^{2} H_{s o l} \right\rvert\,{ }^{4} S_{J=\frac{z^{\frac{3}{2}}}{2}}^{2}\right\rangle
$$

$\sqrt{\frac{4}{5}}\left(\begin{array}{l}a \\ b \\ d\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{l}a \\ c \\ d\end{array} \left\lvert\,-\sqrt{\frac{1}{10}}\left(\begin{array}{l}a \\ b \\ e\end{array} \left\lvert\,=\left\langle{ }^{2} D_{J=\frac{3}{2}}\right| \frac{H^{\frac{3}{2}}}{\xi}\left|{ }^{4} S_{J=\frac{3}{2}} \frac{3}{2}^{\frac{3}{2}}\right\rangle=\begin{array}{l}a \\ c \\ e\end{array}\right.\right)\right.\right.\right.\right.$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2 \quad\left\langle\left.\left.{ }^{2} D_{J \frac{3}{2}}\right|_{s o l} H_{s 0}\right|^{2} P_{J=\frac{3}{2}}^{\frac{3}{2}}\right\rangle$

The diagonal- $E_{n n}$ part is not identically zero:

$$
\left(\sqrt{\frac{4}{5}}\left(\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)-\left(\sqrt{\frac{1}{2}} \left\lvert\, \begin{array}{c}
a \\
c \\
d
\end{array}\right.\right)+\sqrt{\frac{1}{2}}\right| \begin{array}{c}
a \\
b \\
e
\end{array}\right\rangle\right.\right)\right.
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
\sqrt{\frac{4}{5}}\left(\begin{array}{l}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{l}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array}\left|=\left\langle{ }^{2} D_{J=\frac{3}{2}}\right| \frac{3}{2}\right| \frac{H_{S-O}}{\xi}\left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=-\sqrt{\frac{1}{2}} \right\rvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}}\right| \begin{array}{l}
a \\
b \\
e
\end{array}\right)\right.\right.
$$

Here diagonal- $E_{n n}$ part is not identically zero:

$$
\begin{gathered}
\left(\sqrt{\frac{4}{5}}\left(\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)-\left(\sqrt{\frac{1}{2}} \left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\sqrt{\frac{1}{2}}\right| \begin{array}{c}
a \\
b \\
e
\end{array}\right)\right.\right)\right. \\
\left(\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \frac{-1}{2 \sqrt{2}}\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\right| \begin{array}{l}
a \\
b \\
e
\end{array}\right)\right)
\end{gathered}
$$

\(\left.\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, $$
\begin{array}{l}a \\
c \\
d\end{array}
$$\right.\right)+\left|\begin{array}{l}a

b

e\end{array}\right\rangle\right)\)| diagonal- $E_{n n}$ part |
| :--- |
| changes righthand ket |

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
\sqrt{\frac{4}{5}}\left(\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10} 0}\left(\begin{array}{c}
a \\
b \\
e
\end{array}\left|=\left\langle{ }^{2} D_{J \frac{3}{2} \frac{3}{2}}\right| \frac{H_{S-0}}{\xi}\right|{ }^{2} P_{J=\frac{3^{\frac{3}{2}}}{}}\right)=-\sqrt{\frac{1}{2}}\right| \begin{array}{l}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}} \begin{array}{l}
a \\
b \\
e
\end{array}\right.\right\rangle
$$

Here diagonal- $E_{n n}$ part is not identically zero:

$$
\begin{aligned}
& \left(\sqrt { \frac { 1 } { 1 0 } } \left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \frac{-1}{2 \sqrt{2}}\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right)\right.\right.
\end{aligned}
$$

$$
\left.\begin{array}{l}
\left.\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\left(\begin{array}{l}
a \\
b \\
e
\end{array}\right)\right) \begin{array}{l}
\text { diagonal- } E_{n n} \text { part } \\
\text { changes righthand ket }
\end{array} \\
\left.\left.\left.\left.=\left(\begin{array}{l|l}
E_{a a}\left(\begin{array}{l}
a \\
c \\
d
\end{array}\right.
\end{array}\right)+E_{a a} \right\rvert\, \begin{array}{l}
a \\
b \\
e
\end{array}\right)-E_{b b} \left\lvert\, \begin{array}{l}
a \\
b \\
e
\end{array}\right.\right)-E_{e e} \left\lvert\, \begin{array}{l}
a \\
b \\
e
\end{array}\right.\right)
\end{array}\right)
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

