$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (2D)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly (Detailed)
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$ Slater functions for $\mathrm{J}=5 / 2\left({ }^{2} \mathrm{D}\right)$
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P})$
Slater functions for $\mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering (next class)

AMOP reference links (Updated list given on $2^{\text {nd }}$ and $3^{\text {rrd }}$ pages of each class presentation)

Web Resources - front page
 UAF Physics UTube channel

Quantum Theory for the Computer Age
2014 AMOP
Principles of Symmetry, Dynamics, and Spectroscopy
2017 Group Theory for QM
> Classical Mechanics with a Bang! > Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-imp-1973

Alternative Basis for the Theory of Complex Spectra

Alternative Basis for the Theory of Complex Spectra I - harter-pra-1973
Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976
Alternative Basis for the Theory of Complex Spectra III - patterson-harter-pra-1977
Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989 (Alt scan)
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989 (Alt scan)
III) Half-integral angular momentum - harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
QTCA Unit 10 Ch 30-2013
AMOP Ch 0 Space-Time Symmetry - 2019
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information displav. and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

AMOP reference links (Updated list given on $2^{\text {nd }}$ and $3^{\text {rd }}$ pages of each class presentation)
(Int.J.Mol.Sci, 14, 714(2013) p.755-774,
QTCA Unit 7 Ch. 23-26),
(PSDS - Ch. 5, 7)
Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch.23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

Intro spin $1 / 2$ coupling Unit 8 Ch. 24 p 3	Irrep Tensor building Unit 8 Ch. 25 p5.	Intro 3-particle coupling. Unit 8 Ch. 25 p28.
H atom hyperfine-B-level crossing Unit 8 Ch. 24 p15 Hyperf. theory Ch. 24 p48.	Irrep Tensor Tables Unit 8 Ch. 25 pl2.	Intro 3,4-particle Young Tableaus GrpThLect29 p42.
Hyperf. theory Ch. 24 p48. Deeper theory ends p53 Intro 2 p 3 p coupling Unit 8 Ch. 24 p17. Intro LS-jj coupling Unit 8 Ch. 24 p22.	Wigner-Eckart tensor Theorem. Unit 8 Ch. 25 p17. Tensors Applied to d,f-levels. Unit 8Ch. 25 p21.	Young Tableau Magic Formulae GrpThLect29 p46-48.
CG coupling derived (start) Unit 8 Ch. 24 p39.	Tensors Applied to high J levels. Unit 8 Ch. 25 p63.	
CG coupling derived (formula) Unit 8 Ch. 24 p44. Lande' g-factor Unit 8 Ch. 24 p26.		

AMOP reference links (Updated list given on $2^{\text {nd }}$ and $3^{\text {rd }}$ and $4^{\text {th }}$ pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification
Chaos Classical_and_Quantum_-_2018-Cvitanovic-ChaosBook
Group Theory - PUP_Lucy Day_-_Diagrammatic_notation_-_Ch4
Simplification_Rules_for_Birdtrack_Operators_-_Alcock-Zeilinger-Weigert-zeilinger-imp-2017
Group Theory - Birdtracks_Lies_and_Exceptional_Groups_-_Cvitanovic-2011
Simplification_rules_for_birdtrack_operators-_imp-alcock-zeilinger-2017
Birdtracks for SU(N) - 2017-Keppeler
Frank Rioux's: UMA method of vibrational induction
Quantum_Mechanics_Group_Theory_and_C60_-_Frank_Rioux_-_Department_of_Chemistry_Saint_Johns_U
Symmetry_Analysis_for_H20-_H2OGrpTheory_-_Rioux
Quantum_Mechanics-Group_Theory_and_C60 - JChemEd-Rioux-1994
Group_Theory_Problems-_Rioux-_SymmetryProblemsX Comment_on the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques \& Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016)
Hiah-resolution_spectroscopy_and_global_analysis_of_CF4 rovibrational_bands to model_its_atmospheric_absorption-_carlos-Boudon-igsrt-2017
Symmetry and Chirality - Continuous_Measures - Avnir

Special Topics \& Colloquial References

r-process_nucleosynthesis_from_matter_eiected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$ Slater functions for $\mathrm{J}=5 / 2$ (2D) Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$
Slater functions for $\mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering
$\square \square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

M=0

$$
L_{z} \equiv
$$

1

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle$		$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\left\lvert\, \begin{array}{l}13 \\ 3\end{array}\right.\right)$	$\left\lvert\, \begin{aligned} & 22 \\ & 3\end{aligned}\right.$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$	$\begin{aligned} & E_{j k-m a t r i x} \\ & \text { Lect. } 23 \\ & \text { p. } \underline{7-16} \\ & \text { and } p .74 \\ & \hline \end{aligned}$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)(22) \\ 2+1 \end{gathered}$	$\stackrel{(12)}{1}$	${ }^{(23)}$	(13) $-\sqrt{\frac{1}{2}}$	$\begin{array}{\|c\|l\|l\|} \left(\sqrt{\left.\frac{1}{2}\right)}\right. \end{array}$				
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$	(21) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$		$\sqrt{\frac{123)}{1}}$	$\sqrt{(23)} \sqrt{\frac{1}{2}}$		$\stackrel{(13)}{11}$.	

$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

M=0

$$
L_{z} \equiv
$$

 1

$$
\left.L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right)
$$

$$
\begin{aligned}
& \left.L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left.\sqrt{(2+2)(2-2+1)}\right|_{1} ^{2}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
2 \\
D_{M=2}
\end{array}\right\rangle \\
& \left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}\right)+\left(E_{32}\right)\left|\frac{11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{112}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle
\end{aligned}
$$

$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
${ }_{M=2} \quad M=1$ $M=0$

$$
M=-1 \quad M=-2
$$

$$
\left.L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right)
$$

$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}\right)+\left(E_{32}\right)\left|\frac{11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right| \frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$

$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

$M=2 \quad M=1$ M=0

$E_{j k \text {-matrix }}(, 1$,
Lect. 23

- 1

$$
\left.L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right)
$$

$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\frac{1}{2} L_{-}\left|{ }_{2}^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{ll}{\left[\frac{11}{2}\right.} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 / 2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{111}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| \frac{12}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$
$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states \boldsymbol{P} thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (2D)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2\left({ }^{2} \mathrm{D}\right)$
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{D}$)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$

$$
M=-1 \quad M=-2
$$

$M=2 \quad M=1$ $M=0$

$|$| E_{j} |
| :--- |
| L |
| p |
| and |
| |
| L |

$\begin{aligned} & E_{j k-\text { matrix }} \\ & \begin{array}{l}\text { Lect.23 } \\ \text { p. } 7-16\end{array} \\ & \text { and } p .74\end{aligned}$
$L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}\cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}$
$\left(\begin{array}{l}L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}\cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{-1}^{1}\end{array}\right)$
$\left.L_{-}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\sqrt{(2+1)(2-1+1)}\right|_{1} ^{2}\right\rangle=\sqrt{6}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle$
$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$\left.\left.L_{-}\right|_{2} ^{2}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\frac{1}{2} L_{-}\right|_{2} ^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{l}\frac{111}{2} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|+\frac{1}{\sqrt{2}}\right| \frac{111}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|\left[-\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| \frac{1}{3}\right\rangle=\right|{ }^{2} P_{M=1}\right\rangle$
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{2}\left(E_{21}+E_{32}\right)$
$M=2 \quad M=1$
$M=0 \quad M=-1 \quad M=-2$
1

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left.\begin{array}{\|l\|l\|}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}13 \\ 2\end{array}\right\rangle$	$\left.\left.\right\|^{13} \begin{array}{l}13\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{\|l\|} \\ \\ 3\end{array}\right\rangle$	$\begin{aligned} \cdot & -1 \end{aligned} \mathbf{L}^{L \text {-oporators }}$	
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)(22) \\ 2+1 \end{gathered}$	$\begin{array}{cc}{ }^{(12)} \\ 1 & { }^{(23)} \\ 1\end{array}$	$\begin{array}{ll} \hline(\sqrt{(13)} \\ -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$.	$\begin{array}{ll} E_{j l-\text {-matrix }} & \\ \text { Lect. } 23 & L_{+} \equiv \sqrt{2} \end{array}\left(\begin{array}{ccc} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{v}=-\sqrt{2} \mathbf{v}_{1}^{1}$	
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$	(21)	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$	$\sqrt{(23)} \sqrt{\frac{1}{2}}$ (23) ${ }^{\frac{1}{2}}$	${ }_{-1}^{(13)}$		$\begin{aligned} & p \cdot 7-16 \\ & \text { and } p \cdot 74 \end{aligned}$	
$\left\|\begin{array}{l}11 \\ 3\end{array}\right\|$	$\stackrel{(32)}{1}$	$\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\sqrt{(12)}$	$\stackrel{11}{13)}^{1}$		$L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{array}=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}\right.$	
$\left\langle\begin{array}{l}12 \\ 3\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \end{aligned}$	$\begin{array}{ll} \sqrt[(32)]{\frac{1}{2}} & \sqrt[(21)]{2} \\ \hline \end{array}$	$\begin{gathered} (11)^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} (23) \\ \sqrt{\frac{1}{2}} & (12) \\ \hline \end{array}$	${\sqrt{\frac{131}{13}}{ }^{\frac{1}{2}}}^{\text {a }}$		
$\left\langle\begin{array}{l}\langle 13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & \sqrt{\frac{3}{2}} \end{aligned}$	$\sqrt{\frac{132)}{3}}$	$\begin{gathered} (11)^{(22)} \\ 1+1+1 \end{gathered}$	$\begin{aligned} & (23) \\ & \sqrt{\frac{3}{2}} \end{aligned}$	${ }^{(13)}{ }^{\frac{3}{2}}$	$\left.L_{-}\left\|\begin{array}{l} 2 \\ 1 \end{array}\right\rangle=\left.\sqrt{(2+1)(2-1+1)}\right\|_{1} ^{2}\right\rangle=\sqrt{6}\left\|\begin{array}{l} 2 \\ 0 \end{array}\right\rangle$	
$\left\langle\begin{array}{l}13 \\ 3\end{array}\right\|$		${ }_{1}^{(31)}$		$\begin{gathered} (11) \\ 1+23) \end{gathered}$	${ }_{1}^{(12)}$	$\left.\left.\left\|\begin{array}{l} 2 \\ 0 \end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}^{2} \begin{array}{l} 2 \\ 1 \end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(\\| \frac{1 \mid 2]}{[2]}\right\rangle+\left\|\frac{11]}{3}\right\rangle\right)$	
$\left\langle\begin{array}{l}22 \\ 3\end{array}\right\|$		(31) -1	$\sqrt{(21)}$	$\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	${ }^{(23)} 1$		
$\left.\underline{4} \begin{aligned} & 23 \\ & 3\end{aligned} \right\rvert\,$			$\begin{array}{ll} \hline \sqrt[31)]{(31)} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{3}{2}} \\ \hline \end{array}$	(21) 1 1	$\begin{gathered} \left(\begin{array}{l} (22)(3) \\ 1+2) \end{array}\right. \\ \hline 103 \end{gathered}$		

$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{ll}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\frac{1}{2} L_{-}\right|_{2} ^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{l}\frac{11}{2} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|+\frac{1}{\sqrt{2}}\right| \frac{11}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right| \begin{array}{l}2\end{array}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$
$\square=[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
$M=2 \quad M=1$
$M=0 \quad M=-1 \quad M=-2$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{\|l\|}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{\|l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)(22) \\ 2+1 \end{gathered}$	$\stackrel{(12)}{1} \stackrel{1}{13}$	$\begin{array}{\|l\|l\|} \hline(13) \\ -\sqrt{\frac{1}{2}} \end{array}$	$\begin{array}{\|c\|l\|l\|l\|l\|} \frac{13}{2} \end{array}$			
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	$\begin{gathered} (21) \\ 1 \\ (32) \\ 1 \end{gathered}$	$\begin{array}{cc} (11))^{(22)} \\ 1+2 & \cdot \\ & \cdot \\ \cdot & (11) \\ 2+13) \end{array}$	$\begin{aligned} & \begin{array}{l} (23) \\ \sqrt{\frac{1}{2}} \\ \sqrt[(12)]{2} \\ \sqrt{2} \end{array} \end{aligned}$	$\begin{array}{\|c} (23) \\ \sqrt{\frac{3}{2}} \end{array}$	$\stackrel{11}{13)}^{1}$	$\begin{aligned} & { }^{(133)} \\ & -1 \end{aligned}$	
$\begin{aligned} & \left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 13 \\ 2 \end{array}\right\| \end{aligned}$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{3}} \\ & \sqrt{\frac{3}{2}} \end{aligned}$		$\begin{gathered} (11){ }^{(22)} \\ 1+1 \end{gathered}{ }^{(3)}$	$\text { (11) }{ }^{(22)}(33)$ $1+1+1$	$\begin{aligned} & (23) \\ & \sqrt{\frac{123}{2}} \\ & (23) \\ & \sqrt{\frac{3}{2}} \end{aligned}$	$\begin{array}{\|c} (12) \\ \sqrt{2} \end{array}$	$\begin{aligned} & \mathbf{c}_{(13)}^{\sqrt{2}} \\ & \sqrt[(13)]{(13)} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\|$		(31) \cdot 1 (31) -1 .	$\begin{aligned} & (\sqrt[32)]{(2)} \\ & \sqrt{\frac{1}{2}} \\ & (21) \\ & \sqrt{2} \end{aligned}$	$\begin{aligned} & \sqrt[322]{\sqrt{2}} \\ & \sqrt{\frac{1}{2}} \end{aligned}$	$\begin{gathered} (11) \\ 1+23) \end{gathered}$	$\begin{gathered} (22)^{(33)} \\ 2+1 \end{gathered}$	$\begin{gathered} (12) \\ 1 \\ (23) \\ \left(\begin{array}{c} (23) \end{array}\right. \end{gathered}$
$\left[\left.\begin{array}{l}23 \\ 3\end{array} \right\rvert\,\right.$			$\begin{aligned} & \sqrt[311]{\sqrt{\frac{1}{2}}} \end{aligned}$	$\begin{array}{r} \begin{array}{l} (311 \\ \sqrt{\frac{3}{2}} \\ \hline \end{array} \\ \hline \end{array}$	$\stackrel{(21)}{1}$	$\begin{gathered} (322) \\ 1 \end{gathered}$	$\begin{gathered} (22){ }^{(33)} \\ 1+2 \end{gathered}$

$$
\begin{array}{ll}
E_{j k-\text { matrix }} \\
\text { Lect. } 23 \\
\text { p. } \underline{7-16} \\
\text { and } p .74
\end{array} \quad L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}
$$

$$
\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
\left.\left.L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left.\sqrt{(2+2)(2-2+1)}\right|_{1} ^{2}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left.\right|^{2} D_{M=2}\right\rangle
$$

$$
\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{111}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 / 2]}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{111}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle
$$

