AMOP reference links on page 2 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

### $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell *ee*-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4$ S,²P, and ²D energy calculation of quartet and doublet (spin-½) p³ orbits Corrected level diagrams Nitrogen p³

#### AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

#### Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978 Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984 Galloping waves and their relativistic properties - ajp-1985-Harter Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989
- III) Half-integral angular momentum harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 AMOP Ch 0 Space-Time Symmetry - 2019

#### RESONANCE AND REVIVALS

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001 Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973 Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u>.

*H atom hyperfine-B-level crossing* <u>Unit 8 Ch. 24 p15</u>.

Hyperf. theory Ch. 24 p48.

*Hyperf. theory Ch. 24 p48.* <u>Deeper theory ends p53</u>

> Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>.

Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>.

CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>.

> Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables <u>Unit 8 Ch. 25 p12</u>.

*Wigner-Eckart tensor Theorem.* <u>Unit 8 Ch. 25 p17</u>.

*Tensors Applied to d,f-levels.* <u>Unit 8 Ch. 25 p21</u>.

*Tensors Applied to high J levels.* <u>Unit 8 Ch. 25 p63</u>. *Intro 3-particle coupling.* <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26) (PSDS - Ch. 5, 7) AMOP reference links on page 2 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

### $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin-1/2) p<sup>3</sup> orbits

Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell *ee*-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4$  S,^2P, and ^2D energy calculation of quartet and doublet (spin- $^{1\!/_2}$ ) p^3 orbits Corrected level diagrams Nitrogen p^3

|            | Co                                        | mplete                                                                  | e set of                              | $CE_{jk}m$                                                              | atrix elen                                                        | nents for                                                         | the do                                  | ublet                                                 | (spin-½                                 | $\frac{1}{2}$ ) $p^3$ orbits |
|------------|-------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------------|------------------------------|
|            |                                           | M=2                                                                     | $M^{*}$                               | =1                                                                      | <i>M</i> =                                                        | :0                                                                | М=-                                     | -1                                                    | M=-2                                    |                              |
|            |                                           | $\begin{vmatrix} 11\\2 \end{pmatrix}$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                 | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\left \begin{array}{c}22\\3\end{array}\right\rangle$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                              |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}       (11) & (22) \\       2+1     \end{array} $ | (12)<br>1                             | (23)<br>1                                                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{13)}{2}}$                                            | •                                       | •                                                     | •                                       |                              |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                         | (11) (22)<br>1+2                      | •                                                                       | $\sqrt{\frac{1}{2}}^{(23)}$                                       | $\sqrt{\frac{23)}{2}}$                                            | •                                       | (13)<br>-1                                            | •                                       |                              |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                         | •                                     | $     \begin{array}{c}       (11) & (33) \\       2+1     \end{array} $ | $\sqrt[(12)]{2}$                                                  | •                                                                 | (13)<br>1                               | •                                                     | •                                       |                              |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{bmatrix}$    |                                                                         |                                       |                                                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | •                                                                 | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$                               | $\sqrt{\frac{1}{2}}^{(13)}$             |                              |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                         |                                       |                                                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$ | •                                                     | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ |                              |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                         |                                       |                                                                         |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                                       | (12)<br>1                               |                              |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                         |                                       |                                                                         |                                                                   |                                                                   | •                                       | (22) (33)<br>2 + 1                                    | (23)<br>1                               |                              |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                         |                                       |                                                                         |                                                                   |                                                                   |                                         |                                                       | (22) (33)<br>1+2                        |                              |

|            |                                           | M=2                                                       | M                                       | =1                                      | M =                                                               | 0                                       | M=-                                     | -1                                                                      | M=-2                                    |
|------------|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$ | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$                                   | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | <sup>(11)</sup> (22)<br>2+1                               | (12)<br>1                               | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{2}}$                 | •                                       |                                                                         |                                         |
|            | $\begin{pmatrix} 12\\ 2 \end{pmatrix}$    |                                                           | (11) (22)<br>1+2                        |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                  |                                         | (13)<br>-1                                                              |                                         |
|            | $\begin{pmatrix} 11\\ 3 \end{pmatrix}$    |                                                           |                                         | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           | •                                       | (13)<br>1                               |                                                                         |                                         |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                           |                                         |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                         | $\sqrt[(23)]{\frac{1}{2}}$              | $\sqrt[(12)]{\sqrt{2}}$                                                 | $\sqrt[(13)]{\frac{1}{2}}$              |
|            | $\begin{pmatrix} 13\\2 \end{pmatrix}$     |                                                           |                                         |                                         | •                                                                 |                                         | $\sqrt{\frac{23)}{2}}$                  |                                                                         | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ |
|            | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    |                                                           |                                         |                                         |                                                                   |                                         |                                         | •                                                                       | (12)<br>1                               |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                           |                                         |                                         |                                                                   |                                         |                                         | $     \begin{array}{c}       (22) & (33) \\       2+1     \end{array} $ | (23)<br>1                               |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                           |                                         |                                         |                                                                   |                                         |                                         |                                                                         | <sup>(22)</sup> (33)<br>1+2             |

Sample applications of "Jawbone" number operators

| $\left\langle \begin{pmatrix} 11\\2 \end{pmatrix} E_{11} \middle  \begin{pmatrix} 11\\2 \end{pmatrix} \right\rangle$ = | = 2 | $\left< \frac{11}{2} \middle  E_{22} \middle  \frac{11}{2} \right> = 1$ |
|------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|
|                                                                                                                        |     |                                                                         |

$$\left\langle \begin{pmatrix} 11\\2 \end{pmatrix} | E_{11} | \begin{pmatrix} 11\\2 \end{pmatrix} = 2 \qquad \left\langle \begin{pmatrix} 11\\2 \end{pmatrix} | E_{22} | \begin{pmatrix} 11\\2 \end{pmatrix} = 1 \right\rangle$$



| $\sim 10^{-10}$ | Complete set | of $E_{jk}$ matrix | elements for the | e doublet | $(spin - \frac{1}{2})$ | $p^3$ orbits |
|-----------------|--------------|--------------------|------------------|-----------|------------------------|--------------|
|-----------------|--------------|--------------------|------------------|-----------|------------------------|--------------|

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                | =0                                                            | M=-                                     | -1                                    | M=-2                                                                          |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                       | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$                                       |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt[(13)]{\frac{3}{2}}$                                    | •                                       | •                                     |                                                                               |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                        |                                         | (13)<br>-1                            |                                                                               |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                               | (13)<br>1                               |                                       |                                                                               |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                               | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$                                                    |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  | •                                     | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$                                       |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                               | (11) (33)<br>1+2                        |                                       | (12)<br>1                                                                     |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                               | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                                                                     |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                               |                                         |                                       | $     \begin{array}{c}         (22) & (33) \\         1 + 2     \end{array} $ |

$$\begin{pmatrix} 11\\2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = 1 \qquad \begin{pmatrix} 11\\2 \\ 2 \\ 3 \\ 2 \\ 3 \end{pmatrix} = 1 \qquad (1-jump \ E_{i-1,i})$$

 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 

|            | (                                         | Comp                                                                                   | plete                                 | set a                                                                                       | of E <sub>jk</sub> m                                              | atrix e                                                           | eleme                                   | ents f                                | or th                                                                         | e doublet (spin- $\frac{1}{2}$ ) p <sup>3</sup> orbits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|-------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | <i>M</i> =2                                                                            | М                                     | [=]                                                                                         | <i>M</i> =                                                        | :0                                                                | M=-                                     | -1                                    | <i>M</i> =- <i>2</i>                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                              | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                     | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11)  (22) \\             2+1         \end{array} $ | (12)<br>1                             | <sup>(23)</sup><br>1                                                                        | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt[(13)]{\frac{3}{2}}$                                        | •                                       | •                                     | •                                                                             | $\left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{11} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{22} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                        |                                       | •                                                                                           | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                            |                                         | (13)<br>-1                            | •                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                        | •                                     | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array}     $ | $\sqrt[(12)]{\sqrt{2}}$                                           | •                                                                 | (13)<br>1                               |                                       | •                                                                             | (a) (b) $\langle T   E , T \rangle = \delta_{} \begin{pmatrix} number \\ - \delta_{} \end{pmatrix} \langle T   E , T \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                        |                                       |                                                                                             | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt[(23)]{\frac{1}{2}}$              | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $\begin{pmatrix} 13\\2 \end{bmatrix}$     |                                                                                        |                                       |                                                                                             | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$ | •                                     | $\sqrt{\frac{13)}{2}}$                                                        | $\left\langle \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \right  = \left[ \mathbf{E}_{\mathbf{i}-\mathbf{l},\mathbf{i}} \right] = \left[ \mathbf{I} \\ \mathbf{I} \end{bmatrix} = \left[ \mathbf{I} \\ \mathbf{d} \end{bmatrix} \right] = \left[ \mathbf{I} \\ \mathbf{d} \end{bmatrix} \right] = \left[ \mathbf{I} \\ \mathbf{d} \end{bmatrix} = \left[ \mathbf{I} \\ \mathbf{d} \end{bmatrix} = \left[ \mathbf{I} \\ \mathbf{d} \end{bmatrix} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                        |                                       |                                                                                             |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                       | (12)<br>1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                        |                                       |                                                                                             |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                        |                                       |                                                                                             |                                                                   |                                                                   |                                         |                                       | $     \begin{array}{c}         (22) & (33) \\         1 + 2     \end{array} $ | $\left  \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \right ^{\mathbf{r}} = \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} = \left$ |

$$\begin{pmatrix} 11\\2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = 1 \qquad \qquad \begin{pmatrix} 11\\2 \\ 2 \\ 3 \\ 3 \end{pmatrix} = 1 \qquad (1-jump \ E_{i-1,i})$$

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



|            | (                                         | Comp                                                                                        | plete                                 | set c                                   | of E <sub>jk</sub> m                                              | atrix e                                                           | leme                                    | ents f                                | or th                                   | e |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|---|
|            |                                           | <i>M</i> =2                                                                                 | М                                     | =1                                      | <i>M</i> =                                                        | =0                                                                | М=-                                     | -1                                    | M=-2                                    |   |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |   |
|            | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt[(13)]{\frac{3}{2}}$                                        | •                                       | •                                     | •                                       |   |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                      | •                                       | $\begin{pmatrix} (23)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$         | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                           |                                         | (13)<br>-1                            | •                                       |   |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               | •                                     | •                                       |   |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt{\frac{13}{2}}$                   |   |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ |   |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |   |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |   |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (22) (33)<br>1+2                        |   |

 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 

doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits



|            | (                                         | Comp                                                                                        | plete                                 | set c                                   | of E <sub>jk</sub> m                                              | atrix e                                                       | leme                                    | ents f                                | or th                                                                     | e |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------|---|
|            |                                           | <i>M</i> =2                                                                                 | М                                     | =1                                      | <i>M</i> =                                                        | :0                                                            | М=-                                     | 1                                     | <i>M</i> =- <i>2</i>                                                      |   |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                       | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$                                     |   |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                      | •                                       | •                                     | •                                                                         |   |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\begin{pmatrix} (23)\\ \sqrt{\frac{3}{2}} \end{pmatrix}$     |                                         | (13)<br>-1                            | •                                                                         |   |
|            | $\begin{pmatrix} 11\\ 3 \end{pmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                               | (13)<br>1                               | •                                     | •                                                                         |   |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                               | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$                                                |   |
|            | $\begin{pmatrix} 13\\2 \end{pmatrix}$     |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $ | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$ | •                                     | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$                                   |   |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                               | (11) (33)<br>1+2                        | •                                     | (12)<br>1                                                                 |   |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                               | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                                                                 |   |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                               |                                         |                                       | $     \begin{array}{c}       (22) & (33) \\       1 + 2     \end{array} $ |   |

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



Sample applications of "Jawbone" formulae

|            | (                                         | Comp                                                      | plete                                 | set c                                   | of E <sub>jk</sub> m                                              | atrix e                                                           | leme                                    | ents f                                | or th                                   | e |
|------------|-------------------------------------------|-----------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|---|
|            |                                           | <i>M=2</i>                                                | $M^{*}$                               | =1                                      | <i>M</i> =                                                        | :0                                                                | М=-                                     | 1                                     | <i>M</i> =-2                            |   |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$ | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |   |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | (11) (22)<br>2+1                                          | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          | •                                       | •                                     | •                                       |   |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                           | (11) (22)<br>1+2                      | •                                       | $\sqrt{\frac{23)}{\sqrt{\frac{1}{2}}}}$                           | $\sqrt{\frac{23)}{2}}$                                            |                                         | (13)<br>-1                            | •                                       |   |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                           | •                                     | (11) (33)<br>2+1                        | $\sqrt{\frac{(12)}{\sqrt{2}}}$                                    |                                                                   | (13)<br>1                               | •                                     | •                                       |   |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                           |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | •                                                                 | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |   |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                           |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{3}{2}}^{(13)}$             |   |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                           |                                       |                                         |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |   |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                           |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |   |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                           |                                       |                                         |                                                                   |                                                                   |                                         |                                       |                                         |   |

 $\begin{pmatrix} 11\\2 \end{bmatrix} E_{11} \begin{vmatrix} 11\\2 \end{pmatrix} = 2 \qquad \begin{pmatrix} 11\\2 \end{bmatrix} E_{22} \begin{vmatrix} 11\\2 \end{pmatrix} = 1$ 

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ )  $p^3$  orbits

|            | (                                         | Comp                                                                                        | plete                                 | set c                                   | of E <sub>jk</sub> m                                              | natrix e                                                          | leme                                    | ents f                                | or th                                   | e |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|---|
|            |                                           | <i>M</i> =2                                                                                 | М                                     | =1                                      | <i>M</i> =                                                        | =0                                                                | М=-                                     | 1                                     | M=-2                                    |   |
| _          |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                                                     | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |   |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          | •                                       | •                                     | •                                       |   |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                            |                                         | (13)<br>-1                            | •                                       |   |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       | •                                       |   |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$              |   |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  | •                                     | $\sqrt{\frac{13)}{2}}$                  |   |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |   |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |   |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (22) (33)<br>1+2                        |   |

 $\left\langle \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{bmatrix} | \mathbf{E}_{\mathbf{i}-\mathbf{I},\mathbf{i}} | \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{bmatrix} \right\rangle = \left| \sqrt{\frac{\mathbf{d}-\mathbf{I}}{\mathbf{d}}} \right| = \left\langle \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{bmatrix} | \mathbf{E}_{\mathbf{i}-\mathbf{I},\mathbf{i}} | \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \right\rangle$  $E_{23} = \sqrt{2} = \sqrt{2} = \sqrt{2}$ (e)  $E_{12} \square 2 = \sqrt{2} \square 1$ (f)  $\frac{1}{2} \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf$  $\begin{pmatrix} h \end{pmatrix} \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E$ 

doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits

 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 

|            | (                                         | Comp                                                                                        | plete                                 | set a                                   | of $E_{jk}$ m                                                     | atrix e                                                           | leme                                                                          | ents f                                | or th                                   | e doublet (spin- $\frac{1}{2}$ ) p <sup>3</sup> orbits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | <i>M</i> =2                                                                                 | M                                     | =1                                      | <i>M</i> =                                                        | :0                                                                | M = -                                                                         | 1                                     | <i>M</i> =- <i>2</i>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$                                       | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          | •                                                                             | •                                     |                                         | $\left  \begin{array}{c} \left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{11} \right\rangle = 2 \\ \left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{22} \right\rangle \right\rangle = 2 \\ \left\langle \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} = 2 \\ \left\langle 11\\2 \end{array} = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} = 2 \\ \left\langle 11\\2 \end{array} = 2 \\ \left\langle 11\\2 \end{array} \right\rangle = 2 \\ \left\langle 11\\2 \end{array} = 2$                                                                                                                                                                                                                                                                                                                                                              |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                            |                                                                               | (13)<br>-1                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           | •                                                                 | (13)<br>1                                                                     | •                                     |                                         | (a) (b) $\langle T   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ f   E , T \rangle = \delta_{T'} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\underbrace{\begin{pmatrix} (23)\\ \sqrt{\frac{1}{2}} \end{pmatrix}}^{(23)}$ | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                                       | •                                     | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | $\left\langle \begin{array}{c}   \blacksquare \\   $ |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                                                               | •                                     | (12)<br>1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                                                             | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                                                               |                                       | $(22) (33) \\ 1+2$                      | $d=2\left(\left  \Box \right ^{E} \right ^{E_{i-1,i}} \left  \Box \right ^{d}\right)^{-1} \left  \Box \right ^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$

$$\left\langle \begin{array}{c} (a)\\ \langle \tau \middle| \varepsilon_{11} \middle| \tau \rangle = \delta_{\tau,\tau} \left( \begin{array}{c} number\\of (i)s \end{array} \right) \qquad \left\langle \tau \middle| \varepsilon_{11} \middle| \tau \rangle = \left\langle \tau \middle| \varepsilon_{11} \middle| \tau \rangle \right\rangle = \left\langle \tau \middle| \varepsilon_{11} \middle| \tau \rangle \right\rangle$$

$$\left\langle \begin{array}{c} (c)\\ \langle \varepsilon_{1} & \varepsilon_{1-1,i} \middle| \varepsilon_{1-1,i}$$

|            | (                                         | Comp                                                                                        | plete                                 | set a                                   | of $E_{jk}$ m                                                     | atrix e                                                           | eleme                                                     | ents f                                | or th                                   | e |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|-----------------------------------------|---|
|            |                                           | <i>M</i> =2                                                                                 | М                                     | =1                                      | <i>M</i> =                                                        | =0                                                                | М=-                                                       | 1                                     | <i>M</i> =- <i>2</i>                    |   |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$                   | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |   |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          | •                                                         | •                                     | •                                       |   |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      | •                                       | $\sqrt{\frac{1}{2}}^{(23)}$                                       | $\sqrt{\frac{23)}{2}}$                                            |                                                           | (13)<br>-1                            | •                                       |   |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           | •                                                                 | (13)<br>1                                                 | •                                     | •                                       |   |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt[(23)]{\frac{1}{2}}$                                | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |   |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\begin{pmatrix} (23)\\ \sqrt{\frac{3}{2}} \end{pmatrix}$ | •                                     | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ |   |
|            | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                                           | •                                     | (12)<br>1                               |   |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                                         | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |   |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                                           |                                       | (22) (33)<br>1+2                        |   |

doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



|            | (                                         | Comp                                                                                        | plete                                 | set c                                   | of E <sub>jk</sub> m                                              | atrix e                                                           | leme                                    | ents f                                | or th                                   | e |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|---|
|            |                                           | <i>M</i> =2                                                                                 | М                                     | =1                                      | <i>M</i> =                                                        | =0                                                                | М=-                                     | -1                                    | M=-2                                    |   |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |   |
|            | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          | •                                       | •                                     | •                                       |   |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                            |                                         | (13)<br>-1                            | •                                       |   |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               | •                                     | •                                       |   |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$              |   |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  | •                                     | $\sqrt{\frac{13)}{2}}$                  |   |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                         |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |   |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |   |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (22) (33)<br>1+2                        |   |

AMOP reference links on page 2 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

# $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin-1/2) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4$  S,^2P, and ^2D energy calculation of quartet and doublet (spin- $^{1\!/_2}$ ) p^3 orbits Corrected level diagrams Nitrogen p^3

| Complete set | t of E <sub>jk</sub> matrix | elements for the | doublet (spin- $\frac{1}{2}$ ) | $p^3$ orbits |
|--------------|-----------------------------|------------------|--------------------------------|--------------|
|--------------|-----------------------------|------------------|--------------------------------|--------------|

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                            | :0                                                            | M=-                                     | ·1                                    | M=-2                                                  |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                       | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                       | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{pmatrix}$ | $\left \begin{array}{c}23\\3\end{array}\right\rangle$ |
|            | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $(13) - \sqrt{\frac{1}{2}}$                                   | $\sqrt[(13)]{\frac{3}{2}}$                                    |                                         |                                       |                                                       |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                    | $\sqrt{\frac{23)}{2}}$                                        |                                         | (13)<br>-1                            |                                                       |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             |                                       | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                       |                                                               | (13)<br>1                               |                                       |                                                       |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $ |                                                               | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$                            |
| ,<br>      | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                             | $ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$               |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                         |                                                               |                                                               | (11) (33)<br>1+2                        |                                       | (12)<br>1                                             |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                               |                                                               | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                                             |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                               |                                                               |                                         |                                       | (22) (33)<br>1+2                                      |

Sample applications of "Jawbone" formulae  $E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$  (2-jump  $E_{i-2,i}$ )

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



 $\left\langle \begin{pmatrix} 11\\2 \end{pmatrix} E_{13} \begin{vmatrix} 12\\3 \end{pmatrix} = ??$ 

| Complete set | t of E <sub>jk</sub> matrix | elements for the | doublet ( | (spin-1/2) | $p^3$ orbits |
|--------------|-----------------------------|------------------|-----------|------------|--------------|
|--------------|-----------------------------|------------------|-----------|------------|--------------|

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                | :0                                                                | M=-                                     | -1                                    | M=-2                                    |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $(13) - \sqrt{\frac{1}{2}}$                                       | $\sqrt[(13)]{\frac{3}{2}}$                                        |                                         |                                       |                                         |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                            |                                         | (13)<br>-1                            |                                         |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       |                                         |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (12)<br>1                               |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       |                                         |

Sample applications of "Jawbone" formulae  $E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12} \qquad (2-jump \ E_{i-2,i})$   $E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 12 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$ 





 $\begin{pmatrix} 11\\2 \end{bmatrix} E_{11} \begin{vmatrix} 11\\2 \end{pmatrix} = 2 \qquad \begin{pmatrix} 11\\2 \end{bmatrix} E_{22} \begin{vmatrix} 11\\2 \end{pmatrix} = 1$ 

 $\begin{pmatrix} (d) & (b) \\ T' \mid E_{ii} \mid T \end{pmatrix} = \delta_{T,T} \begin{pmatrix} number \\ of (i)s \end{pmatrix} \quad \begin{pmatrix} T' \mid E_{ij} \mid T \end{pmatrix} = \langle T \mid E_{ji} \mid T \rangle$ 

 $E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$ 11 2 =??

| Complete set | of $E_{ik}$                    | matrix | elements | for the | doublet | $(spin - \frac{1}{2})$ | $) p^{3}$ | orbits |
|--------------|--------------------------------|--------|----------|---------|---------|------------------------|-----------|--------|
| 1            | <i>J J</i> <sup><i>n</i></sup> |        | J        |         |         |                        |           |        |

 $(2-jump E_{i-2,i})$ 

|            |                                           | M=2                                                                                         | M                                     | =1                                      | <i>M</i> =                                                             | :0                                                                | M=-                                     | -1                                    | M=-2                                    |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                                | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $\left(\begin{array}{c} (13)\\ -\sqrt{\frac{1}{2}} \end{array}\right)$ | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$                           |                                         |                                       | •                                       |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\begin{pmatrix} (23)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$              | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                           |                                         | (13)<br>-1                            |                                         |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{2}$                                                       |                                                                   | (13)<br>1                               |                                       |                                         |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $      |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                      | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ |
|            | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    |                                                                                             |                                       |                                         |                                                                        |                                                                   |                                         |                                       | (12)<br>1                               |
|            | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                        |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                        |                                                                   |                                         |                                       |                                         |

Sample applications of "Jawbone" formulae

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$
$$E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 12 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$
$$= E_{12}\sqrt{\frac{1}{2}} \begin{vmatrix} 12 \\ 2 \end{vmatrix} - E_{23}\sqrt{2} \begin{vmatrix} 11 \\ 3 \end{vmatrix}$$

$$\left\langle \begin{pmatrix} 11\\2 \end{pmatrix} E_{13} \begin{vmatrix} 12\\3 \end{pmatrix} = ?? \right\rangle$$

 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 



| Complete set of $L_{jk}$ matrix elements for the doublet (spin-72) p of of | Complete set | of $E_{ik}$ matrix | c elements for 1 | the doublet | $(spin - \frac{1}{2})$ | p <sup>3</sup> orbits |
|----------------------------------------------------------------------------|--------------|--------------------|------------------|-------------|------------------------|-----------------------|
|----------------------------------------------------------------------------|--------------|--------------------|------------------|-------------|------------------------|-----------------------|

 $(2-jump E_{i-2,i})$ 

|            |                                           | M=2                                                                                         | $M^{*}$                                 | =1                                      | M=                                                                     | =0                                                                | M=-                                     | -1                                    | M=-2                                    |  |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|--|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                                | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |  |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                               | (23)<br>1                               | $\left(\begin{array}{c} (13)\\ -\sqrt{\frac{1}{2}} \end{array}\right)$ | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$                           |                                         |                                       | •                                       |  |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                        |                                         | $ \begin{pmatrix} (23)\\ \sqrt{\frac{1}{2}} \end{pmatrix} $            | $\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$                          |                                         | (13)<br>-1                            |                                         |  |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                       | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                                |                                                                   | (13)<br>1                               |                                       |                                         |  |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                         |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $      |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |  |
| -<br>      | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                         |                                         | •                                                                      | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |  |
|            | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    |                                                                                             |                                         |                                         |                                                                        |                                                                   | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |  |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                         |                                         |                                                                        |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |  |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                         |                                         |                                                                        |                                                                   |                                         |                                       |                                         |  |

Sample applications of "Jawbone" formulae

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$
$$E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 12 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$
$$= E_{12}\sqrt{\frac{1}{2}} \begin{vmatrix} 12 \\ 2 \end{vmatrix} - E_{23}\sqrt{2} \begin{vmatrix} 11 \\ 3 \end{vmatrix}$$

$$\left\langle \begin{pmatrix} 11\\2 \end{pmatrix} E_{13} \begin{vmatrix} 12\\3 \end{pmatrix} = ??$$

 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 



|            |                                           | M=2                                                                                         | $M^{*}$                               | =1                                      | M=                                                                | =0                                                                | M=-                                     | -1                                    | M=-2                                    |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | <sup>(23)</sup>                         | $(13) - \sqrt{\frac{1}{2}}$                                       | $\sqrt{\frac{(13)}{2}}$                                           |                                         | •                                     | •                                       |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt{\frac{(23)}{\sqrt{\frac{1}{2}}}}$                          | $\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$                          |                                         | (13)<br>-1                            |                                         |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       |                                         |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |
| -          | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (12)<br>1                               |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       |                                         |

### Sample applications of "Jawbone" formulae

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$

$$E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 12 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

$$= E_{12}\sqrt{\frac{1}{2}} \begin{vmatrix} 12 \\ 2 \end{vmatrix} - E_{23}\sqrt{2} \begin{vmatrix} 11 \\ 3 \end{vmatrix}$$

$$= 1 \sqrt{\frac{1}{2}} \begin{vmatrix} 11 \\ 2 \end{vmatrix} - 1 \sqrt{2} \begin{vmatrix} 11 \\ 2 \end{vmatrix}$$

=??

