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(Sn)*(U(m)) shell model of electrostatic quadrupole-quadrupole-e interactions 
Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
     Detailed sample applications of  “Jawbone” formulae 
     Number operators 
     1-jump Ei-1,i operators 
     2-jump Ei-2,i operators 
        Angular momentum operators (for later application) 
Multipole expansions and Coulomb (e-e)-electrostatic interaction 
     Linear multipoles; P1-dipole, P2-quadrupole, P3-octupole,… 
     Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion: 
              Multipole Addition Theorem (should be called Group Multiplication Theorem) 
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 
         2-particle elementary ejk operator expressions for (e-e)-interaction matrix 
Tensor tables are (2ℓ+1)-by-(2ℓ+1) arrays (pkq) giving Vq

k in terms of Ep,q. 
         Relating Vq

k to Em′,m by (m′ 
k
m) arrays 

         Atomic p-shell ee-interaction in elementary operator form 
[2,1] tableau basis (from p.29) and matrices of v1 dipole and v1•v1=L•L 
[2,1] tableau basis (from p.29) and matrices of v2 and v2•v2 quadrupole 
              4S,2P, and 2D energy calculation of quartet and doublet (spin-½) p3 orbits 
Corrected level diagrams Nitrogen p3        



AMOP reference links (Updated list given on 2nd page of each class presentation) 

Web Resources - front page 2014 AMOP

2018 AMOP
UAF Physics UTube channel 2017 Group Theory for QM

Classical Mechanics with a Bang!
Principles of Symmetry, Dynamics, and Spectroscopy

Quantum Theory for the Computer Age

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)


Theory of hyperfine and superfine levels in symmetric polyatomic molecules. 

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)


Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013 

Rotation–vibration spectra of icosahedral molecules.

I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989

II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989

III) Half-integral angular momentum - harter-reimer-jcp-1991


QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 
AMOP Ch 0 Space-Time Symmetry - 2019


RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973 

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,  
and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.  This bad boy will be a sure force multiplier.

https://modphys.hosted.uark.edu/markup/Harter-SoftWebApps.html
https://modphys.hosted.uark.edu/markup/QTCA_Info_2014.html
https://modphys.hosted.uark.edu/markup/AMOP_Info_2018.html
https://www.youtube.com/channel/UC2KBYYdZOfotnkUOTthDjRA
https://modphys.hosted.uark.edu/markup/GTQM_Info_2017.html
https://modphys.hosted.uark.edu/markup/CMwBang_UnitsDetail_2017.html
https://modphys.hosted.uark.edu/markup/PSDSWeb.html
https://modphys.hosted.uark.edu/markup/QTCA_UnitsDetail.html
https://modphys.hosted.uark.edu/markup/MPCF_Info_2012.html
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Frame_transformation_relations_and_multipole_transitions_in_symmetric_polyatomic_molecules_-_Harter-Patterson-Paixao-RMP-1978.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotational%20energy%20surfaces%20and%20high-%20J%20eigenvalue%20structure%20of%20polyatomic%20molecules%20-%20Harter%20-%20Patterson%20-%201984.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Galloping_waves_and_their_relativistic_properties_-_ajp-1985-harter.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Asymptotic%20eigensolutions%20of%20fourth%20and%20sixth%20rank%20octahedral%20tensor%20operators%20-Harter-Patterson-jmp-1979.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLC60SpinWts%20HiRes%2bErrata.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Reimer%20-%20harter1992.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Erratum%20-%201-s2.0-000926149285077N-main.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20Trigonal%20and%20tetrahedral%20molecules%3a%20Elementary%20spin-1%3a2%20cases%20in%20vibronic%20ground%20states%20-%20pra%20-1979-Harter-Patterson.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.I%20CF4.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20II.%20Elementary%20cases%20in%20octahedral%20hexafluoride%20molecules%20-%20Harter-PRA-1981.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.II%20SF6.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation-vibration%20scalar%20coupling%20zeta%20coefficients%20and%20spectroscopic%20band%20shapes%20of%20buckminsterfullerene%20-%20weeks-harter-cpl-1991.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLBzetaCoeff%20C60.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Fullerene%20symmetry%20reduction%20and%20rotational%20level%20fine%20structure:%20the%20Buckyball%20isotopomer%2012C%2013C59%20-%20jcp%20-%20reimer%20-%20harter%20-%201997.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/C60symmReduct&fine%20structure12C13C59%20ReimerHarter1997hiRes.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Molecular_Eigensolution_Symmetry_Analysis_and_Fine_Structure_-_IJMS-harter-mitchell-2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._I._Icosahedral_symmetry_analysis_and_fine_structure_-_harter-weeks-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._II._Icosahedral_symmetry%2c_vibrational_eigenfrequencies%2c_and_normal_modes_of_buckminsterfullerene_-_weeks-harter-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._III_-_Half-integral_angular_momentum_-_harter-reimer-jcp-1991.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_10_Ch.30_2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Springer_Handbooks_of_Atomic_Molecular_and_Optical_Physics_-_Harter-Ch32_-_2006.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/AMOP%20Ch%200%20SpaceTimeSymm.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20And%20Revivals%20%20I.%20Quantum%20Rotor%20And%20Infinite-Well%20Dynamics%20-%20Harter-Li-ISMS-Columbus-2012.pdf
https://kb.osu.edu/dspace/handle/1811/52324
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Resonant%20Beats%20and%20Revivals%20in%20the%20Morse%20Oscillators%20and%20Rotors%20-%202013-Li-Diss.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20harter%20-%20weeks%20-%20cpl%20-%201986.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20scan%20-%20RovibeIcosCPL132p387-392(1986).pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Gas%20Phase%20Level%20Structure%20of%20C60%20Buckyball%20and%20Derivatives%20Exhibiting%20Broken%20Icosahedral%20Symmetry%20-%20reimer-diss-1996.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Revivals%20of%20Morse%20Oscillators%20and%20Farey-Ford%20Geometry%20-%20Li%20-%20Harter%20-%20cpl%20-%202013%20-%201308.4470.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Wave%20Node%20Dynamics%20and%20Revival%20Symmetry%20in%20Quantum%20Rotors%20-%20harter%20-%20jms%20-%202001.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Representations_of_multidimensional_symmetries_in_networks_-_jmp-Harter-1974.pdf
https://modphys.hosted.uark.edu/markup/AMOP_References.html