Orthogonal $M=1$ state: $\left.\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 /[2]}{2}\right\rangle\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{1 \pi}{3}\right\rangle|=|{ }^{2} P_{M=1}\right\rangle$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l} \\ 13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	$\begin{gathered} (21) \\ 1 \\ (32) \\ \left(\begin{array}{c} (32) \end{array}\right. \end{gathered}$	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11){ }^{(33)} \\ 2+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\frac{1}{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	(13) -1 (13) 1	.
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{gathered} \left(\frac{31)}{}\right. \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\frac{\binom{(32)}{\sqrt{\frac{1}{2}}}}{\binom{(21)}{\sqrt{2}}}$	$\begin{gathered} (11){ }^{(22)} \\ 1+1+13) \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$. .	(31) (31) -1	$\sqrt{\frac{1}{2}}$ $\sqrt[(32)]{\sqrt{\frac{3}{2}}}$ $\sqrt[(21)]{\sqrt{2}}$	$\begin{gathered} (11){ }^{(33)} \\ 1+2 \end{gathered}$ $\begin{gathered} (22){ }^{(33)} \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$. .	$\sqrt{\frac{1}{2}} \quad \sqrt{(31)}{ }^{\frac{3}{2}}$	$\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\begin{array}{ll}
E_{j k} \text {-matrix } \\
\begin{array}{l}
\text { Lect. } 23 \\
\text { p. } \\
\text { and } p .74
\end{array} & L_{+} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}
\end{array}
$$

 1
 $\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{l}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\left.\frac{1}{2} L_{-}\right|_{2} ^{2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\begin{array}{l}\frac{11}{2} \\ 2\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| 2\left|+\frac{1}{\sqrt{2}}\right| \frac{11}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle$
Orthogonal $M=l$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{112}{2}\right| \begin{array}{l}2\end{array}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{11}{3}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{c}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{c}11 \\ 3\end{array}\right\|$	$\begin{gathered} (21) \\ 1 \\ (32) \\ { }^{(32)} \end{gathered}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \\ 2+1 \end{gathered}$	(23) $\sqrt[(23)]{\sqrt{\frac{(23)}{2}}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \text {. } \end{array}$. .
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ \sqrt[(31)]{\frac{3}{2}} \end{gathered}$	$\frac{\binom{(32)}{\sqrt{\frac{1}{2}}}}{\left(\begin{array}{l} (21) \\ \sqrt{2} \\ \left(\sqrt{\frac{(32)}{2}}\right. \end{array}\right)}$		$\sqrt[(23)]{\sqrt{2}}$ $\sqrt[(12)]{2}$ $\sqrt[(23)]{\frac{3}{2}}$	$\begin{aligned} & \hline(13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	(31) (31) -1	$\stackrel{(32)}{ }$ $\stackrel{(32)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{2}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22))^{(33)} \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{\frac{(31)}{2}}$ (31) ${ }^{\frac{3}{\frac{3}{2}}}$	$\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$	$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Lect. } 23 \\
p \cdot \underline{7-16} \\
\text { and } p \cdot 74
\end{array} & L_{+} \equiv \sqrt{2}\left(\begin{array}{ll}
\cdot & \cdot \\
\cdot & 1 \\
\cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}
\end{array}
$$

$$
\left.L_{-}\left|\begin{array}{c}
L \\
M
\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{|l|}
\hline 10 \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

$$
\left.\left.\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| \frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| 1|c|{ }^{2} D_{M=1}\right\rangle
$$

Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| 2 \right\rvert\,$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(E_{j k}\) \& \(\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle\) \& \(\left|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left|\begin{array}{l}11 \\ 3\end{array}\right\rangle\) \& \(\left|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left|\begin{array}{c}13 \\ 2\end{array}\right\rangle\) \& \(\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left|\begin{array}{c}22 \\ 3\end{array}\right\rangle\) \& \(\left|\begin{array}{l}23 \\ 3\end{array}\right\rangle\) \\
\hline \(\left\langle\begin{array}{l}11 \\ 2\end{array}\right|\) \& (11) \({ }^{(22)}\)
\(2+1\) \& \(\begin{array}{cc}(12) \& (23) \\ 1 \& 1\end{array}\) \& \[
\begin{array}{ll}
-\sqrt{\frac{1}{2}} \& \sqrt[(13)]{\frac{3}{2}}
\end{array}
\] \& . . \& \\
\hline \(\left\langle\begin{array}{c}12 \\ 2\end{array}\right|\)
\(\left\langle\begin{array}{c}11 \\ 3\end{array}\right|\) \& \[
\begin{gathered}
(21) \\
1 \\
(32) \\
\left(\begin{array}{c}
(32)
\end{array}\right.
\end{gathered}
\] \& \[
\begin{gathered}
(11)(22) \\
1+2
\end{gathered}
\]
\[
\begin{gathered}
(11))^{(33)}
\end{gathered}
\] \& \begin{tabular}{lc}
\(\stackrel{(23)}{ }\) \& \(\stackrel{(23)}{\frac{1}{2}}\) \\
\(\sqrt[(12)]{\frac{3}{2}}\) \\
\(\sqrt{2}\) \& \\
\hline
\end{tabular} \& \[
\begin{array}{cc}
\& (13) \\
\cdot \& -1 \\
(13) \& \\
1 \& \cdot
\end{array}
\] \& - \\
\hline \(\left\langle\begin{array}{c}12 \\ 3\end{array}\right|\)

$\left\langle\begin{array}{c}13 \\ 2\end{array}\right|$ \& \[
$$
\begin{aligned}
& (31) \\
& -\sqrt{\frac{1}{2}} \\
& \sqrt[(31)]{\sqrt{\frac{3}{2}}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \binom{(32)}{\sqrt{\frac{1}{2}}}
\end{aligned}
$$\left($$
\begin{array}{l}
(21) \\
\sqrt{2} \\
)
\end{array}
$$\right.

\] \& \[

$$
\begin{array}{cc}
\begin{array}{c}
(11){ }^{(22)}(33) \\
1+1+1
\end{array} & . \\
& \\
& \\
\text { (11) }(22)(33) \\
(2+1+1
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
(23) & (12) \\
\sqrt{\frac{1}{2}} & \sqrt{2} \\
(23) & \\
\sqrt{\frac{3}{2}} & \cdot
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& (13) \\
& \sqrt{\frac{1}{2}} \\
& (13) \\
& \sqrt{\frac{3}{2}}
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& \left\langle\begin{array}{c}
13 \\
3
\end{array}\right| \\
& \left\langle\begin{array}{c}
22 \\
3
\end{array}\right|
\end{aligned}
$$ \& - \& \[

$$
\begin{array}{cc}
& { }^{(31)} \\
\cdot & 1 \\
(31) & \\
-1 & .
\end{array}
$$

\] \& | $\sqrt[(32)]{ }$ | $\sqrt[(32)]{\sqrt{2}}$ |
| :---: | :---: |
| $\sqrt{\frac{3}{2}}$ | |
| $\sqrt{2}$ | | \& \[

$$
\begin{gathered}
(11) \\
1+2
\end{gathered}
$$
\]

\[
$$
\begin{gathered}
(22)(33) \\
2+1
\end{gathered}
$$

\] \& | (12) |
| :--- |
| 1 |
| (23) |
| 1 |

\hline $\left\langle\begin{array}{c}23 \\ 3\end{array}\right|$ \& \& . . \& $\sqrt{(31)}$ ل \& $\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$ \& $$
\begin{gathered}
(22) \\
1+2
\end{gathered}
$$

\hline
\end{tabular}

$\left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad$ Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{l}1 \\ 2\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle$

Orthogonal $M=1$ state: $\left.\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\left\langle\left.\frac{1}{\sqrt{2}} \right\rvert\, \frac{1[1]}{2}\right\rangle\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{101}{3}\right\rangle|=|{ }^{2} P_{M=1}\right\rangle$

Orthogonal $(\mathrm{L}=1, M=0)$ state: $\left.\frac{-1}{2}\left|\frac{[12}{3}\right\rangle+\frac{\sqrt{3}}{2}\left|\frac{1}{2}\right| \frac{13}{2}\right\rangle=\left|{ }^{2} P_{M=0}\right\rangle=\left|\begin{array}{l}1 \\ 0\end{array}\right\rangle$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$-\sqrt[(13)]{-\sqrt{\frac{1}{2}}} \quad \sqrt[(13)]{\frac{3}{2}}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	(13) -1 (13) 1	${ }^{\cdot}$
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{\frac{3}{2}}} \end{aligned}$	$\begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (32) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{cc}\stackrel{(23)}{\sqrt{\frac{1}{2}}} & \sqrt[(12)]{2} \\ \sqrt{(23)} & \\ \sqrt{\frac{3}{2}} & .\end{array}$	$\begin{aligned} & \hline \sqrt[(13)]{\sqrt{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\binom{(21)}{\sqrt{2}}$ \cdot	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{(31)} \sqrt{\frac{1}{2}} \quad \sqrt{(31)}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\left.L_{-}\left|\begin{array}{c}
L \\
M
\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{|l|}
\hline 1 \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

$$
\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{1 \mid 1}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 \mid 2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1 \mid 1}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle
$$

Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| 2 \right\rvert\,$

$$
L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{(2+0)(2-0+1)}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle
$$

$$
\left.\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{c}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1}{3}\right| \frac{2}{3}\right\rangle+\frac{1}{2}\left|\frac{1 \mid 3}{2}\right\rangle\right)
$$

$$
\begin{aligned}
& L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{(2+1)(2-1+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle \\
& \left.\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(| | \frac{1 \mid 2}{2}\right\rangle+\left|\frac{1 \mid 1}{3}\right\rangle\right) \\
& =\frac{1}{\sqrt{6}}\left(E_{21}\left|\frac{1-2}{2}\right\rangle+E_{21}\left|\frac{1] 1}{3}\right\rangle+E_{32}\left|\frac{1-2}{2}\right\rangle+E_{32}\left|\frac{1-1}{3}\right\rangle\right) \\
& =\frac{1}{\sqrt{6}}\left(\left.0\left|\frac{1 \mid 2}{2}\right\rangle+\sqrt{2}\left|\frac{1 \mid 2}{3}\right\rangle+\sqrt{\frac{1}{2}}\left|\frac{1}{\frac{1}{3}}\right| 2 \right\rvert\,\right.
\end{aligned}
$$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$-\sqrt[(13)]{-\sqrt{\frac{1}{2}}} \quad \sqrt[(13)]{\frac{3}{2}}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	(13) -1 (13) 1	${ }^{\cdot}$
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{\frac{3}{2}}} \end{aligned}$	$\begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (32) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{cc}\stackrel{(23)}{\sqrt{\frac{1}{2}}} & \sqrt[(12)]{2} \\ \sqrt{(23)} & \\ \sqrt{\frac{3}{2}} & .\end{array}$	$\begin{aligned} & \hline \sqrt[(13)]{\sqrt{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\binom{(21)}{\sqrt{2}}$ \cdot	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{(31)} \sqrt{\frac{1}{2}} \quad \sqrt{(31)}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\left.L_{-}\left|\begin{array}{c}
L \\
M
\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \quad \text { Start with top [2,1]-state: }
$$

$$
L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{|l|}
\hline 1 \\
2
\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle
$$

$$
\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{1 \mid 1}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 \mid 2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1 \mid 1}{3}\right\rangle=\left|{ }^{2} D_{M=1}\right\rangle
$$

Orthogonal $M=1$ state: $\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| 2 \right\rvert\,$

$$
L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{(2+0)(2-0+1)}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle
$$

$$
\left.\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1 \mid 2}{3}\right\rangle+\frac{1}{2}\left|\frac{1}{2}\right| \frac{3}{2}\right\rangle\right)
$$

$$
\left.=\frac{1}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}\left|\frac{\sqrt{2}}{1}\right| \frac{2}{3}\left|\frac{2}{3}\right\rangle+0\left|\frac{2}{2}\right\rangle+\frac{\sqrt{3}}{2}\left|\sqrt{\frac{1}{2}}\right| \frac{1}{3}\right\rangle+\frac{1}{2}\left|\sqrt{\frac{3}{2}}\right| \frac{1}{3}\left|{ }^{3}\right\rangle\right)
$$

$$
\begin{aligned}
& L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{(2+1)(2-1+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle \\
& \left.\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(| | \frac{1 \mid 2}{2}\right\rangle+\left|\frac{1 \mid 1}{3}\right\rangle\right) \\
& =\frac{1}{\sqrt{6}}\left(E_{21}\left|\frac{1-2}{2}\right\rangle+E_{21}\left|\frac{1] 1}{3}\right\rangle+E_{32}\left|\frac{1-2}{2}\right\rangle+E_{32}\left|\frac{1-1}{3}\right\rangle\right) \\
& =\frac{1}{\sqrt{6}}\left(\left.0\left|\frac{1 \mid 2}{2}\right\rangle+\sqrt{2}\left|\frac{1 \mid 2}{3}\right\rangle+\sqrt{\frac{1}{2}}\left|\frac{1}{\frac{1}{3}}\right| 2 \right\rvert\,\right.
\end{aligned}
$$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$-\sqrt[(13)]{-\sqrt{\frac{1}{2}}} \quad \sqrt[(13)]{\frac{3}{2}}$. .	.
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt[(12)]{2}$	(13) -1 (13) 1	${ }^{\cdot}$
$\left\langle\begin{array}{c}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{aligned} & (31) \\ & -\sqrt{\frac{1}{2}} \\ & \sqrt[(31)]{\sqrt{\frac{3}{2}}} \end{aligned}$	$\begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (32) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{cc}\stackrel{(23)}{\sqrt{\frac{1}{2}}} & \sqrt[(12)]{2} \\ \sqrt{(23)} & \\ \sqrt{\frac{3}{2}} & .\end{array}$	$\begin{aligned} & \hline \sqrt[(13)]{\sqrt{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\binom{(21)}{\sqrt{2}}$ \cdot	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\sqrt{(31)} \sqrt{\frac{1}{2}} \quad \sqrt{(31)}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\begin{aligned}
& \left.L_{-}\left|{ }_{M}^{L}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle \\
& \text { Start with top [2,1]-state: } \\
& L_{-}\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle=2\left|\begin{array}{l}
2 \\
1
\end{array}\right\rangle \quad\left|\begin{array}{l}
2 \\
2
\end{array}\right\rangle=\left|\begin{array}{l}
1 \\
2
\end{array}\right|=\left|{ }^{2} D_{M=2}\right\rangle
\end{aligned}
$$

