Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole,...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page

Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
Modern Physics and its Classical Foundations

2014 AMOP
2017 Group Theory for QM
2018 AMOP

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- Jeigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Bovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Svmmetry in Quantum Rotors - harter - ims - 2001
Bepresentaions Of Multidimensional Symmetries In Networks - harter-imp-1973
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. This bad boy will be a sure force multiplier.

Complete set of E_{jk} matrix elements for the doublet ((spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole,...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2					
	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) \\ 1 & 1\end{array}$	$-\sqrt[(13)]{\frac{1}{2}} \quad \sqrt[(13)]{\sqrt{\frac{3}{2}}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} (11)(22) \\ 1+2 & \\ & \\ & . \\ & (11)(33) \\ & 2+1 \end{array}$	$\begin{array}{ll} (23) & (23) \\ \sqrt{\frac{1}{2}} & \sqrt[(3)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \\ \sqrt{2} & . \end{array}$	(13) -1 (13) 1	.
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$			$\begin{gathered} (11){ }^{(22)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{2} & \stackrel{(12)}{2} \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(23)]{2} & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{(13)} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} (11) & (33) \\ 1+2 & \cdot \\ & \\ & \\ & (22)(33) \\ & 2+1 \end{array}$	$\begin{gathered} \left(\begin{array}{c} (12) \\ 1 \\ (23) \\ c \end{array}\right. \end{gathered}$
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2) p^{3}$ orbits
$M=2$
M=1
M=0
M=-1
M=-2

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	${ }^{(11)(22)}$ 2+1	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	(13) $-\sqrt{\frac{1}{2}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \\ 2+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\frac{1}{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \cdot \end{array}$. .
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$			$\begin{gathered} (11) \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11)(22) \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} (11)(33) & \\ 1+2 & \cdot \\ & \\ . & (22)(33) \\ \hline \end{array}$	$\begin{gathered} (12) \\ 1 \\ (23) \\ 1 \end{gathered}$
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" number operators $\left\langle\begin{array}{c|c}11 \\ 2\end{array}\right| E_{11}\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle=2 \quad\left\langle\begin{array}{c}11 \\ 2\end{array}\right| E_{22}\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle=1$

$$
\left(\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=1\right.
$$

(e)

(f) $\quad E_{12}$ [1[2] $=\sqrt{2}$ [1]

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2) p^{3}$ orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left.\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11) \quad(22) \\ 2+1 \end{gathered}$	$\binom{(12)}{1} \quad$$(23)$	$\stackrel{(13)}{-\sqrt{\frac{1}{2}}} \stackrel{(13)}{\sqrt{\frac{3}{2}}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} \begin{array}{c} (11)(22) \\ 1+2 \end{array} & . \\ & . \\ & (11)(33) \\ \hline \end{array}$	$\begin{array}{ll} \hline \sqrt[(23)]{\sqrt{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	$\begin{array}{cc} & { }^{(13)} \\ \cdot & -1 \\ (13) & \\ 1 & \cdot \end{array}$	
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$			$\begin{gathered} (11)^{(22)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} \hline(23) & \left(\begin{array}{l} (12) \\ \sqrt{\frac{1}{2}} \end{array}\right. \\ \sqrt{2} \\ \sqrt[(23)]{2} & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & (13) \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} \hline(11)\left(\begin{array}{c} (33) \\ 1+2 \end{array}\right. & \cdot \\ & \\ . & 22)(33) \\ \hline \end{array}$	${ }^{(12)}$ 1 (23) 1
$\left\langle{ }^{23} \begin{array}{l}23 \\ 3\end{array}\right\|$					(22)(33) $1+2$

Sample applications of "Jawbone" formulae
$\left(\begin{array}{l|l}11 \\ 2\end{array}\left|E_{12}\right| \begin{array}{l}12 \\ 2\end{array}\right\rangle=1$
(1-jump $E_{i-1, i}$)

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2) p^{3}$ orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) $2+1$	(12) 1	$\begin{array}{cc}(13) \\ -\sqrt{\frac{1}{2}} & \sqrt{133} \\ \sqrt{\frac{3}{2}}\end{array}$.	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} \begin{array}{c} (11)(22) \\ 1+2 \end{array} & \\ & . \\ & (11)(33) \\ \hline & 2+1 \end{array}$	$\sqrt[(23)]{(23)}$ $\sqrt[(23)]{\frac{3}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{2}$	$\left(\begin{array}{c}(13) \\ \\ { }^{(13)} \\ 1\end{array}\right.$	
$\left.\begin{aligned} E_{j k}= & \left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{c} 13 \\ 2 \end{array}\right\| \end{aligned} \right\rvert\,$			$\begin{gathered} (11)(22)(33) \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11))^{(22)} \\ 1+1 \end{gathered}$	$\sqrt[(23)]{\sqrt{1}}$ $\sqrt[(12)]{2}$ $\sqrt{\frac{(23)}{2}}$ $\sqrt{\frac{3}{2}}$.	$\begin{aligned} & \left(\sqrt [1 3 1] { } \left(\sqrt{\frac{1}{2}}\right.\right. \\ & \sqrt[(13)]{\sqrt{2}} \end{aligned}$
$\begin{aligned} & \left\|\begin{array}{l} 101 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} \hline(11))^{(33)} \\ 1+2 & \cdot \\ & \\ & \begin{array}{c} (22) \\ 2+1) \end{array} \\ \hline \end{array}$	$\begin{gathered} (12) \\ 1 \\ (23) \\ 1 \\ 1 \end{gathered}$
$\underline{\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|}$					(22) $1+2$

Sample applications of "Jawbone" formulae
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{12}\left|\begin{array}{c}12 \\ 2\end{array}\right\rangle=1$
$\left\langle\begin{array}{l|l|l}\langle 11 \\ 2\end{array}\right| E_{23}\left|\begin{array}{l}11 \\ 3\end{array}\right\rangle=1$
(1-jump $\left.E_{i-1, i}\right)$

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2) p^{3}$ orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{12}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=1 & \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{23}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle=1 \\
& \left(\begin{array}{l|l}
12 \\
2
\end{array}\left|E_{23}\right| \begin{array}{l}
12 \\
3
\end{array}\right\rangle=\sqrt{\frac{1}{2}}
\end{aligned}
$$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=1
$$

(a)
$\left\langle T^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T_{T}^{\prime} T}\binom{$ number }{ of (i,'s }
(b) $\left\langle T^{\prime}\right| E_{i j}|r\rangle=\langle T| E_{j i}\left|T^{\prime}\right\rangle$

(e)
$E_{23}\left[\frac{[13}{3}\right]^{3}=\sqrt{\frac{1}{2}}\left[\frac{112}{3}\right]^{2}+\sqrt{\frac{3}{2}}\left[\frac{[12]^{3}}{}\right.$
(f) E_{12} [12] $=\sqrt{2}$ [1]

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2) p^{3}$ orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \(\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle\) \& \(\left|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left|\begin{array}{l}11 \\ 3\end{array}\right\rangle\) \& \(\left|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left|\begin{array}{l}13 \\ 2\end{array}\right\rangle\) \& \(\left|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left|\begin{array}{l}22 \\ 3\end{array}\right\rangle\) \& \(\left|\begin{array}{l}23 \\ 3\end{array}\right\rangle\) \\
\hline \(\left\langle\begin{array}{l}11 \\ 2\end{array}\right|\) \& \[
\begin{gathered}
(11)(22) \\
2+1 \\
(2)
\end{gathered}
\] \& \begin{tabular}{cc}
\((12)\) \& \({ }^{(23)}\) \\
1 \& 1
\end{tabular} \& \[
\begin{array}{ll}
\hline-\sqrt{\frac{1}{2}} \& \sqrt[(13)]{\frac{3}{2}}
\end{array}
\] \& . \& \\
\hline \[
\begin{aligned}
\& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| \\
\& \left\langle\begin{array}{l}
11 \\
3
\end{array}\right|
\end{aligned}
\] \& \& \& \[
\begin{array}{lc}
\left(\begin{array}{l}
(23) \\
\sqrt{\frac{1}{2}} \\
\sqrt[(12)]{23} \\
\sqrt{2}
\end{array}\right. \& \binom{(23)}{\sqrt[3]{2}}
\end{array}
\] \& \[
\begin{array}{cc}
\cdot \& { }^{(13)} \\
\& -1 \\
(13) \& \\
1 \& .
\end{array}
\] \& \\
\hline \[
\begin{aligned}
E_{j k}= \& \left\langle\begin{array}{c}
12 \\
3
\end{array}\right| \\
\& \left|\begin{array}{c}
13 \\
2
\end{array}\right|
\end{aligned}
\] \& \& \& \[
\begin{gathered}
(11) \\
1+1+1
\end{gathered}
\]
\[
\begin{gathered}
(11) \\
1+1+1
\end{gathered}
\] \& \begin{tabular}{cc}
\(\sqrt[(23)]{(12)}\) \& \(\sqrt[(12)]{\frac{1}{2}}\) \\
\(\sqrt{23}\) \& \\
\(\sqrt{\frac{3}{2}}\) \&.
\end{tabular} \& (13)
\(\sqrt{\frac{1}{2}}\)

$\sqrt{(13)}$
$\sqrt{\frac{3}{2}}$

\hline $$
\begin{aligned}
& \left\langle\begin{array}{l}
13 \\
3
\end{array}\right| \\
& \left\langle\begin{array}{l}
22 \\
3
\end{array}\right|
\end{aligned}
$$ \& \& \& \& \[

$$
\begin{array}{cc}
\begin{array}{cc}
(11)(33) \\
1+2 & \\
& \\
& \\
& (22))^{(33)} \\
2+1
\end{array}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
(12) \\
1 \\
(23) \\
(23) \\
1
\end{gathered}
$$
\]

\hline $$
\begin{array}{|}
{\left[\left.\begin{array}{l}
23 \\
3
\end{array} \right\rvert\,\right.}
\end{array}
$$ \& \& \& \& \& (22)

$1+2$

\hline
\end{tabular}

Sample applications of "Jawbone" formulae

$$
\begin{array}{ll}
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{12}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=1 & \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{23}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle=1 \\
\left.\begin{array}{l|l|l}
12 \\
2
\end{array}\left|E_{23}\right| \begin{array}{l}
13 \\
2
\end{array}\right\rangle=\sqrt{\frac{3}{2}}
\end{array} \quad\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{23}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle=\sqrt{\frac{1}{2}}
$$

(1-jump $\left.E_{i-1, i,}\right)$

$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{11}\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{22}\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle=1$

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2) p^{3}$ orbits
$M=2$
M=1
$M=0$
$M=-1 \quad M=-2$
$E_{j k}=$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11) \\ 2+1 \end{gathered}$	$\begin{array}{cc} (12) & (23) \\ 1 & 1 \end{array}$	$-\sqrt[(13)]{\frac{1}{2}} \quad \sqrt[(13)]{\frac{3}{2}}$	- -	-
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$		$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} \text { (11) } \\ 2+1 \end{gathered}$	(23) (23) $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{3}{2}}$ $\left(\begin{array}{c}(12) \\ \sqrt{2} \\ \end{array}\right.$	(13) -1 (13) 1	
$\left\langle\begin{array}{l}12 \\ 3\end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$			$\begin{gathered} (11) \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11) \\ 1+1+1 \end{gathered}$	(23) $\sqrt{\frac{1}{2}} \quad \sqrt{2}$ (23) $\sqrt{\frac{3}{2}}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" formulae

$$
\begin{array}{ll}
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{12}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=1 & \left\langle\begin{array}{l}
11 \mid \\
2
\end{array}\right| E_{23}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle
\end{array}=1 .
$$

(1-jump $\left.E_{i-1, i}\right)$
(e)

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{ll}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{ll}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)\binom{(22)}{2+1} \end{gathered}$	(12) ${ }^{(23)}$ 1 1	$\begin{array}{ll} \hline-\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} (11))^{(22)} \\ 1+2 & \cdot \\ & \cdot \\ & (11)\binom{(3) 3}{2+1} \end{array}$	$\sqrt[(23)]{23}$ $\sqrt[(23)]{\frac{3}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{(12)}$.	 \cdot -1 ${ }^{(13)}$ 1	
$E_{j k}=\left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\|$			$\begin{array}{cc} (11)(22)(33) & \\ 1+1+1 & \cdot \\ & \\ & \\ & (11)(22)(33) \\ & 1+1+1 \end{array}$	$\sqrt[(23)]{\sqrt{\frac{2}{2}}}$ $\binom{(12)}{\sqrt{2}}$ $\sqrt[(23)]{\frac{3}{2}}$.	$\begin{aligned} & (\sqrt[131]{(13)} \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\sqrt{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} \begin{array}{cc} (11))^{(33)} \\ 1+2 & \\ & \\ & \\ & (22)(33) \\ 2+1 \end{array} \end{array}$	
$\left.\begin{array}{\|c\|c\|c\|} \hline 23 \\ 3 \end{array} \right\rvert\,$					(22) $1+2$

$$
\begin{aligned}
& \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=1 \\
& \text { (a) } \\
& \left\langle\mathrm{T}^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T, T}\left(\begin{array}{l}
\text { (a) } \left.\begin{array}{l}
\text { unmer } \\
\text { of (iis }
\end{array}\right)
\end{array}\right. \\
& \text { (b) }
\end{aligned}
$$

Sample applications of "Jawbone" formulae

$$
\begin{array}{ll}
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{12}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=1 & \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{23}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=1 \\
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{23}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle=\sqrt{\frac{3}{2}} & \left\langle\begin{array}{c}
12 \\
2
\end{array}\right| E_{23}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle=\sqrt{\frac{1}{2}} \\
\left\langle\begin{array}{l}
12 \\
3
\end{array}\right| E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle=\sqrt{2} & \left\langle\begin{array}{l}
12 \\
3
\end{array}\right| E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle=\sqrt{2}
\end{array}
$$

(1-jump $\left.E_{i-1, i}\right)$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2$
M=1
M=0
$M=-1 \quad M=-2$

	$\left.\begin{array}{\|l\|l\|}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{ll}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{ll}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)\left(\begin{array}{c} (22) \\ 2+1 \end{array}\right. \end{gathered}$	(12) 1 1	$\begin{array}{ll} \hline(13) \\ -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left.\begin{array}{l} 11 \\ 1 \end{array} \right\rvert\, \end{aligned}$			$\sqrt[(23)]{23}$ $\sqrt[(23)]{\frac{123}{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{12)}$ $\sqrt{2}$.	$\begin{array}{cc} & { }^{(13)} \\ \cdot & -1 \\ { }_{(13)}^{(13)} & \\ 1 & . \end{array}$	
$E_{j k}=\left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$					$\begin{aligned} & \begin{array}{l} (\sqrt[133]{1} \\ \sqrt{\frac{1}{2}} \\ \sqrt[(13)]{2} \\ \sqrt{\frac{1}{2}} \end{array} \\ & \hline \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$					$\begin{gathered} (12) \\ 1 \\ (23) \\ \left(\begin{array}{c} (23) \end{array}\right. \end{gathered}$
$\left\langle\begin{array}{l} 23 \\ 3 \end{array}\right\|$					(22) ${ }^{(33)}$ $1+2$

Sample applications of "Jawbone" formulae

$$
\begin{array}{ll}
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{12}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=1 & \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{23}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=1 \\
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{23}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle=\sqrt{\frac{3}{2}} & \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{23}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle=\sqrt{\frac{1}{2}} \\
\left\langle\begin{array}{l}
12 \\
3
\end{array}\right| E_{12}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle=\sqrt{2} & \left\langle\begin{array}{l}
12 \\
3
\end{array}\right| E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle=\sqrt{2} \\
\left\langle\begin{array}{c}
12 \\
3
\end{array}\right| E_{23}\left|\begin{array}{c}
13 \\
3
\end{array}\right\rangle=\sqrt{\frac{1}{2}} &
\end{array}
$$

(1-jump $\left.E_{i-1, i}\right)$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
M=2
M=1
M=0
$M=-1 \quad M=-2$ $E_{j k}=$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\left\|\begin{array}{ll}12 \\ 2\end{array}\right\rangle \quad \begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{\|l\|}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11) \quad(22) \\ 2+1 \end{gathered}$	(12) ${ }^{(23)}$ 1 1	$\begin{array}{ll} \hline-\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \\ \hline \end{array}$		
$\left.\begin{aligned} & \left\langle\begin{array}{l}12 \\ 2\end{array}\right\| \\ & \left\langle\begin{array}{l}11 \\ 3\end{array}\right\|\end{aligned} \right\rvert\,$		$\left.\begin{array}{lc} (11))^{(22)} \\ 1+2 & \cdot \\ & \cdot \\ & (11)(3) \\ 2+1 \end{array}\right)$	$\sqrt[(23)]{2}$ $\sqrt[(23)]{\sqrt{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{(12)}$ $\sqrt{2}$.	 \cdot -1 ${ }^{(13)}$ 1 1	
$\begin{aligned} & \left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} \hline \sqrt[(23)]{(2)} & \sqrt[(12)]{2} \\ \sqrt{\frac{1231}{2}} & \\ \sqrt{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (\sqrt[133]{(13)} \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$					$\begin{gathered} (12) \\ 1 \\ (23) \\ \left(\begin{array}{c} (2) \end{array}\right. \end{gathered}$
$\left.\underline{\langle } \begin{aligned} & 23 \\ & 3\end{aligned} \right\rvert\,$					(22) ${ }^{(33)}$ $1+2$