Here diagonal- $E_{n n}$ part is not identically zero:

$$
\left.\left.\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right)\right) \begin{aligned}
& \text { diagonal- } E_{n n} \text { part } \\
& \text { changes righthand ket }
\end{aligned}
$$

$$
\left.\left.\left.=\left(\begin{array}{l|l|l}
E_{a a} & \begin{array}{l}
a \\
c \\
d
\end{array}
\end{array}\right)+E_{a a}\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|-E_{b b} \right\rvert\, \begin{array}{l}
a \\
b \\
e
\end{array}\right)-E_{e e}\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right\rangle\right)
$$

$$
\left.\left.=\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|-\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|-\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right\rangle\right)=\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)-\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right)
$$

$$
\begin{aligned}
& \left(\sqrt { \frac { 1 } { 1 0 } } \left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \frac{-1}{2 \sqrt{2}}\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right)\right.\right.
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
\sqrt{\frac{4}{5}}\left(\left.\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
b \\
e
\end{array}\left|=\left\langle{ }^{2} D_{J \frac{3}{2}} \frac{\frac{3}{2}}{2}\right| \frac{H_{S-O}}{\xi}\right| P_{J=\frac{3}{2}} P^{\frac{3}{2}}\right)=-\sqrt{\frac{1}{2}}\right| \begin{array}{l}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}}\right. \right\rvert\, \begin{array}{l}
a \\
b \\
e
\end{array}\right)
$$

Non-zero diagonal- $E_{n n}$ contribution:
Here diagonal- $E_{n n}$ part is not identically zero:

$$
\begin{aligned}
& \left(\sqrt{\frac{4}{5}}\left(\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)-\left(\sqrt{\frac{1}{2}} \left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\sqrt{\frac{1}{2}}\right| \begin{array}{l}
a \\
b \\
e
\end{array}\right)\right.\right)\right. \\
& \left.\frac{-1}{2 \sqrt{2}} \sqrt{\frac{1}{10}}\left(\left\langle\begin{array}{l}
a \\
c \\
d
\end{array}\right|-\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)-\left\lvert\, \begin{array}{c}
a \\
b \\
e
\end{array}\right.\right)\right)=\left(\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \frac{-1}{2 \sqrt{2}}\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\right| \begin{array}{l}
a \\
b \\
e
\end{array}\right\rangle\right) \\
& \left.\left.\left(E_{a a}-E_{b b}-E_{e e}+0\right)\left(\left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right)\right) \begin{array}{l}
\text { diagonal- } E_{n n} \text { part } \\
\text { changes righthand ket }
\end{array} \\
& \left.\left.\left.=\left(\begin{array}{l|l}
E_{a a} & \begin{array}{l}
a \\
c \\
d
\end{array}
\end{array}\right)+E_{a a}\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|-E_{b b} \right\rvert\, \begin{array}{l}
a \\
b \\
e
\end{array}\right)-E_{e e}\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right\rangle\right) \\
& =\left(\left|\begin{array}{l}
a \\
c \\
d
\end{array}\right|+\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|-\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|-\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right)=\left(\left|\begin{array}{l}
a \\
c \\
d
\end{array}\right|-\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right)
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2 \quad\left\langle\left.{ }^{2} D_{J J \frac{3}{2}}{ }^{\frac{3}{2}} H_{s 0} \right\rvert\,{ }^{2} P_{J=\frac{3}{2}}^{\frac{3}{2}}\right\rangle$

$$
\sqrt{\frac{4}{5}}\left(\left.\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
b \\
e
\end{array}\left|=\left\langle{ }^{2} D_{J=\frac{3}{2}}\right| \frac{3^{\frac{3}{2}}}{\xi}\right| H_{J-O}{ }_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=-\sqrt{\frac{1}{2}}\right| \begin{array}{c}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}}\right. \right\rvert\, \begin{array}{c}
a \\
b \\
e
\end{array}\right)
$$

Non-zero diagonal- $E_{n n}$ contribution:
Here diagonal- $E_{n n}$ part is not identically zero:

