4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $S_{2}-U(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page

Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
Modern Physics and its Classical Foundations

2014 AMOP
2017 Group Theory for QM
2018 AMOP

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- Jeigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Bovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Svmmetry in Quantum Rotors - harter - ims - 2001
Bepresentaions Of Multidimensional Symmetries In Networks - harter-imp-1973
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. This bad boy will be a sure force multiplier.

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $\mathrm{U}(3)$ state space)
$U(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $D^{[\mu]}$ with tensor trace values
Effect of S_{3} DTran T on intertwining $S_{3}-U(3)$ irep matrices
Structure of $\mathrm{U}(3)$ irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas
$U(3)$ tensor product states and S_{n} permutation symmetry
Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations (Just like $\ell=1$ vector basis $\{1=x, 2=y, 3=z\}$)
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$ or p-triplet in $\mathrm{U}(3)$ shell model

$$
\begin{aligned}
& \phi_{1}^{\prime}=\mathbf{u} \phi_{1}=\phi_{1} D_{11}+\phi_{2} D_{21}+\phi_{3} D_{31} \\
& \phi_{2}^{\prime}=\mathbf{u} \phi_{2}=\phi_{1} D_{12}+\phi_{2} D_{22}+\phi_{3} D_{32} \\
& \phi_{3}^{\prime}=\mathbf{u} \phi_{3}=\phi_{1} D_{13}+\phi_{2} D_{23}+\phi_{3} D_{33}
\end{aligned}
$$

where: $D_{j k}=\left(\phi_{j}^{*}, \phi_{k}^{\prime}\right)=\left(\phi_{j}^{*}, \mathbf{u} \phi_{k}\right)$ where: $D_{j k}(\mathbf{u})=\left\langle j \mid k^{\prime}\right\rangle=\langle j| \mathbf{u}|k\rangle$

$$
\begin{aligned}
& \left|1^{\prime}\right\rangle=\mathbf{u}|1\rangle=|1\rangle D_{11}+|2\rangle D_{21}+|3\rangle D_{31} \\
& \left|2^{\prime}\right\rangle=\mathbf{u}|2\rangle=|1\rangle D_{12}+|2\rangle D_{22}+|3\rangle D_{32} \\
& \left|3^{\prime}\right\rangle=\mathbf{u}|3\rangle=|1\rangle D_{13}+|2\rangle D_{23}+|3\rangle D_{33}
\end{aligned}
$$

$$
\begin{aligned}
|1\rangle=\phi_{1} & =\left(\begin{array}{l}
1 \\
\cdot \\
\cdot
\end{array}\right) \quad|3\rangle=\phi_{3}=\left(\begin{array}{l}
\cdot \\
\cdot \\
1
\end{array}\right) \\
|2\rangle=\phi_{2} & =\left(\begin{array}{l}
\cdot \\
\cdot \\
\cdot
\end{array}\right) \\
D_{j k}(\mathbf{u}) & =\left(\begin{array}{lll}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right)
\end{aligned}
$$

$U(3)$ tensor product states and S_{n} permutation symmetry
Typical $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations (Just like $\ell=1$ vector basis $\{1=x, 2=y, 3=z\}$)
Rank-1 vector in $\mathrm{R}(3) \quad$ or "quark"-triplet in $\mathrm{U}(3)$ or p-triplet in $\mathrm{U}(3)$ shell model

$$
\begin{aligned}
& \phi_{1}^{\prime}=\mathbf{u} \phi_{1}=\phi_{1} D_{11}+\phi_{2} D_{21}+\phi_{3} D_{31} \\
& \phi_{2}^{\prime}=\mathbf{u} \phi_{2}=\phi_{1} D_{12}+\phi_{2} D_{22}+\phi_{3} D_{32} \\
& \phi_{3}^{\prime}=\mathbf{u} \phi_{3}=\phi_{1} D_{13}+\phi_{2} D_{23}+\phi_{3} D_{33}
\end{aligned}
$$

where: $D_{j k}=\left(\phi_{j}^{*}, \phi_{k}^{\prime}\right)=\left(\phi_{j}^{*}, \mathbf{u} \phi_{k}\right)$

Dirac notation: where: $D_{j k}(\mathbf{u})=\left\langle j \mid k^{\prime}\right\rangle=\langle j| \mathbf{u}|k\rangle$

$$
\begin{aligned}
& \left|1^{\prime}\right\rangle=\mathbf{u}|1\rangle=|1\rangle D_{11}+|2\rangle D_{21}+|3\rangle D_{31} \\
& \left|2^{\prime}\right\rangle=\mathbf{u}|2\rangle=|1\rangle D_{12}+|2\rangle D_{22}+|3\rangle D_{32} \\
& \left|3^{\prime}\right\rangle=\mathbf{u}|3\rangle=|1\rangle D_{13}+|2\rangle D_{23}+|3\rangle D_{33}
\end{aligned}
$$

$$
\begin{align*}
|1\rangle=\phi_{1} & =\left(\begin{array}{l}
1 \\
\cdot \\
\cdot
\end{array}\right) \quad|3\rangle=\phi_{3}=\left(\begin{array}{l}
\cdot \\
\cdot \\
1
\end{array}\right) \\
|2\rangle=\phi_{2} & =\left(\begin{array}{c}
\cdot \\
1 \\
\cdot
\end{array}\right) \tag{1}\\
D_{j k}(\mathbf{u}) & =\left(\begin{array}{lll}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right)
\end{align*}
$$