 $E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$ 

11 2 (2-jump  $E_{i-2,i})$ 

$$\begin{pmatrix} 11\\2 \end{pmatrix} E_{11} \begin{vmatrix} 11\\2 \end{pmatrix} = 2 \qquad \begin{pmatrix} 11\\2 \end{pmatrix} E_{22} \begin{vmatrix} 11\\2 \end{pmatrix} = 1$$



|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                     | =0                                                                | M=-                                     | -1                                    | M=-2                                  |  |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|--|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                                | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$ |  |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | <sup>(23)</sup>                         | $\left(\begin{array}{c} (13)\\ -\sqrt{\frac{1}{2}} \end{array}\right)$ | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          |                                         | •                                     | •                                     |  |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt{\frac{(23)}{\sqrt{\frac{1}{2}}}}$                               | $\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$                          |                                         | (13)<br>-1                            |                                       |  |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                                |                                                                   | (13)<br>1                               |                                       |                                       |  |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $      |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt{\frac{13}{2}}$                 |  |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                      | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                |  |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                        |                                                                   |                                         |                                       | (12)<br>1                             |  |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                        |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                             |  |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                        |                                                                   |                                         |                                       |                                       |  |

### Sample applications of "Jawbone" formulae

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$

$$E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 12 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

$$= E_{12}\sqrt{\frac{1}{2}} \begin{vmatrix} 12 \\ 2 \end{vmatrix} - E_{23}\sqrt{2} \begin{vmatrix} 11 \\ 3 \end{vmatrix}$$

$$= 1\sqrt{\frac{1}{2}} \begin{vmatrix} 12 \\ 2 \end{vmatrix} - 1\sqrt{2} \begin{vmatrix} 11 \\ 3 \end{vmatrix}$$

 $\left< \frac{11}{2} \middle| E_{13} \middle| \frac{12}{3} \right> = ??$ 

(2-*jump* E<sub>i-2,i</sub>)

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



 $(2-jump E_{i-2,i})$ 

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                     | =0                                                                | M=-                                     | -1                                    | M=-2                                  |  |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|--|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                                | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$ |  |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | <sup>(23)</sup>                         | $\left(\begin{array}{c} (13)\\ -\sqrt{\frac{1}{2}} \end{array}\right)$ | $\sqrt{\frac{(13)}{2}}$                                           |                                         | •                                     | •                                     |  |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt{\frac{(23)}{\sqrt{\frac{1}{2}}}}$                               | $\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$                          |                                         | (13)<br>-1                            |                                       |  |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                                |                                                                   | (13)<br>1                               |                                       |                                       |  |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $      |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt{\frac{13}{2}}$                 |  |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                      | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                |  |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                        |                                                                   |                                         |                                       | (12)<br>1                             |  |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                        |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                             |  |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                        |                                                                   |                                         |                                       |                                       |  |

### Sample applications of "Jawbone" formulae

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$

$$E_{13} \begin{vmatrix} 12 \\ 3 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 12 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

$$= E_{12}\sqrt{\frac{1}{2}} \begin{vmatrix} 12 \\ 2 \end{vmatrix} - E_{23}\sqrt{2} \begin{vmatrix} 11 \\ 3 \end{vmatrix}$$

$$= 1\sqrt{\frac{1}{2}} \begin{vmatrix} 11 \\ 2 \end{vmatrix} - 1\sqrt{2} \begin{vmatrix} 11 \\ 2 \end{vmatrix}$$

$$\left( \begin{pmatrix} 11 \\ 2 \end{vmatrix} E_{13} \begin{vmatrix} 12 \\ 3 \end{pmatrix} = \sqrt{\frac{1}{2}} - \sqrt{2} = -\sqrt{\frac{1}{2}} \right)$$

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



| Complete set of $E_{jk}$ matrix elements for the double | l (SPIN-72) | ) p <sup>3</sup> ordits |
|---------------------------------------------------------|-------------|-------------------------|
|---------------------------------------------------------|-------------|-------------------------|

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                | =0                                                                     | M=-                                     | -1                                    | M=-2                                    |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                                | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\underbrace{\begin{pmatrix} (13)\\ \sqrt{\frac{3}{2}} \end{pmatrix}}$ |                                         | •                                     | •                                       |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$                               |                                         | (13)<br>-1                            |                                         |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{2}$                                                  |                                                                        | (13)<br>1                               |                                       |                                         |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                        | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $      | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                         |                                                                   |                                                                        | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                        | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |
|            | $\begin{pmatrix} 23\\ 3 \end{bmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                        |                                         |                                       |                                         |

Sample applications of "Jawbone" formulae  $E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12} \qquad (2-jump \ E_{i-2,i})$   $E_{13} \begin{vmatrix} 13 \\ 2 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 13 \\ 2 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 13 \\ 2 \end{vmatrix}$ 

$$\left\langle \begin{pmatrix} 11\\2 \end{pmatrix} E_{13} \begin{vmatrix} 13\\2 \end{pmatrix} = ??$$

$$(a) \qquad (b) \qquad (c) \qquad (b) \qquad (f | E_{ij} | T) = \langle T | E_{ji} | T \rangle$$

$$(c) \qquad (c) \qquad$$

 $\begin{pmatrix} 11\\2 \end{bmatrix} E_{11} \begin{vmatrix} 11\\2 \end{pmatrix} = 2 \qquad \begin{pmatrix} 11\\2 \end{bmatrix} E_{22} \begin{vmatrix} 11\\2 \end{pmatrix} = 1$ 

|            | (                                         | Com                                                                                         | plete                                 | set a                                   | of $E_{jk}$ m                                                     | atrix e                                                                              | leme                                    | ents f                                | or th                                 | e doublet (spin- $\frac{1}{2}$ ) p <sup>3</sup> orbits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | <i>M</i> =2                                                                                 | М                                     | =1                                      | M=                                                                | 0                                                                                    | М=-                                     | -1                                    | <i>M</i> =- <i>2</i>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                                              | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{13}{2}}$                                            | $\begin{pmatrix} (13) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$                           |                                         |                                       |                                       | $\left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{11} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{22} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                                              |                                         | (13)<br>-1                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                                      | (13)<br>1                               |                                       |                                       | (a) (b) $\left\langle T \mid E , \mid T \right\rangle = \delta_{} \begin{pmatrix} number \\ number \end{pmatrix} \begin{pmatrix} T \mid E \mid T \\ T \mid E \mid T \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                                      | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $     \begin{array}{c}       (11) & (22) & (33) \\       1 + 1 + 1     \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                | $\left\langle \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \right  = \left\langle \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \right\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                                      | (11) (33)<br>1+2                        |                                       | (12)<br>1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                                      |                                         | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                                      |                                         |                                       | (22) (33)<br>1+2                      | $\left( \begin{array}{c} \left  \begin{array}{c} \mathbf{L} \right ^{\mathbf{L}} \right ^{\mathbf{L}} \\ \left  \begin{array}{c} \mathbf{L} \right ^{\mathbf{L}} \\ \mathbf{L} \\ $ |

Sample applications of "Jawbone" formulae  $(2-jump E_{i-2,i})$  $E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$  $E_{13} \begin{vmatrix} 13 \\ 2 \end{vmatrix} = E_{12} E_{23} \begin{vmatrix} 13 \\ 2 \end{vmatrix} - E_{23} E_{12} \begin{vmatrix} 13 \\ 2 \end{vmatrix}$  $=E_{12}\sqrt{\frac{3}{2}}\begin{vmatrix}12\\2\end{vmatrix}-E_{23}0\begin{vmatrix}13\\1\end{vmatrix}$ 

 $\left|E_{13}\right|_{2}^{13}\right\rangle = ??$ 11 2

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



| Complete set of $L_{jk}$ matrix elements for the doublet (spin-72) p of of | Complete set | of $E_{ik}$ matrix | c elements for 1 | the doublet | $(spin - \frac{1}{2})$ | p <sup>3</sup> orbits |
|----------------------------------------------------------------------------|--------------|--------------------|------------------|-------------|------------------------|-----------------------|
|----------------------------------------------------------------------------|--------------|--------------------|------------------|-------------|------------------------|-----------------------|

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                | =0                                                                | M=-                                     | -1                                    | M=-2                                    |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{pmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)                                  | (23)<br>1                               | $-\sqrt{\frac{13}{2}}$                                            | $\begin{pmatrix} (13)\\ \sqrt{\frac{3}{2}} \end{pmatrix}$         |                                         | •                                     | •                                       |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\begin{pmatrix} (23)\\ \sqrt{\frac{3}{2}} \end{pmatrix}$         |                                         | (13)<br>-1                            |                                         |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       |                                         |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (12)<br>1                               |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (22) (33)<br>1+2                        |

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$

$$E_{13} \begin{vmatrix} 13 \\ 2 \end{pmatrix} = E_{12}E_{23} \begin{vmatrix} 13 \\ 2 \end{pmatrix} - E_{23}E_{12} \begin{vmatrix} 13 \\ 2 \end{pmatrix}$$

$$= E_{12}\sqrt{\frac{3}{2}} \begin{vmatrix} 12 \\ 2 \end{pmatrix} - E_{23}0 \begin{vmatrix} 13 \\ 1 \end{pmatrix}$$

$$= 1\sqrt{\frac{3}{2}} \begin{vmatrix} 11 \\ 2 \end{vmatrix} - 0$$

$$\left( \begin{pmatrix} 11 \\ 2 \end{vmatrix} E_{13} \begin{vmatrix} 13 \\ 2 \end{pmatrix} = ?? \right)$$

$$\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$$



|            | (                                         | Comp                                                                                    | plete                                 | set a                                   | of $E_{jk}$ m                                                     | atrix e                                                    | leme                                    | ents f                                | for th                                  | e doublet (spin- $\frac{1}{2}$ ) p <sup>3</sup> orbits                                                                                                                                                                                                           |
|------------|-------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | <i>M</i> =2                                                                             | М                                     | [=1                                     | <i>M</i> =                                                        | :0                                                         | М=-                                     | -1                                    | <i>M</i> =- <i>2</i>                    |                                                                                                                                                                                                                                                                  |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                               | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                    | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$   |                                                                                                                                                                                                                                                                  |
|            | $\begin{pmatrix} 11\\2 \end{bmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array} $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\begin{pmatrix} (13) \\ \sqrt{\frac{3}{2}} \end{pmatrix}$ |                                         |                                       | •                                       | $\left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{11} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{22} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle$ |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                         |                                       |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                    |                                         | (13)<br>-1                            |                                         |                                                                                                                                                                                                                                                                  |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                         | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                            | (13)<br>1                               |                                       |                                         | (a) (b) $\langle T'   E , T \rangle = \delta_{T'} \begin{pmatrix} number \\ r' $                                                                                                                                             |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                         |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                            | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$              |                                                                                                                                                                                                                                                                  |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                         |                                       |                                         | •                                                                 |                                                            | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | $\left\langle \begin{bmatrix} \Box \\ \Box \end{bmatrix} \right  = \begin{bmatrix} \Box \\ \Box \end{bmatrix} = \sqrt{\frac{d+1}{d}} = \left\langle \begin{bmatrix} \Box \\ \Box \end{bmatrix} \right\rangle$                                                    |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                         |                                       |                                         |                                                                   |                                                            |                                         |                                       | (12)<br>1                               |                                                                                                                                                                                                                                                                  |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                         |                                       |                                         |                                                                   |                                                            | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |                                                                                                                                                                                                                                                                  |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                         |                                       |                                         |                                                                   |                                                            |                                         |                                       |                                         |                                                                                                                                                                                                                                                                  |

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$

$$E_{13} \begin{vmatrix} 13 \\ 2 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 13 \\ 2 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 13 \\ 2 \end{vmatrix}$$

$$= E_{12}\sqrt{\frac{3}{2}} \begin{vmatrix} 12 \\ 2 \end{vmatrix} - E_{23}0 \begin{vmatrix} 13 \\ 1 \end{vmatrix}$$

$$= 1\sqrt{\frac{3}{2}} \begin{vmatrix} 11 \\ 2 \end{vmatrix} - 0$$

$$\left( \langle \frac{11}{2} | E_{13} | \frac{13}{2} \rangle = \sqrt{\frac{3}{2}} \right)$$

$$(2-jump \ E_{i-2,i})$$

| Complete set | t of E <sub>jk</sub> matrix | elements for the | doublet ( | (spin-1/2) | $p^3$ orbits |
|--------------|-----------------------------|------------------|-----------|------------|--------------|
|--------------|-----------------------------|------------------|-----------|------------|--------------|

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                | =0                                                                | M=-                                     | -1                                    | M=-2                                                                      |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$                                   |
|            | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{13}{2}}$                                            | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          |                                         | •                                     | •                                                                         |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                            |                                         | <sup>(13)</sup><br>-1                 |                                                                           |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       |                                                                           |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt{\frac{13}{2}}$                                                     |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                                                    |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (12)<br>1                                                                 |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                                                                 |
|            | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | $     \begin{array}{c}       (22) & (33) \\       1 + 2     \end{array} $ |

Sample applications of "Jawbone" formulae  $E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12} \qquad (2-jump \ E_{i-2,i})$   $E_{13} \begin{vmatrix} 22 \\ 3 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 22 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 22 \\ 3 \end{vmatrix}$ 



 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 

 $\begin{pmatrix} \mathbf{I} \\ \mathbf{T} \\ \mathbf{E} \\ \mathbf{i} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{E} \\ \mathbf{i} \\ \mathbf{I}$ 

$$\left\langle \begin{vmatrix} 12\\2 \end{vmatrix} E_{13} \begin{vmatrix} 22\\3 \end{vmatrix} = ??\right$$

| Complete set c | of $E_{jk}$ matrix | elements for | the doublet | $(spin - \frac{1}{2})$ | ) p <sup>3</sup> orbits |
|----------------|--------------------|--------------|-------------|------------------------|-------------------------|
|----------------|--------------------|--------------|-------------|------------------------|-------------------------|

 $(2-jump E_{i-2,i})$ 

|            |                                           | M=2                                                                                         | M                                     | =1                                      | M=                                                                | = <i>0</i>                                                        | M=-                                     | -1                                    | M=-2                                    |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{pmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |
|            | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{13}{2}}$                                            | $\sqrt[(13)]{\frac{3}{2}}$                                        |                                         |                                       |                                         |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             | (11) (22)<br>1+2                      |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                            |                                         | <sup>(13)</sup><br>-1                 |                                         |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{2}$                                                  |                                                                   | (13)<br>1                               |                                       |                                         |
| $E_{jk} =$ | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                                                             |                                       |                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (12)<br>1                               |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |
|            | $\begin{pmatrix} 23\\ 3 \end{bmatrix}$    |                                                                                             |                                       |                                         |                                                                   |                                                                   |                                         |                                       | (22) (33)<br>1+2                        |

Sample applications of "Jawbone" formulae

$$\begin{split} E_{13} &= [E_{12}, E_{23}] = E_{12} E_{23} - E_{23} E_{12} \\ E_{13} \begin{vmatrix} 22 \\ 3 \end{vmatrix} = E_{12} E_{23} \begin{vmatrix} 22 \\ 3 \end{vmatrix} - E_{23} E_{12} \begin{vmatrix} 22 \\ 3 \end{vmatrix} \\ E_{13} \begin{vmatrix} 22 \\ 3 \end{vmatrix} = 0 - E_{23} \sqrt{2} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

| $\left  \left\langle \frac{12}{2} \right  E \right $ | $_{3}\left  \begin{array}{c} 22\\ 3 \end{array} \right\rangle = ??$ |
|------------------------------------------------------|---------------------------------------------------------------------|
|------------------------------------------------------|---------------------------------------------------------------------|



 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 

|            | (                                         | Comp                                                      | olete                                 | set a                                                                                   | of $E_{jk}$ m                                                     | natrix e                                                          | leme                                    | ents f                                | for th                                  | e doublet (spin- $\frac{1}{2}$ ) p <sup>3</sup> orbits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------|-----------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | <i>M</i> =2                                               | М                                     | =1                                                                                      | <i>M</i> =                                                        | :0                                                                | М=-                                     | -1                                    | <i>M</i> =- <i>2</i>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$ | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                 | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | (11) (22)<br>2+1                                          | (12)<br>1                             | (23)<br>1                                                                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          |                                         | •                                     |                                         | $\left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{11} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{22} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                           |                                       |                                                                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                           |                                         | <sup>(13)</sup><br>-1                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                           | •                                     | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array} $ | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       |                                         | (a) (b) $\begin{pmatrix} \tau' \\ E_{ii} \\ T \end{pmatrix} = \delta_{\tau'\tau} \begin{pmatrix} \text{number} \\ \text{sf} (it'_{E}) \\ \text{sf} (it'_{E}) \end{pmatrix} \begin{pmatrix} \tau' \\ E_{ii} \\ T \end{pmatrix} = \delta_{\tau'\tau} \begin{pmatrix} \text{number} \\ \text{sf} (it'_{E}) \\ \text{sf} (it'_{E}) \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $E_{jk} =$ | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ |                                                           |                                       |                                                                                         | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ |                                                           |                                       |                                                                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$ |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | $ \begin{array}{c c} i=2 \\ d=1 \end{array} \left\langle \begin{array}{c} \Box \\ \Box \\ \Box \end{array} \right\rangle = \left\langle \begin{array}{c} \Box \\ \Box \\ \Box \end{array} \right\rangle = \left\langle \begin{array}{c} \Box \\ d \end{array} \right\Vert = \left\langle \end{array} \right\Vert = \left\langle \begin{array}{c} \end{array} \right\Vert = \left\langle \end{array} \right\Vert = \left\langle \end{array} \right\Vert = \left\langle \end{array} \right\Vert = \left\langle \end{array} \right\Vert $ |
|            | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    |                                                           |                                       |                                                                                         |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$    |                                                           |                                       |                                                                                         |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                           |                                       |                                                                                         |                                                                   |                                                                   |                                         |                                       | $(22) (33) \\ 1+2$                      | $d=2 \left  \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \right ^{\mathbf{r}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

(2-*jump*  $E_{i-2,i})$ 

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$

$$E_{13} \begin{vmatrix} 12 \\ 2 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 22 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 22 \\ 3 \end{vmatrix}$$

$$E_{13} \begin{vmatrix} 12 \\ 2 \end{vmatrix} = 0 - E_{23}\sqrt{2} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

$$E_{13} \begin{vmatrix} 12 \\ 2 \end{vmatrix} = 0 - \frac{1}{\sqrt{2}}\sqrt{2} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

$$\left\langle \begin{array}{c} 12\\2 \end{array} \middle| E_{13} \middle| \begin{array}{c} 22\\3 \end{array} \right\rangle = ??$$

$$\begin{array}{c} (d) \\ \left\langle T' \middle| E_{ii} \middle| T \right\rangle = \delta_{T,T} \begin{pmatrix} number \\ of (iis \end{pmatrix} \\ \left\langle T' \middle| E_{ij} \middle| T \right\rangle = \left\langle T \middle| E_{ji} \middle| T \right\rangle \\ (c) \\ d = 1 \\ (c) \\ d = 1 \\ (d) \\ (d) \\ (d) \\ (d) \\ (d) \\ (e) \\ (e) \\ (e) \\ (e) \\ (f) \\ (g) \\ (e) \\ (g) \\$$

 $\left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{11} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle| E_{22} \middle| \begin{array}{c} 11\\2 \end{array} \right\rangle = 1$ 



|            | (                                         | Comp                                                                                        | plete                                 | set a                                                      | of E <sub>jk</sub> m                                              | atrix e                                                           | eleme                                   | ents f                                  | for the                                 | e doublet (spin- $\frac{1}{2}$ ) p <sup>3</sup> orbits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1                                         |                                                                                             | M=2 $M=1$                             |                                                            | M=0                                                               |                                                                   | M=-1                                    |                                         | M=-2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                   | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\left  \begin{array}{c} 11\\ 3 \end{array} \right\rangle$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $E_{jk} =$ | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                                                  | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{2}}$                                           |                                         |                                         | •                                       | $\left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{11} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle = 2 \qquad \left\langle \begin{array}{c} 11\\2 \end{array} \middle  E_{22} \middle  \begin{array}{c} 11\\2 \end{array} \right\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | $\begin{pmatrix} 12\\2 \end{pmatrix}$     |                                                                                             |                                       |                                                            | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{(23)}{\sqrt{\frac{3}{2}}}}$                          |                                         | (13)<br>-1                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    |                                                                                             |                                       | (11) (33)<br>2+1                                           | $\sqrt[(12)]{2}$                                                  |                                                                   | (13)<br>1                               |                                         |                                         | (a) (b)<br>$\left\langle T' \mid \mathbf{E}_{ii} \mid T \right\rangle = \delta_{T'T} \begin{pmatrix} \text{number} \\ \text{of } (ii') \end{pmatrix} \begin{pmatrix} T' \mid \mathbf{E}_{ii} \mid T \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                                            | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                        | $\sqrt[(13)]{\frac{1}{2}}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | $\begin{pmatrix} 13\\2 \end{bmatrix}$     |                                                                                             |                                       |                                                            | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                         | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | $ \begin{array}{c c} i=2 \\ d=1 \end{array} \left\langle \begin{array}{c} \Box \\ \Box \end{array} \right _{E_{i-1,i}} \left  \begin{array}{c} \Box \\ \Box \end{array} \right\rangle_{=1/d} \right\rangle_{=1/d} = \left\langle \begin{array}{c} \Box \\ \Box \end{array} \right _{I=1/d} \right\rangle_{=1/d} = \left\langle \begin{array}{c} \Box \\ \Box \end{array} \right\rangle_{=1/d} = \left\langle \begin{array}{c} \Box \end{array}\right\rangle_{=1/d} = \left\langle \begin{array}{c} \Box \end{array}\right$ |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             |                                       |                                                            |                                                                   |                                                                   | (11) (33)<br>1+2                        |                                         | (12)<br>1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                                            |                                                                   |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1             | (23)<br>1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                             |                                       |                                                            |                                                                   |                                                                   |                                         |                                         | $(22) (33) \\ 1+2$                      | $d=2 \left  \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \left  \frac{\mathbf{r}}{\mathbf{r}} \right ^{\mathbf{r}} \right ^{\mathbf{r}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

(2-jump  $E_{i-2,i})$ 

$$E_{13} = [E_{12}, E_{23}] = E_{12}E_{23} - E_{23}E_{12}$$

$$E_{13} \begin{vmatrix} 12 \\ 2 \end{vmatrix} = E_{12}E_{23} \begin{vmatrix} 22 \\ 3 \end{vmatrix} - E_{23}E_{12} \begin{vmatrix} 22 \\ 3 \end{vmatrix}$$

$$E_{13} \begin{vmatrix} 12 \\ 2 \end{vmatrix} = 0 - E_{23}\sqrt{2} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

$$E_{13} \begin{vmatrix} 12 \\ 2 \end{vmatrix} = 0 - \frac{1}{\sqrt{2}}\sqrt{2} \begin{vmatrix} 12 \\ 3 \end{vmatrix}$$

 $|L_{13}|_{3}$ 

2

 $\begin{pmatrix} \mathbf{T} \\ \mathbf{E}_{\mathbf{i}\mathbf{i}} \\ \mathbf{T} \end{pmatrix} = \delta_{\mathbf{T},\mathbf{T}} \begin{pmatrix} \text{number} \\ \text{of (i)'s} \end{pmatrix} \begin{pmatrix} \mathbf{T} \\ \mathbf{E}_{\mathbf{i}\mathbf{j}} \\ \mathbf{T} \end{pmatrix} = \begin{pmatrix} \mathbf{T} \\ \mathbf{E}_{\mathbf{j}\mathbf{i}} \\ \mathbf{T} \end{pmatrix}$  $\left\langle \begin{array}{c} \mathbf{E} \\ \mathbf{E} \\ \mathbf{I} \\$ E i-1, i i=2 d=1 ε<sub>i-l,i</sub> E i-i,i  $\left| \begin{array}{c} \mathbf{L} \\ \mathbf{L} \\ \mathbf{L} \\ \mathbf{L} \\ \mathbf{d} \end{array} \right\rangle = \left| \sqrt{\frac{d-1}{d}} \right| = \langle \mathbf{d} \\ \mathbf{d} \\$ i=3 1=2  $E_{23} = \sqrt{2} = \sqrt{2} = \sqrt{2}$ (e)  $E_{12} \square 2 = \sqrt{2} \square 1$ (f) (g)  $\begin{pmatrix} h \end{pmatrix} \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \mathbf{I} = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{H} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} \mathbf{E} \\ \mathbf{$ 

 $\begin{pmatrix} 11\\2 \end{bmatrix} E_{11} \begin{vmatrix} 11\\2 \end{pmatrix} = 2 \qquad \begin{pmatrix} 11\\2 \end{bmatrix} E_{22} \begin{vmatrix} 11\\2 \end{pmatrix} = 1$ 

AMOP reference links on page 2 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

# $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin-½) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump  $E_{i-1,i}$  operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4$  S,^2P, and ^2D energy calculation of quartet and doublet (spin- $^{1\!/_2}$ ) p^3 orbits Corrected level diagrams Nitrogen p^3

$$M=2 \quad M=1 \quad M=0 \quad M=-1 \quad M=-2$$

$$M=1 \quad M=0 \quad M=-1 \quad M=-2$$

$$M=-1 \quad M=-2$$

$$M=-2 \quad M=-1 \quad M=-2$$

$$M=-1 \quad M=-2$$

$$M=-1 \quad M=-2$$

$$M=-1 \quad M=-2$$

$$M=-2 \quad M=-1 \quad M=-2$$

$$M=-2 \quad M=-1 \quad M=-2$$

$$M=-1 \quad M=-2$$

$$M=-2 \quad M=-1 \quad M=-2$$

$$M=-2 \quad M=-2$$

AMOP reference links on page 2 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

# $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4$ S,^2P, and ^2D energy calculation of quartet and doublet (spin-½) p^3 orbits Corrected level diagrams Nitrogen p^3

Multipole expansions and Coulomb (e-e)-electrostatic interactionLegendre polynomials  $P\ell$  defined by R(3) irep  $D^{\ell}$ : $X_0^{\ell} = r^{\ell} D_{0,0}^{\ell} (\cdot \theta \cdot) = r^{\ell} P_{\ell} (\cos \theta)$ Derivatives of monopole potential $V^{monopole} (r) = \frac{q}{r} = \frac{q P_0 (\cos \theta)}{r}$ 

### Multipole expansions and Coulomb (e-e)-electrostatic interaction

*Legendre polynomials P*<sub> $\ell$ </sub> defined by R(3) irep  $D^{\ell}$ :  $X_0^{\ell} = r^{\ell} D_{0,0}^{\ell} (\cdot \theta \cdot) = r^{\ell} P_{\ell} (\cos \theta)$ 

Derivatives of *monopole potential* 

$$V^{monopole}(r) = \frac{q}{r} = \frac{qP_0(\cos\theta)}{r} \qquad \qquad \frac{\partial}{\partial z}(r)^n = n(r)^{n-1}\frac{\partial}{\partial z}\sqrt{x^2 + y^2 + z^2} = n(r)^{n-2}z$$



QTCA Unit 8 *Wavefunctions* <u>begins on p. 24</u> QTCA Unit 8 <u>Multipole functions</u> <u>begins on p. 33</u>
*Legendre polynomials*  $P_{\ell}$  defined by R(3) irep  $D^{\ell}$ :  $X_0^{\ell} = r^{\ell} D_{0,0}^{\ell} (\cdot \theta \cdot) = r^{\ell} P_{\ell} (\cos \theta)$ 

Derivatives of *monopole potential* 

*dipole potential*:

$$V^{monopole}(r) = \frac{q}{r} = \frac{qP_0(\cos\theta)}{r} \qquad \qquad \frac{\partial}{\partial z}(r)^n = n(r)^{n-1}\frac{\partial}{\partial z}\sqrt{x^2 + y^2 + z^2} = n(r)^{n-2}z$$
$$V^{dipole}(r) = -\frac{\partial}{\partial z}V^{monopole}(r) = \frac{qz}{r^3} = \frac{q\cos\theta}{r^2} = \frac{qP_1(\cos\theta)}{r^2}$$



 $P_{I}(\cos\theta)$ 

QTCA Unit 8 *Wavefunctions* <u>begins on p. 24</u> QTCA Unit 8 *Multipole functions* <u>begins on p. 33</u>

*Legendre polynomials P*<sub> $\ell$ </sub> defined by R(3) irep  $D^{\ell}$ :  $X_0^{\ell} = r^{\ell} D_{0,0}^{\ell} (\cdot \theta \cdot) = r^{\ell} P_{\ell} (\cos \theta)$ 

Derivatives of *monopole potential* 

dipole potential:

quadrupole potential:

$$V^{monopole}(r) = \frac{q}{r} = \frac{qP_0(\cos\theta)}{r} \qquad \qquad \frac{\partial}{\partial z}(r)^n = n(r)^{n-1}\frac{\partial}{\partial z}\sqrt{x^2 + y^2 + z^2} = n(r)^{n-2}z$$

$$V^{dipole}(r) = -\frac{\partial}{\partial z}V^{monopole}(r) = \frac{qz}{r^3} = \frac{q\cos\theta}{r^2} = \frac{qP_1(\cos\theta)}{r^2}$$

$$V^{quadrupole}(r) = -\frac{1}{2}\frac{\partial}{\partial z}V^{dipole}(r) = -\frac{1}{2}\frac{\partial}{\partial z}\frac{qz}{r^3} = q\frac{3z^2 - r^2}{2r^5} = \frac{qP_2(\cos\theta)}{r^3}$$



*P*<sub>2</sub>(cosθ) QTCA Unit 8 *Wavefunctions* <u>begins on p. 24</u> QTCA Unit 8 *Multipole functions* <u>begins on p. 33</u>

*Legendre polynomials P* $_{\ell}$  defined by R(3) irep  $D^{\ell}$ :  $X_0^{\ell} = r^{\ell} D_{0,0}^{\ell} (\cdot \theta \cdot) = r^{\ell} P_{\ell} (\cos \theta)$ 

Derivatives of *monopole potential* 

*dipole potential*:

quadrupole potential:

octupole potential:



$$V^{monopole}(r) = \frac{q}{r} = \frac{qP_0(\cos\theta)}{r} \qquad \qquad \frac{\partial}{\partial z}(r)^n = n(r)^{n-1}\frac{\partial}{\partial z}\sqrt{x^2 + y^2 + z^2} = n(r)^{n-2}z$$

$$V^{dipole}(r) = -\frac{\partial}{\partial z}V^{monopole}(r) = \frac{qz}{r^3} = \frac{q\cos\theta}{r^2} = \frac{qP_1(\cos\theta)}{r^2}$$

$$V^{quadrupole}(r) = -\frac{1}{2}\frac{\partial}{\partial z}V^{dipole}(r) = -\frac{1}{2}\frac{\partial}{\partial z}\frac{qz}{r^3} = q\frac{3z^2 - r^2}{2r^5} = \frac{qP_2(\cos\theta)}{r^3}$$

$$V^{octupole}(r) = \frac{-1}{3}\frac{\partial}{\partial z}V^{quadrupole}(r) = \frac{-1}{3}\frac{\partial}{\partial z}\frac{3z^2 - r^2}{2r^5} = q\frac{5z^3 - 3z}{2r^5} = \frac{qP_3(\cos\theta)}{r^4}$$

QTCA Unit 8 *Wavefunctions* <u>begins on p. 24</u> QTCA Unit 8 *Multipole functions* <u>begins on p. 33</u>

*Legendre polynomials P*<sub> $\ell$ </sub> defined by R(3) irep  $D^{\ell}$ :  $X_0^{\ell} = r^{\ell} D_{0,0}^{\ell} (\cdot \theta \cdot) = r^{\ell} P_{\ell} (\cos \theta)$ 

Derivatives of *monopole potential* 

*dipole potential*:

quadrupole potential:

octupole potential:

$$V^{monopole}(r) = \frac{q}{r} = \frac{qP_0(\cos\theta)}{r} \qquad \qquad \frac{\partial}{\partial z}(r)^n = n(r)^{n-1}\frac{\partial}{\partial z}\sqrt{x^2 + y^2 + z^2} = n(r)^{n-2}z$$

$$V^{dipole}(r) = -\frac{\partial}{\partial z}V^{monopole}(r) = \frac{qz}{r^3} = \frac{q\cos\theta}{r^2} = \frac{qP_1(\cos\theta)}{r^2}$$

$$V^{quadrupole}(r) = -\frac{1}{2}\frac{\partial}{\partial z}V^{dipole}(r) = -\frac{1}{2}\frac{\partial}{\partial z}\frac{qz}{r^3} = q\frac{3z^2 - r^2}{2r^5} = \frac{qP_2(\cos\theta)}{r^3}$$

$$V^{octupole}(r) = \frac{-1}{3}\frac{\partial}{\partial z}V^{quadrupole}(r) = \frac{-1}{3}\frac{\partial}{\partial z}\frac{3z^2 - r^2}{2r^5} = q\frac{5z^3 - 3z}{2r^5} = \frac{qP_3(\cos\theta)}{r^4}$$