(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 23-26 ) 
(PSDS - Ch. 5, 7 ) 

Irrep Tensor building 
Unit 8 Ch. 25 p5.          

Irrep Tensor Tables 
Unit 8 Ch. 25 p12.          

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

Intro 3-particle coupling.    
Unit 8 Ch. 25 p28.          

Wigner-Eckart tensor Theorem.    
Unit 8 Ch. 25 p17.          

Tensors Applied to high J levels.    
Unit 8 Ch. 25 p63.          

Intro spin ½ coupling 
Unit 8 Ch. 24 p3.          

H atom hyperfine-B-level crossing 
Unit 8 Ch. 24 p15.         

Intro 2p3p coupling 
Unit 8 Ch. 24 p17.          

Intro LS-jj coupling 
Unit 8 Ch. 24 p22.          

CG coupling derived (start) 
Unit 8 Ch. 24 p39.          

CG coupling derived (formula) 
Unit 8 Ch. 24 p44.          

Hyperf. theory Ch. 24 p48.         

Hyperf. theory Ch. 24 p48.   
Deeper theory ends p53        

Lande’ g-factor 
Unit 8 Ch. 24 p26.         

Intro 3,4-particle Young Tableaus   
GrpThLect29 p42.          

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=5
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=12
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=28
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=63
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=3
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=15
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=22
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=39
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=44
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=48
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=53
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=26
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=42
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
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Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
     Detailed sample applications of  “Jawbone” formulae 
     Number operators 
     1-jump Ei-1,i operators 
     2-jump Ei-2,i operators 
        Angular momentum operators (for later application) 
Multipole expansions and Coulomb (e-e)-electrostatic interaction 
     Linear multipoles; P1-dipole, P2-quadrupole, P3-octupole,… 
     Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion: 
              Multipole Addition Theorem (should be called Group Multiplication Theorem) 
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 
         2-particle elementary ejk operator expressions for (e-e)-interaction matrix 
Tensor tables are (2ℓ+1)-by-(2ℓ+1) arrays (pkq) giving Vq

k in terms of Ep,q. 
         Relating Vq
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k
m) arrays 

         Atomic p-shell ee-interaction in elementary operator form 
[2,1] tableau basis (from p.29) and matrices of v1 dipole and v1•v1=L•L 
[2,1] tableau basis (from p.29) and matrices of v2 and v2•v2 quadrupole 
              4S,2P, and 2D energy calculation of quartet and doublet (spin-½) p3 orbits 
Corrected level diagrams Nitrogen p3        
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Sample applications of  “Jawbone” number operators

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
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Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

(1-jump Ei-1,i)
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Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
12 E23 3

12 = 1
2

(1-jump Ei-1,i)

 i=2
d=2



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
12 E23 3

12 = 1
2 2

12 E23 2
13 = 3

2

(1-jump Ei-1,i)

 i=2
d=2



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
12 E23 3

12 = 1
2 2

12 E23 2
13 = 3

2

 3
11 E12 3

12 = 2

 i=2
d=1

(1-jump Ei-1,i)