Rank-2 tensor (2 particles each with $U(3)$ state space)

$$
\begin{aligned}
& \left|j^{\prime}\right\rangle\left|k^{\prime}\right\rangle=\mathbf{u}|j\rangle \mathbf{u}|k\rangle \\
& =\sum_{j, k}|j\rangle|k\rangle D_{j j^{\prime}} D_{k k^{\prime}} \\
& \left.=\sum_{j, k}|j\rangle|k\rangle D \otimes D_{j k: j^{\prime} k^{\prime}}\right)
\end{aligned}
$$

$U(3)$ tensor product states and S_{n} permutation symmetry
Typical $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations (Just like $\ell=1$ vector basis $\{1=x, 2=y, 3=z\}$)
Ranks vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$ or p-triplet in $\mathrm{U}(3)$ shell model

$$
\begin{aligned}
& \phi_{1}^{\prime}=\mathbf{u} \phi_{1}=\phi_{1} D_{11}+\phi_{2} D_{21}+\phi_{3} D_{31} \\
& \phi_{2}^{\prime}=\mathbf{u} \phi_{2}=\phi_{1} D_{12}+\phi_{2} D_{22}+\phi_{3} D_{32} \\
& \phi_{3}^{\prime}=\mathbf{u} \phi_{3}=\phi_{1} D_{13}+\phi_{2} D_{23}+\phi_{3} D_{33}
\end{aligned}
$$

$$
\begin{align*}
& |1\rangle=\phi_{1}=\left(\begin{array}{l}
1 \\
\cdot \\
\cdot
\end{array}\right) \quad|3\rangle=\phi_{3}=\left(\begin{array}{l}
\cdot \\
\cdot \\
1
\end{array}\right) \tag{1}\\
& |2\rangle=\phi_{2}=\left(\begin{array}{l}
\cdot \\
\cdot \\
\cdot
\end{array}\right) \\
& \rangle \quad D_{j k}(\mathbf{u})=\left(\begin{array}{lll}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right)
\end{align*}
$$

Dirac notation:

$$
\left.\begin{array}{l}
\left|1^{\prime}\right\rangle=\mathbf{u}|1\rangle=|1\rangle D_{11}+|2\rangle D_{21}+|3\rangle D_{31} \quad \text { where: } D_{j k}(\mathbf{u})=\left\langle j \mid k^{\prime}\right\rangle=\langle j| \mathbf{u}|k\rangle \quad D_{j k}(\mathbf{u})=\left(\begin{array}{lll}
D_{11} & D_{12} & D_{13} \\
D_{21} & \left.D_{22}\right\rangle & D_{23} \\
\left.2^{\prime}\right\rangle & =\mathbf{u}|2\rangle=|1\rangle D_{12}+|2\rangle D_{22}+|3\rangle D_{32} \\
\left|3^{\prime}\right\rangle & =\mathbf{u}|3\rangle=|1\rangle D_{13}+|2\rangle D_{23}+|3\rangle D_{33} & D_{32}
\end{array} \quad D_{33}\right.
\end{array}\right)
$$

Rank-2 tensor (2 particles each with $\mathrm{U}(3)$ state space)

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $\mathrm{U}(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas

$U(3)$ tensor product states and S_{n} permutation symmetry

2-particle $\mathrm{U}(3)$ transform and outer-product $\mathrm{U}(3)$ transform matrix $\quad D_{j j^{\prime}} D_{k k^{\prime}}=D \otimes D_{j k::^{\prime} k^{\prime}}=$