Sample applications of "Jawbone" formulae

$$
\begin{array}{ll}
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{12}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=1 & \left\langle\begin{array}{c}
11 \\
2
\end{array}\right| E_{23}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=1 \\
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{23}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle=\sqrt{\frac{3}{2}} & \left\langle\begin{array}{c}
12 \\
2
\end{array}\right| E_{23}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle=\sqrt{\frac{1}{2}} \\
\left\langle\begin{array}{l}
12 \\
3
\end{array}\right| E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle=\sqrt{2} & \left\langle\begin{array}{c}
12 \\
3
\end{array}\right| E_{12}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle=\sqrt{2} \\
\left\langle\begin{array}{c}
12 \\
3
\end{array}\right| E_{23}\left|\begin{array}{c}
13 \\
3
\end{array}\right\rangle=\sqrt{\frac{1}{2}} & \left\langle\begin{array}{c}
13 \\
2
\end{array}\right| E_{23}\left|\begin{array}{c}
13 \\
3
\end{array}\right\rangle=\sqrt{\frac{3}{2}}
\end{array}
$$

(1-jump $\left.E_{i-1, i}\right)$
(e)

(f) $\quad E_{12}$ [1[2] $=\sqrt{2}$ [1]
(g)

(a)

$$
\left\langle T^{\prime}\right| E_{i i}|T\rangle=\delta_{T T T}\binom{\text { number }}{\text { of (iis }}
$$

(b) $\left\langle\mathrm{T}^{\prime}\right| \mathrm{E}_{\mathrm{ij}}|\mathrm{T}\rangle=\langle\mathrm{T}| \mathrm{E}_{\mathrm{ji}}|\mathrm{T}\rangle$

(n)

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2) p^{3}$ orbits
$M=2$
M=1
M=0
$M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad \begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{ll}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)(22) \\ 2+1 \end{gathered}$	$\begin{array}{cc} \hline(12) & (23) \\ 1 & 1 \end{array}$	$\begin{array}{ll} \hline-\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \\ \hline \end{array}$		
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$		$\begin{array}{cc} (11))^{(22)} \\ 1+2 & \cdot \\ & \\ & \left.\begin{array}{c} (11) \\ 2+1 \end{array}\right) \end{array}$	$\sqrt[(23)]{\sqrt{2}}$ $\sqrt[(23)]{\frac{1}{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{(12)}$ $\sqrt{2}$.	 \cdot -1 (13) 1 -	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} \hline \sqrt[(23)]{(23)} & \sqrt[(12)]{2} \\ \sqrt{\frac{123)}{2}} & \\ \sqrt{\frac{3}{2}} & \text {. } \end{array}$	(13) $\sqrt{\frac{1}{2}}$ ${ }^{(13)}$ $\sqrt{\frac{3}{2}}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} (11){ }^{(33)} & \\ 1+2 & \\ & \\ & (22) \\ & 2+1 \end{array}$	(12) 1 $c^{(23)}$ 1
$\left.\underline{\langle } \begin{aligned} & 23 \\ & 3\end{aligned} \right\rvert\,$					$\left({ }^{(22)}\right.$ $1+2$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=1
$$

(a)

$$
\left\langle T^{\text {a) }}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T_{T} T}^{\left(\begin{array}{c}
\text { of (ifs }
\end{array}\right)} \quad\left\langle\mathrm{T}^{\text {number }}\right| E_{\mathrm{ij}}|T\rangle=\langle T| E_{\mathrm{ij}}\left|T^{\prime}\right\rangle
$$

Sample applications of "Jawbone" formulae
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{12}\left|\begin{array}{c}12 \\ 2\end{array}\right\rangle=1$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{23}\left|\begin{array}{l}11 \\ 3\end{array}\right\rangle=1$
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right| E_{23}\left|\begin{array}{c}13 \\ 2\end{array}\right\rangle=\sqrt{\frac{3}{2}}$
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right| E_{23}\left|\begin{array}{c}12 \\ 3\end{array}\right\rangle=\sqrt{\frac{1}{2}}$
$\left\langle\begin{array}{l|l|l}12 \\ 3\end{array}\right| E_{12}\left|\begin{array}{l}22 \\ 3\end{array}\right\rangle=\sqrt{2}$
$\left\langle\begin{array}{l|l|l}12 \\ 3\end{array}\right| E_{12}\left|\begin{array}{l}22 \\ 3\end{array}\right\rangle=\sqrt{2}$
$\left\langle\begin{array}{l}12 \\ 3\end{array}\right| E_{23}\left|\begin{array}{c}13 \\ 3\end{array}\right\rangle=\sqrt{\frac{1}{2}}$
$\left\langle\begin{array}{c|c|c}13 \\ 2\end{array}\right| E_{23}\left|\begin{array}{c}13 \\ 3\end{array}\right\rangle=\sqrt{\frac{3}{2}}$
(1-jump $\left.E_{i-1, i}\right)$
(e)

(f) $\quad E_{12}$ [12] $=\sqrt{2}$ 四

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, ...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k}{ }_{q}\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{c}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)\left(\begin{array}{c} (22) \\ 2+1 \end{array}\right. \end{gathered}$	$\stackrel{(12)}{1} 10{ }^{(23)}$	$\binom{(13)}{-\sqrt{\frac{1}{2}}} \frac{(13)}{\sqrt{\frac{1}{2}}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} (11))^{(22)} \\ 1+2 & \cdot \\ & \cdot \\ & \begin{array}{c} \text { (11) } \\ 2+3) \end{array} \\ \hline \end{array}$	$\begin{array}{ll} \sqrt[(23)]{\frac{1}{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	$\left(\begin{array}{c}(13) \\ \cdot \\ { }^{(13)} \\ 1\end{array}\right.$	
$E_{j k}=\left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\|$ $\left\langle\begin{array}{l}13 \\ 2_{1}\end{array}\right\|$			$\begin{gathered} { }^{(11))^{(22)}} \begin{array}{c} (33) \\ 1+1 \end{array} \end{gathered}$ $\begin{gathered} (11){ }^{(22)}\left(\begin{array}{l} (33) \end{array}\right. \end{gathered}$	$\begin{array}{ll} \hline \sqrt[(23)]{(23)} & \sqrt[(12)]{2} \\ \sqrt{\frac{123)}{2}} & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (\sqrt[13)]{\left(\sqrt{\frac{1}{2}}\right.} \\ & \sqrt[(13)]{\sqrt{3}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$					$\begin{gathered} (12) \\ 1 \\ \left(\begin{array}{c} (23) \end{array}\right. \\ c_{1} \end{gathered}$
$\left.\underline{\langle } \begin{aligned} & 23 \\ & 3\end{aligned} \right\rvert\,$					$\begin{gathered} (22) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" formulae $E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \quad$ (2-jump $\left.E_{i-2, i}\right)$ $\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{13}\left|\begin{array}{c}12 \\ 3\end{array}\right\rangle=? ?$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\binom{(13)}{-\sqrt{\frac{1}{2}}} \quad$$(13)$ $\sqrt{\frac{3}{2}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} (11)(22) \\ 1+2 & \cdot \\ & \\ & . \\ (11)(33) \\ & 2+1 \end{array}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \\ \sqrt{\frac{1}{2}} & \end{array}$	(13) -1 (13) 1	.
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (23) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{2} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle=E_{12} E_{23}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle
\end{aligned}
$$

(2-jump $\left.E_{i-2, i}\right)$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{13}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle=? ?
$$

(a)

$$
\begin{aligned}
& \text { (b) }
\end{aligned}
$$

(e)

(f) $\quad E_{12}$ [12 $=\sqrt{2}$ 四

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\binom{(13)}{-\sqrt{\frac{1}{2}}} \quad$$(13)$ $\sqrt{\frac{3}{2}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} (11)(22) \\ 1+2 & \cdot \\ & \\ & . \\ (11)(33) \\ & 2+1 \end{array}$	$\binom{(23)}{\sqrt{\frac{1}{2}}}$ $\sqrt[(23)]{\frac{3}{2}}$ $\sqrt[(12)]{2}$	(13) -1 (13) 1	.
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (23) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{2} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle=E_{12} E_{23}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle \\
& =E_{12}\left(\begin{array}{c|c}
\left.\sqrt{\frac{1}{2}} \left\lvert\, \begin{array}{c}
12 \\
2
\end{array}\right.\right)-E_{23} \sqrt{2}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle
\end{array}\right\rangle \\
& \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle=? ?
\end{aligned}
$$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=1
$$

(0)

$$
\begin{aligned}
& \left.\left\langle T^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{\mathrm{T}_{\mathrm{T}}} \begin{array}{c}
\text { nuf (is } \\
\text { our }
\end{array}\right) \\
& \text { (b) }
\end{aligned}
$$

(d)

(e)

(f) $\quad E_{12}$ [12 $=\sqrt{2}$ 四

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\binom{(13)}{-\sqrt{\frac{1}{2}}} \quad$$(13)$ $\sqrt{\frac{3}{2}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} (11)(22) \\ 1+2 & \cdot \\ & \\ & . \\ (11)(33) \\ & 2+1 \end{array}$	$\left(\begin{array}{c}(23) \\ \sqrt{\frac{1}{2}} \\ \\ \sqrt{2} \\ \end{array}\right.$ $\sqrt[(23)]{\frac{3}{2}}$ 	(13) -1 (13) 1	.
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (23) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{2} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12}
\end{aligned}
$$

$$
\begin{aligned}
& =E_{12} \sqrt{\frac{1}{2}}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle-E_{23}\left(\begin{array}{ll}
\sqrt{2} & 11 \\
3
\end{array}\right\rangle \\
& \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
12 \\
3
\end{array}\right\rangle=? ?
\end{aligned}
$$

(2-jump $\left.E_{i-2, i}\right)$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=1
$$

(0)

$$
\begin{aligned}
& \text { (b) }
\end{aligned}
$$

(e)

(f) $\quad E_{12}$ [12 $=\sqrt{2}$ 四

(n)

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
M=2
M=1
M=0
$M=-1$
M=-2

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) $2+1$	$\stackrel{(12)}{1}\left[\begin{array}{c}\text { (23) } \\ 1\end{array}\right]$	$\binom{(13)}{-\sqrt{\frac{1}{2}}} \quad \sqrt{(13)} \sqrt{\frac{3}{2}}$		
$\begin{aligned} & \left\langle\begin{array}{c} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} \begin{array}{cc} (11)(22) \\ 1+2 & \\ & \cdot \\ & \\ & (11)(33) \\ & 2+1 \end{array} \end{array}$	$\underbrace{\binom{(23)}{\frac{1}{2}}}$	$\left(\begin{array}{c}(13) \\ \\ { }^{(13)} \\ 1\end{array}\right.$	
$E_{j k}=\left\langle\begin{array}{c} 12 \\ 3 \end{array}\right\|$			$\begin{gathered} (11)^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)}\left(\begin{array}{l} (33) \end{array}\right. \end{gathered}$	(23) $\sqrt{\frac{1}{2}}$ $\sqrt[(23)]{(12)}$ $\sqrt{\frac{3}{2}}$.	$\begin{aligned} & \hline(13) \\ & \sqrt{\frac{1}{2}} \\ & (13) \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$					$\begin{gathered} (12) \\ 1 \\ (23) \\ 1 \end{gathered}$
$\stackrel{\langle }{23} \begin{aligned} & 3 \\ & 3\end{aligned}$					(22) $1+2$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{c}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=1
$$

(a)
$\left\langle T^{\prime}\right| E_{i i}|T\rangle=\delta_{T_{T}^{\prime} T}\left(\begin{array}{c}\left.\text { nom } \begin{array}{c}\text { nomer } \\ \text { of (iis }\end{array}\right)\end{array}\right.$
(b)

(d)

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=E_{12} \sqrt{\frac{1}{2}}\left|\begin{array}{c|c}
12 \\
2
\end{array}\right\rangle-E_{23}\left(\begin{array}{l|l|l|}
\hline 2 & 11 \\
3
\end{array}\right\rangle\right) \\
& =1 \sqrt{\frac{1}{2}}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle-1 \begin{array}{l}
1 \\
2
\end{array}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle \\
& \text { (2-jump } E_{i-2, i} \text {) }
\end{aligned}
$$

(e)

(f) $\quad E_{12}$ [12 $=\sqrt{2}$ 四

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\binom{(12)}{1} \quad\binom{(23)}{1}$	$\binom{(13)}{-\sqrt{\frac{1}{2}}} \quad$$(13)$ $\sqrt{\frac{3}{2}}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (11) \\ 2+1 \end{gathered}$	$\left(\begin{array}{cc}(23) \\ \sqrt{\frac{1}{2}}\end{array}\right.$ (23) $\frac{3}{2}$ $\sqrt{2}$ (12)	(13) -1 (13) 1	.
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (23) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{2} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=1
$$

(a)

$$
\left\langle T^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T_{T}^{\prime} T}\binom{\text { number }}{\text { of (i's }}
$$

${ }^{101}$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12}
\end{aligned}
$$

$$
\begin{aligned}
& =1 \sqrt{\frac{1}{2}}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle-1 \begin{array}{l}
1 \\
2
\end{array}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle \\
& \text { (2-jump } E_{i-2, i} \text {) }
\end{aligned}
$$

(e)

(f) $\quad E_{12}$ [12 $=\sqrt{2}$ 四

Complete set of $E_{j k}$ matrix elements for the doublet（spin－1／2）p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	（11）${ }^{(22)}$ $2+1$	$\left[\begin{array}{c}(12) \\ 1\end{array}\right)\left(\begin{array}{c}(23) \\ 1\end{array}\right.$	$\binom{(13)}{-\sqrt{\frac{1}{2}}} \quad$$(13)$ $\frac{3}{2}$	．．	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \end{gathered}$	$\left(\begin{array}{c}(23) \\ \sqrt{\frac{1}{2}}\end{array}\right.$ $\sqrt[(23)]{\frac{3}{2}}$ $\sqrt[(12)]{2}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \cdot \end{array}$	．
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} \hline \hline \sqrt[(23)]{\frac{1}{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{2} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} (11)(33) & \\ 1+2 & \cdot \\ & (22) \\ . & 2+1 \end{array}$	$\begin{gathered} (12) \\ 1 \\ (23) \\ 1 \end{gathered}$
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$$
\begin{aligned}
& \left\langle\begin{array}{l|l|l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l|l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l|l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11
\end{array}\right\rangle=1 \\
& \text { (a) } \\
& \left\langle\mathbf{T}^{\prime}\right| E_{\mathrm{ii}}\left|T^{T}\right\rangle=\delta_{T_{T}^{\prime} T}\binom{\text { number }}{\text { of (i)'s }} \\
& \text { (b) }
\end{aligned}
$$

> (d)
> (e)

> (f) $\quad E_{12}$ 畓 $=\sqrt{2}$ 四
> (h)

Sample applications of＂Jawbone＂formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& \left.\left.E_{13}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle=E_{12} E_{23} \right\rvert\, \begin{array}{cc}
12 \\
3
\end{array}\right)-E_{23} E_{12}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle \\
& \left.=E_{12} \sqrt{\frac{1}{2}}\left|\begin{array}{c|c}
12 \\
2
\end{array}\right\rangle-E_{23}\left(\begin{array}{ll}
\sqrt{2} & 11 \\
3
\end{array}\right\rangle\right) \\
& \left.=1 \sqrt{\frac{1}{2}}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle-1 \sqrt{\sqrt{2}}{ }_{2}^{11}\right\rangle \\
& \text { (2-jump } \left.E_{i-2, i}\right)
\end{aligned}
$$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\left.-\sqrt{\frac{1}{2}}\right) \quad\left(\begin{array}{l}(13) \\ \sqrt{\frac{3}{2}}\end{array}\right.$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{array}{cc} (11)(22) \\ 1+2 & \cdot \\ & \\ & . \\ (11)(33) \\ & 2+1 \end{array}$	$\begin{array}{ll} \hline(23) & (23) \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{3}{2}} \\ \sqrt[(12)]{2} & \\ \sqrt{2} & . \end{array}$	(13) -1 (13) 1	.
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (23) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{2} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
E_{13}=\left[E_{12}, E_{23}\right] & =E_{12} E_{23} \quad-E_{23} E_{12} \\
E_{13}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle & =E_{12} E_{23}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle
\end{aligned}
$$

(2-jump $\left.E_{i-2, i}\right)$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{13}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle=? ?
$$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 12 } \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\left.-\sqrt{\frac{1}{2}}\right) \quad\left(\begin{array}{l}(13) \\ \sqrt{\frac{3}{2}}\end{array}\right.$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$		$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (11) \\ 2+1 \end{gathered}$	$\begin{array}{ll} (23) & \left(\begin{array}{l} (23) \\ \sqrt{\frac{1}{2}} \end{array}\right. \\ \sqrt[(12)]{2} \\ \sqrt{2} & \end{array}$	(13) -1 (13) 1	.
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$				$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ (23) & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{2} \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$					$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle=E_{12} E_{23}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle \\
& =E_{12} \sqrt{\frac{3}{2}}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle-E_{23} 0\left|\begin{array}{l}
13 \\
1
\end{array}\right\rangle \\
& \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle=? ?
\end{aligned}
$$

$$
\left\langle\begin{array}{l|l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=1
$$

(a)

$$
\left\langle T^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T_{T}^{\prime} T}\binom{\text { number }}{\text { of (i,'s }}
$$

(e)
$E_{23}\left[\frac{10}{3}\right]^{3}=\sqrt{\frac{1}{2}}\left[\frac{112}{3}\right]^{2}+\sqrt{\frac{3}{2}}\left[\frac{[12]^{3}}{}\right.$
(f) E_{12} [12) $=\sqrt{2}$ [1]