Orthogonal $M=1$ state: $\left.\left.\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\left\langle\left.\frac{1}{\sqrt{2}} \right\rvert\, \frac{1[1]}{2}\right\rangle\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{101}{3}\right\rangle|=|{ }^{2} P_{M=1}\right\rangle$

$$
\text { Orthogonal (L=1,M=0) state: } \quad \frac{-1}{2}\left|\frac{1012}{3}\right\rangle+\frac{\sqrt{3}}{2}\left|\frac{1[\sqrt{3}}{2}\right\rangle=\left|{ }^{2} P_{M=0}\right\rangle=\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle
$$

$$
\left.\left.L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\left.\sqrt{(2+0)(2-0+1)}\right|_{0} ^{2}\right\rangle=\left.\sqrt{6}\right|_{-1} ^{2}\right\rangle
$$

$$
\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1 \sqrt{2}}{3}\right\rangle+\frac{1}{2}\left|\frac{\square \sqrt{3}}{2}\right\rangle\right)
$$

$$
\begin{aligned}
& L_{+} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right]=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1} \\
& \left.\left.\left.\left.L_{-}\right|_{1} ^{2}\right\rangle=\left.\sqrt{(2+1)(2-1+1)}\right|_{1} ^{2}\right\rangle=\left.\sqrt{6}\right|_{0} ^{2}\right\rangle \\
& \left.\left|\begin{array}{l}
2 \\
0
\end{array}\right\rangle=\left.\frac{1}{\sqrt{6}} L_{-}\right|_{1} ^{2}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right) \frac{1}{2}\left(\left|\frac{1-12}{2}\right\rangle+\left|\frac{\square 11}{2}\right\rangle\right)
\end{aligned}
$$

$E_{j k}$	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { [13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\left\langle\begin{array}{c}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{c}11 \\ 3\end{array}\right\|$	(21) 1 (32) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11)(33) \\ 2+1 \end{gathered}$	$\stackrel{(23)}{ }$ $\stackrel{(23)}{\frac{1}{2}}$ $\sqrt[(12)]{\frac{3}{2}}$ $\sqrt{2}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \text {. } \end{array}$.
$\left\langle\begin{array}{l}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$		$\begin{array}{cc} \begin{array}{c} (11))^{(22)}(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt[(13)]{\frac{1}{2}} \\ & (\sqrt{(13)}) \\ & \sqrt[3]{2} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & { }^{(31)} \\ \cdot & 1 \\ (31) & \\ -1 & . \end{array}$	$\binom{(32)}{\sqrt{\frac{1}{2}}}$ $\left(\begin{array}{l}(32) \\ \sqrt{\frac{3}{2}}\end{array}\right.$ $\left(\begin{array}{l}(21) \\ \sqrt{2}\end{array}\right.$ \square	$\begin{array}{cc} (11)(33) \\ 1+2 & \cdot \\ & \\ & (22)(33) \\ . & 2+1 \end{array}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$. .	$\begin{array}{ll} \sqrt[(31)]{\sqrt{2}} & \sqrt[(31)]{\frac{3}{2}} \end{array}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$\left.L_{-}\left|\begin{array}{l}L \\ M\end{array}\right\rangle=\left.\sqrt{(L+M)(L-M+1)}\right|_{M-1} ^{L}\right\rangle$
Start with top [2,1]-state:
$L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\sqrt{(2+2)(2-2+1)}\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=2\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle \quad \quad\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\left|\begin{array}{l}\mid 11 \\ \frac{1}{2}\end{array}\right\rangle=\left|{ }^{2} D_{M=2}\right\rangle$
$\left.\left|\begin{array}{l}2 \\ 1\end{array}\right\rangle=\frac{1}{2} L_{-}\left|\begin{array}{l}2 \\ 2\end{array}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{1 \mid 11}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1 \mid 2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| 1 \right\rvert\,$
Orthogonal $M=1$ state: $\left|{ }^{2} P_{M=1}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right\rangle=\left\langle\frac{1}{\sqrt{2}}\right| \frac{1}{2}\left|\frac{1}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|\begin{array}{l}\left.\frac{1}{3} \right\rvert\, 1 \\ 3\end{array}\right\rangle=\left|{ }^{2} P_{M=1}\right\rangle$

Bottom [2,1]-state:
$\left|\begin{array}{c}2 \\ -2\end{array}\right\rangle=\left|\begin{array}{l}2 \sqrt{2} \\ 3\end{array}\right\rangle=\left|{ }^{2} D_{M=-2}\right\rangle$
Bottom [3,0]-state:
$\left|\begin{array}{l}0 \\ 0\end{array}\right\rangle=\left|\begin{array}{ll}\frac{1}{2} & \\ \frac{2}{3} & { }^{4} S_{M=0}\end{array}\right\rangle$
 Orthogonal $(\mathrm{L}=1, M=0)$ state: $\left.\quad \frac{-1}{2}\left|\frac{11[2}{3}\right\rangle+\frac{\sqrt{3}}{2}\left|\frac{1-1}{2}\right| \frac{2}{2}\right\rangle=\left|{ }^{2} P_{M=0}\right\rangle=\left|\begin{array}{l}1 \\ 0\end{array}\right\rangle$ $L_{-}\left|\begin{array}{l}2 \\ 0\end{array}\right\rangle=\sqrt{(2+0)(2-0+1)}\left|\begin{array}{l}2 \\ 0\end{array}\right\rangle=\sqrt{6}\left|\begin{array}{c}2 \\ -1\end{array}\right\rangle$

$$
\left.\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle=\frac{1}{\sqrt{6}} L_{-}\left|\begin{array}{c}
2 \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{6}} \sqrt{2}\left(E_{21}+E_{32}\right)\left(\frac{\sqrt{3}}{2}\left|\frac{1}{1 \mid 2}\right| \frac{1}{3}\right\rangle+\frac{1}{2}\left|\frac{1 \mid 3}{2}\right\rangle\right)
$$

$$
\left.\left.\left.=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{3}{2}}\left|\frac{2}{3}\right| \begin{array}{l}
2 \\
3
\end{array}\right\rangle+\sqrt{\frac{3}{2}}\left|\frac{1}{3}\right| \frac{3}{3}\right\rangle\right)=\frac{1}{\sqrt{2}}\left|\frac{2}{3}\right| \frac{2}{3}\right\rangle \left.+\frac{1}{\sqrt{2}}\left|\frac{1[3}{3}\right\rangle=\left|{ }^{2} D_{M=-1}\right\rangle=\left|\begin{array}{c}
2 \\
-1
\end{array}\right\rangle \right\rvert\,
$$

Orthogonal (L=1, $M=0$) state: $\left.\left.\left\langle\left.\frac{-1}{\sqrt{2}} \right\rvert\, \frac{|2| 2}{3}\right\rangle\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{3}\right| \begin{array}{c}3 \\ 3\end{array}\right\rangle=\left|{ }^{2} P_{M=-1}\right\rangle=\left|\begin{array}{c}1 \\ -1\end{array}\right\rangle$
$\left(\mathrm{S}_{3}\right) *(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=3 / 2$ at $\mathrm{L}=0$

$\left(\mathrm{S}_{3}\right) *(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)$
Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{P}$)
Application to spin-orbit and entanglement break-up scattering

$$
\ell=1 p=\text { shell LS states combined to states of definite } \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2
$$

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$\left(\mathrm{S}_{3}\right) *(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{P}$)
Application to spin-orbit and entanglement break-up scattering

$$
\ell=1 p=\text { shell } \mathrm{LS} \text { states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=2
$$

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$\left.\left|{ }^{2} D_{J=\frac{3^{\frac{3}{2}}}{2}}\right\rangle=\sqrt{\frac{4}{5}}\left|d_{M=2}^{L=2} \chi_{-1 / 2}^{1 / 2}\right\rangle-\left.\sqrt{\frac{1}{5}}\right|_{M=1} ^{L=2} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad$ Doublet ${ }^{2} D, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2}$
$\ell=1 p=$ shell LS states combined to states of definite $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$$
\begin{aligned}
& \left.{ }^{2} D_{J=\frac{3}{2}} \frac{\frac{3}{2}}{2}\right)=\sqrt{\frac{1}{5}}\left(d_{M=2}^{L=2} \chi_{-1 / 2}^{1 / 2}\right)-\sqrt{\frac{1}{5}}\left(d_{M=1}^{L=2} \chi_{+1 / 2}^{1 / 2}\right) \quad \quad \text { Doublet }^{2} D, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2}
\end{aligned}
$$

$\left(\mathrm{S}_{3}\right) *(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J
$\mathrm{J}=3 / 2$ at $\mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2$ at $\mathrm{L}=2\left({ }^{2} \mathrm{D}\right)$
Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (2D)

$$
\begin{array}{r}
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
\mathrm{J}=1 / 2 \text { at } \mathrm{L}=1
\end{array}{ }^{(2 \mathrm{P})}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{P}$)
Application to spin-orbit and entanglement break-up scattering

$$
\left|\begin{array}{l}
{ }^{2} P_{J=\frac{3}{2}}^{\frac{3}{2}}
\end{array}\right\rangle=\underline{\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle} \quad \begin{aligned}
& \ell=\text { shell LS states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \\
& \mathrm{MJ}_{\mathrm{J}}=3 / 2
\end{aligned}
$$

$\begin{array}{r\|r\|} 1 \times 1 / 2 & \begin{array}{r} 3 / 2 \\ +3 / 2 \\ \hline+1+1 / 2 \\ \hline \end{array} \\ \hline \end{array}$	$3 / 2$ $1 / 2$ $+1 / 2$ $+1 / 2$		
+1 1 0 0	$\begin{array}{cc}1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
	$0-1 / 2$ $-1+1 / 2$	$\begin{array}{lr}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$$
\begin{aligned}
& \left.\left.\left\lvert\,{ }^{2} P_{J=3}{ }^{\frac{3}{2}}\right.\right)+\mid p^{L=1} \chi^{1 / 2}\right)=1 p=\text { shell LS states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\underline{\left.p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle} \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=3 / 2 \\
& =\|\left[\begin{array}{lllllll}
\sqrt{\frac{1}{2}} & \frac{1}{2} & 2 & \uparrow \uparrow & \downarrow & -\sqrt{\frac{1}{2}} & 1 \\
\hline 2 & 1 & \uparrow \uparrow \\
\hline
\end{array}\right]
\end{aligned}
$$

$\begin{gathered} 1 \times 1 / 2 \sqrt{3 / 2}+3 / 2 \\ +1+1 / 2 \end{gathered}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ +1 / 2 & +1 / 2\end{array}$		
$+1-1 / 2$ $0+1 / 2$	$\begin{array}{cc}1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}$	$\begin{array}{\|rr\|}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
	\|r $\begin{array}{r}0-1 / 2 \\ -1+1 / 2\end{array}$	$\begin{array}{cc}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$$
\begin{aligned}
& \left.\left|{ }_{2} P^{3} \quad \underline{3}\right|=\mid n^{L=1} \gamma^{1 / 2}\right)^{\ell=1} p=\text { shell LS states combined to states of definite } \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\underline{p_{M=1}^{L=1} \chi_{+1 / 2}} \chi^{1 / 2} \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2 \\
& =\left\lvert\,\left[\begin{array}{lllllll}
\sqrt{\frac{1}{2}} & 1 & 2 & \uparrow \uparrow \\
\hline 2 & \downarrow & -\sqrt{\frac{1}{2}} & 1 & 1 & 1 & \uparrow \uparrow \\
3 & \downarrow & \downarrow
\end{array}\right]\right.
\end{aligned}
$$

$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{P}$)
Application to spin-orbit and entanglement break-up scattering

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{ll}
2_{p} & 3
\end{array}\right.\right\lrcorner_{n} L=1 \quad l=1 \quad p=\text { shell LS states combined to states of definite } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}} \frac{3}{2}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.=\sqrt{\frac{1}{6}} \frac{1}{2} 2^{2} \uparrow \downarrow-\sqrt{\frac{1}{6}} \frac{1}{3} \frac{1}{3} \uparrow \downarrow \quad-\sqrt{\frac{1}{6}} \frac{1}{3}\right]^{2} \uparrow \uparrow+\frac{1}{\sqrt{2}} \frac{1}{2}\right]^{3} \uparrow \uparrow \\
& \left|{ }^{2} P_{J=\frac{1}{2}} \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}} \left\lvert\, \underline{\left.p_{M=1}^{L=1} \chi_{-1 / 2}^{1 / 2}\right\rangle-\sqrt{\frac{1}{3}}\left|p_{M=0}^{L=1} \chi_{+12}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{1}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\right|_{2_{D}} \quad\right\}_{-1}\right\rangle_{1=1}^{\ell=1}{ }^{\ell=1} p=\text { shell LS states combined to states of definite } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& { }^{2} P_{J=\frac{3}{2}} \frac{3}{2}=\left|p_{M=1}^{L=1} 1_{+1 / 2}^{1 / 2}\right\rangle \quad \operatorname{Doublet}^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{ll}
2_{p} & 3
\end{array}\right.\right\lrcorner_{n} L=1 \quad l=1 \quad p=\text { shell LS states combined to states of definite } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& { }^{2} P_{J=\frac{3}{2}} \frac{3}{2}=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \operatorname{Doublet}^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2
\end{aligned}
$$

$\left(\mathrm{S}_{3}\right) *(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{P}$)
Application to spin-orbit and entanglement break-up scattering

Introducing atomic spin-orbit state assembly formula and Slater determinants

Example :