$$
=\left(\begin{array}{lllllllll}
D_{11} D_{11} & D_{11} D_{12} & D_{11} D_{13} & D_{12} D_{11} & D_{12} D_{12} & D_{12} D_{13} & D_{13} D_{11} & D_{13} D_{12} & D_{13} D_{13} \\
D_{11} D_{21} & D_{11} D_{22} & D_{11} D_{23} & D_{12} D_{21} & D_{12} D_{22} & D_{12} D_{23} & D_{13} D_{21} & D_{13} D_{22} & D_{13} D_{23} \\
D_{11} D_{31} & D_{11} D_{32} & D_{11} D_{33} & D_{12} D_{31} & D_{12} D_{22} & D_{12} D_{33} & D_{13} D_{31} & D_{13} D_{23} & D_{13} D_{33} \\
D_{21} D_{11} & D_{21} D_{12} & D_{21} D_{13} & D_{22} D_{11} & D_{22} D_{12} & D_{22} D_{13} & D_{23} D_{11} & D_{23} D_{12} & D_{23} D_{13} \\
D_{21} D_{21} & D_{21} D_{22} & D_{21} D_{23} & D_{22} D_{21} & D_{22} D_{22} & D_{22} D_{23} & D_{23} D_{21} & D_{23} D_{22} & D_{23} D_{23} \\
D_{21} D_{31} & D_{21} D_{32} & D_{21} D_{33} & D_{22} D_{31} & D_{22} D_{32} & D_{22} D_{33} & D_{23} D_{31} & D_{23} D_{23} & D_{23} D_{33} \\
D_{31} D_{11} & D_{31} D_{12} & D_{31} D_{13} & D_{32} D_{11} & D_{32} D_{12} & D_{32} D_{13} & D_{33} D_{11} & D_{33} D_{12} & D_{33} D_{13} \\
D_{31} D_{21} & D_{31} D_{22} & D_{31} D_{23} & D_{32} D_{21} & D_{32} D_{22} & D_{32} D_{23} & D_{33} D_{21} & D_{33} D_{22} & D_{33} D_{23} \\
D_{31} D_{31} & D_{31} D_{23} & D_{31} D_{33} & D_{32} D_{31} & D_{32} D_{32} & D_{32} D_{33} & D_{33} D_{31} & D_{33} D_{23} & D_{33} D_{33}
\end{array}\right)
$$

$U(3)$ tensor product states and $S_{2}=S_{n}$ permutation symmetry
2-particle $\mathrm{U}(3)$ transform and outer-product $\mathrm{U}(3)$ transform matrix $D_{j j^{\prime}} D_{k k^{\prime}}=D \otimes D_{j k, j^{\prime} k^{\prime}}=$
$=\left(\begin{array}{ccc:ccc:ccc}D_{11} D_{11} & D_{11} D_{12} & D_{11} D_{13} & D_{12} D_{11} & D_{12} D_{12} & D_{12} D_{13} & D_{13} D_{11} & D_{13} D_{12} & D_{13} D_{13} \\ D_{11} D_{21} & D_{11} D_{22} & D_{11} D_{23} & D_{12} D_{21} & D_{12} D_{22} & D_{12} D_{23} & D_{13} D_{21} & D_{13} D_{22} & D_{13} D_{23} \\ D_{11} D_{31} & D_{11} D_{32} & D_{11} D_{33} & D_{12} D_{31} & D_{12} D_{22} & D_{12} D_{33} & D_{13} D_{31} & D_{13} D_{23} & D_{13} D_{33} \\ \hdashline D_{21} D_{11} & D_{21} D_{12} & D_{21} D_{13} & D_{22} D_{11} & D_{22} D_{12} & D_{22} D_{13} & D_{23} D_{11} & D_{23} D_{12} & D_{23} D_{13} \\ D_{21} D_{21} & D_{21} D_{22} & D_{21} D_{23} & D_{22} D_{21} & D_{22} D_{22} & D_{22} D_{23} & D_{23} D_{21} & D_{23} D_{22} & D_{23} D_{23} \\ D_{21} D_{31} & D_{21} D_{32} & D_{21} D_{33} & D_{22} D_{31} & D_{22} D_{32} & D_{22} D_{33} & D_{23} D_{31} & D_{23} D_{23} & D_{23} D_{33} \\ \hdashline D_{31} D_{11} & D_{31} D_{12} & D_{31} D_{13} & D_{32} D_{11} & D_{32} D_{12} & D_{32} D_{13} & D_{33} D_{11} & D_{33} D_{12} & D_{33} D_{13} \\ D_{31} D_{21} & D_{31} D_{22} & D_{31} D_{23} & D_{32} D_{21} & D_{32} D_{22} & D_{32} D_{23} & D_{33} D_{21} & D_{33} D_{22} & D_{33} D_{23} \\ D_{31} D_{31} & D_{31} D_{23} & D_{31} D_{33} & D_{32} D_{31} & D_{32} D_{32} & D_{32} D_{33} & D_{33} 31 & D_{33} D_{23} & D_{33} D_{33}\end{array}\right)$ 2-particle permutation operations: $\quad \mathbf{s}(a)(b)|j\rangle_{a}|k\rangle_{b}=|j\rangle_{a}|k\rangle_{b}, \mathbf{s}(a b)|j\rangle_{a}|k\rangle_{b}=|k\rangle_{a}|j\rangle_{b}$ Represented by matrices:

$\mathbf{s}(a b)=$| | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1 | \cdot |
| 12 | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot | \cdot |
| 13 | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot |
| 21 | \cdot | 1 | \cdot |
| 22 | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot |
| 23 | \cdot | 1 | \cdot |
| 31 | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot |
| 32 | \cdot | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot |
| 33 | \cdot | 1 |

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of S_{3} DTran T on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas
S_{2} symmetry of $\mathrm{U}(3)$: Applying S_{2} projection
S_{2} matrix eigen-solution found by projectors: Minimal eq. (ab) ${ }^{2} \mathbf{- 1}=0=((\mathbf{a b})+\mathbf{1})((\mathbf{a b})+\mathbf{1})$ yields:

Symmetric (\square): $\mathbf{P} \square \square=\frac{1}{2}[\mathbf{1}+(\mathbf{a b})]$

$\mathbf{P}^{\square} \square=$| | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1 | \cdot |
| 12 | \cdot | $\frac{1}{2}$ | \cdot | $\frac{1}{2}$ | \cdot | \cdot | \cdot | \cdot | \cdot |
| 13 | \cdot | \cdot | $\frac{1}{2}$ | \cdot | \cdot | \cdot | $\frac{1}{2}$ | \cdot | \cdot |
| 21 | \cdot | $\frac{1}{2}$ | \cdot | $\frac{1}{2}$ | \cdot | \cdot | \cdot | \cdot | \cdot |
| 22 | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot |
| 23 | \cdot | \cdot | \cdot | \cdot | \cdot | $\frac{1}{2}$ | \cdot | $\frac{1}{2}$ | \cdot |
| 31 | \cdot | \cdot | $\frac{1}{2}$ | \cdot | \cdot | \cdot | $\frac{1}{2}$ | \cdot | \cdot |
| 32 | \cdot | \cdot | \cdot | \cdot | \cdot | $\frac{1}{2}$ | \cdot | $\frac{1}{2}$ | \cdot |
| 33 | \cdot | 1 |

$(\mathbf{a})(\mathbf{b})=$| | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1 | \cdot |
| 12 | \cdot | 1 | \cdot |
| 13 | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot |
| 21 | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot | \cdot |
| 22 | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot |
| 23 | \cdot | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot |
| 31 | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot |
| 32 | \cdot | 1 | \cdot |
| 33 | \cdot | 1 |

Anti-Symmetric $(\square): \mathbf{P}^{\square}=\frac{1}{2}[\mathbf{1}-(\mathbf{a b})]$

$\mathbf{P}^{\square}=$| | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \square | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 33 |
| 11 | 0 | \cdot |
| 12 | \cdot | $\frac{1}{2}$ | \cdot | $\frac{-1}{2}$ | \cdot | \cdot | \cdot | \cdot | \cdot |
| 13 | \cdot | \cdot | $\frac{1}{2}$ | \cdot | \cdot | \cdot | $\frac{-1}{2}$ | \cdot | \cdot |
| 21 | \cdot | $\frac{-1}{2}$ | \cdot | $\frac{1}{2}$ | \cdot | \cdot | \cdot | \cdot | \cdot |
| 22 | \cdot | \cdot | \cdot | \cdot | 0 | \cdot | \cdot | \cdot | \cdot |
| 23 | \cdot | \cdot | \cdot | \cdot | \cdot | $\frac{1}{2}$ | \cdot | $\frac{-1}{2}$ | \cdot |
| 31 | \cdot | \cdot | $\frac{-1}{2}$ | \cdot | \cdot | \cdot | $\frac{1}{2}$ | \cdot | \cdot |
| 32 | \cdot | \cdot | \cdot | \cdot | \cdot | $\frac{-1}{2}$ | \cdot | $\frac{1}{2}$ | \cdot |
| 33 | \cdot | 0 |

$\mathbf{(a b)}=$| | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1 | \cdot |
| 12 | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot | \cdot |
| 13 | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot |
| 21 | \cdot | 1 | \cdot |
| 22 | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot |
| 23 | \cdot | 1 | \cdot |
| 31 | \cdot | \cdot | 1 | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot |
| 32 | \cdot | \cdot | \cdot | \cdot | \cdot | 1 | \cdot | \cdot | \cdot |
| 33 | \cdot | 1 |

Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting \mathbf{P}-columns

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of S_{3} DTran T on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas

S_{2} symmetry of $\mathrm{U}(3)$: Effect of S_{2} DTran T on intertwining $S_{2}-U(3)$ irep matrices

S_{2} matrix:
U(3) matrices:

$$
T^{\dagger} S\left(\mathbf{p}_{a b}\right) T=6 D_{\operatorname{din}=1}^{\square D}(\mathbf{p}) \oplus 3 D_{\operatorname{dimin}}(\mathbf{p})
$$

