4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $U(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric ${ }^{2}$-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q}{ }_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin-1/2) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page

Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
Modern Physics and its Classical Foundations

2014 AMOP
2017 Group Theory for QM
2018 AMOP

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- Jeigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Bovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Svmmetry in Quantum Rotors - harter - ims - 2001
Bepresentaions Of Multidimensional Symmetries In Networks - harter-imp-1973
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. This bad boy will be a sure force multiplier.

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $U(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q}{ }_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k_{q}}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Single particle p p^{1}-orbitals: U(3) triplet $\quad\left|p^{1} \square\right\rangle$

$$
\begin{array}{ll}
e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\
e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2|
\end{array}
$$

Elementary matrix algebra :
$e_{j k} e_{p q}=\delta_{p k} e_{j q} \quad|j\rangle\langle k \| p\rangle\langle q|=\delta_{p k}|j\rangle q q \mid$

Single particle p p^{1}-orbitals: U(3) triplet $\quad\left|p^{1} \square\right\rangle$

$$
e_{11}=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{12}=\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{13}=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), e_{21}=\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), \ldots e_{33}=\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot
\end{array}\right) .
$$

$$
\begin{array}{ll}
e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\
e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2|
\end{array}
$$

Elementary matrix algebra :

$$
e_{j k} e_{p q}=\delta_{p k} e_{j q} \quad|j\rangle\langle k \| p\rangle\langle q|=\delta_{p k}|j\rangle\langle q|
$$

Elementary $\mathrm{U}(N)$ commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ is due to elementary product $e_{j k} e_{p q}=\delta_{p k} e_{j q}$ proof: $\left[e_{j k}, e_{p q}\right]=e_{j k} e_{p q}-e_{p q} e_{j k}=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$

Single particle p p^{1}-orbitals: U(3) triplet $\quad\left|p^{1} \square\right\rangle$

$$
e_{11}=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{12}=\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{13}=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), e_{21}=\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), \ldots e_{33}=\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot
\end{array}\right) .
$$

$$
\begin{array}{ll}
e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\
e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2|
\end{array}
$$

Elementary $\mathrm{U}(N)$ commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ is due to elementary product $e_{j k} e_{p q}=\delta_{p k} e_{j q}$ proof: $\left[e_{j k}, e_{p q}\right]=e_{j k} e_{p q}-e_{p q} e_{j k}=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$
Relating elementary $e_{j k}=|j\rangle\langle k|$ operators to Boson creation-destruction $\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}$ operators

$$
\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1},\left[\mathbf{a}_{j}, \mathbf{a}_{k}\right]=0,\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}^{\dagger}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Standard notation) }
$$

Single particle p1-orbitals: $U(3)$ triplet $\quad\left|p^{1} \square\right\rangle$

$$
e_{11}=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{12}=\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{13}=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), e_{21}=\left(\begin{array}{lll}
\cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), . . e_{33}=\left(\begin{array}{lll}
\cdot & \cdot \\
\cdot & \cdot \\
1 & \cdot &)
\end{array}\right) .
$$

$$
\begin{array}{ll}
e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\
e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2|
\end{array}
$$

Elementary $\mathrm{U}(N)$ commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ is due to elementary product $e_{j k} e_{p q}=\delta_{p k} e_{j q}$ proof: $\left[e_{j k}, e_{p q}\right]=e_{j k} e_{p q}-e_{p q} e_{j k}=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$
Relating elementary $e_{j k}=|j\rangle\langle k|$ operators to Boson creation-destruction $\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}$ operators

$$
\begin{aligned}
& {\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1},\left[\mathbf{a}_{j}, \mathbf{a}_{k}\right]=0,\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}^{\dagger}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Standard notation) }} \\
& {\left[\bar{a}_{j}, a_{k}\right]=\delta_{j k} \mathbf{1},\left[\bar{a}_{j}, \bar{a}_{k}\right]=0,\left[\bar{a}_{j}, b_{k}\right]=0,\left[b_{j}, b_{k}\right]=0,\left[\bar{b}_{j}, b_{k}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Shorthand notation) }}
\end{aligned}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $\mathrm{U}(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Single particle p1-orbitals: $U(3)$ triplet $\quad\left|p^{1} \square\right\rangle$
$\begin{array}{ll}e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\ e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2\end{array}$ Elementary matrix algebra $e_{j k} e_{p q}=\delta_{p k} e_{j q} \quad|j\rangle\langle k \| p\rangle\langle q|=\delta_{p k}|j\rangle q q \mid$

Elementary $\mathrm{U}(N)$ commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ is due to elementary product $e_{j k} e_{p q}=\delta_{p k} e_{j q}$ proof: $\left[e_{j k}, e_{p q}\right]=e_{j k} e_{p q}-e_{p q} e_{j k}=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$
Relating elementary $e_{j k}=|j\rangle\langle k|$ operators to Boson creation-destruction $\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}$ operators

$$
\begin{aligned}
& {\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1},\left[\mathbf{a}_{j}, \mathbf{a}_{k}\right]=0,\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}^{\dagger}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Standard notation) }} \\
& {\left[\bar{a}_{j}, a_{k}\right]=\delta_{j k} \mathbf{1},\left[\bar{a}_{j}, \bar{a}_{k}\right]=0,\left[\bar{a}_{j}, b_{k}\right]=0,\left[b_{j}, b_{k}\right]=0,\left[\bar{b}_{j}, b_{k}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Shorthand notation) }}
\end{aligned}
$$

Elementary state definitions by Boson operators: $|1\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle,|2\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle,|3\rangle=\mathbf{a}_{3}^{\dagger}|0\rangle$, implies conjugate bras: $\langle 1|=\langle 0| \mathbf{a}_{1},\langle 2|=\langle 0| \mathbf{a}_{2},\langle 3|=\langle 0| \mathbf{a}_{3}$,

Single particle p^{1}-orbitals: $U(3)$ triplet $\quad\left|p^{1} \square\right\rangle$

$$
e_{11}=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), e_{12}=\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{13}=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{21}=\left(\begin{array}{lll}
\cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), \ldots, e_{33}=\left(\begin{array}{lll}
\cdot & \cdot \\
\cdot & \cdot \\
1 & \cdot \\
1 & \cdot
\end{array}\right)
$$

$$
\begin{array}{ll}
e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\
e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2|
\end{array}
$$

Elementary matrix algebra : $e_{j k} e_{p q}=\delta_{p k} e_{j q} \quad|j\rangle\langle k \| p\rangle\langle q|=\delta_{p k}|j\rangle q q \mid$

Elementary $\mathrm{U}(N)$ commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ is due to elementary product $e_{j k} e_{p q}=\delta_{p k} e_{j q}$ proof: $\left[e_{j k}, e_{p q}\right]=e_{j k} e_{p q}-e_{p q} e_{j k}=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$
Relating elementary $e_{j k}=|j\rangle\langle k|$ operators to Boson creation-destruction $\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}$ operators

$$
\begin{aligned}
& {\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1},\left[\mathbf{a}_{j}, \mathbf{a}_{k}\right]=0,\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}^{\dagger}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Standard notation) }} \\
& {\left[\bar{a}_{j}, a_{k}\right]=\delta_{j k} \mathbf{1},\left[\bar{a}_{j}, \bar{a}_{k}\right]=0,\left[\bar{a}_{j}, b_{k}\right]=0,\left[b_{j}, b_{k}\right]=0,\left[\bar{b}_{j}, b_{k}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Shorthand notation) }}
\end{aligned}
$$

Elementary state definitions by Boson operators: $|1\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle,|2\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle,|3\rangle=\mathbf{a}_{3}^{\dagger}|0\rangle$, implies conjugate bras: $\langle 1|=\langle 0| \mathbf{a}_{1},\langle 2|=\langle 0| \mathbf{a}_{2},\langle 3|=\langle 0| \mathbf{a}_{3}$, that form a unit matrix with kets
$\left(\begin{array}{lll}\langle 11\rangle\rangle & \langle 1 \mid 2\rangle & \langle 1 \mid 3\rangle \\ \langle 2 \mid 1\rangle & \langle 2 \mid 2\rangle & \langle 2 \mid 3\rangle \\ \langle 3 \mid 1\rangle & \langle 3 \mid 2\rangle & \langle 3 \mid 1\rangle\end{array}\right)=\left(\begin{array}{lll}1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1\end{array}\right)$

$$
e_{11}=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), e_{12}=\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{13}=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), e_{21}=\left(\begin{array}{lll}
\cdot & \cdot \\
1 & \cdot & . \\
\cdot & \cdot
\end{array}\right), \ldots e_{33}=\left(\begin{array}{lll}
\cdot & \cdot \\
\cdot & \cdot \\
1 & \cdot &)
\end{array}\right)
$$

$$
\begin{array}{ll}
e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\
e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2|
\end{array}
$$

Elementary matrix algebra

$$
e_{j k} e_{p q}=\delta_{p k} e_{j q} \quad|j\rangle\langle k \| p\rangle q\left|=\delta_{p k}\right| j\langle q|
$$