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle=E_{12} E_{23}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle \\
& \left.=E_{12} \sqrt{\frac{3}{2}} \left\lvert\, \begin{array}{c}
12 \\
2
\end{array}\right.\right)-E_{23} 0\left|\begin{array}{l}
13 \\
1
\end{array}\right\rangle \\
& \left.\left.=1\left(\sqrt{\frac{3}{2}}\right)^{11}{ }_{2}^{1}\right\rangle\right)-0 \\
& \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle=\text { ?? }
\end{aligned}
$$

(2-jump $\left.E_{i-2, i}\right)$
(a)

$$
\left\langle T^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T_{T}^{\prime} T}\binom{\text { number }}{\text { of (ís }}
$$

(e)

(f) $\quad E_{12}$ [12 $=\sqrt{2}$ 四

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
M=2
M=1
M=0
M=-1
$M=-2$ $E_{j k}=$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{aligned} & (11)(22) \\ & 2+1 \end{aligned}$	${ }_{(12)}^{(12)}{ }^{(23)}$	$-\sqrt{\frac{1}{2}} \quad\left(\begin{array}{ll}(13) \\ \sqrt{(13)} \\ \sqrt{\frac{1}{2}}\end{array}\right)$		
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$		$\begin{array}{cc} (11))^{(22)} \\ 1+2 & \cdot \\ & \cdot \\ & (11) \\ 2+13) \end{array}$	$\begin{array}{ll} \begin{array}{l} (23) \\ \sqrt{\frac{1}{2}} \\ (12) \\ \sqrt{2} \end{array} & \left(\sqrt{\frac{123}{2}}\right) \end{array}$	(13) (13) 1	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$			$\begin{gathered} (111)^{(22)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(333)} \end{gathered}$	 $\sqrt{(23)}$ $\sqrt[(12)]{\frac{1}{2}}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{\frac{2}{2}}$. 	$\begin{aligned} & (\sqrt[13]{(13)} \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\sqrt{3}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{l} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$				$\begin{array}{cc} \begin{array}{cc} (11)(3) \\ 1+2 \end{array} & \cdot \\ & \begin{array}{c} (22)(33) \\ 2+1 \end{array} \end{array}$	$\begin{gathered} (12) \\ 1 \\ (23) \\ \left(\begin{array}{c} (23) \end{array}\right. \end{gathered}$
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$					(22) $1+2$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{c}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=1
$$

(a)
$\left\langle T^{\prime}\right| E_{i i}|T\rangle=\delta_{T, T}\binom{$ number }{ of (iís }
(b)

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle \quad=E_{12} E_{23}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{c}
13 \\
2
\end{array}\right\rangle \\
& \left.=E_{12} \sqrt{\sqrt{\frac{3}{2}}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle}\right\rangle-E_{23} 0\left|\begin{array}{l}
13 \\
1
\end{array}\right\rangle \\
& =1 \sqrt{\sqrt{\frac{3}{2}}}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle-0 \\
& \begin{array}{l}
\left\langle\begin{array}{c|c|c}
11 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
13 \\
2
\end{array}\right\rangle=\sqrt{\frac{3}{2}} \\
\hline
\end{array}
\end{aligned}
$$

(2-jump $\left.E_{i-2, i}\right)$
(e)

(f) $\quad E_{12}$ [12) $=\sqrt{2}$ (11)

(h)

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin-1/2) p3 orbits
$M=2$
M=1
M=0
M=-1
$M=-2$ $E_{j k}=$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=1
$$

(a)
$\left\langle T^{\prime}\right| E_{i i}|T\rangle=\delta_{T, T}\binom{$ number }{ of (iís }
(b)

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c|c}
22 \\
3
\end{array}\right\rangle \\
& =E_{12} E_{23}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle
\end{aligned}
$$

(2-jump $\left.E_{i-2, i}\right)$

$$
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle=? ?
$$

Complete set of $E_{j k}$ matrix elements for the doublet（spin－1／2 ）p3 orbits
$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11)(22) \\ 2+1 \end{gathered}$	$\stackrel{(12)}{1} \stackrel{1}{123}$	$\begin{array}{ll} \hline(13) \\ -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$	．．	
$\left\langle\begin{array}{l}12 \\ 2\end{array}\right\|$ $\left\langle\begin{array}{l}11 \\ 3\end{array}\right\|$		$\left.\begin{array}{cc} (11))^{(22)} \\ 1+2 & \cdot \\ & \cdot \\ \cdot & (11) \\ 2+1 \end{array}\right)$	$\sqrt[(23)]{\sqrt{2}}$ $\sqrt[(23)]{\frac{3}{2}}$ $\sqrt{(12)}$ $\sqrt{2}$.		
$\begin{aligned} & \left\langle\begin{array}{l} \mid 2 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 13 \end{array}\right\| \end{aligned}$			$\begin{gathered} (11)^{(22)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(333)} \end{gathered}$	$\begin{array}{ll} \hline\left(\frac{123)}{(23)}\right. & \sqrt[(12)]{2} \\ \sqrt{\frac{1}{2} 23} & \\ \sqrt{\frac{3}{2}} & \cdot \end{array}$	（13） $\sqrt{\frac{1}{2}}$ $\underbrace{13}_{133}$ $\sqrt{\frac{3}{2}}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$					（12） 1 ${ }^{(23)}$ 1
$\underline{\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|}$					1 $1+2$

Sample applications of＂Jawbone＂formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle=E_{12} E_{23}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle \\
& E_{13}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle=0 \quad-E_{23}\left(\begin{array}{l}
2 \\
2
\end{array}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle\right. \\
& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle=? ?
\end{aligned}
$$

（2－jump $\left.E_{i-2, i}\right)$

$$
\begin{aligned}
& \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{11}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| E_{22}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=1 \\
& \text { (a) } \\
& \left\langle T^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T_{,}^{\prime} T}\binom{\text { number }}{\text { of (i)'s }} \\
& \text { (b) } \\
& \text { (d) } \\
& \text { (e) }
\end{aligned}
$$

> (f) $\quad E_{12}$ 告 $12=\sqrt{2}$ 四
> (h)

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
M=2
M=1
M=0
M=-1
$M=-2$ $E_{j k}=$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=E_{12} E_{23}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle \\
& E_{13}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=0 \quad-E_{23}\left(\begin{array}{c}
\sqrt{2}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle
\end{array}\right. \\
& E_{13}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=0 \quad-\left(\frac{1}{\sqrt{2}} \sqrt{2}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle\right. \\
& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle=? ? \\
& \text { (2-jump } \left.E_{i-2, i}\right)
\end{aligned}
$$

$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{11}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{22}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=1$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits
M=2
M=1
M=0
M=-1
$M=-2$ $E_{j k}=$

Sample applications of "Jawbone" formulae

$$
\begin{aligned}
& E_{13}=\left[E_{12}, E_{23}\right]=E_{12} E_{23} \quad-E_{23} E_{12} \\
& E_{13}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=E_{12} E_{23}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle-E_{23} E_{12}\left|\begin{array}{c}
22 \\
3
\end{array}\right\rangle \\
& E_{13}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=0 \quad-E_{23}\left(\begin{array}{c}
\sqrt{2}\left|\begin{array}{c}
12 \\
3
\end{array}\right\rangle
\end{array}\right. \\
& E_{13}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=0 \quad-\left(\frac{1}{\sqrt{2}} \sqrt{2}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle\right. \\
& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| E_{13}\left|\begin{array}{l}
22 \\
3
\end{array}\right\rangle=-1 \\
& \text { (2-jump } \left.E_{i-2, i}\right)
\end{aligned}
$$

$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{11}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=2 \quad\left\langle\begin{array}{l}11 \\ 2\end{array}\right| E_{22}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=1$

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $E_{i-2, i}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, ...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k}{ }_{q}\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Complete set of $E_{j k}$ matrix elements for the doublet $($ spin- $1 / 2$) p3 orbits

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, \ldots
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Multipole expansions and Coulomb (e-e)-electrostatic interaction
Legendre polynomials $P \ell$ defined by R(3) irep $D^{\ell}: \quad X_{0}^{\ell}=r^{\prime} D_{0,0}^{\ell}(\cdot \theta \cdot)=r^{\prime} P_{\ell}(\cos \theta)$
Derivatives of monopole potential

$$
V^{\text {monopoole }}(r)=\frac{q}{r}=\frac{q P_{0}(\cos \theta)}{r}
$$

Multipole expansions and Coulomb (e-e)-electrostatic interaction
Legendre polynomials $P \ell$ defined by R(3) irep $D^{\ell}: \quad X_{0}^{\ell}=r^{\prime} D_{0,0}^{\ell}(\cdot \theta \cdot)=r^{\prime} P_{\ell}(\cos \theta)$
Derivatives of monopole potential

$$
V^{\text {monopole }}(r)=\frac{q}{r}=\frac{q P_{0}(\cos \theta)}{r} \quad \frac{\partial}{\partial z}(r)^{n}=n(r)^{n-1} \frac{\partial}{\partial z} \sqrt{x^{2}+y^{2}+z^{2}}=n(r)^{n-2} z
$$

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Legendre polynomials $P \ell$ defined by $\mathrm{R}(3)$ irep $D^{\ell}: \quad X_{0}^{\ell}=r^{\prime} D_{0,0}^{e}(\cdot \theta \cdot)=r^{\prime} P_{\ell}(\cos \theta)$
Derivatives of monopole potential $V^{\text {monopole }}(r)=\frac{q}{r}=\frac{q P_{0}(\cos \theta)}{r} \quad \frac{\partial}{\partial z}(r)^{n}=n(r)^{n-1} \frac{\partial}{\partial z} \sqrt{x^{2}+y^{2}+z^{2}}=n(r)^{n-2} z$ dipole potential: $\quad V^{\text {dipole }}(r)=-\frac{\partial}{\partial z} V^{\text {monopople }}(r)=\frac{q z}{r^{3}}=\frac{q \cos \theta}{r^{2}}=\frac{q P_{1}(\cos \theta)}{r^{2}}$

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Legendre polynomials $P \ell$ defined by R(3) irep $D^{\ell}: \quad X_{0}^{\ell}=r^{\prime} D_{0,0}^{\ell}(\cdot \theta \cdot)=r^{\prime} P_{\ell}(\cos \theta)$
Derivatives of monopole potential

$$
V^{\text {monopole }}(r)=\frac{q}{r}=\frac{q P_{0}(\cos \theta)}{r} \quad \frac{\partial}{\partial z}(r)^{n}=n(r)^{n-1} \frac{\partial}{\partial z} \sqrt{x^{2}+y^{2}+z^{2}}=n(r)^{n-2} z
$$

dipole potential:
$V^{\text {dipole }}(r)=-\frac{\partial}{\partial z} V^{\text {monopole }}(r)=\frac{q z}{r^{3}}=\frac{q \cos \theta}{r^{2}}=\frac{q P_{1}(\cos \theta)}{r^{2}}$
quadrupole potential:

$$
V^{\text {guadrupole }}(r)=-\frac{1}{2} \frac{\partial}{\partial z} V^{\text {dipole }}(r)=-\frac{1}{2} \frac{\partial}{\partial z} \frac{q z}{r^{3}}=q \frac{3 z^{2}-r^{2}}{2 r^{5}}=\frac{q P_{2}(\cos \theta)}{r^{3}}
$$

QTCA Unit 8 Wavefunctions begins on p. 24
QTCA Unit 8 Multipole functions begins on p. 33

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Legendre polynomials $P \ell$ defined by R(3) irep $D^{\ell}: \quad X_{0}^{\ell}=r^{\prime} D_{0,0}^{\ell}(\cdot \theta \cdot)=r^{t} P_{\ell}(\cos \theta)$
Derivatives of monopole potential

$$
V^{\text {monopole }}(r)=\frac{q}{r}=\frac{q P_{0}(\cos \theta)}{r} \quad \frac{\partial}{\partial z}(r)^{n}=n(r)^{n-1} \frac{\partial}{\partial z} \sqrt{x^{2}+y^{2}+z^{2}}=n(r)^{n-2} z
$$

dipole potential:

$$
V^{\text {dipole }}(r)=-\frac{\partial}{\partial z} V^{\text {monopole }}(r)=\frac{q z}{r^{3}}=\frac{q \cos \theta}{r^{2}}=\frac{q P_{1}(\cos \theta)}{r^{2}}
$$

quadrupole potential:

$$
V^{\text {quadrupole }}(r)=-\frac{1}{2} \frac{\partial}{\partial z} V^{\text {dipole }}(r)=-\frac{1}{2} \frac{\partial}{\partial z} \frac{q z}{r^{3}}=q \frac{3 z^{2}-r^{2}}{2 r^{5}}=\frac{q P_{2}(\cos \theta)}{r^{3}}
$$

octupole potential: $\quad V^{\text {octupole }}(r)=\frac{-1}{3} \frac{\partial}{\partial z} V^{\text {quadrupole }}(r)=\frac{-1}{3} \frac{\partial}{\partial z} \frac{3 z^{2}-r^{2}}{2 r^{5}}=q \frac{5 z^{3}-3 z}{2 r^{5}}=\frac{q P_{3}(\cos \theta)}{r^{4}}$

QTCA Unit 8 Wavefunctions begins on p. 24 QTCA Unit 8 Multipole functions begins on p. 33

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Legendre polynomials $P \ell$ defined by R(3) irep $D^{\ell}: \quad X_{0}^{\ell}=r^{\prime} D_{0,0}^{\ell}(\cdot \theta \cdot)=r^{t} P_{\ell}(\cos \theta)$
Derivatives of monopole potential

$$
V^{\text {monopole }}(r)=\frac{q}{r}=\frac{q P_{0}(\cos \theta)}{r} \quad \frac{\partial}{\partial z}(r)^{n}=n(r)^{n-1} \frac{\partial}{\partial z} \sqrt{x^{2}+y^{2}+z^{2}}=n(r)^{n-2} z
$$

dipole potential:

$$
V^{\text {dipole }}(r)=-\frac{\partial}{\partial z} V^{\text {monopole }}(r)=\frac{q z}{r^{3}}=\frac{q \cos \theta}{r^{2}}=\frac{q P_{1}(\cos \theta)}{r^{2}}
$$

quadrupole potential:

$$
V^{\text {quadrupole }}(r)=-\frac{1}{2} \frac{\partial}{\partial z} V^{\text {dipole }}(r)=-\frac{1}{2} \frac{\partial}{\partial z} \frac{q z}{r^{3}}=q \frac{3 z^{2}-r^{2}}{2 r^{5}}=\frac{q P_{2}(\cos \theta)}{r^{3}}
$$

octupole potential: $\quad V^{\text {octupole }}(r)=\frac{-1}{3} \frac{\partial}{\partial z} V^{\text {quadrupole }}(r)=\frac{-1}{3} \frac{\partial}{\partial z} \frac{3 z^{2}-r^{2}}{2 r^{5}}=q \frac{5 z^{3}-3 z}{2 r^{5}}=\frac{q P_{3}(\cos \theta)}{r^{4}}$
linear multi-pole or 2ℓ-pole potential $\quad V^{2^{\ell}-\text { pole }}(r)=\frac{(-1)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}}\left(\frac{q}{r}\right)=\frac{q P_{\ell}(\cos \theta)}{r^{\ell+1}}$

Fig. 23.3.4 Linear $2 k$-pole charge arrays and potential or wave function plots.

$$
\begin{array}{ll}
P_{0}(z)=1, & P_{1}(z)=z, \\
P_{2}(z)=\frac{1}{2}\left(3 z^{2}-1\right), & P_{3}(z)=\frac{1}{2}\left(5 z^{3}-3 z\right), \\
P_{4}(z)=\frac{1}{8}\left(35 z^{4}-30 z^{2}+3\right), & P_{5}(z)=\frac{1}{8}\left(63 z^{5}-70 z^{3}+15 z\right),
\end{array}
$$

 붑ㅂㅂ
linear multi-pole or
2 ℓ-pole potential

$$
\begin{aligned}
V^{2^{\ell}-\text { pole }}(r) & =\frac{(-1)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}}\left(\frac{q}{r}\right) \\
& =\frac{q P_{\ell}(\cos \theta)}{r^{\ell+1}}
\end{aligned}
$$

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, ...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k}{ }_{q}\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:

$$
\begin{aligned}
\frac{q}{\left|\mathbf{r - \mathbf { r } ^ { \prime }}\right|} & =\frac{q}{r} \quad-r^{\prime} \frac{\partial}{\partial z}\left(\frac{q}{r}\right) \quad+\frac{\left(r^{\prime}\right)^{2}}{2!} \frac{\partial^{2}}{\partial z^{2}}\left(\frac{q}{r}\right) \quad-\frac{\left(r^{\prime}\right)^{3}}{3!} \frac{\partial^{3}}{\partial z^{3}}\left(\frac{q}{r}\right)+\cdots+\frac{\left(-r^{\prime}\right)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}}\left(\frac{q}{r}\right) \cdots \\
& =\frac{q}{r}+\frac{q r^{\prime}}{r^{2}} P_{1}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{2}}{r^{3}} P_{2}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{3}}{r^{4}} P_{3}(\cos \theta)+\cdots+\frac{q\left(r^{\prime}\right)^{\ell}}{r^{++1}} P_{\ell}(\cos \theta) \cdots
\end{aligned}
$$

Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:

$$
\begin{aligned}
\frac{q}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} & =\frac{q}{r} \quad-r^{\prime} \frac{\partial}{\partial z}\left(\frac{q}{r}\right) \quad+\frac{\left(r^{\prime}\right)^{2}}{2!} \frac{\partial^{2}}{\partial z^{2}}\left(\frac{q}{r}\right) \quad-\frac{\left(r^{\prime}\right)^{3}}{3!} \frac{\partial^{3}}{\partial z^{3}}\left(\frac{q}{r}\right)+\cdots+\frac{\left(-r^{\prime}\right)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}}\left(\frac{q}{r}\right) \cdots \\
& =\frac{q}{r}+\frac{q r^{\prime}}{r^{2}} P_{1}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{2}}{r^{3}} P_{2}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{3}}{r^{4}} P_{3}(\cos \theta)+\cdots+\frac{q\left(r^{\prime}\right)^{\ell}}{r^{\ell+1}} P_{\ell}(\cos \theta) \cdots
\end{aligned}
$$

Off-z-axis position state $|\alpha, \beta, 0\rangle$ by Euler rotation: $\quad \mathbf{R}(\alpha, \beta, 0)|0,0,0\rangle=|\alpha, \beta, 0\rangle$ Off-z-axis $P_{\ell}(\cos \theta)$ wave by Euler rotation: $\left|\begin{array}{l}\ell \\ 0\end{array}\right\rangle_{(\alpha, \beta)}=\mathbf{R}(\alpha, \beta, 0)\left|\begin{array}{l}\ell \\ 0,0\end{array}\right\rangle$

$$
=\sum_{m=-\ell}^{\ell}\left|\begin{array}{l}
\ell \\
m, 0
\end{array}\right\rangle D_{m, 0}^{\ell}(\alpha, \beta, 0)=\sum_{m=-\ell}^{\ell}\left|\begin{array}{l}
\ell \\
m, 0
\end{array}\right\rangle Y_{m}^{\ell^{*}}(\alpha, \beta) \sqrt{\frac{4 \pi}{2 \ell+1}}
$$

Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:

$$
\begin{aligned}
\frac{q}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} & =\frac{q}{r} \quad-r^{\prime} \frac{\partial}{\partial z}\left(\frac{q}{r}\right) \quad+\frac{\left(r^{\prime}\right)^{2}}{2!} \frac{\partial^{2}}{\partial z^{2}}\left(\frac{q}{r}\right) \quad-\frac{\left(r^{\prime}\right)^{3}}{3!} \frac{\partial^{3}}{\partial z^{3}}\left(\frac{q}{r}\right)+\cdots+\frac{\left(-r^{\prime}\right)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}}\left(\frac{q}{r}\right) \cdots \\
& =\frac{q}{r}+\frac{q r^{\prime}}{r^{2}} P_{1}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{2}}{r^{3}} P_{2}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{3}}{r^{4}} P_{3}(\cos \theta)+\cdots+\frac{q\left(r^{\prime}\right)^{\ell}}{r^{\ell+1}} P_{\ell}(\cos \theta) \cdots
\end{aligned}
$$

Off-z-axis position state $|\alpha, \beta, 0\rangle$ by Euler rotation: $\quad \mathbf{R}(\alpha, \beta, 0)|0,0,0\rangle=|\alpha, \beta, 0\rangle$
Off-z-axis $P_{\ell}(\cos \theta)$ wave by Euler rotation: $\left|\begin{array}{l}\ell \\ 0\end{array}\right\rangle_{(\alpha, \beta)}=\mathbf{R}(\alpha, \beta, 0)\left|\begin{array}{l}\ell \\ 0,0\end{array}\right\rangle$

$$
=\sum_{m=-\ell}^{\ell}\langle m, 0\rangle D_{m, 0}^{\ell}(\alpha, \beta, 0)=\sum_{m=-\ell}^{\ell}\left|{ }_{m, 0}^{\ell}\right\rangle Y_{m}^{\ell^{*}}(\alpha, \beta) \sqrt{\frac{4 \pi}{2 \ell+1}}
$$

Amplitude at polar position $|\phi, \theta, 0\rangle$ of rotated P-wave: $\left.\left\langle\phi,\left.\theta\right|_{0} ^{\ell}\right\rangle_{(\alpha, \beta)}=\left.\langle\phi, \theta| \mathbf{R}(\alpha, \beta, 0)\right|_{0,0} ^{\ell}\right\rangle$

$$
\begin{aligned}
& =\sum_{m=-\ell}^{\ell}\left\langle\phi,\left.\theta\right|_{m, 0} ^{\ell}\right\rangle Y_{m}^{\ell^{*}}(\alpha, \beta) \sqrt{\frac{4 \pi}{2 \ell+1}} \\
& =\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{\ell^{*}}(\alpha, \beta) \frac{4 \pi}{2 \ell+1}
\end{aligned}
$$

Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:

$$
\begin{aligned}
\frac{q}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} & =\frac{q}{r} \quad-r^{\prime} \frac{\partial}{\partial z}\left(\frac{q}{r}\right) \quad+\frac{\left(r^{\prime}\right)^{2}}{2!} \frac{\partial^{2}}{\partial z^{2}}\left(\frac{q}{r}\right) \quad-\frac{\left(r^{\prime}\right)^{3}}{3!} \frac{\partial^{3}}{\partial z^{3}}\left(\frac{q}{r}\right)+\cdots+\frac{\left(-r^{\prime}\right)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}}\left(\frac{q}{r}\right) \cdots \\
& =\frac{q}{r}+\frac{q r^{\prime}}{r^{2}} P_{1}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{2}}{r^{3}} P_{2}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{3}}{r^{4}} P_{3}(\cos \theta)+\cdots+\frac{q\left(r^{\prime}\right)^{\ell}}{r^{\ell+1}} P_{\ell}(\cos \theta) \cdots
\end{aligned}
$$

Off-z-axis position state $|\alpha, \beta, 0\rangle$ by Euler rotation: $\quad \mathbf{R}(\alpha, \beta, 0)|0,0,0\rangle=|\alpha, \beta, 0\rangle$
Off-z-axis $P_{\ell}(\cos \theta)$ wave by Euler rotation: $\left|\begin{array}{l}\ell \\ 0\end{array}\right\rangle_{(\alpha, \beta)}=\mathbf{R}(\alpha, \beta, 0)\left|\begin{array}{l}\ell, 0 \\ 0,0\end{array}\right\rangle$

$$
=\sum_{m=-\ell}^{\ell}\langle m, 0\rangle D_{m, 0}^{\ell}(\alpha, \beta, 0)=\sum_{m=-\ell}^{\ell}\left|{ }_{m, 0}^{\ell}\right\rangle Y_{m}^{\ell^{*}}(\alpha, \beta) \sqrt{\frac{4 \pi}{2 \ell+1}}
$$

Amplitude at polar position $|\phi, \theta, 0\rangle$ of rotated P-wave: $\left.\left\langle\phi,\left.\theta\right|_{0} ^{\ell}\right\rangle_{(\alpha, \beta)}=\left.\langle\phi, \theta| \mathbf{R}(\alpha, \beta, 0)\right|_{0,0} ^{\ell}\right\rangle$

$$
\begin{aligned}
& =\sum_{m=-\ell}^{\ell}\left\langle\phi,\left.\theta\right|_{m, 0} ^{\ell}\right) Y_{m}^{\ell^{*}}(\alpha, \beta) \sqrt{\frac{4 \pi}{2 \ell+1}} \\
& =\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{\ell^{*}}(\alpha, \beta) \frac{4 \pi}{2 \ell+1}
\end{aligned}
$$

$\Phi \quad$...representing a group product $\mathbf{R}^{\dagger}(\alpha, \beta, 0) \mathbf{R}(\phi, \theta, 0)=\mathbf{R}(\Phi, \Theta, 0)$.

$$
\begin{aligned}
(\alpha, \beta)\left\langle\begin{array}{l}
\ell \\
\left.\begin{array}{l}
\ell \\
0
\end{array}\right\rangle_{(\phi, \theta)}
\end{array}\right. & =\left\langle\begin{array}{l}
\ell \\
0
\end{array}\right| \mathbf{R}^{\dagger}(\alpha, \beta, 0) \mathbf{R}(\phi, \theta, 0)\left|\begin{array}{l}
\ell \\
0
\end{array}\right\rangle=\left\langle\begin{array}{l}
\ell \\
0
\end{array}\right| \mathbf{R}(\Phi, \Theta, 0)\left|\begin{array}{l}
\ell \\
0
\end{array}\right\rangle \\
& =\sum_{m=-\ell}^{\ell} D_{0, m}^{\ell \dagger}(\alpha, \beta, 0) D_{m, 0}^{\ell}(\phi, \theta, 0)=D_{0,0}^{\ell}(\Phi, \Theta, 0)=P_{\ell}(\cos \Theta)
\end{aligned}
$$

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, ...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }^{k}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:

$$
\begin{aligned}
\frac{q}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} & =\frac{q}{r} \quad-r^{\prime} \frac{\partial}{\partial z}\left(\frac{q}{r}\right) \quad+\frac{\left(r^{\prime}\right)^{2}}{2!} \frac{\partial^{2}}{\partial z^{2}}\left(\frac{q}{r}\right) \quad-\frac{\left(r^{\prime}\right)^{3}}{3!} \frac{\partial^{3}}{\partial z^{3}}\left(\frac{q}{r}\right)+\cdots+\frac{\left(-r^{\prime}\right)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}}\left(\frac{q}{r}\right) \cdots \\
& =\frac{q}{r}+\frac{q r^{\prime}}{r^{2}} P_{1}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{2}}{r^{3}} P_{2}(\cos \theta)+\frac{q\left(r^{\prime}\right)^{3}}{r^{4}} P_{3}(\cos \theta)+\cdots+\frac{q\left(r^{\prime}\right)^{\ell}}{r^{\ell+1}} P_{\ell}(\cos \theta) \cdots
\end{aligned}
$$

Off-z-axis position state $|\alpha, \beta, 0\rangle$ by Euler rotation: $\quad \mathbf{R}(\alpha, \beta, 0)|0,0,0\rangle=|\alpha, \beta, 0\rangle$
Off-z-axis $P_{\ell}(\cos \theta)$ wave by Euler rotation: $\left|\begin{array}{l}\ell \\ 0\end{array}\right\rangle_{(\alpha, \beta)}=\mathbf{R}(\alpha, \beta, 0)\left|\begin{array}{l}\ell, 0 \\ 0,0\end{array}\right\rangle$

$$
=\sum_{m=-\ell}^{\ell}\langle m, 0\rangle D_{m, 0}^{\ell}(\alpha, \beta, 0)=\sum_{m=-\ell}^{\ell}\left|{ }_{m, 0}^{\ell}\right\rangle Y_{m}^{\ell^{*}}(\alpha, \beta) \sqrt{\frac{4 \pi}{2 \ell+1}}
$$

Amplitude at polar position $|\phi, \theta, 0\rangle$ of rotated P-wave: $\left.\left\langle\phi,\left.\theta\right|_{0} ^{\ell}\right\rangle_{(\alpha, \beta)}=\left.\langle\phi, \theta| \mathbf{R}(\alpha, \beta, 0)\right|_{0,0} ^{\ell}\right\rangle$

$$
\begin{aligned}
& =\sum_{m=-\ell}^{\ell}\left\langle\phi,\left.\theta\right|_{m, 0} ^{\ell}\right) Y_{m}^{\ell^{*}}(\alpha, \beta) \sqrt{\frac{4 \pi}{2 \ell+1}} \\
& =\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{\ell^{*}}(\alpha, \beta) \frac{4 \pi}{2 \ell+1}
\end{aligned}
$$

$\Phi \quad$..representing a group product $\mathbf{R} \dagger(\alpha, \beta, 0) \mathbf{R}(\phi, \theta, 0)=\mathbf{R}(\Phi, \Theta, 0)$.

$$
(\alpha, \beta)\left\langle\left.\begin{array}{l}
\ell \\
0
\end{array} \right\rvert\, \begin{array}{l}
\ell
\end{array}\right\rangle_{(\phi, \theta)}=\quad\left\langle\left.\begin{array}{l}
\ell \\
0
\end{array} \mathbf{R}^{\dagger}(\alpha, \beta, 0) \mathbf{R}(\phi, \theta, 0) \right\rvert\, \begin{array}{l}
\ell \\
0
\end{array}\right\rangle=\left\langle\begin{array}{l}
\ell \\
0
\end{array}\right| \mathbf{R}(\Phi, \Theta, 0)\left|\begin{array}{l}
\ell \\
0
\end{array}\right\rangle
$$

$$
=\sum_{m=-\ell}^{\ell} D_{0, m}^{\ell \dagger}(\alpha, \beta, 0) D_{m, 0}^{\ell}(\phi, \theta, 0)=D_{0,0}^{\ell}(\Phi, \Theta, 0)=P_{\ell}(\cos \Theta)
$$

..gives $\begin{array}{r}\text { Multipole Addition Theorem } P_{\ell}(\cos \Theta)=\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{*^{*}}(\alpha, \beta) \frac{4 \pi}{2 \ell+1} \\ \ldots \text { but should be called the (group) Multiplication Theorem }\end{array}$
QTCA Unit 8 Multipole functions begins on p. 33

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole,...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k}{ }_{q}\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }^{k}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix elements

$$
\begin{aligned}
& \text { Multipole Addition Theorem } P_{\ell}(\cos \Theta)=\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{\ell *}(\alpha, \beta) \frac{4 \pi}{2 \ell+1} \\
& \frac{e^{2}}{\left|\mathbf{r}_{\alpha}-\mathbf{r}_{\beta}\right|}=\sum_{\ell=0} \frac{e^{2} r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos \Theta_{1}\right)=\sum_{\ell=0} \sum_{m=-\ell}^{\ell} \frac{4 \pi e^{2} r_{\alpha}^{\ell}}{(2 \ell+1) r_{\beta}^{\ell+1}} Y_{m}^{\ell^{*}}\left(\phi_{1}, \theta_{1}\right) Y_{m}^{\ell}(\phi, \theta) \text { for: } r_{\alpha}<r_{\beta}
\end{aligned}
$$

Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix elements

$$
\begin{aligned}
& \text { Multipole Addition Theorem } P_{\ell}(\cos \Theta)=\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{\ell *}(\alpha, \beta) \frac{4 \pi}{2 \ell+1} \\
& \frac{e^{2}}{\left|\mathbf{r}_{\alpha}-\mathbf{r}_{\beta}\right|}=\sum_{\ell=0} \frac{e^{2} r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos \Theta_{1}\right)=\sum_{\ell=0} \sum_{m=-\ell}^{\ell} \frac{4 \pi e^{2} r_{\alpha}^{\ell}}{(2 \ell+1) r_{\beta}^{\ell+1}} Y_{m}^{\ell^{*}}\left(\phi_{1}, \theta_{1}\right) Y_{m}^{\ell}(\phi, \theta) \text { for: } r_{\alpha}<r_{\beta}
\end{aligned}
$$

Shorthand Tensor form of (e-e)-interaction

$$
\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}=\sum_{k=0}^{\ell} \sum_{q=-k}^{k} \frac{r_{\alpha}^{k}}{k_{\beta}^{k+1}} C_{-q}^{k}(\alpha) C_{q}^{k}(\beta) \quad \text { where: } C_{q}^{k}(\alpha)=\sqrt{\frac{4 \pi}{2 k+1}} Y_{q}^{k}\left(\phi_{\alpha}, \theta_{\alpha}\right)
$$

Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix elements
Multipole Addition Theorem $P_{\ell}(\cos \Theta)=\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{\ell^{*}}(\alpha, \beta) \frac{4 \pi}{2 \ell+1}$

$$
\frac{e^{2}}{\left|\mathbf{r}_{\alpha}-\mathbf{r}_{\beta}\right|}=\sum_{\ell=0} \frac{e^{2} r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos \Theta_{1}\right)=\sum_{\ell=0} \sum_{m=-\ell}^{\ell} \frac{4 \pi e^{2} r_{\alpha}^{\ell}}{(2 \ell+1) r_{\beta}^{\ell+1}} Y_{m}^{* *}\left(\phi_{1}, \theta_{1}\right) Y_{m}^{\ell}(\phi, \theta) \text { for: } r_{\alpha}<r_{\beta}
$$

Shorthand Tensor form of (e-e)-interaction

$$
\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}=\sum_{k=0}^{k} \sum_{q=-k}^{k} \frac{r_{\alpha}^{k}}{k_{\beta}^{k+1}} C_{-q}^{k}(\alpha) C_{q}^{k}(\beta) \quad \text { where: } C_{q}^{k}(\alpha)=\sqrt{\frac{4 \pi}{2 k+1}} Y_{q}^{k}\left(\phi_{\alpha}, \theta_{\alpha}\right)
$$

(e-e)-interaction matrix (multi- ℓ-shell)

$$
\begin{aligned}
& \text { Given in terms of Slater radial integral(s): }
\end{aligned}
$$

$$
\begin{aligned}
& F^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)=\int r_{1}^{2} d r_{1} \int r_{2}^{2} d r_{2} R_{\ell_{1}}\left(r_{1}\right) R_{\ell_{2}^{\prime}}\left(r_{2}\right) \frac{r_{-}^{k}}{r_{>}^{k+1}} R_{\ell_{1}}\left(r_{1}\right) R_{\ell_{2}}\left(r_{2}\right)
\end{aligned}
$$

where parity requires: $\left\{\begin{array}{l}1=(-1)^{\ell_{1}+k+\ell_{1}}=(-1)^{\ell_{2}+k+\ell_{2}} \\ (-1)^{\Delta}=(-1)^{\ell_{1}-\ell_{1}}=(-1)^{\ell_{2}-\ell_{2}}\end{array}\right.$

Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix elements
Multipole Addition Theorem $P_{\ell}(\cos \Theta)=\sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi, \theta) Y_{m}^{\ell^{*}}(\alpha, \beta) \frac{4 \pi}{2 \ell+1}$

$$
\frac{e^{2}}{\left|\mathbf{r}_{\alpha}-\mathbf{r}_{\beta}\right|}=\sum_{\ell=0} \frac{e^{2} r_{\ell}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos \Theta_{1}\right)=\sum_{\ell=0} \sum_{m=-\ell}^{\ell} \frac{4 \pi e^{2} r_{\alpha}^{\ell}}{(2 \ell+1) r_{\beta}^{\ell+1}} Y_{m}^{\epsilon^{\ell}}\left(\phi_{1}, \theta_{1}\right) Y_{m}^{\ell}(\phi, \theta) \text { for: } r_{\alpha}<r_{\beta}
$$

Shorthand Tensor form of (e-e)-interaction

$$
\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}=\sum_{k=0}^{k} \sum_{q=-k}^{k} \frac{r_{\alpha}^{k}}{k_{\beta}^{k+1}} C_{-q}^{k}(\alpha) C_{q}^{k}(\beta) \quad \text { where: } C_{q}^{k}(\alpha)=\sqrt{\frac{4 \pi}{2 k+1}} Y_{q}^{k}\left(\phi_{\alpha}, \theta_{\alpha}\right)
$$

(e-e)-interaction matrix (multi- ℓ-shell)

$$
\begin{aligned}
& \text { Given in terms of Slater radial integral(s): }
\end{aligned}
$$

$$
\begin{aligned}
& F^{k}\left(\ell_{1}^{\prime} 1_{2}^{\prime} \ell_{1} \ell_{2}\right)=\int r_{1}^{2} d r_{1} \int r_{2}^{2} d r_{2} R_{\ell_{1}^{\prime}}\left(r_{1}\right) R_{\ell_{2}^{\prime}}\left(r_{2}\right) \frac{r_{<}^{k}}{r_{>}^{k+1}} R_{\ell_{1}}\left(r_{1}\right) R_{\ell_{2}}\left(r_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { where parity requires: }\left\{\begin{array}{l}
1=(-1)^{\ell_{1}+k+\ell_{1}}=(-1)^{\ell_{2}+k+\ell_{2}} \\
(-1)^{\Delta}=(-1)^{\ell_{1}-\ell_{1}}=(-1)^{\ell_{2}-\ell_{2}}
\end{array}\right.
\end{aligned}
$$

Elementary operator expressions for (e-e)-interaction matrix

Complete set of E_{jk} matrix elements for the doublet ((spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, ...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}
(Repeating from preceding page) (e-e)-interaction matrix (multi- ℓ-shell)

$$
\begin{aligned}
& \text { where parity requires: }\left\{\begin{array}{l}
1=(-1)^{\ell_{1}+k+\ell_{1}}=(-1)^{\ell_{2}+k+\ell_{2}} \\
(-1)^{\Delta}=(-1)^{\ell_{1}-\ell_{1}}=(-1)^{\ell_{2}-\ell_{2}}
\end{array}\right.
\end{aligned}
$$

2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
with tensor factors: $\binom{k}{1_{1}^{\prime} 1}=C_{-q m_{1} m_{1}-q}^{k \ell_{1} \ell_{1}} \sqrt{\frac{2 k+1}{2 \ell_{1}+1}}$ and $\binom{k}{2_{2} 2}=C_{-q m_{2} m_{2}}^{k \ell_{2} \ell_{2}} \sqrt{\frac{2 k+1}{2 \ell_{2}+1}}$

Shorthand $\mathbf{e}_{j k}$ index labeling $\mathbf{e}_{1^{\prime} 1}$ maps to momentum quanta:

$$
\begin{aligned}
& 1^{\prime} \rightarrow{\underset{m}{1}}_{\ell_{1}^{\prime}}^{m_{1}^{\prime}}, 1 \rightarrow \begin{array}{l}
\ell_{1} \\
m_{1}
\end{array} \\
& 2^{\prime} \rightarrow \begin{array}{l}
\ell_{2}^{\prime} \\
m_{2}^{\prime}
\end{array}, 2 \rightarrow \begin{array}{l}
\ell_{2} \\
m_{2}
\end{array}
\end{aligned}
$$

and radial integral(s): $A^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)=F^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)\left(\begin{array}{l}k \ell_{1} \ell_{1}^{\prime} \\ 0\end{array} 0000 \begin{array}{l}k \ell_{2} \ell_{2}^{\prime} \\ 0\end{array}\right)$
(Repeating from preceding page) (e-e)-interaction matrix (multi- ℓ-shell)

$$
\begin{aligned}
& \left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{l_{1} \mu_{2} \ell_{1} \ell_{2} \\
m_{1}^{\prime} m_{2} m_{1} m_{2}}}\left|\begin{array}{c}
\ell_{1}^{\prime} \ell_{2}^{\prime} \\
m_{1}^{\prime} m_{2}^{\prime}
\end{array}\right\rangle\left\langle\begin{array}{l}
l_{1}^{\prime} \ell_{2}^{\prime} \\
m_{1}^{\prime} m_{2}^{\prime} \\
\mid
\end{array}\right| \frac{1}{\mathbf{r}_{\alpha \beta} \mid}\left|\begin{array}{l}
\ell_{1} \ell_{2} \\
m_{1} m_{2}
\end{array}\right\rangle\left\langle\begin{array}{l}
e_{1} \ell_{2} \\
m_{1} m_{2}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { where parity requires: }\left\{\begin{array}{l}
1=(-1)^{\ell_{1}^{\prime}+k+\ell_{1}}=(-1)^{\ell_{2}^{\prime}+k+\ell_{2}} \\
(-1)^{\Delta}=(-1)^{\ell_{1}^{\prime}-\ell_{1}}=(-1)^{\ell_{2}^{\prime}-\ell_{2}}
\end{array}\right.
\end{aligned}
$$

2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
with tensor factors: $\binom{k}{1_{1}^{\prime} 1}=C_{-q m_{1} m_{1}-q}^{k \ell_{1} \ell_{1}} \sqrt{\frac{2 k+1}{2 \ell_{1}+1}}$ and $\binom{k}{2_{2} 2}=C_{-q m_{2} m_{2}}^{k \ell_{2} \ell_{2}}-q \sqrt{\frac{2 k+1}{2 \ell_{2}+1}}$

Shorthand $\mathbf{e}_{j k}$ index labeling $\mathbf{e}_{1^{\prime} 1}$ maps to momentum quanta:

$$
\begin{aligned}
& 1^{\prime} \rightarrow{\underset{m}{1}}_{\ell_{1}^{\prime}}^{m_{1}^{\prime}}, 1 \rightarrow \begin{array}{l}
\ell_{1} \\
m_{1}
\end{array} \\
& 2^{\prime} \rightarrow \begin{array}{l}
\ell_{2}^{\prime} \\
m_{2}^{\prime}
\end{array}, 2 \rightarrow \begin{array}{l}
\ell_{2} \\
m_{2}
\end{array}
\end{aligned}
$$

and radial integral(s): $A^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)=F^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)\binom{k \ell_{1} \ell_{1}^{\prime}}{000}\left(\begin{array}{l}k \ell_{2} \ell_{2}^{\prime} \\ 0\end{array} 00004\right) \frac{\sqrt{\left(2 \ell_{1}^{\prime}+1\right)\left(2 \ell_{2}^{\prime}+1\right)\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)}}{2 k+1}$
n-particle elementary $\mathbf{E}_{j k}=\sum_{d} \mathbf{e}_{j k}(\alpha)$ summed operator expressions (Using $\left.\mathbf{e}_{i j}(\alpha) \mathbf{e}_{k m}(\alpha)=\delta_{j k} \mathbf{e}_{i m}(\alpha)\right)$

$$
\frac{1}{2} \sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\frac{1}{2} \sum_{\ell_{1}^{\prime} 2_{2}^{\prime} \ell_{2}^{\prime}, 2} \sum_{k} A^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)\left[\sum_{\substack{q \\
m_{1}, m_{2}}}(-1)^{q+\Delta}\left(\begin{array}{c}
1^{\prime} 1
\end{array}\right) \mathbf{E}_{1^{\prime} 1}\left(\begin{array}{c}
2^{\prime} 2
\end{array}\right) \mathbf{E}_{2^{\prime} 2}-\sum_{\substack{q \\
m_{1}, m_{2}}}(-1)^{q+\Delta}\left(\underset{1^{\prime} 1}{k}\right)\left(\begin{array}{c}
2^{\prime} 2
\end{array}\right) \delta_{2^{\prime} 1} \mathbf{E}_{1^{\prime} 2}\right]
$$

(Repeating from preceding page) (e-e)-interaction matrix (multi- ℓ-shell)

$$
\begin{aligned}
& \text { where parity requires: }\left\{\begin{array}{l}
1=(-1)^{\ell_{1}^{\prime}+k+\ell_{1}}=(-1)^{\ell_{2}^{\prime}+k+\ell_{2}} \\
(-1)^{\Delta}=(-1)^{\ell_{1}^{\prime}-\ell_{1}}=(-1)^{\ell_{2}^{\prime}-\ell_{2}}
\end{array}\right.
\end{aligned}
$$

2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix

with tensor factors: $\binom{k}{1_{1}^{\prime} 1}=C_{-q m_{1} m_{1}-q}^{k \ell_{1} \ell_{1}^{\prime}} \sqrt{\frac{2 k+1}{2 \ell_{1}+1}}$ and $\binom{k}{2_{2}^{\prime 2}}=C_{-q m_{2} m_{2} m_{2}-q}^{k \ell_{2} \ell_{2}} \sqrt{\frac{2 k+1}{2 \ell_{2}+1}}$

Shorthand $\mathbf{e}_{j k}$ index labeling $\mathbf{e}_{1^{\prime} 1}$ maps to momentum quanta:

$$
\begin{aligned}
& 1^{\prime} \rightarrow{\underset{m}{1}}_{\ell_{1}^{\prime}}^{m_{1}^{\prime}}, 1 \rightarrow \begin{array}{l}
\ell_{1} \\
m_{1}
\end{array} \\
& 2^{\prime} \rightarrow \begin{array}{l}
\ell_{2}^{\prime} \\
m_{2}^{\prime}
\end{array}, 2 \rightarrow \begin{array}{l}
\ell_{2} \\
m_{2}
\end{array}
\end{aligned}
$$

and radial integral(s): $A^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)=F^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)\binom{k \ell_{1} \ell_{1}^{\prime}}{000}\binom{k \ell_{2} \ell_{2}^{\prime}}{000} \frac{\sqrt{\left(2 \ell_{1}^{\prime}+1\right)\left(2 \ell_{2}^{\prime}+1\right)\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)}}{2 k+1}$
n-particle elementary $\mathbf{E}_{j k}=\sum_{d} \mathbf{e}_{j k}(\alpha)$ summed operator expressions (Using $\left.\mathbf{e}_{i j}(\alpha) \mathbf{e}_{k m}(\alpha)=\delta_{j k} \mathbf{e}_{i m}(\alpha)\right)$

$$
\begin{aligned}
\frac{1}{2} \sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle & =\frac{1}{2} \sum_{\ell_{1}^{\prime} 2_{2} \ell_{1}^{\prime} 2_{2}} \sum_{k} A^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right)\left[\sum_{\substack{q \\
m_{1}, m_{2}}}(-1)^{q+\Delta}\left(\begin{array}{c}
1^{\prime} 1
\end{array}\right) \mathbf{E}_{1^{\prime} 1}\binom{k}{2^{\prime} 2} \mathbf{E}_{2^{\prime} 2}-\sum_{\substack{q \\
m_{1}, m_{2}}}(-1)^{q+\Delta}\left(\begin{array}{c}
1^{\prime} 1
\end{array}\right)\binom{k}{2^{\prime} 2} \delta_{2^{\prime} 1} \mathbf{E}_{1^{\prime} 2}\right] \\
& =\frac{1}{2} \sum_{\ell_{1} \ell_{2}^{\prime} 1_{1}^{\prime} \ell_{2}} \sum_{k} A^{k}\left(\ell_{1}^{\prime} \ell_{2}^{\prime} \ell_{1} \ell_{2}\right) \sum_{m_{1}, m_{2}}\left(\ell_{1}^{\prime}, \tilde{\mathbf{V}}_{q}^{k} \ell_{1}\right)\left(\ell_{2}^{\prime}, \tilde{\mathbf{V}}_{q}^{k} \ell_{2}\right)-\frac{1}{2} \sum_{\ell_{1}^{\prime} 1_{2}} \sum_{k} A^{k}\left(\ell_{1} \ell_{2} \ell_{1} \ell_{2}\right) \frac{2 k+1}{2 \ell_{1}+1} \sum_{m_{1}} \mathbf{E}_{11}
\end{aligned}
$$

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole,...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k}{ }_{q}\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }^{k}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$
n-particle pure shell $e e$-interaction reduces to:
$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(\text { even } k)}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ const. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$

n-particle pure shell $e e$-interaction reduces to:
$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(\text { evenk })}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ const. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

$$
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k}\right)
$$

Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of elementary operators $\mathbf{E}_{p, q}$. $\ell=1 p=$ shell example:

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$

n-particle pure shell $e e$-interaction reduces to:

$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(\text { evenk } k}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ const. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

$$
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k}\right)
$$

Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of elementary operators $\mathbf{E}_{p, q}$.
$\ell=1 p=$ shell example:
A compact format helps display.

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{2}\right\rangle=\left(\begin{array}{lll}
1 & -1 & 1 \\
1 & -2 & 1 \\
1 & -1 & 1
\end{array}\right) \begin{array}{c}
1 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}}
\end{array} \\
& \left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{lll}
1 & -1 & \cdot \\
1 & 0 & -1 \\
\cdot & 1 & -1
\end{array}\right)_{\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right)_{\frac{1}{\sqrt{3}}}
\end{aligned}
$$

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$

n-particle pure shell ee-interaction reduces to:
$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(\text { evenk })}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ const. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

$$
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k}\right)
$$

Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of elementary operators $\mathbf{E}_{p, q}$. $\ell=1 p=$ shell example:

A compact format helps display.
$\left\langle\mathbf{v}_{-2}^{2}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot\end{array}\right) \quad\left\langle\mathbf{v}_{-1}^{2}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & -1 & \cdot\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & -2 & \cdot \\ \cdot & \cdot & 1\end{array}\right) \frac{1}{\sqrt{6}} \quad\left\langle\mathbf{v}_{+1}^{2}\right\rangle=\left(\begin{array}{ccc}\cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\begin{array}{lll}\mathbf{v}_{+2}^{2}\end{array}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right)$
$\left\langle\mathbf{v}_{-1}^{1}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{+1}^{1}\right\rangle=\left(\begin{array}{ccc}\cdot & -1 & \cdot \\ \cdot & \cdot & -1 \\ \cdot & \cdot & \cdot\end{array}\right) \frac{1}{\sqrt{2}}$

$$
\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
$$

A normalizing factor $1 / v_{n}$
sits below each 45° line ${ }^{\dagger}$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{2}\right\rangle=\left(\begin{array}{ccccc}
1 & \ddots & \ddots & 1 & \cdots \\
\ddots & \ddots & \ddots & \ddots & \\
1 & \ddots & \ddots & 1 & \frac{1}{\sqrt{2}} \\
1 & -1 & \ddots & \ddots & \\
& & \ddots & \frac{1}{\sqrt{6}}
\end{array}\right. \\
& \left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}
1 & -1 & \cdot \\
1 & 0 & -1 \\
\cdot & 1 & -1
\end{array}\right)_{\frac{1}{\sqrt{2}}} \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right)_{\frac{1}{\sqrt{3}}}
\end{aligned}
$$

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$

n-particle pure shell ee-interaction reduces to:
$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(\text { evenk })}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ const. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

$$
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k}\right)
$$

Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of elementary operators $\mathbf{E}_{p, q}$. $\ell=1 p=$ shell example:

A compact format helps display.

$$
\left\langle\mathbf{v}_{-1}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}
\ddots \frac{1}{\ddots} & \cdot & \cdot \\
\cdot & \ddots & \cdot \\
\cdot & \ddots & \ddots
\end{array}\right) \quad\left\langle\mathbf{v}_{+1}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & \ddots & \ddots \\
\cdot & \ddots & -1 \\
\cdot & \ddots & \ddots \\
\cdot & \ddots & -1 \\
\cdot & \ddots & \ddots
\end{array}\right)
$$

$$
\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
\because & \ddots & \cdot \\
& . \\
\ddots & \ddots & \\
& \ddots & . \\
& \ddots & \ddots \\
& & \ddots
\end{array}\right) \frac{1}{\sqrt{3}}
$$

A normalizing factor $1 / v_{n}$
sits below each 45° line ${ }^{\dagger}$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{2}\right\rangle=\left(\begin{array}{ccc|c}
1 & -1 & 1 \\
1 & -2 & 1 & 1 \\
1 & -1 & \ddots & \frac{1}{\sqrt{2}} \\
& & \ddots & \frac{1}{\sqrt{6}} \\
1
\end{array}\right. \\
& \left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{cccc}
1 & -1 & . \\
\ddots & 0 & -1 \\
1 & 0 & -1 \\
& 1 & \ddots
\end{array}\right) \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
\left.\begin{array}{lll}
1 & \cdots & . \\
\ddots & 1 & \\
& \ddots & \cdot \\
& \cdots & 1
\end{array}\right) \frac{\mathrm{T}}{\sqrt{3}}
\end{array}\right.
\end{aligned}
$$

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$

n-particle pure shell ee-interaction reduces to:
$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(e=e n k)}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ const. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{a} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{v}}_{q}^{k} \mathbf{V}_{q}^{k}\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

$$
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{v}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{v}}_{q}^{k}\right)
$$

Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left({ }_{p}{ }^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of elementary operators $\mathbf{E}_{p, q}$.
$\ell=1 p=$ shell example:
A compact format helps display.

$$
\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
\because & \ddots 1 & \cdot \\
& . \\
& \ddots & 1 \\
& \ddots & . \\
& \ddots & \ddots 1
\end{array}\right)
$$

A normalizing factor $1 / V_{n}$
sits below each 45° line ${ }^{\dagger}$
\dagger Lines drawn for $q \geq 0$ only Norms for $-q$ same as for $+q$.