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
\sqrt{\frac{4}{5}}\left(\begin{array}{l}
a \\
b \\
d
\end{array}\left|+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\begin{array}{l}
a \\
b \\
e
\end{array} \left\lvert\,=\left\langle{ }^{2} D_{J=\frac{3}{2}} \frac{\frac{3}{2}}{2}\right| \frac{H_{S-O}}{\xi}\left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle\right.\right)=-\sqrt{\frac{1}{2}}\right| \begin{array}{c}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}}\right| \begin{array}{l}
a \\
b \\
e
\end{array}\right)
$$

Non-zero diagonal- $E_{n n}$ contribution:
Here diagonal- $E_{n n}$ part is not identically zero:
$\left.\frac{-1}{2 \sqrt{2}} \sqrt{\frac{1}{10}}\left(\left\langle\begin{array}{c||c}a \\ c \\ d\end{array}\right| \begin{array}{l}a \\ c \\ d\end{array}\right)+\left(\begin{array}{c||c}a \\ b & a \\ e \\ e\end{array}\right)\right)=-\sqrt{\frac{1}{20}}=\left(\sqrt{\frac{4}{5}}\left(\begin{array}{c}a \\ b \\ d\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}a \\ c \\ d\end{array} \left\lvert\,-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}a \\ b \\ e\end{array} \right\rvert\,\right) \frac{1}{2}\left(E_{a a}-E_{b b}-E_{e e}+E_{f f}\right)-\left(\begin{array}{c}\sqrt{\frac{1}{2}} \\ c \\ c \\ d\end{array}\right)+\sqrt{\frac{1}{2}}\left(\begin{array}{c}a \\ b \\ e\end{array}\right)\right.\right)\right.\right.\right.$

Off-diagonal- $E_{n n}$ contributions:

$$
\left(\sqrt{\frac{4}{5}}\left(\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)-\left(\sqrt{\frac{1}{2}} \left\lvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right.\right)+\sqrt{\frac{1}{2}}\right| \begin{array}{l}
a \\
b \\
e
\end{array}\right)\right.\right)\right.
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
\sqrt{\frac{4}{5}}\left(\left.\begin{array}{l}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{l}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
b \\
e
\end{array}\left|=\left\langle{ }^{2} D_{J=\frac{3}{2}} \frac{3}{2}^{\frac{3}{2}}\right| \frac{H_{S-O}}{\xi}\right|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=-\sqrt{\frac{1}{2}}\right| \begin{array}{c}
a \\
c \\
d
\end{array}\right)-\sqrt{\frac{1}{2}}\right. \right\rvert\, \begin{array}{c}
a \\
b \\
e
\end{array}\right)
$$

Non-zero diagonal- $E_{n n}$ contribution:
Here diagonal- $E_{n n}$ part is not identically zero:

Off-diagonal- $E_{n n}$ contributions:

$$
\begin{aligned}
& \left(\sqrt{\frac{4}{5}}\left(\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)-\left(\sqrt{\frac{1}{2}} \left\lvert\, \begin{array}{c}
a \\
c \\
d
\end{array}\right.\right)+\sqrt{\frac{1}{2}}\right| \begin{array}{c}
a \\
b \\
e
\end{array}\right)\right.\right)\right. \\
& \left.\left.\left.\left.-\frac{1}{2}\left(\begin{array}{l|l}
E_{b c} & \begin{array}{l}
a \\
c \\
d
\end{array}
\end{array}\right)+E_{e d} \right\rvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right)+E_{c b} \left\lvert\, \begin{array}{l}
a \\
b \\
e
\end{array}\right.\right)+E_{d e}\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right) \\
& \left.\left.\left.\left.-\frac{1}{2}\left(\left\lvert\, \begin{array}{l}
a \\
b \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
c \\
e
\end{array}\right|+\left\lvert\, \begin{array}{l}
a \\
c \\
e
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
b \\
d
\end{array}\right|\right)=-\left(\left\lvert\, \begin{array}{l}
a \\
b \\
d
\end{array}\right.\right)+\left\lvert\, \begin{array}{l}
a \\
c \\
e
\end{array}\right.\right)\right)
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

Non-zero diagonal- $E_{n n}$ contribution:
Here diagonal- $E_{n n}$ part is not identically zero:

Off-diagonal- $E_{n n}$ contributions:

$$
\left(\sqrt{\frac{4}{5}}\left(\begin{array}{c}
a \\
b \\
d
\end{array} \left\lvert\,+\sqrt{\frac{1}{10}}\left(\begin{array}{c}
a \\
c \\
d
\end{array}\left|-\sqrt{\frac{1}{10}}\left(\left.\begin{array}{c}
a \\
b \\
e
\end{array} \right\rvert\,\right) \sqrt{\frac{1}{2}}\left(E_{b c}+E_{d e}+E_{c b}+E_{e d}\right)-\left(\sqrt{\frac{1}{2}} \left\lvert\, \begin{array}{c}
a \\
c \\
d
\end{array}\right.\right)+\sqrt{\frac{1}{2}}\right| \begin{array}{l}
a \\
b \\
e
\end{array}\right\rangle\right.\right)\right.
$$

$$
\begin{aligned}
& \left.\left.\left.-\frac{1}{2}\left(\begin{array}{l|l|l}
E_{b c} & \begin{array}{l}
a \\
c \\
d
\end{array}
\end{array}\right)+E_{c d} \right\rvert\, \begin{array}{l}
a \\
c \\
d
\end{array}\right)+E_{c b}\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|+E_{d e}\left|\begin{array}{l}
a \\
b \\
e
\end{array}\right|\right) \\
& \left.\left.-\frac{1}{2}\left(\left\lvert\, \begin{array}{l}
a \\
b \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
c \\
e
\end{array}\right|+\left|\begin{array}{l}
a \\
c \\
e
\end{array}\right|+\left|\begin{array}{l}
a \\
b \\
d
\end{array}\right\rangle\right)=-\left(\left\lvert\, \begin{array}{l}
a \\
b \\
d
\end{array}\right.\right)+\left|\begin{array}{l}
a \\
c \\
e
\end{array}\right|\right)
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

Non-zero diagonal- $E_{n n}$ contribution:
Here diagonal- $E_{n n}$ part is not identically zero:

Off-diagonal- $E_{n n}$ contributions:

Total Result: $-\sqrt{\frac{4}{5}}-\sqrt{\frac{1}{20}}=-\frac{4}{\sqrt{20}}-\frac{1}{\sqrt{20}}=-\frac{5}{\sqrt{20}}=-\sqrt{\frac{5}{4}}$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$

$$
\begin{aligned}
& \left\langle{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right| H_{s s 0}\left|{ }^{2} P_{J=\frac{3^{\frac{3}{2}}}{2}}\right\rangle\left\langle{ }^{2} D_{J=\frac{3^{\frac{3}{2}}}{2}}\right| H_{S o l}\left|{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle \\
& \left\langle{ }^{2} P_{J=\frac{3^{\frac{3}{2}}}{2}}\right| H_{s o l}\left|{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle
\end{aligned}
$$

	$\left\|{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$	$\left\|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$	$\left\|{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$
$\left\langle{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	0	$-\sqrt{\frac{5}{4}}$	0
$\left\langle{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	$-\sqrt{\frac{5}{4}}$	0	-1
$\left\langle{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	0	-1	0

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$
Secular equation:
$\operatorname{det}\left|\begin{array}{ccc}\lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda\end{array}\right|$

$$
\begin{aligned}
\left\langle{ }^{2} D_{J=\frac{3}{2}} \frac{3}{2}\right| H_{S-0}\left|{ }^{2} P_{J=\frac{3}{2}} \frac{\frac{3}{2}}{2}\right\rangle & \left\langle{ }^{2} D_{J=\frac{J^{2}}{2}}\right| H_{S-0}\left|{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle \\
& \left\langle{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right| H_{S-0}\left|{ }^{4} S_{J=\frac{3}{2}}\right\rangle
\end{aligned}
$$

	$\left.{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$	$\left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$	$\left.{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$
$\left\langle{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}{ }^{2}\right.$	0	$-\sqrt{\frac{5}{4}}$	0
$\left\langle{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	$-\sqrt{\frac{5}{4}}$	0	-1
$\left\langle{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}{ }^{2}\right.$	0	-1	0