Elementary $\mathrm{U}(N)$ commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ is due to elementary product $e_{j k} e_{p q}=\delta_{p k} e_{j q}$ proof: $\left[e_{j k}, e_{p q}\right]=e_{j k} e_{p q}-e_{p q} e_{j k}=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$
Relating elementary $e_{j k}=|j\rangle\langle k|$ operators to Boson creation-destruction $\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}$ operators

$$
\begin{aligned}
& {\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1},\left[\mathbf{a}_{j}, \mathbf{a}_{k}\right]=0,\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}^{\dagger}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Standard notation) }} \\
& {\left[\bar{a}_{j}, a_{k}\right]=\delta_{j k} \mathbf{1},\left[\bar{a}_{j}, \bar{a}_{k}\right]=0,\left[\bar{a}_{j}, b_{k}\right]=0,\left[b_{j}, b_{k}\right]=0,\left[\bar{b}_{j}, b_{k}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Shorthand notation) }}
\end{aligned}
$$

Elementary state definitions by Boson operators: $|1\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle,|2\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle,|3\rangle=\mathbf{a}_{3}^{\dagger}|0\rangle$, implies conjugate bras: $\langle 1|=\langle 0| \mathbf{a}_{1},\langle 2|=\langle 0| \mathbf{a}_{2},\langle 3|=\langle 0| \mathbf{a}_{3}$, that form a unit matrix with kets

Following commutation relation $\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\mathbf{1} \cdot \delta_{j k}=\left[\mathrm{a}_{j}, \overline{\mathrm{a}}_{k}\right]$:

$$
\left(\begin{array}{ccc}
\langle 111\rangle\rangle\langle 1 \mid 2\rangle & \langle 1 \mid 3\rangle \\
\langle 2 \mid 1\rangle & \langle 2 \mid 2\rangle & \langle 2 \mid 3\rangle \\
\langle 3 \mid 1\rangle\rangle & \langle 3 \mid 2\rangle & \langle 3 \mid 1\rangle
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdot & . \\
\cdot & 1 & . \\
\cdot & \cdot & 1
\end{array}\right) \quad \begin{aligned}
\langle j \mid k\rangle=\langle 0| \mathbf{a}_{j} \mathbf{a}_{k}^{\dagger}|0\rangle & =\langle 0|\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]|0\rangle+\langle 0| \mathbf{a}_{k}^{\dagger} \mathbf{a}_{j}|0\rangle \\
& =\langle 0| \mathbf{1} \delta_{j k}|0\rangle+\quad 0 \quad\left(\text { since: } \mathbf{a}_{j}|0\rangle=0\right) \\
& \left.=\delta_{j k} \quad \text { (assuming: }\langle 0 \mid 0\rangle=1\right)
\end{aligned}
$$

$$
e_{11}=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{12}=\left(\begin{array}{lll}
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right), e_{13}=\left(\begin{array}{lll}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), e_{21}=\left(\begin{array}{lll}
\cdot & \cdot & . \\
1 & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right), \ldots e_{33}=\left(\begin{array}{lll}
\cdot & \cdot \\
\cdot & \cdot \\
1 & \cdot & .
\end{array}\right)
$$

$$
\begin{array}{ll}
e_{12} e_{21}=e_{11} & |1\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1| \\
e_{12} e_{22}=e_{12} & |1\rangle\langle 2||2\rangle\langle 2|=|1\rangle\langle 2|
\end{array}
$$

$$
e_{j k} e_{p q}=\delta_{p k} e_{j q} \quad|j\rangle\langle k \| p\rangle\langle q|=\delta_{p k}|j\rangle\langle q|
$$

Elementary $\mathrm{U}(N)$ commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ is due to elementary product $e_{j k} e_{p q}=\delta_{p k} e_{j q}$ proof: $\left[e_{j k}, e_{p q}\right]=e_{j k} e_{p q}-e_{p q} e_{j k}=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$
Relating elementary $e_{j k}=|j\rangle\langle k|$ operators to Boson creation-destruction $\mathbf{a}^{\dagger} \mathbf{a}_{k}$ operators

$$
\begin{aligned}
& {\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1},\left[\mathbf{a}_{j}, \mathbf{a}_{k}\right]=0,\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}^{\dagger}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Standard notation) }} \\
& {\left[\bar{a}_{j}, a_{k}\right]=\delta_{j k} \mathbf{1},\left[\bar{a}_{j}, \bar{a}_{k}\right]=0,\left[\bar{a}_{j}, b_{k}\right]=0,\left[b_{j}, b_{k}\right]=0,\left[\bar{b}_{j}, b_{k}\right]=\delta_{j k} \mathbf{1}, \ldots \text { (Shorthand notation) }}
\end{aligned}
$$

Elementary state definitions by Boson operators:
$|1\rangle=\mathbf{a}_{1}^{\dagger}|0\rangle,|2\rangle=\mathbf{a}_{2}^{\dagger}|0\rangle,|3\rangle=\mathbf{a}_{3}^{\dagger}|0\rangle$, implies conjugate bras: $\langle 1|=\langle 0| \mathbf{a}_{1},\langle 2|=\langle 0| \mathbf{a}_{2},\langle 3|=\langle 0| \mathbf{a}_{3}$, that form a unit matrix with kets \quad Following commutation relation $\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\boldsymbol{i} \cdot \delta_{j k}=\left[\mathrm{a}_{j}, \overline{\mathrm{a}}_{k}\right]$:

$$
\left(\begin{array}{rll}
\langle 111\rangle & \langle 1 \mid 2\rangle & \langle 1 \mid 3\rangle \\
\langle 2 \mid 1\rangle & \langle 2 \mid 2\rangle & \langle 2 \mid 3\rangle \\
\langle 3 \mid 1\rangle & \langle 3 \mid 2\rangle & \langle 3 \mid 1\rangle
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdot & . \\
\cdot & 1 & . \\
\cdot & \cdot & 1
\end{array}\right) \quad \begin{aligned}
\langle j \mid k\rangle=\langle 0| \mathbf{a}_{j} \mathbf{a}_{k}^{\dagger}|0\rangle & =\langle 0|\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]|0\rangle+\langle 0| \mathbf{a}_{k}^{\dagger} \mathbf{a}_{j}|0\rangle \\
& =\langle 0| \mathbf{1} \delta_{j k}|0\rangle+ \\
& =\delta_{j k} \quad\left(\text { since: } \mathbf{a}_{j}|0\rangle=0\right) \\
& \text { (assuming: }\langle 0 \mid 0\rangle=1)
\end{aligned}
$$

Relating n-particle $E_{j k}=e_{j k}(a)+e_{j k}(b)+\ldots$ operators to n-particle Boson $\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}, \mathbf{b}^{\dagger}{ }_{j} \mathbf{b}_{k}, \ldots$ operator sets
n-particle operator commutation $\left[E_{j k}, E_{p q}\right]=\delta_{k p} E_{j q}-\delta_{q j} E_{p k}$ is just like $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$ as long as different types always commute.

$$
\begin{aligned}
& 0=\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\left[\mathbf{a}_{j}, \mathbf{c}_{k}^{\dagger}\right]=\left[\mathbf{b}_{j}, \mathbf{c}_{k}^{\dagger}\right] \ldots \\
& 0=\left[\bar{a}_{j}, b_{k}\right]=\left[\bar{a}_{j}, c_{k}\right]=\left[\bar{b}_{j}, c_{k}\right] \ldots
\end{aligned}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $\mathrm{U}(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Summary of multi particle commutation relations

Boson ($\mathbf{a}^{\dagger}, \mathbf{a}$) operators and Elementary $E_{j k}$ operators for multiple particles a, b, c, \ldots :
1-particle $e_{j k} \quad N$-particle sums that make $E_{j k}=e_{j k}(a)+e_{j k}(b)+e_{j k}(c)+\ldots$

$$
\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}=e_{j k}=a_{j} \bar{a}_{k} \quad \quad \mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}+\mathbf{b}_{j}^{\dagger} \mathbf{b}_{k}+\ldots=E_{j k}=a_{j} \bar{a}_{k}+b_{j} \bar{b}_{k}+\ldots
$$

Each creation $\left(\mathbf{a}^{\dagger}{ }_{\mathrm{j}}=a_{j}\right)$ or destruction $\left(\mathbf{a}_{\mathrm{j}}=\bar{a}_{j}\right)$ operator has a 1 -term commutation relation

$$
\left.\begin{array}{l}
{\left[\mathbf{a}_{j}, \mathbf{a}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1},\left[\mathbf{a}_{j}, \mathbf{a}_{k}\right]=0,\left[\mathbf{a}_{j}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}^{\dagger}, \mathbf{b}_{k}^{\dagger}\right]=0,\left[\mathbf{b}_{j}, \mathbf{b}_{k}^{\dagger}\right]=\delta_{j k} \mathbf{1}, \ldots}
\end{array} \quad \text { (Standard notation) }\right)=\left[\bar{a}_{j}, a_{k}\right]=\delta_{j k} \mathbf{1},\left[\bar{a}_{j}, \bar{a}_{k}\right]=0,\left[\bar{a}_{j}, b_{k}\right]=0,\left[b_{j}, b_{k}\right]=0,\left[\bar{b}_{j}, b_{k}\right]=\delta_{j k} \mathbf{1}, \ldots \quad \text { (Shorthand notation) }
$$