*linear multi-pole* or 2*ℓ*-pole potential

$$V^{2^{\ell}-pole}(r) = \frac{\left(-1\right)^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z^{\ell}} \left(\frac{q}{r}\right) = \frac{qP_{\ell}(\cos\theta)}{r^{\ell+1}}$$

QTCA Unit 8 *Wavefunctions* <u>begins on p. 24</u> QTCA Unit 8 *Multipole functions* <u>begins on p. 33</u>



4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

## $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump  $E_{i-2,i}$  operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; P<sub>1</sub>-dipole, P<sub>2</sub>-quadrupole, P<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4$ S,^2P, and ^2D energy calculation of quartet and doublet (spin-½) p^3 orbits Corrected level diagrams Nitrogen p^3

$$\frac{q}{|\mathbf{r}-\mathbf{r}'|} = \frac{q}{r} - r'\frac{\partial}{\partial z}\left(\frac{q}{r}\right) + \frac{(r')^2}{2!}\frac{\partial^2}{\partial z^2}\left(\frac{q}{r}\right) - \frac{(r')^3}{3!}\frac{\partial^3}{\partial z^3}\left(\frac{q}{r}\right) + \dots + \frac{(-r')^\ell}{\ell!}\frac{\partial^\ell}{\partial z^\ell}\left(\frac{q}{r}\right) \dots$$
$$= \frac{q}{r} + \frac{qr'}{r^2}P_1(\cos\theta) + \frac{q(r')^2}{r^3}P_2(\cos\theta) + \frac{q(r')^3}{r^4}P_3(\cos\theta) + \dots + \frac{q(r')^\ell}{r^{\ell+1}}P_\ell(\cos\theta) \dots$$

$$\frac{q}{|\mathbf{r}-\mathbf{r}'|} = \frac{q}{r} - r'\frac{\partial}{\partial z}\left(\frac{q}{r}\right) + \frac{(r')^2}{2!}\frac{\partial^2}{\partial z^2}\left(\frac{q}{r}\right) - \frac{(r')^3}{3!}\frac{\partial^3}{\partial z^3}\left(\frac{q}{r}\right) + \dots + \frac{(-r')^\ell}{\ell!}\frac{\partial^\ell}{\partial z^\ell}\left(\frac{q}{r}\right) \dots$$
$$= \frac{q}{r} + \frac{qr'}{r^2}P_1(\cos\theta) + \frac{q(r')^2}{r^3}P_2(\cos\theta) + \frac{q(r')^3}{r^4}P_3(\cos\theta) + \dots + \frac{q(r')^\ell}{r^{\ell+1}}P_\ell(\cos\theta) \dots$$

Off-z-axis position state  $|\alpha,\beta,0\rangle$  by Euler rotation: Off-z-axis  $P_{\ell}(\cos\theta)$  wave by Euler rotation:  $\begin{vmatrix} \ell \\ 0 \\ (\alpha,\beta) \end{vmatrix} = \mathbf{R}(\alpha,\beta,0) \begin{vmatrix} 0,0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0,0 \\ 0$ 

$$\frac{q}{|\mathbf{r}-\mathbf{r}'|} = \frac{q}{r} - r'\frac{\partial}{\partial z}\left(\frac{q}{r}\right) + \frac{(r')^2}{2!}\frac{\partial^2}{\partial z^2}\left(\frac{q}{r}\right) - \frac{(r')^3}{3!}\frac{\partial^3}{\partial z^3}\left(\frac{q}{r}\right) + \dots + \frac{(-r')^\ell}{\ell!}\frac{\partial^\ell}{\partial z^\ell}\left(\frac{q}{r}\right) \dots$$
$$= \frac{q}{r} + \frac{qr'}{r^2}P_1(\cos\theta) + \frac{q(r')^2}{r^3}P_2(\cos\theta) + \frac{q(r')^3}{r^4}P_3(\cos\theta) + \dots + \frac{q(r')^\ell}{r^{\ell+1}}P_\ell(\cos\theta) \dots$$

Off-z-axis position state  $|\alpha,\beta,0\rangle$  by Euler rotation: Off-z-axis  $P_{\ell}(\cos\theta)$  wave by Euler rotation:  $\begin{vmatrix} \ell \\ 0 \\ (\alpha,\beta) \end{vmatrix} = \mathbf{R}(\alpha,\beta,0) \begin{vmatrix} 0,0,0 \\ 0,0 \end{vmatrix} = \begin{vmatrix} \alpha,\beta,0 \\ 0,0 \end{vmatrix}$   $= \mathbf{R}(\alpha,\beta,0) \begin{vmatrix} \ell \\ 0,0 \end{vmatrix}$  $= \sum_{m=-\ell}^{\ell} \begin{vmatrix} \ell \\ m,0 \end{vmatrix} D_{m,0}^{\ell}(\alpha,\beta,0) = \sum_{m=-\ell}^{\ell} \begin{vmatrix} \ell \\ m,0 \end{vmatrix} Y_m^{\ell*}(\alpha,\beta) \sqrt{\frac{4\pi}{2\ell+1}}$ 

Amplitude at polar position  $|\phi, \theta, 0\rangle$  of rotated *P*-wave:  $\langle \phi, \theta | {\ell \atop 0} \rangle_{(\alpha, \beta)} = \langle \phi, \theta | \mathsf{R}(\alpha, \beta, 0) | {\ell \atop 0, 0} \rangle$ =  $\sum_{m=-\ell}^{\ell} \langle \phi, \theta | {\ell \atop m, 0} \rangle Y_m^{\ell^*}(\alpha, \beta) \sqrt{\frac{4\pi}{2\ell+1}}$ 

$$=\sum_{m=-\ell}^{\ell} Y_m^{\ell}(\phi,\theta) Y_m^{\ell^*}(\alpha,\beta) \frac{4\pi}{2\ell+1}$$



QTCA Unit 8 Multipole functions begins on p. 33

$$\frac{q}{|\mathbf{r}-\mathbf{r}|} = \frac{q}{r} - r'\frac{\partial}{\partial z} \left(\frac{q}{r}\right) + \frac{(r')^{2}}{2!} \frac{\partial^{2}}{\partial z^{2}} \left(\frac{q}{r}\right) - \frac{(r')^{3}}{3!} \frac{\partial^{3}}{\partial z^{3}} \left(\frac{q}{r}\right) + \dots + \frac{(-r')^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z_{\ell}} \left(\frac{q}{r}\right) \dots$$

$$= \frac{q}{r} + \frac{qr'}{r^{2}} P_{1}(\cos\theta) + \frac{q(r')^{3}}{r^{3}} P_{2}(\cos\theta) + \frac{q(r')^{3}}{r^{4}} P_{3}(\cos\theta) + \dots + \frac{q(r')^{\ell}}{r^{\ell+1}} P_{\ell}(\cos\theta) \dots$$
Off-z-axis position state  $|\alpha,\beta,0\rangle$  by Euler rotation:  $\mathbf{R}(\alpha,\beta,0)|0,0,0\rangle = |\alpha,\beta,0\rangle$ 
Off-z-axis  $P_{\ell}(\cos\theta)$  wave by Euler rotation:  $\left|\binom{\ell}{0}_{\alpha,\beta}\right| = \mathbf{R}(\alpha,\beta,0) \left|\binom{\ell}{0,0}\right| = \frac{\xi}{m^{2-\ell}} \left|\binom{\ell}{m_{0}}\right\rangle D_{m}^{\ell}(\alpha,\beta,0) = \sum_{m=-\ell}^{\ell} \left|\binom{\ell}{m_{0}}\right\rangle Y_{m}^{\ell+1}(\alpha,\beta) \sqrt{\frac{4\pi}{2\ell+1}}$ 
Amplitude at polar position  $|\phi,\theta,0\rangle$  of rotated  $P$ -wave:  $\langle\phi,\theta|_{0}^{\ell}_{0}\rangle_{(\alpha,\beta)} = \langle\phi,\theta|\mathbf{R}(\alpha,\beta,0)|_{0,0}^{\ell}\rangle_{\alpha,\beta} \sqrt{\frac{4\pi}{2\ell+1}}$ 

$$= \sum_{m=-\ell}^{\ell} \langle\phi,\theta|_{m,0}^{\ell}\rangle Y_{m}^{\ell+1}(\alpha,\beta,0)\mathbf{R}(\phi,\theta,0) = \mathbf{R}(\Phi,\Theta,0).$$
 $(\alpha,\beta) \langle 0 | \binom{\ell}{0} \rangle_{(\phi,\theta)} = - \langle \binom{\ell}{0} |\mathbf{R}^{\dagger}(\alpha,\beta,0)\mathbf{R}(\phi,\theta,0)|_{0}^{\ell}\rangle = \langle \binom{\ell}{0} |\mathbf{R}(\Phi,\Theta,0)|_{0}^{\ell}\rangle$ 

$$= \sum_{m=-\ell}^{\ell} D_{0,m}^{\ell+1}(\alpha,\beta,0)\mathbf{R}(\phi,\theta,0) = D_{0,0}^{\ell}(\Phi,\Theta,0) = P_{\ell}(\cos\Theta)$$

QTCA Unit 8 Multipole functions begins on p. 33

x(lphaeta) harmonic addition theorem y(00)

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

### $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4$ S,²P, and ²D energy calculation of quartet and doublet (spin-½) p³ orbits Corrected level diagrams Nitrogen p³

$$\frac{q}{|\mathbf{r}-\mathbf{r}|} = \frac{q}{r} - r'\frac{\partial}{\partial z} \left(\frac{q}{r}\right) + \frac{(r')^{3}}{2!} \frac{\partial^{2}}{\partial z^{2}} \left(\frac{q}{r}\right) - \frac{(r')^{3}}{3!} \frac{\partial^{2}}{\partial z^{2}} \left(\frac{q}{r}\right) + \dots + \frac{(r')^{\ell}}{\ell!} \frac{\partial^{\ell}}{\partial z} \left(\frac{q}{r}\right) \dots$$

$$= \frac{q}{r} + \frac{qr'}{r^{2}} P_{1}(\cos\theta) + \frac{q(r')^{2}}{r^{3}} P_{2}(\cos\theta) + \frac{q(r')^{3}}{r^{4}} P_{2}(\cos\theta) + \dots + \frac{q(r')^{\ell}}{r^{64}} P_{\ell}(\cos\theta) \dots$$
Off-z-axis position state  $|\alpha,\beta,0\rangle$  by Euler rotation:  $|\alpha,\beta,0\rangle = |\alpha,\beta,0\rangle$  off-z-axis  $P_{\ell}(\cos\theta)$  wave by Euler rotation:  $|\beta_{0}\rangle_{(\alpha,\beta)} = |\alpha,\beta,0\rangle|_{0,0}^{\ell}$ 

$$= \sum_{m=-\ell}^{\ell} |\frac{m}{m_{0}}\rangle D_{m,0}^{\ell}(\alpha,\beta,0) = \sum_{m=-\ell}^{\ell} |\frac{\ell}{m_{0}}\rangle Y_{m}^{\ell*}(\alpha,\beta) \sqrt{\frac{4\pi}{2\ell+1}}$$
Amplitude at polar position  $|\phi,\theta,0\rangle$  of rotated  $P$ -wave:  $\langle\phi,\theta|_{0}^{\ell}\rangle_{(\alpha,\beta)} = \langle\phi,\theta|\mathbf{R}(\alpha,\beta,0)|_{0,0}^{\ell}\rangle$ 

$$= \sum_{m=-\ell}^{\ell} \langle\phi,\theta|_{m,0}^{\ell}\rangle Y_{m}^{\ell*}(\alpha,\beta) \sqrt{\frac{4\pi}{2\ell+1}}$$

$$= \sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi,\theta) Y_{m}^{\ell*}(\alpha,\beta) \sqrt{\frac{4\pi}{2\ell+1}}$$

$$= \sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi,\theta) Y_{m}^{\ell*}(\alpha,\beta,0) = \mathbf{R}(\Phi,\Theta,0).$$

$$(\alpha,\beta) \langle 0 | \theta_{0}\rangle_{(\phi,\theta)} = \langle 0 | \mathbf{R}^{\dagger}(\alpha,\beta,0) \mathbf{R}(\phi,\theta,0) | \theta_{0}\rangle = \langle 0 | \mathbf{R}(\Phi,\Theta,0) | \theta_{0}\rangle$$

$$= \sum_{m=-\ell}^{\ell} D_{0,m}^{\ell\dagger}(\alpha,\beta,0) D_{m,0}^{\ell}(\phi,\theta,0) = D_{0,0}^{\ell}(\phi,\theta,0) = P_{\ell}(\cos\theta)$$

$$\dots$$
By the should be called the (group) Multiplication Theorem Parents is presented by the should be called the (group) Multiplication Theorem Parents is presented by the should be called the (group) Multiplication Theorem Parents is presented by the parent is parent is presented by the parent is presented by the parent is parent is

QTCA Unit 8 Multipole functions begins on p. 33

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

# $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin-1/2) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae Number operators 1-jump E<sub>i-1,i</sub> operators 2-jump E<sub>i-2,i</sub> operators Angular momentum operators (for later application) Multipole expansions and Coulomb (e-e)-electrostatic interaction Linear multipoles;  $P_1$ -dipole,  $P_2$ -quadrupole,  $P_3$ -octupole,... Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion: Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 2-particle elementary  $\mathbf{e}_{ik}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{k}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ . Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'}$  arrays Atomic p-shell ee-interaction in elementary operator form [2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ [2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole <sup>4</sup>S,<sup>2</sup>P, and <sup>2</sup>D energy calculation of quartet and doublet (spin-<sup>1</sup>/<sub>2</sub>) p<sup>3</sup> orbits Corrected level diagrams Nitrogen p<sup>3</sup>

$$\underbrace{Multipole\ Addition\ Theorem\ P_{\ell}(\cos\Theta) = \sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi,\theta) Y_{m}^{\ell*}(\alpha,\beta) \frac{4\pi}{2\ell+1}}_{2\ell+1}$$

$$\frac{e^2}{\left|\mathbf{r}_{\alpha} - \mathbf{r}_{\beta}\right|} = \sum_{\ell=0}^{\infty} \frac{e^2 r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos\Theta_{1}\right) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi e^2 r_{\alpha}^{\ell}}{(2\ell+1)r_{\beta}^{\ell+1}} Y_{m}^{\ell*}\left(\phi_{1},\theta_{1}\right) Y_{m}^{\ell}\left(\phi,\theta\right) \quad \text{for: } r_{\alpha} < r_{\beta}$$

$$\underbrace{Multipole\ Addition\ Theorem\ P_{\ell}(\cos\Theta) = \sum_{m=-\ell}^{\ell} Y_{m}^{\ell}(\phi,\theta) Y_{m}^{\ell*}(\alpha,\beta) \frac{4\pi}{2\ell+1}}_{\frac{\ell^{2}}{2\ell+1}}$$

$$\underbrace{e^{2}}_{\frac{\ell^{2}}{2\ell}} - \sum \frac{e^{2}r_{\leq}^{\ell}}{2\ell} P_{\ell}(\cos\Theta) = \sum \sum_{m=-\ell}^{\ell} \frac{4\pi e^{2}r_{\alpha}^{\ell}}{2\ell} Y_{m}^{\ell*}(\phi,\theta) Y_{m}^{\ell}(\phi,\theta) = \int e^{2\pi i \theta} F_{\ell}(\phi,\theta) Y_{\ell}^{\ell}(\phi,\theta) F_{\ell}(\phi,\theta) F_{\ell}(\phi,\theta) = \int e^{2\pi i \theta} F_{\ell}(\phi,\theta) Y_{\ell}^{\ell*}(\phi,\theta) Y_{\ell}^{\ell}(\phi,\theta) F_{\ell}(\phi,\theta) = \int e^{2\pi i \theta} F_{\ell}(\phi,\theta) Y_{\ell}^{\ell*}(\phi,\theta) Y_{\ell}^{\ell}(\phi,\theta) F_{\ell}(\phi,\theta) F_{\ell}(\phi,\theta) F_{\ell}(\phi,\theta) F_{\ell}(\phi,\theta) = \int e^{2\pi i \theta} F_{\ell}(\phi,\theta) F_{\ell$$

$$\frac{e}{\left|\mathbf{r}_{\alpha}-\mathbf{r}_{\beta}\right|} = \sum_{\ell=0}^{\infty} \frac{e^{-\gamma_{<}}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos\Theta_{1}\right) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\infty} \frac{4\pi e^{-\gamma_{\alpha}}}{\left(2\ell+1\right)r_{\beta}^{\ell+1}} Y_{m}^{\ell*}\left(\phi_{1},\theta_{1}\right) Y_{m}^{\ell}\left(\phi,\theta\right) \quad \text{for: } r_{\alpha} < r_{\beta}$$

Shorthand Tensor form of (e-e)-interaction

$$\frac{1}{\left|\mathbf{r}_{\alpha\beta}\right|} = \sum_{k=0}^{\ell} \sum_{q=-k}^{k} \frac{r_{\alpha}^{k}}{r_{\beta}^{k+1}} C_{-q}^{k}(\alpha) C_{q}^{k}(\beta) \quad \text{where: } C_{q}^{k}(\alpha) = \sqrt{\frac{4\pi}{2k+1}} Y_{q}^{k}\left(\phi_{\alpha}, \theta_{\alpha}\right)$$

Multipole Addition Theorem 
$$P_{\ell}(\cos\Theta) = \sum_{m=-\ell}^{\ell} Y_m^{\ell}(\phi,\theta) Y_m^{\ell*}(\alpha,\beta) \frac{4\pi}{2\ell+1}$$

$$\frac{e^2}{\left|\mathbf{r}_{\alpha} - \mathbf{r}_{\beta}\right|} = \sum_{\ell=0}^{\infty} \frac{e^2 r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos\Theta_{1}\right) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi e^2 r_{\alpha}^{\ell}}{(2\ell+1)r_{\beta}^{\ell+1}} Y_{m}^{\ell*}\left(\phi_{1},\theta_{1}\right) Y_{m}^{\ell}\left(\phi,\theta\right) \quad \text{for: } r_{\alpha} < r_{\beta}$$

Shorthand Tensor form of (e-e)-interaction

$$\frac{1}{\left|\mathbf{r}_{\alpha\beta}\right|} = \sum_{k=0}^{\ell} \sum_{q=-k}^{k} \frac{r_{\alpha}^{k}}{r_{\beta}^{k+1}} C_{-q}^{k}(\alpha) C_{q}^{k}(\beta) \quad \text{where: } C_{q}^{k}(\alpha) = \sqrt{\frac{4\pi}{2k+1}} Y_{q}^{k}\left(\phi_{\alpha},\theta_{\alpha}\right)$$

(e-e)-interaction matrix (multi-*l*-shell)

$$\left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{\ell_{1} \ell_{2} \ell_{1} \ell_{2} \\ m_{1} m_{2}' m_{1} m_{2}'}} \left| \frac{\ell_{1} \ell_{2}}{m_{1} m_{2}'} \right\rangle \left\langle \frac{\ell_{1} \ell_{2}}{m_{1} m_{2}'} \right| \frac{1}{|\mathbf{r}_{\alpha\beta}|} \left| \frac{\ell_{1} \ell_{2}}{m_{1} m_{2}} \right\rangle \left\langle \frac{\ell_{1} \ell_{2}}{m_{1} m_{2}} \right| \qquad F^{k} (\ell_{1}' \ell_{2}' \ell_{1} \ell_{2}) = \int r_{1}^{2} dr_{1} \int r_{2}^{2} dr_{2} R_{\ell_{1}}(r_{1}) R_{\ell_{2}}(r_{2}) \frac{r_{<}^{k}}{r_{<}^{k+1}} R_{\ell_{1}}(r_{1}) R_{\ell_{2}}(r_{2}) \\ = \sum_{\ell_{1}' \ell_{2}' \ell_{1} \ell_{2}} e_{\ell_{1}' \ell_{1}}(\alpha) e_{\ell_{2}' \ell_{2}}(\beta) \sum_{k} F^{k} (\ell_{1}' \ell_{2}' \ell_{1} \ell_{2}) \left[ \sum_{q} (-1)^{q+\Delta} \left\langle \frac{\ell_{1}'}{m_{1}'} \right| C_{-q}^{k}(\alpha) \left| \frac{\ell_{1}}{m_{1}} \right\rangle \left\langle \frac{\ell_{2}'}{m_{2}'} \right| C_{q}^{k}(\beta) \left| \frac{\ell_{2}}{m_{2}} \right\rangle \right] \\ \text{where parity requires:} \left\{ \begin{array}{c} 1 = (-1)^{\ell_{1}'+k+\ell_{1}} = (-1)^{\ell_{2}'+k+\ell_{2}} \\ (-1)^{\Delta} = (-1)^{\ell_{1}'-\ell_{1}} = (-1)^{\ell_{2}'-\ell_{2}} \end{array} \right\}$$

Given in terms of Slater radial integral(s):

Multipole Addition Theorem 
$$P_{\ell}(\cos\Theta) = \sum_{m=-\ell}^{\ell} Y_m^{\ell}(\phi,\theta) Y_m^{\ell*}(\alpha,\beta) \frac{4\pi}{2\ell+1}$$

$$\frac{e^{2}}{\left|\mathbf{r}_{\alpha}-\mathbf{r}_{\beta}\right|} = \sum_{\ell=0}^{\infty} \frac{e^{2} r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}\left(\cos\Theta_{1}\right) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi e^{2} r_{\alpha}^{\ell}}{(2\ell+1)r_{\beta}^{\ell+1}} Y_{m}^{\ell*}\left(\phi_{1},\theta_{1}\right) Y_{m}^{\ell}\left(\phi,\theta\right) \quad \text{for:} \ r_{\alpha} < r_{\beta}$$

Shorthand Tensor form of (e-e)-interaction

$$\frac{1}{\left|\mathbf{r}_{\alpha\beta}\right|} = \sum_{k=0}^{\ell} \sum_{q=-k}^{k} \frac{r_{\alpha}^{k}}{r_{\beta}^{k+1}} C_{-q}^{k}(\alpha) C_{q}^{k}(\beta) \quad \text{where: } C_{q}^{k}(\alpha) = \sqrt{\frac{4\pi}{2k+1}} Y_{q}^{k}\left(\phi_{\alpha},\theta_{\alpha}\right)$$

(e-e)-interaction matrix (multi-*l*-shell)

$$\left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{\ell_{1} \ell_{2} \ell_{1} \ell_{2} \\ m_{1}m_{2}'m_{1}m_{2}'m_{2}'m_{1}m_{2}'m_{2}'m_{1}m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2}'m_{2$$

Given in terms of Slater radial integral(s):

Elementary operator expressions for *(e-e)-interaction matrix* 

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

## $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin-1/2) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae Number operators 1-jump E<sub>i-1,i</sub> operators 2-jump E<sub>i-2,i</sub> operators Angular momentum operators (for later application) Multipole expansions and Coulomb (e-e)-electrostatic interaction Linear multipoles;  $P_1$ -dipole,  $P_2$ -quadrupole,  $P_3$ -octupole,... Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion: Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{k}{p^k q}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ . Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'}$  arrays Atomic p-shell ee-interaction in elementary operator form [2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ [2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole <sup>4</sup>S,<sup>2</sup>P, and <sup>2</sup>D energy calculation of quartet and doublet (spin-<sup>1</sup>/<sub>2</sub>) p<sup>3</sup> orbits Corrected level diagrams Nitrogen p<sup>3</sup>

(Repeating from preceding page) (e-e)-interaction matrix (multi-l-shell)

$$\left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{\ell_{1} \ \ell_{2} \ \ell_{1} \ \ell_{2} \\ m_{1}'m_{2}'m_{1}m_{2}'}} \left| \frac{\ell_{1}' \ \ell_{2}'}{m_{1}'m_{2}'} \right| \frac{\ell_{1}' \ \ell_{2}'}{|\mathbf{r}_{\alpha\beta}|} \left| \frac{\ell_{1}' \ \ell_{2}}{m_{1}m_{2}} \right\rangle \left\langle \ell_{1}' \ \ell_{2}' \\ m_{1}'m_{2}' \right| \\ = \sum_{\substack{\ell_{1}' \ \ell_{2} \ \ell_{1} \ \ell_{2} \\ m_{1}'m_{2}'m_{1}m_{2}'}} e_{\ell_{1}' \ \ell_{1}}(\alpha) e_{\ell_{2}' \ \ell_{2}'}(\beta) \sum_{k} F^{k} (\ell_{1}' \ell_{2}' \ \ell_{1}' \ \ell_{2}) \left[ \sum_{q} (-1)^{q+\Delta} \left\langle \ell_{1}' \\ m_{1}' \right| C_{-q}^{k}(\alpha) \left| \ell_{1} \\ m_{1}' \right\rangle \left\langle \ell_{2}' \\ m_{2}' \right| C_{q}^{k}(\beta) \left| \ell_{2} \\ m_{2}' \\ m_{2}' \end{pmatrix} \right] \\ \text{where parity requires:} \begin{cases} 1 = (-1)^{\ell_{1}'+k+\ell_{1}} = (-1)^{\ell_{2}'+k+\ell_{2}} \\ (-1)^{\Delta} = (-1)^{\ell_{1}'-\ell_{1}} = (-1)^{\ell_{2}'-\ell_{2}} \end{cases}$$

Shorthand  $\mathbf{e}_{jk}$  index labeling  $\mathbf{e}_{1'1}$  maps to momentum quanta:

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for (e-e)-interaction matrix  $\left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{\ell_1 \ell_2 \ell_1 \ell_2 \\ m_1'm_2'm_1m_2}} \sum_k A^k (\ell_1' \ell_2' \ell_1 \ell_2) \left[ \sum_q (-1)^{q+\Delta} \binom{k}{l'1} \mathbf{e}_{1'1} (\alpha) \binom{k}{2'2} \mathbf{e}_{2'2} (\beta) \right]$ with tensor factors:  $\binom{k}{l'1} = C_{-qm_1m_1-q}^{k\ell_1 \ell_1'} \sqrt{\frac{2k+1}{2\ell_1'+1}}$  and  $\binom{k}{2'2} = C_{-qm_2m_2-q}^{k\ell_2 \ell_2'} \sqrt{\frac{2k+1}{2\ell_2'+1}}$ and radial integral(s):  $A^k (\ell_1' \ell_2' \ell_1 \ell_2) = F^k (\ell_1' \ell_2' \ell_1 \ell_2) \binom{k\ell_1 \ell_1'}{000} \binom{k\ell_2 \ell_2'}{000} \frac{\sqrt{(2\ell_1'+1)(2\ell_2'+1)(2\ell_1+1)(2\ell_2+1)}}{2k+1}$ 

$$1' \rightarrow \frac{\ell'_{1}}{m'_{1}}, 1 \rightarrow \frac{\ell_{1}}{m_{1}}$$
$$2' \rightarrow \frac{\ell'_{2}}{m'_{2}}, 2 \rightarrow \frac{\ell_{2}}{m_{2}}$$

(Repeating from preceding page) (e-e)-interaction matrix (multi-l-shell)

$$\left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{\ell_1 \ \ell_2 \ \ell_1 \ \ell_2 \ m_1' m_2' m_1 m_2'}} \left| \frac{\ell_1 \ \ell_2 \ m_1' m_2'}{|\mathbf{r}_{\alpha\beta}|} \right|^{\ell_1 \ \ell_2 \ m_1 m_2} \left\langle \ell_1 \ \ell_2 \ m_1 m_2 \right\rangle \left\langle \ell_1 \ \ell_2 \ m_1 m_2 \right\rangle$$

$$= \sum_{\substack{\ell_1 \ \ell_2 \ \ell_1 \ \ell_2 \ m_1' m_1'}} e_{\ell_1 \ \ell_1}(\alpha) e_{\ell_2 \ \ell_2 \ m_2' m_2'}(\beta) \sum_k F^k (\ell_1' \ell_2' \ell_1 \ell_2) \left[ \sum_q (-1)^{q+\Delta} \left\langle \ell_1' \ m_1' \right| C_{-q}^k(\alpha) \left| \ell_1 \ m_1 \right\rangle \left\langle \ell_2' \ m_2' \right| C_q^k(\beta) \left| \ell_2 \ m_2 \right\rangle \right]$$

$$\text{where parity requires:} \begin{cases} 1 = (-1)^{\ell_1' + k + \ell_1} = (-1)^{\ell_2' + k + \ell_2} \\ (-1)^{\Delta} = (-1)^{\ell_1' - \ell_1} = (-1)^{\ell_2' - \ell_2} \end{cases}$$

Shorthand  $\mathbf{e}_{ik}$  index labeling  $\mathbf{e}_{1'1}$  maps to momentum quanta:

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)-interaction matrix*  $\left\langle \frac{1}{\left| \mathbf{r}_{\alpha\beta} \right|} \right\rangle = \sum_{\substack{\ell_1 \ \ell_2 \ \ell_1 \ \ell_2}} \sum_{k} A^k (\ell_1' \ell_2' \ell_1 \ell_2) \left[ \sum_{q} (-1)^{q+\Delta} \binom{k}{l'_1} \mathbf{e}_{l'1}(\alpha) \binom{k}{2'_2} \mathbf{e}_{2'_2}(\beta) \right]$  $2' \rightarrow \frac{\ell'_2}{m'}, 2 \rightarrow \frac{\ell_2}{m}$ with tensor factors:  $\binom{k}{1'1} = C_{-qm_1m_1-q}^{k\ell_1\ell_1'} \sqrt{\frac{2k+1}{2\ell_1'+1}}$  and  $\binom{k}{2'2} = C_{-qm_2m_2-q}^{k\ell_2\ell_2'} \sqrt{\frac{2k+1}{2\ell_2'+1}}$ and radial integral(s):  $A^{k}(\ell_{1}'\ell_{2}'\ell_{1}\ell_{2}) = F^{k}(\ell_{1}'\ell_{2}'\ell_{1}\ell_{2}) {\binom{k\ell_{1}\ell_{1}'}{000}} {\binom{k\ell_{2}\ell_{2}'}{000}} \frac{\sqrt{(2\ell_{1}'+1)(2\ell_{2}'+1)(2\ell_{1}+1)(2\ell_{2}+1)}}{2k+1}$ *n*-particle elementary  $\mathbf{E}_{jk} = \sum_{\alpha} \mathbf{e}_{jk}(\alpha)$  summed operator expressions (Using  $\mathbf{e}_{ij}(\alpha) \mathbf{e}_{km}(\alpha) = \delta_{jk} \mathbf{e}_{im}(\alpha)$ ) 

$$\stackrel{\ell}{\rightarrow} \stackrel{\ell_1}{m'_1} , \stackrel{\ell}{\rightarrow} \stackrel{\ell_1}{m'_1}$$

(Repeating from preceding page) (e-e)-interaction matrix (multi-l-shell)

$$\left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{\ell_1 \ \ell_2 \ \ell_1 \ \ell_2 \ m_1' m_2' m_1 m_2'}} \left| \frac{\ell_1 \ \ell_2 \ m_1' m_2'}{|\mathbf{r}_{\alpha\beta}|} \right|^{\ell_1 \ \ell_2 \ m_1 m_2} \left\langle \ell_1 \ \ell_2 \ m_1 m_2 \right\rangle \left\langle \ell_1 \ \ell_2 \ m_1 m_2 \right\rangle \\ = \sum_{\substack{\ell_1 \ \ell_2 \ \ell_1 \ \ell_2 \ m_1' m_1}} e_{\ell_1 \ \ell_1}(\alpha) e_{\ell_2 \ \ell_2 \ m_2' m_2}(\beta) \sum_k F^k (\ell_1' \ell_2' \ell_1 \ell_2) \left[ \sum_q (-1)^{q+\Delta} \left\langle \ell_1' \ m_1' \right| C_{-q}^k(\alpha) \left| \ell_1 \ m_1 \right\rangle \left\langle \ell_2' \ m_2' \right| C_q^k(\beta) \left| \ell_2 \ m_2 \right\rangle \right] \\ \text{where parity requires:} \begin{cases} 1 = (-1)^{\ell_1' + k + \ell_1} = (-1)^{\ell_2' + k + \ell_2} \\ (-1)^{\Delta} = (-1)^{\ell_1' - \ell_1} = (-1)^{\ell_2' - \ell_2} \end{cases}$$

Shorthand  $\mathbf{e}_{ik}$  index labeling  $\mathbf{e}_{1'1}$  maps to momentum quanta:

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)-interaction matrix*  $\left\langle \frac{1}{\left| \mathbf{r}_{\alpha\beta} \right|} \right\rangle = \sum_{\ell_1, \ell_2, \ell_1, \ell_2} \sum_{k} A^k (\ell_1' \ell_2' \ell_1 \ell_2) \left| \sum_{q} (-1)^{q+\Delta} \binom{k}{1'} \mathbf{e}_{1'}(\alpha) \binom{k}{2'} \mathbf{e}_{2'}(\beta) \right|$ with tensor factors:  $\binom{k}{1'1} = C_{-qm_1m_1-q}^{k\ell_1\ell_1'} \sqrt{\frac{2k+1}{2\ell_1'+1}}$  and  $\binom{k}{2'2} = C_{-qm_2m_2-q}^{k\ell_2\ell_2'} \sqrt{\frac{2k+1}{2\ell_2'+1}}$ and radial integral(s):  $A^{k}(\ell_{1}'\ell_{2}'\ell_{1}\ell_{2}) = F^{k}(\ell_{1}'\ell_{2}'\ell_{1}\ell_{2}) {\binom{k\ell_{1}\ell_{1}'}{000}} {\binom{k\ell_{2}\ell_{2}'}{000}} \frac{\sqrt{(2\ell_{1}'+1)(2\ell_{2}'+1)(2\ell_{1}+1)(2\ell_{2}+1)}}{2k+1}$ *n*-particle elementary  $\mathbf{E}_{jk} = \sum_{\alpha} \mathbf{e}_{jk}(\alpha)$  summed operator expressions (Using  $\mathbf{e}_{ij}(\alpha) \mathbf{e}_{km}(\alpha) = \delta_{jk} \mathbf{e}_{im}(\alpha)$ )



$$\mathcal{L} \rightarrow \begin{array}{c} \ell_2 \\ m_2' \\ m_2' \end{array}, \begin{array}{c} 2 \rightarrow \begin{array}{c} \ell_2 \\ m_2 \\ m_2 \end{array}$$

 $\frac{1}{2}\sum_{\alpha\neq\beta}\left\langle\frac{1}{\left|\mathbf{r}_{\alpha\beta}\right|}\right\rangle = \frac{1}{2}\sum_{\ell_{1}\ell_{2}\ell_{1}\ell_{2}}\sum_{k}A^{k}(\ell_{1}'\ell_{2}'\ell_{1}\ell_{2})\left|\sum_{m=m}^{q}(-1)^{q+\Delta}\binom{k}{l'_{1}}\mathbf{E}_{1'1}\binom{k}{2'_{2}}\mathbf{E}_{2'_{2}}-\sum_{m=m}^{q}(-1)^{q+\Delta}\binom{k}{l'_{1}}\binom{k}{2'_{2}}\delta_{2'_{1}}\mathbf{E}_{1'_{2}}\right|$  $= \frac{1}{2} \sum_{\ell_{1}\ell_{2}\ell_{1}\ell_{2}} \sum_{k} A^{k} (\ell_{1}\ell_{2}\ell_{1}\ell_{2}) \sum_{q} (\ell_{1}, \tilde{\mathbf{V}}_{q}^{k}\ell_{1}) (\ell_{2}, \tilde{\mathbf{V}}_{q}^{k}\ell_{2}) - \frac{1}{2} \sum_{\ell_{1}\ell_{2}} \sum_{k} A^{k} (\ell_{1}\ell_{2}\ell_{1}\ell_{2}) \frac{2k+1}{2\ell_{1}+1} \sum_{m} \mathbf{E}_{11}$ 

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

# $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae Number operators 1-jump E<sub>i-1,i</sub> operators 2-jump E<sub>i-2,i</sub> operators Angular momentum operators (for later application) Multipole expansions and Coulomb (e-e)-electrostatic interaction Linear multipoles;  $P_1$ -dipole,  $P_2$ -quadrupole,  $P_3$ -octupole,... Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion: Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 2-particle elementary  $\mathbf{e}_{ik}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ . Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'}$  arrays Atomic p-shell ee-interaction in elementary operator form [2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ [2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole <sup>4</sup>S,<sup>2</sup>P, and <sup>2</sup>D energy calculation of quartet and doublet (spin-<sup>1</sup>/<sub>2</sub>) p<sup>3</sup> orbits Corrected level diagrams Nitrogen p<sup>3</sup>

*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{\left| \mathbf{r}_{\alpha\beta} \right|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^{k}(\ell) (\mathbf{V}^{k} \cdot \mathbf{V}^{k}) + const. \text{ where: } \mathbf{V}^{k} \cdot \mathbf{V}^{k} = \sum_{q=-k}^{k} (-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k} = \sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad (\tilde{\mathbf{V}}_{q}^{k} \text{ means transpose of } \mathbf{V}_{q}^{k})$$

*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{\left| \mathbf{r}_{\alpha \beta} \right|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^{k}(\ell) (\mathbf{V}^{k} \cdot \mathbf{V}^{k}) + const. \text{ where: } \mathbf{V}^{k} \cdot \mathbf{V}^{k} = \sum_{q=-k}^{k} (-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k} = \sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad (\tilde{\mathbf{V}}_{q}^{k} \text{means transpose of } \mathbf{V}_{q}^{k}) = \left( \mathbf{V}_{0}^{k} \right)^{2} + \sum_{q=-k}^{k} \left( \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} + \mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k} \right)$$

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of elementary operators  $\mathbf{E}_{p,q}$ .



*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^k(\ell) (\mathbf{V}^k \cdot \mathbf{V}^k) + const. \text{ where: } \mathbf{V}^k \cdot \mathbf{V}^k = \sum_{q=-k}^k (-1)^q \mathbf{V}_{-q}^k \mathbf{V}_q^k = \sum_{q=-k}^k \tilde{\mathbf{V}}_q^k \mathbf{V}_q^k \quad (\tilde{\mathbf{V}}_q^k \text{means transpose of } \mathbf{V}_q^k) \\ = \left(\mathbf{V}_0^k\right)^2 + \sum_{q=-k}^k \left(\tilde{\mathbf{V}}_q^k \mathbf{V}_q^k + \mathbf{V}_q^k \tilde{\mathbf{V}}_q^k\right)$$

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of elementary operators  $\mathbf{E}_{p,q}$ .

 $\ell = 1 p = shell example:$ 

A compact format helps display.

$$\left\langle \mathbf{v}_{-2}^{2} \right\rangle = \left( \begin{array}{c} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \end{array} \right) \left\langle \mathbf{v}_{-1}^{2} \right\rangle = \left( \begin{array}{c} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{2} \right\rangle = \left( \begin{array}{c} 1 & \cdot & \cdot \\ \cdot & -2 & \cdot \\ \cdot & \cdot & 1 \end{array} \right) \frac{1}{\sqrt{6}} \left\langle \mathbf{v}_{+1}^{2} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{2} \right\rangle = \left( \begin{array}{c} \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{1} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{1} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{1} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{1} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & \cdot \\ \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & -1 \\ \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 & -1 \\ \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot & -1 \end{array} \right) \frac{1}{$$

$$\left\langle \mathbf{v}_{q}^{2} \right\rangle = \left( \begin{array}{ccc} 1 & -1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 & 1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} \\ \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} 1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right)$$

*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^k(\ell) (\mathbf{V}^k \cdot \mathbf{V}^k) + const. \text{ where: } \mathbf{V}^k \cdot \mathbf{V}^k = \sum_{q=-k}^k (-1)^q \mathbf{V}_{-q}^k \mathbf{V}_q^k = \sum_{q=-k}^k \tilde{\mathbf{V}}_q^k \mathbf{V}_q^k \quad (\tilde{\mathbf{V}}_q^k \text{means transpose of } \mathbf{V}_q^k) = \left(\mathbf{V}_0^k\right)^2 + \sum_{q=-k}^k \left(\tilde{\mathbf{V}}_q^k \mathbf{V}_q^k + \mathbf{V}_q^k \tilde{\mathbf{V}}_q^k\right)$$

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of elementary operators  $\mathbf{E}_{p,q}$ .

*ℓ=1 p=shell example:* 

 $\left\langle \mathbf{v}_{-2}^{2} \right\rangle = \left( \begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \cdot \\ 1 \cdot \cdot \cdot \end{array} \right) \left\langle \mathbf{v}_{-1}^{2} \right\rangle = \left( \begin{array}{c} \cdot \cdot \cdot \cdot \\ 1 \cdot \cdot \cdot \\ \cdot \cdot - 1 \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{2} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot - 2 \cdot \\ \cdot \cdot - 1 \end{array} \right) \frac{1}{\sqrt{6}} \left\langle \mathbf{v}_{+1}^{2} \right\rangle = \left( \begin{array}{c} \cdot \cdot \cdot 1 \\ \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+2}^{2} \right\rangle = \left( \begin{array}{c} \cdot \cdot \cdot 1 \\ \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{1} \right\rangle = \left( \begin{array}{c} \cdot \cdot -1 \cdot \\ \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{1} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot \cdot -1 \\ \cdot \cdot \cdot \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot -1 \cdot \cdot \\ \cdot \cdot \cdot -1 \\ \cdot \cdot \cdot \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot \cdot -1 \\ \cdot \cdot \cdot -1 \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{+1}^{0} \right\rangle = \left( \begin{array}{c} \cdot -1 \cdot \cdot \\ \cdot \cdot \cdot -1 \\ \cdot \cdot \cdot \cdot \end{array} \right) \frac{1}{\sqrt{2}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot \cdot -1 \\ \cdot \cdot \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot \cdot -1 \\ \cdot \cdot \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot -1 \\ \cdot \cdot \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot -1 \\ \cdot \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot \cdot -1 \\ \cdot \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot -1 \\ \cdot \cdot -1 \\ \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot -1 \\ \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot -1 \\ \cdot -1 \\ \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot -1 \\ \cdot -1 \\ \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot -1 \\ \cdot -1 \\ \cdot -1 \\ \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot -1 \\ \cdot -1 \\ \cdot -1 \\ \cdot -1 \end{array} \right) \frac{1}{\sqrt{3}} \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{c} 1 \cdot \cdot \cdot \\ \cdot -1 \\ \cdot -1$ 

A compact format helps display.

A normalizing factor  $1/\sqrt{n}$  sits below each 45° line<sup>†</sup>



*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^k(\ell) (\mathbf{V}^k \cdot \mathbf{V}^k) + const. \text{ where: } \mathbf{V}^k \cdot \mathbf{V}^k = \sum_{q=-k}^k (-1)^q \mathbf{V}_{-q}^k \mathbf{V}_q^k = \sum_{q=-k}^k \tilde{\mathbf{V}}_q^k \mathbf{V}_q^k \quad (\tilde{\mathbf{V}}_q^k \text{means transpose of } \mathbf{V}_q^k) = \left(\mathbf{V}_0^k\right)^2 + \sum_{q=-k}^k \left(\tilde{\mathbf{V}}_q^k \mathbf{V}_q^k + \mathbf{V}_q^k \tilde{\mathbf{V}}_q^k\right)$$

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of elementary operators  $\mathbf{E}_{p,q}$ .

*ℓ=1 p=shell example:* 



A compact format helps display.

A normalizing factor  $1/\sqrt{n}$  sits below each 45° line<sup>†</sup>



*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^k(\ell) (\mathbf{V}^k \cdot \mathbf{V}^k) + const. \text{ where: } \mathbf{V}^k \cdot \mathbf{V}^k = \sum_{q=-k}^k (-1)^q \mathbf{V}_{-q}^k \mathbf{V}_q^k = \sum_{q=-k}^k \tilde{\mathbf{V}}_q^k \mathbf{V}_q^k \quad (\tilde{\mathbf{V}}_q^k \text{means transpose of } \mathbf{V}_q^k) \\ = \left(\mathbf{V}_0^k\right)^2 + \sum_{q=-k}^k \left(\tilde{\mathbf{V}}_q^k \mathbf{V}_q^k + \mathbf{V}_q^k \tilde{\mathbf{V}}_q^k\right)$$

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of elementary operators  $\mathbf{E}_{p,q}$ .

*ℓ=1 p=shell example:* 



A compact format helps display.

A normalizing factor  $1/\sqrt{n}$  sits below each 45° line<sup>†</sup>



† Lines drawn for q ≥ 0 only Norms for -q same as for +q.

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

## $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump  $E_{i-2,i}$  operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4S,^2P$ , and  $^2D$  energy calculation of quartet and doublet (spin- $^{1\!/_2})$  p³ orbits Corrected level diagrams Nitrogen p³

*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^k(\ell) (\mathbf{V}^k \cdot \mathbf{V}^k) + const. \text{ where: } \mathbf{V}^k \cdot \mathbf{V}^k = \sum_{q=-k}^k (-1)^q \mathbf{V}_{-q}^k \mathbf{V}_q^k = \sum_{q=-k}^k \tilde{\mathbf{V}}_q^k \mathbf{V}_q^k \quad (\tilde{\mathbf{V}}_q^k \text{means transpose of } \mathbf{V}_q^k) = \left(\mathbf{V}_0^k\right)^2 + \sum_{q=-k}^k \left(\tilde{\mathbf{V}}_q^k \mathbf{V}_q^k + \mathbf{V}_q^k \tilde{\mathbf{V}}_q^k\right)$$

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of elementary operators  $\mathbf{E}_{p,q}$ .

 $\ell = 1 p = shell example:$ 

A compact format helps display.

$$\begin{pmatrix} e = 1 \ p = shell \ example: \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \\ A \ compact \ format \ helps \ display. \ format \ helps \ display. \ format \$$

*n*-particle pure shell *ee*-interaction reduces to:

$$\sum_{\alpha \neq \beta} \left\langle \frac{1}{\left| \mathbf{r}_{\alpha\beta} \right|} \right\rangle = \sum_{\substack{k=0 \ (evenk)}} A^{k}(\ell) (\mathbf{V}^{k} \cdot \mathbf{V}^{k}) + const. \text{ where: } \mathbf{V}^{k} \cdot \mathbf{V}^{k} = \sum_{q=-k}^{k} (-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k} = \sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad (\tilde{\mathbf{V}}_{q}^{k} \text{means transpose of } \mathbf{V}_{q}^{k}) \\ = \left( \mathbf{V}_{0}^{k} \right)^{2} + \sum_{q=-k}^{k} \left( \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} + \mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k} \right)$$

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of elementary operators  $\mathbf{E}_{p,q}$ .

 $\ell = 1 p = shell example:$ 

A compact format helps display.

 $\begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \cdot \\ \sqrt{2} & \sqrt{2} &$  $\langle \mathbf{v}_{-1}^{i} \rangle = \begin{pmatrix} \cdot \cdot \cdot \cdot \\ 1 & \cdot \cdot \\ \cdot & 1 & \cdot$ Norms for -q same as for +q.

Relating 
$$\mathbf{V}_{q}^{k}$$
 to  $\mathbf{E}_{m',m}$  by  $\binom{m'}{m}$  arrays:  
 $\mathbf{V}_{0}^{k} = \sum_{m} \binom{k}{mm} \mathbf{E}_{mm} \quad \mathbf{V}_{q}^{k} = \sum_{m} \binom{k}{m+q} \mathbf{E}_{m+qm} \quad \tilde{\mathbf{V}}_{q}^{k} = \sum_{m} \binom{k}{m+q} \mathbf{E}_{m,m+q}$   
Dirac notational derivation of  $\mathbf{V}_{q}^{k}$  to  $\mathbf{E}_{m',m}$  relation by  $\binom{m'}{k}$  arrays:  
 $\mathbf{V}_{q}^{k} = \sum_{m,m'} \binom{m'}{\mathbf{V}_{q}^{k}} \frac{m}{\mathbf{V}_{q}^{k}} \frac{m}{\mathbf{V}_{q}^{k}} \frac{m}{\mathbf{V}_{q}^{k}} \frac{m'}{\mathbf{V}_{q}^{k}} \frac{m'}{\mathbf$ 

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

### $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p^kq}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell *ee*-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

<sup>4</sup>S,<sup>2</sup>P, and <sup>2</sup>D energy calculation of quartet and doublet (spin-<sup>1</sup>/<sub>2</sub>) p<sup>3</sup> orbits Corrected level diagrams Nitrogen p<sup>3</sup> Atomic p-shell ee-interaction in elementary operator form

$$\begin{split} \sum_{\alpha \neq \beta} \left\langle \frac{1}{|\mathbf{r}_{\alpha\beta}|} \right\rangle &= \sum_{\substack{k=0\\(k \in wnk)}} \mathcal{A}^{k}(\ell) (\mathbf{V}^{k} \cdot \mathbf{V}^{k}) + const. \text{ where: } \mathbf{V}^{k} \cdot \mathbf{V}^{k} = \sum_{q=-k}^{k} (-1)^{q} \mathbf{V}_{-q}^{k} \mathbf{V}_{q}^{k} = \sum_{q=-k}^{k} \tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} \quad (\tilde{\mathbf{V}}_{q}^{k} \text{ means transpose of } \mathbf{V}_{q}^{k}) \\ &= \left(\mathbf{V}_{0}^{k}\right)^{2} + \sum_{q=-k}^{k} \left(\tilde{\mathbf{V}}_{q}^{k} \mathbf{V}_{q}^{k} + \mathbf{V}_{q}^{k} \tilde{\mathbf{V}}_{q}^{k}\right) \\ \left(\mathbf{V}_{0}^{2}\right)^{2} = \frac{1}{6} \frac{E_{11}}{E_{11}} - 2E_{22} + E_{13} \\ -2E_{22}} - 2E_{22}E_{11} + 4E_{22}E_{22} - 2E_{22}E_{33} \\ &+ E_{33} + E_{33}E_{11} - 2E_{33}E_{22} + E_{33}E_{33} \\ \tilde{\mathbf{V}}_{1}^{2} \mathbf{V}_{1}^{2} = \frac{1}{2} \frac{-E_{12}}{-E_{21}} + E_{23} \\ &+ E_{32} - E_{32}E_{12} - E_{21}E_{23} + E_{32}E_{23} \\ &+ E_{32} - E_{32}E_{12} - E_{32}E_{12} + E_{32}E_{23} \\ \tilde{\mathbf{V}}_{2}^{2} \mathbf{V}_{2}^{2} = E_{31}E_{13} \\ \tilde{\mathbf{V}}_{2}^{2} \mathbf{V}_{2}^{2} = E_{31}E_{13} \\ \tilde{\mathbf{V}}_{1}^{2} \mathbf{V}_{1}^{2} = \frac{1}{2} \frac{1}{-E_{11}} + \frac{1}{2} \frac{1}{1} + \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1$$

 $\ell = 1 p = shell \mathbf{V}^{k}_{q}: \qquad \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix}^{\frac{1}{\sqrt{3}}}$ 

4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

## $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals 2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix

Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $(p^k_q)$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

<sup>4</sup>S,<sup>2</sup>P, and <sup>2</sup>D energy calculation of quartet and doublet (spin-<sup>1</sup>/<sub>2</sub>) p<sup>3</sup> orbits Corrected level diagrams Nitrogen p<sup>3</sup>
|            | ] = [                                     | 2,1] i                                  | table                                     | au b                                       | asis an                                                          | d U(3)                                                            | irep                       | fre                                   | <i>pm p</i> .               | o. 29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|---------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | M=2                                     | $M$ $\begin{vmatrix} 12\\2 \end{vmatrix}$ | $=I$ $\begin{vmatrix} 11\\3 \end{vmatrix}$ | $M = \begin{pmatrix} 12 \\ 3 \end{pmatrix}$                      | $\begin{vmatrix} 13\\2 \end{vmatrix}$                             | M = -                      | $\begin{pmatrix} 22\\3 \end{pmatrix}$ | M = -2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | (11) (22)<br>2+1                        | (12)<br>1                                 | (23)<br>1                                  | $(13) - \sqrt{\frac{1}{2}}$                                      | $\sqrt{\frac{13}{2}}$                                             | •                          |                                       | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | $\begin{pmatrix} 12\\ 2 \end{pmatrix}$    | (21)<br>1                               | (11) (22)<br>1+2                          |                                            | $\sqrt{\frac{1}{2}}^{(23)}$                                      | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                           |                            | (13)<br>-1                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | $\begin{pmatrix} 11\\ 3 \end{pmatrix}$    | (32)<br>1                               |                                           |                                            | $\sqrt[(12)]{\sqrt{2}}$                                          |                                                                   | (13)<br>1                  |                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $E_{jk} =$ | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ | $-\sqrt{\frac{1}{2}}$                   | $\sqrt[(32)]{\sqrt{\frac{1}{2}}}$         | $\sqrt[(21)]{\sqrt{2}}$                    | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $ |                                                                   | $\sqrt[(23)]{\frac{1}{2}}$ | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$  | $ \begin{pmatrix} \begin{pmatrix} 2 \\ 11 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$ | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$   | •                                          | •                                                                | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$     |                                       | $\sqrt{\frac{13)}{2}}$      | $ \begin{pmatrix} \mathbf{v}_{q} \\ - \\ \begin{pmatrix} 2_{21} \\ 2_{22} \\ \begin{pmatrix} 2_{22} \\ 3_{1} \end{pmatrix} \begin{pmatrix} 2_{22} \\ 2_{32} \\ \begin{pmatrix} 2_{33} \\ 3_{2} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{q} \\ - \\ 1 & -1 & 1 \end{pmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | $\begin{pmatrix} 13\\3 \end{pmatrix}$     |                                         |                                           | (31)<br>1                                  | $\sqrt[(32)]{\frac{1}{2}}$                                       | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$                           | (11) (33)<br>1+2           |                                       | (12)<br>1                   | $ \left(\begin{array}{ccc} \begin{pmatrix} 1\\11 \end{pmatrix} & \begin{pmatrix} 1\\12 \end{pmatrix} & \cdot \end{array}\right) \qquad \left(\begin{array}{ccc} 1 & -1 & \cdot \end{array}\right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                         | (31)<br>-1                                |                                            | $\sqrt[(21)]{\sqrt{2}}$                                          |                                                                   | •                          | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                   | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left  \begin{array}{ccc} \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 23 \end{pmatrix} & \begin{pmatrix} \mathbf{v}_{q}^{1} \\ \mathbf{v}_{q} \end{pmatrix} = \left  \begin{array}{ccc} 1 & 0 & -1 \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{1} \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{1} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                         | •                                         |                                            | $\sqrt[(31)]{\frac{1}{2}}$                                       | $\sqrt{\frac{31}{2}}^{(31)}$                                      | (21)<br>1                  | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2 | $ \begin{array}{c} 3) \\ 2 \\ \end{array} \qquad \left( \begin{array}{c} \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} \\ \begin{pmatrix} \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} \\ \begin{pmatrix} \cdot & \begin{pmatrix} 1 \\ 33 \end{pmatrix} \\ \begin{pmatrix} \cdot & \end{pmatrix} \\ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \\ \end{array} \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                                           |                                         |                                           |                                            |                                                                  |                                                                   |                            |                                       |                             | $\left\langle \mathbf{v}_{0}^{0}\right\rangle = \left  \begin{array}{ccc} \begin{pmatrix} \circ \\ 11 \end{pmatrix} & \cdot & \cdot \\ \cdot & \begin{pmatrix} \circ \\ 22 \end{pmatrix} & \cdot \\ \end{array} \right  \left\langle \mathbf{v}_{0}^{0}\right\rangle = \left  \begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 1 & 1 & \cdot \\ \cdot & 1 & 1 & \cdot \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 & 1 \\ \cdot & \mathbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |                                           |                                         |                                           |                                            |                                                                  |                                                                   |                            |                                       |                             | $\left(\begin{array}{ccc} \cdot & \cdot & \cdot & 1 \end{array}\right) \overline{\sqrt{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $ \begin{vmatrix} 11 \\ 2 \end{pmatrix} \begin{vmatrix} 12 \\ 2 \end{pmatrix} \begin{vmatrix} 11 \\ 3 \end{pmatrix} \begin{vmatrix} 12 \\ 3 \end{pmatrix} \begin{vmatrix} 12 \\ 3 \end{pmatrix} \begin{vmatrix} 13 \\ 2 \end{pmatrix} \begin{vmatrix} 22 \\ 3 \end{pmatrix} \begin{vmatrix} 23 \\ 3 \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| $ \begin{pmatrix} 11\\2 \end{pmatrix} \begin{vmatrix} (11)&(22)\\2+1 \end{vmatrix} \begin{pmatrix} (12)&(23)\\1 & 1 \end{vmatrix} \begin{pmatrix} (13)\\-\sqrt{\frac{1}{2}} & \sqrt{\frac{3}{2}} \end{vmatrix} \cdot \cdot \cdot \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| $ \begin{pmatrix} 12\\2 \end{pmatrix} \begin{vmatrix} (21)\\1 \end{vmatrix} \begin{pmatrix} (11)\\1+2 \end{pmatrix} \cdot \begin{pmatrix} (23)\\\sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} (23)\\\sqrt{\frac{3}{2}} \end{pmatrix} \cdot \begin{pmatrix} (13)\\-1 \end{pmatrix} \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| $ \begin{pmatrix} 11 \\ 3 \\ \end{pmatrix} \begin{bmatrix} (32) & & (11) & (33) \\ 1 & \cdot & 2+1 \end{bmatrix} \begin{pmatrix} (12) \\ \sqrt{2} \\ \cdot & & 1 \end{bmatrix} \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
| $E_{jk} = \begin{pmatrix} 12\\ 3 \end{pmatrix} \begin{vmatrix} (31)\\ -\sqrt{\frac{1}{2}} \end{vmatrix} \begin{pmatrix} (32)\\ \sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} (21)\\ \sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} (11)\\ \sqrt{2} \end{pmatrix} \begin{pmatrix} (23)\\ 1+1+1 \end{pmatrix} \begin{pmatrix} (12)\\ \sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} (13)\\ \sqrt{\frac{1}{2}} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
| $ \begin{pmatrix} 13\\2 \end{pmatrix} \begin{bmatrix} (31)\\\sqrt{\frac{3}{2}} \end{bmatrix} \begin{pmatrix} (32)\\\sqrt{\frac{3}{2}} \end{bmatrix} \cdot \begin{bmatrix} (11)\\\sqrt{\frac{3}{2}} \end{bmatrix} \begin{pmatrix} (23)\\\sqrt{\frac{3}{2}} \end{bmatrix} \cdot \begin{bmatrix} (13)\\\sqrt{\frac{3}{2}} \end{bmatrix} \cdot \begin{bmatrix} (13)\\\sqrt{\frac{3}{$                                                                                                                                                                                                                                                                                                                                                                                                                                               | tum L-operators                                       |
| $ \begin{pmatrix} 13 \\ 3 \\ \end{pmatrix}  \cdot  1  \begin{pmatrix} (32) \\ \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \\ \end{pmatrix}  \begin{pmatrix} (32) \\ \sqrt{\frac{3}{2}} \\ \sqrt{\frac{3}{2}} \\ 1 + 2 \\ \end{pmatrix}  \cdot  1  \begin{pmatrix} (12) \\ 1 \\ (11) \\ (12) \\ 1 \\ \end{pmatrix}  \cdot  \end{pmatrix}  (12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 -1 · )                                              |
| $\begin{vmatrix} 22 \\ 3 \end{vmatrix}  . \qquad \begin{vmatrix} 31 \\ -1 \end{matrix}  . \qquad \begin{vmatrix} 22 \\ \sqrt{2} \end{vmatrix}  . \qquad \begin{vmatrix} 22 \\ 3 \end{vmatrix}  (23) \\ 2+1 \end{matrix}  \begin{vmatrix} 22 \\ 1 \end{vmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix}  \begin{pmatrix} 1 \\ 22 \end{pmatrix}  \begin{pmatrix} 1 \\ 23 \end{pmatrix} $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{\sqrt{2}}$                                  |

