4.23.18 class 25: Symmetry Principles for

Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by L₋= $\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants

The simplest assembly (Detailed) $\ell = 1 p$ =shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Slater functions for J=1/2 (²P)

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I - harter-pra-1973

Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976

Alternative Basis for the Theory of Complex Spectra III - patterson-harter-pra-1977

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989 (Alt scan)
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989 (Alt scan)
- III) Half-integral angular momentum harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum) Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

<u>QTCA Unit 10 Ch 30 - 2013</u>

AMOP Ch 0 Space-Time Symmetry - 2019

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26), (PSDS - Ch. 5, 7)

Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u> H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>

Hyperf. theory <u>Ch. 24 p48.</u>

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>. Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>. CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>. Lande' g-factor

<u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables Unit 8 Ch. 25 p12.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. *Intro 3-particle coupling.* <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

AMOP reference links (Updated list given on 2nd and 3rd and 4th pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification

Chaos_Classical_and_Quantum_- 2018-Cvitanovic-ChaosBook Group Theory - PUP_Lucy_Day_- Diagrammatic_notation_- Ch4 Simplification_Rules_for_Birdtrack_Operators_- Alcock-Zeilinger-Weigert-zeilinger-jmp-2017 Group Theory - Birdtracks_Lies_and_Exceptional_Groups_- Cvitanovic-2011 Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017 Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux's: <u>UMA</u> method of vibrational induction

Quantum_Mechanics_Group_Theory_and_C60 - Frank_Rioux - Department_of_Chemistry_Saint_Johns_U Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux Quantum_Mechanics-Group_Theory_and_C60 - JChemEd-Rioux-1994 Group_Theory_Problems-_Rioux-_SymmetryProblemsX Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017 Symmetry and Chirality - Continuous_Measures_-_Avnir

Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Slater functions for J=1/2 (²P)

	□ ₌ [2,			u state.				· · · · · · · · · · · · · · · · · · ·	$E_{21} + E_{3}$		(1	•	•	$\int \int dinole (k=1)$
	M=2	M=	:	M=(M=		M=-2	I	$L_z \equiv$		0		$= (E_{11}-E_{33}) = \sqrt{2} \mathbf{v}_0^1 \frac{dipole \ (k=1)}{\angle -momentum}$
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\left \begin{array}{c} 11\\3 \end{array} \right\rangle$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23\\3 \end{vmatrix}$			(•	-1 ĭ) L-operators
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$(13) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{13)}{2}}$		•		$E_{jk}-matrix$ <i>Lect.23</i>	$L_{+} \equiv \sqrt{2}$	$\frac{1}{2}$	· 1	1	$=\sqrt{2}(E_{12}+E_{23})=L_x+iL_y=-\sqrt{2}\mathbf{v}_1^1$
$\begin{pmatrix} 12\\2 \end{pmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1	•	p. <u>7-16</u> and p. <u>74</u>	-+ ,			•	(-12) - 23 - x - y - 1
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{2}$		(13) 1			*		$\sqrt{2}$	· · 1		$=\sqrt{2}(E_{21}+E_{32})=L_x-iL_y=\sqrt{2}\mathbf{v}_{=1}^1$
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{2}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$				· 1	•	
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\sqrt{\frac{(32)}{\sqrt{\frac{3}{2}}}}$	•		$ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt[(13)]{\frac{3}{2}}$						
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1						
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $		(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$	•		⁽²²⁾ (33) 2+1	(23) 1						
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $		·	•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{(31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2						
L_{-}	$L_{-} \begin{vmatrix} L \\ M \end{vmatrix} = \sqrt{(L+M)(L-M+1)} \begin{vmatrix} L \\ M-1 \end{vmatrix}$ Start with top [2,1]-state:													
	$L_{-} \begin{vmatrix} 2\\2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2\\1 \end{vmatrix} = 2 \begin{vmatrix} 2\\1 \end{vmatrix} \qquad $													

]₌[2,	,1] <i>ta</i>	ıblea	u state	s lowei	red b	y L .=	=√2($(E_{21}+E_{32})$		1 .	•	
	M=2	<i>M</i> =	=1	<i>M</i> =	0	<i>M</i> =-	1	<i>M</i> =-2	Ĺ	$a_z \equiv$	· 0	•	$=(E_{11}-E_{33})=\sqrt{2}\mathbf{v}_{0}^{1}$ <i>dipole</i> $(k=1)$
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\left \begin{array}{c} 12\\2 \end{array} \right\rangle$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\left \begin{array}{c} 22\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$			•••	-1	L-operators
$\begin{pmatrix} 11\\2 \end{bmatrix}$	(11) (22) 2+1	(12) 1	(23) 1	$(13) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$			•	$\begin{array}{c} E_{jk}\text{-matrix} \\ Lect.23 L_{+} \end{array}$	≡√2	•	1 · · 1	$=\sqrt{2}(E_{12}+E_{23})=L_x+iL_y=-\sqrt{2}\mathbf{v}_1^1$
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $		(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1	•	<i>p.<u>7-16</u></i> <i>and p.<u>74</u></i>		•	•••	
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32)	•	(11) (33) 2+1	$\sqrt[(12)]{\sqrt{2}}$		(13) 1		•		_≡√2	· 1	· ·	$=\sqrt{2}(E_{21}+E_{32})=L_x-iL_y=\sqrt{2}\mathbf{v}_{=1}^1$
$\begin{pmatrix} 12\\ 3 \end{bmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$				1 •	
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	•		$ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$					
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $		•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1					
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $		(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$	•		⁽²²⁾ (33) 2+1	(23) 1					
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•	•	•	$\sqrt[31]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2					
L	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	(L+M)	\overline{D}	$(I+1) \left {L \atop M-1} \right\rangle$		vith top [_					
•	$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$												
$\begin{vmatrix} 2\\1 \end{pmatrix}$	$=\frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2} \sqrt{2}$	$\overline{2(E_{21})}$ +	$\left \begin{array}{c} E_{32} \end{array} \right \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle = \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle$	$\begin{pmatrix} 1 \\ \sqrt{2} \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ \sqrt{2} \\ 2 \end{pmatrix}$	$\frac{1}{\sqrt{2}}$ $\frac{1}{3}$ $=$	$ ^2 D_{M=1}$	\rangle					
			\bigcirc										

	□_[2,	,1] <i>ta</i>	ıblea	u state.	s lower	red b	$y \mathbf{L}$:	=√2($(E_{21} + E_{21})$	32)	1	•	.)	
	M=2	M=	=1	<i>M</i> =	0	М=-	1	<i>M</i> =-2		$L_z \equiv$.	0	•	$=(E_{11}-E_{33})=\sqrt{2}\mathbf{v}_{0}^{1}$ <i>dipole</i> $(k=1)$
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$				• -	$1 \int$	L-operators
$\begin{pmatrix} 11\\2 \end{bmatrix}$	(11) (22) 2+1	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}$	$\sqrt[(13)]{\frac{3}{2}}$	•		•	<i>E_{jk}-matrix</i> <i>Lect.23</i>	$L_{+} \equiv \sqrt{2}$	$\frac{1}{2}$	· 1 ·	·) 1 =	$=\sqrt{2}(E_{12}+E_{23})=L_x+iL_y=-\sqrt{2}\mathbf{v}_1^1$
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $		(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1	•	<i>p.<u>7-16</u></i> <i>and p.<u>74</u></i>	_			.)	12 23 w y 1
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32)		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1		•		L_≡√	$\overline{2}$	· · · 1 ·	· ·	$=\sqrt{2}(E_{21}+E_{32})=L_x-iL_y=\sqrt{2}\mathbf{v}_{=1}^1$
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$-\sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$				• 1	.)	
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	•		$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$						
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $	•	•	(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{32}{2}}$			(12) 1						
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $	•	(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$	•		$\binom{(22)}{2+1}$ (33)	(23) 1	-					
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•		•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31}{2}}$	(21) 1	(32) 1	(22) (33) 1+2						
L_{-}	$\left {}_{M}^{L} \right\rangle = $	(L+M)	$\overline{)(L-M)}$	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	ith top	[2,1]-sta	ite:						
•	$L_{-} \begin{vmatrix} L \\ M \end{vmatrix} = \sqrt{(L+M)(L-M+1)} \begin{vmatrix} L \\ M-1 \end{vmatrix}$ $L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix}$ Start with top [2,1]-state: $\begin{vmatrix} 2 \\ 2 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$ $\begin{vmatrix} 2 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$													
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} \left(E_{21} + E_{32} \right) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 0 \\ M=1 \end{vmatrix}$													
Or	thogona	ıl <i>M=1</i> s	state: $ ^2$	$\left P_{M=1}\right\rangle = \left \frac{1}{1}\right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle						

	∃₌[2,	,1] <i>ta</i>	blea	u state.	s lowe	red b	$y \mathbf{L}$	$=\sqrt{2}$	$E_{21} + E_{21}$	32)	(1	•	•	
	M=2	<i>M</i> =	=1	<i>. M</i> =	0	М=-	1	<i>M</i> =-2		$L_z \equiv$.	0	•	$ = (E_{11}-E_{33}) = \sqrt{2}\mathbf{v}_0^1 \frac{dipole\ (k=1)}{\angle-momentum} $
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\left \begin{array}{c} 12\\2 \end{array} \right\rangle$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$				• -	-1) L -operators
$\begin{pmatrix} 11\\2 \end{bmatrix}$	(11) (22) 2+1	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt[(13)]{\frac{3}{2}}$			•	<i>E_{jk}-matrix</i> <i>Lect.23</i>	$L_{+} \equiv \sqrt{2}$	$\overline{2} \left(\begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array} \right)$	· 1	·) 1	$=\sqrt{2}(E_{12}+E_{23})=L_x+iL_y=-\sqrt{2}\mathbf{v}_1^1$
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2	•	$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1		<i>p.<u>7-16</u></i> <i>and p.<u>74</u></i>	_			•)	
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[12]{\sqrt{2}}$		(13) 1				L_{\equiv}	$\sqrt{2}$	· · 1 ·	•	$=\sqrt{2}(E_{21}+E_{32})=L_x-iL_y=\sqrt{2}\mathbf{v}_{=1}^1$
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{1}{2}}}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$				• 1	•	
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	•		$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt{\frac{13)}{2}}$						
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $	•	•	(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{(32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1						
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $	•	(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$	•		$\binom{(22)}{2+1}$	(23) 1	-					
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•	•	•	$\sqrt[(31)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2						
<i>L</i> _	$\binom{L}{M} = $	(L+M)	$\overline{)(L-M)}$	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	vith top	[2,1]-sta	ite:						
$L_{_}$	$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$													
	$\begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{2}L_{-}\begin{vmatrix} 2\\2 \end{vmatrix} = \frac{1}{2}\sqrt{2}(E_{21} + E_{32})\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} + \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \begin{vmatrix} 2\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \begin{vmatrix} 2\\2 \end{vmatrix}$													
Or	thogona	ıl <i>M=l</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} $	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^{2}P_{M=1}\rangle$	\rangle						

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

]₌[2,							\ \	$(E_{21}+E_{32}) (1 \cdot \cdot) (E_{11}+dipole(k=1))$				
	<i>M</i> =2		=1	<i>M</i> =0	0	<i>M</i> =-	1	<i>M</i> =-2	$L_{z} = \begin{bmatrix} 1 \\ \ddots \\ L_{z} \end{bmatrix} = \begin{bmatrix} 1 \\ \ddots \\ 0 \\ \ddots \\ = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole \ (k=1)}{(momentum)}$				
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\left \begin{array}{c} 12\\2 \end{array} \right\rangle$	$\left \begin{array}{c} 11\\3 \end{array} \right\rangle$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\left \begin{array}{c} 22\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot & \cdot & -1 \end{array}\right)$				
$\begin{pmatrix} 11\\2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{(13)}{2}}$	•	•	•	$\begin{vmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{+} \equiv \sqrt{2} \end{vmatrix} \stackrel{\cdot}{\cdot} \stackrel{\cdot}{\cdot} 1 = \sqrt{2}(E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2}\mathbf{v}_{1}^{1}$				
$\begin{pmatrix} 12\\2 \end{bmatrix}$	(21) 1	(11) (22) 1+2		$\sqrt{\frac{23)}{\sqrt{\frac{1}{2}}}}$	$\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1		$p.\underline{7-16}$ and $p.\underline{74}$ $(\cdot \cdot \cdot \cdot)$ $(\cdot \cdot \cdot \cdot)$ $(\cdot \cdot \cdot \cdot)$				
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1		$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L_{\underline{=}}\sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{\underline{=}1}^1$				
$\begin{pmatrix} 12\\ 3 \end{bmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} \cdot & 1 \end{array}\right) \qquad \qquad$				
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\sqrt{\frac{(32)}{\sqrt{\frac{3}{2}}}}$	•			$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $		•	(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1					
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $	•	(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$	•	•	⁽²²⁾ (33) 2+1	(23) 1					
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•	•	•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	$ \begin{array}{c} (22) & (33) \\ 1 + 2 \end{array} $					
<i>L</i> _	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	$\overline{)(L-M)}$	$(I+1) \left {L \atop M-1} \right\rangle$	Start w	ith top [[2,1]-sta	ite:					
•	$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$												
$\begin{vmatrix} 2\\1 \end{pmatrix}$	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} (E_{21} + E_{32}) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 0 \\ M=1 \end{vmatrix}$												
Ort	thogona	ıl <i>M=l</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle					

	□_[2,	,1] <i>ta</i>	ıblea	u state	s lowei	red b	$y \mathbf{L}_{-}$	$=\sqrt{2}$	$(E_{21}+E_{32}) (1 \cdot \cdot \cdot) \qquad $				
	M=2	<i>M</i> =	=1	<i>M</i> =	0	М=-	1	<i>M</i> =-2	$L_{z} = \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole}{c} (k=1)$				
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\left \begin{array}{c} 11\\3 \end{array} \right\rangle$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23\\3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot & \cdot & -1 \end{array}\right)$				
$\begin{pmatrix} 11\\2 \end{bmatrix}$	(11) (22) 2+1	(12) 1	(23) 1	$(13) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$	•			$\begin{vmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{+} \equiv \sqrt{2} \end{vmatrix} \stackrel{\cdot}{\cdot} \stackrel{\cdot}{\cdot} 1 = \sqrt{2}(E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2}\mathbf{v}_{1}^{1}$				
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1		$p.\underline{7-16} \qquad (\cdot \cdot \cdot \cdot) \qquad 12 23 x y 1$ and $p.\underline{74} \qquad (\cdot \cdot \cdot \cdot) \qquad (\cdot \cdot) \qquad (\cdot \cdot \cdot) \qquad (\cdot) \qquad (\cdot \cdot) \qquad (\cdot) $				
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	(11) (33) 2+1	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$ \begin{bmatrix} \\ L_{\underline{=}}\sqrt{2} \end{bmatrix} = \sqrt{2} \begin{bmatrix} \\ 1 \end{bmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_x - iL_y = \sqrt{2} \mathbf{v}_{\underline{=}1}^1 $				
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$-\sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{2}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} \cdot & 1 \\ \cdot & 1 \end{array}\right) = \left(\begin{array}{c} 21 \\ \cdot & 32 $				
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\sqrt[(32)]{\frac{3}{2}}$	•	•		$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt[(13)]{\frac{3}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $	•	•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 12\\2 \end{vmatrix} + \begin{vmatrix} 11\\3 \end{vmatrix} \right)$				
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $	•	(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$		•	$ \begin{array}{c} \scriptstyle (22) (33) \\ \scriptstyle 2+1 \end{array} $	(23) 1					
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•	•	•	$\sqrt[(31)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2					
L_{-}	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	(L+M)	$\overline{)(L-M)}$	$(I+1) \left {L \atop M-1} \right\rangle$		- -	[2,1]-sta	_					
$L_{_}$	$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$												
	$\begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{2}L_{-}\begin{vmatrix} 2\\2 \end{vmatrix} = \frac{1}{2}\sqrt{2}(E_{21} + E_{32})\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} + \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \begin{vmatrix} 2\\M_{-1} \end{vmatrix}$												
Or	thogona	ıl <i>M=l</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\left \frac{1}{\sqrt{2}} \right \left \frac{12}{2} \right\rangle - \frac{1}{\sqrt{2}} \right $	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^{2}P_{M=1}\rangle$	>					

]₌[2,							· · · · · · · · · · · · · · · · · · ·	$(E_{21}+E_{32})$ $(1 \cdot \cdot)$				
	M=2	<i>M</i> =	=1	<i>M</i> =0	0	<i>M</i> =-	1	<i>M</i> =-2	$L_{z} = \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole \ (k=1)}{(k=1)}$				
E _{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot & \cdot & -1 \end{array}\right) \qquad \qquad \begin{array}{c} \textbf{L-operators} \\ \textbf{L-operators} \end{array}$				
$\begin{pmatrix} 11\\2 \end{bmatrix}$	(11) (22) 2+1	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•		•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{+} \equiv \sqrt{2} \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$				
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1	•	$\begin{bmatrix} p.\underline{7-16} \\ and p.\underline{74} \end{bmatrix} \xrightarrow{\mathbf{r}} \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \xrightarrow{\mathbf{r}} \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$				
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	(11) (33) 2+1	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$ \begin{pmatrix} \\ L_{\underline{=}}\sqrt{2} & 1 & . \\ 1 & . & . \\ =\sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{=1}^1 $				
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$(31) - \sqrt{\frac{1}{2}}$	$ \begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix} $	$\begin{pmatrix} (21) \\ \sqrt{2} \end{pmatrix}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} \cdot & 1 \\ \cdot & 1 \end{array}\right) = \left(\begin{array}{c} \cdot & 21 \\ \cdot & 32 \\ \end{array}\right)$				
$\begin{pmatrix} 13\\2 \end{bmatrix}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$ \begin{pmatrix} (32)\\ \sqrt{\frac{3}{2}} \end{pmatrix} $	•		$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $	•		(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{32)}{2}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 12\\2 \end{vmatrix} + \begin{vmatrix} 11\\3 \end{vmatrix} \right)$				
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $	•	(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$	•	•	⁽²²⁾ (33) 2+1	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + E_{21} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right)$				
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $	•	•	•	$\sqrt[31]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	$ \begin{array}{c} (22) & (33) \\ 1 + 2 \end{array} $					
<i>L</i> _	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	(L+M)	$\overline{)(L-M)}$	$\overline{(I+1)}\Big _{M-1}^L\Big\rangle$	Start w	rith top	[2,1]-sta	ite:					
L_{-}	$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$												
$\begin{vmatrix} 2\\1 \end{pmatrix}$	$= \frac{1}{2}L_{-}$	$\binom{2}{2} = \frac{1}{2}\sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32})\Big \frac{11}{2} \Big\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{2} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle					
Ort	thogona	ıl <i>M=l</i> s	state: 2	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle					