Each elementary operator has a 2 -term commutation relation

$$
\begin{array}{rlr}
{\left[e_{j k}, e_{p q}\right]} & =e_{j k} e_{p q}-e_{p q} e_{j k} & {\left[E_{j k}, E_{p q}\right]=\delta_{p k} E_{j q}-\delta_{q j} E_{p k}} \\
& =\delta_{p k} e_{j q}-\delta_{q j} e_{p k} &
\end{array}
$$

1-particle $e_{j k}$ relations apply to N-particle $E_{j k}$ since all a 's commute with all other b 's, c 's,....etc.

$$
\begin{aligned}
{\left[e_{j k}, e_{p q}\right] } & =\quad a_{j} \bar{a}_{k} a_{p} \bar{a}_{q}-a_{p} \bar{a}_{q} a_{j} \bar{a}_{k} \\
& =a_{j}\left(\delta_{p k}+a_{p} \bar{a}_{k}\right) \bar{a}_{q}-a_{p}\left(\delta_{q j}+a_{j} \bar{a}_{q}\right) \bar{a}_{k} \\
& =\delta_{p k} a_{j} \bar{a}_{q}+a_{j} a_{p} \bar{a}_{k} \bar{a}_{q}-\delta_{q j} a_{p} \bar{a}_{k}-a_{p} a_{j} \bar{a}_{q} \bar{a}_{k}=\delta_{k p} e_{j q}-\delta_{j q} e_{p k}
\end{aligned}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric ${ }^{2}$-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get "2-jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k_{q}}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Symmetric p^{2}-orbitals: $U(3)$ sextet $\left|p^{2} \square \square\right\rangle$
Sample matrix elements for the $[2,0]=|\square \square\rangle$ sextet states:

$$
\begin{aligned}
& \left.E_{11} \mid \text { [1] }\right\rangle=\left(e_{11}(a)+e_{11}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left(a_{1} \bar{a}_{1}+b_{1} \bar{b}_{1}\right)\left|1_{a}, 1_{b}\right\rangle=2 \mid 1010 \\
& \left.E_{21}|[1]|=\left(e_{21}(a)+e_{21}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle=\sqrt{2} \frac{\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle}{\sqrt{2}}=\sqrt{2}|1| 2\right\rangle
\end{aligned}
$$

$$
E_{21}=E_{12}^{\dagger}
$$

$$
E_{12}=E_{21}^{\dagger}
$$

Symmetric p p^{2}－orbitals：$U(3)$ sextet $\left|p^{2} \square \square\right\rangle$
Sample matrix elements for the $[2,0]=|\square \square\rangle$ sextet states：

$$
\begin{aligned}
& \left.\left.E_{11}\right|^{11}\right\rangle=\left(e_{11}(a)+e_{11}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left(a_{1} \bar{a}_{1}+b_{1} \bar{b}_{1}\right)\left|1_{a}, 1_{b}\right\rangle=2|111\rangle \\
& \left.\left.E_{21}\right|^{1}|1\rangle=\left(e_{21}(a)+e_{21}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle=\sqrt{2} \frac{\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle}{\sqrt{2}}=\sqrt{2}|1| 2\right\rangle
\end{aligned}
$$

$E_{21}=$							$=E_{21}^{\dagger}$					
E_{21}	（11）［2］	［8］3	［1］		213	E_{12}	罵	212	［3］3	［1］	［1］3	2］3
吅						昒		．		$\sqrt{2}$		
［2］	．		$\sqrt{2}$			［2］		．		．		
䂛	．					国可		．				
回	$\sqrt{2}$					$0{ }^{10}$		$\sqrt{2}$				
［1］				．	．	［1］		－				1
［2］				1		$22 \mid 3$						

Symmetric p p^{2}－orbitals：$U(3)$ sextet $\left|p^{2} \square \square\right\rangle$
Sample matrix elements for the $[2,0]=|\square \square\rangle$ sextet states：

$$
E_{21}=E_{12}^{\dagger}
$$

$$
E_{12}=E_{21}^{\dagger}
$$

E_{21}	11	12	$2[1]$	［1］3	［12］	$1]^{3}$	［2］3	E_{12}	［1］	［12］	［3］3	$\underline{12}$	［1］	213
吅								［1］				$\sqrt{2}$	．	
［2］2	．				$\sqrt{2}$			［2］		．		．	．	
国可								［国 ${ }^{3}$		．		．	．	
［回	$\sqrt{ }$							昭		$\sqrt{2}$		．	．	
［1国								［1］				．		1
2123						1		2｜ 23					．	

$$
\begin{aligned}
& \left.E_{11} \mid 111\right]=\left(e_{11}(a)+e_{11}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left(a_{1} \bar{a}_{1}+b_{1} \bar{b}_{1}\right)\left|1_{a}, 1_{b}\right\rangle=2|111\rangle \\
& \left.E_{21}|[1]|=\left(e_{21}(a)+e_{21}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle=\sqrt{2} \frac{\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle}{\sqrt{2}}=\sqrt{2}|1| 2\right\rangle \\
& \left.E_{21}\left|\frac{12}{2}\right\rangle=\left(e_{21}(a)+e_{21}(b)\right) \frac{\left.1_{a}, 2_{b}\right\rangle+\left|2_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{2}{\sqrt{2}}\left|2_{a}, 2_{b}\right\rangle=\sqrt{2}|2| 2 \right\rvert\,
\end{aligned}
$$

Symmetric p p^{2}-orbitals: $U(3)$ sextet $\left|p^{2} \square \square\right\rangle$
Sample matrix elements for the $[2,0]=|\square \square\rangle$ sextet states:

$$
E_{21}=E_{12}^{\dagger}
$$

$$
E_{12}=E_{21}^{\dagger}
$$

$$
\begin{aligned}
& \left.E_{11} \mid 111\right]=\left(e_{11}(a)+e_{11}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left(a_{1} \bar{a}_{1}+b_{1} \bar{b}_{1}\right)\left|1_{a}, 1_{b}\right\rangle=2|111\rangle \\
& \left.E_{21}|[1]|=\left(e_{21}(a)+e_{21}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle=\sqrt{2} \frac{\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle}{\sqrt{2}}=\sqrt{2}|1| 2\right\rangle \\
& \left.E_{21}|12|=\left(e_{21}(a)+e_{21}(b)\right) \frac{\left|1_{a}, 2_{b}\right\rangle+\left|2_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{2}{\sqrt{2}}\left|2_{a}, 2_{b}\right\rangle=\sqrt{2}|2| 2 \right\rvert\, \\
& \left.\left.E_{21}| |^{1}\right|^{3}\right\rangle=\left(e_{21}(a)+e_{21}(b)\right) \frac{\left|1_{a}, 3_{b}\right\rangle+\left|3_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{\left|2_{a}, 3_{b}\right\rangle+\left|3_{a}, 2_{b}\right\rangle}{\sqrt{2}}=|23\rangle
\end{aligned}
$$

Symmetric p p^{2}-orbitals: $U(3)$ sextet $\left|p^{2} \square \square\right\rangle$
Sample matrix elements for the $[2,0]=|\square \square\rangle$ sextet states:

$$
\begin{aligned}
& \left.E_{11}\left|\begin{array}{|c|}
11 \\
1
\end{array}\right\rangle=\left(e_{11}(a)+e_{11}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left(a_{1} \bar{a}_{1}+b_{1} \bar{b}_{1}\right)\left|1_{a}, 1_{b}\right\rangle=2|1| 1\right\rangle \\
& E_{21}\left|\left[\begin{array}{ll}
1]
\end{array}=\left(e_{21}(a)+e_{21}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle=\sqrt{2} \frac{\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle}{\sqrt{2}}=\sqrt{2}|1| 2\right\rangle\right. \\
& \left.E_{21}|122\rangle=\left(e_{21}(a)+e_{21}(b)\right) \frac{\left|1_{a}, 2_{b}\right\rangle+\left|2_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{2}{\sqrt{2}}\left|2_{a}, 2_{b}\right\rangle=\sqrt{2}|2| 2 \right\rvert\, \\
& E_{21}|103\rangle=\left(e_{21}(a)+e_{21}(b)\right) \frac{\left|1_{a}, 3_{b}\right\rangle+\left|3_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{\left|2_{a}, 3_{b}\right\rangle+\left|3_{a}, 2_{b}\right\rangle}{\sqrt{2}}=|23\rangle \\
& \left.E_{21}|2| 3\right\rangle=0 \\
& E_{21}=E_{12}^{\dagger} \\
& E_{12}=E_{21}^{\dagger}
\end{aligned}
$$