|            | ] = [                                     | 2,1]                        | table                                 |                                                                                             | asis an                                                           | d matr                                                           | ices                        | of $\mathbf{V}^{l}$                   |                             | ole                          |
|------------|-------------------------------------------|-----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|---------------------------------------|-----------------------------|------------------------------|
|            |                                           | M=2                         | $\begin{vmatrix} 12\\2 \end{vmatrix}$ | $=I$ $\begin{vmatrix} 11\\3 \end{vmatrix}$                                                  | $M = \begin{pmatrix} 12 \\ 3 \end{pmatrix}$                       | $\begin{vmatrix} 13\\2 \end{vmatrix}$                            | $ 13\rangle_{3}$            | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $1 \sqrt{1} = -2$           |                              |
| -          | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | (11) (22)<br>2+1            | (12)<br>1                             | (23)<br>1                                                                                   | $-\sqrt{\frac{1}{2}}$                                             | $\sqrt[(13)]{\frac{3}{2}}$                                       | •                           | •                                     | •                           |                              |
|            | $\begin{pmatrix} 12\\ 2 \end{pmatrix}$    | (21)<br>1                   | (11) (22)<br>1+2                      |                                                                                             | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                           |                             | (13)<br>-1                            |                             |                              |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                   | •                                     | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array}     $ | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                  | (13)<br>1                   |                                       |                             |                              |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    | $(31) - \sqrt{\frac{1}{2}}$ | $\sqrt[(32)]{\frac{1}{2}}$            | $\sqrt[(21)]{\sqrt{2}}$                                                                     | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                  | $\sqrt{\frac{1}{2}}^{(23)}$ | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$  |                              |
|            | $\begin{pmatrix} 13\\2 \end{bmatrix}$     | $\sqrt{\frac{31}{2}}$       | $\sqrt{\frac{32)}{2}}$                | •                                                                                           |                                                                   | $ \stackrel{(11)}{1+1} \stackrel{(22)}{+1} \stackrel{(33)}{+1} $ | $\sqrt{\frac{23)}{2}}$      |                                       | $\sqrt{\frac{13)}{2}}$      |                              |
|            | $\begin{pmatrix} 13\\ 3 \end{pmatrix}$    | •                           | •                                     | (31)<br>1                                                                                   | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt[32]{\frac{3}{2}}$                                         | (11) (33)<br>1+2            |                                       | (12)<br>1                   | $\left( \right)$             |
|            | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$    |                             | (31)<br>-1                            |                                                                                             | $\sqrt[(21)]{\sqrt{2}}$                                           |                                                                  |                             |                                       | (23)<br>1                   | $\langle \mathbf{v} \rangle$ |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ | •                           | •                                     | •                                                                                           | $\sqrt[31]{\frac{1}{2}}$                                          | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$                          | (21)<br>1                   | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2 |                              |

$$L_{z} \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$

*dipole (k=1) angular momentum* **L**-operators

| $\left\langle \mathbf{v}_{q}^{1}\right\rangle =$ | $\binom{1}{11}$ $\binom{1}{21}$ . | $\binom{1}{12}$ $\binom{1}{22}$ $\binom{1}{32}$ | $\left. \begin{array}{c} \cdot \\ \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 33 \end{pmatrix} \right)$ | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \begin{pmatrix} 1 \\ 1 \\ . \end{pmatrix}$                | -1<br>0<br>1 | $ \begin{array}{c} \cdot \\ -1 \\ -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} $ |
|--------------------------------------------------|-----------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|
| $\left\langle \mathbf{v}_{0}^{0}\right\rangle =$ | $\binom{0}{11}$ .                 | $\begin{pmatrix} 0\\22 \end{pmatrix}$           | $\left(\begin{smallmatrix}0\\33\end{smallmatrix}\right)$                                                                  | $\left< \mathbf{v}_0^0 \right> = \left( \begin{array}{c} 1 \\ \cdot \\ \cdot \\ \cdot \end{array} \right)$ | 1            | $\begin{array}{c} \cdot \\ \cdot \\ 1 \end{array} \right) \frac{1}{\sqrt{3}}$                                   |

|            | ] = [2                                    | 2,1] i                                  | table                                   | au b                                    | asis an                                                           | d matr                                                            | rices                                   | of $\mathbf{v}^l$                     | dipo                                    | ole                     |
|------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-------------------------|
|            |                                           | M=2                                     |                                         | =1                                      | <i>M</i> =                                                        | :0                                                                | <i>M</i> =-                             | -1                                    | M=-2                                    |                         |
| _          |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                         |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | (11) (22)<br>2+1                        | (12)<br>1                               | (23)<br>1                               | $(13) - \sqrt{\frac{1}{2}}$                                       | $\sqrt{\frac{(13)}{\sqrt{\frac{3}{2}}}}$                          |                                         |                                       | •                                       |                         |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ | (21)<br>1                               | (11) (22)<br>1+2                        |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                           |                                         | (13)<br>-1                            |                                         |                         |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                               | •                                       | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       |                                         |                         |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    | $(31) - \sqrt{\frac{1}{2}}$             | $\sqrt{\frac{1}{2}}^{(32)}$             | $\sqrt[(21)]{2}$                        | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |                         |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ | $\sqrt{\frac{31)}{2}}$                  | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$ | •                                       | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |                         |
|            | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                         | •                                       | (31)<br>1                               | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$                           | (11) (33)<br>1+2                        |                                       | (12)<br>1                               | $\left( \right)$        |
|            | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$    | •                                       | (31)<br>-1                              | •                                       | $\sqrt[(21)]{\sqrt{2}}$                                           | •                                                                 | •                                       | $\binom{(22)}{2+1}$                   | (23)<br>1                               | $\langle \cdot \rangle$ |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ | •                                       | •                                       | •                                       | $\sqrt{\frac{1}{2}}^{(31)}$                                       | $\sqrt{\frac{31)}{2}}$                                            | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2             |                         |

$$L_{z} \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$

| $\left\langle \mathbf{v}_{q}^{1}\right\rangle =$ | $\binom{1}{11}$ $\binom{1}{21}$ . | $\binom{1}{12}$ $\binom{1}{22}$ $\binom{1}{32}$ | $ \begin{pmatrix} 1 \\ 23 \end{pmatrix} $ $ \begin{pmatrix} 1 \\ 33 \end{pmatrix} $                                 | $\left< \mathbf{v}_{q}^{1} \right> = \left( \begin{array}{ccc} 1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}$ |
|--------------------------------------------------|-----------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\left\langle \mathbf{v}_{0}^{0}\right\rangle =$ | $\binom{0}{11}$ .                 | $\begin{pmatrix} 0\\22 \end{pmatrix}$           | $\left. \begin{array}{c} \cdot \\ \cdot \\ \left( \begin{array}{c} 0 \\ 33 \end{array} \right) \end{array} \right)$ | $\left\langle \mathbf{v}_{0}^{0}\right\rangle = \left(\begin{array}{ccc} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{array}\right) \frac{1}{\sqrt{3}}$                                   |

|            | ] = [                                     | $[2,1]_{M=2}$                                                                               | table                                 | $au b_{=1}$                             | asis an<br><sub>M=</sub>                                          | ad matr                                                                  | rices<br><sub>M=-</sub>                 | $of \mathbf{v}^l$                     | $dipo_{M=-2}$                           | ole |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----|
|            |                                           | $\begin{vmatrix} 11\\2 \end{pmatrix}$                                                       | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12\\3 \end{vmatrix}$                             | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                                  | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |     |
|            | $\begin{pmatrix} 11\\ 2 \end{bmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{3}{2}}^{(13)}$                                              |                                         |                                       | •                                       |     |
|            | $\begin{pmatrix} 12\\ 2 \end{pmatrix}$    | (21)<br>1                                                                                   | (11) (22)<br>1+2                      |                                         | $\sqrt{\frac{1}{2}}^{(23)}$                                       | $\sqrt{\frac{23)}{2}}$                                                   |                                         | (13)<br>-1                            |                                         |     |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                                                   | •                                     | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                          | (13)<br>1                               |                                       |                                         |     |
| $E_{jk} =$ | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    | $(31) - \sqrt{\frac{1}{2}}$                                                                 | $\sqrt[(32)]{\frac{1}{2}}$            | $\sqrt[(21)]{\sqrt{2}}$                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                          | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |     |
| -          | $\begin{pmatrix} 13\\2 \end{bmatrix}$     | $\sqrt{\frac{31)}{2}}$                                                                      | $\sqrt{\frac{32)}{2}}$                | •                                       | •                                                                 | $ \begin{array}{ccc} {}^{(11)} & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |     |
|            | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    | •                                                                                           | •                                     | (31)<br>1                               | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt[32]{\frac{3}{2}}$                                                 | (11) (33)<br>1+2                        |                                       | (12)<br>1                               | (   |
|            | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$    |                                                                                             | (31)<br>-1                            | •                                       | $\sqrt[(21)]{\sqrt{2}}$                                           | •                                                                        | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               | (-) |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                             |                                       | •                                       | $\sqrt[31]{\frac{1}{2}}$                                          | $\sqrt[31]{\frac{3}{2}}$                                                 | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2             |     |

$$L_{z} \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{-}^{1}$$



|                                        | ] = [                                     | 2,1] 1                                                                                      | table                                   | au b                                    | asis an                                                               | ed matr                                                           | ices                                    | of $\mathbf{V}^{l}$                   | dipo                                    | ole                          |
|----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|------------------------------|
|                                        |                                           | <i>M</i> =2                                                                                 | $M^{\pm}$                               | =1                                      | <i>M</i> =                                                            | =0                                                                | M=-                                     | -1                                    | <i>M</i> =- <i>2</i>                    |                              |
|                                        |                                           | $\begin{vmatrix} 11 \\ 2 \end{pmatrix}$                                                     | $\begin{vmatrix} 12\\2 \end{pmatrix}$   | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                               | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                              |
|                                        | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                               | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                          | $\sqrt{\frac{(13)}{2}}$                                           |                                         | •                                     | •                                       |                              |
|                                        | $\begin{pmatrix} 12\\2 \end{pmatrix}$     | (21)<br>1                                                                                   |                                         |                                         | $\sqrt{\frac{1}{2}}^{(23)}$                                           | $\sqrt{\frac{23)}{2}}$                                            |                                         | (13)<br>-1                            |                                         |                              |
|                                        | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                                                   | •                                       | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                               |                                                                   | (13)<br>1                               |                                       |                                         |                              |
| $E_{jk} =$                             | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    | $-\sqrt{\frac{1}{2}}$                                                                       | $\sqrt{\frac{1}{2}}^{(32)}$             | $\sqrt[(21)]{\sqrt{2}}$                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $     |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |                              |
|                                        | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$                                                     | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$ | •                                       | •                                                                     | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |                              |
|                                        | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                                             | •                                       | (31)<br>1                               | $\sqrt[(32)]{\frac{1}{2}}$                                            | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$                           | (11) (33)<br>1+2                        |                                       | (12)<br>1                               | $\left( \right)$             |
|                                        | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ | •                                                                                           | (31)<br>-1                              | •                                       | $\sqrt[(21)]{\sqrt{2}}$                                               |                                                                   | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               | $\langle \mathbf{v} \rangle$ |
|                                        | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                             | •                                       | •                                       | $\sqrt{\frac{1}{2}}^{(31)}$                                           | $\sqrt{\frac{31)}{2}}$                                            | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2             |                              |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$ | $V^1 \cdot V$                             | $V^{1} \begin{vmatrix} 11 \\ 2 \end{vmatrix} =$                                             | $= \left(2\binom{1}{11}\right)$         | )+ $\binom{1}{22}$                      | $\left( \int_{21}^{2} + \left( \int_{21}^{1} \right)^{2} \right)^{2}$ | $+\binom{1}{23}^{2}+2$                                            | $2(^{1}_{13})^{2}$                      |                                       |                                         | $\langle \mathbf{v}$         |
|                                        |                                           | =                                                                                           | $=\frac{1}{2}(2\cdot$                   | 1 - 0                                   | $^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2}$                          | $+ \left(\frac{1}{\sqrt{2}}\right)^2 +$                           | $2(\frac{1}{\sqrt{2}})$                 | $p^2 = 2$                             | 3                                       |                              |

$$L_{z} = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} = \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} = \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{-}^{1}$$

| $\left(\begin{array}{ccc} \cdot & \begin{pmatrix} 1\\32 \end{pmatrix} & \begin{pmatrix} 1\\33 \end{pmatrix}\right) \qquad \left(\begin{array}{ccc} & 1 & 1 \end{pmatrix} \frac{1}{\sqrt{2}}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Squared angular momentum L•L-operators  $\langle \mathbf{v}_{0}^{0} \rangle = \begin{pmatrix} 0 \\ 22 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 22 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 22 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 33 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \frac{1}{\sqrt{3}}$ 

|                                                                                                                                          | ] = [2                                    | $[2,1]_{M=2}$                                                                               | table<br>м                            | au b                                                       | asis an<br><sub>M=</sub>                                    | ad matr                                 | rices<br><sub>M=-</sub>                 | $of \mathbf{v}^l$                     | dipc $M=-2$                             | ole |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----|
|                                                                                                                                          |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                                                     | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\left  \begin{array}{c} 11\\ 3 \end{array} \right\rangle$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                     | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{pmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |     |
|                                                                                                                                          | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                                                  | $-\sqrt{\frac{1}{2}}^{(13)}$                                | $\sqrt{\frac{3}{2}}^{(13)}$             |                                         | •                                     | •                                       |     |
|                                                                                                                                          | $\begin{pmatrix} 12\\2 \end{pmatrix}$     | (21)<br>1                                                                                   | (11) (22)<br>1+2                      |                                                            | $\sqrt[(23)]{\frac{1}{2}}$                                  | $\sqrt{\frac{23)}{2}}$                  |                                         | (13)<br>-1                            |                                         |     |
|                                                                                                                                          | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                                                   | •                                     | (11) (33)<br>2+1                                           | $\sqrt[(12)]{\sqrt{2}}$                                     |                                         | (13)<br>1                               |                                       |                                         |     |
| $E_{jk} =$                                                                                                                               | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ | $(31) - \sqrt{\frac{1}{2}}$                                                                 | $\sqrt[(32)]{\frac{1}{2}}$            | $\sqrt[(21)]{\sqrt{2}}$                                    |                                                             |                                         | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |     |
|                                                                                                                                          | $\begin{pmatrix} 13\\2 \end{bmatrix}$     | $\sqrt{\frac{31}{2}}$                                                                       | $\sqrt{\frac{32}{2}}$                 | •                                                          | •                                                           |                                         | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |     |
|                                                                                                                                          | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ |                                                                                             | •                                     | (31)<br>1                                                  | $\sqrt[(32)]{\frac{1}{2}}$                                  | $\sqrt[32]{\frac{3}{2}}$                | (11) (33)<br>1+2                        |                                       | (12)<br>1                               | (   |
|                                                                                                                                          | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             | (31)<br>-1                            |                                                            | $\sqrt[(21)]{\sqrt{2}}$                                     |                                         | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               | (   |
|                                                                                                                                          | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                             | •                                     | •                                                          | $\sqrt[(31)]{\frac{1}{2}}$                                  | $\sqrt[31]{\frac{3}{2}}$                | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2             |     |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$                                                                                                   | $V^1 \cdot V$                             | $V^{1} \begin{vmatrix} 11 \\ 2 \end{vmatrix} =$                                             | $=(2(_{11}^{1}))$                     | )+ $\binom{1}{22}$                                         | $\left(\frac{1}{21}\right)^2 + \left(\frac{1}{21}\right)^2$ | $+ {\binom{1}{23}}^2 + 2$               | $2(^{1}_{13})^{2}$                      |                                       |                                         | /,  |
|                                                                                                                                          |                                           | =                                                                                           | $=\frac{1}{2}(2\cdot$                 | 1 - 0                                                      | $^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} -$              | $+(\frac{1}{\sqrt{2}})^2+$              | $2(\frac{1}{\sqrt{2}})$                 | $^{2} = 2$                            | 3                                       |     |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$                                                                                                   | $V^1 \cdot V$                             | $V^{1} \begin{vmatrix} 12 \\ 2 \end{vmatrix}$                                               | $=(\binom{1}{11})$                    | $+2(^{1}_{22})$                                            | $))^{2} + ({}^{1}_{21})^{2}$                                | $^{2}+2(^{1}_{23})^{2}$                 | $+ {\binom{1}{13}}^2$                   |                                       |                                         |     |
| $= \frac{1}{2} \left( 1 \cdot 1 + 2 \cdot 0 \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2 + 2 \left( \frac{1}{\sqrt{2}} \right)^2 + 0$ |                                           |                                                                                             |                                       |                                                            |                                                             |                                         |                                         |                                       |                                         |     |
| $=$ $\frac{1}{2}$ $+$ $\frac{1}{2}$ $+$ $1$ $+$ $0 = 2$                                                                                  |                                           |                                                                                             |                                       |                                                            |                                                             |                                         |                                         |                                       |                                         |     |

$$L_{z} \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{=}^{1}$$

|  | $\left\langle \mathbf{v}_{q}^{1}\right\rangle =$ | $\left(\begin{array}{c} \binom{1}{11}\\ \binom{1}{21}\\ \cdot\end{array}\right)$ | $\binom{1}{12}$ $\binom{1}{22}$ $\binom{1}{32}$ | $\left. \begin{array}{c} \cdot \\ \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{array} \right)$ | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \begin{pmatrix} 1 \\ 1 \\ . \end{pmatrix}$ | -1<br>0<br>1 | -1<br>-1 | $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ |
|--|--------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|----------|-------------------------------------------|
|--|--------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|----------|-------------------------------------------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ] = [2                                 | $[2,1]_{M=2}$                                                                               | table<br>M=                           | au b                                                                                        | asis an<br><sub>M=</sub>                                          | d matr                                  | rices<br><sub>M=-</sub>                 | $of \mathbf{v}^l$                       | <i>dipc</i><br><sub>M=-2</sub>          | ole |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                                                     | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                     | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{pmatrix} 11\\2 \end{bmatrix}$  | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                                                                                   | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{3}{2}}^{(13)}$             |                                         |                                         |                                         |     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{pmatrix} 12\\2 \end{pmatrix}$  | (21)<br>1                                                                                   | (11) (22)<br>1+2                      |                                                                                             | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                  |                                         | (13)<br>-1                              |                                         |     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$ | (32)<br>1                                                                                   | •                                     | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array}     $ | $\sqrt[(12)]{\sqrt{2}}$                                           |                                         | (13)<br>1                               |                                         |                                         |     |  |  |  |
| $E_{jk} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$ | $(31) - \sqrt{\frac{1}{2}}$                                                                 | $\sqrt[(32)]{\frac{1}{2}}$            | $\sqrt[(21)]{\sqrt{2}}$                                                                     | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                         | $\sqrt[(23)]{\frac{1}{2}}$              | $\sqrt[(12)]{2}$                        | $\sqrt[(13)]{\frac{1}{2}}$              |     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{pmatrix} 13\\2 \end{bmatrix}$  | $\sqrt{\frac{31}{2}}$                                                                       | $\sqrt{\frac{32}{2}}$                 | •                                                                                           |                                                                   |                                         | $\sqrt{\frac{23)}{2}}$                  |                                         | $\sqrt{\frac{13)}{2}}$                  |     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{pmatrix} 13\\3 \end{bmatrix}$  | •                                                                                           | •                                     | (31)<br>1                                                                                   | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt[32]{\frac{3}{2}}$                | (11) (33)<br>1+2                        |                                         | (12)<br>1                               | (   |  |  |  |
| $ \begin{vmatrix} 22 \\ 3 \end{vmatrix} \cdot \begin{vmatrix} 31 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 22 \\ \sqrt{2} \end{vmatrix} \cdot \begin{vmatrix} 22 \\ 2 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 22 \\ \sqrt{2} \end{vmatrix} \cdot \begin{vmatrix} 22 \\ 2 \\ 2 \\ 1 \end{vmatrix} \begin{pmatrix} 22 \\ 2 \\ 2 \\ 2 \\ 1 \end{vmatrix} \begin{pmatrix} 23 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 23 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} $ |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $\begin{vmatrix} 23 \\ 3 \end{vmatrix} \cdot \cdot \cdot \begin{vmatrix} (31) \\ \sqrt{\frac{1}{2}} \end{vmatrix} \begin{pmatrix} (31) \\ \sqrt{\frac{3}{2}} \end{vmatrix} \begin{pmatrix} (21) \\ 1 \end{vmatrix} \begin{pmatrix} (32) \\ 1 + 2 \end{vmatrix}$                                                                                                                                                                                                                         |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $\left< \frac{11}{2} V^{1} \cdot V^{1} \right _{2}^{11} \right> = \left( 2 \binom{1}{11} + \binom{1}{22} \right)^{2} + \binom{1}{21}^{2} + \binom{1}{23}^{2} + 2\binom{1}{13}^{2} \right)^{2}$                                                                                                                                                                                                                                                                                          |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $= \frac{1}{2} \left( 2 \cdot 1 - 0 \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2 + 2\left( \frac{1}{\sqrt{2}} \right)^2 = 3$                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $\left< \frac{12}{2}  V^1 \cdot V^1  \frac{12}{2} \right> = \left( \binom{1}{11} + 2\binom{1}{22} \right)^2 + \binom{1}{21}^2 + 2\binom{1}{23}^2 + \binom{1}{13}^2$                                                                                                                                                                                                                                                                                                                     |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $=\frac{1}{2}\left(1.1+2.0\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + 2\left(\frac{1}{\sqrt{2}}\right)^2 + 0$                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 0 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $\binom{11}{3} V^1 \cdot V^1 \binom{11}{3} = \left(2\binom{1}{11} + \binom{1}{33}\right)^2 + 2\binom{1}{21}^2 + \binom{1}{23}^2 + \binom{1}{13}^2$                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
| $= \frac{1}{2} \left( 2 \cdot 1 - 1 \cdot 1 \right)^2 + 2 \left( \frac{1}{\sqrt{2}} \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2 + 0$                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                             |                                       |                                                                                             |                                                                   |                                         |                                         |                                         |                                         |     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | =                                                                                           | =                                     | $\frac{1}{2}$                                                                               | $+1^{-1}$                                                         | $+\frac{1}{2}$                          | + 0 =                                   | 2                                       |                                         |     |  |  |  |

$$L_{z} = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} = \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} = \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{-}^{1}$$

$$\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} \begin{pmatrix} 1 \\ 11 \end{pmatrix} & \begin{pmatrix} 1 \\ 12 \end{pmatrix} & \cdot \\ \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} 1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right)$$

|                                        | ] = [                                  | $2,1]_{M=2}$                                    | table                                 | au b                    | asis an                                                                 | d matr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ices                                    | of $\mathbf{V}^l$                     | dipc                                    | ole                     |
|----------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-------------------------|
|                                        |                                        | M-2                                             | $\begin{vmatrix} 12\\2 \end{vmatrix}$ | $  11 \\ 3 \rangle$     | $\begin{vmatrix} 12\\3 \end{vmatrix}$                                   | $\begin{vmatrix} 13\\2 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                         |
|                                        | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$ | (11) (22)<br>2+1                                | (12)<br>1                             | (23)<br>1               | $(13) - \sqrt{\frac{1}{2}}$                                             | $\sqrt[(13)]{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | •                                     | •                                       |                         |
|                                        | $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | (21)<br>1                                       | (11) (22)<br>1+2                      |                         | $\sqrt{\frac{(23)}{\sqrt{\frac{1}{2}}}}$                                | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | (13)<br>-1                            | •                                       |                         |
|                                        | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$ | (32)<br>1                                       | •                                     |                         | $\sqrt[(12)]{\sqrt{2}}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (13)<br>1                               |                                       |                                         |                         |
| $E_{ik} =$                             | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$ | $(31) - \sqrt{\frac{1}{2}}$                     | $\sqrt[(32)]{\frac{1}{2}}$            | $\sqrt[(21)]{\sqrt{2}}$ | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt{\frac{13)}{\sqrt{\frac{1}{2}}}}$ |                         |
| J.                                     | $\begin{pmatrix} 13\\2 \end{pmatrix}$  | $\sqrt{\frac{31}{2}}$                           | $(32) \\ \sqrt{\frac{3}{2}}$          | •                       | •                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$ |                                       | $\sqrt{\frac{13)}{2}}$                  |                         |
|                                        | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$ |                                                 | •                                     | (31)<br>1               | $\sqrt[(32)]{\sqrt{\frac{1}{2}}}$                                       | $\sqrt[(32)]{\sqrt{\frac{3}{2}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (11) (33)<br>1+2                        |                                       | (12)<br>1                               | (                       |
|                                        | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$ |                                                 | (31)<br>-1                            | •                       | $\sqrt[(21)]{\sqrt{2}}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               | $\langle \cdot \rangle$ |
|                                        | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$ | •                                               | •                                     |                         | $\sqrt[(31)]{\frac{1}{2}}$                                              | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2             |                         |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$ | $V^1 \cdot l$                          | $V^{1} \begin{vmatrix} 11 \\ 2 \end{vmatrix} =$ | $=(2(^{1}_{11}))$                     | )+ $\binom{1}{22}$      | $\left(\frac{1}{21}\right)^2 + \left(\frac{1}{21}\right)^2$             | $+({1 \atop 23})^2+2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2(^{1}_{13})^{2}$                      |                                       |                                         | /                       |
| ,                                      | •                                      | =                                               | $=\frac{1}{2}(2\cdot$                 | (1-0)                   | $(\frac{1}{\sqrt{2}})^2$                                                | $+(\frac{1}{\sqrt{2}})^2+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2(\frac{1}{\sqrt{2}})$                 | $p^2 = 2$                             | 3                                       |                         |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | $V^1 \cdot V$                          | $V^{1} \begin{vmatrix} 12 \\ 2 \end{vmatrix}$   | $=(\binom{1}{11})$ -                  | $+2(^{1}_{22})$         | $))^{2} + (\frac{1}{21})^{2}$                                           | $^{2}+2(^{1}_{23})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+ ({1 \atop 13})^2$                    |                                       |                                         |                         |
| (-                                     | 1                                      | =                                               | $=\frac{1}{2}(1\cdot 1)$              | +2.0                    | $\left(\frac{1}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)$ | $^{2}+2(\frac{1}{\sqrt{2}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{2}+0$                                |                                       |                                         |                         |
|                                        |                                        | =                                               | =                                     | $\frac{1}{2}$           | $+\frac{1}{2}$                                                          | $+ 1^{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + 0 =                                   | = 2                                   |                                         |                         |
| $\begin{pmatrix} 11\\ 3 \end{pmatrix}$ | $V^1 \cdot l$                          | $V^{1} \begin{vmatrix} 11 \\ 3 \end{vmatrix} =$ | $= \left(2\binom{1}{11}\right)$       | $+(^{1}_{33})$          | $\Big)^{2} + 2(\frac{1}{21})^{2}$                                       | $^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{$ | $-\binom{1}{13}^2$                      |                                       |                                         |                         |
|                                        |                                        | =                                               | $=\frac{1}{2}(2\cdot 1)$              | -1.1                    | $)^{2} + 2(\frac{1}{\sqrt{2}})^{2}$                                     | $)^{2} + (\frac{1}{\sqrt{2}})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 0                                     |                                       |                                         |                         |
|                                        |                                        | =                                               | =                                     | $\frac{1}{2}$           | +1                                                                      | $+\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 0 =                                   | 2                                     |                                         |                         |

$$L_{z} \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{-1}^{1}$$

$$\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} \begin{pmatrix} 1 \\ 11 \end{pmatrix} & \begin{pmatrix} 1 \\ 12 \end{pmatrix} & \cdot \\ \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{array} \right) \quad \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} 1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}$$