	□ = [2,					•	~	\	$(E_{21}+E_{32})$ $(1 \cdot \cdot)$				
	<i>M=2</i>		-	<i>M=</i> (0	<i>M</i> =- <i>1</i>	1	<i>M</i> =-2	$L_{z} = \begin{bmatrix} 1 \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\$				
E _{jk}	$\begin{vmatrix} 11\\2 \end{pmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot & \cdot & -1 \end{array}\right)$				
$\begin{pmatrix} 11\\2 \end{bmatrix}$	(11) (22) 2+1	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$		•	•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{+} \equiv \sqrt{2} \\ \cdot \cdot 1 \\ \end{bmatrix} = \sqrt{2}(E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2}\mathbf{v}_{1}^{1}$				
$\begin{pmatrix} 12\\2 \end{bmatrix}$	(21) 1			$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		$p.\underline{7-16} \\ and \ p.\underline{74} \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot) \\ (\cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot) \\ (\cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot) \\ (\cdot \cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot) \\ (\cdot \cdot \cdot) \\ (\cdot \cdot) \\ \hline \\ (\cdot \cdot \cdot) \\ ($				
$ \begin{pmatrix} 11\\ 3 \end{bmatrix} $	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{2}$		(13) 1			$L_{\underline{=}}\sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{\underline{=}1}^1$				
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$-\sqrt{\frac{1}{2}}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (21) \\ \sqrt{2} \end{pmatrix}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$					
$\begin{pmatrix} 13\\2 \end{bmatrix}$	$(31) \\ \sqrt{\frac{3}{2}}$	$ \begin{pmatrix} (32)\\ \sqrt{\frac{3}{2}} \end{pmatrix} $	•		$ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $		•	(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	$\begin{array}{c} (11) & (33) \\ 1+2 \end{array}$		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 12\\2 \end{vmatrix} + \begin{vmatrix} 11\\3 \end{vmatrix} \right)$				
$ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $		(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$	•	•	⁽²²⁾ (33) 2+1	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + E_{21} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right)$				
$ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $		•	•	$\sqrt[31]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \frac{\sqrt{2}}{3} \left(\begin{array}{c} 12 \\ 3 \end{array} \right) + \frac{\sqrt{1}}{2} \left(\begin{array}{c} 12 \\ 3 \end{array} \right) + \frac{\sqrt{3}}{2} \left(\begin{array}{c} 13 \\ 2 \end{array} \right) + 0 \left(\begin{array}{c} 11 \\ 3 \end{array} \right) \right)$				
L_{-}	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	$\overline{(L+M)}$	$\overline{(L-N)}$	$\overline{(I+1)}\Big _{M-1}^L\Big\rangle$	Start w	vith top [2,1]-sta	ate:					
$L_{_}$	$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$												
				$\left E_{32} \right \left \frac{11}{2} \right\rangle =$									
Or	thogona	al <i>M=1</i> s	state: $ ^2$	$\left P_{M=1}\right\rangle = \left \begin{smallmatrix}1\\1\right\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{2}$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle					

]=[2,							· · · · · · · · · · · · · · · · · · ·	$(E_{21}+E_{32})$ $(1 \cdot \cdot)$ $(1 \cdot \cdot)$				
	M=2	M	=1		0	<i>M</i> =-	1	<i>M</i> =-2	$L_{z} = \begin{bmatrix} L_{32} \\ L_{z} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ . \end{bmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole \ (k=1)}{(E_{11} - E_{33})} = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole \ (k=1)}{(E_{11} - E_{13})} = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole \ (k=1)}{(E_{1$				
E_{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\left \begin{array}{c} 11\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot & \cdot & -1 \end{array}\right)$				
$\begin{pmatrix} 11\\2 \end{bmatrix}$	(11) (22) 2+1	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt[(13)]{\frac{3}{2}}$	•		•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 & L_{+} \equiv \sqrt{2} \end{bmatrix} (\begin{array}{c} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$				
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1	•	$p.\underline{7-16}$ and $p.\underline{74}$ $(\cdot \cdot \cdot \cdot)$ $(\cdot \cdot \cdot \cdot)$				
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32)		(11) (33) 2+1	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{pmatrix} 12\\ 3 \end{bmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	(32) $\sqrt{\frac{1}{2}}$	$\sqrt{\frac{(21)}{\sqrt{2}}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$					
$\begin{pmatrix} 13\\2 \end{bmatrix}$	$\sqrt{\frac{31}{2}}$	$\underbrace{\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}}^{(32)}$	•		$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$\begin{pmatrix} 13\\ 3 \end{pmatrix}$	•	•	(31) 1	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt{\frac{32}{2}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 12\\2 \end{vmatrix} + \begin{vmatrix} 11\\3 \end{vmatrix} \right)$				
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$	•	(31) -1		$\sqrt[(21)]{\sqrt{2}}$		•	$\begin{array}{c} \scriptstyle (22) (33) \\ \scriptstyle 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{bmatrix} 12\\2 \end{bmatrix} \right) + E_{21} \begin{bmatrix} 11\\3 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 12\\2 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 11\\3 \end{bmatrix} \right)$				
$\begin{pmatrix} 23\\ 3 \end{bmatrix}$	•	•	•	$\sqrt[(31)]{\frac{1}{2}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \frac{1}{\sqrt{2}} \\ 3 \end{array} \right)$				
	$\binom{L}{M} = $	(L+M)	(L-M)	$\overline{(I+1)}\Big _{M-1}^{L}\Big\rangle$		rith top	[2,1]-sta	ite:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{3}{\sqrt{2}} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2$				
L_{-}	$L_{-} \begin{vmatrix} 2\\2 \end{pmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2\\1 \end{pmatrix} = 2 \begin{vmatrix} 2\\1 \end{pmatrix} \qquad \begin{vmatrix} 2\\2 \end{pmatrix} = \begin{vmatrix} 1\\1 \\2 \end{vmatrix} = \begin{vmatrix} 2\\D_{M=2} \end{pmatrix}$												
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$\begin{vmatrix} 2\\1 \end{vmatrix} = \frac{1}{2}L_{-}\begin{vmatrix} 2\\2 \end{vmatrix} = \frac{1}{2}\sqrt{2}(E_{21} + E_{32})\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} + \frac{1}{\sqrt{2}}\begin{vmatrix} 1\\2 \end{vmatrix} = \begin{vmatrix} 2\\M_{-1} \end{vmatrix}$												
Or	thogona	M = 1 s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle					

]=[2,						 Image: A start of the start of	× *	$(E_{21}+E_{32})$ $(1 \cdot \cdot)$ $(1 \cdot \cdot)$				
	<i>M=2</i>	<i>M</i> =	=1	M =	0	<i>M</i> =-	1	<i>M</i> =-2	$L_{z} = \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole \ (k=1)}{(k=1)}$				
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\left \begin{array}{c} 11\\3 \end{array} \right\rangle$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\left \begin{array}{c} 22\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot & \cdot & -1 \end{array}\right) \qquad \qquad \begin{array}{c} & \textbf{L-operators} \\ \textbf{L-operators} \end{array}$				
$ \begin{pmatrix} 11 \\ 2 \end{bmatrix} $	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$(13) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{(13)}{2}}$	•		•	$\begin{vmatrix} E_{jk}-matrix \\ Lect.23 \\ L_{+} \equiv \sqrt{2} \end{vmatrix} \stackrel{\cdot}{\cdot} \stackrel{\cdot}{\cdot} \stackrel{\cdot}{\cdot} 1 = \sqrt{2}(E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2}\mathbf{v}_{1}^{1}$				
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		(13) -1		$\begin{bmatrix} p. 7-16 \\ and p. 74 \\ \end{array} + \begin{bmatrix} . & . \\ - & . \end{bmatrix} + \begin{bmatrix} . & . \\ - & . \\ - & . \end{bmatrix}$				
$ \begin{pmatrix} 11\\ 3 \end{bmatrix} $	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{2}$		(13) 1		•	$L_{\underline{=}}\sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{=1}^1$				
$\begin{pmatrix} 12\\ 3 \end{bmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (21) \\ \sqrt{2} \end{pmatrix}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$					
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31}{2}}$	$ \begin{pmatrix} (32)\\ \sqrt{\frac{3}{2}} \end{pmatrix} $				$\sqrt{\frac{3}{2}}^{(23)}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$				
$\begin{pmatrix} 13\\3 \end{bmatrix}$		•	(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt[32]{\frac{3}{2}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 12\\2 \end{vmatrix} + \begin{vmatrix} 11\\3 \end{vmatrix} \right)$				
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$	•	(31) -1	•	$\sqrt[(21)]{\sqrt{2}}$		•		(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + E_{21} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) + E_{32} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right)$				
$\begin{pmatrix} 23 \\ 3 \end{bmatrix}$				$\sqrt[(31)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{(31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \end{array} \right) + \sqrt{\frac{3}{2}} \\ 2 \end{array} \right) + 0 \\ 1 \\ 3 \end{array} \right)$				
	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	(L+M)	$\overline{)(L-M)}$	$\frac{1}{(I+1)} \left \begin{array}{c} L \\ M-1 \end{array} \right\rangle$		vith top	[2,1]-sta	ate:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \\ \frac{1}{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{1}{2} \end{array} \right) = \left \begin{array}{c} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{array} \right) + \frac{1}{2} \\ \frac{1}{3} \end{array} \right) + \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right) = \left \begin{array}{c} 2 \\ D_{M=0} \end{array} \right) = \left \begin{array}{c} 2 \\ 0 \end{array} \right)$				
	$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$												
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} (E_{21} + E_{32}) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix}$												
Ort	thogona	ıl <i>M=1</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle					

	□₌[2,	,1] <i>ta</i>	blea	u state.	s lower		✓	\ \	$(E_{21}+E_{32})$ $(1 \cdot \cdot)$			
	<i>M</i> =2	M	=1	<i>M</i> =	0	М=-	1	<i>M</i> =-2	$L_{z} = \begin{bmatrix} 1 \\ \vdots \\ L_{z} \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 0 \\ \vdots \end{bmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1} \frac{dipole \ (k=1)}{(momentum)}$			
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\left \begin{array}{c} 11\\3 \end{array} \right\rangle$	$\begin{vmatrix} 12\\3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\left \begin{array}{c} 22\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\left(\begin{array}{ccc} \cdot & \cdot & -1 \end{array}\right) \qquad \qquad \begin{array}{c} & \textbf{L-operators} \\ \textbf{L-operators} \end{array}$			
$\begin{pmatrix} 11\\2 \end{bmatrix}$	$ \begin{array}{c} (11) (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt[(13)]{\frac{3}{2}}$	•		•	$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$			
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{2}}$	•	(13) -1	•				
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32)	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1		•	$L_{} = \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_x - iL_y = \sqrt{2} \mathbf{v}_{=1}^1$			
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{2}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}$	$\sqrt[(12)]{2}$	$\sqrt[(13)]{\frac{1}{2}}$				
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$				$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{2}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$			
$\begin{pmatrix} 13\\ 3 \end{pmatrix}$			(31) 1	$\sqrt{\frac{32)}{\sqrt{\frac{1}{2}}}}$	$\sqrt{\frac{32}{2}}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1\\2 \end{vmatrix} \right) + \begin{vmatrix} 1\\3 \end{vmatrix} \right)$			
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$		(31) -1		$\sqrt[(21)]{\sqrt{2}}$				(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$			
$\begin{pmatrix} 23\\ 3 \end{bmatrix}$	•	·	•	$\sqrt[(31)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{31}{2}}$	(21) 1	(32) 1	⁽²²⁾ (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ 3 \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3$			
	$\left \begin{smallmatrix} L \\ M \end{smallmatrix} \right\rangle = $	L + M	(L-M)	$\overline{(l+1)}\Big _{M-1}^{L}\Big\rangle$		ith top	[2,1]-sta	ite:	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \\ \frac{1}{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{1}{2} \end{array} \right) = \frac{\sqrt{3}}{2} \\ \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{3} \end{array} \right) + \frac{1}{2} \\ \frac{1}{2} \\$			
$L_{_}$	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle = \sqrt{(}$	(2+2)(2	2 - 2 + 1	$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^2D_{M=2}$	>	Orthogonal (L=1, <i>M</i> =0) state: $\frac{-1}{2} \left \frac{1}{3} \right\rangle + \frac{\sqrt{3}}{2} \left \frac{1}{3} \right\rangle = \left {}^{2}P_{M=0} \right\rangle = \left {}^{1}_{0} \right\rangle$			
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$ \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} (E_{21} + E_{32}) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{$											
				$P_{M=1}\rangle = \begin{vmatrix} 1 \\ 1 \end{vmatrix} =$	I — 7	· —			$\begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$			

	$\Box_{=} \begin{bmatrix} 2 \\ M=2 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix} ta$		u state. _{M=0}		red b _{M=-}	<	$=\sqrt{2}(M)$	$ \begin{array}{c} (E_{21}+E_{32}) \\ L_z \equiv \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{array}\right) = (E_{11}-E_{33}) = \sqrt{2} \mathbf{v}_0^1 \begin{array}{c} dipole \ (k=1) \\ \cdot & momentum \end{array} $
E _{jk}	$\begin{vmatrix} 11\\2 \end{pmatrix}$	$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23\\3 \end{vmatrix}$	$ \begin{bmatrix} 2 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & 33 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & 33 \\ \cdot & \cdot & \mathbf{L}-operators \end{bmatrix} $
$\begin{pmatrix} 11\\2 \end{bmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{13}{2}}$	$\sqrt[(13)]{\frac{3}{2}}$	•	•	•	$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{23)}{2}}$	•	(13) -1	•	
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L_{\underline{=}}\sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{=1}^1$
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}^{(32)}$	$\sqrt[(21)]{\sqrt{2}}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	
$ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$		•	$ \begin{array}{ccc} {}^{(11)} & (22) & (33) \\ 1+1+1 & +1 \end{array} $	$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13 \\ 3 \end{bmatrix}$		•	(31) 1	$\begin{pmatrix} (32) \\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1\\2 \end{vmatrix} \right) + \begin{vmatrix} 1\\3 \end{vmatrix} \right)$
$\begin{pmatrix} 22\\ 3 \end{bmatrix}$		(31) -1		$\sqrt{\frac{(21)}{\sqrt{2}}}$	$\overline{(\cdot)}$		$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right) + E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right)$
$\begin{pmatrix} 23 \\ 3 \end{bmatrix}$		·	·	(31) $\sqrt{\frac{1}{2}}$	$\sqrt[(31)]{\sqrt{\frac{3}{2}}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ \frac{12}{3} \\ + \sqrt{\frac{1}{2}} \\ \frac{12}{3} \\ + \sqrt{\frac{1}{2}} \\ \frac{12}{3} \\ + \sqrt{\frac{3}{2}} \\ \frac{13}{2} \\ + 0 \\ \frac{11}{3} \\ \end{array} \right)$
	$\left \begin{array}{c} L \\ M \end{array} \right\rangle = $	(L+M)	(L-M)	$\frac{\sqrt{2}}{(L+1)} \left \frac{L}{M-1} \right\rangle$		rith top	[2,1]-sta		$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \\ \frac{1}{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{1}{2} \\ \frac{3}{2} \end{array} \right) = \left[\begin{array}{c} \frac{\sqrt{3}}{2} \\ \frac{1}{3} \\ \frac{1}{2} \\ \frac{3}{2} \end{array} \right) + \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac$
				$\left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = 2 \left \begin{array}{c} 2 \\ 1 \end{array} \right\rangle$	$\begin{vmatrix} 2\\2 \end{pmatrix} =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^2 D_{M=2}$	\rangle	Orthogonal (L=1, <i>M</i> =0) state: $\frac{-1}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ P_{M=0} \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$= \frac{1}{2} L_{-} \Big _{2}^{2}$	$\binom{2}{2} = \frac{1}{2}\sqrt{2}$	$\overline{2}(E_{21} +$	$E_{32})\Big \frac{11}{2} \Big\rangle =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \right $	$\frac{1}{2} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 D_{M=1}$	\rangle	$L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{(2+0)(2-0+1)} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ -1 \end{vmatrix}$
Or	thogona	ul <i>M=1</i> s	state: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$ ^2 P_{M=1}$	\rangle	$\begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 12 \\ 3 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} 13 \\ 2 \end{vmatrix} \right)$
				L					$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right) + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right)$

	$\Box_{=} \begin{bmatrix} 2 \\ M=2 \end{bmatrix}$	1] <i>ta</i>		u state. _{M=}		red b M=-	•	$=\sqrt{2}(M)$	$ \begin{array}{c} (E_{21}+E_{32}) \\ L_z \equiv \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{array}\right) = (E_{11}-E_{33}) = \sqrt{2} \mathbf{v}_0^1 \begin{array}{c} dipole \ (k=1) \\ \cdot & \cdots \end{array} \right) $
E _{jk}	$\left \begin{array}{c} 11\\2 \end{array} \right\rangle$	$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\begin{bmatrix} 2 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & -1 \end{bmatrix} \begin{bmatrix} \cdot & -1 $
$ \begin{pmatrix} 11 \\ 2 \end{bmatrix} $	$\binom{(11)}{2+1}$	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$	•			$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{2}}$	•	(13) -1		$\left(\begin{array}{c} \cdot \\ \cdot $
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L_{\underline{=}}\sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{=1}^1$
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{\sqrt{2}}$			$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} - \\ \cdot \\ 1 \end{array}\right) = \left(\begin{array}{c} \cdot \\ 21 \end{array}\right) = \left(\begin{array}{c} - \\ 32 \end{array}\right) = \left(\begin{array}{c} - \\ - \\ 1 \end{array}\right)$
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31)}{2}}$	$\sqrt{\frac{32)}{2}}$		•		$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•	•	(31) 1	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1\\2 \end{vmatrix} \right) + \begin{vmatrix} 1\\3 \end{vmatrix} \right)$
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$	•	(31) -1		$\sqrt{\frac{(21)}{\sqrt{2}}}$	$\overline{\mathbf{\cdot}}$	•		(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$
$\begin{pmatrix} 23 \\ 3 \end{bmatrix}$	•	•	•	$\underbrace{(31)}_{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \end{array} \right) + \sqrt{\frac{3}{2}} \\ 3 \end{array} \right) + 0 \\ 1 \\ 3 \end{array} \right)$
	$\frac{\sqrt{3}}{L_{-} \begin{pmatrix} L \\ M \end{pmatrix}} = \sqrt{(L+M)(L-M+1)} \begin{pmatrix} L \\ M-1 \end{pmatrix}$ Start with top [2,1]-state: $= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \begin{pmatrix} 12 \\ 3 \end{pmatrix} + \sqrt{\frac{3}{2}} \begin{pmatrix} 12 \\ 2 \end{pmatrix} \right) = \frac{\sqrt{3}}{2} \begin{pmatrix} 12 \\ 3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 13 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$								
$L_{-} \begin{vmatrix} 2\\2 \end{pmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2\\1 \end{pmatrix} = 2 \begin{vmatrix} 2\\1 \end{pmatrix} \qquad \begin{vmatrix} 2\\2 \end{pmatrix} = \begin{vmatrix} 1\\1 \\2 \end{vmatrix} = \begin{vmatrix} 2\\0 \\M=2 \end{pmatrix} \qquad \text{Orthogonal (L=1, M=0) state:} \qquad \frac{-1}{2} \begin{vmatrix} 1\\2\\3 \end{pmatrix} + \frac{\sqrt{3}}{2} \begin{vmatrix} 1\\3\\2 \end{vmatrix} = \begin{vmatrix} 2\\P_{M=0} \end{pmatrix} = \begin{vmatrix} 2\\0 \\0 \end{vmatrix}$									
$ \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} (E_{21} + E_{32}) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 2 \\ 2 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 2 \\ 2$									
Orthogonal $M=I$ state: $\begin{vmatrix} 2P_{M=1} \end{pmatrix} = \begin{vmatrix} 1\\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 12\\ 2 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{vmatrix} 11\\ 3 \end{pmatrix} = \begin{vmatrix} 2P_{M=1} \end{pmatrix}$ $\begin{vmatrix} 2\\ -1 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\ 0 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 12\\ 3 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} 13\\ 2 \end{vmatrix} \right)$									
									$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right) + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right)$
									$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{1} \frac{2}{3} \right) + 0 \frac{2}{2} + \frac{\sqrt{3}}{2} \sqrt{\frac{1}{2}} \frac{1}{3} + \frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{3} \right)$