Symmetric p2-orbitals: $U(3)$ sextet $\left|p^{2} \square \square\right\rangle$
Sample matrix elements for the $[2,0]=|\square \square\rangle$ sextet states:

$$
\begin{aligned}
& \left.E_{11}| | 1[1]=\left(e_{11}(a)+e_{11}(b)\right)\left|1_{a}, 1_{b}\right\rangle=\left(a_{1} \bar{a}_{1}+b_{1} \bar{b}_{1}\right)\left|1_{a}, 1_{b}\right\rangle=2|1| 1\right\rangle \\
& \left.\left.E_{21}\left|\left[\begin{array}{l}
1] \\
1
\end{array}\right\rangle=\left(e_{21}(a)+e_{21}(b)\right)\right| 1_{a}, 1_{b}\right\rangle=\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle=\sqrt{2} \frac{\left|2_{a}, 1_{b}\right\rangle+\left|1_{a}, 2_{b}\right\rangle}{\sqrt{2}}=\sqrt{2}|1| 2\right\rangle \\
& \left.E_{21}|\sqrt{2}\rangle=\left(e_{21}(a)+e_{21}(b)\right) \frac{\left|1_{a}, 2_{b}\right\rangle+\left|2_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{2}{\sqrt{2}}\left|2_{a}, 2_{b}\right\rangle=\sqrt{2}|2| 2 \right\rvert\, \\
& E_{21}|103\rangle=\left(e_{21}(a)+e_{21}(b)\right) \frac{\left|1_{a}, 3_{b}\right\rangle+\left|3_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{\left|2_{a}, 3_{b}\right\rangle+\left|3_{a}, 2_{b}\right\rangle}{\sqrt{2}}=|23\rangle \\
& E_{21}|2 \sqrt{3}\rangle=0 \\
& E_{21}=E_{12}^{\dagger} \\
& E_{12}=E_{21}^{\dagger} \\
& E_{23}=E_{32}^{\dagger}
\end{aligned}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get "2-jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Combining elementary＂1－jump＂E_{12} ，and E_{23}, \ldots operators gives＂2－jump＂operator E_{13} ． $U(n)$ operators $E_{24}, E_{35} \ldots, E_{14}, E_{25}, E_{36} \ldots$ include $n(n-1) / 2$ operators connecting n states．

$$
E_{13}=\left[E_{12}, E_{23}\right]=E_{12} \cdot E_{23}-E_{23} \cdot E_{12}
$$

$$
\begin{aligned}
& \left.E_{13}|[\mid]| \text { 解 }\right\rangle=E_{12} E_{23} \frac{\left|1_{a}, 3_{b}\right\rangle+\left|3_{a}, 1_{b}\right\rangle}{\sqrt{2}}-E_{23} E_{12} \frac{\left|1_{a}, 3_{b}\right\rangle+\left|3_{a}, 1_{b}\right\rangle}{\sqrt{2}} \\
& =E_{12} \frac{\left|1_{a}, 2_{b}\right\rangle+\left|2_{a}, 1_{b}\right\rangle}{\sqrt{2}} \quad-E_{23} \cdot 0 \\
& \left.=\frac{\left|1_{a}, 1_{b}\right\rangle+\left|1_{a}, 1_{b}\right\rangle}{\sqrt{2}}=\frac{2}{\sqrt{2}}\left|1_{a}, 1_{b}\right\rangle \quad=\sqrt{2} \right\rvert\, 1 ⿴ 囗 十 ⺝ \\
& E_{13}=E_{31}^{\dagger}= \\
& \left.\left.E_{13}\right|^{22 \mid 3}\right\rangle=E_{12} E_{23} \frac{\left|2_{a}, 3_{b}\right\rangle+\left|3_{a}, 2_{b}\right\rangle}{\sqrt{2}}-E_{23} E_{12} \frac{\left|2_{a}, 3_{b}\right\rangle+\left|3_{a}, 2_{b}\right\rangle}{\sqrt{2}} \\
& =E_{12} \frac{\left|2_{a}, 2_{b}\right\rangle+\left|2_{a}, 2_{b}\right\rangle}{\sqrt{2}}-E_{23} \frac{\left|1_{a}, 3_{b}\right\rangle+\left|3_{a}, 1_{b}\right\rangle}{\sqrt{2}} \\
& =\frac{\left|1_{a}, 2_{b}\right\rangle+\left|2_{a}, 1_{b}\right\rangle}{\sqrt{2}}-\frac{\left|1_{a}, 2_{b}\right\rangle+\left|2_{a}, 1_{b}\right\rangle}{\sqrt{2}}=0 \\
& \left.\left.E_{13}\right|^{|3| 3}\right\rangle=E_{12} E_{23}\left|3_{a}, 3_{b}\right\rangle-E_{23} E_{12}\left|3_{a}, 3_{b}\right\rangle \\
& =E_{12}\left(\left|2_{a}, 3_{b}\right\rangle+\left|3_{a}, 2_{b}\right\rangle\right) \quad-0 \\
& \left.=\left|1_{a}, 3_{b}\right\rangle+\left|3_{a}, 1_{b}\right\rangle=\sqrt{2} \mid \text { [1]3 }\right\rangle
\end{aligned}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $U(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get "2-jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Review:Representation of Diagonalizing Transform (DTran T) made by excerpting \mathbf{P}-columns

DTran T Lect. 21 p. 13.
Using Diagonalizing Transform (DTran T) to derive ireps $\mathrm{D}^{[20]}\left(E_{12}\right)$ and $\mathrm{D}^{[11]}\left(E_{12}\right)$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $U(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{T}^{k} q$ or $\mathbf{v}_{q}{ }_{q}$ matrices: $\ell=1$ (atomic p-shell)

$$
\begin{aligned}
& \text { 2-by-2 case: } \mathbf{H}=\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)+\frac{A-D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\frac{A+D}{2} \quad \mathbf{1} \quad{ }^{+B} \boldsymbol{\sigma}_{x} \quad{ }^{+C} \boldsymbol{\sigma}_{y} \quad+\frac{A-D}{2} \boldsymbol{\sigma}_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{u}_{0}^{0}=\left(\begin{array}{ll}
1 \\
0 & 0
\end{array}\right)^{2} \frac{1}{2} \\
& \text { rank-0 } \\
& \text { (scalar) } \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{T}^{k}{ }_{q}$ or \mathbf{v}^{k} matrices: $\ell=1$ (atomic p-shell)

$$
\begin{aligned}
2-b y=2 & \text { case: } \mathbf{H}=\left(\begin{array}{cc}
A & B-i C \\
B+i C & D
\end{array}\right)
\end{aligned}=\frac{A+D}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+C\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)+\frac{A-D}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Generalization of $\mathrm{U}(2)$ spinor analysis to $\mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5)$...

$$
\text { 3-by-3 case: } \mathbf{H}=\left(\begin{array}{l}
H_{12} H_{2} H_{13} \\
H_{22} H_{22} H_{23} \\
H_{31} H_{32} H_{33}
\end{array}\right)={ }_{B} \mathbf{T}_{0}^{0}+\ldots+t_{2} \mathbf{T}_{2}^{2}+\ldots
$$

(AMOP Lect. 11p. 5)

$U(3)$ generators ($\operatorname{spin} J=1)$					
$\mathbf{u}_{+2}^{2}=\left(\begin{array}{lll} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	$\mathbf{u}_{+1}^{2}=\left(\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \frac{1}{2}$	$\mathbf{u}_{0}^{2}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{array}\right) \frac{1}{\sqrt{6}}$	$\mathbf{u}_{-1}^{2}=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{array}\right) \frac{1}{2}$	$\mathbf{u}_{-2}^{2}=\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right)$	rank-2 (tensor)
	$\mathbf{u}_{+1}^{1}=\left(\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right) \frac{l}{\frac{l}{2}}$	$\mathbf{u}_{0}^{1}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right) \frac{1}{2}$	$\mathbf{u}_{-1}^{1}=\left(\begin{array}{lll} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)^{\frac{1}{2}}$		rank-1 (vector)
		${ }_{0}^{0}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \frac{1}{3}$			rank-0 (scalar)

Mutually
commuting
diagonal operators

Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{T}_{q}{ }_{q}$ or $\mathbf{v}^{k}{ }_{q}$ matrices:
$\ell=1$ (atomic p-shell) Recall $\mathbf{v}_{\mathbf{q}}$ triangular arrays:
(AMOP Lect. 11p.5_) $\left\langle\mathbf{v}_{q}^{k}\right\rangle=\sum_{m, m^{\prime}=-\ell}^{\ell}\left|\begin{array}{l}\ell \\ m\end{array}\right\rangle\left\langle\begin{array}{l}\ell \\ m\end{array}\right| \begin{gathered}k \\ q\end{gathered}\left|\begin{array}{l}\ell \\ m^{\prime}\end{array}\right\rangle\left\langle\begin{array}{l}\ell \\ m^{\prime}\end{array}\right|$

$$
\ell=1
$$

tensor array
1-particle notation
$=\sum_{m, m^{\prime}=-\ell}^{\ell}\left\langle\begin{array}{c|c|c}\ell & \mathbf{V}_{q}^{k} & \ell \\ m & m^{\prime}\end{array}\right\rangle e_{m, m^{\prime}}=\sum_{m, m^{\prime}=-\ell}^{\ell}\left(\begin{array}{c}k \\ m \\ m\end{array}\right) e^{\prime} . \begin{gathered}k, m^{\prime}\end{gathered}$

$$
\left\langle\mathbf{v}_{-2}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot
\end{array}\right)\left\langle\mathbf{v}_{-1}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & -1 & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & -2 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{6}} \quad\left\langle\mathbf{v}_{+1}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & -1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{+2}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)
$$

$$
\left\langle\mathbf{v}_{-1}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \dot{\uparrow} & -1
\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{+1}^{1}\right\rangle=\left(\begin{array}{ccc}
\cdot & -1 & \cdot \\
\cdot & \cdot & -1 \\
\cdot & \cdot & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}
$$