Squared angular momentum L•L-operators

$$\begin{pmatrix} 12 \\ 2 \end{pmatrix} V^1 \cdot V^1 \begin{vmatrix} 11 \\ 3 \end{pmatrix} = + \binom{1}{21} \binom{1}{32} + \binom{1}{23} \binom{1}{12} = -1$$
$$= \frac{-1}{2} (1 \cdot 1 + 1 \cdot 1) = -1$$

|                                        |                                           | $2,1]_{M=2}$                                                                                | table<br>M                            | au b<br>=1                              | asis an<br><sub>M=</sub>                                                    | $\frac{d}{0} matr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rices<br><sub>M=-</sub>                 | $of_{l} \mathbf{v}^{l}$               | ' <i>dipc</i><br><sub>M=-2</sub>        | ole                     |
|----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-------------------------|
|                                        |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                                                     | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                                     | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                         |
|                                        | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                             | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                                | $\sqrt{\frac{13)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                       | •                                       |                         |
|                                        | $\begin{pmatrix} 12\\ 2 \end{pmatrix}$    | (21)<br>1                                                                                   | (11) (22)<br>1+2                      |                                         | $\sqrt{\frac{1}{2}}^{(23)}$                                                 | $\sqrt{\frac{23)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | (13)<br>-1                            |                                         |                         |
|                                        | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                                                   | •                                     |                                         | $\sqrt[(12)]{\sqrt{2}}$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (13)<br>1                               |                                       |                                         |                         |
| $E_{jk} =$                             | $\begin{pmatrix} 12\\ 3 \end{bmatrix}$    | $(31) - \sqrt{\frac{1}{2}}$                                                                 | $\sqrt[(32)]{\frac{1}{2}}$            | $\sqrt[(21)]{\sqrt{2}}$                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |                         |
| ·                                      | $\begin{pmatrix} 13\\2 \end{pmatrix}$     | $\sqrt{\frac{31)}{2}}$                                                                      | $\sqrt{\frac{32}{2}}$                 | •                                       | •                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                  |                         |
|                                        | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    | •                                                                                           | •                                     | (31)<br>1                               | $\sqrt[(32)]{\sqrt{\frac{1}{2}}}$                                           | $\sqrt[32]{\frac{32}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (11) (33)<br>1+2                        |                                       | (12)<br>1                               | (                       |
|                                        | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$    |                                                                                             | (31)<br>-1                            | •                                       | $\sqrt[(21)]{\sqrt{2}}$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |                                       | (23)<br>1                               | $\langle \cdot \rangle$ |
|                                        | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ | •                                                                                           | •                                     | •                                       | $\sqrt[(31)]{\frac{1}{2}}$                                                  | $\sqrt[31]{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2             |                         |
| $\begin{pmatrix} 11\\2 \end{pmatrix}$  | $V^1 \cdot I$                             | $V^{1} \begin{vmatrix} 11 \\ 2 \end{vmatrix} =$                                             | $=(2(^{1}_{11}))$                     | )+ $\binom{1}{22}$                      | $\left( \int_{21}^{2} + \left( \int_{21}^{1} \right)^{2} \right)^{2}$       | $+({1 \atop 23})^2+2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2(^{1}_{13})^{2}$                      |                                       |                                         |                         |
|                                        | -                                         | =                                                                                           | $=\frac{1}{2}(2\cdot$                 | (1-0)                                   | $(\frac{1}{\sqrt{2}})^2$                                                    | $+(\frac{1}{\sqrt{2}})^2+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2(\frac{1}{\sqrt{2}})$                 | $b^2 = 2$                             | 3                                       |                         |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | $V^1 \cdot$                               | $V^{1} \begin{vmatrix} 12 \\ 2 \end{vmatrix}$                                               | $=(\binom{1}{11})$                    | $+2(^{1}_{22})$                         | $))^{2} + ({}^{1}_{21})^{2}$                                                | $^{2}+2(^{1}_{23})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+(^{1}_{13})^{2}$                      |                                       |                                         |                         |
| X                                      | 1                                         | =                                                                                           | $=\frac{1}{2}(1\cdot 1)$              | +2.0                                    | $\left(\frac{1}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2}$ | $^{2}+2(\frac{1}{\sqrt{2}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{2}+0$                                |                                       |                                         |                         |
|                                        |                                           | =                                                                                           | =                                     | $\frac{1}{2}$                           | $+\frac{1}{2}$                                                              | + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + 0 =                                   | = 2                                   |                                         | 11                      |
| $\begin{pmatrix} 11\\ 3 \end{pmatrix}$ | $V^1 \cdot l$                             | $\left  \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$                                | $= \left(2\binom{1}{11}\right)$       | $+(^{1}_{33})$                          | $\Big)^{2} + 2(\frac{1}{21})^{2}$                                           | $^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{$ | $-\binom{1}{13}^2$                      |                                       |                                         |                         |
|                                        |                                           | =                                                                                           | $=\frac{1}{2}(2\cdot)$                | -1.1                                    | $)^{2} + 2(\frac{1}{\sqrt{2}})^{2}$                                         | $)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 0                                     |                                       |                                         |                         |
|                                        |                                           | =                                                                                           | =                                     | $\frac{1}{2}$                           | +1                                                                          | $+\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 0 =                                   | 2                                     |                                         |                         |

$$L_{z} \equiv \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} \equiv \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} \equiv \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{-1}^{1}$$

$$\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} \begin{pmatrix} 1 \\ 11 \end{pmatrix} & \begin{pmatrix} 1 \\ 12 \end{pmatrix} & \cdot \\ \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{array} \right) \quad \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} 1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}$$

Squared angular momentum L•L-operators

$$\begin{pmatrix} 12 \\ 2 \end{pmatrix} V^1 \cdot V^1 \begin{vmatrix} 11 \\ 3 \end{pmatrix} = + \binom{1}{21} \binom{1}{32} + \binom{1}{23} \binom{1}{12} = -\frac{1}{2} (1 \cdot 1 + 1 \cdot 1) = -1$$

|    | 11 |    |         |
|----|----|----|---------|
| 11 | 3  | 12 | 11<br>3 |
|    | 12 | 2  | -1      |
|    | 11 | -1 | 2       |

|                                          | ] = [                                     | 2,1] i                                                                                      | table                                   | au b                                                                                        | asis an                                                                 | ed matr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ices                                    | of $\mathbf{V}^{l}$                   | dipe                                    | ole                                              |
|------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------|
|                                          |                                           | <i>M=2</i>                                                                                  | M                                       | =1                                                                                          | <i>M</i> =                                                              | =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>M</i> =-                             | -1                                    | <i>M</i> =-2                            | 1                                                |
|                                          |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                                                     | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                     | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                                 | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                                                  |
|                                          | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $     \begin{array}{c}             (11) & (22) \\             2+1         \end{array}     $ | (12)<br>1                               | (23)<br>1                                                                                   | $-\sqrt{\frac{1}{2}}$                                                   | $\sqrt{\frac{(13)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                       | ·                                       |                                                  |
|                                          | $\begin{pmatrix} 12\\2 \end{pmatrix}$     | (21)<br>1                                                                                   | (11) (22)<br>1+2                        |                                                                                             | $\sqrt[(23)]{\frac{1}{2}}$                                              | $\sqrt{\frac{23}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | (13)<br>-1                            |                                         |                                                  |
|                                          | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                                                   | •                                       | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array}     $ | $\sqrt[(12)]{\sqrt{2}}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (13)<br>1                               |                                       |                                         |                                                  |
| $E_{jk} =$                               | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ | $(31) - \sqrt{\frac{1}{2}}$                                                                 | $\sqrt[(32)]{\frac{1}{2}}$              | $\sqrt[(21)]{\sqrt{2}}$                                                                     | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$              |                                                  |
|                                          | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ | $\sqrt{\frac{31}{2}}$                                                                       | $\sqrt{\frac{32}{2}}$                   | •                                                                                           | •                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | di                                               |
|                                          | $\begin{pmatrix} 13\\ 3 \end{bmatrix}$    |                                                                                             |                                         | (31)<br>1                                                                                   | $\sqrt[(32)]{\frac{1}{2}}$                                              | $\sqrt[32]{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (11) (33)<br>1+2                        |                                       | (12)<br>1                               |                                                  |
|                                          | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                             | (31)<br>-1                              |                                                                                             | $\sqrt[(21)]{\sqrt{2}}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                               | $\left\langle \mathbf{v}_{q}^{1}\right\rangle =$ |
|                                          | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                                             | •                                       | •                                                                                           | $\sqrt[(31)]{\frac{1}{2}}$                                              | $\sqrt{\frac{31}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2             |                                                  |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$   | $V^1 \cdot V$                             | $V^{1} \begin{vmatrix} 11 \\ 2 \end{vmatrix} =$                                             | $= \left(2\binom{1}{11}\right)$         | )+ $\binom{1}{22}$                                                                          | $\left( \int_{21}^{2} + \left( \int_{21}^{1} \right)^{2} \right)^{2}$   | $+ {\binom{1}{23}}^2 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2(^{1}_{13})^{2}$                      |                                       |                                         | $\langle \mathbf{v}_{0}^{0} \rangle =$           |
|                                          |                                           | =                                                                                           | $=\frac{1}{2}(2\cdot$                   | 1 - 0                                                                                       | $^{2}+(\frac{1}{\sqrt{2}})^{2}-$                                        | $+(\frac{1}{\sqrt{2}})^2+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2(\frac{1}{\sqrt{2}})$                 | $e^2 = 2$                             | 3                                       |                                                  |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$   | $V^1 \cdot V$                             | $V^{1} \begin{vmatrix} 12 \\ 2 \end{vmatrix}$                                               | $= \left( \binom{1}{11} \right)^{-1}$   | $+2(^{1}_{22})$                                                                             | $))^{2} + ({}^{1}_{21})^{2}$                                            | $^{2}+2(^{1}_{23})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+ \binom{1}{13}^2$                     |                                       |                                         |                                                  |
| ·                                        | •                                         | =                                                                                           | $=\frac{1}{2}(1\cdot 1)$                | +2.0                                                                                        | $\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2$ | $^{2}+2(\frac{1}{\sqrt{2}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{2}+0$                                |                                       |                                         | 1<br>2                                           |
| _                                        |                                           | =                                                                                           | =                                       | $\frac{1}{2}$                                                                               | $+\frac{1}{2}$                                                          | + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + 0 =                                   | = 2                                   |                                         | <u>11</u> 3                                      |
| $ \begin{pmatrix} 11\\ 3 \end{pmatrix} $ | $V^1 \cdot$                               | $V^{1} \begin{vmatrix} 11 \\ 3 \end{vmatrix} =$                                             | $= \left(2\binom{1}{11}\right)$         | $+\binom{1}{33}$                                                                            | $\Big)^{2} + 2(\frac{1}{21})^{2}$                                       | $^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{$ | $-\binom{1}{13}^2$                      |                                       |                                         |                                                  |
|                                          |                                           | =                                                                                           | $=\frac{1}{2}(2\cdot)$                  | $ -1 \cdot 1 $                                                                              | $)^{2} + 2(\frac{1}{\sqrt{2}})^{2}$                                     | $)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 0                                     |                                       |                                         |                                                  |
|                                          |                                           | =                                                                                           | =                                       | $\frac{1}{2}$                                                                               | +1                                                                      | $+ \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 0 =                                   | 2                                     |                                         |                                                  |

$$L_{z} = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} = \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} = \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{-1}^{1}$$

$$\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} \begin{pmatrix} 1 \\ 11 \end{pmatrix} & \begin{pmatrix} 1 \\ 12 \end{pmatrix} & \cdot \\ \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{array} \right) \quad \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} 1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}$$

Squared angular momentum L•L-operators

$$\begin{pmatrix} 12 \\ 2 \end{pmatrix} V^1 \cdot V^1 \begin{vmatrix} 11 \\ 3 \end{pmatrix} = + \binom{1}{21} \binom{1}{32} + \binom{1}{23} \binom{1}{12} = -1$$

$$= \frac{-1}{2} (1 \cdot 1 + 1 \cdot 1) = -1$$



|                                        | ] = [                                     | 2,1] 1                                                       | table                                   | au b                                                                                    | asis an                                                                 | d matr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ices                                    | of $\mathbf{V}^l$                     | dipe                                  | ole       |
|----------------------------------------|-------------------------------------------|--------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|-----------|
|                                        |                                           | M=2                                                          | $M^{2}$                                 | =1                                                                                      | <i>M</i> =                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>M</i> =-                             | -1                                    | <i>M</i> =-2                          |           |
|                                        |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                      | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                 | $\begin{vmatrix} 12\\3 \end{vmatrix}$                                   | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\begin{vmatrix} 23\\3 \end{vmatrix}$ |           |
|                                        | $\begin{pmatrix} 11\\2 \end{pmatrix}$     | $\binom{(11)}{2+1}$ (22)                                     | (12)<br>1                               | (23)<br>1                                                                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                            | $\sqrt{\frac{(13)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                       | •                                     |           |
|                                        | $\begin{pmatrix} 12\\2 \end{pmatrix}$     | (21)<br>1                                                    |                                         |                                                                                         | $\sqrt[(23)]{\frac{1}{2}}$                                              | $\sqrt{\frac{23)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | (13)<br>-1                            |                                       |           |
|                                        | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                    | •                                       | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array} $ | $\sqrt[(12)]{\sqrt{2}}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (13)<br>1                               |                                       |                                       |           |
| $E_{jk} =$                             | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ | $(31) - \sqrt{\frac{1}{2}}$                                  | $\sqrt[(32)]{\frac{1}{2}}$              | $\sqrt[(21)]{\sqrt{2}}$                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{\sqrt{2}}$               | $\sqrt[(13)]{\frac{1}{2}}$            |           |
|                                        | $\begin{pmatrix} 13\\2 \end{bmatrix}$     | $\sqrt{\frac{31}{2}}$                                        | $\sqrt{\frac{32)}{2}}$                  | •                                                                                       | •                                                                       | $ \begin{array}{c} {}^{(11)} (22) (33) \\ 1+1+1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{2}}$                |           |
|                                        | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                              |                                         | (31)<br>1                                                                               | $\sqrt[(32)]{\frac{1}{2}}$                                              | $\sqrt[(32)]{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (11) (33)<br>1+2                        |                                       | (12)<br>1                             | (         |
|                                        | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$    | •                                                            | (31)<br>-1                              | •                                                                                       | $\sqrt[(21)]{\sqrt{2}}$                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                             | $\langle$ |
|                                        | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ | •                                                            | •                                       | •                                                                                       | $\sqrt[(31)]{\frac{1}{2}}$                                              | $\sqrt{\frac{31)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2           |           |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$ | $V^1 \cdot l$                             | $\left  \begin{array}{c} 1 \\ 2 \end{array} \right\rangle =$ | $= \left(2\binom{1}{11}\right)$         | )+ $\binom{1}{22}$                                                                      | $\left( \right)^{2} + \left( \frac{1}{21} \right)^{2}$                  | $+ {\binom{1}{23}}^2 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2(^{1}_{13})^{2}$                      |                                       |                                       |           |
|                                        |                                           | =                                                            | $=\frac{1}{2}(2\cdot$                   | 1 - 0                                                                                   | $^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} -$                          | $+(\frac{1}{\sqrt{2}})^2+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2(\frac{1}{\sqrt{2}})$                 | $p^2 = 2$                             | 3                                     |           |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | $V^1 \cdot V$                             | $V^{1} \begin{vmatrix} 12 \\ 2 \end{vmatrix}$                | $= \left( \binom{1}{11} \right)^{-1}$   | $+2(^{1}_{22})$                                                                         | $))^{2} + ({}^{1}_{21})^{2}$                                            | $^{2}+2(^{1}_{23})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+ \binom{1}{13}^2$                     |                                       |                                       |           |
| ·                                      | •                                         | =                                                            | $=\frac{1}{2}(1\cdot 1)$                | +2.0                                                                                    | $\left(\frac{1}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)$ | $^{2}+2(\frac{1}{\sqrt{2}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{2}+0$                                |                                       |                                       |           |
|                                        |                                           | =                                                            | =                                       | $\frac{1}{2}$                                                                           | $+\frac{1}{2}$                                                          | + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + 0 =                                   | = 2                                   |                                       | 11        |
| $\begin{pmatrix} 11\\ 3 \end{pmatrix}$ | $V^1 \cdot l$                             | $\left  \begin{array}{c} 1 \\ 3 \end{array} \right\rangle =$ | $= \left(2\binom{1}{11}\right)$         | $+(^{1}_{33})$                                                                          | $\Big)^{2}+2(^{1}_{21})^{2}$                                            | $^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{1}_{23})^{2} + (^{$ | $-\binom{1}{13}^2$                      |                                       |                                       |           |
|                                        |                                           | =                                                            | $=\frac{1}{2}(2\cdot)$                  | -1.1                                                                                    | $)^{2} + 2(\frac{1}{\sqrt{2}})^{2}$                                     | $)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 0                                     |                                       |                                       |           |
|                                        |                                           | =                                                            | =                                       | $\frac{1}{2}$                                                                           | $+1^{-1}$                                                               | $+\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 0 =                                   | 2                                     |                                       |           |

$$L_{z} = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = (E_{11} - E_{33}) = \sqrt{2} \mathbf{v}_{0}^{1}$$
$$L_{+} = \sqrt{2} \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \end{pmatrix} = \sqrt{2} (E_{12} + E_{23}) = L_{x} + iL_{y} = -\sqrt{2} \mathbf{v}_{1}^{1}$$
$$L_{-} = \sqrt{2} \begin{pmatrix} \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix} = \sqrt{2} (E_{21} + E_{32}) = L_{x} - iL_{y} = \sqrt{2} \mathbf{v}_{-1}^{1}$$

$$\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} \begin{pmatrix} 1 \\ 11 \end{pmatrix} & \begin{pmatrix} 1 \\ 12 \end{pmatrix} & \cdot \\ \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{array} \right) \quad \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{ccc} 1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}$$

Squared angular momentum L•L-operators  $\langle \mathbf{v}_{0}^{\circ} \rangle = \begin{pmatrix} \mathbf{v}_{0}$ 

$$\begin{pmatrix} 12 \\ 2 \end{pmatrix} V^{1} \cdot V^{1} \begin{vmatrix} 11 \\ 3 \end{pmatrix} = + \binom{1}{21} \binom{1}{32} + \binom{1}{23} \binom{1}{12}$$
$$= \frac{-1}{2} (1 \cdot 1 + 1 \cdot 1) = -1$$

|   | 1<br>2 |    |         | eig | enva | lues | <b>L</b> ∙] | Leige | envalues                |
|---|--------|----|---------|-----|------|------|-------------|-------|-------------------------|
| 1 | 3      | 12 | 11<br>3 | 3   |      |      | 6           | JU    | (j=2)                   |
|   | 12     | 2  | -1      |     | 1    | 0    |             | 2     | <b>(</b> <i>j</i> =1)   |
|   | 1<br>3 | -1 | 2       |     | 0    | 3    |             | 0     | <b>6</b> ( <i>j</i> =2) |

AMOP reference links on page 2 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

## $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{k}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

 $^4S,^2P$ , and  $^2D$  energy calculation of quartet and doublet (spin- $^{1\!\!/_2})$  p³ orbits Corrected level diagrams Nitrogen p³

|            | ] = [                                     | 2,1] 1                                                    | table                                   | au b                                                      | asis an                                                           | d U(3)                                                            | irep                                    | ) (fre                                | <i>pm p</i> .                                         | . 29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                           | M=2                                                       | M                                       | =1                                                        | <i>M</i> =                                                        | :0                                                                | M=-                                     | -1                                    | <i>M</i> =- <i>2</i>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$ | $\begin{vmatrix} 12\\2 \end{pmatrix}$   | $\left  \begin{array}{c} 11\\3 \end{array} \right\rangle$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 22\\3 \end{vmatrix}$ | $\left \begin{array}{c}23\\3\end{array}\right\rangle$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | (11) (22)<br>2+1                                          | (12)<br>1                               | (23)<br>1                                                 | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{2}}$                                           |                                         |                                       | •                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ | (21)<br>1                                                 | (11) (22)<br>1+2                        |                                                           | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                           |                                         | (13)<br>-1                            |                                                       | $\ell = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                 | •                                       | (11) (33)<br>2+1                                          | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                               |                                       |                                                       | (condensed<br>format)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $E_{jk} =$ | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $ | $(31) - \sqrt{\frac{1}{2}}$                               | $\sqrt{\frac{1}{2}}^{(32)}$             | $\sqrt[(21)]{2}$                                          | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt{\frac{1}{2}}^{(23)}$             | $\sqrt[(12)]{2}$                      | $\sqrt[(13)]{\frac{1}{2}}$                            | $ \begin{pmatrix} \begin{pmatrix} 2 \\ 11 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} \\ $ |
|            | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ | $\sqrt{\frac{31)}{2}}$                                    | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$ | •                                                         | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                  |                                       | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$               | $\begin{pmatrix} \langle q \rangle \\ (21) & \langle 22 \rangle & \langle 23 \rangle \\ (231) & (232) & (233) \end{pmatrix} \begin{pmatrix} \langle q \rangle \\ (231) & (232) & (233) \end{pmatrix} \begin{pmatrix} \langle q \rangle \\ (231) & (232) & (233) \\ (232) & (233) \end{pmatrix} \begin{pmatrix} \langle q \rangle \\ (231) & (232) & (233) \\ (232) & (233) \end{pmatrix} \begin{pmatrix} \langle q \rangle \\ (232) & (233) \\ (232) & (233) \\ (232) & (233) \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | $ \begin{pmatrix} 13 \\ 3 \end{bmatrix} $ | •                                                         | •                                       | (31)<br>1                                                 | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$                           | (11) (33)<br>1+2                        |                                       | (12)<br>1                                             | $ \left(\begin{array}{ccc} \begin{pmatrix} 1\\11 \end{pmatrix} & \begin{pmatrix} 1\\12 \end{pmatrix} & \cdot \end{array}\right) \qquad \left(\begin{array}{ccc} 1 & -1 & \cdot \end{array}\right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ | •                                                         | (31)<br>-1                              | •                                                         | $\sqrt[(21)]{\sqrt{2}}$                                           | •                                                                 | •                                       | <sup>(22)</sup> (33)<br>2+1           | (23)<br>1                                             | $ \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left  \begin{array}{ccc} \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 23 \end{pmatrix} & \begin{pmatrix} \mathbf{v}_{q}^{1} \\ \mathbf{v}_{q} \end{pmatrix} = \left  \begin{array}{cccc} 1 & 0 & -1 \\ \mathbf{v}_{q} & \mathbf{v}_{q} \\ \mathbf{v}_{q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ | •                                                         | •                                       |                                                           | $\sqrt[(31)]{\frac{1}{2}}$                                        | $\sqrt{\frac{31}{2}}$                                             | (21)<br>1                               | (32)<br>1                             | <sup>(22)</sup> (33)<br>1+2                           | $ \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                           |                                                           |                                         |                                                           |                                                                   |                                                                   |                                         |                                       |                                                       | $ \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{ccc} \binom{0}{11} & \ddots & \ddots \\ \cdot & \binom{0}{22} & \cdot \\ \cdot & \cdot & \binom{0}{33} \end{array} \right)  \left\langle \mathbf{v}_{0}^{0} \right\rangle = \left( \begin{array}{ccc} 1 & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{array} \right) \frac{1}{\sqrt{3}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                        |                                           | 2,1]                                        | table                                   | au b                                       | asis an                                                             | d matr                                    | rices                      | $of \mathbf{V}^2$                                                         | qua                                              | adrupole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|----------------------------|---------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                           | M=2                                         | $\begin{bmatrix} 12\\2 \end{bmatrix}$   | $=I$ $\begin{vmatrix} 11\\3 \end{vmatrix}$ | $M = \begin{bmatrix} 12 \\ 3 \end{bmatrix}$                         | $\begin{vmatrix} 13\\2 \end{vmatrix}$     | $M = \frac{13}{3}$         | $\begin{vmatrix} 22\\3 \end{vmatrix}$                                     | $M = -2$ $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | (11) (22)<br>2+1                            | (12)<br>1                               | (23)<br>1                                  | $-\sqrt{\frac{1}{2}}$                                               | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$   |                            |                                                                           | •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | $\begin{pmatrix} 12\\2 \end{pmatrix}$     | (21)<br>1                                   |                                         |                                            | $\sqrt[(23)]{\frac{1}{2}}$                                          | $\sqrt{\frac{23}{2}}$                     |                            | (13)<br>-1                                                                |                                                  | l=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | $\begin{pmatrix} 11\\ 3 \end{pmatrix}$    | (32)<br>1                                   |                                         |                                            | $\sqrt[(12)]{\sqrt{2}}$                                             |                                           | (13)<br>1                  |                                                                           |                                                  | (condensed<br>format)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_{jk} =$                             | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    | $(31) - \sqrt{\frac{1}{2}}$                 | $\sqrt[(32)]{\frac{1}{2}}$              | $\sqrt[(21)]{\sqrt{2}}$                    | $ \begin{array}{ccc} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                           | $\sqrt[(23)]{\frac{1}{2}}$ | $\sqrt[(12)]{\sqrt{2}}$                                                   | $\sqrt[(13)]{\frac{1}{2}}$                       | $ \begin{pmatrix} \binom{2}{11} & \binom{2}{12} & \binom{2}{13} \\ \binom{2}{2} & \binom{2}{2} & \binom{2}{2} \end{pmatrix} \begin{pmatrix} \binom{2}{13} & \binom{2}{13} \\ \binom{2}{13} & \binom{2}{13} & \binom{2}{13} \\ \binom{2}{13} & \binom{2}{13} & \binom{2}{13} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ | $\sqrt{\frac{31)}{2}}$                      | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$ | •                                          |                                                                     | (11) (22) (33)<br>1 + 1 + 1               | $\sqrt{\frac{23)}{2}}$     |                                                                           | $\sqrt{\frac{13)}{2}}$                           | $ \begin{pmatrix} \mathbf{v}_{q} \\ \mathbf{v}_{q} \end{pmatrix}^{-} \begin{pmatrix} \mathbf{v}_{21} \\ \mathbf{v}_{22} \\ \mathbf{v}_{23} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{23} \\ \mathbf{v}_{q} \end{pmatrix}^{-} \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | $\begin{pmatrix} 13\\3 \end{pmatrix}$     | •                                           | •                                       | (31)<br>1                                  | $\sqrt[(32)]{\frac{1}{2}}$                                          | $\sqrt{\frac{32)}{2}}$                    | (11) (33)<br>1+2           |                                                                           | (12)<br>1                                        | $\left(\begin{array}{ccc} \begin{pmatrix} 1\\11 \end{pmatrix} & \begin{pmatrix} 1\\12 \end{pmatrix} & \cdot \\ \end{array}\right) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ | •                                           | (31)<br>-1                              | •                                          | $\sqrt[(21)]{\sqrt{2}}$                                             | •                                         | •                          | $     \begin{array}{c}       (22) & (33) \\       2 + 1     \end{array} $ | (23)<br>1                                        | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left  \begin{array}{ccc} \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ & \begin{pmatrix} \mathbf{v}_{q}^{1} \\ \end{pmatrix} = \left  \begin{array}{ccc} 1 & 0 & -1 \\ \cdot & 1 & -1 \end{array} \right  \frac{1}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ | •                                           | •                                       | •                                          | $\sqrt{\frac{(31)}{\sqrt{\frac{1}{2}}}}$                            | $\sqrt{\frac{31)}{2}}$                    | (21)<br>1                  | (32)<br>1                                                                 | <sup>(22)</sup> (33)<br>1+2                      | $ \begin{bmatrix} \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} - & - \\ \sqrt{2} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$ | $V^2$ .                                   | $V^2 \begin{vmatrix} 11 \\ 2 \end{vmatrix}$ | $= (2(_{11}^{2}))^{2}$                  | )+( $^{2}_{22}$                            | $)\Big)^{2}+({}^{2}_{21})($                                         | $\binom{2}{12} + \binom{2}{32}$           | $\binom{2}{23}+2$          | $2\binom{2}{31}\binom{2}{13}$                                             | 3)                                               | $ \langle \mathbf{v}_{0}^{0} \rangle =  \begin{vmatrix} \begin{pmatrix} 0 \\ 11 \end{pmatrix} & \cdot & \cdot \\ \cdot & \begin{pmatrix} 0 \\ 22 \end{pmatrix} & \cdot \\ \cdot & \begin{pmatrix} 0 \\ 22 \end{pmatrix} & \cdot \\ \end{vmatrix} \begin{vmatrix} \langle \mathbf{v}_{0}^{0} \rangle = \begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot \\ &$ |
|                                        |                                           | =                                           | $=\frac{1}{6}(2\cdot$                   | 1 - 2)                                     | $+\frac{1}{\sqrt{2}}$ .                                             | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ | $\frac{1}{\sqrt{2}} + 2$   | $2 \cdot 1 \cdot 1$                                                       | = 3                                              | $\begin{pmatrix} & 0 \\ & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                        |                                           | $2,1]_{M=2}$                                                  | table                                   | au b                                                                                        | asis an<br>M=                                                    | ad matr                                                           | rices<br><sub>M=-</sub>                  | $of \mathbf{v}^2$                                                       | <sup>2</sup> qua<br><sub>M=-2</sub>                                     | drupole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                       | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                     | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                          | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$  | $\begin{vmatrix} 22\\3 \end{vmatrix}$                                   | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $\binom{(11)}{2+1}$ (22)                                      | (12)<br>1                               | (23)<br>1                                                                                   | $-\sqrt{\frac{1}{2}}^{(13)}$                                     | $\sqrt{\frac{13)}{2}}$                                            |                                          |                                                                         | •                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ | (21)<br>1                                                     | (11) (22)<br>1+2                        |                                                                                             | $\sqrt[(23)]{\frac{1}{2}}$                                       | $\sqrt{\frac{23)}{2}}$                                            |                                          | (13)<br>-1                                                              |                                                                         | <i>ℓ=1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                     | •                                       | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array}     $ | $\sqrt[(12)]{\sqrt{2}}$                                          |                                                                   | (13)<br>1                                |                                                                         |                                                                         | (condensed<br>format)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $E_{jk} =$                             | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    | $(31) - \sqrt{\frac{1}{2}}$                                   | $\sqrt[(32)]{\frac{1}{2}}$              | $\sqrt[(21)]{\sqrt{2}}$                                                                     | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & 1 \end{array} $ |                                                                   | $\sqrt[(23)]{\frac{1}{2}}$               | $\sqrt[(12)]{\sqrt{2}}$                                                 | $\sqrt[(13)]{\frac{1}{2}}$                                              | $ \begin{pmatrix} \binom{2}{11} & \binom{2}{12} & \binom{2}{13} \\ \binom{2}{2} & \binom{2}{2} & \binom{2}{2} \end{pmatrix} \begin{pmatrix} \binom{2}{13} & \binom{2}{13} \\ \binom{2}{13} & \binom{2}{13} & \binom{2}{13} \\ \binom{2}{13} & \binom{2}{13} & \binom{2}{13} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | $\begin{pmatrix} 13\\2 \end{pmatrix}$     | $\sqrt{\frac{31)}{2}}$                                        | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$ | •                                                                                           |                                                                  | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                   |                                                                         | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$                                 | $ \begin{pmatrix} \mathbf{v}_{q} \\ - \\ \begin{pmatrix} 2_{21} \\ 2_{31} \end{pmatrix} \begin{pmatrix} 2_{22} \\ 2_{32} \end{pmatrix} \begin{pmatrix} 2_{23} \\ 2_{33} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{q}^{2} \\ - \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | $\begin{pmatrix} 13\\ 3 \end{pmatrix}$    | •                                                             |                                         | (31)<br>1                                                                                   | $\sqrt[(32)]{\frac{1}{2}}$                                       | $\sqrt{\frac{32}{2}}$                                             |                                          |                                                                         | (12)<br>1                                                               | $\left(\begin{array}{ccc} \begin{pmatrix} 1\\11 \end{pmatrix} & \begin{pmatrix} 1\\12 \end{pmatrix} & \cdot \end{array}\right) \qquad \left(\begin{array}{ccc} 1 & -1 & \cdot \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ | •                                                             | (31)<br>-1                              |                                                                                             | $\sqrt[(21)]{\sqrt{2}}$                                          |                                                                   | •                                        | $     \begin{array}{c}       (22) & (33) \\       2+1     \end{array} $ | (23)<br>1                                                               | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left  \begin{array}{ccc} \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                               |                                         |                                                                                             | $\sqrt[(31)]{\sqrt{\frac{1}{2}}}$                                | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$                           | (21)<br>1                                | (32)<br>1                                                               | $     \begin{array}{c}       (22) & (33) \\       1+2     \end{array} $ | $\left(\begin{array}{ccc} \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix}\right) \qquad \left(\begin{array}{ccc} 1 & 1 \end{pmatrix} \right) \frac{1}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$ | $V^2$ .                                   | $V^2 \begin{vmatrix} 11 \\ 2 \end{pmatrix}$                   | $=(2(_{11}^{2}))^{2}$                   | $()+(^{2}_{22})$                                                                            | $))^{2} + \binom{2}{21}($                                        | $\binom{2}{12} + \binom{2}{32}$                                   | $\binom{2}{23}+2$                        | $2\binom{2}{31}\binom{2}{12}$                                           | $\binom{2}{3}$                                                          | $ \langle \mathbf{v}_{0}^{0} \rangle =  \begin{vmatrix} \begin{pmatrix} 0 \\ 11 \end{pmatrix} & \cdot & \cdot \\ \cdot & \begin{pmatrix} 0 \\ m \end{pmatrix} & \cdot \\ \cdot & \begin{pmatrix} \mathbf{v}_{0}^{0} \rangle = \begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & 1 & \cdot \\ \cdot & 1 & 1 & \cdot \\ \cdot & 1 & 1 & 1 & \cdot \\ \cdot & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$ |
|                                        |                                           | =                                                             | $=\frac{1}{6}(2\cdot$                   | 1 - 2)                                                                                      | $^2$ + $\frac{1}{\sqrt{2}}$ .                                    | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$                         | $\frac{1}{\sqrt{2}} + 2$                 | 2.1.1                                                                   | = 3                                                                     | $\begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | $V^2$ ·                                   | $V^2 \left  \begin{array}{c} 12\\2 \end{array} \right\rangle$ | $=(\binom{2}{11})$                      | $+2(^{2}_{22})$                                                                             | $(2)^{2} + (2)^{2} + (2)^{2}$                                    | $\binom{2}{12} + 2\binom{2}{32}$                                  | $_{2})(_{23}^{2})$                       | $+\binom{2}{31}\binom{2}{31}$                                           | <sup>2</sup> <sub>13</sub> )                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        |                                           | =                                                             | $=\frac{1}{6}\left(1\cdot\right)$       | $-2 \cdot 2$                                                                                | $2\Big)^2 + \frac{1}{\sqrt{2}}$ .                                | $\frac{1}{\sqrt{2}} + 2\frac{1}{\sqrt{2}}$                        | $\frac{1}{2} \cdot \frac{1}{\sqrt{2}} +$ | 1.1                                                                     |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        |                                           | =                                                             | =                                       | $\frac{3}{2}$                                                                               | $+\frac{1}{2}$                                                   | +                                                                 | 1 -                                      | + 1                                                                     | = 4                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                        | ] = [2                                    | 2,1]                                                                    | table                                   | au b                                    | asis an                                                           | d matr                                                            | ices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of $\mathbf{v}^2$                       | $^{2}$ qua                                                                    | idrupole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|----------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                        | _                                         | M=2                                                                     | . <i>M</i>                              | =1                                      | М=                                                                | 0                                                                 | <i>M</i> =-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                       | <i>M</i> =-2                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                                 | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12\\3 \end{vmatrix}$                             | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{vmatrix} 22 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}       (11) & (22) \\       2+1     \end{array} $ | (12)<br>1                               | (23)<br>1                               | $-\sqrt{\frac{1}{2}}$                                             | $\sqrt{\frac{13}{2}}^{(13)}$                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | •                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ | (21)<br>1                                                               |                                         |                                         | $\sqrt{\frac{23)}{\sqrt{\frac{1}{2}}}}$                           | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (13)<br>-1                              |                                                                               | $\ell = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                               |                                         | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                   | (13)<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                               | (condensed<br>format)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $E_{jk} =$                             | $\begin{pmatrix} 12\\ 3 \end{bmatrix}$    | $-\sqrt{\frac{1}{2}}$                                                   | $\sqrt[(32)]{\sqrt{\frac{1}{2}}}$       | $\sqrt[(21)]{\sqrt{2}}$                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                   | $\sqrt[(23)]{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sqrt[(12)]{\sqrt{2}}$                 | $\sqrt[(13)]{\frac{1}{2}}$                                                    | $ \begin{pmatrix} 2 \\ 11 \end{pmatrix} = \begin{pmatrix} 2 \\ 12 \end{pmatrix} \begin{pmatrix} 2 \\ 12 \end{pmatrix} \begin{pmatrix} 2 \\ 13 \end{pmatrix} \begin{pmatrix} 2 \\ 13 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2$ |  |
|                                        | $\begin{pmatrix} 13\\2 \end{pmatrix}$     | $\sqrt{\frac{31}{2}}$                                                   | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$ | •                                       | •                                                                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ | $\sqrt{\frac{23)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$                                       | $ \begin{pmatrix} \mathbf{v}_{q} \\ - \\ \begin{pmatrix} 2\\2\\3\\1 \end{pmatrix} \begin{pmatrix} 2\\2\\2\\2 \end{pmatrix} \begin{pmatrix} 2\\3\\2 \end{pmatrix} \begin{pmatrix} 2\\3\\3 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{q} \\ - \\ \begin{pmatrix} 1 \\ -2 \\ 1 \\ \end{pmatrix} \begin{pmatrix} -2\\-1 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                        | $\begin{pmatrix} 13\\3 \end{bmatrix}$     |                                                                         | •                                       | (31)<br>1                               | $\sqrt{\frac{32)}{\sqrt{\frac{1}{2}}}}$                           | $\sqrt{\frac{32}{2}}$                                             | (11) (33)<br>1+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | (12)<br>1                                                                     | $\left(\begin{array}{ccc} \begin{pmatrix} 1\\11 \end{pmatrix} & \begin{pmatrix} 1\\12 \end{pmatrix} & \cdot \\ \end{pmatrix} \right) \left(\begin{array}{ccc} \begin{pmatrix} 1\\1 & -1 \\ \cdot \\ \end{pmatrix} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                         | (31)<br>-1                              | •                                       | $\sqrt[(21)]{\sqrt{2}}$                                           | •                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>(22)</sup> (33)<br>2+1             | (23)<br>1                                                                     | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left  \begin{array}{ccc} \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ & \begin{pmatrix} 1 \\ 23 \end{pmatrix} & \begin{pmatrix} \mathbf{v}_{q}^{1} \\ \mathbf{v}_{q} \end{pmatrix} = \left  \begin{array}{cccc} 1 & 0 & -1 \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{1} \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{1} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{2} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{2} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                        | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$    |                                                                         | •                                       |                                         | $\sqrt{\frac{1}{2}}^{(31)}$                                       | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$                           | (21)<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (32)<br>1                               | $     \begin{array}{c}         (22) & (33) \\         1 + 2     \end{array} $ | $\left(\begin{array}{ccc} \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix}\right) \qquad \left(\begin{array}{ccc} & & \end{pmatrix} \\ \hline & & & \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $\begin{pmatrix} 11\\ 2 \end{pmatrix}$ | $V^2$ .                                   | $V^2 \left  \begin{array}{c} 11 \\ 2 \end{array} \right\rangle$         | $=(2(_{11}^{2}))^{2}$                   | $)+({}^{2}_{22}$                        | $))^{2} + (^{2}_{21})($                                           | $\binom{2}{12} + \binom{2}{32}$                                   | $\binom{2}{23}+2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\binom{2}{31}\binom{2}{13}$            | (3)                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ,                                      | •                                         | =                                                                       | $=\frac{1}{6}(2\cdot$                   | 1 - 2)                                  | $2' + \frac{1}{\sqrt{2}}$ .                                       | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$                         | $\frac{1}{\sqrt{2}} + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2 \cdot 1 \cdot 1$                     | = 3                                                                           | $ \begin{pmatrix} \mathbf{v}_0 \\ - \\ & \mathbf{v}_0 \end{pmatrix}^{-} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_{22} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{v}_0 \\ \mathbf{v}_{33} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | $V^2$ ·                                   | $V^2 \begin{vmatrix} 12 \\ 2 \end{vmatrix}$                             | $=(\binom{2}{11})$                      | $+2(^{2}_{22})$                         | $(2)^{2} + (2)^{2} + (2)^{2}$                                     | $\binom{2}{12} + 2\binom{2}{32}$                                  | $_{2})(_{23}^{2})$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $+\binom{2}{31}\binom{1}{1}$            | $\binom{2}{13}$                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ,                                      |                                           | =                                                                       | $=\frac{1}{6}(1.1)$                     | $-2 \cdot 2$                            | $(2)^{2} + \frac{1}{\sqrt{2}}$ .                                  | $\frac{1}{\sqrt{2}} + 2\frac{1}{\sqrt{2}}$                        | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + 1$ | 1.1                                     |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        |                                           | =                                                                       | =                                       | $\frac{3}{2}$                           | $+\frac{1}{2}$                                                    | $\sqrt{2}$ $\sqrt{2}$ $+$                                         | 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                     | = 4                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $\begin{pmatrix} 11\\ 3 \end{pmatrix}$ | $V^2$ .                                   | $V^2 \left  \begin{array}{c} 11 \\ 3 \end{array} \right\rangle$         | $= (2(_{11}^{2}))^{2}$                  | $)+(^{2}_{33})$                         | $)\Big)^{2}+({}^{2}_{21})($                                       | $^{2}_{12})+2(^{2}_{32})$                                         | $\binom{2}{23} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\binom{2}{31}\binom{2}{13}$            | 3)                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        |                                           | =                                                                       | $=\frac{1}{6}(2\cdot)$                  | $1 + 1 \cdot 1$                         | $\Big)^2 + 2\frac{1}{\sqrt{2}}$                                   | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$                         | $\frac{1}{2} \cdot \frac{1}{\sqrt{2}} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · 1·1                                   |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        | $= \frac{3}{2} + 1 + \frac{1}{2} + 1 = 4$ |                                                                         |                                         |                                         |                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