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, ...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k}{ }_{q}\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.

- Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left({ }_{m^{\prime}}{ }^{k}{ }_{m}\right)$ arrays

Atomic p-shell ee-interaction in elementary operator form
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$
n-particle pure shell ee-interaction reduces to:
$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(\text { eerenk })}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ cost. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{a} \mathbf{V}_{-q}^{k} \mathbf{v}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{v}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

$$
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{v}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{v}}_{q}^{k}\right)
$$

Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left({ }_{p}{ }^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of elementary operators $\mathbf{E}_{p, q}$. $\ell=1 p=$ shell example:

A compact format helps display.

QTCA Unit 8 Ch. 25 Tensor tables begins on p. 9
A normalizing factor $1 / v_{n}$ sits below each 45° line ${ }^{\dagger}$
$\left(p^{k} q\right)$ arrays are phased Clebsch-Gordan coefficients

$$
\binom{k}{m^{\prime} m}=(-1)^{\ell-m^{\prime}} \sqrt{2 k+1}\left(\begin{array}{ccc}
\ell & k & \ell \\
-m^{\prime} & q & m
\end{array}\right)=(-1)^{k} \sqrt{\frac{2 k+1}{2 \ell+1}} C_{q m m^{\prime}=m+q}^{k \ell \ell}
$$

$\binom{k}{m^{\prime} m}=(-1)^{\ell-m^{\prime}} \sqrt{2 k+1}\left(\begin{array}{cc}\ell & k \\ -m^{\prime} & \ell \\ \hline\end{array}\right)=(-1)^{k} \sqrt{\frac{2 k+1}{2 \ell+1}} C_{q m}^{k \ell \ell} \begin{aligned} & \ell \\ & m^{\prime}=m+q\end{aligned}$
$\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}\binom{0}{1_{1}} & \cdot & \cdot \\ \cdot & \binom{02}{22} & \cdot \\ \cdot & \cdot & \binom{0}{33}\end{array}\right)$

Single- ℓ atomic shells $p^{n}, d^{n}, f^{n}, \ldots$
n-particle pure shell ee-interaction reduces to:
$\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right\rangle=\sum_{\substack{k=0 \\(\text { evenk } k)}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+$ const. where: $\mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k}\right.$ means transpose of $\left.\mathbf{V}_{q}^{k}\right)$

$$
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k}\right)
$$

Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of elementary operators $\mathbf{E}_{p, q}$. $\ell=1 p=$ shell example:

A compact format helps display.
$\left\langle\mathbf{v}_{-2}^{2}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot\end{array}\right)$

$$
\left\langle\mathbf{v}_{0}^{\mathrm{o}}\right\rangle=\left(\begin{array}{lll}
1 & \cdots & \\
\vdots & 1 & . \\
& 1 & 1
\end{array}\right)^{\frac{1}{3}}
$$

$\left(p^{k} q\right)$ arrays are phased Clebsch-Gordan coefficients

$$
\binom{k}{m^{\prime} m}=(-1)^{\ell-m^{\prime}} \sqrt{2 k+1}\left(\begin{array}{ccc}
\ell & k & \ell \\
-m^{\prime} & q & m
\end{array}\right)=(-1)^{k} \sqrt{\frac{2 k+1}{2 \ell+1}} C_{q m}^{k \ell \ell} \begin{aligned}
& \ell m^{\prime}=m+q
\end{aligned}
$$

Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m^{\prime}, m}$ by ($m^{\prime}{ }^{k}{ }_{m}$) arrays:

$$
\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}
\binom{11}{11} & \binom{1}{12} & \cdot \\
\binom{1}{\hline} & \binom{1}{22} & \binom{1}{\hline 2} \\
\cdot & \binom{1}{\hline} & (33
\end{array}\right)
$$

A normalizing factor $1 / v_{n}$ sits below each 45° line ${ }^{\dagger}$

$$
\tilde{\mathbf{V}}_{q}^{k}=\sum_{m}\binom{k}{m+q m}\left\langle\mathbf{v}_{0}^{0}\right\rangle=(
$$

$$
\binom{(0,}{11}
$$

$\mathbf{V}_{0}^{k}=\sum_{m}\binom{k}{m m} \mathbf{E}_{m m} \quad \mathbf{V}_{q}^{k}=\sum_{m}\binom{k}{m+q m} \mathbf{E}_{m+q m}$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{cccc}
1 & -1 & \\
\hdashline & 0 & -1 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Norms for }-q \text { same as for }+q \text {. }
\end{aligned}
$$

Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m \prime^{\prime} m}$ by $\left(m^{\prime}{ }^{k}{ }_{m}\right)$ arrays:
$\mathbf{V}_{0}^{k}=\sum_{m}\binom{k}{m m} \mathbf{E}_{m m} \quad \mathbf{V}_{q}^{k}=\sum_{m}\binom{k}{m+q m} \mathbf{E}_{m+q m} \quad \tilde{\mathbf{V}}_{q}^{k}=\sum_{m}\binom{k}{m+q m} \mathbf{E}_{m m+q}$
Dirac notational derivation of $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m^{\prime}, m}$ relation by $\left({ }_{m}{ }^{\prime}{ }_{m}\right)$ arrays:

$$
\begin{aligned}
\mathbf{V}_{q}^{k} & =\sum_{m, m^{\prime}}\left|m^{\prime}\right\rangle\left\langle m^{\prime}\right| \mathbf{V}_{q}^{k}|m\rangle\langle m|=\sum_{m, m^{\prime}}\left\langle m^{\prime}\right| \mathbf{V}_{q}^{k}|m\rangle\left|m^{\prime}\right\rangle\langle m|=\sum_{m, m^{\prime}}\left\langle m^{\prime}\right| \mathbf{V}_{q}^{k}|m\rangle \mathbf{E}_{m^{\prime} m}=\mu \sum_{m, m^{\prime}} C_{q m m^{\prime}=m+q}^{k \ell \ell} \mathbf{E}_{m^{\prime} m} \\
& =\mu \sum_{m, m^{\prime}}\left({ }_{m^{\prime} m}{ }^{k}\right) \mathbf{E}_{m^{\prime} m} \text { with proportionality constant: } \mu=(-1)^{k} \sqrt{\frac{2 k+1}{2 \ell+1}} \ldots \text {.that won't vary with }\left(m^{\prime}, m\right)
\end{aligned}
$$

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole,...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }_{m}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}

Atomic p-shell ee-interaction in elementary operator form

$$
\begin{gathered}
\sum_{\alpha \neq \beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha \beta}\right|}\right)_{\substack{k=0 \\
(\text { even })}} A^{k}(\ell)\left(\mathbf{V}^{k} \cdot \mathbf{V}^{k}\right)+\text { const. where: } \mathbf{V}^{k} \cdot \mathbf{V}^{k}=\sum_{q=-k}^{k}(-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k}=\sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad\left(\tilde{\mathbf{V}}_{q}^{k} \text { means transpose of } \mathbf{V}_{q}^{k}\right) \\
\\
=\left(\mathbf{V}_{0}^{k}\right)^{2}+\sum_{q=-k}^{k}\left(\tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k}+\mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k}\right)
\end{gathered}
$$

$$
\left(\mathbf{V}_{0}^{2}\right)^{2}=\frac{1}{6} \begin{array}{c|ccc}
& E_{11} & -2 E_{22} & +E_{33} \\
\hline E_{11} & E_{11} E_{11} & -2 E_{11} E_{22} & +E_{11} E_{33} \\
-2 E_{22} & -2 E_{22} E_{11} & +4 E_{22} E_{22} & -2 E_{22} E_{33}
\end{array}
$$

$$
+E_{33} \mid+E_{33} E_{11} \quad-2 E_{33} E_{22} \quad+E_{33} E_{33}
$$

$$
\tilde{\mathbf{V}}_{1}^{2} \mathbf{V}_{1}^{2}=\frac{1}{2}-E_{12} \quad+E_{23} \quad \begin{gathered}
\\
\hline-E_{21}
\end{gathered}+E_{21} E_{12} \quad-E_{21} E_{23} \quad \mathbf{V}_{1}^{2} \tilde{\mathbf{V}}_{1}^{2}=\frac{1}{2}-E_{21} \quad+E_{32}
$$

$$
+E_{32}\left|-E_{32} E_{12}+E_{32} E_{23} \quad+E_{23}\right|-E_{23} E_{12}+E_{23} E_{32}
$$

$\tilde{\mathbf{V}}_{2}^{2} \mathbf{V}_{2}^{2}=E_{31} E_{13} \quad \mathbf{V}_{2}^{2} \tilde{\mathbf{V}}_{2}^{2}=E_{13} E_{31}$

QTCA Unit 8 Ch. 25 Tensor tables begins on p. 9

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole,...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k}{ }_{q}\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }^{k}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits Corrected level diagrams Nitrogen p^{3}

$\square=[2,1]$ tableau basis and $U(3)$ irep (from p. 29)

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	$\begin{gathered} (11) \\ 2+1 \end{gathered}$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt[(13)]{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$	$\begin{gathered} (21) \\ 1 \\ (32) \\ (32) \end{gathered}$	$\begin{array}{cc} \begin{array}{c} (11)(22) \\ 1+2 \end{array} & \cdot \\ & . \\ & (11)(33) \\ & 2+1 \end{array}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \\ \sqrt{2} & . \end{array}$	(13) -1 (13) 1	
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\begin{array}{ll} \begin{array}{ll} (32) \\ \sqrt{\frac{1}{2}} & \sqrt[(21)]{2} \\ \sqrt[(32)]{\frac{3}{2}} & \\ & \end{array} . \end{array}$	$\begin{array}{cc} \begin{array}{c} (11)(22)(33) \\ 1+1+1 \end{array} & . \\ & \\ . & 1+1+1 \end{array}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & (13) \\ & \sqrt{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	$\begin{array}{cc} & (31) \\ \cdot & 1 \\ (31) & \\ -1 & \cdot \end{array}$	$\begin{array}{ll} \sqrt[(32)]{\sqrt{2}} & \sqrt[(32)]{\frac{3}{2}} \\ \sqrt[(21)]{2} & \\ \sqrt{2} & . \end{array}$	$\begin{gathered} (11)(33) \\ 1+2 \end{gathered}$ $\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	$\stackrel{(12)}{1}$ (23) 1
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$			$\sqrt{\frac{1}{2}} \quad \sqrt{(31)}{ }^{\frac{3}{2}}$	$\begin{array}{cc} (21) & (32) \\ 1 & 1 \end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}
\left(\begin{array}{cc}
11
\end{array}\right) & \binom{1}{12} & \cdot \\
\binom{1}{1} & \left(\begin{array}{c}
12 \\
(2)
\end{array}\right. & \binom{1}{23} \\
\cdot & \left(\begin{array}{l}
32
\end{array}\right) & \left(\begin{array}{l}
33
\end{array}\right)
\end{array}\right) \\
& \left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}
1 & -1 & - \\
1 & 0 & -1 \\
\cdot & 1 & -1
\end{array}\right)_{\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
\binom{0}{11} & \cdot & \cdot \\
\cdot & \binom{02}{0} & \cdot \\
\cdot & \cdot & \left({ }_{33}^{0}\right)
\end{array}\right)\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
\end{aligned}
$$

$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{1} dipole

$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{1} dipole

$$
L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1}
$$

$$
E_{j k}=
$$

dipole $(k=1)$ angular momentum \mathbf{L}-operators
$\left.\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}\binom{11}{11} & \binom{12}{12} & \cdot \\ \left(\begin{array}{ll}11\end{array}\right) & \left(\begin{array}{l}122\end{array}\right) & \left(\begin{array}{c}123\end{array}\right) \\ \cdot & \binom{1}{32} & \left(\begin{array}{l}13\end{array}\right)\end{array}\right) \quad \mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1\end{array}\right) \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$
$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{1} dipole

$$
\begin{gathered}
L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
L_{+} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1}
\end{gathered}
$$

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}13 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	(12) 1	(23) 1	$\begin{gathered} (13) \\ -\sqrt{\frac{1}{2}} \end{gathered}$	$\sqrt{\frac{3}{\frac{3}{2}}}$.	.	
$\left\langle\begin{array}{c}12 \\ 2\end{array}\right\|$	(21) 1	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$		$\sqrt[(23)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{3}{\frac{3}{2}}}$			

$$
E_{j k}=
$$

$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{1} dipole

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
\end{aligned}
$$

	$\left.\begin{array}{c}11 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{c}12 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{c}11 \\ 3\end{array}\right\rangle$	$\left.\begin{array}{c}12 \\ 3\end{array}\right\rangle$	$\left.\begin{array}{c}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{c}13 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}22 \\ 3\end{array}\right\rangle$

$$
E_{j k}=
$$

$\square \underset{M=2}{\square}=\underset{M=1}{[2,1]}$ tableau basis $\underset{M=0}{\text { and }}$ matrices of $\mathbf{v}_{M=-1}^{1}{ }_{M=-2}$ dipole

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & .
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{ll}
\cdot & \cdot \\
1 & \cdot \\
\cdot & 1
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
\end{aligned}
$$

$E_{j k}=\left\langle\begin{array}{c}12 \\ 3\end{array}\right.$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\begin{aligned} & (32) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(32)]{\sqrt{\frac{3}{2}}} \end{aligned}$	$\sqrt[(21)]{\sqrt{2}}$	$\begin{gathered} (11){ }^{(22)} \\ 1+1+1 \end{gathered}$		$\begin{aligned} & (23) \\ & \sqrt{\frac{1}{2}} \\ & (23) \\ & \sqrt{\frac{3}{2}} \end{aligned}$	$\stackrel{(12)}{\sqrt{2}}$	$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\left\langle\begin{array}{l}13 \\ 2\end{array}\right\|$					$\begin{gathered} (11) \\ 1+1+1 \end{gathered}$			
$\left\langle\begin{array}{l}13 \\ 3\end{array}\right\|$.		$\begin{gathered} (31) \\ 1 \end{gathered}$	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{3}{\frac{3}{2}}}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$		$\begin{gathered} (12) \\ 1 \end{gathered}$
$\left\langle\begin{array}{c}22 \\ 3\end{array}\right\|$.	$\begin{gathered} (31) \\ -1 \end{gathered}$		$\frac{(21)}{\sqrt{2}}$	-		$\begin{gathered} (22) \\ 2+1 \end{gathered}$	(23) 1
$\left\langle\begin{array}{l}23 \\ 3\end{array}\right\|$.		${ }^{(31)}$	$\sqrt{\frac{31)}{2}}$	(21) 1	(32) 1	$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+\binom{1}{23}^{2}+2\binom{1}{13}^{2}$

$$
=\frac{1}{2}(2 \cdot 1-0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}=3
$$

dipole ($k=1$) angular momentum \mathbf{L}-operators
$\left.\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}\binom{1}{11} & \binom{1}{12} & \cdot \\ \binom{1}{21} & \binom{1}{22} & \binom{1}{23} \\ \cdot & \binom{1}{32} & \binom{1}{33}\end{array}\right)\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1\end{array}\right) \frac{1}{\frac{1}{\sqrt{2}}} \begin{array}{l}\frac{1}{\sqrt{2}}\end{array}\right)$

Squared angular momentum $\mathbf{L} \cdot \mathbf{L}$-operators

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
\end{aligned}
$$

$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+\binom{1}{23}^{2}+2\binom{1}{13}^{2}$

$$
=\frac{1}{2}(2 \cdot 1-0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}=3
$$

dipole $(k=1)$ angular momentum \mathbf{L}-operators

$$
\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}
\left(\begin{array}{cc}
11
\end{array}\right) & \binom{12}{12} & \cdot \\
\binom{1}{(2)} & \binom{1}{12} & \binom{1}{23} \\
\cdot & \binom{1}{(32)} & \binom{1}{(33}
\end{array}\right)\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}
1 & -1 & \cdot \\
1 & 0 & -1 \\
\cdot & 1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}
$$

Squared angular momentum $\mathbf{L} \cdot \mathbf{L}$-operators

$$
\left\langle\begin{array}{c}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=\left(\binom{1}{11}+2\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+2\binom{1}{23}^{2}+\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(1 \cdot 1+2 \cdot 0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+0
$$

$$
=\quad \frac{1}{2}+\frac{1}{2}+1+0=2
$$

$\square=[2,1] \underset{M=2}{\square}$ tableau basis and matrices of \mathbf{v}^{1} dipole

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
\end{aligned}
$$

$E_{j k}=\left\langle\begin{array}{l}12 \\ 3\end{array}\right.$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ \sqrt[(31)]{\frac{(31}{2}} \end{gathered}$	$\begin{aligned} & (32) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(32)]{\frac{3}{2}} \end{aligned}$	$\sqrt[(21)]{\sqrt{2}}$	$\begin{gathered} (11) \\ 1+1+1 \end{gathered}$$\begin{gathered} (11) \\ 1+1+1 \end{gathered}$		$\begin{array}{ll} (23) & (12) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \end{array}$		$\begin{aligned} & (13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\left\langle\begin{array}{c}13 \\ 2\end{array}\right\|$								
$\left\langle\begin{array}{c}13 \\ 3\end{array}\right\|$.		(31) 1	$\sqrt[(32)]{\sqrt{\frac{1}{2}}}$	$\sqrt{\frac{3}{\frac{3}{2}}}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$		$\begin{gathered} (12) \\ 1 \end{gathered}$
$\left\langle\begin{array}{l}22 \\ 3\end{array}\right\|$.	(31 -1		$\stackrel{(21)}{\sqrt{2}}$			$\begin{gathered} (22)(33) \\ 2+1 \end{gathered}$	(23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$.	.		${ }^{(31)}$	$\sqrt{\frac{31)}{\frac{3}{2}}}$	(21) 1	(32) 1	$\begin{gathered} (22) \\ 1+2 \end{gathered}$