	$\Box_{=} \begin{bmatrix} 2 \\ M=2 \end{bmatrix}$,1] $ta_{M=}$		u state M=		red b M=-	<	$=\sqrt{2}(M)$	$ \begin{array}{c} (E_{21}+E_{32}) \\ L_z \equiv \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{array}\right) = (E_{11}-E_{33}) = \sqrt{2} \mathbf{v}_0^1 \begin{array}{c} dipole \ (k=1) \\ \cdot & momentum \end{array} $	
E _{jk}	$\begin{vmatrix} 11 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 12\\2 \end{pmatrix}$	$\left \begin{array}{c} 11\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\left \begin{array}{c} 22\\ 3 \end{array} \right\rangle$	$\begin{vmatrix} 23\\3 \end{vmatrix}$	$\begin{bmatrix} 2 \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & 0 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & 0 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & 0 \end{bmatrix} \begin{bmatrix} \cdot & 1 & -1 \\ - & 0 \end{bmatrix} \begin{bmatrix} \cdot & -1 \\ - &$	
$\begin{pmatrix} 11\\2 \end{bmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}^{(13)}$	$\sqrt[(13)]{\frac{3}{2}}$	•	•	•	$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$	
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	$ \begin{array}{c} (11) (22) \\ 1+2 \end{array} $		$\sqrt[(23)]{\frac{1}{2}}$	$\sqrt{\frac{23)}{2}}$	•	(13) -1			
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	$ \begin{array}{c} (11) & (33) \\ 2+1 \end{array} $	$\sqrt[(12)]{\sqrt{2}}$		(13) 1			$L_{\underline{=}}\sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{=1}^1$	
$ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt[(32)]{\frac{1}{2}}$	$\sqrt[(21)]{2}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt[(13)]{\frac{1}{2}}$	$\left(\begin{array}{c} \cdot & 1 \end{array}\right)$	
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$	$(32) \\ \sqrt{\frac{3}{2}}$		•	$ \begin{array}{ccc} (11) & (22) & (33) \\ 1 + 1 + 1 \end{array} $	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$	
$\begin{pmatrix} 13\\3 \end{bmatrix}$	•	•	(31) 1	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 12\\2 \end{vmatrix} + \begin{vmatrix} 11\\3 \end{vmatrix} \right)$	
$\begin{pmatrix} 22\\ 3 \end{bmatrix}$		(31) -1		$\sqrt{\frac{2}{\sqrt{2}}}$	(\mathbf{v}_2)		$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right) + E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$	
$\begin{pmatrix} 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				$\begin{array}{c} (31)\\ \sqrt{\frac{1}{2}} \end{array}$	(31) $\sqrt{\frac{3}{2}}$	(21) 1	(32) 1	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c c} 0 \\ 2 \end{array} \right) + \sqrt{2} \left \begin{array}{c} 12 \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \left \begin{array}{c} 12 \\ 3 \end{array} \right) + \sqrt{\frac{3}{2}} \left \begin{array}{c} 13 \\ 2 \end{array} \right) + 0 \left \begin{array}{c} 11 \\ 3 \end{array} \right) \right)$	
I	$\frac{\sqrt{3}}{L_{-}} = \sqrt{(L+M)(L-M+1)} \begin{vmatrix} L_{M-1} \\ M \end{vmatrix} = \frac{\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}} \begin{vmatrix} 1 & 1 & 1 + 2 \\ 1 & 1 + 2 \end{vmatrix} = \frac{\sqrt{3}}{\sqrt{2}} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \end{vmatrix} = \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \end{vmatrix} = \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \end{vmatrix} = \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \end{vmatrix} = \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = \frac{\sqrt{3}}{2} \end{vmatrix} = \sqrt{3$									
•				$\overline{0} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$\left \begin{array}{c} 2\\ 2 \end{array} \right\rangle =$	$\left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$	$ ^2 D_{M=2}$	}	Orthogonal (L=1, <i>M</i> =0) state: $\frac{-1}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ P_{M=0} \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$	
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$ \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} (E_{21} + E_{32}) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \end{vmatrix} = \frac{1}{\sqrt{2}$									
Orthogonal $M=1$ state: $\begin{vmatrix} 2P_{M=1} \end{pmatrix} = \begin{vmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 12\\2 \end{vmatrix} - \frac{1}{\sqrt{2}} \begin{vmatrix} 12\\3 \end{vmatrix} = \begin{vmatrix} 2P_{M=1} \end{pmatrix}$ $\begin{vmatrix} 2\\-1 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 12\\3 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} 13\\2 \end{vmatrix} \right)$										
$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{1}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} + \frac{1}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right)$										
	$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{1} \frac{ 2 }{ 3 } \right) + 0 \frac{ 2 }{2} + \frac{\sqrt{3}}{2} \sqrt{\frac{1}{2}} \frac{ 1 }{ 3 } + \frac{1}{2} \sqrt{\frac{3}{2}} \frac{ 1 }{ 3 } \right)$									
	$= \frac{1}{\sqrt{3}} \left(\begin{array}{c} \sqrt{\frac{3}{2}} \\ \boxed{3} \end{array} \right) + \sqrt{\frac{3}{2}} \\ \boxed{3} \end{array} \right) + \frac{1}{\sqrt{2}} \\ \boxed{3} \end{array} \right) = \frac{1}{\sqrt{2}} \\ \boxed{3} \end{array} \right) + \frac{1}{\sqrt{2}} \\ \boxed{3} \end{array} \right) + \frac{1}{\sqrt{2}} \\ \boxed{3} \\ \boxed{3} \\ = \\ \begin{vmatrix} 2 \\ 0 \\ M_{m=-1} \\ \end{vmatrix} = \\ \begin{vmatrix} 2 \\ -1 \\ \end{vmatrix}$									

	$]_{=} [2, M=2]$	1] $ta_{M^{\pm}}$		u states M=0		red b	✓	$=\sqrt{2}(M)$	$ \begin{array}{c} (E_{21} + E_{32}) \\ L_z \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_0^1 \text{ Dipole } (k=1) \end{array} $		
E _{jk}		$\begin{vmatrix} 12 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 11 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 12 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 13\\2 \end{pmatrix}$	$\begin{vmatrix} 13 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 22\\3 \end{vmatrix}$	$\begin{vmatrix} 23 \\ 3 \end{vmatrix}$	$\begin{bmatrix} -2z \\ \cdot & \cdot & -1 \end{bmatrix} = \begin{bmatrix} -2z \\ \cdot & -1 \end{bmatrix} = \begin{bmatrix} -2z \\ -momentum \\ L-operators \end{bmatrix}$		
$\begin{pmatrix} 11\\ 2 \end{pmatrix}$	$ \begin{array}{c} (11) & (22) \\ 2+1 \end{array} $	(12) 1	(23) 1	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	•		•	$\begin{bmatrix} E_{jk}-matrix \\ Lect.23 & L_{+} \equiv \sqrt{2} \end{bmatrix} (\begin{array}{c} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} = \sqrt{2}(E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2}\mathbf{v}_{1}^{1}$		
$ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $	(21) 1	(11) (22) 1+2		$\sqrt{\frac{(23)}{\sqrt{\frac{1}{2}}}}$	$\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$	•	(13) -1	•	$p.\underline{7-16}$ and $p.\underline{74}$ $(\cdot \cdot \cdot \cdot)$		
$\begin{pmatrix} 11\\ 3 \end{bmatrix}$	(32) 1	•	(11) (33) 2+1	$\sqrt[(12)]{\sqrt{2}}$		(13) 1		•	$L_{\underline{=}}\sqrt{2} \begin{vmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{vmatrix} = \sqrt{2}(E_{21} + E_{32}) = L_x - iL_y = \sqrt{2}\mathbf{v}_{=1}^1$		
$\begin{pmatrix} 12\\ 3 \end{pmatrix}$	$(31) - \sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}^{(32)}$	$\sqrt[(21)]{2}$	$ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $		$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt[(12)]{\sqrt{2}}$	$\sqrt{\frac{13}{2}}$	$\left(\begin{array}{cc} \cdot & 1 & \cdot \end{array}\right)$		
$\begin{pmatrix} 13\\2 \end{pmatrix}$	$\sqrt{\frac{31)}{2}}$	$\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$	•	•		$\sqrt{\frac{23)}{2}}$		$\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$	$L_{-} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{(2+1)(2-1+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ 0 \end{vmatrix}$		
$\begin{pmatrix} 13\\ 3 \end{bmatrix}$	•	•	(31) 1	$\begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$	(11) (33) 1+2		(12) 1	$\begin{vmatrix} 2\\0 \end{pmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} \left(E_{21} + E_{32} \right) \frac{1}{\sqrt{2}} \left(\begin{vmatrix} 1 2\\2 \end{vmatrix} \right) + \begin{vmatrix} 1 1\\3 \end{vmatrix} \right)$		
$\begin{pmatrix} 22\\ 3 \end{pmatrix}$	•	(31) -1		$\sqrt{\frac{(21)}{\sqrt{2}}}$			$\begin{array}{c} (22) (33) \\ 2+1 \end{array}$	(23) 1	$= \frac{1}{\sqrt{6}} \left(E_{21} \begin{vmatrix} 12 \\ 2 \end{vmatrix} + E_{21} \begin{vmatrix} 11 \\ 3 \end{vmatrix} + E_{32} \begin{vmatrix} 12 \\ 2 \end{vmatrix} + E_{32} \begin{vmatrix} 11 \\ 3 \end{vmatrix} \right)$		
$\begin{pmatrix} 23\\ 3 \end{bmatrix}$	•	•	•	(31) $\sqrt{\frac{1}{2}}$	(31) $\sqrt{\frac{3}{2}}$	(21) 1	(32)	(22) (33) 1+2	$= \frac{1}{\sqrt{6}} \left(\begin{array}{c} 0 \\ 2 \end{array} \right) + \sqrt{2} \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \end{array} \right) + \sqrt{\frac{1}{2}} \\ 3 \end{array} \right) + \sqrt{\frac{3}{2}} \\ 2 \end{array} \right) + 0 \\ 3 \end{array} \right)$		
	$\frac{\sqrt{3}}{L_{-} \begin{pmatrix} L \\ M \end{pmatrix}} = \sqrt{(L+M)(L-M+1)} \begin{pmatrix} L \\ M-1 \end{pmatrix}$ Start with top [2,1]-state: $= \frac{1}{\sqrt{6}} \left(\begin{array}{c} \frac{3}{\sqrt{2}} \begin{pmatrix} 12 \\ 3 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 12 \\ 2 \end{pmatrix} \right) = \frac{\sqrt{3}}{2} \begin{pmatrix} 12 \\ 3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 13 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$										
$L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{(2+2)(2-2+1)} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} \qquad \qquad$											
$\begin{vmatrix} 2\\1 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} L_{-} \begin{vmatrix} 2 \\ 2 \end{vmatrix} = \frac{1}{2} \sqrt{2} (E_{21} + E_{32}) \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 2 \end{vmatrix} + \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 3 \end{vmatrix} = \begin{vmatrix} 2 \\ 0 \\ M=1 \end{vmatrix}$								$L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{(2+0)(2-0+1)} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \sqrt{6} \begin{vmatrix} 2 \\ -1 \end{vmatrix}$		
Ort	hogona	M = l s	tate: $ ^2$	$P_{M=1} \rangle = \begin{vmatrix} 1 \\ 1 \end{pmatrix} =$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 2 \end{array} \right\rangle - \frac{1}{\sqrt{2}} \left \begin{array}{c} 2 \end{array} \right\rangle$	$\frac{1}{\sqrt{2}} \left \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$	$\begin{vmatrix} 2 \\ -1 \end{vmatrix} = \frac{1}{\sqrt{6}} L_{-} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = \frac{1}{\sqrt{6}} \sqrt{2} (E_{21} + E_{32}) \left(\frac{\sqrt{3}}{2} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$				
\mathbf{T}						Bottom $[2,1]$ -state:			$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} E_{21} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \right) + \frac{\sqrt{3}}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right) + \frac{1}{2} E_{32} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \right)$		
² D						$\begin{vmatrix} 2 \\ -2 \end{vmatrix} = \begin{vmatrix} 2 \\ 3 \end{vmatrix} = \begin{vmatrix} 2 \\ 0 \end{vmatrix}_{M=-2}$			$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{1} \frac{ 2 }{ 3 } \right) + 0 \frac{ 2 }{ 2 } + \frac{\sqrt{3}}{2} \sqrt{\frac{1}{2}} \frac{ 1 }{ 3 } + \frac{1}{2} \sqrt{\frac{3}{2}} \frac{ 1 }{ 3 } \right)$		
						Bottom [3,0]-state:			$= \frac{1}{\sqrt{3}} \left(\begin{array}{c} \sqrt{\frac{3}{2}} \\ \sqrt{\frac{3}{2}} \\ 3 \end{array} \right) + \sqrt{\frac{3}{2}} \\ \frac{13}{3} \\ \sqrt{\frac{3}{2}} \\ \sqrt{\frac{3}$		
$\begin{array}{c} 2P,2D \text{ levels} \\ 4S \end{array} \qquad \begin{vmatrix} 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$							$S_{M=0}$		Orthogonal (L=1, M=0) state: $\begin{array}{c c} \sqrt{2} & \sqrt{2} &$		

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 *p*=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

 $\ell = 1 p =$ shell LS states combined to states of definite J=3/2 at L=0

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by L.= $\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 *p*=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

 $\ell = 1 p$ = shell LS states combined to states of definite J = 5/2 at L=2

 $\ell = 1$ p=shell LS states combined to states of definite J = 5/2 at L=2

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $L_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 *p*=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

 $\ell = 1$ p=shell LS states combined to states of definite J = 3/2 at L=2

 $\ell = 1 p$ =shell LS states combined to states of definite J = 5/2 at L=2

 $\ell = 1$ p=shell LS states combined to states of definite J = 3/2 at L=2

 $\ell = 1$ p=shell LS states combined to states of definite J = 3/2 at L=2

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 *p*=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

 $\binom{2}{P_{J=\frac{3}{2}}^{2}} = \frac{p_{M=1}^{L=1}\chi_{+1/2}^{1/2}}{p_{M=1}^{L=1}\chi_{+1/2}^{1/2}} \xrightarrow{\ell=1}{p_{M=1}^{L=1}\chi_{+1/2}^{1/2}} \xrightarrow{p=\text{shell LS states combined to states of definite J = 3/2 at L=1}{Doublet {}^{2}P, J=\frac{3}{2} M_{J}=\frac{3}{2}}$

$$\begin{vmatrix} 2P_{J=\frac{3}{2}} \\ = \begin{vmatrix} p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \\ \sqrt{\frac{1}{2}} \end{vmatrix} \xrightarrow{p=1} \frac{p_{M=1}^{L=1} \chi_{+1/2}^{1/2}}{p_{M=1}^{L=1} \chi_{+1/2}^{1/2}} & \text{Doublet } {}^{2}P, \ J=\frac{3}{2} M_{J}=\frac{3}{2} \\ = \begin{vmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \end{vmatrix}$$

$\begin{array}{c c} 1 \times 1/2 & & 3/2 \\ & +3/2 \\ \hline +1 & +1/2 & 1 \end{array}$	3/2 1/2 +1/2 +1/2		-1
+1 -1/2	1/3 2/3	3/2 1/2]
0 +1/2	2/3 -1/3	-1/2 -1/2	
L	0 -1/2	2/3 1/3	3/2
	-1 +1/2	1/3-2/3	-3/2
		-1-1/2	1

$$\begin{vmatrix} e^{-1} p = \text{shell LS states combined to states of definite J} = 3/2 \text{ at } L=1 \\ \text{Doublet } {}^{2}P, J=\frac{3}{2} M_{J}=\frac{3}{2} \\ = \left\| \begin{bmatrix} \sqrt{\frac{1}{2}} \frac{1}{2} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{2} \end{bmatrix} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{2} \end{bmatrix} \right| \\ \begin{pmatrix} \sqrt{\frac{1}{2}} \frac{1}{2} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{2} \end{bmatrix} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{2} \end{bmatrix} \\ \begin{pmatrix} 2P_{J=\frac{3}{2}} \frac{1}{2} \end{pmatrix} = \sqrt{\frac{1}{3}} p_{M=1}^{L=1} \chi_{-1/2}^{1/2} + \sqrt{\frac{3}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \\ p_{J=\frac{3}{2}} \frac{1}{2} \end{pmatrix} = \sqrt{\frac{1}{3}} p_{M=1}^{L=1} \chi_{-1/2}^{1/2} + \sqrt{\frac{3}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \\ = \sqrt{\frac{1}{3}} \begin{bmatrix} \sqrt{\frac{1}{2}} \frac{1}{2} & \uparrow\downarrow - \sqrt{\frac{1}{2}} \frac{1}{3} & \uparrow\downarrow \\ \sqrt{\frac{1}{2}} \begin{bmatrix} \frac{1}{2} \frac{1}{2} & \uparrow\uparrow - \sqrt{\frac{1}{2}} \frac{1}{3} & \uparrow\downarrow \\ \frac{1}{2} & \frac{1}{3} & \uparrow\uparrow + \frac{\sqrt{5}}{3} \frac{1}{2} & \uparrow\uparrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\uparrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\downarrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\uparrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\uparrow \\ \frac{1}{2} & \frac{1}{3} & \uparrow\downarrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\uparrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\downarrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\uparrow \\ \frac{1}{2} & \frac{1}{2} & \uparrow\downarrow \\ \frac{1}{2} & \frac{1}{$$

AMOP reference links on pages 2-4 4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by L.= $\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 *p*=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Application to spin-orbit and entanglement break-up scattering

$$\begin{aligned} & \left| \begin{array}{c} 2P_{J_{-\frac{3}{2}}} \frac{3}{2} \right\rangle = \left| \begin{array}{c} p_{M=1}^{t=1} \mathcal{X}_{+1/2}^{t/2} \\ \text{Doublet }^{2}P, \text{ J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}=1/2 \\ \end{array} \right| \\ & \left| \begin{array}{c} \sqrt{\frac{3}{2}} \frac{1}{2} \\ \sqrt{\frac{3}{2}} \frac{1}{2} \\ \frac{1}{2} \\$$

$$\begin{aligned} & \left| \begin{array}{c} {}^{2}P_{J_{-\frac{3}{2}}} \frac{3}{2}}{2} \right| = \left| \begin{array}{c} p^{I_{-1}} X^{1/2}_{1/2} \right\rangle & \text{Doublet } {}^{2}P, J_{-\frac{3}{2}} M_{J} = \frac{3}{2} \\ & = \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \\ & = \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \\ & = \sqrt{\frac{1}{3}} \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \\ & = \sqrt{\frac{1}{3}} \left[\left(\sqrt{\frac{1}{2}} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right) \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \frac{1}{2} \\ & = \sqrt{\frac{1}{3}} \left[\sqrt{\frac{1}{2}} \frac{1}{2} \right] \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} \right] \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{$$

AMOP reference links on pages 2-4 4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by L₋= $\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 *p*=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Application to spin-orbit and entanglement break-up scattering

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow)on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number(s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

The simplest assembly:

AMOP *reference links* on pages 2-4

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell = 1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (²D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly (Detailed)

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Application to spin-orbit and entanglement break-up scattering

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow$

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow$

The simplest assembly:

3

3

3

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow)on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number(s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