|                                        | ] = [2                                                                                                                                                                                                         | 2,1] i                                                          | table                                   | au b                                    | asis an                                                           | d matr                                                                                                     | ices                                     | $of \mathbf{V}^2$                       | $^{2}$ qua                              | drupole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                        | _                                                                                                                                                                                                              | M=2                                                             | М                                       | =1                                      | <i>M</i> =                                                        | 0                                                                                                          | M=-                                      | -1                                      | <i>M</i> =-2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        |                                                                                                                                                                                                                | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$       | $\begin{vmatrix} 12\\2 \end{pmatrix}$   | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12\\3 \end{vmatrix}$                             | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$                                                                    | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$  | $\begin{vmatrix} 22 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$                                                                                                                                                                         | (11) (22)<br>2+1                                                | (12)<br>1                               | (23)<br>1                               | $(13) - \sqrt{\frac{1}{2}}$                                       | $\sqrt{\frac{(13)}{2}}$                                                                                    |                                          |                                         | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $                                                                                                                                                                      | (21)<br>1                                                       |                                         |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                                                                                     |                                          | (13)<br>-1                              |                                         | $\ell = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        | $\begin{pmatrix} 11\\ 3 \end{pmatrix}$                                                                                                                                                                         | (32)<br>1                                                       | •                                       | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                                                                            | (13)<br>1                                |                                         |                                         | (condensed<br>format)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $E_{jk} =$                             | $ \begin{pmatrix} 12 \\ 3 \end{bmatrix} $                                                                                                                                                                      | $-\sqrt{\frac{1}{2}}$                                           | $\sqrt[(32)]{\frac{1}{2}}$              | $\sqrt[(21)]{\sqrt{2}}$                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                                                                            | $\sqrt[(23)]{\frac{1}{2}}$               | $\sqrt[(12)]{\sqrt{2}}$                 | $\sqrt[(13)]{\frac{1}{2}}$              | $ \begin{pmatrix} \begin{pmatrix} 2 \\ 11 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ |  |
|                                        | $\begin{pmatrix} 13\\2 \end{bmatrix}$                                                                                                                                                                          | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$                         | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$ | •                                       | •                                                                 | $     \begin{array}{ccc}             (11) & (22) & (33) \\             1 + 1 + 1         \end{array}     $ | $\sqrt{\frac{23)}{\sqrt{\frac{3}{2}}}}$  |                                         | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | $ \begin{pmatrix} \mathbf{v}_{q} \\ - \\ \begin{pmatrix} 2\\2\\3\\1 \end{pmatrix} \begin{pmatrix} 2\\2\\3\\2 \end{pmatrix} \begin{pmatrix} 2\\3\\2 \end{pmatrix} \begin{pmatrix} 2\\3\\3 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{q} \\ - \\ \begin{pmatrix} 1 \\ -2 \\ 1 \\ \end{pmatrix} \begin{pmatrix} -2\\-1\\1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                        | $\begin{pmatrix} 13\\3 \end{bmatrix}$                                                                                                                                                                          |                                                                 | •                                       | (31)<br>1                               | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$                                                                    | (11) (33)<br>1+2                         |                                         | (12)<br>1                               | $\left(\begin{array}{ccc} \begin{pmatrix} 1\\11 \end{pmatrix} & \begin{pmatrix} 1\\12 \end{pmatrix} & \cdot \\ \end{pmatrix} \right) \left(\begin{array}{ccc} \begin{pmatrix} 1\\1 & -1 \\ \cdot \\ \end{pmatrix} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $                                                                                                                                                                      |                                                                 | (31)<br>-1                              |                                         | $\sqrt[(21)]{\sqrt{2}}$                                           |                                                                                                            | •                                        | <sup>(22)</sup> (33)<br>2+1             | (23)<br>1                               | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left  \begin{array}{ccc} \begin{pmatrix} 1 \\ 21 \end{pmatrix} & \begin{pmatrix} 1 \\ 22 \end{pmatrix} & \begin{pmatrix} 1 \\ 23 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 23 \end{pmatrix} & \begin{pmatrix} \mathbf{v}_{q}^{1} \\ \mathbf{v}_{q} \end{pmatrix} = \left  \begin{array}{cccc} 1 & 0 & -1 \\ \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{v}_{2} & \mathbf{v}_{1} \\ \mathbf{v}_{1} \mathbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$                                                                                                                                                                         |                                                                 | •                                       | •                                       | $\sqrt{\frac{1}{2}}^{(31)}$                                       | $\sqrt{\frac{31}{2}}$                                                                                      | (21)<br>1                                | (32)<br>1                               | (22) (33)<br>1+2                        | $\left(\begin{array}{ccc} \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix}\right) \qquad (\qquad )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ( )  ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{pmatrix} 1\\ 2 \end{pmatrix}$  | $V^2$ .                                                                                                                                                                                                        | $V^2 \left  \begin{array}{c} 11 \\ 2 \end{array} \right\rangle$ | $=(2(_{11}^{2}))^{2}$                   | )+ $\binom{2}{22}$                      | $))^{2} + (^{2}_{21})($                                           | $\binom{2}{12} + \binom{2}{32}$                                                                            | $\binom{2}{23}+2$                        | $2\binom{2}{31}\binom{2}{12}$           | (3)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ·                                      |                                                                                                                                                                                                                | =                                                               | $=\frac{1}{6}(2\cdot$                   | 1 - 2)                                  | $2^{2} + \frac{1}{\sqrt{2}}$ .                                    | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$                                                                  | $\frac{1}{\sqrt{2}} + 2$                 | $2 \cdot 1 \cdot 1$                     | = 3                                     | $ \begin{pmatrix} \mathbf{v}_0 \\ - \\ & \mathbf{v}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{22} \\ \cdot \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | $\frac{2}{V^2}$                                                                                                                                                                                                | $V^2 \begin{vmatrix} 12 \\ 2 \end{vmatrix}$                     | $=(\binom{2}{11})$                      | $+2(^{2}_{22})$                         | $(2)^{2} + (2)^{2} + (2)^{2}$                                     | $\binom{2}{12} + 2\binom{2}{32}$                                                                           | $_{2})(_{23}^{2})$ -                     | $+\binom{2}{31}\binom{1}{31}$           | <sup>2</sup> <sub>13</sub> )            | $\left< \frac{12}{2}  V^2 \cdot V^2  \frac{11}{3} \right> = + \binom{2}{21} \binom{2}{32} + \binom{2}{23} \binom{2}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ,                                      | •                                                                                                                                                                                                              | =                                                               | $=\frac{1}{6}(1\cdot 1)$                | $-2 \cdot 2$                            | $(2)^{2} + \frac{1}{\sqrt{2}}$                                    | $\frac{1}{\sqrt{2}} + 2\frac{1}{\sqrt{2}}$                                                                 | $\frac{1}{2} \cdot \frac{1}{\sqrt{2}} +$ | · 1·1                                   |                                         | $=\frac{-1}{2}(1\cdot 1+1\cdot 1) = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                        |                                                                                                                                                                                                                | =                                                               | =                                       | $\frac{3}{2}$                           | $+\frac{1}{2}$                                                    | +                                                                                                          | 1 -                                      | + 1                                     | = 4                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $\begin{pmatrix} 1\\ 3 \end{pmatrix}$  | $V^2$ .                                                                                                                                                                                                        | $V^2 \left  \begin{array}{c} 11 \\ 3 \end{array} \right\rangle$ | $= (2(_{11}^{2}))^{2}$                  | $()+(^{2}_{33})$                        | $))^{2} + \binom{2}{21}($                                         | $^{2}_{12})+2(^{2}_{32})$                                                                                  | $\binom{2}{23} +$                        | $\binom{2}{31}\binom{2}{13}$            | 3)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        | $= \frac{1}{6} \left( 2 \cdot 1 + 1 \cdot 1 \right)^2 + 2 \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + 1 \cdot 1$ |                                                                 |                                         |                                         |                                                                   |                                                                                                            |                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        |                                                                                                                                                                                                                | =                                                               | =                                       | $\frac{3}{2}$                           | + 1                                                               | +                                                                                                          | $\frac{1}{2}$ -                          | + 1                                     | = 4                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

|                                        | ] = [2                                    | 2,1] i                                                                                 | table                                                     | au b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | asis an                                                           | d matr                                          | ices                                     | $of \mathbf{v}^2$                       | <sup>2</sup> qua                        | adrupole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|----------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                        | -                                         | M=2                                                                                    | М                                                         | [=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>M</i> =                                                        | 0                                               | М=-                                      | -1                                      | M=-2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                        |                                           | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$                              | $\left  \begin{array}{c} 12\\2 \end{array} \right\rangle$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{vmatrix} 12\\3 \end{vmatrix}$                             | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$         | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$  | $\begin{vmatrix} 22 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ | $\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|                                        | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11)  (22) \\             2+1         \end{array} $ | (12)<br>1                                                 | (23)<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{2}}$                         |                                          |                                         | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                        | $ \begin{pmatrix} 12 \\ 2 \end{bmatrix} $ | (21)<br>1                                                                              |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                          |                                          | (13)<br>-1                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                        | $\begin{pmatrix} 11\\ 3 \end{pmatrix}$    | (32)<br>1                                                                              |                                                           | (11) (33)<br>2+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                 | (13)<br>1                                |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| $E_{jk} =$                             | $\begin{pmatrix} 12\\ 3 \end{pmatrix}$    | $-\sqrt{\frac{1}{2}}$                                                                  | $\sqrt[(32)]{\frac{1}{2}}$                                | $\sqrt[(21)]{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                 | $\sqrt[(23)]{\frac{1}{2}}$               | $\sqrt[(12)]{2}$                        | $\sqrt[(13)]{\frac{1}{2}}$              | $ \begin{pmatrix} \begin{pmatrix} 2 \\ 11 \end{pmatrix} & \begin{pmatrix} 2 \\ 12 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 13 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ |            |
|                                        | $ \begin{pmatrix} 13 \\ 2 \end{bmatrix} $ | $\sqrt{\frac{31)}{2}}$                                                                 | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                 |                                                 | $\sqrt{\frac{23)}{2}}$                   |                                         | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | $ \left  \begin{pmatrix} \mathbf{v}_{q} \\ \mathbf{v}_{q} \end{pmatrix}^{-} \left( \begin{array}{c} c_{21} \\ c_{21} \\ c_{21} \\ c_{22} \\ c_{31} \\ c_{32} \\ c_{32} \\ c_{33} \\ c_{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                                        | $\begin{pmatrix} 13\\ 3 \end{pmatrix}$    |                                                                                        | •                                                         | (31)<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt[(32)]{\frac{3}{2}}$                      | (11) (33)<br>1+2                         |                                         | (12)<br>1                               | $ \begin{pmatrix} \begin{pmatrix} 1 \\ 11 \end{pmatrix} & \begin{pmatrix} 1 \\ 12 \end{pmatrix} & \cdot \end{pmatrix} \qquad \begin{pmatrix} 1 & -1 & \cdot \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|                                        | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                        | (31)<br>-1                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt[(21)]{\sqrt{2}}$                                           |                                                 | •                                        | $\binom{(22)}{2+1}$                     | (23)<br>1                               | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \begin{pmatrix} 1 \\ 21 \end{pmatrix} \begin{pmatrix} 1 \\ 22 \end{pmatrix} \begin{pmatrix} 1 \\ 23 \end{pmatrix} \left\langle \mathbf{v}_{q}^{1} \right\rangle = \begin{pmatrix} 1 & 0 & -1 & \frac{1}{\sqrt{2}} \\ \cdot & 1 & -1 & 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                                        | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                        | •                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt[(31)]{\frac{1}{2}}$                                        | $\sqrt{\frac{31)}{2}}$                          | (21)<br>1                                | (32)<br>1                               | (22) (33)<br>1+2                        | $\begin{array}{c} 33)\\2\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| $\begin{pmatrix} 1\\ 2 \end{pmatrix}$  | $V^2$ .                                   | $V^2 \left  \begin{array}{c} 11 \\ 2 \end{array} \right\rangle$                        | $=(2(_{11}^{2}))^{2}$                                     | $()+(^{2}_{22})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $))^{2} + \binom{2}{21}($                                         | $\binom{2}{12} + \binom{2}{32}$                 | $\binom{2}{23}+2$                        | $2\binom{2}{31}\binom{2}{13}$           | 3)                                      | $ \langle \mathbf{v}^{0} \rangle =  \begin{vmatrix} \begin{pmatrix} 0 \\ 11 \end{pmatrix} & \cdot & \cdot \\ \cdot & \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \cdot & \cdot \\ \cdot & \langle \mathbf{v}^{0}_{0} \rangle = \begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|                                        |                                           | =                                                                                      | $=\frac{1}{6}(2\cdot$                                     | 1 - 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $^{2} + \frac{1}{\sqrt{2}}$ .                                     | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$       | $\frac{1}{\sqrt{2}} + 2$                 | $2 \cdot 1 \cdot 1$                     | = 3                                     | 3 $\binom{12}{2}V^2 \cdot V^2 \begin{vmatrix} 11 \\ 3 \end{vmatrix} = +\binom{2}{21}\binom{2}{32} + \binom{2}{23}\binom{2}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>,</u> ) |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$ | $V^2$ ·                                   | $V^2 \left  \begin{array}{c} 12 \\ 2 \end{array} \right\rangle$                        | $=(\binom{2}{11})$                                        | $+2(^{2}_{22})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(2)^{2} + (2)^{2} + (2)^{2}$                                     | $\binom{2}{12} + 2\binom{2}{32}$                | $_{2})(_{23}^{2})$ -                     | $+\binom{2}{31}\binom{1}{1}$            | $\binom{2}{3}$                          | $=\frac{-1}{2}(1\cdot 1+1\cdot 1)=-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| ι-                                     | 1                                         | =                                                                                      | $=\frac{1}{6}(1\cdot 1)$                                  | $-2 \cdot 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(2)^{2} + \frac{1}{\sqrt{2}}$ .                                  | $\frac{1}{\sqrt{2}} + 2\frac{1}{\sqrt{2}}$      | $\frac{1}{5} \cdot \frac{1}{\sqrt{2}} +$ | 1.1                                     | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                        |                                           | =                                                                                      | =                                                         | $\frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $+\frac{1}{2}$                                                    | +                                               | 1 -                                      | + 1                                     | = 4                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| $\begin{pmatrix} 1\\ 3 \end{pmatrix}$  | $V^2$ .                                   | $V^2 \left  \begin{array}{c} 11 \\ 3 \end{array} \right\rangle$                        | $= \left(2\left(\frac{2}{11}\right)\right)$               | $(2)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}(3)^{+}$ | $))^{2} + \binom{2}{21}($                                         | $^{2}_{12})+2(^{2}_{32})$                       | $\binom{2}{23} +$                        | $\binom{2}{31}\binom{2}{13}$            | 3)                                      | $\begin{array}{c c} \hline 1 \\ \hline 2 \\ \hline \end{array}  4  -1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|                                        |                                           | =                                                                                      | $=\frac{1}{6}\left(2\cdot\right)$                         | $1 + 1 \cdot 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Big)^2 + 2\frac{1}{\sqrt{2}}$                                   | $\cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ | $\frac{1}{2} \cdot \frac{1}{\sqrt{2}} +$ | - 1.1                                   |                                         | $\begin{vmatrix} 1 \\ 3 \end{vmatrix}$ -1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|                                        |                                           | =                                                                                      | =                                                         | $\frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1                                                                | +                                               | $\frac{1}{2}$ -                          | + 1                                     | = 4                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |

|                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 2,1]                                                            | table                                 | au b                                                                                        | asis an                                                           | d matr                                          | ices                                     | $of \mathbf{V}^2$                       | <sup>2</sup> qua                        | drupo                              | le                                                               |                                       |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                | _                                                                                                                                             | M=2                                                             | М                                     | =1                                                                                          | <i>M</i> =                                                        | 0                                               | <i>M</i> =-                              | -1                                      | <i>M</i> =-2                            |                                    |                                                                  |                                       |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                |                                                                                                                                               | $\left  \begin{array}{c} 11\\2 \end{array} \right\rangle$       | $\begin{vmatrix} 12\\2 \end{pmatrix}$ | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$                                                     | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$         | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$  | $\begin{vmatrix} 22 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$ |                                    |                                                                  |                                       |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_{jk} =$                                                                                                                                                                                                                                                                                     | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$                                                                                                        | (11) (22)<br>2+1                                                | (12)<br>1                             | (23)<br>1                                                                                   | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{2}}$                         |                                          |                                         | •                                       |                                    |                                                                  |                                       |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 12\\2 \end{pmatrix}$                                                                                                         | (21)<br>1                                                       |                                       |                                                                                             | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                          |                                          | (13)<br>-1                              |                                         |                                    |                                                                  |                                       |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$                                                                                                        | (32)<br>1                                                       |                                       | $     \begin{array}{c}             (11) & (33) \\             2+1         \end{array}     $ | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                 | (13)<br>1                                |                                         |                                         |                                    | (                                                                |                                       | )                                                                                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 12\\ 3 \end{bmatrix}$                                                                                                        | $-\sqrt{\frac{1}{2}}$                                           | $\sqrt[(32)]{\frac{1}{2}}$            | $\sqrt[(21)]{\sqrt{2}}$                                                                     | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                 | $\sqrt[(23)]{\frac{1}{2}}$               | $\sqrt[(12)]{\sqrt{2}}$                 | $\sqrt[(13)]{\frac{1}{2}}$              | $ \langle v^2 \rangle -$           | $ \begin{pmatrix} \binom{2}{11} \\ \binom{2}{2} \end{pmatrix} $  | $\binom{2}{12}$ (                     | $\begin{pmatrix} 2\\13 \end{pmatrix} \\ \begin{pmatrix} 2\\2 \end{pmatrix} \end{pmatrix} /$ | / 2                                                      | $\begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 13\\2 \end{pmatrix}$                                                                                                         | $\sqrt{\frac{31)}{\sqrt{\frac{3}{2}}}}$                         | $\sqrt{\frac{32}{2}}$                 |                                                                                             | •                                                                 |                                                 | $\sqrt{\frac{23)}{2}}$                   |                                         | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$ | $\langle \mathbf{v}_q \rangle^{-}$ | $ \begin{pmatrix} \binom{2}{21} \\ \binom{2}{31} \end{pmatrix} $ | $\binom{2}{32}$ ( $\binom{2}{32}$ ) ( | $\begin{pmatrix} 2\\ 33 \end{pmatrix}$                                                      | $\langle \mathbf{v}_q \rangle$                           | $\rangle = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c}1 & \frac{1}{\sqrt{2}}\\1 & \frac{1}{\sqrt{2}}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 13\\3 \end{bmatrix}$                                                                                                         |                                                                 | •                                     | (31)<br>1                                                                                   | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt[(32)]{\frac{3}{2}}$                      | (11) (33)<br>1+2                         |                                         | (12)<br>1                               |                                    | $\begin{pmatrix} 1 \\ 11 \end{pmatrix}$                          | $\binom{1}{12}$                       | •                                                                                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 22\\ 3 \end{pmatrix}$                                                                                                        |                                                                 | (31)<br>-1                            |                                                                                             | $\sqrt[(21)]{\sqrt{2}}$                                           |                                                 | •                                        | $\binom{(22)}{2+1}$ (33)                | (23)<br>1                               | $\left< \mathbf{v}_q^1 \right> =$  | $\binom{1}{21}$                                                  | $\binom{1}{22}$ (                     |                                                                                             | $\left\langle \mathbf{v}_{q}^{1}\right\rangle$           | $\left\langle \mathbf{D}_{M=2} \right\rangle = \left  \begin{array}{c} \mathbf{U} \\ \mathbf{D} \\ \mathbf$ | $\left  \frac{1}{\sqrt{2}} \right  = \frac{1}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                | $\begin{pmatrix} 23\\ 3 \end{pmatrix}$                                                                                                        |                                                                 | •                                     |                                                                                             | $\sqrt{\frac{31}{2}}$                                             | $\sqrt{\frac{31}{2}}$                           | (21)<br>1                                | (32)<br>1                               | (22) (33)<br>1+2                        |                                    | •                                                                | $\binom{1}{32}$ (                     |                                                                                             |                                                          | $\left  \mathbf{D}_{M=1} \right\rangle = \frac{1}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{2} + \frac{1}{\sqrt{2}} = \frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$                                                                                                                                                                                                                                                         | $ V^{2} \cdot V^{2} _{2}^{11} = (2(^{2}_{11}) + (^{2}_{22}))^{2} + (^{2}_{21})(^{2}_{12}) + (^{2}_{32})(^{2}_{23}) + 2(^{2}_{31})(^{2}_{13})$ |                                                                 |                                       |                                                                                             |                                                                   |                                                 |                                          |                                         |                                         |                                    | $\begin{pmatrix} 0\\11 \end{pmatrix}$                            | •                                     | •                                                                                           | $\left  \begin{array}{c} 2 \\ 0 \end{array} \right ^{2}$ | $\left  \frac{1}{2} \mathbf{P}_{M=1} \right\rangle = \frac{1}{\sqrt{2}} \left  \frac{1}{2} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{vmatrix} 12 \\ 2 \end{vmatrix} \right) - \frac{1}{\sqrt{2}} \begin{vmatrix} 11 \\ 3 \end{vmatrix} \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c} 1 \\ 2 \\ -1 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ -1$ |                                                                                                                                               |                                                                 |                                       |                                                                                             |                                                                   |                                                 |                                          |                                         |                                         |                                    | $\binom{2}{2} + \binom{2}{2} \binom{2}{2}$                       |                                       |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                                                                                                                                                                                                                                              | _                                                                                                                                             |                                                                 | 6 ( 2                                 | 1 2)                                                                                        | $\sqrt{2}$                                                        | $\sqrt{2}$ $\sqrt{2}$                           | $\sqrt{2}$                               |                                         | 5                                       |                                    | ·                                                                | · \2 (                                | 33)                                                                                         | 3                                                        | -1(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(23)^{1}(23)(12)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}(11)^{1}$ |
| $\begin{pmatrix} 12\\ 2 \end{pmatrix}$                                                                                                                                                                                                                                                         | $V^2 V^2$                                                                                                                                     | $V^2 \begin{vmatrix} 12 \\ 2 \end{vmatrix}$                     | $= \left( \binom{2}{11} \right)$      | $+2(^{2}_{22})$                                                                             | $\binom{2}{2}^{2} + \binom{2}{21}$                                | $\binom{2}{12} + 2\binom{2}{32}$                | $_{2})(_{23}^{2})$ -                     | $+\binom{2}{31}\binom{2}{31}$           | $^{2}_{13})$                            |                                    | - I                                                              |                                       | I                                                                                           |                                                          | $=\frac{1}{2}(1.1+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1 \cdot 1 = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $=\frac{1}{6}(1\cdot 1 - 2\cdot 2)^{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + 2\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + 1\cdot 1$ $\begin{vmatrix} \frac{1}{2} \\ 2 \end{vmatrix}$ $Q \cdot Q \ eigenvalues$                                                                     |                                                                                                                                               |                                                                 |                                       |                                                                                             |                                                                   |                                                 |                                          |                                         |                                         |                                    |                                                                  |                                       |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                |                                                                                                                                               | =                                                               | =                                     | $\frac{3}{2}$                                                                               | $+\frac{1}{2}$                                                    | +                                               | 1 -                                      | + 1                                     | = 4                                     |                                    | 12                                                               | 11                                    | 3                                                                                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (j=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{pmatrix} 1\\ 3 \end{pmatrix}$                                                                                                                                                                                                                                                          | $V^2$ .                                                                                                                                       | $V^2 \left  \begin{array}{c} 11 \\ 3 \end{array} \right\rangle$ | $= (2(_{11}^{2}))^{2}$                | $+\binom{2}{33}$                                                                            | $)\Big)^{2}+({}^{2}_{21})($                                       | $^{2}_{12})+2(^{2}_{32})$                       | $\binom{2}{23} +$                        | $\binom{2}{31}\binom{2}{13}$            | ,)                                      |                                    | 2 4                                                              | -1                                    |                                                                                             | 3                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (j=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                |                                                                                                                                               | =                                                               | $=\frac{1}{6}(2\cdot)$                | $1 + 1 \cdot 1$                                                                             | $\left(1\right)^2 + 2\frac{1}{\sqrt{2}}$                          | $\cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ | $\frac{1}{2} \cdot \frac{1}{\sqrt{2}} +$ | - 1.1                                   |                                         |                                    | ] -1                                                             | 4                                     |                                                                                             | 0                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (j=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= \frac{3}{2} + 1 + \frac{1}{2} + 1 = 4$                                                                                                                                                                                                                                                      |                                                                                                                                               |                                                                 |                                       |                                                                                             |                                                                   |                                                 |                                          |                                         |                                         |                                    |                                                                  |                                       | ]                                                                                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

AMOP reference links on page 2 4.16.18 class 23: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

# $(S_n)^*(U(m))$ shell model of electrostatic quadrupole-quadrupole-e interactions

Complete set of  $E_{jk}$  matrix elements for the doublet (spin- $\frac{1}{2}$ ) p<sup>3</sup> orbits Detailed sample applications of "Jawbone" formulae

Number operators

1-jump E<sub>i-1,i</sub> operators

2-jump E<sub>i-2,i</sub> operators

Angular momentum operators (for later application)

Multipole expansions and Coulomb (e-e)-electrostatic interaction

Linear multipoles; *P*<sub>1</sub>-dipole, *P*<sub>2</sub>-quadrupole, *P*<sub>3</sub>-octupole,...

Moving off-axis: On-z-axis linear multipole  $P\ell$  (cos $\theta$ ) wave expansion:

Multipole Addition Theorem (should be called Group Multiplication Theorem) Coulomb (e-e)-electrostatic interaction and its Hamiltonian Matrix, Slater integrals

2-particle elementary  $\mathbf{e}_{jk}$  operator expressions for *(e-e)*-interaction matrix Tensor tables are  $(2\ell+1)$ -by- $(2\ell+1)$  arrays  $\binom{p^kq}{p}$  giving  $\mathbf{V}_q^k$  in terms of  $\mathbf{E}_{p,q}$ .

Relating  $\mathbf{V}_q^k$  to  $\mathbf{E}_{m',m}$  by  $\binom{k}{m'm}$  arrays

Atomic p-shell ee-interaction in elementary operator form

[2,1] tableau basis (from p.29) and matrices of  $v^1$  dipole and  $v^1 \cdot v^1 = L \cdot L$ 

[2,1] tableau basis (from p.29) and matrices of  $v^2$  and  $v^2 \cdot v^2$  quadrupole

<sup>4</sup>S,<sup>2</sup>P, and <sup>2</sup>D energy calculation of quartet and doublet (spin-<sup>1</sup>/<sub>2</sub>) p<sup>3</sup> orbits Corrected level diagrams Nitrogen p<sup>3</sup>

|                                                                                                                                                                                                                                         |                                           | 2,1] i                                                                                 | table                                           | au m                                    | natrices                                                          | s of $\mathbf{v}^2$                             | quaa                                     | lrupo                                            | ole:                                                                                                                                                                                                                                                                                        | <sup>4</sup> S, <sup>2</sup> P, and <sup>2</sup> D energy calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                         |                                           | <i>M=2</i>                                                                             | <i>M</i>                                        | =1                                      | <i>M</i> =                                                        | 0                                               | <i>M=</i> -                              | -1                                               | <i>M</i> =-2                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                         |                                           | $\begin{vmatrix} 11 \\ 2 \end{vmatrix}$                                                | $\begin{vmatrix} 12 \\ 2 \end{vmatrix}$         | $\begin{vmatrix} 11 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 12 \\ 3 \end{vmatrix}$                           | $\begin{vmatrix} 13 \\ 2 \end{vmatrix}$         | $\begin{vmatrix} 13 \\ 3 \end{vmatrix}$  | $\begin{vmatrix} 22 \\ 3 \end{vmatrix}$          | $\begin{vmatrix} 23 \\ 3 \end{vmatrix}$                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                         | $\begin{pmatrix} 11\\ 2 \end{pmatrix}$    | $     \begin{array}{c}             (11)  (22) \\             2+1         \end{array} $ | (12)<br>1                                       | (23)<br>1                               | $-\sqrt{\frac{1}{2}}^{(13)}$                                      | $\sqrt{\frac{(13)}{2}}$                         |                                          |                                                  | •                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| E <sub>jk</sub> =                                                                                                                                                                                                                       | $\begin{pmatrix} 12\\2 \end{pmatrix}$     | (21)<br>1                                                                              | (11) (22)<br>1+2                                |                                         | $\sqrt[(23)]{\frac{1}{2}}$                                        | $\sqrt{\frac{23)}{2}}$                          |                                          | (13)<br>-1                                       |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                         | $\begin{pmatrix} 11\\ 3 \end{bmatrix}$    | (32)<br>1                                                                              |                                                 | (11) (33)<br>2+1                        | $\sqrt[(12)]{\sqrt{2}}$                                           |                                                 | (13)<br>1                                |                                                  |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                         | $\begin{pmatrix} 12\\ 3 \end{bmatrix}$    | $-\sqrt{\frac{1}{2}}$                                                                  | $\sqrt[(32)]{\frac{1}{2}}$                      | $\sqrt[(21)]{\sqrt{2}}$                 | $ \begin{array}{c} (11) & (22) & (33) \\ 1+1+1 & +1 \end{array} $ |                                                 | $\sqrt[(23)]{\frac{1}{2}}$               | $\sqrt[(12)]{\sqrt{2}}$                          | $\sqrt[(13)]{\frac{1}{2}}$                                                                                                                                                                                                                                                                  | $ \begin{pmatrix} \binom{2}{11} & \binom{2}{12} & \binom{2}{13} \\ \binom{2}{2} & \binom{2}{2} & \binom{2}{2} \\ \binom{2}{2} & \binom{2}{2} & \binom{2}{2} \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 &$ |  |
|                                                                                                                                                                                                                                         | $\begin{pmatrix} 13\\2 \end{pmatrix}$     | $\sqrt{\frac{31}{2}}$                                                                  | $\sqrt{\frac{32}{2}}$                           | •                                       | •                                                                 |                                                 | $\sqrt{\frac{23)}{2}}$                   |                                                  | $\sqrt{\frac{13)}{\sqrt{\frac{3}{2}}}}$                                                                                                                                                                                                                                                     | $ \begin{pmatrix} \mathbf{v}_{q} \\ - \\ \begin{pmatrix} 2_{21} \\ 2_{21} \end{pmatrix} \begin{pmatrix} 2_{22} \\ 2_{23} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{q} \\ - \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                         | $\begin{pmatrix} 13\\ 3 \end{pmatrix}$    |                                                                                        | •                                               | (31)<br>1                               | $\sqrt[(32)]{\frac{1}{2}}$                                        | $\sqrt{\frac{32)}{\sqrt{\frac{3}{2}}}}$         | (11) (33)<br>1+2                         |                                                  | (12)<br>1                                                                                                                                                                                                                                                                                   | $ \begin{pmatrix} 1 \\ 11 \end{pmatrix} \begin{pmatrix} 1 \\ 12 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 12 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                         | $ \begin{pmatrix} 22 \\ 3 \end{bmatrix} $ |                                                                                        | (31)<br>-1                                      |                                         | $\sqrt[(21)]{\sqrt{2}}$                                           |                                                 | •                                        | $\begin{array}{c} (22)  (33) \\ 2+1 \end{array}$ | (23)<br>1                                                                                                                                                                                                                                                                                   | $\left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{c} 1\\21 \end{array}\right) \left( \begin{array}{c} 1\\22 \end{array}\right) \left( \begin{array}{c} 1\\23 \end{array}\right) \left\langle \mathbf{v}_{q}^{1} \right\rangle = \left( \begin{array}{c} 1\\0\\-1\\-1 \end{array}\right) \left( \begin{array}{c} 1\\\sqrt{2}\\-1\\-1 \end{array}\right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                         | $ \begin{pmatrix} 23 \\ 3 \end{bmatrix} $ |                                                                                        |                                                 |                                         | $\sqrt[(31)]{\frac{1}{2}}$                                        | $\sqrt{\frac{31)}{2}}$                          | (21)<br>1                                | (32)<br>1                                        | (22) (33)<br>1+2                                                                                                                                                                                                                                                                            | $\begin{pmatrix} \cdot & \begin{pmatrix} 1 \\ 32 \end{pmatrix} & \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \cdot & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 33 \end{pmatrix} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $ \left< \frac{11}{2} \overline{V^2 \cdot V^2} \right _{2}^{11} \right> = \left( 2\binom{2}{11} + \binom{2}{22} \right)^2 + \binom{2}{21}\binom{2}{12} + \binom{2}{32}\binom{2}{23} + 2\binom{2}{31}\binom{2}{13} \right) $             |                                           |                                                                                        |                                                 |                                         |                                                                   |                                                 |                                          |                                                  | $ \langle \mathbf{v}^{0} \rangle =  \begin{vmatrix} \begin{pmatrix} 0 \\ 11 \end{pmatrix} & \cdot & \cdot \\ \cdot & \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \cdot & \begin{vmatrix} \langle \mathbf{v}^{0} \rangle = \begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{vmatrix} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                         |                                           | =                                                                                      | $=\frac{1}{6}(2\cdot$                           | 1 - 2)                                  | $^{2} + \frac{1}{\sqrt{2}}$ .                                     | $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$       | $\frac{1}{\sqrt{2}} + 2$                 | $2 \cdot 1 \cdot 1$                              | = 3                                                                                                                                                                                                                                                                                         | $3 \qquad \qquad \left\langle \frac{12}{2} \left  V^2 \cdot V^2 \right  \frac{11}{3} \right\rangle = + \binom{2}{21} \binom{2}{32} + \binom{2}{23} \binom{2}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $ \left\langle \frac{12}{2} \left  V^2 \cdot V^2 \right  \frac{12}{2} \right\rangle = \left( \binom{2}{11} + 2\binom{2}{22} \right)^2 + \binom{2}{12} \binom{2}{12} + 2\binom{2}{22} \binom{2}{23} + \binom{2}{31} \binom{2}{23} = -1 $ |                                           |                                                                                        |                                                 |                                         |                                                                   |                                                 |                                          |                                                  |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $=\frac{1}{6}\left(1\cdot 1-2\cdot 2\right)^{2}+\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}+2\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}+1\cdot 1$ $\begin{bmatrix}1\\1\\2\end{bmatrix}$ $Q \cdot Q \ eigenvalues _{2P}$                    |                                           |                                                                                        |                                                 |                                         |                                                                   |                                                 |                                          |                                                  |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                         | _                                         | =                                                                                      | =                                               | $\frac{3}{2}$                           | $+\frac{1}{2}$                                                    | +                                               | 1 -                                      | + 1                                              | = 4                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $\begin{pmatrix} 1\\ 3 \end{pmatrix}$                                                                                                                                                                                                   | $V^2$ .                                   | $V^2 \left  \begin{array}{c} 11 \\ 3 \end{array} \right\rangle$                        | $= \left(2\left(\frac{2}{11}\right)\right)^{2}$ | $)+({}^{2}_{33})$                       | $) \Big)^{2} + (\frac{2}{21})($                                   | $^{2}_{12})+2(^{2}_{32})$                       | $\binom{2}{23} +$                        | $\binom{2}{31}\binom{2}{13}$                     | ,)                                                                                                                                                                                                                                                                                          | $\begin{bmatrix} 1 \\ 2 \end{bmatrix} 4 -1 \end{bmatrix} 3 0 \begin{bmatrix} 2 \\ D \\ Predicated $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                         |                                           | =                                                                                      | $=\frac{1}{6}\left(2\cdot\right)$               | $1 + 1 \cdot 1$                         | $\Big)^2 + 2\frac{1}{\sqrt{2}}$                                   | $\cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ | $\frac{1}{2} \cdot \frac{1}{\sqrt{2}} +$ | - 1.1                                            | -                                                                                                                                                                                                                                                                                           | $\begin{vmatrix} 1 \\ 3 \end{vmatrix}$ -1 4 0 5 $\begin{vmatrix} 2P, 2D \\ 4S \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                           | =                                                                                      | =                                               | $\frac{3}{2}$                           | +1                                                                | +                                               | $\frac{1}{2}$ -                          | + 1                                              | = 4                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |



Fig.8 Weight or Moment Diagrams of Atomic  $(p)^n$  States Each tableau is located at point  $(x_1 \ x_2 \ x_3)$  in a cartesian co-ordinate system for which  $x_n$  is the number of n's in the tableau. An alternative co-ordinate system is  $(v_0^2, v_0^1, v_0^0)$ defined by Eq.16 which gives the zz-quadrupole moment, z-magnetic dipole moment, and number of particles, respectively. The last axis  $(v_0^0)$  would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

*A Unitary Calculus for Electronic Orbitals* William G. Harter and Christopher W. Patterson Springer-Verlag Lectures in Physics 49 1976

*Alternative basis for the theory of complex spectra I* William G. Harter Physical Review A 8 3 p2819 (1973)

*Alternative basis for the theory of complex spectra II* William G. Harter and Christopher W. Patterson Physical Review A 13 3 p1076-1082 (1976)

*Alternative basis for the theory of complex spectra III* William G. Harter and Christopher W. Patterson Physical Review A ??





FIG. 6. Example of unitary tableau notation for multiple-shell states. The calculation of the dipole operator using the jawbone formula between states of definite spin and orbit as shown is given in Eq. (48).

*Alternative basis for the theory of complex spectra II* William G. Harter and Christopher W. Patterson Physical Review A 13 3 p1076-1082 (1976)







### Hund's Rule

- Within a sublevel, place one electron per orbital before pairing them.
- "Empty Bus Seat Rule"



#### Hund's Rule and the Aufbau Principle Aufbau principle - when filling orbitals, start with the lowest energy and proceed to the next highest energy level. Hund's rule - within a subshell, electrons occupy the maximum number of orbitals possible.

Hu

Elec

first

[·O]

My saves

ls

Electron configurations are sometimes depicted using boxes to represent orbitals. This depiction shows paired and unpaired electrons explicitly.

#### Hund's rule of maximum multiplicity

\* The three rules are:

- . For a given electron configuration, the term with maximum multiplicity has the lowest energy. The multiplicity is equal to , where is the total spin angular momentum for all electrons.
- . For a given multiplicity, the term with the largest value of the total orbital angular momentum quantum number has the lowest energy.

### Yay! (for the Googley internet)



The above rules: not give idea abt filling the ein to degenerate orbitals.

For e.g., p-orbitals

- \* when more than one orbitals of equal energies are available, then the e- will first occupy these orbitals separately with parallel spins.the pairing of e- will start only after all the orbitals of a given sub-level are singly occupied."
- Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.

### Hund's Rule

In a set of orbitals, the electrons will fill the orbitals in a way that would give the maximum number of parallel spins (maximum number of unpaired electrons)

2p

Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up.



## Complete set of $E_{jk}$ matrix elements for the doublet (spin- $\frac{1}{2}$ ) $p^3$ orbits

|                                                                         | $\left  \begin{smallmatrix} 1 & 1 \\ 2 \end{smallmatrix} \right\rangle$ | $\begin{vmatrix} 1 & 2 \\ 2 \end{vmatrix}$ | $\begin{pmatrix} 1 & 1 \\ 3 \end{pmatrix}$ | $\begin{vmatrix} 1 & 2 \\ 3 \end{vmatrix}$ | $\left  \begin{array}{c} 1 & 3 \\ 2 \end{array} \right\rangle$ | $\begin{vmatrix} 1 & 3 \\ 3 \end{vmatrix}$ | $\begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix}$ | $: \left  \begin{smallmatrix} 2 & 3 \\ 3 \end{smallmatrix} \right\rangle$ |                          |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
|                                                                         | <i>M</i> = 2                                                            | M                                          | = 1                                        | М                                          | r = 0                                                          | M                                          | = - 1                                          | M = -2                                                                    |                          |
| $\left\langle \begin{array}{c} 1 & 1 \\ 2 \end{array} \right $          | $2^{(11)} + 1^{(22)}$                                                   | 1 <sup>(12)</sup>                          | 1 <sup>(23)</sup>                          | $-\sqrt{\frac{1}{2}}^{(13)}$               | $\sqrt{\frac{3}{2}}^{(13)}$                                    |                                            |                                                |                                                                           | • .                      |
| $\left\langle \begin{array}{c} 1 & 2 \\ 2 \end{array} \right $          |                                                                         | $1^{(11)} + 2^{(22)}$                      |                                            | $\sqrt{\frac{1}{2}}^{(23)}$                | $\sqrt{\frac{3}{2}}^{(23)}$                                    |                                            | - 1 <sup>(13)</sup>                            |                                                                           |                          |
| $\left\langle \begin{smallmatrix} 1 & 1 \\ 3 \end{smallmatrix} \right $ |                                                                         |                                            | $2^{(11)} + 1^{(33)}$                      | $\sqrt{2}^{(12)}$                          |                                                                | 1 <sup>(13)</sup>                          |                                                |                                                                           |                          |
| $\left\langle \begin{array}{c} 1 & 2 \\ 3 \end{array} \right $          |                                                                         | •                                          |                                            | $1^{(11)} + 1^{(22)} + 1^{(33)}$           |                                                                | $\sqrt{\frac{1}{2}}^{(23)}$                | $\sqrt{2}^{(12)}$                              | $\sqrt{\frac{1}{2}}^{(13)}$                                               | $=\langle E_{ij}\rangle$ |
| $\left\langle {\begin{smallmatrix} 1 & 3 \\ 2 \end{array} \right $      | notat $(ik)$ r                                                          | 10 <sup>f</sup> :                          | 511                                        |                                            | $1^{(11)} + 1^{(22)} + 1^{(33)}$                               | $\sqrt{\frac{3}{2}}^{(23)}$                |                                                | $\sqrt{\frac{3}{2}}^{(13)}$                                               |                          |
| $\left\langle \begin{array}{c} 1 & 3 \\ 3 \end{array} \right $          | whic                                                                    | h $E_{ik}$ gave                            | that entry                                 | 7                                          |                                                                | $1^{(11)} + 2^{(33)}$                      |                                                | 1 <sup>(12)</sup>                                                         |                          |
| $\left\langle \begin{smallmatrix} 2 & 2 \\ 3 \end{smallmatrix} \right $ |                                                                         |                                            |                                            |                                            |                                                                |                                            | $2^{(22)} + 1^{(33)}$                          | 1 <sup>(23)</sup>                                                         |                          |
| $\left\langle \begin{array}{c} 2 & 3 \\ 3 \end{array} \right $          |                                                                         |                                            |                                            |                                            |                                                                |                                            |                                                | $1^{(22)} + 2^{(33)}$                                                     |                          |

Diagonal examples in *n-particle* notation:

$$\sqrt{3}\mathbf{V}_{0}^{0} = E_{11} + E_{22} + E_{33}$$
$$\sqrt{2}\mathbf{V}_{0}^{1} = E_{11} - E_{33} \equiv L_{z}$$
$$\sqrt{6}\mathbf{V}_{0}^{2} = E_{11} - 2E_{22} + E_{33}$$

Off-Diagonal examples in *n*-particle notation:

$$\mathbf{V}_{2}^{2} = E_{13} , \quad -2\mathbf{V}_{1}^{2} = \sqrt{2}(E_{12} - E_{23}) , \qquad 2\mathbf{V}_{-1}^{2} = \sqrt{2}(E_{21} - E_{32}) , \qquad 2\mathbf{V}_{-2}^{2} = E_{31} , \\ -2\mathbf{V}_{1}^{1} = \sqrt{2}(E_{12} + E_{23}) \equiv L_{+}, \qquad 2\mathbf{V}_{-1}^{1} = \sqrt{2}(E_{21} + E_{32}) \equiv L_{-} .$$

Tableau calculation of 3-electron  $\ell = 1$  orbital  $p^3$ -states and their  $\mathbf{V}^k_q$  matricesStart with highest angular momentum (L=2)  $p^3$  state:  $|^2 D_{M=2}^{L=2} \rangle = \frac{1}{2}$  (Fermi spin-mate  $\frac{1}{2}$ )Then apply lowering operator  $L_{-} \equiv \sqrt{2}(E_{21} + E_{32})$  $|^2 D_{M=1}^{L=2} \rangle = \frac{1}{2} L_{-} |^2 D_{M=2}^{L=2} \rangle = \frac{1}{2} \sqrt{2} (E_{21} + E_{32}) | \frac{1}{2} \rangle$ Here this is done using Tableau "Jawbone" formula. $= \frac{1}{\sqrt{2}} \left( \left| \frac{1}{2} \right| \right) + \left| \frac{1}{3} \right| \right) \right)$ 



Orthogonal to this is a <sup>2</sup>P (M=1) state

$$\left| {}^{2}P_{M=1}^{L=1} \right\rangle = \frac{1}{\sqrt{2}} \left( \left| {\begin{array}{c} 1 \\ 2 \end{array} \right\rangle} - \left| {\begin{array}{c} 1 \\ 3 \end{array} \right\rangle} \right)$$

Next we calculate 2<sup>n</sup>-pole moments the pair:  $\left\langle {}^{2}P_{M=1}^{L=1} \middle| V_{0}^{k} \middle| {}^{2}D_{M=1}^{L=2} \right\rangle = \frac{1}{\sqrt{2}} \left( \left\langle \left| \frac{12}{2} \right| + \left\langle \left| \frac{11}{3} \right| \right\rangle \right| \left[ \binom{k}{11} E_{11} + \binom{k}{22} E_{22} + \binom{k}{33} E_{33} \right] \left( \left| \frac{12}{2} \right\rangle - \left| \frac{11}{3} \right\rangle \right) \right) = \frac{1}{2} \left[ -\binom{2}{11} E_{11} + 2\binom{2}{22} E_{22} - \binom{2}{33} \right] = -\sqrt{\frac{3}{2}} \text{ for } : k = 2 \\ = \frac{1}{2} \left[ -\binom{1}{11} E_{11} + 2\binom{1}{22} E_{22} - \binom{1}{33} \right] = 0 \text{ for } : k = 1 \\ = \frac{1}{2} \left[ -\binom{0}{11} E_{11} + 2\binom{0}{22} E_{22} - \binom{0}{33} \right] = 0 \text{ for } : k = 0$ 

$$|1,2,3\rangle \equiv |1\rangle_{particle-a}|2\rangle_{particle-b}|3\rangle_{particle-c} \equiv |1\rangle_{a}|2\rangle_{b}|3\rangle_{c}$$

Single particle  $p^1$ -orbitals: U(3) triplet  $|p^1 \sqcup \rangle$ 

 $e_{12}e_{21}=e_{11}$   $|1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1|$ 

General elementary operator commutation  $[E_{jk}, E_{pq}] = \delta_{kp}E_{jq} - \delta_{qj}E_{pk}$ has same form as 1-particle commutation:  $[e_{jk}, e_{pq}] = \delta_{kp}e_{jq} - \delta_{qj}e_{pk}$ 

*Elementary-elementary* operator commutation algebra

This applies to all of multi-particle representations of  $E_{jk}$  and to momentum operators  $L_x$ ,  $L_y$ , and  $L_z$ .

Single particle *p*-orbit ( $\ell$ =1) representation of  $L_x$ ,  $L_y$ , and  $L_z$ 

$$D_{mn}^{1}(L_{x}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & 1 \\ \cdot & 1 & \cdot \end{pmatrix}, \qquad D_{mn}^{1}(L_{y}) = \frac{-i}{\sqrt{2}} \begin{pmatrix} \cdot & 1 & \cdot \\ -1 & \cdot & 1 \\ \cdot & -1 & \cdot \end{pmatrix}, \qquad D_{mn}^{1}(L_{z}) = \begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$$

Elementary operator form of  $L_x$ ,  $L_y$ , and  $L_z$ 

$$L_{x} = \left(E_{12} + E_{23} + E_{21} + E_{32}\right) / \sqrt{2}, \qquad L_{y} = -i\left(E_{12} + E_{23} - E_{21} - E_{32}\right) / \sqrt{2}, \qquad L_{z} = E_{11} - E_{33} + E_{33$$

...and of raise-lower operators  $L_+$  and  $L_-$ 

$$L_{+} = L_{x} + iL_{y} = \sqrt{2} \left( E_{12} + E_{23} \right), \qquad L_{-} = L_{x} - iL_{y} = \sqrt{2} \left( E_{21} + E_{32} \right) = L_{+}^{\dagger}, \qquad L_{z} = [L_{+}, L_{-}]$$