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$
Secular equation:
$\left\langle{ }^{2} P_{J=\frac{3}{2}}\right| H_{S o l} \left\lvert\, H_{J=\frac{3^{\frac{3}{2}}}{}{ }^{4}}{ }^{\frac{3}{2}}\right.$
$\operatorname{det}\left|\begin{array}{ccc}\lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda\end{array}\right|=\lambda\left|\begin{array}{cc}\lambda & -1 \\ -1 & \lambda\end{array}\right|+\frac{\sqrt{5}}{2}\left|\begin{array}{cc}\frac{-\sqrt{5}}{2} & -1 \\ 0 & \lambda\end{array}\right|=0$
$\lambda\left(\lambda^{2}-1\right)+\frac{\sqrt{5}}{2}\left(\frac{-\sqrt{5}}{2}\right) \lambda=0$

	$\left\|{ }^{2} D_{J=\frac{3}{2}}{\frac{3}{}{ }^{\frac{3}{2}}}\right\|$	${ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}{ }^{2}$	$\left.{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$
$\left\langle{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	0	$-\sqrt{\frac{5}{4}}$	0
$\left\langle{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	$-\sqrt{\frac{5}{4}}$	0	-1
$\left\langle{ }^{4} S_{J=\frac{3^{\frac{3}{2}}}{}}{ }^{2}\right.$	0	-1	0

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$
Secular equation:

$$
\operatorname{det}\left|\begin{array}{ccc}
\lambda & -\frac{\sqrt{5}}{2} & 0 \\
-\frac{\sqrt{5}}{2} & \lambda & -1 \\
0 & -1 & \lambda
\end{array}\right|=\lambda\left|\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right|+\frac{\sqrt{5}}{2}\left|\begin{array}{cc}
\frac{-\sqrt{5}}{2} & -1 \\
0 & \lambda
\end{array}\right|=0
$$

$$
\lambda\left(\lambda^{2}-1\right)+\frac{\sqrt{5}}{2}\left(\frac{-\sqrt{5}}{2}\right) \lambda=0
$$

$$
\lambda^{3}-\lambda-\frac{5}{4} \lambda=0=\lambda\left(\lambda^{2}-\frac{9}{4}\right)=\lambda\left(\lambda-\frac{3}{2}\right)\left(\lambda+\frac{3}{2}\right)
$$

$$
\begin{aligned}
& \left.\left\langle\begin{array}{c}
\left.{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}} \right\rvert\, \\
\left\langle{ }^{2} P_{J=\frac{3}{2}}\right| \\
\left\langle\begin{array}{ccc}
\frac{3}{2}
\end{array}\right| \\
\left\langle{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right.
\end{array}\right| \begin{array}{ccc}
\frac{5}{4} & 0 & 0 \\
\hline
\end{array} \right\rvert\,
\end{aligned}
$$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$
Secular equation:

$$
\begin{array}{r}
\left\langle{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right| H_{s s 0}\left|{ }^{2} P_{J=\frac{3^{\frac{3}{2}}}{2}}\right\rangle\left\langle{ }^{2} D_{J=\frac{3}{2}}\right| H_{S 00}\left|{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle \\
\\
\left\langle{ }^{2} P_{J \frac{3}{2}}{ }^{\frac{3}{2}}\right| H_{S o l}\left|{ }^{4} S_{J=\frac{3^{2}}{2}}\right\rangle
\end{array}
$$

$\operatorname{det}\left|\begin{array}{ccc}\lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda\end{array}\right|=\lambda\left|\begin{array}{cc}\lambda & -1 \\ -1 & \lambda\end{array}\right|+\frac{\sqrt{5}}{2}\left|\begin{array}{cc}\frac{-\sqrt{5}}{2} & -1 \\ 0 & \lambda\end{array}\right|=0$
$\lambda\left(\lambda^{2}-1\right)+\frac{\sqrt{5}}{2}\left(\frac{-\sqrt{5}}{2}\right) \lambda=0$
$\lambda^{3}-\lambda-\frac{5}{4} \lambda=0=\lambda\left(\lambda^{2}-\frac{9}{4}\right)=\lambda\left(\lambda-\frac{3}{2}\right)\left(\lambda+\frac{3}{2}\right)$
Eigenvalues:
$P_{0}=\left(\begin{array}{ccc}\frac{4}{9} & 0 & \frac{-2 \sqrt{5}}{9} \\ 0 & 0 & 0 \\ \frac{-2 \sqrt{5}}{9} & 0 & \frac{5}{9}\end{array}\right)$
$\lambda=$
0

$\left\langle{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	0	$-\sqrt{\frac{5}{4}}$	0
$\left\langle{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	$-\sqrt{\frac{5}{4}}$	0	-1
$\left\langle{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\|$	0	-1	0