 $\frac{1\uparrow 3\downarrow}{2\uparrow C} (-)\sqrt{\frac{2-0}{3}} \\ \mu_1=2, \mu_2=1$

AMOP reference links on pages 2-4 4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Slater functions for J=1/2 (²P)

Application to spin-orbit and entanglement break-up scattering

 $\ell = 1 p$ = shell LSJ states transformed to Slater determinants from J= 3/2 at L=0

Slater determinant state key: $a=1\uparrow, b=1\downarrow, c=2\uparrow, d=2\downarrow, e=3\uparrow, f=3\downarrow$

 $\ell = 1 p$ = shell LSJ states transformed to Slater determinants from J= 3/2 at L=0

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow,e=3\uparrow,f=3\downarrow$

 $\ell = 1 p$ = shell LSJ states transformed to Slater determinants from J= 3/2 at L=0

Slater determinant state key: $a=1\uparrow, b=1\downarrow, c=2\uparrow, d=2\downarrow, e=3\uparrow, f=3\downarrow$ AMOP reference links on pages 2-4 4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by L₋= $\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D) Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Slater functions for J=1/2 (²P)

Application to spin-orbit and entanglement break-up scattering

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=5/2 at L=2

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow,e=3\uparrow,f=3\downarrow$

Slater determinant state key: $a=1\uparrow, b=1\downarrow, c=2\uparrow, d=2\downarrow, e=3\uparrow, f=3\downarrow$

Slater determinant state key: $a=1\uparrow,b=1\downarrow,c=2\uparrow,d=2\downarrow,e=3\uparrow,f=3\downarrow$ AMOP reference links on pages 2-4 4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by L₋= $\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Slater functions for J=1/2 (²P)

Application to spin-orbit and entanglement break-up scattering

 $\ell = 1 p$ =shell LSJ states transformed to Slater determinants from J=3/2 at L=2

 $\ell = 1$ p=shell LSJ states transformed to Slater determinants from J=3/2 at L=2

 $\ell=1$ p=shell LSJ states transformed to Slater determinants from J=3/2 at L=2

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Slater functions for J=1/2 (²P)

Application to spin-orbit and entanglement break-up scattering

 $\begin{pmatrix} 2P_{J=\frac{3}{2}} \\ 2P_{J=\frac{3}{2}} \\ \end{pmatrix} = \underbrace{p_{M=1}^{L=1} \chi_{+1/2}^{1/2}}_{\text{Doublet } ^{2}P, J=\frac{3}{2} \\ M_{J}=\frac{3}{2}} \end{bmatrix}$ Doublet $^{2}P, J=\frac{3}{2} \\ M_{J}=\frac{3}{2} \\ M_{J}$

 $\begin{pmatrix} e = 1 \ p = \text{shell LSJ states transformed to Slater determinants from J=3/2 \text{ at } L=1 \\ | {}^{2}P_{J=\frac{3}{2}} \xrightarrow{3}{2} = \underbrace{p_{M=1}^{L=1}\chi_{+1/2}^{1/2}}_{= \left[\sqrt{\frac{1}{2}} \ \frac{1}{2} \ \frac{1}{2}$

$\ell = 1 p =$ shell LSJ states transformed to Slater determined	minants from J=3/2 at L=1
$\left {}^{2}P_{J=\frac{3}{2}} \right = \left p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \right $ Doublet ${}^{2}P, J=\frac{3}{2}$ M _J = $\frac{3}{2}$	$M_{J}=1/2$
$ \begin{vmatrix} ^{2}P_{J=\frac{3}{2}} \\ = \begin{vmatrix} p_{M=1}^{L=1}\chi_{+1/2}^{1/2} \\ = \begin{vmatrix} \left[\sqrt{\frac{1}{2}} & \frac{1}{2} \\ 2 \end{vmatrix} \right]^{1/2} + \sqrt{\frac{1}{2}} & \frac{1}{2} \\ = \sqrt{\frac{1}{2}} & \frac{1}{2} \\ -\sqrt{\frac{1}{2}} & \frac{1}{2} \\ 2 \end{vmatrix} + \sqrt{\frac{1}{2}} & \frac{1}{2} \\ -\sqrt{\frac{1}{2}} & \frac{1}{2} \\ 3 \\ -\sqrt{\frac{1}{2}} & \frac{1}{2} \\ -\sqrt{\frac{1}{2}} \\ 3 \\ -\sqrt{\frac{1}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \left {}^{2}P_{J=\frac{3}{2}} \frac{1}{2} \right\rangle = \sqrt{\frac{1}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right\rangle + \sqrt{\frac{2}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right\rangle $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$	0 + 1/2 $2/3 - 1/3 - 1/2 - 1/2$
$ \begin{vmatrix} {}^{2}P_{J=\frac{3}{2}} \frac{1}{2} \end{pmatrix} = \sqrt{\frac{1}{3}} p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \rangle + \sqrt{\frac{2}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \rangle \qquad \text{Doublet } {}^{2}P, \ J=\frac{3}{2} M_{J}=\frac{1}{2} $ $= \sqrt{\frac{1}{3}} \left[\sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{2} $	-1 +1/2 1/3 -2/3 -3/2 -1 -1/2 1
$=\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \qquad \qquad$	

4.23.18 class 25: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_3)^*(U(3)) \subset U(6)$ models of p³ electronic spin-orbit states and couplings

[2,1] tableau states lowered by $\mathbf{L}_{-}=\sqrt{2(E_{21}+E_{32})}$ Top-(J,M) states thru mid-level states $\ell=1$ p=shell LS states combined to states of definite J J=3/2 at L=0 (4S). J=5/2 at L=2 (2D) Clebsch-Gordon coupling; J=3/2 at L=2 (2D) J=3/2 at L=1 (2P) J=1/2 at L=1 (2P)

Spin-orbit state assembly formula and Slater determinants The simplest assembly

 ℓ =1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S)

Slater functions for J=5/2 (²D)

Slater functions for J=3/2 (²D)

Slater functions for J=3/2 (²P)

Slater functions for J=1/2 (²P)

Application to spin-orbit and entanglement break-up scattering

$\ell = 1 p$ =shell LSJ states transformed to Slater determinants from J=1/2 at L=1
$\binom{2}{P_{J=3}^{3}} = p_{M=1}^{L=1} \chi_{+1/2}^{1/2}$ Doublet $^{2}P, J=\frac{3}{2} M_{J}=\frac{3}{2}$
$\begin{vmatrix} {}^{2}P_{J=\frac{3}{2}} \\ {}^{2}P_{M=1} \chi_{+1/2}^{1/2} \rangle \qquad \text{Doublet } {}^{2}P, J=\frac{3}{2} M_{J}=\frac{3}{2} \\ {}^{2}\int_{-\frac{1}{2}} \left[\sqrt{\frac{1}{2}} \left[\frac{1}{2} \right] \\ {}^{2}\int_{-\frac{1}{2}} \left[\frac{1}{2} \right] \\ {$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \left {}^{2}P_{J=\frac{3}{2}} \right = \sqrt{\frac{1}{3}} p_{M=1}^{L=1} \chi_{-1/2}^{1/2} + \sqrt{\frac{2}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$
$ \begin{vmatrix} ^{2}P_{J=\frac{3}{2}}\frac{1}{2} \end{pmatrix} = \sqrt{\frac{1}{3}} p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \rangle + \sqrt{\frac{2}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \rangle $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$ = $\sqrt{\frac{1}{3}} \begin{bmatrix} \sqrt{\frac{1}{2}} \frac{1}{2} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \frac{1}{2} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\ \hline -1 - 1/2 & 1 \end{bmatrix} \rangle + \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{2} & \sqrt{\frac{1}{2}} & $
$= \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \stackrel{\uparrow}{\downarrow} - \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \stackrel{\uparrow}{\downarrow} - \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \stackrel{\uparrow}{\downarrow} - \sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix} \stackrel{\uparrow}{\downarrow} + \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix} \stackrel{\uparrow}{\downarrow} + \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix} \stackrel{\uparrow}{\downarrow}$
$ \left \frac{2P_{J=\frac{1}{2}}}{2} \right = \sqrt{\frac{2}{3}} \left \frac{p_{M=1}^{L=1} \chi_{-1/2}^{1/2}}{2} - \sqrt{\frac{1}{3}} \right \frac{p_{M=0}^{L=1} \chi_{+1/2}^{1/2}}{2} $ Doublet $\frac{2P_{J}}{2} = \frac{1}{2}$ Doublet $\frac{2P_{J}}{2} = \frac{1}{2}$
$\begin{vmatrix} {}^{2}P_{J=\frac{1}{2}} \frac{1}{2} \\ = \sqrt{\frac{2}{3}} \left[p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right] - \sqrt{\frac{1}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \\ = \sqrt{\frac{2}{3}} \left[\sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} $

$\ell=1$ p=shell LSJ states transformed to Slater determinants from J=1/2 at I	L=1
$\left {}^{2}P_{J=\frac{3}{2}} \right = \left p_{M=1}^{L=1} \chi_{+1/2}^{1/2} \right \qquad \text{Doublet } {}^{2}P, \ J=\frac{3}{2} \ M_{J}=\frac{3}{2}$	=1/2
$ \begin{vmatrix} ^{2}P_{J=\frac{3}{2}} \\ = \begin{vmatrix} p_{M=1}^{L=1}\chi_{+1/2}^{1/2} \\ = \begin{vmatrix} p_{M=1}^{L=1}\chi_{+1/2}^{1/2} \\ \sqrt{\frac{1}{2}} \\ \frac{1}{2} \end{vmatrix} \xrightarrow{\uparrow\uparrow} - \sqrt{\frac{1}{2}} \\ \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{3} \\$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$ \left {}^{2}P_{M=1} \frac{1}{2} \right = \sqrt{\frac{1}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right + \sqrt{\frac{2}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right $ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$ Doublet ² P, J= $\frac{3}{2}$ M _J = $\frac{1}{2}$	3/2
$ \begin{vmatrix} {}^{2}P_{J=\frac{3}{2}} \frac{1}{2} \\ = \sqrt{\frac{1}{3}} \left[p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right] + \sqrt{\frac{2}{3}} p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \\ = \sqrt{\frac{1}{3}} \left[\sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{2} + \sqrt{\frac{1}{2}} \frac{1}{2} \frac{1}{3} + \sqrt{\frac{1}{2}} \frac{1}{3} \frac{1}{2} + \sqrt{\frac{2}{3}} \frac{1}{2} \frac{1}{3} + \sqrt{\frac{2}{3}} \frac{1}{3} \frac{1}{3} + \sqrt{\frac{2}{3}} \frac{1}{3} \frac{1}{3} + \sqrt{\frac{2}{3}} \frac{1}{3} \frac$	-3/2
$=\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} \stackrel{\uparrow}{\downarrow} -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 1 \\ 3 \end{bmatrix} \stackrel{\uparrow}{\downarrow} -\sqrt{\frac{1}{6}} \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} +\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow}$	
$ \left {}^{2}P_{J-\frac{1}{2}} \right = \sqrt{\frac{2}{3}} \left p_{M=1}^{L=1} \chi_{-1/2}^{1/2} \right - \sqrt{\frac{1}{3}} \left p_{M=0}^{L=1} \chi_{+1/2}^{1/2} \right $ Doublet ² P, J= $\frac{1}{2}$ M _J = $\frac{1}{2}$	
$\begin{vmatrix} {}^{2}P_{J=\frac{1}{2}} \\ {}^{2}P_{J=\frac{1}{2}} \\ {}^{2}P_{M=1}\chi_{-1/2}^{1/2} \\ {}^{2}P_{M=1}\chi_{-1$	
$= \sqrt{\frac{1}{3}} \begin{array}{c} 1 \\ 2 \end{array} \qquad \qquad \uparrow \downarrow \qquad -\sqrt{\frac{1}{3}} \begin{array}{c} 1 \\ 3 \end{array} \qquad \downarrow \downarrow \qquad +\sqrt{\frac{1}{12}} \begin{array}{c} 1 \\ 3 \end{array} \qquad \downarrow \uparrow \qquad -\frac{1}{2} \begin{array}{c} 1 \\ 3 \end{array} \qquad \downarrow \uparrow \qquad +\sqrt{\frac{1}{12}} \begin{array}{c} 1 \\ 3 \end{array} \qquad \downarrow \uparrow \qquad -\frac{1}{2} \begin{array}{c} 1 \\ 2 \end{array} \qquad \downarrow \uparrow \qquad \downarrow \downarrow \qquad \downarrow \uparrow \qquad \downarrow \downarrow \qquad \downarrow \uparrow \qquad \downarrow \downarrow \downarrow \qquad \downarrow \downarrow \downarrow \qquad \downarrow \downarrow \qquad \downarrow \downarrow \downarrow \downarrow \qquad \downarrow \downarrow \downarrow \qquad \downarrow \downarrow \downarrow \qquad \downarrow \downarrow \downarrow \downarrow \qquad \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \qquad \downarrow \downarrow$	

(M=-1 row)

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

U(3): $m_{\ell} = +1$: $|1\rangle$, $m_{\ell} = 0$: $|2\rangle$, $m_{\ell} = -1$: $|3\rangle$ U(2): $m_{s} = +\frac{1}{2}$: $|\uparrow\rangle$, $m_{s} = -\frac{1}{2}$: $|\downarrow\rangle$

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

These involve fairly complicated S_n -coupled U(3)×U(2) combinations that will be developed later.

$$\text{quartet } {}^{4}S: \begin{array}{c} L=0 \quad S=\frac{3}{2} \\ M=0 \quad \mu=\frac{3}{2} \end{array} \left| \begin{array}{c} \frac{1}{2} \\ \frac{3}{3} \end{array} \right|^{1} \uparrow \uparrow \uparrow \right\rangle, \begin{array}{c} L=0 \quad S=\frac{3}{2} \\ M=0 \quad \mu=\frac{1}{2} \end{array} \left| \begin{array}{c} \frac{1}{2} \\ \frac{3}{3} \end{array} \right|^{1} \uparrow \downarrow \downarrow \right\rangle, \begin{array}{c} L=0 \quad S=\frac{3}{2} \\ M=0 \quad \mu=\frac{-1}{2} \end{array} \left| \begin{array}{c} \frac{1}{2} \\ \frac{3}{3} \end{array} \right|^{1} \uparrow \downarrow \downarrow \right\rangle, \begin{array}{c} L=0 \quad S=\frac{3}{2} \\ M=0 \quad \mu=\frac{-1}{2} \end{array} \left| \begin{array}{c} \frac{1}{2} \\ \frac{3}{3} \end{array} \right|^{1} \downarrow \downarrow \downarrow \downarrow \rangle,$$

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states Review of Mach-Mock (particle-state) principle Tableau P-operators on orbits Tableau P-operators on spin Fermi-Dirac-Pauli anti-symmetric p^3 -states Boson operators and symmetric p^2 -states Connecting to angular momentum Projecting to angular momentum

quartet ${}^{4}S$:

The $\ell=1$ *p*=shell in a nutshell

$ \begin{array}{c c} L=0 & S=\frac{3}{2} \\ M=0 & \mu=\frac{3}{2} \end{array} \uparrow \uparrow \uparrow \\ M=0 & \mu=\frac{1}{2} \end{array} \uparrow \uparrow \downarrow \\ M=0 & \mu=\frac{1}{2} \end{array} \begin{array}{c c} 1 \\ 1 \\ 2 \\ 3 \end{array} \uparrow \uparrow \downarrow \\ M=0 & \mu=\frac{1}{2} \end{array} \begin{array}{c c} 1 \\ 1 \\ 2 \\ 3 \end{array} \uparrow \downarrow \downarrow \\ M=0 & \mu=\frac{1}{2} \end{array} \begin{array}{c c} 1 \\ 1 \\ 2 \\ 3 \end{array} \uparrow \downarrow \downarrow \\ M=0 & \mu=\frac{1}{2} \end{array} \begin{array}{c c} 1 \\ 1 \\ 2 \\ 3 \end{array} \uparrow \downarrow \downarrow \\ M=0 & \mu=\frac{1}{2} \end{array} \begin{array}{c c} 1 \\ 1 \\ 2 \\ 3 \end{array} \uparrow \downarrow \downarrow \\ M=0 & \mu=\frac{1}{2} \end{array} \begin{array}{c c} 1 \\ 1 \\ 2 \\ 3 \end{array} \uparrow \downarrow \downarrow \\ M=0 & \mu=\frac{1}{2} \end{array}$	$\frac{2}{2}$ 2 $\downarrow \downarrow \downarrow$).
--	---

Doublet $^{2}D, M=2$:

$$\begin{array}{c|c|c} L=2, & S=\frac{1}{2} \\ M=2, & \mu=\frac{1}{2} \end{array} \begin{array}{c|c|c} 1 & \uparrow \uparrow \\ \hline 2 & \downarrow \end{array} \end{array} \right\rangle, & L=2, & S=-\frac{1}{2} \\ M=2, & \mu=\frac{1}{2} \end{array} \begin{array}{c|c|c} 1 & \uparrow \downarrow \\ \hline 2 & \downarrow \end{array} \right\rangle.$$

Doublet ^{2}D , M=1:

Doublet ^{2}D , M=0:

Doublet ${}^{2}D$, M = -2:

$U(3) \times U(2)$ approach: Coupling total orbit-L tableaus to total spin S tableaus

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

These involve fairly complicated S_n -coupled U(3)×U(2) combinations that will be developed later. An elementary development using U(6) combinations of so called *Slater determinants* is done first.