$D^{\square \square}(\mathbf{p})$								
	$D(\mathbf{p})$							
		$D(\mathbf{p})$						
			$D(\mathbf{p})$					
				$D(\mathbf{p})$				
-					$D(\mathbf{p})$			
						$D^{\square}(\mathbf{p})$		
							$D^{\forall}(\mathbf{p})$	
								$D^{\square}(\mathbf{p})$

Diagonalized S_{2} bicycle matrix:
$T^{\dagger}(\mathbf{a b}) T=$
Unicycle (a)(b) is unit matrix

$$
T^{\dagger} D \otimes D(\mathbf{u}) T=1 D_{\mathrm{dim}=6}^{\square \square}(\mathbf{p}) \oplus 1 D_{\mathrm{dim}=3}^{\square}(\mathbf{p})
$$

$D_{11}^{\square \square}{ }_{(0)}$	$D_{12}(\mathbf{u})$	$D_{13}(\mathbf{u})$	$D_{14}(\mathbf{u})$	$D_{15}(\mathbf{u})$	$D_{16}(\mathbf{u})$			
$D_{21}(\mathbf{u})$	$D_{22}(\mathbf{u})$	$D_{23}(\mathbf{u})$	$D_{24}(\mathbf{u})$	$D_{25}(\mathbf{u})$	$D_{26}(\mathbf{u})$			
$D_{31}(\mathbf{u})$	$D_{32}(\mathbf{u})$	$D_{33}(\mathbf{u})$	$D_{34}(\mathbf{u})$	$D_{35}(\mathbf{u})$	$D_{36}(\mathbf{u})$			
$D_{41}(\mathbf{u})$	$D_{42}(\mathbf{u})$	$D_{43}(\mathbf{u})$	$D_{44}(\mathbf{u})$	$D_{45}(\mathbf{u})$	$D_{46}(\mathbf{u})$			
$D_{51}(\mathbf{u})$	$D_{52}(\mathbf{u})$	$D_{53}(\mathbf{u})$	$D_{54}(\mathbf{u})$	$D_{55}(\mathbf{u})$	$D_{56}(\mathbf{u})$			
$D_{61}(\mathbf{u})$	$D_{62}(\mathbf{u})$	$D_{63}(\mathbf{u})$	$D_{64}(\mathbf{u})$	$D_{65}(\mathbf{u})$	$D_{66}(\mathbf{u})$			
						$D_{11}^{\square}(\mathbf{u})$	$D_{12}(\mathbf{u})$	$D_{13}(\mathbf{u})$
						$D_{21}(\mathbf{u})$	$D_{22}(\mathbf{u})$	$D_{23}(\mathbf{u})$
						$D_{31}(\mathbf{u})$	$D_{32}(\mathbf{u})$	$D_{33}(\mathbf{u})$

S_{2} symmetry of $\mathrm{U}(3)$: Effect of S_{2} DTran T on intertwining $S_{2}-U(3)$ irep matrices

S_{2} matrix:
U(3) matrices:

$$
T^{\dagger} S\left(\mathbf{p}_{a b}\right) T=6 D_{d_{i m i n}=1}^{\square p}(\mathbf{p}) \oplus 3 D_{\operatorname{dimin}}(\mathbf{p})
$$

$D \quad(\mathbf{p})$								
	$D(\mathbf{p})$							
		$D(\mathbf{p})$						
			$D(\mathbf{p})$					
				$D(\mathbf{p})$				
					$D(\mathbf{p})$			
						$D^{\square}(\mathbf{p})$		
							$D^{\square}(\mathbf{p})$	
								$D^{\square}(\mathbf{p})$

$T^{\dagger} D \otimes D(\mathbf{u}) T=1 D_{\text {dim }}^{\square \square}(\mathbf{p}) \oplus 1 D_{\text {dim }}^{\square}(\mathbf{p})$

$D_{11}^{\square \square}{ }_{(0)}$	$D_{12}(\mathbf{u})$	$D_{13}(\mathbf{u})$	$D_{14}(\mathbf{u})$	$D_{15}(\mathbf{u})$	$D_{16}(\mathbf{u})$			
$D_{21}(\mathbf{u})$	$D_{22}(\mathbf{u})$	$D_{23}(\mathbf{u})$	$D_{24}(\mathbf{u})$	$D_{25}(\mathbf{u})$	$D_{26}(\mathbf{u})$			
$D_{31}(\mathbf{u})$	$D_{32}(\mathbf{u})$	$D_{33}(\mathbf{u})$	$D_{34}(\mathbf{u})$	$D_{35}(\mathbf{u})$	$D_{36}(\mathbf{u})$			
$D_{41}(\mathbf{u})$	$D_{42}(\mathbf{u})$	$D_{43}(\mathbf{u})$	$D_{44}(\mathbf{u})$	$D_{45}(\mathbf{u})$	$D_{46}(\mathbf{u})$			
$D_{51}(\mathbf{u})$	$D_{52}(\mathbf{u})$	$D_{53}(\mathbf{u})$	$D_{54}(\mathbf{u})$	$D_{55}(\mathbf{u})$	$D_{56}(\mathbf{u})$			
$D_{61}(\mathbf{u})$	$D_{62}(\mathbf{u})$	$D_{63}(\mathbf{u})$	$D_{64}(\mathbf{u})$	$D_{65}(\mathbf{u})$	$D_{66}(\mathbf{u})$			
						$D_{11}^{\sqcup}(\mathbf{u})$	$D_{12}(\mathbf{u})$	$D_{13}(\mathbf{u})$
						$D_{21}(\mathbf{u})$	$D_{22}(\mathbf{u})$	$D_{23}(\mathbf{u})$
						$D_{31}(\mathbf{u})$	$D_{32}(\mathbf{u})$	$D_{33}(\mathbf{u})$