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
12 E23 3

12 = 1
2 2

12 E23 2
13 = 3

2

 3
12 E12 3

22 = 2  3
12 E12 3

22 = 2

 i=2
d=1

(1-jump Ei-1,i)



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
12 E23 3

12 = 1
2 2

12 E23 2
13 = 3

2

 3
12 E12 3

22 = 2  3
12 E12 3

22 = 2

 i=3
d=2

 3
12 E23 3

13 = 1
2

(1-jump Ei-1,i)



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
12 E23 3

12 = 1
2 2

12 E23 2
13 = 3

2

 3
12 E12 3

22 = 2  3
12 E12 3

22 = 2

 i=3
d=2

 3
12 E23 3

13 = 1
2  2

13 E23 3
13 = 3

2

(1-jump Ei-1,i)



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae

 2
11 E12 2

12 = 1  2
11 E23 3

11 = 1

 2
11 E11 2

11 = 2  2
11 E22 2

11 = 1

 2
12 E23 3

12 = 1
2 2

12 E23 2
13 = 3

2

 3
12 E12 3

22 = 2  3
12 E12 3

22 = 2

 3
12 E23 3

13 = 1
2  3

22 E23 3
23 = 1 2

13 E23 3
13 = 3

2

(1-jump Ei-1,i)



AMOP  
reference links 

 on page 2

Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
     Detailed sample applications of  “Jawbone” formulae 
     Number operators 
     1-jump Ei-1,i operators 
     2-jump Ei-2,i operators 
        Angular momentum operators (for later application) 
Multipole expansions and Coulomb (e-e)-electrostatic interaction 
     Linear multipoles; P1-dipole, P2-quadrupole, P3-octupole,… 
     Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion: 
              Multipole Addition Theorem (should be called Group Multiplication Theorem) 
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 
         2-particle elementary ejk operator expressions for (e-e)-interaction matrix 
Tensor tables are (2ℓ+1)-by-(2ℓ+1) arrays (pkq) giving Vq

k in terms of Ep,q. 
         Relating Vq

k to Em′,m by (m′ 
k
m) arrays 

         Atomic p-shell ee-interaction in elementary operator form 
[2,1] tableau basis (from p.29) and matrices of v1 dipole and v1•v1=L•L 
[2,1] tableau basis (from p.29) and matrices of v2 and v2•v2 quadrupole 
              4S,2P, and 2D energy calculation of quartet and doublet (spin-½) p3 orbits 
Corrected level diagrams Nitrogen p3        

4.16.18 class 23: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(Sn)*(U(m)) shell model of electrostatic quadrupole-quadrupole-e interactions 



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits
M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 ⋅ 2

(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 1

(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 ⋅ 1

(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 1

(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ 2

(22)

+ 1
(33)

1
(23)

3
23 1

(22)

+ 2
(33)

Sample applications of  “Jawbone” formulae
 E13= [E12,E23] = E12E23      -E23E12
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11 E11 2

11 = 2  2
11 E22 2

11 = 1

(2-jump Ei-2,i)

 2
11 E13 3

12 = ??
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8
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Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion:
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Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion:

Off-z-axis Pℓ(cosθ) wave by Euler rotation: 
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the harmonic addition theorem.
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Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion:
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Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion:
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k

∑     where: Cq
k (α )= 4π

2k +1
Yq
k φα ,θα( )

 Given in terms of Slater radial integral(s): 

F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 ) = r1
2∫ dr1 r2

2∫ dr2 R ′ℓ1
(r1)R ′ℓ2

(r2 )
r<
k

r>
k+1 Rℓ1 (r1)Rℓ2

(r2 )

Elementary operator expressions for (e-e)-interaction matrix

1
rαβ

= ′m1

′ℓ1
′m2

′ℓ2
′m1

′ℓ1
′m2

′ℓ2
1
rαβ

m1

ℓ1
m2

ℓ2
m1

ℓ1
m2

ℓ2

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑   

= e
′m1

′ℓ1
m1

ℓ1
(α )e

′m2

′ℓ2
m2

ℓ2
(β ) F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 )

k
∑

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑ (-1)q+Δ ′m1

′ℓ1 C-q
k (α ) m1

ℓ1
′m2

′ℓ2 Cq
k (β ) m2

ℓ2

q
∑⎡
⎣
⎢

⎤

⎦
⎥  

where parity requires:
1= (-1) ′ℓ1+k+ℓ1 = (-1) ′ℓ2+k+ℓ2

(-1)Δ = (-1) ′ℓ1−ℓ1 = (-1) ′ℓ2−ℓ2

⎧
⎨
⎪

⎩⎪
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(Repeating from preceding page) (e-e)-interaction matrix (multi-ℓ-shell)