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (*s*=½, ℓ=1) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states Review of Mach-Mock (particle-state) principle Tableau P-operators on orbits Tableau P-operators on spin Fermi-Dirac-Pauli anti-symmetric p^3 -states Boson operators and symmetric p^2 -states Connecting to angular momentum Projecting to angular momentum U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single ($s=\frac{1}{2}$) electron in ($\ell=1$) p-shell labeled by *a* to *f*. U(6) bases: $\{|a\rangle \equiv |1\uparrow\rangle, |b\rangle \equiv |1\downarrow\rangle, |c\rangle \equiv |2\uparrow\rangle, |d\rangle \equiv |2\downarrow\rangle, |e\rangle \equiv |3\uparrow\rangle, |f\rangle \equiv |3\downarrow\rangle\}$ U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single ($s=\frac{1}{2}$) electron in ($\ell=1$) p-shell labeled by *a* to *f*. U(6) bases: $\{|a\rangle \equiv |1\uparrow\rangle, |b\rangle \equiv |1\downarrow\rangle, |c\rangle \equiv |2\uparrow\rangle, |d\rangle \equiv |2\downarrow\rangle, |e\rangle \equiv |3\uparrow\rangle, |f\rangle \equiv |3\downarrow\rangle\}$ U(6) tensor operators are outer products of U(3) $\mathbf{v}_q(orbit)$ with U(2) $\mathbf{v}_{\sigma}(spin)$ operators

$$\left\langle \begin{smallmatrix} \ell & \frac{1}{2} \\ m'\mu' \end{smallmatrix} \middle| \begin{matrix} \nu_{q\,\sigma}^{k\,\lambda} \middle| \begin{smallmatrix} \ell & \frac{1}{2} \\ m\,\mu \end{matrix} \right\rangle = \left\langle \begin{smallmatrix} \ell \\ m' \end{smallmatrix} \middle| \begin{matrix} \nu_{q}^{k} \middle| \begin{smallmatrix} \ell \\ m \end{matrix} \right\rangle \left\langle \begin{smallmatrix} \frac{1}{2} \\ \mu' \end{smallmatrix} \middle| \begin{matrix} \nu_{\sigma}^{\lambda} \middle| \begin{smallmatrix} \frac{1}{2} \\ \mu \end{matrix} \right\rangle$$

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single $(s=\frac{1}{2})$ electron in $(\ell=1)$ p-shell labeled by *a* to *f*. U(6) bases: $\{|a\rangle \equiv |1\uparrow\rangle, |b\rangle \equiv |1\downarrow\rangle, |c\rangle \equiv |2\uparrow\rangle, |d\rangle \equiv |2\downarrow\rangle, |e\rangle \equiv |3\uparrow\rangle, |f\rangle \equiv |3\downarrow\rangle\}$ U(6) tensor operators are outer products of U(3) $\mathbf{v}_q(orbit)$ with U(2) $\mathbf{v}_{\sigma}(spin)$ operators $\left\langle \begin{pmatrix} \ell & \frac{1}{2} \\ m'\mu' \end{pmatrix} v_{q\sigma}^{k\lambda} \middle| \begin{pmatrix} \ell & \frac{1}{2} \\ m\mu \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} \ell \\ m' \end{pmatrix} v_{q}^{k} \middle| \begin{pmatrix} \ell \\ m \end{pmatrix} \left\langle \begin{pmatrix} \frac{1}{2} \\ \mu' \end{pmatrix} v_{\sigma}^{\lambda} \middle| \frac{1}{2} \\ \mu \end{pmatrix} \right\rangle$ $\left\langle \mathbf{v}_{\overline{2}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ 1 & \cdot \cdot \\ 1 & \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{\overline{1}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ 1 & \cdot \cdot \\ \cdot & \overline{1} & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{2} \right\rangle = \left(\begin{array}{c} 1 & \cdot \cdot \\ \cdot & \overline{2} & \cdot \\ \cdot & \cdot & 1 \end{array} \right) \frac{1}{\sqrt{6}} \left\langle \mathbf{v}_{1}^{2} \right\rangle = \left(\begin{array}{c} \cdot & \overline{1} & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{array} \right) \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot & \cdot \\ 1 & \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot & \overline{1} \\ \cdot & \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot & \overline{1} \\ \cdot & \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot & \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 & \cdot \\ \cdot$ $\langle \mathbf{v}_{\overline{1}}^{1} \rangle = \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix}_{\overline{\sqrt{2}}} \langle \mathbf{v}_{0}^{1} \rangle = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & \overline{1} \end{pmatrix}_{\overline{\sqrt{2}}} \langle \mathbf{v}_{1}^{1} \rangle = \begin{pmatrix} \cdot & \overline{1} & \cdot \\ \cdot & \cdot & \overline{1} \\ \cdot & \cdot & \cdot \end{pmatrix}_{\overline{\sqrt{2}}}$ Notational compaction: $\overline{1} \equiv -1, \ \overline{2} \equiv -2, \ etc.$ $\left\langle \mathbf{v}_{0}^{0}\right\rangle = \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ & & 1 \end{array}\right) \frac{1}{\sqrt{3}}$

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Six states of a single $(s=\frac{1}{2})$ electron in $(\ell=1)$ p-shell labeled by a to f. U(6) bases: $\{|a\rangle \equiv |1\uparrow\rangle, |b\rangle \equiv |1\downarrow\rangle, |c\rangle \equiv |2\uparrow\rangle, |d\rangle \equiv |2\downarrow\rangle, |e\rangle \equiv |3\uparrow\rangle, |f\rangle \equiv |3\downarrow\rangle\}$ U(6) tensor operators are outer products of U(3) $\mathbf{v}_q(orbit)$ with U(2) $\mathbf{v}_{\sigma}(spin)$ operators $\left\langle \begin{pmatrix} \ell & \frac{1}{2} \\ m'\mu' \end{pmatrix} v_{q\sigma}^{k\lambda} \middle| \begin{pmatrix} \ell & \frac{1}{2} \\ m\mu \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} \ell \\ m' \end{pmatrix} v_{q}^{k} \middle| \begin{pmatrix} \ell \\ m \end{pmatrix} \left\langle \begin{pmatrix} \frac{1}{2} \\ \mu' \end{pmatrix} v_{\sigma}^{\lambda} \middle| \begin{pmatrix} \frac{1}{2} \\ \mu \end{pmatrix} \right\rangle$ $\left\langle \mathbf{v}_{\overline{2}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ 1 \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{\overline{1}}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \\ \cdot \cdot \overline{1} \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{2} \right\rangle = \left(\begin{array}{c} 1 \cdot \cdot \\ \cdot \cdot \overline{2} \cdot \\ \cdot \cdot 1 \end{array} \right) \frac{1}{\sqrt{6}} \left\langle \mathbf{v}_{1}^{2} \right\rangle = \left(\begin{array}{c} \cdot \cdot \overline{1} \\ \cdot \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left(\begin{array}{c} 1 \cdot \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \end{array} \right) \left\langle \mathbf{v}_{1}^{0} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \\ \cdot \overline{1} \right\rangle \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c} \cdot \overline{1} \\ \cdot \overline{1} \right\rangle = \left(\begin{array}{c}$ $\left\langle \mathbf{v}_{\overline{1}}^{1} \right\rangle = \left(\begin{array}{ccc} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{array} \right)_{\overline{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & \overline{1} \end{array} \right)_{\overline{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left\langle \mathbf{v}_{1}^{1} \right\rangle = \left(\begin{array}{ccc} \cdot & \overline{1} & \cdot \\ \cdot & \cdot & \overline{1} \\ \cdot & \cdot & \cdot \end{array} \right)_{\overline{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}$ Notational compaction: $\overline{1} \equiv -1, \ \overline{2} \equiv -2, \ etc.$ $\frac{1}{\sqrt{2}}(-\mathbf{E}_{cb}-\mathbf{E}_{ed}) = \begin{pmatrix} \mathbf{1} & \cdot & \cdot \\ \cdot & \mathbf{1} & \cdot \\ \cdot & \cdot & \mathbf{1} \end{pmatrix}^{\frac{1}{\sqrt{3}}}$

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

 U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (s=½, ℓ=1) tableaus
 Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states Review of Mach-Mock (particle-state) principle Tableau P-operators on orbits Tableau P-operators on spin Fermi-Dirac-Pauli anti-symmetric p^3 -states Boson operators and symmetric p^2 -states Connecting to angular momentum Projecting to angular momentum p-shell Spin-orbit calculation

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2) The $\ell=1$ *p*=shell in a nutshell U(6) \supset U(3)×U(2) approach: Coupling spin-orbit (*s*=½, ℓ =1) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states Review of Mach-Mock (particle-state) principle Tableau P-operators on orbits Tableau P-operators on spin Fermi-Dirac-Pauli anti-symmetric p^3 -states Boson operators and symmetric p^2 -states Connecting to angular momentum Projecting to angular momentum

Clebsch Gordan coefficients (Rev. Mod. Phys. annual gift)

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states Review of Mach-Mock (particle-state) principle Tableau P-operators on orbits Tableau P-operators on spin Fermi-Dirac-Pauli anti-symmetric p^3 -states Boson operators and symmetric p^2 -states Connecting to angular momentum Projecting to angular momentum

S_n projection for atomic spin and orbit states Fig. 25.3.1 QTforCA Unit 8 Ch.25

 $[123] |1_a, 2_b, 3_c\rangle = |3_a, 1_b, 2_c\rangle$

<u>5 pdf p29</u> 0,2	2			Ŏ	$\overline{1}$		
plane				pla	ne		
				\wedge			
σ	$_{3}$		70	3		C	5 3
plane	_	2/		1			- ane
		/0	2				
σ			2	\mathbf{X}_{0}	${\tt J}_2$		
/ plane	e		-)	lane		
	1	r^2	r	\dot{l}_1	i_2	i ₃	
	r	1	r^2	i ₂	<i>i</i> ₃	<i>i</i> ₁	
	r^2	r	1	<i>i</i> ₃	<i>i</i> ₁	<i>i</i> ₂	
	<i>i</i> ₁	i ₂	i ₃	1	r^2	r	
	<i>i</i> ₂	i ₃	<i>i</i> ₁	r	1	r^2	
	i ₃	<i>i</i> ₁	i ₂	r^2	r	1	
C _{3v} gg [†] form	1	r ²	\mathbf{r}^1	σ ₁	σ_2	σ	3
(a)(b)(c) = 1	1	r ²	\mathbf{r}^1	σ_1	σ ₂	σ	3
$(abc) = \mathbf{r}^1$	\mathbf{r}^1	1	\mathbf{r}^2	σ ₂	σ ₃	σ	 l
$(acb) = \mathbf{r}^2$	r ²	\mathbf{r}^1	1	σ3	$\boldsymbol{\sigma}_1$	σ	2
$(bc) = \sigma_1$	σ ₁	σ_2	σ ₃	1	\mathbf{r}^2	\mathbf{r}^1	
$(ac) = \sigma_2$	σ_2	σ_3	$\boldsymbol{\sigma}_1$	$\mathbf{r}^{\mathbf{l}}$	1	r ²	2
$(ab) = \sigma_3$	σ ₃	σ ₁	σ_2	r ²	\mathbf{r}^1	1	

(1)	(acb)	(abc)	(<i>bc</i>)	(<i>ac</i>)	<i>(ab)</i>
(abc)	(1)	(acb)	(<i>ac</i>)	<i>(ab)</i>	(<i>bc</i>)
(acb)	(abc)	(1)	<i>(ab)</i>	(<i>bc</i>)	(<i>ac</i>)
(<i>bc</i>)	(<i>ac</i>)	<i>(ab)</i>	(1)	(acb)	(abc)
<i>(ac)</i>	<i>(ab)</i>	(<i>bc</i>)	(abc)	(1)	(acb)
<i>(ab)</i>	(<i>bc</i>)	<i>(ac)</i>	(acb)	(abc)	(1)

 $[132] |1_a, 2_b, 3_c\rangle = |2_a, 3_b, 1_c\rangle$

[1]	[132]	[123]	[23]	[13]	[12]
[123]	[1]	[132]	[13]	[12]	[23]
[132]	[123]	[1]	[12]	[23]	[13]
[23]	[13]	[12]	[1]	[132]	[123]
[13]	[12]	[23]	[123]	[1]	[132]
[12]	[23]	[13]	[132]	[123]	[1]

S_n projection for atomic spin and orbit states Fig. 25.3.1 QTforCA Unit 8 Ch. 25 pdf p29

S_n projection for atomic spin and orbit states Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29

S_n projection for atomic spin and orbit states Fig. 25.3.1 QTforCA Unit 8 Ch. 25 pdf p29

Fig. 25.3.1 Relating D₃ and S₃ permutation operations

AMOP reference links on pages 2-4 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states

Review of Mach-Mock (particle-state) principle Tableau P-operators on orbits (Yamonouchi formula) Tableau P-operators on spin Fermi-Dirac-Pauli anti-symmetric p³-states Boson operators and symmetric p²-states Connecting to angular momentum Projecting to angular momentum

S_n projection for atomic spin and orbit states

Dirac-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

$$|1,2,3\rangle \equiv |1\rangle_{particle-a}|2\rangle_{particle-b}|3\rangle_{particle-c} \equiv |1\rangle_{a}|2\rangle_{b}|3\rangle_{c}$$

S_n projection for atomic spin and orbit states

Dirac-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

$$|1,2,3\rangle \equiv |1\rangle_{particle-a} |2\rangle_{particle-b} |3\rangle_{particle-c} \equiv |1\rangle_{a} |2\rangle_{b} |3\rangle_{c}$$

Sub-tableaus \boxed{a} (or $\frac{a}{b}$) label symmetry (anti-symmetry) by single row (or single column)

$$D^{E}[12] = \begin{vmatrix} 1 & 2 \\ 3 \\ 1 & 3 \\ 2 \end{vmatrix} + 1 & 0 \\ D^{E}(ab) = \begin{vmatrix} a & b \\ c \\ a & c \\ b \end{vmatrix} + 1 & 0 \\ c \\ a & c \\ b \end{vmatrix}$$

Dirac-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

$$|1,2,3\rangle \equiv |1\rangle_{particle-a} |2\rangle_{particle-b} |3\rangle_{particle-c} \equiv |1\rangle_{a} |2\rangle_{b} |3\rangle_{c}$$

Sub-tableaus \boxed{a} (or $\frac{a}{b}$) label symmetry (anti-symmetry) by single row (or single column)

$$D_{(\sigma_2)}^{E} = D^{[2,1]}(bc) = \begin{bmatrix} ab \\ c \\ ac \\ b \end{bmatrix} \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$

$$D^{[2,1]}(ab) = \begin{bmatrix} ab \\ c \\ ac \\ b \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

From unpublished Ch.10 for Principles of Symmetry, Dynamics & Spectroscopy

Fig. 10.1.2 Yamanouchi formulas for permutation operators.

Integer d is the "city block" distance between (n) and (n-1) blocks, i.e., the minimum number of streets to be crossed when traveling from one to the other. Note that when numbers (n) and (n-1) are ordered smaller above larger, the permutation is negative (anti-symmetric if d=1), and positive (symmetric if d=1) when the smaller number is left of the larger number. [The (n-1) will never be above and left of (n) since that arrangement would be "non-standard."]

Dirac-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

$$|1,2,3\rangle \equiv |1\rangle_{particle-a}|2\rangle_{particle-b}|3\rangle_{particle-c} \equiv |1\rangle_{a}|2\rangle_{b}|3\rangle_{c}$$

Ssub-tableaus \boxed{a} (or \boxed{a}) label symmetry (anti-symmetry) by single row (or single column)

Gives complete set of permutation ireps and projectors.

g =	1 = (a)(b)(c)	$\mathbf{r} = (abc)$	$\mathbf{r}^2 = (acb)$	$\mathbf{i}_1 = (bc)$	$\mathbf{i}_2 = (ac)$	$\mathbf{i}_3 = (ab)$		
$D^{A_1}(\mathbf{g}) =$	1	1	1	1	1	1		
$D^{A_2}(\mathbf{g}) =$	1	1	1	-1	-1	-1		
$D_{x_2y_2}^{E_1}(\mathbf{g}) =$	$\left(\begin{array}{cc}1&0\\0&1\end{array}\right)$	$\left(\begin{array}{rrr} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{array}\right)$	$\begin{pmatrix} -1 \\ -1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix}$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$		

Dirac-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

$$|1,2,3\rangle \equiv |1\rangle_{particle-a}|2\rangle_{particle-b}|3\rangle_{particle-c} \equiv |1\rangle_{a}|2\rangle_{b}|3\rangle_{c}$$

Ssub-tableaus \boxed{a} (or \boxed{a}) label symmetry (anti-symmetry) by single row (or single column)

Gives complete set of permutation ireps and projectors. (*following page*)

$$\mathbf{P}_{j,k}^{[II]} |1\rangle \operatorname{norm} = \sqrt{\frac{e^{[II]}}{\sigma_{G}}} \left(D_{j,k}^{[II]}(1)|1\rangle + D(r)|\mathbf{r}\rangle + D(r^{2})|\mathbf{r}^{2}\rangle + D(i_{1})|\mathbf{i}_{1}\rangle + D(i_{2})|\mathbf{i}_{2}\rangle + D(i_{3})|\mathbf{i}_{3}\rangle \right)$$

$$|100\rangle = \mathbf{P}_{\text{add} 123}^{[II]} |1,2,3\rangle \sqrt{6} = \left(\frac{|1,2,3\rangle + |2,3,1\rangle + |3,1,2\rangle + |1,3,2\rangle + |3,2,1\rangle + |2,1,3\rangle}{\sqrt{6}} \right)$$

$$|100\rangle = \mathbf{P}_{\text{add} 123}^{[II]} |1,2,3\rangle \sqrt{6} = \left(\frac{|1,2,3\rangle + |2,3,1\rangle + |3,1,2\rangle + (-1)|1,3,2\rangle + (-1)|3,2,1\rangle + (-1)|2,1,3\rangle}{\sqrt{6}} \right)$$

$$|100\rangle = \mathbf{P}_{\text{add} 12}^{[II]} |1,2,3\rangle \sqrt{3} = \left(\frac{2|1,2,3\rangle + (-1)|2,3,1\rangle + (-1)|3,1,2\rangle + (-1)|3,2,1\rangle + 2|2,1,3\rangle}{2\sqrt{3}} \right)$$

$$|100\rangle = \mathbf{P}_{\text{add} 12}^{[II]} |1,2,3\rangle \sqrt{3} = \left(\frac{0|1,2,3\rangle + (-1)|2,3,1\rangle + (-1)|3,1,2\rangle + (+1)|1,3,2\rangle + (-1)|3,2,1\rangle + 0|2,1,3\rangle}{2} \right)$$

$$|100\rangle = \mathbf{P}_{\text{add} 12}^{[II]} |1,2,3\rangle \sqrt{3} = \left(\frac{0|1,2,3\rangle + (-1)|2,3,1\rangle + (+1)|3,1,2\rangle + (+1)|1,3,2\rangle + (-1)|3,2,1\rangle + 0|2,1,3\rangle}{2} \right)$$

$$|100\rangle = \mathbf{P}_{\text{add} 12}^{[II]} |1,2,3\rangle \sqrt{3} = \left(\frac{0|1,2,3\rangle + (-1)|2,3,1\rangle + (+1)|3,1,2\rangle + (+1)|1,3,2\rangle + (-1)|3,2,1\rangle + 0|2,1,3\rangle}{2} \right)$$

$$|100\rangle = \mathbf{P}_{\text{add} 12}^{[II]} |1,2,3\rangle \sqrt{3} = \left(\frac{0|1,2,3\rangle + (-1)|2,3,1\rangle + (-1)|3,1,2\rangle + (+1)|1,3,2\rangle + (-1)|3,2,1\rangle - 0|2,1,3\rangle}{2} \right)$$

particle (*abc*) labels [j] of $\mathbf{P}_{[j](k)}$ projectors face left

state (123) labels [k] face the state $|1,2,3\rangle$ on the right.