S_{2} group hook formula
$U(3)$ group hook formula

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas
S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} projection
Rank-3 tensor basis $|\mathrm{ijk}\rangle$ (3 particles each with U(3) state space) has dimension $3^{3}=27$
S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} projection
Rank-3 tensor basis $\left|\mathrm{i}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $3^{3}=27$
[ab]

								,				,	,														
111																											
112																											
113																											
121																											
122																											
123																											
131																											
132																											
133																											
211																											
212																											
213																											
221																											
222																											
223																											
231																											
232																											
233																											
311																											
312																											
313																											
321																											
322																											
323																											
331																											
332																											
333																											

S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} projection
Rank-3 tensor basis $\left|i_{a} j_{b} k_{c}\right\rangle\left(3\right.$ particles each with $U(3)$ state space) has dimension $3^{3}=27$
[ab]

Whoa!
That's pretty big. So let's solve by S_{3} character theory. Only need traces that are sums of diagonal elements (just one per-class)

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $S_{2}-U(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas
S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory
Rank-3 tensor basis $\left|i_{a} j_{b} k_{c}\right\rangle$ (3 particles each with $U(3)$ state space) has dimension $3^{3}=27$

Whoa!
That's pretty big. So let's solve by S_{3} character theory. Only need traces that are sums of diagonal elements (just one per-class)

Bicycle character : Trace $s(\mathbf{(a b}))$ counts states like $\left|\mathrm{j}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$
S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory
Rank-3 tensor basis $\left|\mathrm{i}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $3^{3}=27$
$\operatorname{Trace}(\mathbf{a b})=9$

Whoa!
That's pretty big. So let's solve by S_{3} character theory. Only need traces that are sums of diagonal elements (just one per-class)

Bicycle character : Trace $s(\mathbf{(a b)})$ counts states like $\left\langle\mathrm{j}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ result: $\operatorname{Tr}(\mathbf{a b})=9$
S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory
Rank-3 tensor basis $\left|\mathrm{i}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $33=27$
$\operatorname{Trace}(\mathbf{a b c})=3$

Whoa!
That's pretty big. So let's solve by S_{3} character theory. Only need traces that are sums of diagonal elements (just one per-class)

Bicycle character : Trace $s(\mathbf{(a b)})$ counts states like $\left|\mathrm{j}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ result: $\operatorname{Tr}(\mathbf{a b})=9$
Tricycle character :
Trace $s(\mathbf{(a b c}))$ counts states like $\left|\mathrm{j}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{j}_{\mathrm{c}}\right\rangle$
result: $\operatorname{Tr}(\mathbf{a b c})=3$
S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory
Rank-3 tensor basis $\left\langle\mathrm{i}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $3^{3}=27$

Trace $(\mathbf{a})(\mathbf{b})(\mathbf{c})=27=3^{3}$

Whoa!
That's pretty big. So let's solve by S_{3} character theory. Only need traces that are sums of diagonal elements (just one per-class)
Bicycle character : Trace $s(\mathbf{(a b)})$ counts states like $\left.\mathrm{j}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ result: $\operatorname{Tr}(\mathbf{a b})=9$

Tricycle character : Trace $s(\mathbf{(a b c}))$ counts states like $\left.\mathrm{j}_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{j}_{\mathrm{c}}\right\rangle$ result: $\operatorname{Tr}(\mathbf{a b c})=3$

Unicycle character :
result: $\operatorname{Tr}(\mathbf{a})(\mathbf{b})(\mathbf{c})=27$

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $S_{2}-U(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $D^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots Hooklength formulas
S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory $\begin{gathered}\text { Irep.freq.formula } \\ \text { GipTheect.150.48 }\end{gathered}$
Rank-3 tensor basis $\left|i_{a} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $3^{3}=27$
Frequency formula for $\mathrm{D}^{[\mu]}: f^{[\mu]}=\frac{1}{{ }^{\circ} S_{n}} \sum_{\text {classes }(k)}\binom{$ order of }{ class $(k)} \chi_{k}^{[\mu]} \operatorname{Trace}\left(\mathbf{p}_{k}\right)$
Tensor traces: $\operatorname{Tr}(\mathbf{a}) \mathbf{(b)} \mathbf{(c)}=27, \operatorname{Tr}(\mathbf{a b c})=3, \operatorname{Tr}(\mathbf{a b})=9$,