2-particle elementary ejk operator expressions for (e-e)-interaction matrix

1
rαβ

= ′m1

′ℓ1
′m2

′ℓ2
′m1

′ℓ1
′m2

′ℓ2
1
rαβ

m1

ℓ1
m2

ℓ2
m1

ℓ1
m2

ℓ2

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑   

= e
′m1

′ℓ1
m1

ℓ1
(α )e

′m2

′ℓ2
m2

ℓ2
(β ) F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 )

k
∑

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑ (-1)q+Δ ′m1

′ℓ1 C-q
k (α ) m1

ℓ1
′m2

′ℓ2 Cq
k (β ) m2

ℓ2

q
∑⎡
⎣
⎢

⎤

⎦
⎥  

where parity requires:
1= (-1) ′ℓ1+k+ℓ1 = (-1) ′ℓ2+k+ℓ2

(-1)Δ = (-1) ′ℓ1−ℓ1 = (-1) ′ℓ2−ℓ2

⎧
⎨
⎪

⎩⎪

1
rαβ

= Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )
k
∑

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑ (-1)q+Δ ( ′1 1
 k )e ′1 1(α )( ′2 2

 k )e ′2 2(β )
q
∑⎡
⎣
⎢

⎤

⎦
⎥  

with tensor factors:  ( ′1 1
 k )=C-qm1m1−q

k ℓ1 ′ℓ1 2k+1
2 ′ℓ1+1  and ( ′2 2

 k )=C-qm2m2−q
k ℓ2 ′ℓ2 2k+1

2 ′ℓ2+1  

and radial integral(s):  Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )=F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 ) 0 0 0
k ℓ1 ′ℓ1( ) 0 0 0

k ℓ2 ′ℓ2( ) (2 ′ℓ1+1)(2 ′ℓ2+1)(2ℓ1+1)(2ℓ2+1)
2k+1

Shorthand ejk index  
labeling        maps to  
momentum quanta:

e ′1 1

′1→
′ℓ1

′m1

,  1→
ℓ1

m1

′2→
′ℓ2

′m2

,  2→
ℓ2

m2



(Repeating from preceding page) (e-e)-interaction matrix (multi-ℓ-shell)

2-particle elementary ejk operator expressions for (e-e)-interaction matrix

1
rαβ

= ′m1

′ℓ1
′m2

′ℓ2
′m1

′ℓ1
′m2

′ℓ2
1
rαβ

m1

ℓ1
m2

ℓ2
m1

ℓ1
m2

ℓ2

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑   

= e
′m1

′ℓ1
m1

ℓ1
(α )e

′m2

′ℓ2
m2

ℓ2
(β ) F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 )

k
∑

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑ (-1)q+Δ ′m1

′ℓ1 C-q
k (α ) m1

ℓ1
′m2

′ℓ2 Cq
k (β ) m2

ℓ2

q
∑⎡
⎣
⎢

⎤

⎦
⎥  

where parity requires:
1= (-1) ′ℓ1+k+ℓ1 = (-1) ′ℓ2+k+ℓ2

(-1)Δ = (-1) ′ℓ1−ℓ1 = (-1) ′ℓ2−ℓ2

⎧
⎨
⎪

⎩⎪

1
rαβ

= Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )
k
∑

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑ (-1)q+Δ ( ′1 1
 k )e ′1 1(α )( ′2 2

 k )e ′2 2(β )
q
∑⎡
⎣
⎢

⎤

⎦
⎥  

with tensor factors:  ( ′1 1
 k )=C-qm1m1−q

k ℓ1 ′ℓ1 2k+1
2 ′ℓ1+1  and ( ′2 2

 k )=C-qm2m2−q
k ℓ2 ′ℓ2 2k+1

2 ′ℓ2+1  

and radial integral(s):  Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )=F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 ) 0 0 0
k ℓ1 ′ℓ1( ) 0 0 0

k ℓ2 ′ℓ2( ) (2 ′ℓ1+1)(2 ′ℓ2+1)(2ℓ1+1)(2ℓ2+1)
2k+1

Shorthand ejk index  
labeling        maps to  
momentum quanta:

e ′1 1

′1→
′ℓ1

′m1

,  1→
ℓ1

m1

′2→
′ℓ2

′m2

,  2→
ℓ2

m2

n-particle elementary Ejk=Σαejk(α) summed operator expressions (Using eij(α)ekm(α)=δjkeim(α)  )

1
2

1
rαβα≠β

∑ = 1
2 Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )

k
∑

′ℓ1 ′ℓ2ℓ1ℓ2

∑ (-1)q+Δ ( ′1 1
 k )E ′1 1 ( ′2 2

 k )E ′2 2 − (-1)q+Δ ( ′1 1
 k )( ′2 2

 k )δ ′2 1E ′1 2
q

m1,m2

∑
q

m1,m2

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 



(Repeating from preceding page) (e-e)-interaction matrix (multi-ℓ-shell)