AMOP reference links on pages 2-4 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states

Review of Mach-Mock (particle-state) principle

Tableau P-operators on orbits (Yamonouchi formula)

Tableau P-operators on spin

Fermi-Dirac-Pauli anti-symmetric p^3 -states

Boson operators and symmetric p^2 -states

Connecting to angular momentum Projecting to angular momentum

Projectors are applied to 3-electron spin states of which there are eight $(2^3=8)$. First is a single symmetric A_1 projection $\mathbf{P}^{A_1} = \mathbf{P}^{\Box\Box\Box}$ of state $|\uparrow\uparrow\uparrow\rangle$

 $\begin{vmatrix} \Box \Box \Box & 3/2 \\ \uparrow \uparrow \uparrow \uparrow 3/2 \end{pmatrix} = \mathbf{P}_{abc} \uparrow \uparrow \uparrow \uparrow \rangle = |\uparrow\uparrow\uparrow\rangle \qquad (\text{Note } \mathbf{P}^{E_1} = \mathbf{P}^{\Box}_{acting on} |\uparrow\uparrow\uparrow\rangle \text{ is zero.})$

Projectors are applied to 3-electron spin states of which there are eight $(2^3=8)$. First is a single symmetric A_1 projection $\mathbf{P}^{A_1} = \mathbf{P}^{\Box\Box\Box}$ of state $|\uparrow\uparrow\uparrow\rangle$

 $\begin{vmatrix} \Box \Box \Box & 3/2 \\ \Box \uparrow \uparrow \uparrow & 3/2 \end{vmatrix} = \mathbf{P}_{abc} \Box \uparrow \uparrow \uparrow \end{vmatrix} \uparrow \uparrow \uparrow \diamond = |\uparrow\uparrow\uparrow\rangle \qquad (\text{Note } \mathbf{P}^{E_1} = \mathbf{P}_{acting on} |\uparrow\uparrow\uparrow\rangle \text{ is zero.})$

Anti symmetric A_2 projection fails on *all* spin-1/2 states

Projectors are applied to 3-electron spin states of which there are eight $(2^3=8)$. First is a single symmetric A_1 projection $\mathbf{P}^{A_1} = \mathbf{P}^{\Box\Box\Box}$ of state $|\uparrow\uparrow\uparrow\rangle$

 $\begin{vmatrix} \Box \Box \Box & 3/2 \\ \Box \uparrow \uparrow \uparrow 3/2 \end{vmatrix} = \mathbf{P}_{abc} \Box \uparrow \uparrow \uparrow \end{vmatrix} |\uparrow\uparrow\uparrow\rangle = |\uparrow\uparrow\uparrow\rangle \qquad (\text{Note } \mathbf{P}^{E_1} = \mathbf{P}^{\Box}_{acting on} |\uparrow\uparrow\uparrow\rangle \text{ is zero.})$

Anti symmetric A_2 projection fails on *all* spin-1/2 states

$$\begin{vmatrix} \vdots \\ \frac{1}{2} \\ \frac{1}{2}$$

The latter make a permutation doublet. There are two spin-S=1/2 states $\left| {S=1/2} \atop {M=\pm 1/2} \right\rangle$ but only one spin-S=3/2 state $\left| {S=3/2} \atop {M=\pm 1/2} \right\rangle$ have z-component M=+1/2.

Projectors are applied to 3-electron spin states of which there are eight $(2^3=8)$. First is a single symmetric A_1 projection $\mathbf{P}^{A_1} = \mathbf{P}^{\Box\Box\Box}$ of state $|\uparrow\uparrow\uparrow\rangle$ $\begin{vmatrix}\Box\Box\Box_{3/2}\\\uparrow\uparrow\uparrow\uparrow\uparrow_{3/2}\rangle = \mathbf{P}^{\Box\Box\Box}_{abc}\uparrow\uparrow\uparrow\uparrow\rangle = |\uparrow\uparrow\uparrow\rangle$ (Note $\mathbf{P}^{E_1} = \mathbf{P}^{\Box\Box}_{acting on} |\uparrow\uparrow\uparrow\rangle$ is zero.)

Anti symmetric A₂ projection fails on all spin-1/2 states

The latter make a permutation doublet. There are two spin-S=1/2 states $\begin{vmatrix} S=1/2 \\ M=\pm 1/2 \end{vmatrix}$ but only one spin-S=3/2 state $\begin{vmatrix} S=3/2 \\ M=\pm 1/2 \end{vmatrix}$ have z-component M=+1/2. All 3 states project from $|\uparrow\uparrow\downarrow\rangle$. The left [j]-labels of the last two make a particle doublet $\left\{ \begin{array}{c} ab \\ c \end{array} \right\}$. The latter make a permutation doublet. There are two spin-S=1/2 states $\begin{vmatrix} S=1/2 \\ M=\pm 1/2 \end{vmatrix}$ but only one spin-S=3/2 state $\begin{vmatrix} S=3/2 \\ M=\pm 1/2 \end{vmatrix}$ have z-component M=+1/2.

S_n projection for atomic spin and orbit states (Top 3 lines moved up.)

Symmetric $\mathbf{P}^{A_1} = \mathbf{P}^{\square\square}$ and para-symmetric $\mathbf{P}^{E_1} = \mathbf{P}^{\square}$ projection of $|\uparrow\uparrow\downarrow\rangle$ and $|\uparrow\downarrow\downarrow\rangle$ give $|\overset{S=3/2}{\underset{M=\pm1/2}{M=\pm1/2}}$ and $|\overset{S=1/2}{\underset{M=\pm1/2}{M=\pm1/2}}$. $|\overset{\square}{\square}_{3/2}\rangle = \mathbf{P}^{\square\square}_{abc\ abc\ |\uparrow,\uparrow,\downarrow\rangle}\sqrt{3} = \left(\frac{|\uparrow,\uparrow,\downarrow\rangle+|\uparrow,\downarrow,\uparrow\rangle+|\downarrow,\uparrow,\uparrow\rangle+|\uparrow,\downarrow,\uparrow\rangle+|\uparrow,\downarrow,\uparrow\rangle+|\uparrow,\uparrow,\downarrow\rangle}{\sqrt{6}}\right) = \left(\frac{|\uparrow,\uparrow,\downarrow\rangle+|\uparrow,\downarrow,\uparrow\rangle+|\downarrow,\uparrow,\uparrow\rangle+|\downarrow,\uparrow,\uparrow\rangle}{\sqrt{3}}\right)$ $|\overset{\square}{\square}_{abc\ abc\ |\uparrow,\uparrow,\downarrow\rangle} = \mathbf{P}^{\square}_{abc\ abc\ |\uparrow,\uparrow,\downarrow\rangle}\sqrt{\frac{3}{2}} = \left(\frac{2|\uparrow,\uparrow,\downarrow\rangle+(-1)|\uparrow,\downarrow,\uparrow\rangle+(-1)|\downarrow,\uparrow,\uparrow\rangle+(-1)|\downarrow,\uparrow,\uparrow\rangle+(-1)|\downarrow,\uparrow,\uparrow\rangle+(-1)|\downarrow,\uparrow,\downarrow\rangle}{2\sqrt{6}}\right) = \left(\frac{2|\uparrow,\uparrow,\downarrow\rangle+(-1)|\uparrow,\downarrow,\uparrow\rangle+(-1)|\downarrow,\uparrow,\uparrow\rangle}{\sqrt{6}}\right)$

$$\begin{vmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac$$

The latter make a permutation doublet.

There are two spin-S=1/2 states $\begin{vmatrix} S=1/2 \\ M=\pm 1/2 \end{vmatrix}$ but only one spin-S=3/2 state $\begin{vmatrix} S=3/2 \\ M=\pm 1/2 \end{vmatrix}$ have z-component M=+1/2. All 3 states project from $|\uparrow\uparrow\downarrow\rangle$. The left [j]-labels of the last two make a particle doublet $\left\{ \begin{array}{c} a b \\ c \end{array} \right\}$.

Symmetric $\mathbf{P}^{A_1} = \mathbf{P}^{\square\square}$ and para-symmetric $\mathbf{P}^{E_1} = \mathbf{P}^{\square}$ projection of $|\uparrow\uparrow\downarrow\rangle$ and $|\uparrow\downarrow\downarrow\rangle$ give $|\overset{S=3/2}{M=\pm1/2}$ and $|\overset{S=1/2}{M=\pm1/2}$. $|\overset{\square\square}{\square}_{3/2}\rangle = \mathbf{P}^{\square\square}_{\text{infermatic}} |\uparrow,\uparrow,\downarrow\rangle\sqrt{3} = \left(\frac{|\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle}{\sqrt{6}}\right) = \left(\frac{|\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle}{\sqrt{3}}\right)$ $|\overset{\square\square}{\square}_{1/2}\rangle = \mathbf{P}^{\square\square}_{\text{infermatic}} |\uparrow,\uparrow,\downarrow\rangle\sqrt{3} = \left(\frac{|\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\uparrow,\downarrow,\uparrow\rangle}{\sqrt{6}}\right) = \left(\frac{|\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle}{\sqrt{3}}\right)$ $|\overset{\square\square}{\square}_{1/2}\rangle = \mathbf{P}^{\square\square}_{\text{infermatic}} |\uparrow,\uparrow,\downarrow\rangle\sqrt{3} = \left(\frac{2|\uparrow,\uparrow,\downarrow\rangle + (-1)|\uparrow,\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\downarrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\uparrow\rangle + (-1)|\downarrow,\downarrow\rangle$

The latter make a permutation doublet. There are two spin-S=1/2 states $\begin{vmatrix} S=1/2 \\ M=\pm1/2 \end{vmatrix}$ but only one spin-S=3/2 state $\begin{vmatrix} S=3/2 \\ M=\pm1/2 \end{vmatrix}$ have z-component M=+1/2. All 3 states project from $|\uparrow\uparrow\downarrow\rangle$. The left [j]-labels of the last two make a particle doublet $\left\{ \begin{array}{c} ab \\ c \end{array} \right\}$. State $|\uparrow\uparrow\downarrow\rangle = \mathbf{P}^{\Box\Box}|\uparrow\uparrow\downarrow\rangle$ is invariant to symmetric subgroup projector $\mathbf{P}^{\Box\Box} = [1+(ab)]/2$ but $\mathbf{P}^{\Box\Box}$ zeros $\begin{array}{c} ac \\ c \end{array}$.

$$\begin{array}{c} (ab)|\uparrow,\uparrow,\downarrow\rangle = |\uparrow,\uparrow,\downarrow\rangle \\ \mathbf{P}_{ab}^{\Box} & \Box \\ c & b \end{array} \end{array} \right\} implies : \mathbf{P}_{ab}^{\Box} & \Box \\ c & b \end{array} |\uparrow,\uparrow,\downarrow\rangle = -\mathbf{P}_{ab}^{\Box} & \Box \\ c & b \end{array} \right\} implies : \mathbf{P}_{ab}^{\Box} & \Box \\ c & b \end{array} |\uparrow,\uparrow,\downarrow\rangle = -\mathbf{P}_{ab}^{\Box} & \Box \\ c & b \end{array} |\uparrow,\uparrow,\downarrow\rangle = 0$$

S_n projection for atomic spin and orbit states: Tableau P-operators on spin Symmetric $\mathbf{P}^{A_1} = \mathbf{P}^{\square\square}$ and para-symmetric $\mathbf{P}^{E_1} = \mathbf{P}^{\square\square}$ projection of $|\uparrow\uparrow\downarrow\rangle$ and $|\uparrow\downarrow\downarrow\rangle$ give $|_{M=\pm1/2}^{S=3/2}$ and $|_{M=\pm1/2}^{S=3/2}$. $\begin{vmatrix} \Box \Box \\ 3/2 \\ \uparrow \uparrow \downarrow 1/2 \end{vmatrix} = \mathbf{P}_{abc \ abc} \begin{vmatrix} \uparrow, \uparrow, \downarrow \rangle \sqrt{3} = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\uparrow, \uparrow, \downarrow \rangle}{\sqrt{6}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right)$ The latter make a permutation doublet. Similarly, projections of $|\uparrow\downarrow\downarrow\rangle$ give three M=-1/2 states. $\begin{vmatrix} \Box & & \\ 1/2 \\ c & \pm \end{matrix} \end{pmatrix} = \mathbf{P}_{\underline{a} \underline{b}} \stackrel{a}{\underline{c}} \underline{b} \\ \frac{a}{c} \underbrace{b} \\$

S_n projection for atomic spin and orbit states: Tableau P-operators on spin Symmetric $\mathbf{P}^{A_1} = \mathbf{P}^{\square\square}$ and para-symmetric $\mathbf{P}^{E_1} = \mathbf{P}^{\square\square}$ projection of $|\uparrow\uparrow\downarrow\rangle$ and $|\uparrow\downarrow\downarrow\rangle$ give $|_{M=\pm1/2}^{S=3/2}$ and $|_{M=\pm1/2}^{S=3/2}$. $\begin{vmatrix} \Box \Box \Box \\ \uparrow \downarrow 1/2 \end{vmatrix} = \mathbf{P}_{abc} \Box \Box \\ \uparrow \uparrow \downarrow 1/2 \end{vmatrix} = \mathbf{P}_{abc} \Box \Box \\ \neg f \downarrow 1/2 \end{vmatrix} = \mathbf{P}_{abc} \Box \Box \\ \neg f \downarrow 1/2 \end{vmatrix} = \left(\frac{|\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\uparrow,\downarrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\downarrow\rangle + |\uparrow,\uparrow,\uparrow\rangle + |\uparrow,\uparrow\rangle + |\uparrow,$ $\begin{vmatrix} \Box & \Box \\ c & \Box \\ c$ The latter make a permutation doublet. Similarly, projections of $|\uparrow\downarrow\downarrow\rangle$ give three M=-1/2 states. $\begin{vmatrix} \Box & & \\ 1/2 \\ c & & \\ c &$

Finally, the fourth state of the spin-S=3/2 quartet is the following M=-3/2.

$$\left|\begin{array}{c} \square \square & 3/2 \\ \downarrow \downarrow \downarrow - 3/2 \end{array}\right\rangle = \mathbf{P}_{abc} \square \downarrow \downarrow \downarrow \left|\downarrow, \downarrow, \downarrow\right\rangle = \left|\downarrow, \downarrow, \downarrow\right\rangle$$

S_n projection for atomic spin and orbit states: Tableau P-operators on spin Symmetric $\mathbf{P}^{A_1} = \mathbf{P}^{\Box\Box\Box}$ and para-symmetric $\mathbf{P}^{E_1} = \mathbf{P}^{\Box\Box}$ projection of $|\uparrow\uparrow\downarrow\rangle$ and $|\uparrow\downarrow\downarrow\rangle$ give $|_{M=\pm 1/2}^{S=3/2}$ and $|_{M=\pm 1/2}^{S=1/2}$. $\begin{vmatrix} \Box \Box \Box \\ \uparrow \uparrow \downarrow 1/2 \end{vmatrix} = \mathbf{P}_{abc \ abc} \begin{vmatrix} \uparrow, \uparrow, \downarrow \rangle \sqrt{3} = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\uparrow, \uparrow, \uparrow \rangle + |\uparrow, \uparrow, \downarrow \rangle}{\sqrt{6}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle + |\downarrow, \uparrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right) = \left(\frac{|\uparrow, \uparrow, \downarrow \rangle + |\uparrow, \downarrow, \uparrow \rangle}{\sqrt{3}} \right)$ $\begin{vmatrix} \Box & \Box \\ c & \Box \\ c & \Box \end{vmatrix} = \mathbf{P}_{\underline{a} \underline{b} \ \underline{a} \underline{b} \\ c & \Box} \begin{vmatrix} \uparrow, \uparrow, \downarrow \rangle \sqrt{\frac{3}{2}} = \left(\frac{2 |\uparrow, \uparrow, \downarrow \rangle + (-1) |\uparrow, \downarrow, \uparrow \rangle + (-1) |\downarrow, \uparrow, \uparrow \rangle + (-1) |\downarrow, \downarrow, \downarrow \rangle + (-1) |\downarrow, \downarrow, \uparrow \rangle + (-1) |\downarrow, \downarrow, \downarrow \rangle + (-1) |\downarrow, \downarrow \rangle + ($ The latter make a permutation doublet. Similarly, projections of $|\uparrow\downarrow\downarrow\rangle$ give three M=-1/2 states. $\begin{vmatrix} \Box & & \\ ab & \uparrow & \\ c & \downarrow \end{vmatrix} = \mathbf{P}_{ab & ab \\ c & \downarrow} = \mathbf{P}_{ab & a$ $\begin{vmatrix} \Box & \Box \\ \frac{a c}{b} & \uparrow \downarrow \\ \frac{a c}{b} & \downarrow \\ -1/2 \end{vmatrix} = \mathbf{P}_{\underline{a} \underline{c}} & \underline{a} \underline{b} \\ \frac{a c}{b} & c \\ \hline \downarrow \\ \frac{a c}{b} & \downarrow \\ -1/2 \end{vmatrix} = \mathbf{P}_{\underline{a} \underline{c}} & \underline{a} \underline{b} \\ \frac{a c}{b} & c \\ \hline \downarrow \\ -1/2 \end{vmatrix} = \mathbf{P}_{\underline{a} \underline{c}} & \underline{a} \underline{b} \\ \frac{a c}{b} & c \\ \hline \downarrow \\ \frac{a c}{b} & c \\ \hline \hline \\ \frac{a c}{b} & c \\ \hline \hline \\ \frac{a c}{b} & c \\ \hline$

Finally, the fourth state of the spin-S=3/2 quartet is the following M=-3/2.

Right index correlates *state-permutaion*-symmetry, that is, whether two spins are equal.

Left index correlates *particle-permutaion*-symmetry, that is, whether two particles are the same or not.

AMOP reference links on pages 2-4 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_n projection for atomic spin and orbit states

Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin

Fermi-Dirac-Pauli anti-symmetric *p*³-states
Boson operators and symmetric *p*²-states
Connecting to angular momentum
Projecting to angular momentum

Orbital-tableau states (10 pages above) are combined using S_N -Clebsch-Gordan coefficients (S_N CGC) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the (S_3 CGC) sum is a single term for each state in the ⁴S quartet.

$$\left| p^{3} \ {}^{4}S_{\text{rel}} \left| \begin{array}{c} S=3/2 \\ M_{S}=3/2 \\ \hline \\ 3 \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\uparrow\uparrow \\ \hline \\ 2 \\ \hline \\ 3 \end{array} \right\rangle, \ \left| \begin{array}{c} 3/2 \\ 1/2 \\ \hline \\ 3 \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\downarrow\downarrow \\ \hline \\ 1 \\ \hline \\ 2 \\ \hline \\ 3 \end{array} \right\rangle, \ \left| \begin{array}{c} 3/2 \\ -1/2 \\ \hline \\ 3 \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\downarrow\downarrow \\ \hline \\ 2 \\ \hline \\ 3 \end{array} \right\rangle, \ \left| \begin{array}{c} 3/2 \\ -3/2 \\ \hline \\ 3 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \hline \\ 2 \\ \hline \\ 3 \end{array} \right\rangle$$

Orbital-tableau states (10 pages above) are combined using S_N -Clebsch-Gordan coefficients (S_N CGC) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the (S_3 CGC) sum is a single term for each state in the 4S quartet.

$$p^{3-4}S_{\text{rel}} \left| \begin{array}{c} S=3/2\\ \\ S=3/2\\ \\ 3 \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\uparrow\uparrow \\ \\ 2\\ \\ 3 \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ \\ 1/2 \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\uparrow\downarrow \\ \\ 1\\ \\ 2\\ \\ 3 \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ \\ -1/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \\ 1\\ \\ 2\\ \\ 3 \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ \\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \\ 1\\ \\ 2\\ \\ 3 \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ \\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \\ \downarrow\downarrow\downarrow \\ \\ 3 \end{array} \right\rangle$$

The p³doublet states ²L, (with L yet to be determined) are each a sum of two terms They use S_3 coefficients $C_{A B B}^{E_1 E_1 A_2} = 1/\sqrt{2}$ and $C_{B A B}^{E_1 E_1 A_2} = -1/\sqrt{2}$ to give *total Pauli-anti-symmetry* (A₂).

 $E_1 \otimes E_1$ to A_2 Clebsch-Gordan coefficients $\pm \sqrt{\frac{1}{2}}$ of S_3 (or D_3)

Orbital-tableau states (10 pages above) are combined using S_N -Clebsch-Gordan coefficients (S_N CGC) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the (S_3 CGC) sum is a single term for each state in the 4S quartet.

$$p^{3-4}S_{\text{rel}} \left| \begin{array}{c} S=3/2\\ S=3/2\\ \frac{2}{3} \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\uparrow\uparrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ 1/2 \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\uparrow\downarrow \\ \frac{1}{2}\\ \frac{3}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -1/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle$$

The p³doublet states ²L, (with L yet to be determined) are each a sum of two terms They use S_3 coefficients $C_{A B B}^{E_1 E_1 A_2} = 1/\sqrt{2}$ and $C_{B A B}^{E_1 E_1 A_2} = -1/\sqrt{2}$ to give *total Pauli-anti-symmetry* (A₂).