$P_{+3 / 2}=\left(\begin{array}{ccc}\frac{5}{18} & \frac{-\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{-\sqrt{5}}{6} & \frac{1}{2} & \frac{-1}{3} \\ \frac{\sqrt{5}}{9} & \frac{-1}{3} & \frac{2}{9}\end{array}\right)$

$$
\lambda=
$$

$\mathrm{P}_{-3 / 2}=\left(\begin{array}{ccc}\frac{5}{18} & \frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{\sqrt{5}}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{\sqrt{5}}{9} & \frac{1}{3} & \frac{2}{9}\end{array}\right) \quad \begin{aligned} & \lambda= \\ & -3 / 2\end{aligned}$

Calculating p^{3} spin-orbit Hamiltonian matrix for $\mathrm{J}=3 / 2$
Secular equation:

$$
\begin{array}{r}
\left\langle{ }^{2} D_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right| H_{s s 0}\left|{ }^{2} P_{J=\frac{3}{2}} \frac{3}{2}^{\frac{3}{2}}\right\rangle
\end{array}
$$

$\operatorname{det}\left|\begin{array}{ccc}\lambda & -\frac{\sqrt{5}}{2} & 0 \\ -\frac{\sqrt{5}}{2} & \lambda & -1 \\ 0 & -1 & \lambda\end{array}\right|=\lambda\left|\begin{array}{cc}\lambda & -1 \\ -1 & \lambda\end{array}\right|+\frac{\sqrt{5}}{2}\left|\begin{array}{cc}\frac{-\sqrt{5}}{2} & -1 \\ 0 & \lambda\end{array}\right|=0$
$\lambda\left(\lambda^{2}-1\right)+\frac{\sqrt{5}}{2}\left(\frac{-\sqrt{5}}{2}\right) \lambda=0$
$\lambda^{3}-\lambda-\frac{5}{4} \lambda=0=\lambda\left(\lambda^{2}-\frac{9}{4}\right)=\lambda\left(\lambda-\frac{3}{2}\right)\left(\lambda+\frac{3}{2}\right)$
$\left.\left|\left|{ }^{2} D_{J=\frac{3^{2}}{2}}\right\rangle\right|{ }^{2} P_{J=\frac{3^{2}}{}}{ }^{\frac{3}{2}}\right\rangle\left|{ }^{4} S_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle$
Projectors:
Eigenvalues:
$\mathrm{P}_{0}=\left(\begin{array}{ccc}\frac{4}{9} & 0 & \frac{-2 \sqrt{5}}{9} \\ 0 & 0 & 0 \\ \frac{-2 \sqrt{5}}{9} & 0 & \frac{5}{9}\end{array}\right) \quad \begin{aligned} & \lambda= \\ & 0\end{aligned}$
$\mathrm{P}_{+3 / 2}=\left(\begin{array}{ccc}\frac{5}{18} & \frac{-\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{-\sqrt{5}}{6} & \frac{1}{2} & \frac{-1}{3} \\ \frac{\sqrt{5}}{9} & \frac{-1}{3} & \frac{2}{9}\end{array}\right) \quad \begin{aligned} & \lambda= \\ & +3 / 2\end{aligned}$
Eigenvectors:
$\mathrm{P}_{-3 / 2}=\left(\begin{array}{ccc}\frac{5}{18} & \frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{9} \\ \frac{\sqrt{5}}{6} & \frac{1}{2} & \frac{1}{3} \\ \frac{\sqrt{5}}{9} & \frac{1}{3} & \frac{2}{9}\end{array}\right) \quad \begin{aligned} & \\ & \\ & -3 / 2\end{aligned}$

$$
|0\rangle=\frac{1}{3}\left(\begin{array}{c}
-2 \\
0 \\
\sqrt{5}
\end{array}\right),\left|\frac{+3}{2}\right\rangle=\frac{1}{3 \sqrt{2}}\left(\begin{array}{c}
-\sqrt{5} \\
3 \\
-2
\end{array}\right),\left|\frac{-3}{2}\right\rangle=\frac{1}{3 \sqrt{2}}\left(\begin{array}{c}
-\sqrt{5} \\
3 \\
-2
\end{array}\right)
$$