Diagonal examples in n-particle notation:

$\ell=1$ (condensed format)	
$\left\langle\mathbf{v}_{0}^{2}\right\rangle$	$=\left(\begin{array}{lll}1 & -1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 & 1\end{array}\right) \frac{1}{\frac{1}{\sqrt{2}}}$
$\left\langle\mathbf{v}_{0}^{1}\right\rangle$	$=\left(\begin{array}{lll}1 & -1 & \cdot \\ 1 & 0 & -1 \\ \cdot & 1 & -1\end{array}\right) \frac{1}{\sqrt{6}}$
$\left\langle\mathbf{v}_{0}^{0}\right\rangle$	$=\left(\begin{array}{lll}1 \\ \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1\end{array}\right) \frac{1}{\sqrt{2}}$

Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{T}_{q}{ }_{q}$ or $\mathbf{v}^{k}{ }_{q}$ matrices: $\ell=1$ (atomic p-shell) Recall $\mathbf{v}_{\mathbf{q}}$ triangular arrays:
(AMOP Lect. 11p.5_) $\left\langle\mathbf{V}_{q}^{k}\right\rangle=\sum_{m, m^{\prime}=-\ell}^{\ell}\left|\begin{array}{l}\ell \\ m\end{array}\right\rangle\left\langle\begin{array}{c}\ell \\ m\end{array}\right| \begin{gathered}k \\ q\end{gathered}\left|\begin{array}{c}\ell \\ m^{\prime}\end{array}\right\rangle\left\langle\begin{array}{c}\ell \\ m^{\prime}\end{array}\right|$

$$
\ell=1
$$

tensor array
1-particle notation
$=\sum_{m, m^{\prime}=-\ell}^{\ell}\left\langle\begin{array}{c|c|c}\ell & \mathbf{V}_{q}^{k} & \ell \\ m & m^{\prime}\end{array}\right\rangle e_{m, m^{\prime}}=\sum_{m, m^{\prime}=-\ell}^{\ell}\left(\begin{array}{c}k \\ m \\ m\end{array}\right) e^{\prime} . \begin{gathered}k, m^{\prime}\end{gathered}$ $\left\langle\mathbf{v}_{-2}^{2}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot\end{array}\right)\left\langle\mathbf{v}_{-1}^{2}\right\rangle=\left(\begin{array}{ccc}\cdot & -1 & \cdot \\ 1 & \cdot & 1 \\ \cdot & -1 & \cdot\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & -2 & \cdot \\ \cdot & \cdot & 1\end{array}\right) \frac{1}{\sqrt{6}} \quad\left\langle\mathbf{v}_{+1}^{2}\right\rangle=\left(\begin{array}{ccc}\cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\begin{array}{ll}\mathbf{v}_{+2}^{2}\end{array}\right\rangle=\left(\begin{array}{lll}\cdot & \cdot & 1 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right)$ $\underset{\sqrt{2} v_{0}}{S_{0}^{2}} \underset{\sim}{2} \quad\left\langle\mathbf{v}_{-1}^{1}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{+1}^{1}\right\rangle=\left(\begin{array}{ccc}\cdot & -1 & \cdot \\ \cdot & \cdot & -1 \\ \cdot & \cdot & \cdot\end{array}\right) \frac{1}{\sqrt{2}}$
${ }^{2} P$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{lll}
1 & -1 & 1 \\
1 & -2 & 1 \\
1 & -1 & 1
\end{array}\right) \begin{array}{c}
1 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}}
\end{array} \\
& \left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{lll}
1 & -1 & \cdot \\
1 & 0 & -1 \\
\cdot & 1 & -1
\end{array}\right)_{\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right)_{\frac{1}{\sqrt{3}}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{3} \mathbf{V}_{0}^{0}=E_{11}+E_{22}+E_{33} \\
& \sqrt{2} \mathbf{V}_{0}^{1}=E_{11} \quad-E_{33} \equiv L_{2} \\
& \sqrt{6} \mathbf{V}_{0}^{2}=E_{11}-2 E_{22}+E_{33}
\end{aligned}
$$

Diagonal examples in n-particle notation:

Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{T}_{q}{ }_{q}$ or $\mathbf{v}^{k}{ }_{q}$ matrices: $\ell=1$ (atomic p-shell) Recall $\mathbf{v}_{\mathbf{q}}$ triangular arrays:

$$
=\sum_{m, m^{\prime}=-\ell}^{\ell}\left\langle\begin{array}{c|c|c}
\ell \\
m
\end{array}\right| \mathbf{v}_{q}^{k}\left|\begin{array}{l}
\ell \\
m^{\prime}
\end{array}\right\rangle e_{m, m^{\prime}}=\sum_{m, m^{\prime}=-\ell}^{\ell}\binom{k}{m \quad m^{\prime}} e_{m, m^{\prime}}
$$

$$
\left\langle\mathbf{v}_{-2}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot
\end{array}\right)\left\langle\mathbf{v}_{-1}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & -1 & \cdot \\
1 & \cdot & 1 \\
\cdot & -1 & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & -2 & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{6}}\left\langle\mathbf{v}_{+1}^{2}\right\rangle=\left(\begin{array}{ccc}
\cdot & -1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{array}\right) \frac{1}{\sqrt{2}}\left\langle\mathbf{v}_{+2}^{2}\right\rangle=\left(\begin{array}{ll}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right)
$$ $\sqrt{2} \underbrace{2}$

$(p)^{\prime}$

$\ell=1$
tensor array
1-particle notation

$$
\left\langle\mathbf{v}_{q}^{k}\right\rangle=\sum_{m, m^{\prime}=-\ell}^{\ell}\left|\begin{array}{l}
\ell \\
m
\end{array}\right\rangle\left\langle\begin{array}{l}
\ell \\
m
\end{array}\right| \mathbf{v}_{q}^{k}\left|\begin{array}{l}
\ell \\
m^{\prime}
\end{array}\right\rangle\left\langle\begin{array}{l}
\ell \\
m^{\prime}
\end{array}\right|
$$ $\left\langle\mathbf{v}_{-1}^{1}\right\rangle=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ \cdot & 0 & \cdot \\ \cdot & \cdot & -1\end{array}\right) \frac{1}{\sqrt{2}} \quad\left\langle\mathbf{v}_{+1}^{1}\right\rangle=\left(\begin{array}{l}\cdot \\ \cdot \\ \cdot\end{array} . .\right.$.

Diagonal examples in n-particle notation:

$$
\begin{aligned}
& \sqrt{3} \mathbf{V}_{0}^{0}=E_{11}+E_{22}+E_{33} \\
& \sqrt{2} \mathbf{V}_{0}^{1}=E_{11} \quad-E_{33} \equiv L_{2} \\
& \sqrt{6} \mathbf{V}_{0}^{2}=E_{11}-2 E_{22}+E_{33}
\end{aligned}
$$

Off-Diagonal examples in n-particle notation:

$$
\left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
. & 1 & \cdot \\
. & \cdot & 1
\end{array}\right) \frac{1}{\sqrt{3}} \quad \begin{gathered}
\ell=1 \\
\text { (condensed } \\
\text { format) }
\end{gathered}
$$

$$
\begin{aligned}
& \left\langle\mathbf{v}_{0}^{2}\right\rangle=\left(\begin{array}{lll}
1 & -1 & 1 \\
1 & -2 & 1 \\
1 & -1 & 1
\end{array}\right) \frac{1}{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{6}} \\
& \left\langle\mathbf{v}_{0}^{1}\right\rangle=\left(\begin{array}{ccc}
1 & -1 & \cdot \\
1 & 0 & -1 \\
\cdot & 1 & -1
\end{array}\right)_{\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \\
& \left\langle\mathbf{v}_{0}^{0}\right\rangle=\left(\begin{array}{lll}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1
\end{array}\right)_{\frac{1}{\sqrt{3}}}
\end{aligned}
$$

$$
\begin{array}{lll}
\mathbf{V}_{2}^{2}=E_{13}, & -2 \mathbf{V}_{1}^{2}=\sqrt{2}\left(E_{12}-E_{23}\right), & 2 \mathbf{V}_{-1}^{2}=\sqrt{2}\left(E_{21}-E_{32}\right), \quad 2 \mathbf{V}_{-2}^{2}=E_{31}, \\
& -2 \mathbf{V}_{1}^{1}=\sqrt{2}\left(E_{12}+E_{23}\right) \equiv L_{+}, & 2 \mathbf{V}_{-1}^{1}=\sqrt{2}\left(E_{21}+E_{32}\right) \equiv L_{-} .
\end{array}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin-1/2) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Condensed form tensor tables for higher orbital shells

p: $\ell=1$,
$d: l=2, \quad f: l=3$,
$8 \cdot l=4$

A. (j) SUB-SHELL TENSORS

B. (1) SUB-SHELL TENSORS

orthonormality of 45° slant rows!

Easy to fit tensors to any matrix!

Condensed form tensor tables for higher orbital shells. $p: \ell=1, \quad d: \ell=2, f: \ell=3, g: \ell=4$.

A. (j) SUB-SHELL TENSORS

B (continued) (g) l=4
B. (1) SUB-SHELL TENSORS

orthonormality of 45° slant rows!