Slater
determinants

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow)on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number(s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

The simplest assembly:

$\left(\mathrm{S}_{3}\right) *(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
\rightarrow The simplest assembly (Detailed)
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (${ }^{2} \mathrm{P}$)
Application to spin-orbit and entanglement break-up scattering

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\begin{gathered}
12 \frac{\left\lvert\, \begin{array}{|c}
\downarrow \\
\downarrow
\end{array}\right.}{\left(\frac{|1,2\rangle+|2,1\rangle}{\sqrt{2}}\right)\left(\frac{|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle}{\sqrt{2}}\right)}
\end{gathered}
$$

The simplest assembly:

> 12 | 1 |
| :--- |

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle)
$$

$$
\begin{gathered}
\frac{1}{\frac{1}{2}} \uparrow \downarrow \\
\left(\frac{|1,2\rangle-|2,1\rangle}{\sqrt{2}}\right)\left(\frac{|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle}{\sqrt{2}}\right)
\end{gathered}
$$

The simplest assembly:

	1.2$\frac{\uparrow}{\downarrow}$	$\frac{1}{2}$ T \downarrow
$1 \uparrow$	1	$\sqrt{1}$
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1 $1 \downarrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\begin{aligned}
& 1\left|2 \cdot \frac{\uparrow}{\downarrow}\right| \\
& \frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle) \\
& \left.\frac{1}{2}(a d-2\rangle+|2,1\rangle\right)(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle) \\
& \sqrt{2}+d a+c b-b c)
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{2} \\
\left(\frac{|1,2\rangle-|2,1\rangle}{\sqrt{2}}\right)\left(\frac{|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle}{\sqrt{2}}\right)
\end{gathered}
$$

The simplest assembly:

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(a d-d a+c b-b c)$
$\begin{array}{ll}1 & \uparrow \mid \downarrow \\ 2 & \end{array}$

$$
\begin{aligned}
& \left(\frac{|1,2\rangle-|2,1\rangle)(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle}{\frac{1}{2}}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle-|2 \uparrow, 1 \downarrow\rangle+|1 \downarrow, 2 \uparrow\rangle)\right. \\
& \frac{1}{2}(a d-d a-c b+b c)
\end{aligned}
$$

12 | \uparrow |
| :---: |
| \downarrow |

The simplest assembly:

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(a d-d a+c b-b c)$

The simplest assembly:

	$12 .$$\uparrow$	$\frac{1}{2}$ ¢ ${ }^{\text {a }} \downarrow$
$1 \uparrow$	1	1
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
$1 \downarrow$ $2 \uparrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle)$
$\frac{1}{2}(a d-d a+c b-b c)$

The simplest assembly:

	1.2$\frac{\uparrow}{\downarrow}$	$\frac{1}{2}$ T \downarrow
$1 \uparrow$	1	$\sqrt{1}$
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1 $1 \downarrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$$
\begin{aligned}
& \begin{array}{l|l|l|}
12 & \uparrow \\
\hline \downarrow \\
\hline
\end{array} \\
& \frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle) \\
& \frac{1}{2}(a d-d a+c b-b c)
\end{aligned}
$$

The simplest assembly:

	1.2¢ \downarrow	$\frac{1}{2} \uparrow \downarrow \downarrow$
$1 \uparrow$	1	1
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow
$$

$\frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle+|2 \uparrow, 1 \downarrow\rangle-|1 \downarrow, 2 \uparrow\rangle)$
$\frac{1}{2}(a d-d a+c b-b c)$

$$
\frac{1}{2}(|1 \uparrow, 2 \downarrow\rangle-|2 \downarrow, 1 \uparrow\rangle-|2 \uparrow, 1 \downarrow\rangle+|1 \downarrow, 2 \uparrow\rangle)
$$

$$
\frac{1}{2}(a d-d a-c b+b c)
$$

The simplest assembly:

	1	$\frac{1}{2} \uparrow \downarrow \downarrow$
$1 \uparrow$	$\sqrt{1}$	$\sqrt{1}$
$2 \downarrow$	$\sqrt{2}$	$\sqrt{2}$
\|1 $1 \downarrow$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and
 spin states. Each column state (Slater determinant) on the left-hand side of the sample table has a definite spin (arrow) on each orbital state (number). The formulas will give the overlap of this Slater state with a given orbital tableau state if we first write the spins within this orbital tableau in exactly the same way. Then we proceed to remove boxes with numbered spins starting with the highest number (s). Each "removal" gives a factor depending on what is being removed and where (cases A-E). All of the numbers in the formulas refer to the condition of the tableau just before the box outlined in the figure is removed.

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and

Introducing atomic spin-orbit state assembly formula and Slater determinants

FIG. 5. Assembly formula for combining orbital and

$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$
Slater functions for $\mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering

Slater determinant state key:
$a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$
$\ell=1 p=$ shell LSJ states transformed to Slater determinants fromJ $=3 / 2$ at $\mathrm{L}=0$

Slater determinant state key:
$a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$

Slater determinant state key:
$a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$
$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$
Slater functions for $\mathrm{J}=5 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2$ (2D)
Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$
Slater functions for $\mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

Slater determinant state key: $a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

Slater determinant state key:

$$
a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

Slater determinant state key:
$a=1 \uparrow, b=1 \downarrow, c=2 \uparrow, d=2 \downarrow, e=3 \uparrow, f=3 \downarrow$
$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$ Slater functions for $\mathrm{J}=5 / 2$ (2D)
\rightarrow Slater functions for $\mathrm{J}=3 / 2$ (2D) Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$ Slater functions for $\mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=5 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$

$$
\begin{aligned}
& \left.\begin{array}{rl}
\left|{ }^{2} D_{J=\frac{5}{2}} \frac{5}{2}\right\rangle
\end{array}\right\rangle=\begin{array}{cc}
\left.d_{M=2}^{L=2} \chi_{1 / 2}^{1 / 2}\right\rangle & \text { Doublet }{ }^{2} D, \mathrm{~J}=\frac{5}{2} \mathrm{M}_{\mathrm{J}}=\frac{5}{2}, \\
& \left.=\begin{array}{|cc|}
\hline 1 & 1 \\
2 & \uparrow \uparrow \\
2 & \downarrow
\end{array}\right)
\end{array} \\
& \left|{ }^{2} D_{J=\frac{5}{2}}{ }^{\frac{3}{2}}\right\rangle=\sqrt{\frac{1}{5}}\left|d_{M=2}^{L=2} \chi_{-1 / 2}^{1 / 2}\right\rangle+\sqrt{\frac{4}{5}}\left|d_{M=1}^{L=2} \chi_{1 / 2}^{1 / 2}\right\rangle \text { Doublet }{ }^{2} D, \mathrm{~J}=\frac{5}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left|{ }^{2} D_{J=\frac{3}{2}} \frac{3}{2}^{\frac{3}{2}}\right\rangle=\sqrt{\frac{4}{5}}\left|d_{M=2}^{L=2} \chi_{-1 / 2}^{1 / 2}\right\rangle-\sqrt{\frac{1}{5}}\left|d_{M=1}^{L=2} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} D, \mathrm{~J}=\frac{3}{2} M_{\mathrm{J}}=\frac{3}{2}
\end{aligned}
$$

$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$ Slater functions for $\mathrm{J}=5 / 2$ (2D) Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{D}\right)$ Slater functions for $\mathrm{J}=3 / 2\left({ }^{2} \mathrm{P}\right)$ Slater functions for $\mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$ $\left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left[p_{M=1}^{L=1} \chi_{+1 / 2}^{\prime 2}\right\rangle \quad$ Doublet $^{2} P, \underline{J=\frac{3}{2}} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=3 / 2$

$\begin{array}{c\|c} 1 \times 1 / 2 & \begin{array}{r} 3 / 2 \\ +3 / 2 \end{array} \\ \sqrt{+1+1 / 2} \end{array}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ +1 / 2 & +1 / 2\end{array}$		
$+1-1 / 2$ $0+1 / 2$	$\begin{array}{cc}1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
	[$\begin{array}{r}0-1 / 2 \\ -1+1 / 2\end{array}$	$\begin{array}{cc}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$
 $\mathrm{M}_{\mathrm{J}}=3 / 2$

$\begin{array}{c\|r} 1 \times 1 / 2 & \begin{array}{r} 3 / 2 \\ +3 / 2 \\ \hline+1+1 / 2 \\ \hline \end{array} \\ \hline \end{array}$	$3 / 2$ $1 / 2$ $+1 / 2$ $+1 / 2$		
$+1-1 / 2$ $0+1 / 2$	1/3 $2 / 2 / 3$	$\begin{array}{rrr}3 / 2 & 1 / 2 \\ -1 / 2 & -1 / 2\end{array}$	
	[$\begin{array}{r}0-1 / 2 \\ -1+1 / 2\end{array}$	$\begin{array}{ll}2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3\end{array}$	$3 / 2$ $-3 / 2$
		-1-1/2	1

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$

$$
\left.\left.\right|^{2} P_{J=\frac{3}{2}} \frac{3}{2}\right\rangle=\left|p_{M=1}^{L-1} \chi_{+12}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{M}_{\mathrm{J}}=1 / 2
$$

$$
\left.=\left\lvert\,\left[\begin{array}{llll|l}
\sqrt{\frac{1}{2}} & 1 & 2 & \uparrow \uparrow & \uparrow \uparrow-\sqrt{\frac{1}{2}} \\
\hline & 1 & \uparrow \uparrow \\
\hline & \downarrow & & \downarrow
\end{array}\right]\right.\right)
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$
$\left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+12}^{1 / 2}\right\rangle \quad$ Doublet $^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=1 / 2$

$$
\left.\left.\left.=\| \begin{array}{l|l|ll|l|ll}
\sqrt{\frac{1}{2}} & 1 & 2 & \uparrow \uparrow \\
\hline 2 & & \downarrow
\end{array}-\sqrt{\frac{1}{2}} \right\rvert\, \begin{array}{llll}
1 & 1 & \uparrow \uparrow \\
\hline 3 & \downarrow
\end{array}\right]\right\rangle
$$

$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2$ at $\mathrm{L}=1$

$$
\left.\left.\right|^{2} P_{J=\frac{3}{2}} \frac{3}{2}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{1 / 2}\right\rangle \quad \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=1 / 2
$$

$$
=\left|\left[\begin{array}{lllll|ll}
\sqrt{\frac{1}{2}} & 1 & 2 & \uparrow \uparrow & \uparrow \uparrow-\sqrt{\frac{1}{2}} & 1 & 1 \\
\hline & & \uparrow & \downarrow
\end{array}\right]\right\rangle
$$

$\left(\mathrm{S}_{3}\right)^{*}(\mathrm{U}(3)) \subset \mathrm{U}(6)$ models of p^{3} electronic spin-orbit states and couplings
$[2,1]$ tableau states lowered by $\mathbf{L}_{-}=\sqrt{ } 2\left(E_{21}+E_{32}\right)$
Top-(J,M) states thru mid-level states
$\ell=1 p=$ shell LS states combined to states of definite J

$$
\mathrm{J}=3 / 2 \text { at } \mathrm{L}=0 \quad\left({ }^{4} \mathrm{~S}\right) . \quad \mathrm{J}=5 / 2 \text { at } \mathrm{L}=2 \quad\left({ }^{2} \mathrm{D}\right)
$$

Clebsch-Gordon coupling; $\mathrm{J}=3 / 2$ at $\mathrm{L}=2$ (${ }^{2} \mathrm{D}$)

$$
\begin{aligned}
& \mathrm{J}=3 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right) \\
& \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1\left({ }^{2} \mathrm{P}\right)
\end{aligned}
$$

Spin-orbit state assembly formula and Slater determinants
The simplest assembly
$\ell=1 p=$ shell LSJ states transformed to Slater determinants from $\mathrm{J}=3 / 2\left({ }^{4} \mathrm{~S}\right)$ Slater functions for $\mathrm{J}=5 / 2$ (2D) Slater functions for $\mathrm{J}=3 / 2$ (2D) Slater functions for $\mathrm{J}=3 / 2(2 \mathrm{P})$ Slater functions for $\mathrm{J}=1 / 2\left({ }^{2} \mathrm{P}\right)$
Application to spin-orbit and entanglement break-up scattering

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{\prime \prime 2}\right\rangle \quad \operatorname{Doublet}^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=1 / 2 \\
& =\|\left[\begin{array}{lllllll}
\sqrt{\frac{1}{2}} & \frac{1}{2} & 2 & \uparrow \uparrow & \downarrow & -\sqrt{\frac{1}{2}} & \frac{1}{3} \\
\hline
\end{array}\right] \\
& \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& \left|{ }^{2} P_{J=\frac{3}{2}}{ }^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{\prime \prime 2}\right\rangle \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}_{\mathrm{J}}=1 / 2 \\
& =\left\lvert\,\left[\begin{array}{lllllll}
\sqrt{\frac{1}{2}} & \frac{1}{2} & 2 & \uparrow \uparrow & \downarrow & -\sqrt{\frac{1}{2}} & \frac{1}{3} \\
\hline
\end{array}\right]\right. \\
& \text { Doublet }{ }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \ell=1 p=\text { shell LSJ states transformed to Slater determinants from } \mathrm{J}=1 / 2 \text { at } \mathrm{L}=1 \\
& \left.{ }^{2} P_{J=\frac{3}{2}} P^{\frac{3}{2}}\right\rangle=\left|p_{M=1}^{L=1} \chi_{+1 / 2}^{\prime 2}\right\rangle \quad \text { Doublet }^{2} P, \mathrm{~J}=\frac{3}{2} \mathrm{M}_{\mathrm{J}}=\frac{3}{2} \quad \mathrm{MJ}=1 / 2 \\
& =\left\lvert\,\left[\begin{array}{lllllll}
\sqrt{\frac{1}{2}} & \frac{1}{2} & 2 & \uparrow \uparrow & \downarrow & -\sqrt{\frac{1}{2}} & \frac{1}{3} \\
\hline
\end{array}\right]\right.
\end{aligned}
$$

Doublet ${ }^{2} P, M=1$:

$$
\begin{aligned}
& \text { Doublet }{ }^{2} D, M=1 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Doublet }{ }^{2} D, M=0 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Doublet }{ }^{2} P, M=0 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Doublet }{ }^{2} D, M=-2 \text { : }
\end{aligned}
$$

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

$$
\begin{array}{llllll}
m_{L}=+2 & m_{L}=+1 & m_{L}=+0 & m_{L}=+0 & m_{L}=-1 & m_{L}=-2 \\
m_{S}=+0 & m_{S}=+0 & m_{S}=+0 & m_{S}=+0 & m_{S}=+0 & m_{S}=+0
\end{array}
$$

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

These involve fairly complicated S_{n}-coupled $\mathrm{U}(3) \times \mathrm{U}(2)$ combinations that will be developed later.