$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+\binom{1}{23}^{2}+2\binom{1}{13}^{2}$

$$
=\frac{1}{2}(2 \cdot 1-0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}=3
$$

$\left\langle\begin{array}{c}12 \\ 2\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}12 \\ 2\end{array}\right\rangle=\left(\binom{1}{11}+2\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+2\binom{1}{23}^{2}+\binom{1}{13}^{2}$
$=\frac{1}{2}(1 \cdot 1+2 \cdot 0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+0$
$=\quad \frac{1}{2}+\frac{1}{2}+1+0=2$
$\left\langle\begin{array}{l}11 \\ 3\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}11 \\ 3\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{33}\right)^{2}+2\binom{1}{21}^{2}+\binom{1}{23}^{2}+\binom{1}{13}^{2}$
$=\frac{1}{2}(2 \cdot 1-1 \cdot 1)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+0$
$=\quad \frac{1}{2} \quad+1+\frac{1}{2}+0=2$
$\square=[2,1] \underset{M=2}{\square}$ tableau basis and matrices of \mathbf{v}^{1} dipole

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
\end{aligned}
$$

$\left\langle\begin{array}{l}11 \\ 2\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{l}11 \\ 2\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+\binom{1}{23}^{2}+2\binom{1}{13}^{2}$

$$
=\frac{1}{2}(2 \cdot 1-0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}=3
$$

$\left\langle\begin{array}{l}12 \\ 2\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}12 \\ 2\end{array}\right\rangle=\left(\binom{1}{11}+2\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+2\binom{1}{23}^{2}+\binom{1}{13}^{2}$
$=\frac{1}{2}(1 \cdot 1+2 \cdot 0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+0$
$=\frac{1}{2}+\frac{1}{2}+1+0=2$
$\left\langle\begin{array}{l}11 \\ 3\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}11 \\ 3\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{33}\right)^{2}+2\binom{1}{21}^{2}+\binom{1}{23}^{2}+\binom{1}{13}^{2}$
$=\frac{1}{2}(2 \cdot 1-1 \cdot 1)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+0$
$=\quad \frac{1}{2} \quad+1+\frac{1}{2}+0=2$

Squared angular momentum $\mathbf{L} \cdot \mathbf{L}$-operators

$$
\begin{aligned}
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle & =+\binom{1}{21}\binom{1}{32}+\binom{1}{23}\binom{1}{12} \\
& =\frac{-1}{2}(1 \cdot 1+1 \cdot 1)=-1
\end{aligned}
$$

$\square=[2,1] \underset{M=2}{\square}$ tableau basis and matrices of \mathbf{v}^{1} dipole

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
\end{aligned}
$$

dipole ($k=1$) angular momentum \mathbf{L}-operators
$\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}\binom{1}{11} & \binom{1}{12} & \cdot \\ \binom{1}{21} & \binom{1}{22} & \binom{1}{23} \\ \cdot & \binom{1}{32} & \binom{1}{33}\end{array}\right) \quad\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1\end{array}\right) \frac{1}{\sqrt{2}}$

Squared angular momentum $\mathbf{L} \cdot \mathbf{L}$-operators

$$
\left\langle\begin{array}{c}
11 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+\binom{1}{23}^{2}+2\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(2 \cdot 1-0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}=3
$$

$$
\left\langle\begin{array}{c}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=\left(\binom{1}{11}+2\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+2\binom{1}{23}^{2}+\binom{1}{13}^{2}
$$

$$
\begin{aligned}
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle & =+\binom{1}{21}\binom{1}{32}+\binom{1}{23}\binom{1}{12} \\
& =\frac{-1}{2}(1 \cdot 1+1 \cdot 1)=-1
\end{aligned}
$$

$$
=\frac{1}{2}(1 \cdot 1+2 \cdot 0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+0
$$

$$
=\quad \frac{1}{2}+\frac{1}{2}+1+0=2
$$

$$
\left\langle\begin{array}{c}
11 \\
3
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{33}\right)^{2}+2\binom{1}{21}^{2}+\binom{1}{23}^{2}+\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(2 \cdot 1-1 \cdot 1)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+0
$$

$$
=\quad \frac{1}{2}+1+\frac{1}{2}+0=2
$$

$\frac{111}{[2]}$	$\frac{111}{[2]}$		
	3	${ }^{112}$	$\square^{1} 1$
	$\underline{12}$	2	-1
	111	-1	2

$\square=[2,1] \underset{M=2}{\square}$ tableau basis and matrices of \mathbf{v}^{1} dipole

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=1}^{1}
\end{aligned}
$$

dipole $(k=1)$ angular momentum \mathbf{L}-operators
$\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}\binom{1}{11} & \binom{1}{12} & \cdot \\ \binom{1}{21} & \binom{1}{22} & \binom{1}{23} \\ \cdot & \binom{1}{32} & \binom{1}{33}\end{array}\right) \quad\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1\end{array}\right) \frac{1}{\sqrt{2}}$

Squared angular momentum $\mathbf{L} \cdot \mathbf{L}$-operators

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+\binom{1}{23}^{2}+2\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(2 \cdot 1-0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}=3
$$

$$
\left\langle\begin{array}{c}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=\left(\binom{1}{11}+2\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+2\binom{1}{23}^{2}+\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(1 \cdot 1+2 \cdot 0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+0
$$

$$
=\quad \frac{1}{2}+\frac{1}{2}+1+0=2
$$

$$
\left\langle\begin{array}{l}
11 \\
3
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{33}\right)^{2}+2\binom{1}{21}^{2}+\binom{1}{23}^{2}+\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(2 \cdot 1-1 \cdot 1)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+0
$$

$$
=\quad \frac{1}{2}+1+\frac{1}{2}+0=2
$$

$$
\begin{aligned}
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle & =+\binom{1}{21}\binom{1}{32}+\binom{1}{23}\binom{1}{12} \\
& =\frac{-1}{2}(1 \cdot 1+1 \cdot 1)=-1
\end{aligned}
$$

$\square=[2,1]$ tableau basis and matrices of $\mathbf{V}_{M=1}^{1}$ dipole

$$
\begin{aligned}
& L_{z} \equiv\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)=\left(E_{11}-E_{33}\right)=\sqrt{2} \mathbf{v}_{0}^{1} \\
& L_{+} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right)=\sqrt{2}\left(E_{12}+E_{23}\right)=L_{x}+i L_{y}=-\sqrt{2} \mathbf{v}_{1}^{1} \\
& L_{-} \equiv \sqrt{2}\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right)=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{x}-i L_{y}=\sqrt{2} \mathbf{v}_{=}^{1}
\end{aligned}
$$

dipole ($k=1$) angular momentum \mathbf{L}-operators
$\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}\binom{1}{11} & \binom{1}{12} & \cdot \\ \binom{1}{21} & \binom{1}{22} & \binom{1}{23} \\ \cdot & \binom{1}{32} & \binom{1}{33}\end{array}\right) \quad\left\langle\mathbf{v}_{q}^{1}\right\rangle=\left(\begin{array}{ccc}1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1\end{array}\right) \frac{1}{\sqrt{2}}$

Squared angular momentum $\mathbf{L} \cdot \mathbf{L}$-operators

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+\binom{1}{23}^{2}+2\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(2 \cdot 1-0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}=3
$$

$$
\left\langle\begin{array}{c}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=\left(\binom{1}{11}+2\binom{1}{22}\right)^{2}+\binom{1}{21}^{2}+2\binom{1}{23}^{2}+\binom{1}{13}^{2}
$$

$$
\begin{aligned}
\left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle & =+\binom{1}{21}\binom{1}{32}+\binom{1}{23}\binom{1}{12} \\
& =\frac{-1}{2}(1 \cdot 1+1 \cdot 1)=-1
\end{aligned}
$$

$$
=\frac{1}{2}(1 \cdot 1+2 \cdot 0)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+0
$$

$$
=\quad \frac{1}{2}+\frac{1}{2}+1+0=2
$$

$$
\left\langle\begin{array}{l}
11 \\
3
\end{array}\right| V^{1} \cdot V^{1}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=\left(2\binom{1}{11}+\binom{1}{33}\right)^{2}+2\binom{1}{21}^{2}+\binom{1}{23}^{2}+\binom{1}{13}^{2}
$$

$$
=\frac{1}{2}(2 \cdot 1-1 \cdot 1)^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+0
$$

$\frac{11}{12}$	[11			eigenvalues 3	$\mathbf{L} \cdot$ Leigenvalues$6^{j(j+1)}(j=2)$	
	3	[1]2				
	$\frac{12}{12}$		-1	10	2	20
	$\underline{11}$		2	03		06

$$
=\quad \frac{1}{2}+1+\frac{1}{2}+0=2
$$

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole,...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }^{k}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}
$\square \square=[2,1]$ tableau basis and $U(3)$ ire $($ from $p .29)$

$$
\begin{aligned}
& \ell=1 \\
& \text { (condensed }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
\binom{0}{11} & \cdot & \cdot \\
\cdot & \binom{0}{22} & \cdot \\
\cdot & \cdot & \binom{0}{33}
\end{array}\right) \quad\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}}
\end{aligned}
$$

$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{2} quadrupole

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{c} 11 \\ 3 \end{array}\right\| \end{aligned}$	$\begin{gathered} (21) \\ 1 \\ (32) \\ { }^{(32)} \end{gathered}$	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \text {. } \end{array}$	
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\begin{array}{ll} \begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(32)]{2} & \\ \sqrt{\frac{3}{2}} & \cdot \end{array} . \end{array}$	$\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & \left(\begin{array}{l} (13) \\ \sqrt{\frac{1}{2}} \\ (13)) \\ \sqrt{\frac{3}{2}} \end{array}\right. \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	(31) (31) -1	$\stackrel{(32)}{ }$ $\sqrt[(32)]{\frac{1}{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{2}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left(\left.\begin{array}{l}23 \\ 3\end{array} \right\rvert\,\right.$.	$\sqrt{\text { (31) }}$ (${ }^{\frac{1}{2}}$ (31) ${ }^{\frac{3}{2}}$	(21) (32) 1 1	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$\left.\begin{array}{l}\left\langle\mathbf{v}_{q}^{2}\right\rangle=\left(\begin{array}{ccc}\binom{2}{11} & \binom{2}{12} & \binom{2}{13} \\ \binom{2}{21} & \binom{2}{22} & \binom{2}{23} \\ \binom{2}{31} & \binom{2}{32} & \binom{2}{33}\end{array}\right)\left\langle\mathbf{v}_{q}^{2}\right\rangle=\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 & 1\end{array}\right) \frac{1}{\frac{1}{\sqrt{2}}} \\ \frac{1}{\sqrt{6}}\end{array}\right)$
$\left\langle\begin{array}{c}11 \\ 2\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+\binom{2}{32}\binom{2}{23}+2\binom{2}{31}\binom{2}{13}$
$=\frac{1}{6}(2 \cdot 1-2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \cdot 1 \cdot 1=3$
$\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}\binom{0}{11} & \cdot & \cdot \\ \cdot & \binom{0}{22} & \cdot \\ \cdot & \cdot & \binom{0}{0}\end{array}\right)\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1\end{array}\right) \frac{1}{\sqrt{3}}$
$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{2} quadrupole

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{c} 11 \\ 3 \end{array}\right\| \end{aligned}$	$\begin{gathered} (21) \\ 1 \\ (32) \\ { }^{(32)} \end{gathered}$	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \text {. } \end{array}$	
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\begin{array}{ll} \begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(32)]{2} & \\ \sqrt{\frac{3}{2}} & \cdot \end{array} . \end{array}$	$\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & \left(\begin{array}{l} (13) \\ \sqrt{\frac{1}{2}} \\ (13)) \\ \sqrt{\frac{3}{2}} \end{array}\right. \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	(31) (31) -1	$\stackrel{(32)}{ }$ $\sqrt[(32)]{\frac{1}{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{2}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left(\left.\begin{array}{l}23 \\ 3\end{array} \right\rvert\,\right.$.	$\sqrt{\text { (31) }}$ (${ }^{\frac{1}{2}}$ (31) ${ }^{\frac{3}{2}}$	(21) (32) 1 1	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$\left\langle\begin{array}{c}11 \\ 2\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{c}11 \\ 2\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+\binom{2}{32}\binom{2}{23}+2\binom{2}{31}\binom{2}{13}$

$$
=\frac{1}{6}(2 \cdot 1-2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \cdot 1 \cdot 1=3
$$

$\left\langle\begin{array}{c}12 \\ 2\end{array} \left\lvert\, V^{2} \cdot V^{2} \begin{array}{c}12 \\ 2\end{array}\right.\right\rangle=\left(\binom{2}{11}+2\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13}$

$$
=\frac{1}{6}(1 \cdot 1-2 \cdot 2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1
$$

$\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}\binom{0}{11} & \cdot & \cdot \\ \cdot & \binom{0}{22} & \cdot \\ \cdot & \cdot & \binom{0}{33}\end{array}\right) \quad\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1\end{array}\right) \frac{1}{\sqrt{3}}$

$$
=\frac{3}{2}+\frac{1}{2}+1+1=4
$$

$$
\begin{aligned}
& \ell=1 \\
& \text { (condensed } \\
& \text { format) }
\end{aligned}
$$

$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{2} quadrupole

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{c}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}\text { 13 } \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} \hline-\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\begin{aligned} & \left\langle\begin{array}{c} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{l} 11 \\ 3 \end{array}\right\| \end{aligned}$	$\begin{gathered} (21) \\ 1 \\ (32) \\ \left(\begin{array}{c} (32) \end{array}\right. \end{gathered}$	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \\ \sqrt{2} & . \end{array}$	(13) -1 (13) 1	\cdot
$\begin{array}{r} E_{j k}=\left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ \\ \left\|\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{array}$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ \sqrt[(31)]{(31)} \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\begin{array}{cc}\stackrel{(32)}{\sqrt{2}} & \sqrt[(21)]{2} \\ \sqrt{\frac{(32)}{2}} & \\ \sqrt{\frac{3}{2}} & \cdot\end{array}$	$\begin{array}{cc} \begin{array}{c} (11)(22)(33) \\ 1+1+1 \end{array} & . \\ & \\ & \\ \text { (11) (22) } & 1+1+1 \end{array}$	$\begin{array}{ll} \hline \sqrt[(23)]{ } & \left(\begin{array}{c} (12) \\ \sqrt{2} \end{array}\right. \\ \sqrt{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & \hline(13) \\ & \sqrt{\frac{1}{2}} \\ & \sqrt[(13)]{\frac{3}{2}} \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	(31) (31) -1	$\begin{array}{ll} \sqrt[(32)]{\sqrt{2}} & \sqrt[(32)]{\frac{3}{2}} \\ \sqrt[(21)]{2} & \\ \sqrt{2} & . \end{array}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22))^{(33)} \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left\langle\begin{array}{c}23 \\ 3\end{array}\right\|$.	. .	$\sqrt{\text { (31) }} 10{ }^{\frac{(31)}{2}}$	$\begin{array}{cc}(21) & (32) \\ 1 & 1\end{array}$	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$\left\langle\begin{array}{l}12 \\ 2\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}12 \\ 2\end{array}\right\rangle=\left(\binom{2}{11}+2\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13}$

$$
=\frac{1}{6}(1 \cdot 1-2 \cdot 2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1
$$

$$
=\frac{3}{2}+\frac{1}{2}+1+1=4
$$

$$
\left\langle\begin{array}{l}
11 \\
3
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{33}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\left(\begin{array}{c}
23
\end{array}\right)+\binom{2}{31}\binom{2}{13}
$$

$$
=\frac{1}{6}(2 \cdot 1+1 \cdot 1)^{2}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1
$$