 $E_1 \otimes E_1$ to A_2 Clebsch-Gordan coefficients $\pm \sqrt{\frac{1}{2}}$ of S_3 (or D_3)

This is how permutation multiplicity and (abc) labels disappear, killed by Pauli!

Orbital-tableau states (10 pages above) are combined using S_N -Clebsch-Gordan coefficients (S_N CGC) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the (S_3 CGC) sum is a single term for each state in the 4S quartet.

The p³doublet states ²L, (with L yet to be determined) are each a sum of two terms They use S_3 coefficients $C_{A B B}^{E_1 E_1 A_2} = 1/\sqrt{2}$ and $C_{B A B}^{E_1 E_1 A_2} = -1/\sqrt{2}$ to give *total Pauli-anti-symmetry* (A₂).

$$\begin{vmatrix} p^{3} \ ^{2}L_{\uparrow\uparrow\uparrow} \ \stackrel{12}{}_{3} \ M_{s} = 1/2 \\ \downarrow \ 3 \ \end{pmatrix} = C_{A \ B \ B}^{E_{1}E_{1}A_{2}} \begin{vmatrix} \Box \\ ab \ \uparrow\uparrow \\ c \ \downarrow \ \end{pmatrix} \begin{vmatrix} \Box \\ ab \ \uparrow\uparrow \\ b \ 3 \ \end{pmatrix} + C_{B \ A \ B}^{E_{1}E_{1}A_{2}} \begin{vmatrix} \Box \\ ac \ \uparrow\uparrow \\ b \ \downarrow \ \end{pmatrix} \begin{vmatrix} \Box \\ ab \ \downarrow2 \ \end{pmatrix} \begin{vmatrix} \Box \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \begin{vmatrix} D \\ ab \ \uparrow2 \\ c \ 3 \ \end{pmatrix} \\ \end{vmatrix}$$

 $E_1 \otimes E_1$ to A_2 Clebsch-Gordan coefficients $\pm \sqrt{\frac{1}{2}}$ of S_3 (or D_3)

This is how permutation multiplicity and *(abc)* labels disappear, killed by Pauli! But, spin degeneracy of 4 quartet-states and 2 doublet-states is still here.

Orbital-tableau states (10 pages above) are combined using S_N -Clebsch-Gordan coefficients (S_N CGC) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the (S_3 CGC) sum is a single term for each state in the ⁴S quartet.

$$p^{3-4}S_{\text{rel}} \left| \begin{array}{c} S=3/2\\ S=3/2\\ \frac{2}{3} \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\uparrow\uparrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ 1/2 \end{array} \right\rangle = \left| \begin{array}{c} \uparrow\uparrow\downarrow \\ \frac{1}{2}\\ \frac{3}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -1/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle, \left| \begin{array}{c} 3/2\\ -3/2 \end{array} \right\rangle = \left| \begin{array}{c} \downarrow\downarrow\downarrow \\ \frac{1}{2}\\ \frac{2}{3} \end{array} \right\rangle$$

The p³doublet states ²L, (with L yet to be determined) are each a sum of two terms They use S_3 coefficients $C_{A B B}^{E_1 E_1 A_2} = 1/\sqrt{2}$ and $C_{B A B}^{E_1 E_1 A_2} = -1/\sqrt{2}$ to give *total Pauli-anti-symmetry* (A₂).

$$\begin{vmatrix} p^{3} \ ^{2}L_{1} & \stackrel{S=1/2}{\downarrow} \\ \downarrow^{3} \ ^{2}L_{2} & \stackrel{S=1/2}{\downarrow} \\ \downarrow^{3} \ ^{2}L_{3} & \stackrel{S=1/2}{\downarrow} \\ \downarrow^{3} \ ^{2}L_{1} & \stackrel{S=1/2}{\downarrow} \\ \downarrow^{3} \ ^{2}L_{1} & \stackrel{S=1/2}{\downarrow} \\ \downarrow^{3} \ ^{2}L_{3} & \stackrel{I=1}{\downarrow} \\ \stackrel{I=1}{\downarrow}$$

 $E_1 \otimes E_1$ to A_2 Clebsch-Gordan coefficients $\pm \sqrt{\frac{1}{2}}$ of S_3 (or D_3)

This is how permutation multiplicity and *(abc)* labels disappear, killed by Pauli! But, spin degeneracy of 4 quartet-states and 2 doublet-states is still here.

So are *eight* orbital doublet pairs: a *tableau octet* of Pauli-ok unitary $U(3) \ell^{E_1} = 8 \text{ multiplicity } E_1$ -orbitals.

AMOP reference links on pages 2-4 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_n projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p³-states
Boson operators and symmetric p²-states
Connecting to angular momentum
Projecting to angular momentum

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$\left\{ \left| 11 \right\rangle, \left| 12 \right\rangle, \left| 13 \right\rangle, \left| 22 \right\rangle, \left| 23 \right\rangle, \left| 33 \right\rangle, \right\}$$

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$\begin{cases} |11\rangle, |12\rangle, |13\rangle, |22\rangle, |23\rangle, |33\rangle, \\ E_{12}|n_1, n_2\rangle = a_1\overline{a}_2 |n_1, n_2\rangle = a_1\sqrt{n_2} |n_1, n_2 - 1\rangle = \sqrt{n_1 + 1}\sqrt{n_2} |n_1 + 1, n_2 - 1\rangle \\ E_{23}|n_1, n_2, n_3\rangle = a_2\overline{a}_3 |n_1, n_2, n_3\rangle = a_2\sqrt{n_3} |n_1, n_2, n_3 - 1\rangle = \sqrt{n_2 + 1}\sqrt{n_3} |n_1, n_2 + 1, n_3 - 1\rangle$$

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$\begin{cases} |11\rangle, |12\rangle, |13\rangle, |22\rangle, |23\rangle, |33\rangle, \\ E_{12}|n_1, n_2\rangle = a_1\overline{a_2}|n_1, n_2\rangle = a_1\sqrt{n_2}|n_1, n_2 - 1\rangle = \sqrt{n_1 + 1}\sqrt{n_2}|n_1 + 1, n_2 - 1\rangle \\ E_{23}|n_1, n_2, n_3\rangle = a_2\overline{a_3}|n_1, n_2, n_3\rangle = a_2\sqrt{n_3}|n_1, n_2, n_3 - 1\rangle = \sqrt{n_2 + 1}\sqrt{n_3}|n_1, n_2 + 1, n_3 - 1\rangle$$

Elementary operations e_{jk} apply to each particle a, b, c, and so forth in turn.

$$E_{23}|3_{a}3_{b}3_{c}\rangle = |2_{a}3_{b}3_{c}\rangle + |3_{a}2_{b}3_{c}\rangle + |3_{a}3_{b}2_{c}\rangle = \sqrt{3}\frac{|2_{a}3_{b}3_{c}\rangle + |3_{a}2_{b}3_{c}\rangle + |3_{a}3_{b}2\rangle}{\sqrt{3}} = \sqrt{3}\frac{|2_{a}3_{b}3_{c}\rangle + |3_{a}3_{b}2_{c}\rangle}{\sqrt{3}} = \sqrt{3}\frac{|2_{a}3_{b}3_{c}\rangle}{\sqrt{3}} = \sqrt{3}\frac{|2_{a}3_{c}\rangle}{\sqrt{3}} =$$

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$\begin{cases} |11\rangle, |12\rangle, |13\rangle, |22\rangle, |23\rangle, |33\rangle, \\ E_{12}|n_1, n_2\rangle = a_1\overline{a_2}|n_1, n_2\rangle = a_1\sqrt{n_2}|n_1, n_2 - 1\rangle = \sqrt{n_1 + 1}\sqrt{n_2}|n_1 + 1, n_2 - 1\rangle \\ E_{23}|n_1, n_2, n_3\rangle = a_2\overline{a_3}|n_1, n_2, n_3\rangle = a_2\sqrt{n_3}|n_1, n_2, n_3 - 1\rangle = \sqrt{n_2 + 1}\sqrt{n_3}|n_1, n_2 + 1, n_3 - 1\rangle$$

Elementary operations e_{jk} apply to each particle a, b, c, and so forth in turn.

$$E_{23}|3_{a}3_{b}3_{c}\rangle = |2_{a}3_{b}3_{c}\rangle + |3_{a}2_{b}3_{c}\rangle + |3_{a}3_{b}2_{c}\rangle = \sqrt{3}\frac{|2_{a}3_{b}3_{c}\rangle + |3_{a}2_{b}3_{c}\rangle + |3_{a}3_{b}2\rangle}{\sqrt{3}} = \sqrt{3}\frac{|2|3|3}{\sqrt{3}}$$
$$a_{2}\overline{a}_{3}|n_{1} = 0, n_{2} = 0, n_{3} = 3\rangle = a_{2}\sqrt{3}|0,0,2\rangle = \sqrt{1}\sqrt{3}|0,1,2\rangle = E_{23}\frac{|3|3|3}{\sqrt{3}} = \sqrt{3}\frac{|2|3|3}{\sqrt{3}}$$

The e_{jk} procedure shows $a = \mathbf{a}^{\dagger}$ or $\overline{a} = \mathbf{a}$ factors $\sqrt{n_k}$ or $\sqrt{n_k + 1}$ arise by adjusting norms

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$\begin{cases} |11\rangle, |12\rangle, |13\rangle, |22\rangle, |23\rangle, |33\rangle, \\ E_{12}|n_1, n_2\rangle = a_1\overline{a_2}|n_1, n_2\rangle = a_1\sqrt{n_2}|n_1, n_2 - 1\rangle = \sqrt{n_1 + 1}\sqrt{n_2}|n_1 + 1, n_2 - 1\rangle \\ E_{23}|n_1, n_2, n_3\rangle = a_2\overline{a_3}|n_1, n_2, n_3\rangle = a_2\sqrt{n_3}|n_1, n_2, n_3 - 1\rangle = \sqrt{n_2 + 1}\sqrt{n_3}|n_1, n_2 + 1, n_3 - 1\rangle$$

Elementary operations e_{jk} apply to each particle a, b, c, and so forth in turn.

$$E_{23}|3_{a}3_{b}3_{c}\rangle = |2_{a}3_{b}3_{c}\rangle + |3_{a}2_{b}3_{c}\rangle + |3_{a}3_{b}2_{c}\rangle = \sqrt{3}\frac{|2_{a}3_{b}3_{c}\rangle + |3_{a}2_{b}3_{c}\rangle + |3_{a}3_{b}2\rangle}{\sqrt{3}} = \sqrt{3}\frac{|2|3|3}{\sqrt{3}}$$
$$a_{2}\overline{a}_{3}|n_{1} = 0, n_{2} = 0, n_{3} = 3\rangle = a_{2}\sqrt{3}|0,0,2\rangle = \sqrt{1}\sqrt{3}|0,1,2\rangle = E_{23}\frac{|3|3|3}{\sqrt{3}} = \sqrt{3}\frac{|2|3|3}{\sqrt{3}}$$

The e_{jk} procedure shows $a = \mathbf{a}^{\dagger}$ or $\overline{a} = \mathbf{a}$ factors $\sqrt{n_k}$ or $\sqrt{n_k + 1}$ arise by adjusting norms

$$\begin{split} E_{23} \frac{|2_{a}3_{b}3_{c}3_{d}\rangle + |3_{a}2_{b}3_{c}3_{d}\rangle + |3_{a}3_{b}2_{c}3_{d}\rangle + |3_{a}3_{b}3_{c}2_{d}\rangle}{2} &= E_{23} \frac{|2|3|3|}{2} \\ &= \frac{|2_{a}2_{b}3_{c}3_{d}\rangle + |2_{a}2_{b}3_{c}3_{d}\rangle + |2_{a}3_{b}2_{c}3_{d}\rangle + |2_{a}3_{b}3_{c}2_{d}\rangle}{2} &= \sqrt{6} \frac{|2_{a}2_{b}3_{c}3_{d}\rangle + |2_{a}3_{b}2_{c}3_{d}\rangle + |2_{a}3_{b}3_{c}2_{d}\rangle}{\sqrt{6}} \\ &+ \frac{|2_{a}3_{b}2_{c}3_{d}\rangle + |3_{a}2_{b}2_{c}3_{d}\rangle + |3_{a}2_{b}2_{c}3_{d}\rangle + |3_{a}2_{b}3_{c}2_{d}\rangle}{2} &+ \frac{|3_{a}2_{b}2_{c}3_{d}\rangle + |3_{a}2_{b}3_{c}2_{d}\rangle}{\sqrt{6}} \\ &+ \frac{|2_{a}3_{b}3_{c}2_{d}\rangle + |3_{a}2_{b}3_{c}2_{d}\rangle + |3_{a}3_{b}2_{c}2_{d}\rangle}{2} &= \sqrt{6} \frac{|2|2|3|3}{\sqrt{6}} \end{split}$$

AMOP reference links on pages 2-4 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states

Review of Mach-Mock (particle-state) principle

Tableau P-operators on orbits (Yamonouchi formula)

Tableau P-operators on spin

Fermi-Dirac-Pauli anti-symmetric p^3 -states

Boson operators and symmetric p^2 -states

Connecting to angular momentum Projecting to angular momentum Boson operators and symmetric p^2 -states: Connecting to angular momentum Creation operator $(a\overline{a})$ formulas give the same result in more compact notation. $E_{23}\left|2333\right\rangle = a_2\overline{a}_3|n_1 = 0, n_2 = 1, n_3 = 3\rangle = a_2\sqrt{3}|0,1,2\rangle = \sqrt{2}\sqrt{3}|0,2,2\rangle = \sqrt{6}\left|2233\right\rangle$ Boson operators and symmetric p^2 -states: Connecting to angular momentum Creation operator $(a\overline{a})$ formulas give the same result in more compact notation. $E_{23}\left|\frac{2}{3}\right|^{3} = a_2\overline{a}|n_1 = 0, n_2 = 1, n_3 = 3 = a_2\sqrt{3}|0,1,2\rangle = \sqrt{2}\sqrt{3}|0,2,2\rangle = \sqrt{6}\left|\frac{2}{3}\right|^{3}$

Matrix elements for [2,0] sextet states involve the following forms.

$$E_{11} \left| \begin{array}{c} 1 \\ 1 \end{array} \right\rangle = 2 \left| \begin{array}{c} 1 \\ 1 \end{array} \right\rangle, \quad E_{21} \left| \begin{array}{c} 1 \\ 1 \end{array} \right\rangle = \sqrt{2} \left| \begin{array}{c} 1 \\ 2 \end{array} \right\rangle, \quad E_{21} \left| \begin{array}{c} 1 \\ 2 \end{array} \right\rangle, \quad E_{21} \left| \begin{array}{c} 1 \\ 3 \end{array} \right\rangle = \left| \begin{array}{c} 2 \\ 3 \end{array} \right\rangle, \quad E_{21} \left| \begin{array}{c} 2 \\ 3 \end{array} \right\rangle = 0$$

Boson operators and symmetric p^2 -states: Connecting to angular momentum Creation operator $(a\overline{a})$ formulas give the same result in more compact notation. $E_{23}\left| 2333 \right\rangle = a_2\overline{a}_3 | n_1 = 0, n_2 = 1, n_3 = 3 \rangle = a_2\sqrt{3} | 0,1,2 \rangle = \sqrt{2}\sqrt{3} | 0,2,2 \rangle = \sqrt{6} \left| 2233 \right\rangle$

Matrix elements for [2,0] sextet states involve the following forms.

$$E_{11} \begin{vmatrix} 1 \\ 1 \end{vmatrix} = 2 \begin{vmatrix} 1 \\ 1 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \sqrt{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \sqrt{2} \begin{vmatrix} 2 \\ 2 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \sqrt{2} \begin{vmatrix} 2 \\ 2 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 2 \\ 2 \\ 2 \end{vmatrix} = 0$$

Elementary operator representations are then found. (same as earlier cases by other means)

$E_{12} = E_{21}^{\dagger} =$						$E_{23} = E_{32}^{\dagger} =$							$E_{13} = E_{31}^{\dagger} =$								
	11	12	22	13	23	33		11	12	22	13	23	33		11	12	22	13	23	33	1.
11		$\sqrt{2}$			•	•	11	•	•				•	11				$\sqrt{2}$			earlier cases
12			$\sqrt{2}$			•	12				1	•	•	12					1	•	in <u>Lect.22p17-26.</u>
22			•	•		•	22			•	•	$\sqrt{2}$	•	22			•		•	•	
13				•	1	•	13				•	•	•	13						$\sqrt{2}$	
23					•	•	23						$\sqrt{2}$	23							
33						•	33							33						•	

Boson operators and symmetric *p*²-states: Connecting to angular momentum Creation operator $(a\overline{a})$ formulas give the same result in more compact notation. $E_{23}|_{233}|_{233}\rangle = a_2\overline{a}|_{n_1} = 0, n_2 = 1, n_3 = 3\rangle = a_2\sqrt{3}|_{0,1,2}\rangle = \sqrt{2}\sqrt{3}|_{0,2,2}\rangle = \sqrt{6}|_{2233}\rangle$

Matrix elements for [2,0] sextet states involve the following forms.

$$E_{11} \begin{vmatrix} 11 \\ 11 \end{vmatrix} = 2 \begin{vmatrix} 11 \\ 11 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 11 \\ 11 \end{vmatrix} = \sqrt{2} \begin{vmatrix} 12 \\ 12 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 12 \\ 12 \end{vmatrix} = \sqrt{2} \begin{vmatrix} 22 \\ 22 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 13 \\ 23 \end{vmatrix} = \begin{vmatrix} 23 \\ 23 \end{vmatrix}, \quad E_{21} \begin{vmatrix} 23 \\ 23 \end{vmatrix} = 0$$

Elementary operator representations are then found. (same as earlier cases by other means)

$E_{12} = E_{21}^{\dagger} =$					$E_{23} =$	$E_{23} = E_{32}^{\dagger} =$						$E_{13} = E_{31}^{\dagger} =$									
	11	12	22	13	23	33		11	12	22	13	23	33		11	12	22	13	23	33	1.
11		$\sqrt{2}$			•	•	11	•	•	•	•	•		11				$\sqrt{2}$		•	earlier cases
12		•	$\sqrt{2}$				12		•		1	•		12					1		in <u>Lect.22p17-26.</u>
22						•	22					$\sqrt{2}$		22			•			•	
13				•	1	•	13				•	•		13						$\sqrt{2}$	
23					•	•	23					•	$\sqrt{2}$	23							
33						•	33							33							

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21} = E_{12}^{\dagger}$ and $E_{32} = E_{23}^{\dagger}$

 $E_{13} = [E_{12}, E_{23}]$

$L_{+} = L_{x} + iL_{y} = \sqrt{2} \left(E_{12} + E_{23} \right)$						$L_{-}=L_{+}^{\dagger}=$						$L^{2} = L_{+}L_{-} + L_{z}(L_{z} - 1)$								
	11	12	22	13	23	33		11	12	22	13	23	33		11	12	22	13	23	33
11		2	•	•	•	•	11			•	•			11	4+2	•	•	•	•	
12	•	•	2	$\sqrt{2}$		•	12	2						12		6	•	•	•	
22	•	•	•	•	2		22		2	•	•			22		•	4	$2\sqrt{2}$	•	
13	•	•		•	$\sqrt{2}$		13		$\sqrt{2}$					13			$2\sqrt{2}$	2		
23		•	•			2	23			2	$\sqrt{2}$			23		•		•	4+2	
33	.	•	•	•		•	33					2		33		•	•	•	•	0 +6