Marrying spin $s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

The $\ell=1 p=$ shell in a nutshell

Doublet ${ }^{2} D, M=2$:

$$
\begin{array}{ll}
L=2, & S=\frac{1}{2} \\
M=2, & \mu=\frac{1}{2}
\end{array}
$$

$$
\left.\begin{array}{|l|ll}
\hline 1 & 1 & \uparrow \uparrow \\
\hline 2 & & \downarrow
\end{array}\right\rangle, \begin{aligned}
& L=2, \quad S=-\frac{1}{2} \\
& M=2, \quad \mu=\frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{|l|ll}
\hline 1 & 1 & \uparrow \downarrow \\
\hline 2 & & \downarrow \\
\hline
\end{array}
$$

Doublet ${ }^{2} D, M=1$:

$$
\begin{aligned}
& \left.+\frac{1}{\sqrt{2}} \left\lvert\, \begin{array}{l|ll}
1 & 1 & \uparrow \uparrow \\
\hline 3 & & \downarrow
\end{array}\right.\right), \quad+\frac{1}{\sqrt{2}}\left|\begin{array}{|l|ll}
\hline 1 & 1 & \uparrow \downarrow \\
\hline 3 & \downarrow
\end{array}\right|,
\end{aligned}
$$

Doublet ${ }^{2} P, M=1$:

$$
\begin{aligned}
& -\frac{1}{\sqrt{2}}\left|\begin{array}{|l|ll}
1 & 1 & \uparrow \uparrow \\
\hline 3 & & \downarrow
\end{array}\right\rangle, \\
& \left.-\frac{1}{\sqrt{2}} \left\lvert\, \begin{array}{l|ll}
1 & 1 & \uparrow \downarrow \\
\cline { 1 - 2 } & & \downarrow
\end{array}\right.\right)
\end{aligned}
$$

Doublet ${ }^{2} D, M=0$:

$$
\begin{aligned}
& \left.+\frac{1}{2} \left\lvert\, \begin{array}{l|ll}
1 & 3 & \uparrow \uparrow \\
\hline 2 & \downarrow
\end{array}\right.\right), \quad+\frac{1}{2}\left|\begin{array}{|l|ll}
1 & 3 & \uparrow \downarrow \\
\hline 2 & & \downarrow
\end{array}\right\rangle,
\end{aligned}
$$

Doublet ${ }^{2} P, M=0$:

Doublet ${ }^{2} D, M=-2$:
\(\left.\begin{array}{|c|c|ll}\hline L=2, \quad S=\frac{1}{2} \& 2 \& 3 \& \uparrow \uparrow

M=-2, \quad \mu=\frac{1}{2} \& 3 \& \& \downarrow\end{array}\right\rangle,\)\begin{tabular}{c}
$L=2, \quad S=\frac{1}{2}$

\hline

$|$

\hline 2 \& 3 \& $\uparrow \downarrow$

\hline \& \&

\hline
\end{tabular}

$\mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling total orbit-L tableaus to total spin S tableaus

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

$$
\begin{aligned}
& \mathrm{U}(2): m_{s}=+1 / 2:|\uparrow\rangle, m_{s}=-1 / 2:|\downarrow\rangle \\
& \begin{array}{lll}
m_{L}=+1 & m_{L}=+1 & m_{L}=+1 \\
m_{S}=+1 & m_{S}=+0 & m_{S}=-1
\end{array}
\end{aligned}
$$

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6)$ tensor operators are outer products of $\mathrm{U}(3) \mathbf{v}^{k_{q}}($ orbit $)$ with $\mathrm{U}(2) \mathbf{v}^{\lambda_{\sigma}}($ spin $)$ operators

$$
\left\langle\begin{array}{c|c}
\ell \frac{1}{2} \\
m^{\prime} \mu^{\prime}
\end{array}\right| \begin{gathered}
k \sigma \\
k
\end{gathered}\left|\begin{array}{c}
\ell \frac{1}{2} \\
m
\end{array}\right\rangle=\left\langle\begin{array}{l}
\ell \\
m^{\prime}
\end{array}\right| v_{q}^{k}\left|\begin{array}{l}
\ell \\
m
\end{array}\right\rangle\left\langle\begin{array}{c}
\frac{1}{2} \\
\mu^{\prime}
\end{array}\right| v_{\sigma}^{\lambda}\left|\begin{array}{c}
\frac{1}{2} \\
\mu
\end{array}\right\rangle
$$

$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6)$ tensor operators are outer products of $\mathrm{U}(3) \mathbf{v}^{k}{ }_{q}$ (orbit) with $\mathrm{U}(2) \mathbf{v}^{\lambda}{ }_{\sigma}($ spin $)$ operators

$$
\begin{aligned}
& \left\langle\begin{array}{c|c|cc}
\ell & \frac{1}{2} \\
m^{\prime} \mu^{\prime} & \mathcal{V}_{q \sigma}^{k \lambda} & \ell & \begin{array}{l}
\frac{1}{2} \\
q
\end{array}
\end{array}\right\rangle=\left\langle\begin{array}{c|c|c}
\ell & v^{k} & \ell \\
m^{\prime} & V_{q} & m
\end{array}\right\rangle\left\langle\begin{array}{c|c|c}
\frac{1}{2} & \mathcal{V}^{\prime} & \frac{1}{2} \\
\sigma & \mu
\end{array}\right\rangle \\
& \begin{array}{r}
\left\langle\mathbf{v}_{\frac{2}{2}}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot
\end{array}\right)\left\langle\mathbf{v}_{\overline{1}}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & \overline{1} & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \overline{2} & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{6}}\left\langle\mathbf{v}_{1}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \overline{1} & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{2}^{2}\right\rangle=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right) \quad\left\langle\mathbf{v}_{\overline{1}}^{1}\right\rangle=\left(\begin{array}{ll}
\cdot & \cdot \\
1 & \cdot
\end{array}\right)\left\langle\begin{array}{lll}
\mathbf{v}_{0}^{1}
\end{array}\right\rangle=\left(\begin{array}{ll}
1 & \cdot \\
\cdot & \overline{1}
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{1}^{1}\right\rangle=\left(\begin{array}{ll}
\cdot & \overline{1} \\
\cdot & \cdot
\end{array}\right) \\
\left\langle\begin{array}{lll}
\cdot \mathbf{v}_{0}^{0}
\end{array}\right\rangle=\left(\begin{array}{ll}
1 & \cdot \\
\cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
\end{array} \\
& \left\langle\mathbf{v}_{\overline{1}}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & \overline{1}
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{1}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & \overline{1} & \cdot \\
\cdot & \cdot & \overline{1} \\
\cdot & \cdot & \cdot
\end{array}\right) \frac{1}{\sqrt{2}} \quad \begin{array}{l}
\text { Notational compaction: } \\
\overline{1} \equiv-1, \overline{2} \equiv-2, \text { etc } .
\end{array} \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
\end{aligned}
$$

$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Six states of a single ($s=1 / 2$) electron in $(\ell=1)$ p-shell labeled by a to f.
$U(6)$ bases: $\{|a\rangle \equiv|1 \uparrow\rangle,|b\rangle \equiv|1 \downarrow\rangle,|c\rangle \equiv|2 \uparrow\rangle,|d\rangle \equiv|2 \downarrow\rangle,|e\rangle \equiv|3 \uparrow\rangle,|f\rangle \equiv|3 \downarrow\rangle\}$
$\mathrm{U}(6)$ tensor operators are outer products of $\mathrm{U}(3) \mathbf{v}^{k}{ }_{q}($ orbit $)$ with $\mathrm{U}(2) \mathbf{v}^{\boldsymbol{\lambda}}($ spin $)$ operators

$$
\left\langle\left.\begin{array}{c|c|cc}
\ell & \frac{1}{2} & v^{k \lambda} & \ell \frac{1}{2} \\
m^{\prime} \mu^{\prime}
\end{array} \right\rvert\, \begin{array}{c|c|c}
q \sigma & m & \mu
\end{array}\right\rangle=\left\langle\begin{array}{c|c|c}
\ell \\
m^{\prime}
\end{array}\right| v_{q}^{k}\left|\begin{array}{c}
\ell \\
m
\end{array}\right\rangle\left\langle\left.\begin{array}{c|c}
\frac{1}{2} & \nu^{\prime}
\end{array} \right\rvert\, \begin{array}{c}
\frac{1}{2} \\
\sigma
\end{array}\right\rangle
$$

Notational compaction: $\overline{1} \equiv-1, \overline{2} \equiv-2, \quad$ etc.
$\frac{1}{\sqrt{2}}\left(-\mathrm{E}_{c b}-\mathrm{E}_{e d}\right)=$

$$
\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
$$

$\frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{00}^{11}\right\rangle=\left(\begin{array}{ccccc}1 & \cdot & \cdot & \cdot & . \\ \cdot & \overline{1} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \overline{1} & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1\end{array}\right)\left\langle\mathbf{v}_{1 \overline{1}}^{11}\right\rangle=($

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum
p-shell Spin-orbit calculation

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

Marrying spin $s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

S_{n} projection for atomic spin and orbit states

Fig. 25.3.0 QTforCA Unit 8 Ch. 25 pdfp28

$c_{3 v} \mathbf{g g}^{\dagger}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$
$(a)(b)(c)=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$
$(a b c)=\mathbf{r}^{1}$	\mathbf{r}^{1}	$\mathbf{1}$	\mathbf{r}^{2}	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$
$(a c b)=\mathbf{r}^{2}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\mathbf{1}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$
$(b c)=\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}
$(a c)=\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$	\mathbf{r}^{1}	$\mathbf{1}$	\mathbf{r}^{2}
$(a b)=\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\mathbf{1}$

S_{n} projection for atomic spin and orbit states

Review of Lect. 20 p. 37 to 41

(c) Particle-fixed lab-120 ${ }^{\circ}$ rotation $\overline{\mathbf{r}}$
$[132]\left|1_{a}, 2_{b}, 3_{c}\right\rangle=\left|2_{a}, 3_{b}, 1_{c}\right\rangle$
(b) Lab-fixed

$[123]\left|1_{a}, 2_{b}, 3_{c}\right\rangle=\left|3_{a}, 1_{b}, 2_{c}\right\rangle$

Fig. 25.3.1 Relating D_{3} and S_{3} permutation operations

S_{n} projection for atomic spin and orbit states

Fig. 25.3.1 QTforCA Unit 8 Ch. 25 pdf p 29

Fig. 25.3.1 Relating D_{3} and S_{3} permutation operations

S_{n} projection for atomic spin and orbit states

Fig. 25.3 .1 OTforcA Unit 8 Ch. 25 pedf p29?

(a) | (a) Original state |
| :--- |
| $\|\mathbf{1}\rangle=\left\|1_{a}, 2_{b}, 3_{c}\right\rangle$ |
| (b) |

(c) Particle-fixed lab-120ㅇotation $\overline{\mathbf{r}}$ (b) Lab-fixed

(ac) $\left|1_{a}, 2_{b}, 3_{c}\right\rangle=\left|1_{c}, 2_{b}, 3_{a}\right\rangle$

(1)	$(a c b)$	$(a b c)$	$(b c)$	$(a c)$	$(a b)$
$(a b c)$	(1)	$(a c b)$	$(a c)$	$(a b)$	$(b c)$
$(a c b)$	$(a b c)$	(1)	$(a b)$	$(b c)$	$(a c)$
$(b c)$	$(a c)$	$(a b)$	(1)	$(a c b)$	$(a b c)$
$(a c)$	$(a b)$	$(b c)$	$(a b c)$	(1)	$(a c b)$
$(a b)$	$(b c)$	$(a c)$	$(a c b)$	$(a b c)$	(1)

(bc) $\left|1_{a}, 2_{b}, 3_{c}\right\rangle=\left|1_{a}, 2_{c}, 3_{b}\right\rangle$
[13] $\left|1_{a}, 2_{b}, 3_{c}\right\rangle=\left|3_{a}, 2_{b}, 1_{c}\right\rangle$

$[1]$	$[132]$	$[123]$	$[23]$	$[13]$	$[12]$
$[123]$	$[1]$	$[132]$	$[13]$	$[12]$	$[23]$
$[132]$	$[123]$	$[1]$	$[12]$	$[23]$	$[13]$
$[23]$	$[13]$	$[12]$	$[1]$	$[132]$	$[123]$
$[13]$	$[12]$	$[23]$	$[123]$	$[1]$	$[132]$
$[12]$	$[23]$	$[13]$	$[132]$	$[123]$	$[1]$

S_{n} projection for atomic spin and orbit states

Fig. 25.3.1 QTforCA Unit 8 Ch. 25 pdfp 29

Marrying spin $s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) S_{n} projection for atomic spin and orbit states

Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

S_{n} projection for atomic spin and orbit states

Dirac-ket-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

S_{n} projection for atomic spin and orbit states

Dirac-ket-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

Sub-tableaus $\left[a \left\lvert\, b\left(\begin{array}{c}{\left[\begin{array}{l}a \\ \square b\end{array}\right)}\end{array}\right)\right.\right.$ label symmetry (anti-symmetry) by single row (or single column)

S_{n} projection for atomic spin and orbit states: Tableau P-operators

Dirac-ket-ket-ket product represents states $1,2,3$ that variously occupy particles a, b, and c,

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

Sub-tableaus $\sqrt{a} \left\lvert\, b\left(\right.$ or $\frac{a}{b}$) label symmetry (anti-symmetry) by single row (or single column) \right.