2-particle elementary ejk operator expressions for (e-e)-interaction matrix

1
rαβ

= ′m1

′ℓ1
′m2

′ℓ2
′m1

′ℓ1
′m2

′ℓ2
1
rαβ

m1

ℓ1
m2

ℓ2
m1

ℓ1
m2

ℓ2

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑   

= e
′m1

′ℓ1
m1

ℓ1
(α )e

′m2

′ℓ2
m2

ℓ2
(β ) F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 )

k
∑

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑ (-1)q+Δ ′m1

′ℓ1 C-q
k (α ) m1

ℓ1
′m2

′ℓ2 Cq
k (β ) m2

ℓ2

q
∑⎡
⎣
⎢

⎤

⎦
⎥  

where parity requires:
1= (-1) ′ℓ1+k+ℓ1 = (-1) ′ℓ2+k+ℓ2

(-1)Δ = (-1) ′ℓ1−ℓ1 = (-1) ′ℓ2−ℓ2

⎧
⎨
⎪

⎩⎪

1
rαβ

= Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )
k
∑

′m1

′ℓ1
′m2

′ℓ2
m1

ℓ1
m2

ℓ2

∑ (-1)q+Δ ( ′1 1
 k )e ′1 1(α )( ′2 2

 k )e ′2 2(β )
q
∑⎡
⎣
⎢

⎤

⎦
⎥  

with tensor factors:  ( ′1 1
 k )=C-qm1m1−q

k ℓ1 ′ℓ1 2k+1
2 ′ℓ1+1  and ( ′2 2

 k )=C-qm2m2−q
k ℓ2 ′ℓ2 2k+1

2 ′ℓ2+1  

and radial integral(s):  Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )=F k ( ′ℓ1 ′ℓ2ℓ1ℓ2 ) 0 0 0
k ℓ1 ′ℓ1( ) 0 0 0

k ℓ2 ′ℓ2( ) (2 ′ℓ1+1)(2 ′ℓ2+1)(2ℓ1+1)(2ℓ2+1)
2k+1

Shorthand ejk index  
labeling        maps to  
momentum quanta:

e ′1 1

′1→
′ℓ1

′m1

,  1→
ℓ1

m1

′2→
′ℓ2

′m2

,  2→
ℓ2

m2

1
2

1
rαβα≠β

∑ = 1
2 Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )

k
∑

′ℓ1 ′ℓ2ℓ1ℓ2

∑ (-1)q+Δ ( ′1 1
 k )E ′1 1 ( ′2 2

 k )E ′2 2 − (-1)q+Δ ( ′1 1
 k )( ′2 2

 k )δ ′2 1E ′1 2
q

m1,m2

∑
q

m1,m2

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

= 1
2 Ak ( ′ℓ1 ′ℓ2ℓ1ℓ2 )

k
∑

′ℓ1 ′ℓ2ℓ1ℓ2

∑ ( ′ℓ1, "Vq
kℓ1)( ′ℓ2 , "Vq

kℓ2 )− 1
2 Ak (ℓ1ℓ2ℓ1ℓ2 )

k
∑ 2k+1

2ℓ1+1 E11
m1

∑
ℓ1ℓ2

∑
q

m1,m2

∑  

n-particle elementary Ejk=Σαejk(α) summed operator expressions (Using eij(α)ekm(α)=δjkeim(α)  )
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Single-ℓ atomic shells pn, dn, fn,…

1
rαβα≠β

∑ = Ak (ℓ)
k=0
(evenk )

∑ (V kiV k )+ const.  where:  V kiV k= (-1)q
q=−k

k

∑ V−q
k Vq

k= !Vq
kVq

k

q=−k

k

∑    ( !Vq
kmeans transpose of Vq

k )

n-particle pure shell ee-interaction reduces to: 



Single-ℓ atomic shells pn, dn, fn,…

1
rαβα≠β

∑ = Ak (ℓ)
k=0
(evenk )

∑ (V kiV k )+ const.  where:  V kiV k= (-1)q
q=−k

k

∑ V−q
k Vq

k= !Vq
kVq

k

q=−k

k

∑    ( !Vq
kmeans transpose of Vq

k )

= V0
k( )2

+ !Vq
kVq

k +Vq
k !Vq

k( )
q=−k

k

∑

Tensor tables are (2ℓ+1)-by-(2ℓ+1) arrays (pkq) giving Vq
k in terms of elementary operators Ep,q.