$$
=\frac{3}{2}+1+\frac{1}{2}+1=4
$$

$\square=[2,1]$ tableau basis and matrices of \mathbf{v}^{2} quadrupole

	$\left\|\begin{array}{l}11 \\ 2\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 2\end{array}\right\rangle \quad\left\|\begin{array}{l}11 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}12 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}13 \\ 2\end{array}\right\rangle$	$\left.\begin{array}{l}13 \\ 3\end{array}\right\rangle \quad\left\|\begin{array}{l}22 \\ 3\end{array}\right\rangle$	$\left\|\begin{array}{l}23 \\ 3\end{array}\right\rangle$
$\left\langle\begin{array}{l}11 \\ 2\end{array}\right\|$	(11) ${ }^{(22)}$ $2+1$	$\begin{array}{cc}(12) & (23) \\ 1 & 1\end{array}$	$\begin{array}{ll} -\sqrt{\frac{1}{2}} & \sqrt[(13)]{\frac{3}{2}} \end{array}$. .	
$\begin{aligned} & \left\langle\begin{array}{l} 12 \\ 2 \end{array}\right\| \\ & \left\langle\begin{array}{c} 11 \\ 3 \end{array}\right\| \end{aligned}$	$\begin{gathered} (21) \\ 1 \\ (32) \\ { }^{(32)} \end{gathered}$	$\begin{gathered} (11)(22) \\ 1+2 \end{gathered}$ $\begin{gathered} (11))^{(33)} \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(23)]{\frac{3}{2}} \\ \sqrt[(12)]{2} & \end{array}$	$\begin{array}{cc} & (13) \\ \cdot & -1 \\ (13) & \\ 1 & \text {. } \end{array}$	
$\begin{aligned} E_{j k}= & \left\langle\begin{array}{l} 12 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{l} 13 \\ 2 \end{array}\right\| \end{aligned}$	$\begin{gathered} (31) \\ -\sqrt{\frac{1}{2}} \\ (31) \\ \sqrt{\frac{3}{2}} \end{gathered}$	$\begin{array}{ll} \begin{array}{ll} (32) & (21) \\ \sqrt{\frac{1}{2}} & \sqrt{2} \\ \sqrt[(32)]{2} & \\ \sqrt{\frac{3}{2}} & \cdot \end{array} . \end{array}$	$\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$ $\begin{gathered} (11){ }^{(22)}{ }^{(33)} \\ 1+1+1 \end{gathered}$	$\begin{array}{ll} \sqrt[(23)]{\sqrt{2}} & \sqrt[(12)]{2} \\ \sqrt[(23)]{\frac{3}{2}} & \\ \hline \end{array}$	$\begin{aligned} & \left(\begin{array}{l} (13) \\ \sqrt{\frac{1}{2}} \\ (13)) \\ \sqrt{\frac{3}{2}} \end{array}\right. \end{aligned}$
$\begin{aligned} & \left\langle\begin{array}{c} 13 \\ 3 \end{array}\right\| \\ & \left\langle\begin{array}{c} 22 \\ 3 \end{array}\right\| \end{aligned}$	-	(31) (31) -1	$\stackrel{(32)}{ }$ $\sqrt[(32)]{\frac{1}{2}}$ $\sqrt{\frac{3}{2}}$ $\sqrt{2}$	$\begin{gathered} (11) \\ 1+2 \end{gathered}$ $\begin{gathered} (22) \\ 2+1 \end{gathered}$	(12) 1 (23) 1
$\left(\left.\begin{array}{l}23 \\ 3\end{array} \right\rvert\,\right.$.	$\sqrt{\text { (31) }}$ (${ }^{\frac{1}{2}}$ (31) ${ }^{\frac{3}{2}}$	(21) (32) 1 1	$\begin{gathered} (22)(33) \\ 1+2 \end{gathered}$

$$
\left\langle\begin{array}{l}
11 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{c}
11 \\
2
\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+\binom{2}{32}\binom{2}{23}+2\binom{2}{31}\binom{2}{13}
$$

$$
=\frac{1}{6}(2 \cdot 1-2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \cdot 1 \cdot 1=3
$$

$$
\left\langle\begin{array}{c}
12 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{c}
12 \\
2
\end{array}\right\rangle=\left(\binom{2}{11}+2\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13}
$$

$$
=\frac{1}{6}(1 \cdot 1-2 \cdot 2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1
$$

$$
=\frac{3}{2}+\frac{1}{2}+1+1=4
$$

$$
\left\langle\begin{array}{c}
11 \\
3
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{33}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13}
$$

$$
=\frac{1}{6}(2 \cdot 1+1 \cdot 1)^{2}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1
$$

$$
=\frac{3}{2}+1+\frac{1}{2}+1=4
$$

$$
\begin{aligned}
& \ell=1 \\
& \text { (condensed } \\
& \text { format) } \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
\binom{0}{11} & \cdot & \cdot \\
\cdot & \binom{0}{22} & \cdot \\
\cdot & \cdot & \binom{0}{33}
\end{array}\right)\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}} \\
& \left\langle\begin{array}{c}
12 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{c}
11 \\
3
\end{array}\right\rangle=+\binom{2}{21}\binom{2}{32}+\binom{2}{23}\binom{2}{12} \\
& =\frac{-1}{2}(1 \cdot 1+1 \cdot 1)=-1
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{2}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{2}\right\rangle=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & 1 \\
1 & -1 & 1
\end{array}\right) \frac{1}{\frac{1}{\sqrt{2}}} \begin{array}{c}
\frac{1}{\sqrt{6}}
\end{array} \\
& \left\langle\begin{array}{l}
11 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+\binom{2}{32}\binom{2}{23}+2\binom{2}{31}\binom{2}{13} \\
& =\frac{1}{6}(2 \cdot 1-2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \cdot 1 \cdot 1=3 \\
& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=\left(\binom{2}{11}+2\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13} \\
& =\frac{1}{6}(1 \cdot 1-2 \cdot 2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1 \\
& =\frac{3}{2}+\frac{1}{2}+1+1=4 \\
& \left\langle\begin{array}{l}
11 \\
3
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{33}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13} \\
& =\frac{1}{6}(2 \cdot 1+1 \cdot 1)^{2}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1 \\
& =\frac{3}{2}+1+\frac{1}{2}+1=4 \\
& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle=+\binom{2}{21}\binom{2}{32}+\binom{2}{23}\binom{2}{12} \\
& =\frac{-1}{2}(1 \cdot 1+1 \cdot 1)=-1 \\
& \begin{array}{l|l|}
11 \\
12 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{2}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{q}^{2}\right\rangle=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & 1 \\
1 & -1 & 1
\end{array}\right) \frac{1}{\frac{1}{\sqrt{2}}} \begin{array}{c}
\frac{1}{\sqrt{6}}
\end{array} \\
& \left|{ }^{2} \underline{\mathrm{D}}_{M=2}\right\rangle=\left|\begin{array}{ll}
1 & 1 \\
2
\end{array}\right\rangle \\
& \left.\left.\left|{ }^{2} \mathrm{D}_{M=1}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| \frac{2}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| \frac{1}{3}\right\rangle \\
& \left.\left.\left|{ }^{2} \mathrm{P}_{M=1}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}\right| \begin{array}{c}
2 \\
2
\end{array}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{1}{1}\right| \begin{array}{l}
1 \\
3
\end{array}\right\rangle \\
& \left\langle\begin{array}{l}
11 \\
2
\end{array} \overline{V^{2} \cdot V^{2}\left|\begin{array}{l}
11 \\
2
\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+\binom{2}{32}\binom{2}{23}+2\binom{2}{31}\binom{2}{13}}\right. \\
& =\frac{1}{6}(2 \cdot 1-2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \cdot 1 \cdot 1=3 \\
& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}
12 \\
2
\end{array}\right\rangle=\left(\binom{2}{11}+2\binom{2}{22}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13} \\
& =\frac{1}{6}(1 \cdot 1-2 \cdot 2)^{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1 \\
& =\frac{3}{2}+\frac{1}{2}+1+1=4 \\
& \left\langle\begin{array}{l}
11 \\
3
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle=\left(2\binom{2}{11}+\binom{2}{33}\right)^{2}+\binom{2}{21}\binom{2}{12}+2\binom{2}{32}\binom{2}{23}+\binom{2}{31}\binom{2}{13} \\
& =\frac{1}{6}(2 \cdot 1+1 \cdot 1)^{2}+2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+1 \cdot 1 \\
& =\frac{3}{2}+1+\frac{1}{2}+1=4 \\
& 3 \\
& \left\langle\begin{array}{l}
12 \\
2
\end{array}\right| V^{2} \cdot V^{2}\left|\begin{array}{l}
11 \\
3
\end{array}\right\rangle=+\binom{2}{21}\binom{2}{32}+\binom{2}{23}\binom{2}{12} \\
& =\frac{-1}{2}(1 \cdot 1+1 \cdot 1)=-1 \\
& \begin{array}{ll}
3 & 0 \\
0 & 5
\end{array} \\
& \begin{array}{l}
(j=2) \\
(j=1)
\end{array}
\end{aligned}
$$

Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Detailed sample applications of "Jawbone" formulae
Number operators
1-jump $\mathrm{E}_{\mathrm{i}-1, \mathrm{i}}$ operators
2-jump $\mathrm{E}_{\mathrm{i}-2, \mathrm{i}}$ operators
Angular momentum operators (for later application)
Multipole expansions and Coulomb (e-e)-electrostatic interaction
Linear multipoles; P_{1}-dipole, P_{2}-quadrupole, P_{3}-octupole, ...
Moving off-axis: On-z-axis linear multipole $P \ell(\cos \theta)$ wave expansion:
Multipole Addition Theorem (should be called Group Multiplication Theorem)
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals
2-particle elementary $\mathbf{e}_{j k}$ operator expressions for (e-e)-interaction matrix
Tensor tables are $(2 \ell+1)$-by- $(2 \ell+1)$ arrays $\left(p^{k} q\right)$ giving $\mathbf{V}_{q}{ }^{k}$ in terms of $\mathbf{E}_{p, q}$.
Relating $\mathbf{V}_{q}{ }^{k}$ to $\mathbf{E}_{m, m}$ by $\left(m^{\prime}{ }^{k}{ }_{m}\right)$ arrays
Atomic p-shell ee-interaction in elementary operator form
$[2,1]$ tableau basis (from p.29) and matrices of \mathbf{v}^{1} dipole and $\mathbf{v}^{1} \cdot \mathbf{v}^{1}=\mathbf{L} \cdot \mathbf{L}$
[2,1] tableau basis (from p.29) and matrices of \mathbf{v}^{2} and $\mathbf{v}^{2} \cdot \mathbf{v}^{2}$ quadrupole
${ }^{4} \mathrm{~S},{ }^{2} \mathrm{P}$, and ${ }^{2} \mathrm{D}$ energy calculation of quartet and doublet (spin-1/2) p^{3} orbits
Corrected level diagrams Nitrogen p^{3}
$\square=[2,1]$ tableau matrices of \mathbf{v}^{2} quadrupole: ${ }^{4} S,{ }^{2} P$, and ${ }^{2} D$ energy calculation

Fig. 8 Weight or Moment Diagrams of Atomic $(p)^{n}$ States Each tableau is located at point ($x_{1} x_{2} x_{3}$) in a cartesian co-ordinate system for which x_{n} is the number of n ' s in the tableau. An alternative co-ordinate system is ($\mathrm{v}_{0}^{2}, \mathrm{v}_{0}^{1}, \mathrm{v}_{0}^{0}$) defined by Eq. 16 which gives the $z z$-quadrupole moment,
z-magnetic dipole moment, and number of particles, respectively. The last axis (v_{0}^{0}) would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

A Unitary Calculus for Electronic Orbitals

William G. Harter and Christopher W. Patterson
Springer-Verlag Lectures in Physics 491976

Alternative basis for the theory of complex spectra I William G. Harter
Physical Review A 83 p2819 (1973)
Alternative basis for the theory of complex spectra II
William G. Harter and Christopher W. Patterson
Physical Review A 133 p1076-1082 (1976)
Alternative basis for the theory of complex spectra III William G. Harter and Christopher W. Patterson Physical Review A ??

Alternative basis for the theory of complex spectra II William G. Harter and Christopher W. Patterson Physical Review A 133 p1076-1082 (1976)

FIG. 6. Example of unitary tableau notation for multi-ple-shell states. The calculation of the dipole operator using the jawbone formula between states of definite spin and orbit as shown is given in Eq. (48).

All
Images • Videos Maps
News
Shop
I
My saves

Hund's rule of maximum multiplicity

- The three rules are:
- For a given electron configuration, the term wilh maximum multipticity has the lowest energy. The multiplicity is equal to where is the total spin angular momentum for all electrons.
- For a given multiplicity, the term with the largest value of the total orbital angular momentum quantum number has the lowest energy.

Yay! (for the Googley internet)

Hund's Rule of maximum
Multiplicity
The above rules: not give idea abt filling the ein to degenerate orbitals.
For e.g., p-orbitals
" when more than one orbitals of equal energies are available, then the e-will first occupy these orbitals separately with parallel spins.the pairing of e -will start only after all the orbitals of a given sub-level are singly occupied."
Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.

Hund's Rule

In a set of orbitals, the electrons will fill the orbitals in a way that would give the maximum number of parallel spins (maximum number of unpaired electrons)

Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.

$$
\begin{aligned}
& \mathrm{B} \text { (5e) } \mathrm{C} \text { (6e) } \mathrm{N} \text { (7e) }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{~s} \text { 1 }
\end{aligned}
$$

1s 1
Hund's rule of maximum multiplicity
v $\frac{\uparrow}{1}$
$>\frac{\uparrow}{1}$

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits

Diagonal examples in n-particle notation:

$$
\begin{aligned}
& \sqrt{3} \mathbf{V}_{0}^{0}=E_{11}+E_{22}+E_{33} \\
& \sqrt{2} \mathbf{V}_{0}^{1}=E_{11} \quad-E_{33} \equiv L_{z} \\
& \sqrt{6} \mathbf{V}_{0}^{2}=E_{11}-2 E_{22}+E_{33}
\end{aligned}
$$

Off-Diagonal examples in n-particle notation:

$$
\begin{array}{lll}
\mathbf{V}_{2}^{2}=E_{13}, & -2 \mathbf{V}_{1}^{2}=\sqrt{2}\left(E_{12}-E_{23}\right), & 2 \mathbf{V}_{-1}^{2}=\sqrt{2}\left(E_{21}-E_{32}\right), \quad 2 \mathbf{V}_{-2}^{2}=E_{31}, \\
& -2 \mathbf{V}_{1}^{1}=\sqrt{2}\left(E_{12}+E_{23}\right) \equiv L_{+}, & 2 \mathbf{V}_{-1}^{1}=\sqrt{2}\left(E_{21}+E_{32}\right) \equiv L_{-} .
\end{array}
$$

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their $\mathbf{V}^{k}{ }_{q}$ matrices
 Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left.\left|D_{M=1}^{L} D^{L-2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L-2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)| |^{10}\right\rangle
$$

Here this is done using Tableau "Jawbone" formula.

$$
\left.==\frac{1}{\sqrt{2}}\left(\left|\frac{a^{2}}{2}\right\rangle+\left.\right|^{\frac{\pi}{3}}\right\rangle\right)
$$

Orthogonal to this is a ${ }^{2} P(M=1)$ state

$$
\left.\left.\left|{ }^{2} P_{M=1}^{L=1}\right\rangle=\frac{1}{\sqrt{2}}\left(| | \frac{1 \mid 2}{2}\right\rangle-\left.\left|\frac{1}{3}\right|\right|^{1}\right\rangle\right)
$$

Next we calculate $2^{\text {n }}$-pole moments the pair:

$$
\begin{aligned}
& \left\langle{ }^{2} P_{M=1}^{L=1}\right| V_{0}^{k}\left|{ }^{2} D_{M=1}^{L=2}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[-\binom{2}{11} E_{11}+2\binom{2}{22} E_{22}-\binom{2}{33}\right]=-\sqrt{\frac{3}{2}} \text { for : } k=2 \\
& =\frac{1}{2}\left[-\binom{1}{11} E_{11}+2\binom{1}{22} E_{22}-\binom{1}{33}\right]=0 \quad \text { for : } k=1 \\
& =\frac{1}{2}\left[-\binom{0}{11} E_{11}+2\binom{0}{22} E_{22}\binom{0}{33}\right]=0 \quad \text { for : } k=0
\end{aligned}
$$

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

Single particle p1-orbitals: $U(3)$ triplet $\quad\left|p^{1} \square\right\rangle$
$\begin{array}{ll}e_{12} e_{21}=e_{11} & \\ e_{12} e_{22}=e_{12} & \\ |1\rangle\langle 2||2\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1|=|1\rangle\langle 2|\end{array}$
$e_{11}=\left(\begin{array}{lll}1 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right), e_{12}=\left(\begin{array}{lll}\cdot & 1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right), e_{13}=\left(\begin{array}{lll}\cdot & \cdot & 1 \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right), e_{21}=\left(\begin{array}{lll}\cdot & \cdot & . \\ 1 & \cdot & \cdot \\ \cdot & \cdot\end{array}\right), \ldots e_{33}=\left(\begin{array}{lll}\cdot & \cdot \\ \cdot & \cdot \\ 1 & \cdot & \\ \hline\end{array}\right)$

General elementary operator commutation $\left[E_{j k}, E_{p q}\right]=\delta_{k p} E_{j q}-\delta_{q j} E_{p k}$ has same form as 1-particle commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$

Elementary-elementary

operator commutation algebra

This applies to all of multi-particle representations of $E_{j k}$ and to momentum operators L_{x}, L_{y}, and L_{z}.

Single particle p-orbit ($\ell=1$) representation of L_{x}, L_{y}, and L_{z}

$$
D_{m n}^{1}\left(L_{x}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
1 & \cdot & 1 \\
\cdot & 1 & \cdot
\end{array}\right), \quad D_{m n}^{1}\left(L_{y}\right)=\frac{-i}{\sqrt{2}}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
-1 & \cdot & 1 \\
\cdot & -1 & \cdot
\end{array}\right), \quad D_{m n}^{1}\left(L_{z}\right)=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)
$$

Elementary operator form of L_{x}, L_{y}, and L_{z}

$$
L_{x}=\left(E_{12}+E_{23}+E_{21}+E_{32}\right) / \sqrt{2}, \quad L_{y}=-i\left(E_{12}+E_{23}-E_{21}-E_{32}\right) / \sqrt{2}, \quad L_{z}=E_{11}-E_{33}
$$

...and of raise-lower operators $L+$ and L.

$$
L_{+}=L_{x}+i L_{y}=\sqrt{2}\left(E_{12}+E_{23}\right), \quad L_{-}=L_{x}-i L_{y}=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{+}^{\dagger}, \quad L_{z}=\left[L_{+}, L_{-}\right]
$$