Yamanouchi formula for irrep of bicycle operation [n,n-1] i.e. [23]. (following page)

S_{n} projection for atomic spin and orbit states: Tableau P-operators

$$
\begin{aligned}
& D^{[2,1]}(a b)=\frac{\begin{array}{l}
a b \\
c \\
\frac{a c}{b}
\end{array}}{\frac{\square}{\square}}\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \text { From unpublished Ch. } 10 \text { for } \\
& \text { Principles of Symmetry, Dynamics \& Spectroscopy }
\end{aligned}
$$

Fig. 10.1.2 Yamanouchi formulas for permutation operators.
Integer d is the "city block" distance between (n) and $(n-1)$ blocks, i.e., the minimum number of streets to be crossed when traveling from one to the other. Note that when numbers (n) and ($n-1$) are ordered smaller above larger, the permutation is negative (anti-symmetric if $\mathrm{d}=1$), and positive (symmetric if $\mathrm{d}=1$) when the smaller number is left of the larger number. [The ($n-1$) will never be above and left of (n) since that arrangement would be "non-standard."]

S_{n} projection for atomic spin and orbit states: Tableau P-operators

Dirac-ket-ket-ket product represents states $1,2,3$ that variously occupy particles a, b, and c,

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

Ssub-tableaus $\sqrt[a]{a b}$ (or $\frac{a}{\square}$) label symmetry (anti-symmetry) by single row (or single column)

Gives complete set of permutation ireps and projectors.

| $\mathbf{g}=$ | $\mathbf{1}=(a)(b)(c)$ | $\mathbf{r}=(a b c)$ | $\mathbf{r}^{2}=(a c b)$ | $\mathbf{i}_{1}=(b c)$ | $\mathbf{i}_{2}=(a c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | $\mathbf{i}_{3}=(a b)$

S_{n} projection for atomic spin and orbit states: Tableau P-operators

Dirac-ket-ket-ket product represents states $1,2,3$ that variously occupy particles a, b, and c,

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

Ssub-tableaus $\sqrt[a]{a b}$ (or $\frac{a}{\square}$) label symmetry (anti-symmetry) by single row (or single column)

Gives complete set of permutation ireps and projectors. (following page)

| $\mathbf{g}=$ | $\mathbf{1}=(a)(b)(c)$ | $\mathbf{r}=(a b c)$ | $\mathbf{r}^{2}=(a c b)$ | $\mathbf{i}_{1}=(b c)$ | $\mathbf{i}_{2}=(a c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | $\mathbf{i}_{3}=(a b)$

S_{n} projection for atomic spin and orbit states: Tableau P-operators

$$
\begin{aligned}
& \mathbf{P}_{j, k}^{[\mu]}|1\rangle \operatorname{norm}=\sqrt{\frac{\ell^{[\mu]}}{\mathrm{O}_{G}}}\left(D_{j, k}^{[\mu]}(1)|1\rangle+D(r)|\mathbf{r}\rangle+D\left(r^{2}\right)\left|\mathbf{r}^{2}\right\rangle+D\left(i_{1}\right)\left|\mathbf{i}_{1}\right\rangle+D\left(i_{2}\right)\left|\mathbf{i}_{2}\right\rangle+D\left(i_{3}\right)\left|\mathbf{i}_{3}\right\rangle\right)
\end{aligned}
$$

particle (abc) labels [j] of $\mathbf{P}_{[j](k)}$ projectors face left
state (123) labels [k] face the state $|1,2,3\rangle$ on the right.

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Projectors are applied to 3 -electron spin states of which there are eight $\left(2^{3}=8\right)$.
First is a single symmetric A_{1} projection $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ of state $|\uparrow \uparrow \uparrow\rangle$

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Projectors are applied to 3 -electron spin states of which there are eight $\left(2^{3}=8\right)$. First is a single symmetric A_{1} projection $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ of state $|\uparrow \uparrow \uparrow\rangle$

Anti symmetric A_{2} projection fails on all spin-1/2 states

Symmetric $\mathbf{P}^{4_{1}}=\mathbf{P}^{\square \square \square}$ or para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left.\left.\right|_{M= \pm 1 / 2} ^{s=3 / 2}\right\rangle$ or $\left.\left.\right|_{M= \pm 1 / 2} ^{s=1 / 2}\right\rangle$.

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Projectors are applied to 3 -electron spin states of which there are eight $\left(2^{3}=8\right)$.
First is a single symmetric A_{1} projection $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ of state $|\uparrow \uparrow \uparrow\rangle$

Anti symmetric A_{2} projection fails on all spin- $1 / 2$ states

Symmetric $\mathbf{P}^{4_{1}}=\mathbf{P}^{\square \square 0}$ or para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left.\left.\right|_{M= \pm 1 / 2} ^{s=3 / 2}\right\rangle$ or $\left.\left.\right|_{M= \pm 1 / 2} ^{s=1 / 2}\right\rangle$.

The latter make a permutation doublet.
There are two spin- $S=1 / 2$ states $\left\{\begin{array}{|c|l|}S=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ but only one spin- $S=3 / 2$ state $\left|\begin{array}{c}S=3 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ have z-component $M=+1 / 2$.

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Projectors are applied to 3-electron spin states of which there are eight $\left(2^{3}=8\right)$.
First is a single symmetric A_{1} projection $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ of state $|\uparrow \uparrow \uparrow\rangle$

Anti symmetric A_{2} projection fails on all spin- $1 / 2$ states

Symmetric $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ and para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left.\left\lvert\, \begin{array}{c}s=3 / 2 \\ M= \pm / 2 / 2\end{array}\right.\right)$ and $\left|\begin{array}{l}S=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$.

The latter make a permutation doublet.
There are two spin- $S=1 / 2$ states $\left|\begin{array}{c}S=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ but only one spin- $S=3 / 2$ state $\left|\begin{array}{c}S=3 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ have z-component $M=+1 / 2$. All 3 states project from $|\uparrow \uparrow \downarrow\rangle$. The left $[j]$-labels of the last two make a particle doublet $\left\{\begin{array}{l}{\left[\frac{\square}{a}\left|\frac{\square}{\square}\right| d\right.}\end{array}\right\}$.
S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin
Symmetric $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ and para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left|\begin{array}{c}s=3 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ and $\left|\begin{array}{l}s=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$.

The latter make a permutation doublet.
There are two spin- $S=1 / 2$ states $\left.\left.\right|_{M= \pm 1 / 2} ^{S=1 / 2}\right\rangle$ but only one spin- $S=3 / 2$ state $\left.\left.\right|_{\substack{S=3 / 2 \\ M= \pm 1 / 2}}\right\rangle$ have z-component $M=+1 / 2$.

S_{n} projection for atomic spin and orbit states (Top 3 lines moved up.)

Symmetric $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ and para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left|\begin{array}{c}s=3 / 2 \\ M=1 / 2\end{array}\right\rangle$ and $\left|\begin{array}{l}\substack{s=1 / 2 \\ M= \pm 1 / 2}\end{array}\right\rangle$.

The latter make a permutation doublet.
There are two spin- $S=1 / 2$ states $\left.\left.\right|_{\substack{S=1 / 2 \\ M= \pm 1 / 2}}\right\rangle$ but only one spin- $S=3 / 2$ state $\left|\begin{array}{c}S=3 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ have z-component $M=+1 / 2$.

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Symmetric $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ and para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left.\left.\right|_{M= \pm 1 / 2} ^{S=3 / 2}\right\rangle$ and $\left|\begin{array}{c}s=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$.

The latter make a permutation doublet.
There are two spin- $S=1 / 2$ states $\left|\begin{array}{c}S=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ but only one spin- $S=3 / 2$ state $\left|\begin{array}{c}S=3 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$ have z-component $M=+1 / 2$. All 3 states project from $|\uparrow \uparrow \downarrow\rangle$. The left [j]-labels of the last two make a particle doublet $\left\{\begin{array}{l}{\left[\begin{array}{l}{[\sigma]} \\ \square\end{array} \frac{\square}{\square}\right\}}\end{array}\right\}$ State $|\uparrow \uparrow \downarrow\rangle=\mathbf{P}^{\square \square|\uparrow \uparrow \downarrow\rangle \text { is invariant to symmetric subgroup projector } \mathbf{P}^{\square \square}=[1+(a b)] / 2 \text { but } \mathbf{P}^{\square \square} \text { zeros } a|c| c|c| c \mid}$

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Symmetric $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ and para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left.\left.\right|_{M= \pm 1 / 2} ^{s=3 / 2}\right\rangle$ and $\left|\begin{array}{l}s=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$.

The latter make a permutation doublet. Similarly, projections of $|\uparrow \downarrow \downarrow\rangle$ give three $M=-1 / 2$ states.

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Symmetric $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ and para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left.\left.\right|_{M= \pm 1 / 2} ^{s=3 / 2}\right\rangle$ and $\left|\begin{array}{l}s=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$.

The latter make a permutation doublet. Similarly, projections of $|\uparrow \downarrow \downarrow\rangle$ give three $M=-1 / 2$ states.

Finally, the fourth state of the spin- $S=3 / 2$ quartet is the following $M=-3 / 2$.

S_{n} projection for atomic spin and orbit states: Tableau P-operators on spin

Symmetric $\mathbf{P}^{A_{1}}=\mathbf{P}^{\square \square \square}$ and para-symmetric $\mathbf{P}^{E_{1}}=\mathbf{P}^{\square \square}$ projection of $|\uparrow \uparrow \downarrow\rangle$ and $|\uparrow \downarrow \downarrow\rangle$ give $\left.\left.\right|_{M= \pm 1 / 2} ^{S=3 / 2}\right\rangle_{\text {and }}\left|\begin{array}{c}S=1 / 2 \\ M= \pm 1 / 2\end{array}\right\rangle$.

The latter make a permutation doublet. Similarly, projections of $|\uparrow \downarrow \downarrow\rangle$ give three $M=-1 / 2$ states.

Finally, the fourth state of the spin- $S=3 / 2$ quartet is the following $M=-3 / 2$.

Right index correlates state-permutaion-symmetry, that is, whether two spins are equal.
Left index correlates particle-permutaion-symmetry, that is, whether two particles are the same or not.

Marrying $\operatorname{spin} s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

Fermi-Dirac-Pauli anti-symmetric p^{3}-states

Orbital-tableau states (10 pages above) are combined using S_{N}-Clebsch-Gordan coefficients ($S_{N} \mathrm{CGC}$) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the ($S_{3} \mathrm{CGC}$) sum is a single term for each state in the ${ }^{4} \mathrm{~S}$ quartet.

Fermi-Dirac-Pauli anti-symmetric p^{3}-states

Orbital-tableau states (10 pages above) are combined using S_{N}-Clebsch-Gordan coefficients ($S_{N} \mathrm{CGC}$) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the ($S_{3} \mathrm{CGC}$) sum is a single term for each state in the ${ }^{4}$ S quartet.

The p^{3} doublet states ${ }^{2} \mathrm{~L}$, (with L yet to be determined) are each a sum of two terms

Clebsch-Gordan
coefficients $\pm \sqrt{1 / 2}$
of S_{3} (or D_{3})

Fermi-Dirac-Pauli anti-symmetric p^{3}-states

Orbital-tableau states (10 pages above) are combined using S_{N}-Clebsch-Gordan coefficients ($S_{N} \mathrm{CGC}$) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the ($S_{3} \mathrm{CGC}$) sum is a single term for each state in the ${ }^{4}$ S quartet.

The p^{3} doublet states ${ }^{2} \mathrm{~L}$, (with L yet to be determined) are each a sum of two terms

This is how permutation multiplicity and ($a b c$) labels disappear, killed by Pauli!

Fermi-Dirac-Pauli anti-symmetric p^{3}-states

Orbital-tableau states (10 pages above) are combined using S_{N}-Clebsch-Gordan coefficients ($S_{N} \mathrm{CGC}$) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the ($S_{3} \mathrm{CGC}$) sum is a single term for each state in the ${ }^{4}$ S quartet.

The p^{3} doublet states ${ }^{2} \mathrm{~L}$, (with L yet to be determined) are each a sum of two terms

This is how permutation multiplicity and $(a b c)$ labels disappear, killed by Pauli!
But, spin degeneracy of 4 quartet-states and 2 doublet-states is still here.

Fermi-Dirac-Pauli anti-symmetric p^{3}-states

Orbital-tableau states (10 pages above) are combined using S_{N}-Clebsch-Gordan coefficients ($S_{N} \mathrm{CGC}$) with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.

In the following simplest case the ($S_{3} \mathrm{CGC}$) sum is a single term for each state in the ${ }^{4}$ S quartet.

The p^{3} doublet states ${ }^{2} \mathrm{~L}$, (with L yet to be determined) are each a sum of two terms

This is how permutation multiplicity and ($a b c$) labels disappear, killed by Pauli!
But, spin degeneracy of 4 quartet-states and 2 doublet-states is still here.
So are eight orbital doublet pairs: a tableau octet of Pauli-ok unitary $U(3) \ell^{E_{1}}=8$ multiplicity E_{1}-orbitals.