Easy to fit tensors to any matrix!

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k_{q}}$ matrices
Tableau "Jawbone" formula
Calculate 2^{n}-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin-1/2) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Tableau calculation of 3-electron $\ell=1$ orbital p3-states and their $\mathbf{V}^{k}{ }_{q}$ matrices

FIG. 2. Young frames for labeling separate orbit and spin wave functions for spin- $\frac{1}{2}$ fermions. (a) A frame of 13 boxes would be used to label the 13 -particle orbital states (${ }^{6} L$) of spin multiplicity $2 S+1=6$. (b) A frame conjugate to (a), obtained by converting rows to columns, corresponds to spin states of total spin $S=5 / 2$ since only five of the spin boxes are "unpaired."

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their $\mathbf{V}^{k}{ }_{q}$ matrices

Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

FIG. 2. Young frames for labeling separate orbit and spin wave functions for spin- $\frac{1}{2}$ fermions. (a) A frame of 13 boxes would be used to label the 13 -particle orbital states (${ }^{6} L$) of spin multiplicity $2 S+1=6$. (b) A frame conjugate to (a), obtained by converting rows to columns, corresponds to spin states of total spin $S=5 / 2$ since only five of the spin boxes are "unpaired."

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their \mathbf{V}^{k} matrices

Then apply lowering operator $L_{-}=\sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left.\left.\left.\right|^{2} D_{M=1}^{L-2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L-2}\right\rangle=\left.\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\right|^{2}\right\rangle
$$

Here this is done using Tableau "Jawbone" formula.

FIG. 2. Young frames for labeling separate orbit and spin wave functions for spin $-\frac{1}{2}$ fermions. (a) A frame of 13 boxes would be used to label the 13-particle orbital states (${ }^{6} L$) of spin multiplicity $2 S+1=6$. (b) A frame conjugate to (a), obtained by converting rows to columns, corresponds to spin states of total spin $S=5 / 2$ since only five of the spin boxes are "unpaired."

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
$\stackrel{\rightharpoonup}{\square}$
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin-1/2) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their \mathbf{V}^{k} matrices

Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left.\left|D_{M=1}^{L-2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L-2}\right\rangle=\left.\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\right|^{[12}\right\rangle
$$

Here this is done using Tableau "Jawbone" formula.
${ }^{\text {(a) }}\left\langle T^{\prime}\right| E_{\mathrm{ii}}|T\rangle=\delta_{T_{T}^{\prime},}\binom{$ number }{ of (iís }\quad (b) $\quad\left\langle T^{\prime}\right| E_{\mathrm{ij}}|T\rangle=\langle T| E_{\mathrm{ji}}\left|T^{\prime}\right\rangle$

(e)

$$
E_{23} \frac{\left[\frac{10}{3}\right]^{3}}{}=\sqrt{\frac{1}{2}} \frac{\left[\frac{12}{3}\right.}{3}+\sqrt{\frac{3}{2}}\left[\frac{[1]}{[2]}\right.
$$

(f)
E_{12} [12] $=\sqrt{2}$ (11)

FIG. 2. Young frames for labeling separate orbit and spin wave functions for spin- $\frac{1}{2}$ fermions. (a) A frame of 13 boxes would be used to label the 13 -particle orbital states $\left({ }^{6} L\right)$ of spin multiplicity $2 S+1=6$. (b) A frame conjugate to (a), obtained by converting rows to columns, corresponds to spin states of total spin $S=5 / 2$ since only five of the spin boxes are "unpaired."

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their \mathbf{V}_{q} matrices Start with highest angular momentum $(\mathrm{L}=2) p^{3}$ state: $\left|{ }^{2} D,{ }_{M=2}^{L=2}\right\rangle={ }^{\frac{11}{2}}$ (Fermi spin-mate ${ }^{\sqrt[1]{\downarrow}{ }^{\top}}$)

Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left.\left|{ }^{2} D_{M=1}^{L=2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L=2}\right\rangle=\left.\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\right|^{\left\lvert\, \frac{11}{2}\right.}\right\rangle
$$

FIG. 3. Simplified jawbone formula for electronic orbital operators. (a) Number operators $E_{i i}$ are diagonal. (The only eigenvalues for orbital'states are 0,1 , and 2.). (b) Raising and lowering operators are simply tranposes of each other. (c)-(h) $E_{i-1, i}$ acting on a tableau state gives zero unless there is an (i) in a column of the tableau that doesn't already have an $(i-1)$, too. Then it gives back a new state with the (i) changed to $(i-1$) and a factor (matrix element) that depends on where the other (i) 's and ($i-1$)'s are located. [Boxes not outlined in the figure contain numbers not equal to (i) or $(i-1)$.] Cases (c) and (d) involved the "city block" distance d which is the denominator of the matrix element. The numerator is one larger $(d+1)$ or smaller $(d-1)$, depending on whether the involved tableaus favor the larger or smaller state number (i or $i-1$) with a higher position. The special cases of ($d=1$) shown in (f) always pick the larger (and nonzero) choice of $d+1=2$. All other nonzero matrix elements are equal to unity.

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their \mathbf{V}^{k} matrices Start with highest angular momentum $(\mathrm{L}=2) p^{3}$ state: $\left|{ }^{2} D,{ }_{, ~=2}^{L=2}\right\rangle=\frac{11}{2}$ (Fermi spin-mate ${ }^{\sqrt[1]{\downarrow}}$) Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left|{ }^{2} D_{M=1}^{L=2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L=2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{111}{2}\right\rangle
$$

Here this is done using Tableau "Jawbone" formula.

$$
\left.\left.==\frac{1}{\sqrt{2}}\left(\left|\frac{1 / 2}{2}\right|^{2}\right\rangle+\left.\right|^{\frac{101}{3}}\right\rangle\right)
$$

Orthogonal to this is a ${ }^{2} P(M=1)$ state

$$
\left.\left|{ }^{2} P_{M=1}^{L=1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1 / 2}{2}\right|-\left.\left|\frac{11}{3}\right|\right|^{1}\right\rangle\right)
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $U(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q}{ }_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k} q$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their $\mathbf{V}^{k}{ }_{q}$ matrices Start with highest angular momentum $(\mathrm{L}=2) p^{3}$ state: $\left|{ }^{2} D,,_{M=2}^{L=2}\right\rangle=\frac{\sqrt{2}}{2}$ (Fermi spin-mate ${ }^{\frac{1}{\downarrow}}$) Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left|{ }^{2} D_{M=1}^{L=2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L=2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)\left|\frac{111}{2}\right\rangle
$$

Here this is done using Tableau "Jawbone" formula.
${ }^{\text {(a) }}\left\langle T^{\prime}\right| E_{i i}|T\rangle=\delta_{T_{T}^{\prime} T}\binom{$ number }{ of (ii's }\quad (b) $\left\langle T^{\prime}\right| E_{\mathrm{ij}}|T\rangle=\langle T| E_{\mathrm{ji}}\left|T^{\prime}\right\rangle$

$$
\left.\left|{ }^{2} P_{M=1}^{L=1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1 \mid 2}{2}\right\rangle-\left|\frac{1}{3}\right| \begin{array}{l}
1 \\
3
\end{array}\right\rangle\right)
$$

(e) $\quad E_{23}\left[\frac{103}{3}\right]^{3}=\sqrt{\frac{1}{2}}\left[\frac{1}{3}\right]^{2}+\sqrt{\frac{3}{2}}\left[\frac{12}{[2]}\right.$
(f)

$$
\left.\left.\left\langle{ }^{2} P_{M=1}^{L=1}\right| V_{0}^{k}\right|^{2} D_{M=1}^{L=2}\right\rangle=
$$

Next we calculate 2^{n}-pole moments the pair:

$$
\begin{aligned}
& (p)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1020) }
\end{aligned}
$$

Tableau calculation of 3-electron $\ell=1$ orbital p^{3}-states and their $\mathbf{V}^{k}{ }_{q}$ matrices
 Then apply lowering operator $L_{-} \equiv \sqrt{2}\left(E_{21}+E_{32}\right)$

$$
\left.\left.\left|D_{M=1}^{L} D^{L-2}\right\rangle=\left.\frac{1}{2} L_{-}\right|^{2} D_{M=2}^{L-2}\right\rangle=\frac{1}{2} \sqrt{2}\left(E_{21}+E_{32}\right)| |^{10}\right\rangle
$$

Here this is done using Tableau "Jawbone" formula.

$$
\left.==\frac{1}{\sqrt{2}}\left(\left|\frac{a^{2}}{2}\right\rangle+\left.\right|^{\frac{\pi}{3}}\right\rangle\right)
$$

Orthogonal to this is a ${ }^{2} P(M=1)$ state

$$
\left.\left.\left|{ }^{2} P_{M=1}^{L=1}\right\rangle=\frac{1}{\sqrt{2}}\left(| | \frac{1 \mid 2}{2}\right\rangle-\left.\left|\frac{1}{3}\right|\right|^{1}\right\rangle\right)
$$