The $\ell=1 p=$ shell in a nutshell

Doublet ${ }^{2} D, M=2$:

$$
\begin{array}{ll}
L=2, & S=\frac{1}{2} \\
M=2, & \mu=\frac{1}{2}
\end{array}
$$

$$
\left.\begin{array}{|l|ll}
\hline 1 & 1 & \uparrow \uparrow \\
\hline 2 & & \downarrow
\end{array}\right\rangle, \begin{aligned}
& L=2, \quad S=-\frac{1}{2} \\
& M=2, \quad \mu=\frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{|l|ll}
\hline 1 & 1 & \uparrow \downarrow \\
\hline 2 & & \downarrow \\
\hline
\end{array}
$$

Doublet ${ }^{2} D, M=1$:

$$
\begin{aligned}
& \left.+\frac{1}{\sqrt{2}} \left\lvert\, \begin{array}{l|ll}
1 & 1 & \uparrow \uparrow \\
\hline 3 & & \downarrow
\end{array}\right.\right), \quad+\frac{1}{\sqrt{2}}\left|\begin{array}{|l|ll}
\hline 1 & 1 & \uparrow \downarrow \\
\hline 3 & \downarrow
\end{array}\right|,
\end{aligned}
$$

Doublet ${ }^{2} P, M=1$:

$$
\begin{aligned}
& -\frac{1}{\sqrt{2}}\left|\begin{array}{|l|ll}
1 & 1 & \uparrow \uparrow \\
\hline 3 & & \downarrow
\end{array}\right\rangle, \\
& \left.-\frac{1}{\sqrt{2}} \left\lvert\, \begin{array}{l|ll}
1 & 1 & \uparrow \downarrow \\
\cline { 1 - 2 } & & \downarrow
\end{array}\right.\right)
\end{aligned}
$$

Doublet ${ }^{2} D, M=0$:

$$
\begin{aligned}
& \left.+\frac{1}{2} \left\lvert\, \begin{array}{l|ll}
1 & 3 & \uparrow \uparrow \\
\hline 2 & \downarrow
\end{array}\right.\right), \quad+\frac{1}{2}\left|\begin{array}{|l|ll}
1 & 3 & \uparrow \downarrow \\
\hline 2 & \downarrow
\end{array}\right\rangle,
\end{aligned}
$$

Doublet ${ }^{2} P, M=0$:

Doublet ${ }^{2} D, M=-2$:
\(\left.\begin{array}{|c|c|ll}\hline L=2, \quad S=\frac{1}{2} \& 2 \& 3 \& \uparrow \uparrow

M=-2, \quad \mu=\frac{1}{2} \& 3 \& \& \downarrow\end{array}\right\rangle,\)\begin{tabular}{c}
$L=2, \quad S=\frac{1}{2}$

\hline

$|$

\hline 2 \& 3 \& $\uparrow \downarrow$

\hline \& \&

\hline
\end{tabular}

$\mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling total orbit-L tableaus to total spin S tableaus

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

$$
\begin{aligned}
& \mathrm{U}(2): m_{s}=+1 / 2:|\uparrow\rangle, m_{s}=-1 / 2:|\downarrow\rangle \\
& \begin{array}{lll}
m_{L}=+1 & m_{L}=+1 & m_{L}=+1 \\
m_{S}=+1 & m_{S}=+0 & m_{S}=-1
\end{array}
\end{aligned}
$$

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6)$ tensor operators are outer products of $\mathrm{U}(3) \mathbf{v}^{k_{q}}($ orbit $)$ with $\mathrm{U}(2) \mathbf{v}^{\lambda_{\sigma}}($ spin $)$ operators

$$
\left\langle\begin{array}{c|c}
\ell \frac{1}{2} \\
m^{\prime} \mu^{\prime}
\end{array}\right| \begin{gathered}
k \sigma \\
k
\end{gathered}\left|\begin{array}{c}
\ell \frac{1}{2} \\
m
\end{array}\right\rangle=\left\langle\begin{array}{l}
\ell \\
m^{\prime}
\end{array}\right| v_{q}^{k}\left|\begin{array}{l}
\ell \\
m
\end{array}\right\rangle\left\langle\begin{array}{c}
\frac{1}{2} \\
\mu^{\prime}
\end{array}\right| v_{\sigma}^{\lambda}\left|\begin{array}{c}
\frac{1}{2} \\
\mu
\end{array}\right\rangle
$$