Marrying spin $s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

Boson operators and symmetric p^{2}-states
First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

Boson operators and symmetric p^{2}-states

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$
\begin{gathered}
\{|1| 1\rangle,|12|,,|1| 3\rangle,, 22|2\rangle,|2| 3\rangle,,|3| 3\rangle,\} \\
E_{12}\left|n_{1}, n_{2}\right\rangle=a_{1} \bar{a}_{2}\left|n_{1}, n_{2}\right\rangle=a_{1} \sqrt{n_{2}}\left|n_{1}, n_{2}-1\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1, n_{2}-1\right\rangle \\
E_{23}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \bar{a}_{3}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \sqrt{n_{3}}\left|n_{1}, n_{2}, n_{3}-1\right\rangle=\sqrt{n_{2}+1} \sqrt{n_{3}}\left|n_{1}, n_{2}+1, n_{3}-1\right\rangle
\end{gathered}
$$

Boson operators and symmetric p^{2}-states

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$
\begin{gathered}
\{|1| 1\rangle,|12|,,|1| 3\rangle,,|2| 2\rangle,, 2|2|,,|3| 3\rangle,\} \\
E_{12}\left|n_{1}, n_{2}\right\rangle=a_{1} \bar{a}_{2}\left|n_{1}, n_{2}\right\rangle=a_{1} \sqrt{n_{2}}\left|n_{1}, n_{2}-1\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1, n_{2}-1\right\rangle \\
E_{23}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \bar{a}_{3}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \sqrt{n_{3}}\left|n_{1}, n_{2}, n_{3}-1\right\rangle=\sqrt{n_{2}+1} \sqrt{n_{3}}\left|n_{1}, n_{2}+1, n_{3}-1\right\rangle
\end{gathered}
$$

Elementary operations $e_{j k}$ apply to each particle a, b, c, and so forth in turn.

$$
\begin{aligned}
& E_{23}\left|3_{a}{ }^{3}{ }_{b}{ }_{c}\right\rangle=\left|2_{a}{ }^{3}{ }_{b}{ }^{3} c_{c}\right\rangle+\left|3_{a}{ }_{2}{ }_{b}{ }^{3}{ }_{c}\right\rangle+\left|3_{a}{ }^{3} b_{b}{ }_{c}\right\rangle=\sqrt{3} \frac{\left|2_{a}{ }^{3}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }^{2}{ }^{3}{ }_{c}\right\rangle+\left|3_{a}{ }^{3}{ }_{b}{ }^{2}\right\rangle}{\sqrt{3}}=\sqrt{3}|2| 3|3| \\
& \left.a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=0, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,0,2\rangle=\sqrt{1} \sqrt{3}|0,1,2\rangle=E_{23}|\sqrt[3]{3}| 3|=\sqrt{3}| 2|3| 3\right\rangle
\end{aligned}
$$

Boson operators and symmetric p^{2}-states

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$
\begin{gathered}
\{|1| 1\rangle,|12|,,|1| 3\rangle,,|2| 2\rangle,, 2|2|,,|3| 3\rangle,\} \\
E_{12}\left|n_{1}, n_{2}\right\rangle=a_{1} \bar{a}_{2}\left|n_{1}, n_{2}\right\rangle=a_{1} \sqrt{n_{2}}\left|n_{1}, n_{2}-1\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1, n_{2}-1\right\rangle \\
E_{23}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \bar{a}_{3}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \sqrt{n_{3}}\left|n_{1}, n_{2}, n_{3}-1\right\rangle=\sqrt{n_{2}+1} \sqrt{n_{3}}\left|n_{1}, n_{2}+1, n_{3}-1\right\rangle
\end{gathered}
$$

Elementary operations $e_{j k}$ apply to each particle a, b, c, and so forth in turn.

$$
\begin{aligned}
& E_{23}\left|3_{a}{ }^{3}{ }^{3}{ }_{c}\right\rangle=\left|2_{a}{ }^{3}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }^{2}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }_{3}{ }_{b}{ }^{2}\right\rangle=\sqrt{3} \frac{\left|2_{a}{ }^{3}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }^{2}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }^{3}{ }_{b}\right\rangle}{\sqrt{3}}=\sqrt{3}|2| 3|3| \\
& a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=0, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,0,2\rangle=\sqrt{1} \sqrt{3}|0,1,2\rangle=E_{23}|3 \sqrt[3]{3}\rangle=\sqrt{3}|2| 3|3\rangle
\end{aligned}
$$

The $e_{j k}$ procedure shows $a=\mathbf{a}^{\dagger}$ or $\bar{a}=\mathbf{a}$ factors $\sqrt{n_{k}}$ or $\sqrt{n_{k}+1}$ arise by adjusting norms

Boson operators and symmetric p^{2}-states

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states

$$
\begin{gathered}
\{|1| 1\rangle,|12|,|1| 3\rangle,,|2| 2\rangle,,|2| 3\rangle,,|3| 3\rangle,\} \\
E_{12}\left|n_{1}, n_{2}\right\rangle=a_{1} \bar{a}_{2}\left|n_{1}, n_{2}\right\rangle=a_{1} \sqrt{n_{2}}\left|n_{1}, n_{2}-1\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1, n_{2}-1\right\rangle \\
E_{23}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \bar{a}_{3}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \sqrt{n_{3}}\left|n_{1}, n_{2}, n_{3}-1\right\rangle=\sqrt{n_{2}+1} \sqrt{n_{3}}\left|n_{1}, n_{2}+1, n_{3}-1\right\rangle
\end{gathered}
$$

Elementary operations $e_{j k}$ apply to each particle a, b, c, and so forth in turn.

$$
\begin{aligned}
& E_{23}\left|3_{a}{ }^{3}{ }^{3}{ }_{c}\right\rangle=\left|2_{a}{ }^{3}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }^{2}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }_{3}{ }_{b}{ }^{2}\right\rangle=\sqrt{3} \frac{\left|2_{a}{ }^{3}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }^{2}{ }_{b}{ }_{c}\right\rangle+\left|3_{a}{ }^{3}{ }_{b}\right\rangle}{\sqrt{3}}=\sqrt{3}|2| 3|3| \\
& a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=0, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,0,2\rangle=\sqrt{1} \sqrt{3}|0,1,2\rangle=E_{23}|3 \sqrt[3]{3}\rangle=\sqrt{3}|2| 3|3\rangle
\end{aligned}
$$

The $e_{j k}$ procedure shows $a=\mathbf{a}^{\dagger}$ or $\bar{a}=\mathbf{a}$ factors $\sqrt{n_{k}}$ or $\sqrt{n_{k}+1}$ arise by adjusting norms

$$
\begin{aligned}
& \left.E_{23} \frac{\left|2_{a}{ }_{3}{ }_{b}{ }^{3} 3_{d}\right\rangle+\left|3_{a} 2_{b}{ }^{3}{ }_{c}{ }_{d}\right\rangle+\left|3_{a}{ }_{3}{ }_{b}{ }^{2} 3_{d}\right\rangle+\left|3_{a}{ }_{3}{ }_{b}{ }^{3}{ }_{c}{ }_{d}\right\rangle}{2}=\left.E_{23}\right|^{|2| 3|3| 3 \mid 3}\right\rangle \\
& =\frac{\left|2_{a}{ }^{2} b^{3}{ }^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{2}{ }_{b}{ }^{3}{ }^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{3} b^{2}{ }_{c}{ }^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{3}{ }_{b}{ }^{3}{ }_{c}{ }^{2}{ }_{d}\right\rangle}{2}=\sqrt{6}\left[\frac{\left|2_{a}{ }_{b}{ }_{b}{ }^{3}{ }^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{3}{ }_{b}{ }^{2}{ }_{c}{ }^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{3}{ }_{b}{ }^{3}{ }_{c}{ }_{d}\right\rangle}{\sqrt{6}}\right. \\
& \left.+\frac{\left|2_{a} 3_{b}{ }^{2}{ }_{c}{ }_{d}\right\rangle+\left|3_{a}{ }^{2}{ }_{b}{ }^{2}{ }^{3}{ }_{d}\right\rangle+\left|3_{a}{ }^{2} b_{b}{ }^{2}{ }^{3}{ }_{d}\right\rangle+\left|3_{a}{ }^{2} b_{b}{ }^{3}{ }_{c}{ }_{d}\right\rangle}{2}+\frac{\left|3_{a}{ }^{2} b^{2}{ }_{c}{ }_{3}{ }_{d}\right\rangle+\left|3_{a}{ }^{2} b^{3}{ }_{c}{ }_{d}\right\rangle+\left|3_{a} 3_{b}{ }^{2}{ }_{c}{ }_{d}\right\rangle}{\sqrt{6}}\right] \\
& \left.+\frac{\left|2_{a}{ }_{3}{ }_{b}{ }^{3}{ }_{c}{ }_{d}\right\rangle+\left|3_{a}{ }_{2}{ }_{b}{ }^{3}{ }_{c}{ }_{d}\right\rangle+\left|3_{a}{ }^{3}{ }_{b}{ }^{2}{ }_{c}{ }_{d}\right\rangle+\left|3_{a}{ }^{3}{ }_{b}{ }^{2}{ }_{c}{ }_{d}\right\rangle}{2}=\left.\sqrt{6}\right|^{2(2)|3| 3}\right\rangle
\end{aligned}
$$

Marrying spin $s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum
Projecting to angular momentum

Boson operators and symmetric p^{2}-states: Connecting to angular momentum
Creation operator $(a \bar{a})$ formulas give the same result in more compact notation.

$$
E_{23} \mid \text { |2] }\left.\right|^{3}|\sqrt{3}\rangle=a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=1, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,1,2\rangle=\sqrt{2} \sqrt{3}|0,2,2\rangle=\sqrt{6}|2| 2|3| 3 \mid
$$

Boson operators and symmetric p^{2}-states: Connecting to angular momentum
Creation operator $(a \bar{a})$ formulas give the same result in more compact notation.

$$
E_{23}|\sqrt[2 l 3]{3}| 3|3\rangle=a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=1, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,1,2\rangle=\sqrt{2} \sqrt{3}|0,2,2\rangle=\sqrt{6}|2| 2|3| 3 \mid
$$

Matrix elements for [2,0] sextet states involve the following forms.

Boson operators and symmetric p^{2}-states: Connecting to angular momentum

Creation operator $(a \bar{a})$ formulas give the same result in more compact notation.

$$
E_{23}|\sqrt[2 l 3]{3}| 3|3\rangle=a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=1, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,1,2\rangle=\sqrt{2} \sqrt{3}|0,2,2\rangle=\sqrt{6}|2| 2|3| 3 \mid
$$

Matrix elements for [2,0] sextet states involve the following forms.

Elementary operator representations are then found. (same as earlier cases by other means)

$E_{12}=$	$E_{21}^{\dagger}=$		$E_{23}=E_{32}^{\dagger}=$							$E_{13}=E_{31}^{\dagger}=$...earlier cases in Lect.22p17-26.
	$11 \quad 12$	$\begin{array}{lllll}22 & 13 & 23 & 33\end{array}$			112	22	13	23	33		111	12	22	13	23	33	
11	$\sqrt{2}$		11		12		.		,	11				$\sqrt{2}$			
12		$\sqrt{2}$	12				1			12					1		
22		. .	22					$\sqrt{2}$		22							
13		1	13							13						$\sqrt{2}$	
23		.	23						$\sqrt{2}$	23							
33			33							33							

Boson operators and symmetric p^{2}-states: Connecting to angular momentum

Creation operator $(a \bar{a})$ formulas give the same result in more compact notation.

$$
E_{23}|2 \sqrt[3]{3} \sqrt[3]{3}\rangle=a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=1, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,1,2\rangle=\sqrt{2} \sqrt{3}|0,2,2\rangle=\sqrt{6}|2| 2 \sqrt{3}|3\rangle
$$

Matrix elements for [2,0] sextet states involve the following forms.

Elementary operator representations are then found. (same as earlier cases by other means)

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21}=E_{12}^{\dagger}$ and $E_{32}=E_{23}^{\dagger}$

$L_{+}=L_{x}+i L_{y}=\sqrt{2}\left(E_{12}+E_{23}\right)$						$L_{-}=L_{+}^{\dagger}=$							$\mathrm{L}^{2}=L_{+} L_{-}+L_{z}\left(L_{z}-1\right)$						
	$11 \quad 12$	22	13	23			11	12	22	13	23	33		11	12	22	13	23	33
11	2					11							11	4+2					
12		2	$\sqrt{2}$.	12	2						12	.	6	.	.	.	
22		.		2	.	22	.	2		.			22		.	4	$2 \sqrt{2}$		
13				$\sqrt{2}$.	13	.	$\sqrt{2}$					13			$2 \sqrt{2}$	2		
23					2	23	.	.	2	$\sqrt{2}$			23					4+2	.
33						33					2		33						$0+6$

$E_{13}=\left[E_{12}, E_{23}\right]$

Marrying spin $s=1 / 2$ and orbital $\ell=1$ together: $\mathrm{U}(3) \times \mathrm{U}(2)$
The $\ell=1 p=$ shell in a nutshell
$\mathrm{U}(6) \supset \mathrm{U}(3) \times \mathrm{U}(2)$ approach: Coupling spin-orbit $(s=1 / 2, \ell=1)$ tableaus
Introducing atomic spin-orbit state assembly formula
Slater determinants
p-shell Spin-orbit calculations (not finished)
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift)
S_{n} projection for atomic spin and orbit states
Review of Mach-Mock (particle-state) principle
Tableau P-operators on orbits (Yamonouchi formula)
Tableau P-operators on spin
Fermi-Dirac-Pauli anti-symmetric p^{3}-states
Boson operators and symmetric p^{2}-states
Connecting to angular momentum

$\Delta \mathrm{P}$
Projecting to angular momentum

Boson operators and symmetric p^{2}-states: Projecting to angular momentum

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21}=E_{12}^{\dagger}$ and $E_{32}=E_{23}^{\dagger}$

Angular-momentum-squared operator $\left\langle L^{2}\right\rangle=L(L+1)$ tells what L-values are present

$$
\begin{aligned}
& L_{+} L_{-}=\left(L_{x}+i L_{y}\right)\left(L_{x}-i L_{y}\right)=L_{x}{ }^{2}+L_{y}{ }^{2}-i L_{x} L_{y}+i L_{y} L_{x}=L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z} \\
& L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2}=L_{+} L_{-}+L_{z}{ }^{2}-L_{z}
\end{aligned}
$$

Boson operators and symmetric p^{2}-states: Projecting to angular momentum

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21}=E_{12}^{\dagger}$ and $E_{32}=E_{23}^{\dagger}$

$L_{+}=$	$L_{x}+i L_{y}=$	$\sqrt{2}$	(E12	+ E_{23})		$L_{-}=L_{+}^{+}=\quad \mathrm{L}^{2}=L_{+} L_{-}+L_{z}\left(L_{z}-1\right)$															$E_{13}=\left[E_{12}, E_{23}\right]$
	1112	22	13	23	33			11	22	22	13	23	33		11	12	22	13	23	33	
11	2					11								11	$4+2$						
12	.	2	$\sqrt{2}$.		12		2		12		6	,				
22	.			2		22					.	.	.	22	.		4	$2 \sqrt{2}$.	
13			.	$\sqrt{2}$		13			$\sqrt{2}$.			.	13	.		$2 \sqrt{2}$	2			
23					2	23			,	2	$\sqrt{2}$.	.	23					4+2	.	
33			-	-		33						2		33						$0+6$	

Angular-momentum-squared operator $\left\langle L^{2}\right\rangle=L(L+1)$ tells what L-values are present

$$
\begin{aligned}
& L_{+} L_{-}=\left(L_{x}+i L_{y}\right)\left(L_{x}-i L_{y}\right)=L_{x}{ }^{2}+L_{y}{ }^{2}-i L_{x} L_{y}+i L_{y} L_{x}=L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z} \\
& L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2}=L_{+} L_{-}+L_{z}{ }^{2}-L_{z}
\end{aligned}
$$