Next we calculate $2^{\text {n }}$-pole moments the pair:

$$
\begin{aligned}
& \left\langle{ }^{2} P_{M=1}^{L=1}\right| V_{0}^{k}\left|{ }^{2} D_{M=1}^{L=2}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[-\binom{2}{11} E_{11}+2\binom{2}{22} E_{22}-\binom{2}{33}\right]=-\sqrt{\frac{3}{2}} \text { for : } k=2 \\
& =\frac{1}{2}\left[-\binom{1}{11} E_{11}+2\binom{1}{22} E_{22}-\binom{1}{33}\right]=0 \quad \text { for : } k=1 \\
& =\frac{1}{2}\left[-\binom{0}{11} E_{11}+2\binom{0}{22} E_{22}\binom{0}{33}\right]=0 \quad \text { for : } k=0
\end{aligned}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k} q$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)

$$
\left.\left.\left.\begin{array}{rl}
\left\langle p^{32} P 1\right| V_{0}^{2}\left|p^{32} D 1\right\rangle & =C_{011}^{221}\left[\left(p^{2} D \rrbracket p^{3} D\right)\left(p^{2} D \rrbracket p^{3} P\right) \sqrt{ }(15)\left\{\begin{array}{ll}
1 & 1 \\
2 & 1 \\
2 & 1
\end{array}\right\}-\left(p^{2} P \rrbracket p^{3} D\right)\left(p^{2} P \rrbracket p^{3} P\right) \sqrt{ }(15)\left\{\begin{array}{ll}
1 & 2 \\
1 \\
2 & 1
\end{array}\right\}\right.
\end{array}\right\}\right]\langle 1||2||1\rangle\right)
$$

Versus:

$$
\begin{aligned}
& \left\langle{ }^{2} P_{M=1}^{L=1}\right| V_{0}^{k}\left|{ }^{2} D_{M=1}^{L=2}\right\rangle= \\
& \frac{1}{\sqrt{2}}\left(\left\langle\frac{112}{2}\right|+\left\langle\begin{array}{c}
\frac{1}{3} 1 \\
3
\end{array}\right|\right)\left[\binom{k}{11} E_{11}+\binom{k}{22} E_{22}+\binom{k}{33} E_{33}\right]\left(\left|\frac{1 \mid 2}{2}\right\rangle-\left\lvert\, \begin{array}{|l|}
|1| \\
3
\end{array}\right.\right) \\
& \quad=\frac{1}{2}\left[-\binom{2}{11} E_{11}+2\binom{2}{22} E_{22}-\binom{2}{33}\right]=-\sqrt{\frac{3}{2}} \text { for }: k=2
\end{aligned}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k_{q}}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)
\square Complete set of E_{jk} matrix elements for the doublet (spin-1/2) p^{3} orbits
Level diagrams for pure atomic shells $p^{n=1-6}$, $d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Complete set of $E_{j k}$ matrix elements for the doublet (spin-1/2) p3 orbits

Diagonal examples in n-particle notation:

$$
\begin{aligned}
& \sqrt{3} \mathbf{V}_{0}^{0}=E_{11}+E_{22}+E_{33} \\
& \sqrt{2} \mathbf{V}_{0}^{1}=E_{11} \quad-E_{33} \equiv L_{z} \\
& \sqrt{6} \mathbf{V}_{0}^{2}=E_{11}-2 E_{22}+E_{33}
\end{aligned}
$$

Off-Diagonal examples in n-particle notation:

$$
\begin{array}{lll}
\mathbf{V}_{2}^{2}=E_{13}, & -2 \mathbf{V}_{1}^{2}=\sqrt{2}\left(E_{12}-E_{23}\right), & 2 \mathbf{V}_{-1}^{2}=\sqrt{2}\left(E_{21}-E_{32}\right), \quad 2 \mathbf{V}_{-2}^{2}=E_{31}, \\
& -2 \mathbf{V}_{1}^{1}=\sqrt{2}\left(E_{12}+E_{23}\right) \equiv L_{+}, & 2 \mathbf{V}_{-1}^{1}=\sqrt{2}\left(E_{21}+E_{32}\right) \equiv L_{-} .
\end{array}
$$

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}_{q}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet ((spin- $1 / 2$) p^{3} orbits
Level diagrams for pure atomic shells $\quad p^{n=1-6}$,
$d^{n=1-5}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Excerpts from unpublished Ch. 9 intended for Vol II of Principles of Symmetry, Dynamics and Spectroscopy

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet $\left(\right.$ spin $\left.^{-1 / 2}\right) \mathrm{p}^{3}$ orbits
Level diagrams for pure atomic shells
$p^{n=1-6}$,
$f^{n=1-7}$
Classical Lie Groups used to label f-shell structure (a rough sketch)

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Excerpts from unpublished Ch. 9 intended for Vol II of Principles of Symmetry, Dynamics and Spectroscopy

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Excerpts from unpublished Ch. 9 intended for Vol II of Principles of Symmetry, Dynamics and Spectroscopy

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Eigenstates of P and M are said to be states of definite SENIORITY. The guantum number ν of SENIORITY is equal to the number of unpaired particles in the state. Examples of states made entirely of paired particles are $\left|p^{2}{ }^{1} s\right\rangle,\left|d^{2}{ }^{1} s\right\rangle,\left|d^{4}{ }^{1} s\right\rangle \ldots$ The first two examples have exactly one "pair" and their p eigenvalues are $3 p$ and $5 p$ respectively. The state $1 d^{4}{ }^{1} s>$ has two pairs, and it takes energy $5 p$ to "break one pair" to make seniority 2 states ${ }^{1} \mathrm{D}(1)$ and ${ }^{1} \mathrm{G}(1)$. However, then only 3 p is needed to break the remaining pair to make any of the seniority 4 states. Note that in each case, seniority ν states show up with the same partners in the ℓ^{ν} configuration. "Pairs" are like a scalar "core" which does not influence the angular momentum of the ν unpaired particles "outside" it. You will first see a seniority ν group in ℓ^{ν}, then all over again in $\ell^{\nu+2}, \ell^{\nu+4}, \ldots$, and so on.

Excerpts from unpublished Ch. 9 intended for Vol II of

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin-1/2) p^{3} orbits
Level diagrams for pure atomic shells
$p^{n=1-6}$,
$d^{n=1-5}$,
Classical Lie Groups used to label f-shell structure (a rough sketch)

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Excerpts from unpublished Ch. 9 intended for Vol II of Principles of Symmetry, Dynamics and Spectroscopy

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Excerpts from unpublished Ch. 9 intended for Vol II of
Principles of Symmetry, Dynamics and Spectroscopy

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

f^{3}

Excerpts from unpublished Ch. 9 intended for Vol II of Principles of Symmetry, Dynamics and Spectroscopy

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

Level diagrams for pure atomic shells $p^{n=1-3}, d^{n=1-5}, f^{n=1-7}$,

4.09.18 class 22: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Atomic shell models using intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ matrix operators

Single particle p^{1}-orbitals: $\mathrm{U}(3)$ triplet
Elementary $\mathrm{U}(N)$ commutation
Elementary state definitions by Boson operators
Summary of multi particle commutation relations
Symmetric p^{2}-orbitals: $U(3)$ sextet
Sample matrix elements
Combining elementary "1-jump" E_{12}, E_{23}, to get " 2 -jump" operator E_{13}
Review:Representation of Diagonalizing Transform (DTran T)
Relating elementary $\mathbf{E}_{j k}$ matrices to Tensor operator $\mathbf{V}_{q} \quad(\ell=1$ atomic p-shell)
Condensed form tensor tables for orbital shells $p: \ell=1, d: \ell=2, f: \ell=3, g: \ell=4$.
Tableau calculation of 3 -electron $\ell=1$ orbital p^{3}-states and $\mathbf{V}^{k}{ }_{q}$ matrices
Tableau "Jawbone" formula
Calculate $2^{\text {n }}$-pole moments
Comparison calculation of $p^{3}-\mathbf{V}^{k}{ }_{q}$ vs. calculation by cfp (fractional parentage)
Complete set of E_{jk} matrix elements for the doublet (spin-1/2) p^{3} orbits
Level diagrams for pure atomic shells
$p^{n=1-6}$,
$d^{n=1-5}$,
Classical Lie Groups used to label f-shell structure (a rough sketch)

Classical Lie Groups used to label f-shell structure

LIE GROUP CHAIN

LABELING OPERATOR:
MATHEMATICAL LABEL:
CORRESPONDING PHYSICAL LABEL:

Fig 9.8.4. Labeling scheme for d-shell

LIE GROUP CHAIN:
LABELING OPERATOR:
MATHEMATICAL LABEL:
CORRESPONDING PHYSICAL LABEL:

Fig 9.8.5 Labeling scheme for f-shell

Fig. 1 Young Frames
(a) A Young frame of 13 particles corresponding to all orbital states $\left({ }^{6} \mathrm{~L}\right)$ of spin multiplicity $2 \mathrm{~S}+1=6$
(b) A frame conjugate to (a) obtained by converting rows to columns, corresponds to spin states of total spin $S=5 / 2$ since only 5 of the 13 spins are unpaired. (These are represented by the single row of 5 boxes.)