Rank-3 tensor basis $\left|i_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $3^{3}=27$

S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory $\underset{\substack{\text { Irep.freqeformula } \\ \text { Gprophectut } 50.48}}{ }$
Rank-3 tensor basis $\left|i_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $33=27$

Frequency formula for $\mathrm{D}^{[\mu]}: f^{[\mu]}=\frac{1}{{ }^{o} S_{n}} \sum_{\text {classes }(k)}\binom{$ ordider of }{ class $(k)} \chi_{k}^{[\mu]} \operatorname{Trace}\left(\mathbf{p}_{k}\right)$	$\chi_{k}^{[\mu]}$	$\begin{aligned} & k=(1)^{3} \\ & (a)(b)(c) \end{aligned}$	$k=(3)$ (abc),(acb)	
	$\mu=\square \square \square$	1	1	1
Tensor traces: $\operatorname{Tr}(\mathbf{a})(\mathbf{b})(\mathbf{c})=27, \operatorname{Tr}(\mathbf{a b c})=3, \operatorname{Tr}(\mathbf{a b})=9$,				
and S_{3} character table.	\square	1	1	-1
	\square	2	-1	0

$$
\begin{aligned}
f^{\square \square \square} & \left.=\frac{1}{3!}\binom{\text { order of }}{\text { class (1) }} \chi_{1^{3}}^{\square \square} \operatorname{Tr}(\mathbf{a})(\mathbf{b})(\mathbf{c})+\binom{\text { order of }}{\text { class }(3)} \chi_{(3)}^{\square \square} \operatorname{Tr}(\mathbf{a b c})+\binom{\text { order of }}{\text { class(1)(2) }} \chi_{(1)(2)}^{\square \square} \operatorname{Tr}(\mathbf{a b})\right) \\
& \left.\left.=\frac{1}{6}((1)) \cdot 1 \cdot 27+(2) \cdot 1 \cdot 3+(3) \cdot 1 \cdot 9\right)\right)=10
\end{aligned}
$$

S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory
Rank-3 tensor basis $\left|i_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $33=27$

$$
\begin{aligned}
& =\frac{1}{6}((1) \cdot 1 \cdot 27+(2) \cdot 1 \cdot 3+(3) \cdot 1 \cdot 9)=10
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}(\quad(1) \cdot 1 \cdot 27+(2) \cdot 1 \cdot 3+(3) \cdot(-1) \cdot 9)=1
\end{aligned}
$$

S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} character theory
Rank-3 tensor basis $\left|i_{\mathrm{a}} \mathrm{j}_{\mathrm{b}} \mathrm{k}_{\mathrm{c}}\right\rangle$ (3 particles each with $\mathrm{U}(3)$ state space) has dimension $33=27$

$$
\begin{aligned}
& =\frac{1}{6}((1) \cdot 1 \cdot 27+(2) \cdot 1 \cdot 3+(3) \cdot 1 \cdot 9)=10 \\
& f=\frac{1}{3!}\left(\begin{array}{cc}
\left.\begin{array}{c}
\text { order of } \\
\text { class(1) }
\end{array}\right) & \chi_{1^{3}} \operatorname{Tr}(\mathbf{a})(\mathbf{b})(\mathbf{c})+\binom{\text { order of }}{\text { class }(3)}
\end{array} \chi_{(3)} \operatorname{Tr}(\mathbf{a b c})+\binom{\text { order of }}{\text { class(1)(2) }} \chi_{(11)(2)} \operatorname{Tr} \mathbf{(\mathbf { a b })}\right) \\
& =\frac{1}{6}(\quad(1) \cdot 1 \cdot 27+(2) \cdot 1 \cdot 3+(3) \cdot(-1) \cdot 9)=1
\end{aligned}
$$

$$
\begin{aligned}
& f^{\square}=\frac{1}{3!}\left(\left(\begin{array}{c}
\left.\begin{array}{c}
\text { order of } \\
\text { class(1) }
\end{array}\right)
\end{array}\right) \chi_{1^{3}}^{\square \square} \operatorname{Tr} \mathbf{(a) (\mathbf { b }) (\mathbf { c }) + (\begin{array} { c }
{ \text { order of } } \\
{ \text { class } (3) }
\end{array})} \chi_{(3)}^{\square \square} \operatorname{Tr}(\mathbf{a b c})+\binom{\text { order of }}{\text { class(1)(2) }} \chi_{(1)(2)}^{\square \square} \operatorname{Tr} \mathbf{(\mathbf { a b })}\right) \\
& =\frac{1}{6}((1) \cdot 2 \cdot 27+(2) \cdot(-1) \cdot 3+(3) \cdot(0) \cdot 9)=8
\end{aligned}
$$