ℓ=1 p=shell example:

v−2
2 =

⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   v−1
2 =

⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ -1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

  v0
2 =

1 ⋅ ⋅
⋅ -2 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
6

    v+1
2 =

⋅ -1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

    v+2
2 =

⋅ ⋅ 1
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

                                  v−1
1 =

⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

    v0
1 =

1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

     v+1
1 =

⋅ -1 ⋅
⋅ ⋅ -1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

 

                                                                          v0
0 =

1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
3

n-particle pure shell ee-interaction reduces to: 

QTCA Unit 8 Ch.25 Tensor tables begins on p. 9        

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=9


Single-ℓ atomic shells pn, dn, fn,…

1
rαβα≠β

∑ = Ak (ℓ)
k=0
(evenk )

∑ (V kiV k )+ const.  where:  V kiV k= (-1)q
q=−k

k

∑ V−q
k Vq

k= !Vq
kVq

k

q=−k

k

∑    ( !Vq
kmeans transpose of Vq

k )

= V0
k( )2

+ !Vq
kVq

k +Vq
k !Vq

k( )
q=−k

k

∑

Tensor tables are (2ℓ+1)-by-(2ℓ+1) arrays (pkq) giving Vq
k in terms of elementary operators Ep,q.

ℓ=1 p=shell example:

v−2
2 =

⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   v−1
2 =

⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ -1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

  v0
2 =

1 ⋅ ⋅
⋅ -2 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
6

    v+1
2 =

⋅ -1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

    v+2
2 =

⋅ ⋅ 1
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

                                  v−1
1 =

⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

    v0
1 =

1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

     v+1
1 =

⋅ -1 ⋅
⋅ ⋅ -1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

 

                                                                          v0
0 =

1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
3

vq
2 =

1 -1 1
1 -2 1
1 -1 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1
2

1
6

vq
1 =

1 -1 ⋅
1 0 -1
⋅ 1 -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

1
2

v0
0 =

1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟ 1

3

A compact format helps display.

n-particle pure shell ee-interaction reduces to: 

QTCA Unit 8 Ch.25 Tensor tables begins on p. 9        

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=9


Single-ℓ atomic shells pn, dn, fn,…

1
rαβα≠β

∑ = Ak (ℓ)
k=0
(evenk )

∑ (V kiV k )+ const.  where:  V kiV k= (-1)q
q=−k

k

∑ V−q
k Vq

k= !Vq
kVq

k

q=−k

k

∑    ( !Vq
kmeans transpose of Vq

k )

= V0
k( )2

+ !Vq
kVq

k +Vq
k !Vq

k( )
q=−k

k

∑

Tensor tables are (2ℓ+1)-by-(2ℓ+1) arrays (pkq) giving Vq
k in terms of elementary operators Ep,q.

ℓ=1 p=shell example:

v−2
2 =

⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   v−1
2 =

⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ -1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

  v0
2 =

1 ⋅ ⋅
⋅ -2 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
6

    v+1
2 =

⋅ -1 ⋅
⋅ ⋅ 1
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
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2 )(23

2 )+(31
2 )(13

2 )

                  = 1
6 1⋅1− 2 ⋅2( )2

+ 1
2
⋅ 1

2
+ 2 1

2
⋅ 1

2
+   1⋅1  

                  =          3
2         + 1

2        +        1    +   1   =  4

3
11V 2⋅V 2

3
11 = 2(11

2 )+(33
2 )( )2

+(21
2 )(12

2 )+2(32
2 )(23

2 )+(31
2 )(13

2 )

                  = 1
6 2⋅1+1⋅1( )2

+ 2 1
2
⋅ 1

2
+  1

2
⋅ 1

2
+   1⋅1  

                  =          3
2         + 1       +        1

2     +   1   =  4

 = [2,1] tableau basis and matrices of v2 quadrupole =

2
12V 2⋅V 2

3
11 =+(21

2 )(32
2 )+(23

2 )(12
2 )

                  = -1
2 1⋅1+1⋅1( ) = −1 

2
1 1

2
1 1

3
2
1 2

3
1 1

2
1 2 4 -1

3
1 1 -1 4

Q•Q eigenvalues 

3 
     3    0 
     0    5 
      

(j=2)

(j=2)

(j=1)