$\cdots u_{3} \supset u_{2} \supset u_{1}$

Fig. 2 Unitary State Labeling
(a) Gelfand Pattern - The j th row of integers ($\lambda_{1, j} \lambda_{2, j} \ldots$
.. $\lambda_{j, j}$) tells to which representation of U_{j} the state belongs,
and similarily for the $j-1$ th row ($\lambda_{1, j-1} \lambda_{2, j-i} \ldots \lambda_{j-1, j-1}$)
which labels a unique representation of U_{j-1} contained in
$\left(\lambda_{1, j} \lambda_{2}, j \ldots \lambda_{j, j}\right)$. In this way each state has a unique
genealogy chain and labeling.
(b) Young Tableau - Tableaus are a completely equivalent but non-algebraic "picture" of the Gelfand patterns. (When labeled algebraically, it is just an up-side-down Gelfand Pattern.)

Fig. 8 Weight or Moment Diagrams of Atomic $(p)^{n}$ States Each tableau is located at point ($x_{1} x_{2} x_{3}$) in a cartesian co-ordinate system for which x_{n} is the number of n 's in the tableau. An alternative co-ordinate system is ($\mathrm{v}_{0}^{2}, \mathrm{v}_{0}^{1}, \mathrm{v}_{0}^{0}$) defined by Eq. 16 which gives the $z z$-quadrupole moment,
z-magnetic dipole moment, and number of particles, respectively. The last axis (v_{0}^{0}) would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

A Unitary Calculus for Electronic Orbitals

William G. Harter and Christopher W. Patterson
Springer-Verlag Lectures in Physics 491976

Alternative basis for the theory of complex spectra I William G. Harter
Physical Review A 83 p2819 (1973)
Alternative basis for the theory of complex spectra II
William G. Harter and Christopher W. Patterson
Physical Review A 133 p1076-1082 (1976)
Alternative basis for the theory of complex spectra III William G. Harter and Christopher W. Patterson Physical Review A ??

$$
|1,2,3\rangle \equiv|1\rangle_{\text {particle-a }}|2\rangle_{\text {particle-b }}|3\rangle_{\text {particle-c }} \equiv|1\rangle_{a}|2\rangle_{b}|3\rangle_{c}
$$

Single particle p1-orbitals: $U(3)$ triplet $\quad\left|p^{1} \square\right\rangle$
$\begin{array}{ll}e_{12} e_{21}=e_{11} & \\ e_{12} e_{22}=e_{12} & \\ |1\rangle\langle 2||2\rangle\langle 2||2\rangle\langle 1|=|1\rangle\langle 1|=|1\rangle\langle 2|\end{array}$
$e_{11}=\left(\begin{array}{lll}1 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right), e_{12}=\left(\begin{array}{lll}\cdot & 1 & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}\right), e_{13}=\left(\begin{array}{lll}\cdot & \cdot & 1 \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right), e_{21}=\left(\begin{array}{lll}\cdot & \cdot & . \\ 1 & \cdot & \cdot \\ \cdot & \cdot\end{array}\right), \ldots e_{33}=\left(\begin{array}{lll}\cdot & \cdot \\ \cdot & \cdot \\ 1 & \cdot & \\ \hline\end{array}\right)$

General elementary operator commutation $\left[E_{j k}, E_{p q}\right]=\delta_{k p} E_{j q}-\delta_{q j} E_{p k}$ has same form as 1-particle commutation: $\left[e_{j k}, e_{p q}\right]=\delta_{k p} e_{j q}-\delta_{q j} e_{p k}$

Elementary-elementary

operator commutation algebra

This applies to all of multi-particle representations of $E_{j k}$ and to momentum operators L_{x}, L_{y}, and L_{z}.

Single particle p-orbit ($\ell=1$) representation of L_{x}, L_{y}, and L_{z}

$$
D_{m n}^{1}\left(L_{x}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
1 & \cdot & 1 \\
\cdot & 1 & \cdot
\end{array}\right), \quad D_{m n}^{1}\left(L_{y}\right)=\frac{-i}{\sqrt{2}}\left(\begin{array}{ccc}
\cdot & 1 & \cdot \\
-1 & \cdot & 1 \\
\cdot & -1 & \cdot
\end{array}\right), \quad D_{m n}^{1}\left(L_{z}\right)=\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right)
$$

Elementary operator form of L_{x}, L_{y}, and L_{z}

$$
L_{x}=\left(E_{12}+E_{23}+E_{21}+E_{32}\right) / \sqrt{2}, \quad L_{y}=-i\left(E_{12}+E_{23}-E_{21}-E_{32}\right) / \sqrt{2}, \quad L_{z}=E_{11}-E_{33}
$$

...and of raise-lower operators $L+$ and L.

$$
L_{+}=L_{x}+i L_{y}=\sqrt{2}\left(E_{12}+E_{23}\right), \quad L_{-}=L_{x}-i L_{y}=\sqrt{2}\left(E_{21}+E_{32}\right)=L_{+}^{\dagger}, \quad L_{z}=\left[L_{+}, L_{-}\right]
$$

Symmetric p^{2}-orbitals: $U(3)$ sextet $\left|p^{2} \square \square\right\rangle$

$$
\begin{aligned}
& E_{12}\left|n_{1}, n_{2}\right\rangle=a_{1} \bar{a}_{2}\left|n_{1}, n_{2}\right\rangle=a_{1} \sqrt{n_{2}}\left|n_{1}, n_{2}-1\right\rangle=\sqrt{n_{1}+1} \sqrt{n_{2}}\left|n_{1}+1, n_{2}-1\right\rangle \\
& E_{23}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \bar{a}_{3}\left|n_{1}, n_{2}, n_{3}\right\rangle=a_{2} \sqrt{n_{3}}\left|n_{1}, n_{2}, n_{3}-1\right\rangle=\sqrt{n_{2}+1} \sqrt{n_{3}}\left|n_{1}, n_{2}+1, n_{3}-1\right\rangle
\end{aligned}
$$

Apply elementary operations $e_{j k}$ to each particle a, b, c, \ldots in turn.

$$
\begin{aligned}
& E_{23}\left|3_{a} 3_{b} 3_{c}\right\rangle=\left|2_{a} 3_{b} 3_{c}\right\rangle+\left|3_{a} 2_{b} 3_{c}\right\rangle+\left|3_{a} 3_{b} 2_{c}\right\rangle=\sqrt{3} \frac{\left|2_{a} 3_{b} 3_{c}\right\rangle+\left|3_{a} 2_{b} 3_{c}\right\rangle+\left|3_{a} 3_{b}{ }^{2}\right\rangle}{\sqrt{3}}=\sqrt{3}|2 \sqrt{3} \sqrt{3}\rangle \\
& a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=0, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,0,2\rangle=\sqrt{1} \sqrt{3}|0,1,2\rangle=E_{23}|\sqrt[3]{3} \sqrt[3]{3}\rangle=\sqrt{3} \mid 2 \sqrt{3} 3
\end{aligned}
$$

The $e_{j k}$ procedure shows $a=\mathbf{a}^{\dagger}$ or $\bar{a}=\mathbf{a}$ factors $\sqrt{n_{k}}$ or $\sqrt{n_{k}+1}$ arise by adjusting norms.

$$
\begin{aligned}
& \left.E_{23} \frac{\left|2_{a}{ }^{3}{ }_{b}{ }^{3}{ }_{c}{ }^{3}{ }_{d}\right\rangle+\left|3_{a}{ }^{2}{ }_{b}{ }^{3}{ }_{c}{ }^{3}{ }_{d}\right\rangle+\left|3_{a} 3_{b}{ }^{2}{ }_{c}{ }^{3}{ }_{d}\right\rangle+\left|3_{a}{ }^{3} b_{b}{ }^{2}{ }_{d}\right\rangle}{2}=E_{23}|2| 3|3| 3\right\rangle \\
& =\frac{\left|2_{a}{ }^{2} b^{3}{ }^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{2} b^{3}{ }^{3}{ }^{3} d\right\rangle+\left|2_{a}{ }^{3} b^{2} c^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{3} b^{3} c^{2}{ }_{d}\right\rangle}{2}=\sqrt{6}\left[\frac{\left|2_{a}{ }^{2} b_{b}{ }^{3}{ }^{3} d\right\rangle+\left|2_{a}{ }^{3}{ }^{2}{ }^{2}{ }^{3}{ }_{d}\right\rangle+\left|2_{a}{ }^{3} b^{3}{ }^{3}{ }^{2}{ }_{d}\right\rangle}{\sqrt{6}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{\left|2_{a}{ }^{3}{ }_{b}{ }^{3}{ }_{c}{ }_{d}\right\rangle+\left|3_{a}{ }^{2}{ }_{b}{ }^{3}{ }_{c}{ }^{2}\right\rangle+\left|3_{a}{ }^{3} b^{2}{ }_{c}{ }^{2}{ }_{d}\right\rangle+\left|3_{a}{ }^{3} b^{2}{ }_{c}{ }^{2}{ }_{d}\right\rangle}{2}=\left.\sqrt{6}\right|^{2|2| 3(3)}\right\rangle \\
& \left.a_{2} \bar{a}_{3}\left|n_{1}=0, n_{2}=0, n_{3}=3\right\rangle=a_{2} \sqrt{3}|0,0,2\rangle=\sqrt{1} \sqrt{3}|0,1,2\rangle=E_{23}|\sqrt[3]{3}| 3|3\rangle=\sqrt{3}|2 \sqrt{3}| 3\right\rangle
\end{aligned}
$$