$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6)$ tensor operators are outer products of $\mathrm{U}(3) \mathbf{v}^{k}{ }_{q}$ (orbit) with $\mathrm{U}(2) \mathbf{v}^{\lambda}{ }_{\sigma}($ spin $)$ operators

$$
\begin{aligned}
& \left\langle\begin{array}{c|c|cc}
\ell & \frac{1}{2} \\
m^{\prime} \mu^{\prime} & \mathcal{V}_{q \sigma}^{k \lambda} & \ell & \begin{array}{l}
\frac{1}{2} \\
q
\end{array}
\end{array}\right\rangle=\left\langle\begin{array}{c|c|c}
\ell & v^{k} & \ell \\
m^{\prime} & V_{q} & m
\end{array}\right\rangle\left\langle\begin{array}{c|c|c}
\frac{1}{2} & \mathcal{V}^{\prime} & \frac{1}{2} \\
\sigma & \mu
\end{array}\right\rangle \\
& \begin{array}{r}
\left\langle\mathbf{v}_{\frac{2}{2}}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot
\end{array}\right)\left\langle\mathbf{v}_{\overline{1}}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & \overline{1} & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \overline{2} & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{6}}\left\langle\mathbf{v}_{1}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \overline{1} & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{2}^{2}\right\rangle=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right) \quad\left\langle\mathbf{v}_{\overline{1}}^{1}\right\rangle=\left(\begin{array}{ll}
\cdot & \cdot \\
1 & \cdot
\end{array}\right)\left\langle\begin{array}{lll}
\mathbf{v}_{0}^{1}
\end{array}\right\rangle=\left(\begin{array}{ll}
1 & \cdot \\
\cdot & \overline{1}
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{1}^{1}\right\rangle=\left(\begin{array}{ll}
\cdot & \overline{1} \\
\cdot & \cdot
\end{array}\right) \\
\left\langle\begin{array}{lll}
\cdot \mathbf{v}_{0}^{0}
\end{array}\right\rangle=\left(\begin{array}{ll}
1 & \cdot \\
\cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
\end{array} \\
& \left\langle\mathbf{v}_{\overline{1}}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & \overline{1}
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{1}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & \overline{1} & \cdot \\
\cdot & \cdot & \overline{1} \\
\cdot & \cdot & \cdot
\end{array}\right) \frac{1}{\sqrt{2}} \quad \begin{array}{l}
\text { Notational compaction: } \\
\overline{1} \equiv-1, \overline{2} \equiv-2, \text { etc } .
\end{array} \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
\end{aligned}
$$

$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6)$ tensor operators are outer products of $\mathrm{U}(3) \mathbf{v}^{k}{ }_{q}($ orbit $)$ with $\mathrm{U}(2) \mathbf{v}^{\boldsymbol{\lambda}}($ spin $)$ operators

$$
\left\langle\left.\begin{array}{c|c|cc}
\ell & \frac{1}{2} & v^{k \lambda} & \ell \frac{1}{2} \\
m^{\prime} \mu^{\prime}
\end{array} \right\rvert\, \begin{array}{c|c|c}
q \sigma & m & \mu
\end{array}\right\rangle=\left\langle\begin{array}{c|c|c}
\ell \\
m^{\prime}
\end{array}\right| v_{q}^{k}\left|\begin{array}{c}
\ell \\
m
\end{array}\right\rangle\left\langle\left.\begin{array}{c|c}
\frac{1}{2} & \nu^{\prime}
\end{array} \right\rvert\, \begin{array}{c}
\frac{1}{2} \\
\sigma
\end{array}\right\rangle
$$

Notational compaction: $\overline{1} \equiv-1, \overline{2} \equiv-2, \quad$ etc.
$\frac{1}{\sqrt{2}}\left(-\mathrm{E}_{c b}-\mathrm{E}_{e d}\right)=$

$$
\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
$$

$\frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{00}^{11}\right\rangle=\left(\begin{array}{ccccc}1 & \cdot & \cdot & \cdot & . \\ \cdot & \overline{1} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \overline{1} & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1\end{array}\right)\left\langle\mathbf{v}_{1 \overline{1}}^{11}\right\rangle=($

p-shell Spin-orbit calculation