2DM=2 =
2
1 1

2DM=1 = 1
2 2

1 2 + 1
2 3

1 1

2 PM=1 = 1
2 2

1 2 − 1
2 3

1 1



AMOP  
reference links 

 on page 2

Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
     Detailed sample applications of  “Jawbone” formulae 
     Number operators 
     1-jump Ei-1,i operators 
     2-jump Ei-2,i operators 
        Angular momentum operators (for later application) 
Multipole expansions and Coulomb (e-e)-electrostatic interaction 
     Linear multipoles; P1-dipole, P2-quadrupole, P3-octupole,… 
     Moving off-axis: On-z-axis linear multipole Pℓ (cosθ) wave expansion: 
              Multipole Addition Theorem (should be called Group Multiplication Theorem) 
Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 
         2-particle elementary ejk operator expressions for (e-e)-interaction matrix 
Tensor tables are (2ℓ+1)-by-(2ℓ+1) arrays (pkq) giving Vq

k in terms of Ep,q. 
         Relating Vq

k to Em′,m by (m′ 
k
m) arrays 

         Atomic p-shell ee-interaction in elementary operator form 
[2,1] tableau basis (from p.29) and matrices of v1 dipole and v1•v1=L•L 
[2,1] tableau basis (from p.29) and matrices of v2 and v2•v2 quadrupole 
              4S,2P, and 2D energy calculation of quartet and doublet (spin-½) p3 orbits 
Corrected level diagrams Nitrogen p3        

4.16.18 class 23: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(Sn)*(U(m)) shell model of electrostatic quadrupole-quadrupole-e interactions 



M=2 M=1 M=0 M=-1 M=-2

E jk =

2
11

2
12

3
11

3
12

2
13

3
13

3
22

3
23

2
11 2

(11)

+ 1
(22)

1
(12)

1
(23)

- 1
2

(13)
3
2

(13)

⋅ ⋅ ⋅

2
12 1

(21)

1
(11)

+ 2
(22)

⋅ 1
2

(23)
3
2

(23)

⋅ -1
(13)

⋅

3
11 1

(32)

⋅ 2
(11)

+ 1
(33)

2
(12)

⋅ 1
(13)

⋅ ⋅

3
12 - 1

2

(31)
1
2

(32)

2
(21)

1
(11)

+ 1
(22)

+ 1
(33)

⋅ 1
2

(23)

2
(12)

1
2

(13)

2
13 3

2

(31)
3
2

(32)

⋅ ⋅ 1
(11)

+ 1
(22)

+ 1
(33)

3
2

(23)

⋅ 3
2

(13)

3
13 ⋅ ⋅ 1

(31)
1
2

(32)
3
2

(32)

1
(11)

+ 2
(33)

⋅ 1
(12)

3
22 ⋅ -1

(31)

⋅ 2
(21)

⋅ ⋅ 2
(22)

+ 1
(33)

1
(23)

3
23 ⋅ ⋅ ⋅ 1

2

(31)
3
2

(31)

1
(21)

1
(32)

1
(22)

+ 2
(33)

vq
2 =

1 -1 1
1 -2 1
1 -1 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1
2

1
6

vq
1 =

1 -1 ⋅
1 0 -1
⋅ 1 -1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2

1
2

v0
0 =

1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟ 1

3

2
11V 2⋅V 2

2
11 = 2(11

2 )+(22
2 )( )2

+(21
2 )(12

2 )+(32
2 )(23

2 )+2(31
2 )(13

2 )

                  = 1
6 2 ⋅1− 2( )2

  + 1
2
⋅ 1

2
+ 1

2
⋅ 1

2
+ 2 ⋅1⋅1  =  3

vq
2 =

(11
2 ) (12

2 ) (13
2 )

(21
2 ) (22

2 ) (23
2 )

(31
2 ) (32

2 ) (33
2 )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

vq
1 =

(11
1 ) (12
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(21
1 ) (22

1 ) (23
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⋅ (32
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⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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(11
0 ) ⋅ ⋅
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⋅ ⋅ (33
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⎛

⎝
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⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2
12V 2⋅V 2

2
12 = (11

2 )+ 2(22
2 )( )2

+(21
2 )(12

2 )+2(32
2 )(23

2 )+(31
2 )(13

2 )

                  = 1
6 1⋅1− 2 ⋅2( )2

+ 1
2
⋅ 1

2
+ 2 1

2
⋅ 1

2
+   1⋅1  

                  =          3
2         + 1

2        +        1    +   1   =  4

3
11V 2⋅V 2

3
11 = 2(11

2 )+(33
2 )( )2

+(21
2 )(12

2 )+2(32
2 )(23

2 )+(31
2 )(13

2 )

                  = 1
6 2⋅1+1⋅1( )2

+ 2 1
2
⋅ 1

2
+  1

2
⋅ 1

2
+   1⋅1  

                  =          3
2         + 1       +        1

2     +   1   =  4

 = [2,1] tableau matrices of v2 quadrupole:  4S,2P, and 2D energy calculation =

2
12V 2⋅V 2

3
11 =+(21

2 )(32
2 )+(23

2 )(12
2 )