AMOP reference links on pages 2-4 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Marrying spin $s = \frac{1}{2}$ and orbital $\ell = 1$ together: U(3)×U(2)

The $\ell=1$ *p*=shell in a nutshell

U(6) \supset U(3)×U(2) approach: Coupling spin-orbit ($s=\frac{1}{2}$, $\ell=1$) tableaus Introducing atomic spin-orbit state assembly formula Slater determinants

p-shell Spin-orbit calculations (not finished) Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_n projection for atomic spin and orbit states

Review of Mach-Mock (particle-state) principle

Tableau P-operators on orbits (Yamonouchi formula)

Tableau P-operators on spin

Fermi-Dirac-Pauli anti-symmetric p^3 -states

Boson operators and symmetric p^2 -states

Connecting to angular momentum

Projecting to angular momentum

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21} = E_{12}^{\dagger}$ and $E_{32} = E_{23}^{\dagger}$

Angular-momentum-squared operator $\langle L^2 \rangle = L(L+1)$ tells what *L*-values are present

$$L_{+}L_{-} = \left(L_{x} + iL_{y}\right)\left(L_{x} - iL_{y}\right) = L_{x}^{2} + L_{y}^{2} - iL_{x}L_{y} + iL_{y}L_{x} = L_{x}^{2} + L_{y}^{2} + L_{z}$$
$$L_{x}^{2} + L_{y}^{2} + L_{z}^{2} = L_{+}L_{-} + L_{z}^{2} - L_{z}$$

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21} = E_{12}^{\dagger}$ and $E_{32} = E_{23}^{\dagger}$

Angular-momentum-squared operator $\langle L^2 \rangle = L(L+1)$ tells what *L*-values are present

$$L_{+}L_{-} = \left(L_{x} + iL_{y}\right)\left(L_{x} - iL_{y}\right) = L_{x}^{2} + L_{y}^{2} - iL_{x}L_{y} + iL_{y}L_{x} = L_{x}^{2} + L_{y}^{2} + L_{z}$$
$$L_{x}^{2} + L_{y}^{2} + L_{z}^{2} = L_{+}L_{-} + L_{z}^{2} - L_{z}$$

Commutation $[L_x, L_y] = L_x L_y - L_y L_x = i L_z$ helps find L^2 matrices. Of 6 e-values, 5 are L(L+1) = 6The 6th L-value (L=0) implies an S-orbital. Both are projected. ((L=2) or D-orbital)

$$P(L=0) = \frac{\begin{pmatrix} 4-2(2+1) & 2\sqrt{2} \\ 2\sqrt{2} & 2-2(2+1) \\ 0(0+1)-2(2+1) \end{pmatrix}}{0(0+1)-2(2+1)} = \frac{1}{3} \begin{pmatrix} 1 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix} \qquad P(L=2) = \frac{1}{3} \begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$$

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21} = E_{12}^{\dagger}$ and $E_{32} = E_{23}^{\dagger}$

Angular-momentum-squared operator $\langle L^2 \rangle = L(L+1)$ tells what *L*-values are present

$$L_{+}L_{-} = \left(L_{x} + iL_{y}\right)\left(L_{x} - iL_{y}\right) = L_{x}^{2} + L_{y}^{2} - iL_{x}L_{y} + iL_{y}L_{x} = L_{x}^{2} + L_{y}^{2} + L_{z}$$

$$L_{x}^{2} + L_{y}^{2} + L_{z}^{2} = L_{+}L_{-} + L_{z}^{2} - L_{z}$$

Commutation $[L_x, L_y] = L_x L_y - L_y L_x = i L_z$ helps find L^2 matrices. Of 6 e-values, 5 are L(L+1) = 6The 6th L-value (L=0) implies an S-orbital. Both are projected. ((L=2) or D-orbital)

$$P(L=0) = \frac{\begin{pmatrix} 4-2(2+1) & 2\sqrt{2} \\ 2\sqrt{2} & 2-2(2+1) \\ 0(0+1)-2(2+1) \end{pmatrix}}{0(0+1)-2(2+1)} = \frac{1}{3} \begin{pmatrix} 1 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix} \qquad P(L=2) = \frac{1}{3} \begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$$

Resulting transformation results for sextet tableau $|22\rangle$ and $|13\rangle$ to *L*-orbitals with M=0.

$$\begin{pmatrix} \left\langle 2 \\ 2 \\ M \\ M \\ 0 \\ \end{array} \right\rangle \begin{pmatrix} L = \\ 0 \\ M = \\ 0 \\ \end{array} \rangle \begin{pmatrix} L = \\ 2 \\ M \\ M \\ 0 \\ \end{array} \end{pmatrix} = \begin{pmatrix} \left\langle 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \rangle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \rangle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \rangle = \begin{pmatrix} \left\langle 1 \\ 3 \\ \sqrt{2} \\ 3 \\ -\sqrt{2} \\ 3 \\ \sqrt{3} \\ 0 \\ \end{array} \rangle \begin{pmatrix} 1 \\ 3 \\ \sqrt{2} \\ 3 \\ \sqrt{2} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{3} \\ \sqrt{2} \\ \sqrt{3} \\ \sqrt{2} \\ \sqrt{3} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{2} \\ \sqrt{3} \\$$

Commutation $[L_x, L_y] = L_x L_y - L_y L_x = i L_z$ helps find matrices. The 6th *L*-value (*L*=0) implies an S-orbital. Both are projected.

$$P(L=0) = \frac{\begin{pmatrix} 4-2(2+1) & 2\sqrt{2} \\ 2\sqrt{2} & 2-2(2+1) \end{pmatrix}}{0(0+1)-2(2+1)} = \frac{1}{3} \begin{pmatrix} 1 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix}$$

Resulting transformation results for sextet tableau $|22\rangle$ and $|13\rangle$ to *L*-orbitals with M=0.

$$\begin{pmatrix} \left\langle 2 \\ 2 \\ M \\ M \\ 0 \\ \end{array} \right\rangle \begin{pmatrix} L = 0 \\ M = 0 \\ M \\ M \\ 0 \\ \end{array} \\ \begin{pmatrix} L = 2 \\ M \\ M \\ 0 \\ \end{array} \end{pmatrix} = \begin{pmatrix} \left\langle 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\rangle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} = \begin{pmatrix} \sqrt{1} \\ \sqrt{2} \\ \sqrt{3} \\ -\sqrt{2} \\ \sqrt{3} \\ \sqrt{1} \\ 3 \\ \end{pmatrix}$$

(pushed-to-top)

Commutation $[L_x, L_y] = L_x L_y - L_y L_x = i L_z$ helps find matrices. The 6th *L*-value (*L*=0) implies an S-orbital. Both are projected.

$$P(L=0) = \frac{\begin{pmatrix} 4-2(2+1) & 2\sqrt{2} \\ 2\sqrt{2} & 2-2(2+1) \end{pmatrix}}{0(0+1)-2(2+1)} = \frac{1}{3} \begin{pmatrix} 1 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix}$$

Resulting transformation results for sextet tableau $|22\rangle$ and $|13\rangle$ to *L*-orbitals with M=0.

Compare this to (M=0)-Clebsch-Gordan coefficients under $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$ and $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ columns:

$$\begin{split} \left| 1 \otimes 1_{M=0}^{L=0} \right\rangle &= \sum C_{mm'0}^{11\ 0} \left| \frac{1}{0} \right\rangle \left| \frac{1}{0} \right\rangle \\ &= C_{000}^{11\ 0} \left| \frac{1}{0} \right\rangle \left| \frac{1}{0} \right\rangle + C_{+1-1\ 0}^{11\ 0} \left| \frac{1}{-1} \right\rangle \left| \frac{1}{-1} \right\rangle + C_{-1+1\ 0}^{11\ 0} \left| \frac{1}{-1} \right\rangle \left| \frac{1}{+1} \right\rangle \\ &= -\sqrt{\frac{1}{3}} \left| \frac{1}{0} \right\rangle \left| \frac{1}{0} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1} \right\rangle \left| \frac{1}{-1} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{-1} \right\rangle \left| \frac{1}{+1} \right\rangle \\ &= -\sqrt{\frac{1}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{2}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{2}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{2}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{+1-1} \right\rangle \\ &= \sqrt{\frac{1}{3}} \left| \frac{1}{000} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{1-1} \right\rangle \\ &= \sqrt{\frac{1}{3}} \left| \frac{1}{1-1} \right\rangle$$

(end for 4.18)

Fig.8 Weight or Moment Diagrams of Atomic $(p)^n$ States Each tableau is located at point $(x_1 \ x_2 \ x_3)$ in a cartesian co-ordinate system for which x_n is the number of n's in the tableau. An alternative co-ordinate system is (v_0^2, v_0^1, v_0^0) defined by Eq.16 which gives the zz-quadrupole moment, z-magnetic dipole moment, and number of particles, respectively. The last axis (v_0^0) would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

A Unitary Calculus for Electronic Orbitals William G. Harter and Christopher W. Patterson Springer-Verlag Lectures in Physics 49 1976

Alternative basis for the theory of complex spectra I William G. Harter Physical Review A 8 3 p2819 (1973)

Alternative basis for the theory of complex spectra II William G. Harter and Christopher W. Patterson Physical Review A 13 3 p1076-1082 (1976)

Alternative basis for the theory of complex spectra III William G. Harter and Christopher W. Patterson Physical Review A ??

FIG. 6. Example of unitary tableau notation for multiple-shell states. The calculation of the dipole operator using the jawbone formula between states of definite spin and orbit as shown is given in Eq. (48).

Alternative basis for the theory of complex spectra II William G. Harter and Christopher W. Patterson Physical Review A 13 3 p1076-1082 (1976)

- Within a sublevel, place one electron per orbital before pairing them.
- "Empty Bus Seat Rule"

Aufbau principle - when filling orbitals, start with the lowest energy and proceed to the next highest energy level. Hund's rule - within a subshell, electrons occupy the

Hu

Elec

first

[·O]

My saves

maximum number of orbitals possible.

ls

Electron configurations are sometimes depicted using boxes to represent orbitals. This depiction shows paired and unpaired electrons explicitly.

Hund's rule of maximum multiplicity

* The three rules are:

- . For a given electron configuration, the term with maximum multiplicity has the lowest energy. The multiplicity is equal to , where is the total spin angular momentum for all electrons.
- . For a given multiplicity, the term with the largest value of the total orbital angular momentum quantum number has the lowest energy.

Yay! (for the Googley internet)

Hund's Rule of maximum Multiplicity

The above rules: not give idea abt filling the ein to degenerate orbitals.

For e.g., p-orbitals

- * when more than one orbitals of equal energies are available, then the e- will first occupy these orbitals separately with parallel spins.the pairing of e- will start only after all the orbitals of a given sub-level are singly occupied."
- Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.

Hund's Rule

In a set of orbitals, the electrons will fill the orbitals in a way that would give the maximum number of parallel spins (maximum number of unpaired electrons)

2p

Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.

Complete set of E_{jk} matrix elements for the doublet (spin- $\frac{1}{2}$) p^3 orbits

	$\left \begin{smallmatrix} 1 & 1 \\ 2 \end{smallmatrix} \right\rangle$	$\begin{vmatrix} 1 & 2 \\ 2 \end{vmatrix}$	$\left \begin{smallmatrix} 1 & 1 \\ 3 \end{smallmatrix} \right\rangle$: $\left \begin{smallmatrix} 1 & 2 \\ 3 \end{smallmatrix} \right\rangle$	$\left \begin{smallmatrix} 1 & 3 \\ 2 \end{smallmatrix} \right\rangle$	$\begin{vmatrix} 1 & 3 \\ 3 \end{vmatrix}$	$\left \begin{smallmatrix} 2 & 2 \\ 3 \end{smallmatrix} \right\rangle$	$: \left \begin{smallmatrix} 2 & 3 \\ 3 \end{smallmatrix} \right\rangle$			
	<i>M</i> = 2	N	1 = 1		<i>M</i> = 0	1	M = -1	M = -2			
$\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$	$2^{(11)} + 1^{(22)}$	1 ⁽¹²⁾	1 ⁽²³⁾	$-\sqrt{\frac{1}{2}}^{(13)}$) $\sqrt{\frac{3}{2}}^{(13)}$		<u>-</u> -		÷.		
$\begin{pmatrix} 1 & 2 \\ 2 & - \end{pmatrix}$		1 ⁽¹¹⁾ + 2 ⁽²²)	$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{\frac{3}{2}}^{(23)}$		- 1 ⁽¹³⁾				
$\left\langle \begin{smallmatrix} 1 & 1 \\ 3 \end{smallmatrix} \right $			$2^{(11)} + 1^{(33)}$	$\sqrt{2}^{(12)}$		1(13)					
$\left\langle \begin{smallmatrix} 1 & 2 \\ 3 \end{smallmatrix} \right $				1 ⁽¹¹⁾ + 1 ⁽²²⁾ +	1 ⁽³³⁾	$\sqrt{\frac{1}{2}}^{(23)}$	$\sqrt{2}^{(12)}$	$\sqrt{\frac{1}{2}}^{(13)}$	$=\langle E_{ij}\rangle$		
$\left\langle \frac{1}{2} \right\rangle$	$(ik)_1$	numbers t	e11		$1^{(11)} + 1^{(22)} +$	$-1^{(33)}$ $\sqrt{\frac{3}{2}}^{(23)}$		$\sqrt{\frac{3}{2}}^{(13)}$			
$\left\langle \begin{array}{c} 1 & 3 \\ 3 \end{array} \right $	- ,		e that entry	V		$1^{(11)} + 2^{(11)}$	33)	1(12)			
$\left\langle \begin{smallmatrix} 2 & 2 \\ 3 \end{smallmatrix} \right $		_jn 8.	- - - - -	/			$2^{(22)} + 1^{(33)}$	⁾ 1 ⁽²³⁾			
$\left\langle {2 \atop 3}^2 \right\rangle$								$1^{(22)} + 2^{(33)}$	Î.		

Diagonal examples in *n-particle* notation:

$$\sqrt{3}\mathbf{V}_{0}^{0} = E_{11} + E_{22} + E_{33}$$
$$\sqrt{2}\mathbf{V}_{0}^{1} = E_{11} - E_{33} \equiv L_{z}$$
$$\sqrt{6}\mathbf{V}_{0}^{2} = E_{11} - 2E_{22} + E_{33}$$

Off-Diagonal examples in *n-particle* notation:

$$\mathbf{V}_{2}^{2} = E_{13} , \quad -2\mathbf{V}_{1}^{2} = \sqrt{2}(E_{12} - E_{23}) , \qquad 2\mathbf{V}_{-1}^{2} = \sqrt{2}(E_{21} - E_{32}) , \qquad 2\mathbf{V}_{-2}^{2} = E_{31} , \\ -2\mathbf{V}_{1}^{1} = \sqrt{2}(E_{12} + E_{23}) \equiv L_{+}, \qquad 2\mathbf{V}_{-1}^{1} = \sqrt{2}(E_{21} + E_{32}) \equiv L_{-} .$$

Tableau calculation of 3-electron $\ell = 1$ orbital p^3 -states and their \mathbf{V}^k_q matricesStart with highest angular momentum (L=2) p^3 state: $|^2 D_{M=2}^{L=2} \rangle = \frac{12}{2}$ (Fermi spin-mate $\frac{11}{2}$)Then apply lowering operator $L_{-} \equiv \sqrt{2}(E_{21} + E_{32})$ $|^2 D_{M=1}^{L=2} \rangle = \frac{1}{2} L_{-} |^2 D_{M=2}^{L=2} \rangle = \frac{1}{2} \sqrt{2}(E_{21} + E_{32}) \begin{bmatrix} \frac{11}{2} \\ 2 \end{bmatrix}$ Here this is done using Tableau "Jawbone" formula. $= \frac{1}{\sqrt{2}} \left(\begin{vmatrix} \frac{11}{2} \\ 2 \end{vmatrix} \right) + \begin{vmatrix} \frac{11}{3} \\ 3 \end{vmatrix} \right)$

Orthogonal to this is a ²P (M=1) state

$$\left| {}^{2}P_{M=1}^{L=1} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| {\begin{array}{c} 1 \\ 2 \end{array} \right\rangle} - \left| {\begin{array}{c} 1 \\ 3 \end{array} \right\rangle} \right)$$

Next we calculate 2ⁿ-pole moments the pair: $\left\langle {}^{2}P_{M=1}^{L=1} \middle| V_{0}^{k} \middle| {}^{2}D_{M=1}^{L=2} \right\rangle = \frac{1}{\sqrt{2}} \left(\left\langle \left| \frac{12}{2} \right| + \left\langle \left| \frac{11}{3} \right| \right\rangle \right| \left[\binom{k}{11} E_{11} + \binom{k}{22} E_{22} + \binom{k}{33} E_{33} \right] \left(\left| \frac{12}{2} \right\rangle - \left| \frac{11}{3} \right\rangle \right) \right) = \frac{1}{2} \left[-\binom{2}{11} E_{11} + 2\binom{2}{22} E_{22} - \binom{2}{33} \right] = -\sqrt{\frac{3}{2}} \text{ for } : k = 2 \\ = \frac{1}{2} \left[-\binom{1}{11} E_{11} + 2\binom{1}{22} E_{22} - \binom{1}{33} \right] = 0 \text{ for } : k = 1 \\ = \frac{1}{2} \left[-\binom{0}{11} E_{11} + 2\binom{0}{22} E_{22} - \binom{0}{33} \right] = 0 \text{ for } : k = 0$

$$|1,2,3\rangle \equiv |1\rangle_{particle-a}|2\rangle_{particle-b}|3\rangle_{particle-c} \equiv |1\rangle_{a}|2\rangle_{b}|3\rangle_{c}$$

Single particle p^1 -orbitals: U(3) triplet $|p^1 \sqcup \rangle$

 $e_{12}e_{21}=e_{11}$ $|1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1|$

General elementary operator commutation $[E_{jk}, E_{pq}] = \delta_{kp}E_{jq} - \delta_{qj}E_{pk}$ has same form as 1-particle commutation: $[e_{jk}, e_{pq}] = \delta_{kp}e_{jq} - \delta_{qj}e_{pk}$

Elementary-elementary operator commutation algebra

This applies to all of multi-particle representations of E_{jk} and to momentum operators L_x , L_y , and L_z .

Single particle *p*-orbit (ℓ =1) representation of L_x , L_y , and L_z

$$D_{mn}^{1}(L_{x}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & 1 \\ \cdot & 1 & \cdot \end{pmatrix}, \qquad D_{mn}^{1}(L_{y}) = \frac{-i}{\sqrt{2}} \begin{pmatrix} \cdot & 1 & \cdot \\ -1 & \cdot & 1 \\ \cdot & -1 & \cdot \end{pmatrix}, \qquad D_{mn}^{1}(L_{z}) = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$$

Elementary operator form of L_x , L_y , and L_z

$$L_x = \left(E_{12} + E_{23} + E_{21} + E_{32}\right) / \sqrt{2}, \qquad L_y = -i\left(E_{12} + E_{23} - E_{21} - E_{32}\right) / \sqrt{2}, \qquad L_z = E_{11} - E_{33} + E_$$

...and of raise-lower operators L_+ and L_-

$$L_{+} = L_{x} + iL_{y} = \sqrt{2} \left(E_{12} + E_{23} \right), \qquad L_{-} = L_{x} - iL_{y} = \sqrt{2} \left(E_{21} + E_{32} \right) = L_{+}^{\dagger}, \qquad L_{z} = [L_{+}, L_{-}]$$