Commutation $\left[L_{x}, L_{y}\right]=L_{x} L_{y}-L_{y} L_{x}=i L_{z}$ helps find L^{2} matrices. Of 6 e-values, 5 are $L(L+1)=6$ The $6^{\text {th }} L$-value ($L=0$) implies an S-orbital. Both are projected. ($(L=2)$ or D-orbital)

$$
P(L=0)=\frac{\left(\begin{array}{cc}
4-2(2+1) & 2 \sqrt{2} \\
2 \sqrt{2} & 2-2(2+1)
\end{array}\right)}{0(0+1)-2(2+1)}=\frac{1}{3}\left(\begin{array}{cc}
1 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right) \quad P(L=2)=\frac{1}{3}\left(\begin{array}{cc}
2 & \sqrt{2} \\
\sqrt{2} & 1
\end{array}\right)
$$

Boson operators and symmetric p^{2}-states: Projecting to angular momentum

36 "super-elementary" operators made by products of E_{23} and E_{12} and conjugates $E_{21}=E_{12}^{\dagger}$ and $E_{32}=E_{23}^{\dagger}$

Angular-momentum-squared operator $\left\langle L^{2}\right\rangle=L(L+1)$ tells what L-values are present

$$
\begin{aligned}
& L_{+} L_{-}=\left(L_{x}+i L_{y}\right)\left(L_{x}-i L_{y}\right)=L_{x}{ }^{2}+L_{y}{ }^{2}-i L_{x} L_{y}+i L_{y} L_{x}=L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z} \\
& L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2}=L_{+} L_{-}+L_{z}{ }^{2}-L_{z}
\end{aligned}
$$

Commutation $\left[L_{x}, L_{y}\right]=L_{x} L_{y}-L_{y} L_{x}=i L_{z}$ helps find L^{2} matrices. Of 6 e-values, 5 are $L(L+1)=6$ The $6^{\text {th }} L$-value ($L=0$) implies an S-orbital. Both are projected. ($L=2$) or D-orbital)

$$
P(L=0)=\frac{\left(\begin{array}{cc}
4-2(2+1) & 2 \sqrt{2} \\
2 \sqrt{2} & 2-2(2+1)
\end{array}\right)}{0(0+1)-2(2+1)}=\frac{1}{3}\left(\begin{array}{cc}
1 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right) \quad P(L=2)=\frac{1}{3}\left(\begin{array}{cc}
2 & \sqrt{2} \\
\sqrt{2} & 1
\end{array}\right)
$$

Resulting transformation results for sextet tableau \|22 2\rangle and 103\rangle to L-orbitals with $M=0$.

Boson operators and symmetric p^{2}-states: Projecting to angular momentum
Commutation $\left[L_{x}, L_{y}\right]=L_{x} L_{y}-L_{y} L_{x}=i L_{z}$ helps find matrices.
The $6^{\text {th }} L$-value ($L=0$) implies an S-orbital. Both are projected.

$$
P(L=0)=\frac{\left(\begin{array}{cc}
4-2(2+1) & 2 \sqrt{2} \\
2 \sqrt{2} & 2-2(2+1)
\end{array}\right)}{0(0+1)-2(2+1)}=\frac{1}{3}\left(\begin{array}{cc}
1 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right)
$$

Resulting transformation results for sextet tableau $|22\rangle\rangle$ and 103\rangle to L-orbitals with $M=0$.

Boson operators and symmetric p^{2}-states: Projecting to angular momentum

Commutation $\left[L_{x}, L_{y}\right]=L_{x} L_{y}-L_{y} L_{x}=i L_{z}$ helps find matrices.
The $6^{\text {th }} L$-value ($L=0$) implies an S-orbital. Both are projected.

$$
P(L=0)=\frac{\left(\begin{array}{cc}
4-2(2+1) & 2 \sqrt{2} \\
2 \sqrt{2} & 2-2(2+1)
\end{array}\right)}{0(0+1)-2(2+1)}=\frac{1}{3}\left(\begin{array}{cc}
1 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right)
$$

Resulting transformation results for sextet tableau 222\rangle and 103\rangle to L-orbitals with $M=0$.

Compare this to ($M=0$)-Clebsch-Gordan coefficients under $\left|\begin{array}{l}2 \\ 0\end{array}\right\rangle$ and $\left|\begin{array}{l}0 \\ 0\end{array}\right\rangle$ columns:

$$
\begin{aligned}
& \left|1 \otimes 1_{M=0}^{L=0}\right\rangle=\Sigma C_{m m^{\prime} 0}^{1} \begin{array}{l}
0
\end{array}\left|\begin{array}{ll}
1 \\
0
\end{array}\right\rangle\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{\frac{1}{3}}\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle+\sqrt{\frac{1}{3}}\left|\begin{array}{c}
1 \\
+1
\end{array}\right\rangle\left|\begin{array}{c}
1 \\
-1
\end{array}\right\rangle+\sqrt{\frac{1}{3}}\left|\begin{array}{c}
1 \\
-1
\end{array}\right\rangle\left|\begin{array}{c}
1 \\
+1
\end{array}\right\rangle \\
& \left.=-\sqrt{\frac{1}{3}}| | 0|0\rangle+\left.\sqrt{\frac{2}{3}}\right|_{|+1|-1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left|1 \otimes 1_{M=0}^{L=2}\right\rangle=\sum C_{m m^{\prime}}^{1} \begin{array}{c}
1 \\
2
\end{array}\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{2}{3}}\left|\begin{array}{l}
1 \\
0
\end{array}\right\rangle\left\langle\begin{array}{l}
1 \\
0
\end{array}\right\rangle+\sqrt{\frac{1}{6}}\left|\begin{array}{c}
1 \\
+1
\end{array}\right\rangle\left|\begin{array}{c}
1 \\
-1
\end{array}\right\rangle+\sqrt{\frac{1}{6}}\left|\begin{array}{c}
1 \\
-1
\end{array}\right\rangle\left\langle\begin{array}{c}
1 \\
+1
\end{array}\right\rangle \\
& \left.\left.=\sqrt{\frac{2}{3}}\left|{ }_{000}\right\rangle+\sqrt{\frac{1}{3}} \right\rvert\, \begin{array}{l|l|l|}
\\
\hline-1
\end{array}\right)
\end{aligned}
$$

Fig. 8 Weight or Moment Diagrams of Atomic $(p)^{n}$ States Each tableau is located at point ($x_{1} x_{2} x_{3}$) in a cartesian co-ordinate system for which x_{n} is the number of n ' s in the tableau. An alternative co-ordinate system is ($\mathrm{v}_{0}^{2}, \mathrm{v}_{0}^{1}, \mathrm{v}_{0}^{0}$) defined by Eq. 16 which gives the $z z$-quadrupole moment,
z-magnetic dipole moment, and number of particles, respectively. The last axis (v_{0}^{0}) would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

A Unitary Calculus for Electronic Orbitals

William G. Harter and Christopher W. Patterson
Springer-Verlag Lectures in Physics 491976

Alternative basis for the theory of complex spectra I William G. Harter
Physical Review A 83 p2819 (1973)
Alternative basis for the theory of complex spectra II
William G. Harter and Christopher W. Patterson
Physical Review A 133 p1076-1082 (1976)
Alternative basis for the theory of complex spectra III William G. Harter and Christopher W. Patterson Physical Review A ??

Alternative basis for the theory of complex spectra II William G. Harter and Christopher W. Patterson Physical Review A 133 p1076-1082 (1976)

FIG. 6. Example of unitary tableau notation for multi-ple-shell states. The calculation of the dipole operator using the jawbone formula between states of definite spin and orbit as shown is given in Eq. (48).

All
Images • Videos Maps
News
Shop
I
My saves

Hund's rule of maximum multiplicity

- The three rules are:
- For a given electron configuration, the term wilh maximum multipticity has the lowest energy. The multiplicity is equal to where is the total spin angular momentum for all electrons.
- For a given multiplicity, the term with the largest value of the total orbital angular momentum quantum number has the lowest energy.

Yay! (for the Googley internet)

Hund's Rule of maximum
Multiplicity
The above rules: not give idea abt filling the ein to degenerate orbitals.
For e.g., p-orbitals
" when more than one orbitals of equal energies are available, then the e-will first occupy these orbitals separately with parallel spins.the pairing of e -will start only after all the orbitals of a given sub-level are singly occupied."
Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.

Hund's Rule

In a set of orbitals, the electrons will fill the orbitals in a way that would give the maximum number of parallel spins (maximum number of unpaired electrons)

Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.

$$
\begin{aligned}
& \mathrm{B} \text { (5e) } \mathrm{C} \text { (6e) } \mathrm{N} \text { (7e) }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{~s} \text { 1 }
\end{aligned}
$$

1s 1
Hund's rule of maximum multiplicity
v $\frac{\uparrow}{1}$
$>\frac{\uparrow}{1}$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits

Diagonal examples in n-particle notation:

$$
\begin{aligned}
& \sqrt{3} \mathbf{V}_{0}^{0}=E_{11}+E_{22}+E_{33} \\
& \sqrt{2} \mathbf{V}_{0}^{1}=E_{11} \quad-E_{33} \equiv L_{z} \\
& \sqrt{6} \mathbf{V}_{0}^{2}=E_{11}-2 E_{22}+E_{33}
\end{aligned}
$$

Off-Diagonal examples in n-particle notation:

$$
\begin{array}{lll}
\mathbf{V}_{2}^{2}=E_{13}, & -2 \mathbf{V}_{1}^{2}=\sqrt{2}\left(E_{12}-E_{23}\right), & 2 \mathbf{V}_{-1}^{2}=\sqrt{2}\left(E_{21}-E_{32}\right), \quad 2 \mathbf{V}_{-2}^{2}=E_{31}, \\
& -2 \mathbf{V}_{1}^{1}=\sqrt{2}\left(E_{12}+E_{23}\right) \equiv L_{+}, & 2 \mathbf{V}_{-1}^{1}=\sqrt{2}\left(E_{21}+E_{32}\right) \equiv L_{-} .
\end{array}
$$

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their $\mathbf{V}^{k}{ }_{q}$ matrices
 Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left.\left|D_{M=1}^{L} D^{L-2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L-2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)| |^{10}\right\rangle
$$

Here this is done using Tableau "Jawbone" formula.

$$
\left.==\frac{1}{\sqrt{2}}\left(\left|\frac{a^{2}}{2}\right\rangle+\left.\right|^{\frac{\pi}{3}}\right\rangle\right)
$$

Orthogonal to this is a ${ }^{2} P(M=1)$ state

$$
\left.\left.\left|{ }^{2} P_{M=1}^{L=1}\right\rangle=\frac{1}{\sqrt{2}}\left(| | \frac{1 \mid 2}{2}\right\rangle-\left.\left|\frac{1}{3}\right|\right|^{1}\right\rangle\right)
$$

Next we calculate $2^{\text {n }}$-pole moments the pair:

$$
\begin{aligned}
& \left\langle{ }^{2} P_{M=1}^{L=1}\right| V_{0}^{k}\left|{ }^{2} D_{M=1}^{L=2}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[-\binom{2}{11} E_{11}+2\binom{2}{22} E_{22}-\binom{2}{33}\right]=-\sqrt{\frac{3}{2}} \text { for : } k=2 \\
& =\frac{1}{2}\left[-\binom{1}{11} E_{11}+2\binom{1}{22} E_{22}-\binom{1}{33}\right]=0 \quad \text { for : } k=1 \\
& =\frac{1}{2}\left[-\binom{0}{11} E_{11}+2\binom{0}{22} E_{22}\binom{0}{33}\right]=0 \quad \text { for : } k=0
\end{aligned}
$$

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

Single particle p1-orbitals: $U(3)$ triplet $\quad\left|p^{1} \square\right\rangle$
$\begin{array}{ll}e_{12} e_{21}=e_{11} & \\ e_{12} e_{22}=e_{12} & \\ |1\rangle\langle 2||2\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1|=|1\rangle\langle 2|\end{array}$
$e_{11}=\left(\begin{array}{lll}1 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right), e_{12}=\left(\begin{array}{lll}\cdot & 1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right), e_{13}=\left(\begin{array}{lll}\cdot & \cdot & 1 \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right), e_{21}=\left(\begin{array}{lll}\cdot & \cdot & . \\ 1 & \cdot & \cdot \\ \cdot & \cdot\end{array}\right), \ldots e_{33}=\left(\begin{array}{lll}\cdot & \cdot \\ \cdot & \cdot \\ 1 & \cdot & \\ \hline\end{array}\right)$

General elementary operator commutation $\left[E_{j k}, E_{p q}\right]=\delta_{k p} E_{j q}-\delta_{q j} E_{p k}$ has same form as 1-particle commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$

Elementary-elementary

operator commutation algebra

This applies to all of multi-particle representations of $E_{j k}$ and to momentum operators L_{x}, L_{y}, and L_{z}.

Single particle p-orbit ($\ell=1$) representation of L_{x}, L_{y}, and L_{z}

$$
D_{m n}^{1}\left(L_{x}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
1 & \cdot & 1 \\
\cdot & 1 & \cdot
\end{array}\right), \quad D_{m n}^{1}\left(L_{y}\right)=\frac{-i}{\sqrt{2}}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
-1 & \cdot & 1 \\
\cdot & -1 & \cdot
\end{array}\right), \quad D_{m n}^{1}\left(L_{z}\right)=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)
$$

Elementary operator form of L_{x}, L_{y}, and L_{z}

$$
L_{x}=\left(E_{12}+E_{23}+E_{21}+E_{32}\right) / \sqrt{2}, \quad L_{y}=-i\left(E_{12}+E_{23}-E_{21}-E_{32}\right) / \sqrt{2}, \quad L_{z}=E_{11}-E_{33}
$$

...and of raise-lower operators $L+$ and L.

$$
L_{+}=L_{x}+i L_{y}=\sqrt{2}\left(E_{12}+E_{23}\right), \quad L_{-}=L_{x}-i L_{y}=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{+}^{\dagger}, \quad L_{z}=\left[L_{+}, L_{-}\right]
$$