                  = -1
2 1⋅1+1⋅1( ) = −1 

2
1 1

2
1 1

3
2
1 2

3
1 1

2
1 2 4 -1

3
1 1 -1 4

Q•Q eigenvalues 

3 
     3    0 
     0    5 
      

Predicated 
2P,2D levels

2D

2P

4S



A Unitary Calculus for Electronic Orbitals 
William G. Harter and Christopher W. Patterson 
Springer-Verlag Lectures in Physics 49 1976 

Alternative basis for the theory of complex spectra II  
William G. Harter and Christopher W. Patterson 
Physical Review A 13 3 p1076-1082 (1976)

Alternative basis for the theory of complex spectra I  
William G. Harter 
Physical Review A 8 3 p2819 (1973)

Alternative basis for the theory of complex spectra III  
William G. Harter and Christopher W. Patterson 
Physical Review A ??

Predicated 
2P,2D levels

2D

2P

4S



Alternative basis for the theory of complex spectra II  
William G. Harter and Christopher W. Patterson 
Physical Review A 13 3 p1076-1082 (1976)



Yay! (for the Googley internet)



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits

Diagonal examples in n-particle notation:
3V0

0 = E11 + E22 + E33

2V0
1 = E11          − E33 ≡ Lz

6V0
2 = E11 − 2E22 + E33

Off-Diagonal examples in n-particle notation:
V2

2 = E13  ,      -2V1
2 = 2(E12 − E23) ,            2V−1

2 = 2(E21 − E32 ) ,      2V−2
2 = E31  ,

                      -2V1
1 = 2(E12 + E23) ≡ L+ ,     2V−1

1 = 2(E21 + E32 ) ≡ L−  .

notation: 
(jk) numbers tell 
which Ejk gave that entry



Tableau calculation of 3-electron ℓ=1 orbital p3-states and their Vkq matrices

Start with highest angular momentum (L=2) p3 state:  2D,M=2
L=2 =  

1 1
2  (Fermi spin-mate 

↑ ↑
↓ ) 

Then apply lowering operator L− ≡ 2(E21 + E32 )
2DM=1

L=2 = 1
2 L−

2DM=2
L=2 = 1

2 2(E21 + E32 ) 
1 1
2

                                    = = 1
2

 
1 2
2 +

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Here this is done using Tableau “Jawbone” formula.

Orthogonal to this is a 2P (M=1) state

2PM=1
L=1 = 1

2
 

1 2
2 −

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Next we calculate 2n-pole moments the pair:
2PM=1

L=1 V0
k 2DM=1

L=2 =

1
2

 
1 2
2 +

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 11

k( )E11+ 22
k( )E22+ 33

k( )E33
⎡
⎣

⎤
⎦

1 2
2 −

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    =    1
2 − 11

2( )E11+ 2 22
2( )E22− 33

2( )⎡
⎣

⎤
⎦    = - 3

2   for :  k = 2

    =    1
2 − 11

1( )E11+ 2 22
1( )E22− 33

1( )⎡
⎣

⎤
⎦    = 0      for :  k = 1

    =    1
2 − 11

0( )E11+ 2 22
0( )E22− 33

0( )⎡
⎣

⎤
⎦    = 0      for :  k = 0



1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c



This applies to all of multi-particle representations of Ejk and to momentum operators Lx, Ly, and Lz.

Single particle p-orbit (ℓ=1) representation of Lx, Ly, and Lz 

Dmn
1 Lx( ) = 1

2

⋅ 1 ⋅
1 ⋅ 1
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,         Dmn
1 Ly( ) = −i

2

⋅ 1 ⋅
−1 ⋅ 1
⋅ −1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,        Dmn
1 Lz( ) =

1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Elementary operator form of Lx, Ly, and Lz

Lx = E12 + E23 + E21 + E32( ) / 2,     Ly = −i E12 + E23 − E21 − E32( ) / 2,         Lz = E11 − E33

…and of raise-lower operators L+ and L-

L+ = Lx + i Ly = 2 E12 + E23( ),       L− = Lx − i Ly = 2 E21 + E32( ) = L+† ,       Lz = [L+ ,L− ]

Single particle p1-orbitals: U(3) triplet p1  

General elementary operator commutation [Ejk, Epq]= δkpEjq - δqjEpk  
has same form as 1-particle commutation:   [ejk, epq]= δkpejq  - δqjepk

e11 =
1 ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e12 =
⋅ 1 ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e13 =
⋅ ⋅ 1
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e21 =
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , ...e33 =
⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 . 

e12e21=e11 
e12e22=e12 

ejkepq=δpkejq

1 2 2 1 = 1 1

1 2 2 2 = 1 2

                 !
j k p q =δ pk j q

Elementary matrix algebra 

Elementary-elementary  
operator commutation algebra 