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $S_{2}-U(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $D^{[\mu]}$ with tensor trace values
Effect of S_{3} DTran T on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas
S_{3} symmetry of U(3): Effect of S_{3} DTran T on intertwining $S_{3}-U(3)$ irep matrices S_{3} matrices:
$U(3)$ matrices:

$$
\begin{aligned}
& \left(\begin{array}{cc}
D_{11} & 0 \\
0 & D_{11}
\end{array}\right)\left(\begin{array}{cc}
D_{12} & 0 \\
0 & D_{12}
\end{array}\right)\left(\begin{array}{cc}
D_{13} & 0 \\
0 & D_{13}
\end{array}\right) \\
& \left(\begin{array}{cc}
D_{21} & 0 \\
0 & D_{21}
\end{array}\right)\left(\begin{array}{cc}
D_{22} & 0 \\
0 & D_{22}
\end{array}\right)\left(\begin{array}{cc}
D_{23} & 0 \\
0 & D_{23}
\end{array}\right) \\
& \left(\begin{array}{cc}
D_{31} & 0 \\
0 & D_{31}
\end{array}\right) \text {... etc. }
\end{aligned}
$$

S_{n} Young Tableaus and spin-symmetry for X_{n} and $X Y_{n}$ molecules Tableau dimension formulae

$$
\begin{aligned}
& =1 \\
& \begin{aligned}
\ell^{A_{2}} & =\ell^{[1,1,]}\left(S_{3}\right)=\frac{3 \cdot 2 \cdot 1}{\sqrt[3]{3}} \\
& =1 \begin{array}{l}
\frac{2}{1} \\
\hline 1 \\
\ell^{E}
\end{array}=\ell^{[2,1,0]}\left(S_{3}\right)=\frac{3 \cdot 2 \cdot 1}{\begin{array}{|l|l}
3 & 1 \\
\hline & \\
\hline
\end{array}}
\end{aligned}
\end{aligned}
$$

Dimension

FIG. 28. Robinson formula for statistical weights. The "hooklength" of a box in the tableau is the number of boxes in a "hook" which includes that box and all boxes in the line to the right and in the column below it.

Dimension
$\ell^{\left[\mu_{]}\right]}\left(S_{n}\right)=$ of S_{n} Tableau

$$
\left[\mu_{1}\right]\left[\mu_{2}\right] \cdots\left[\mu_{n}\right]
$$

$=\frac{n!=n \cdot(n-1) \cdot(n-2)}{c} \cdots 3 \cdot 2 \cdot 1 \mathrm{l}$

Dimension
$\ell^{\left[\mu_{s}\right]}\left(U_{m}\right)=$ of $S_{n} * U_{m}$ Tableau $\left[\mu_{1}\right]\left[\mu_{2}\right] \cdots\left[\mu_{m}\right]$

mdimension product	m	$m+1$	$m+2$		$m+3$	$m+4$
	m-1	m	$m+1$			
	m-2	$m-1$				
	m-3					
hook-		-	\bullet	-	-	
length		$\bullet \cdot$	\bullet			
product		$\bullet \bullet$				
		\bullet				

$U(3)$ group hook formula

S_{3} group hook formula

S_{3} symmetry of $\mathrm{U}(3)$: Effect of S_{3} DTran T on intertwining $S_{3}-U(3)$ irep matrices
S_{3} matrices:
$U(3)$ matrices:

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $S_{2}-U(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of $\mathrm{U}(3)$ irep bases
Fundamental "quark" irep
The octet "eightfold way"
The p-shell in $U(3)$ tableau plots Hooklength formulas

Structure of $\mathrm{U}(3)$ irep bases Fundamental $\ell \square=3$ "quark" irep

Each tableau has 3D Cartesian integer coordinates (n_{1}, n_{2}, n_{3}) determined by number operators ($a_{1} \bar{a}_{1}, a_{2} \bar{a}_{2}, a_{3} \bar{a}_{3}$)
Tableaus with the same total number $N=n_{1}+n_{2}+n_{3}$ lie in the same plane normal to (1,1,1). ${ }^{\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}, \mathbf{a}_{3}^{\dagger} \mathbf{a}_{3}\right)}$
Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum

$$
\begin{aligned}
& D=\left\langle L_{z}\right\rangle=n_{3}-n_{1}=M_{L} \\
& Q=\left\langle L_{z}^{2}\right\rangle=n_{3}+n_{1}=N-n_{2}
\end{aligned}
$$

 Fundamental $\ell=3$ "anti-quark"

Each tableau has 3D Cartesian integer coordinates (n_{1}, n_{2}, n_{3}) determined by number operators ($a_{1} \bar{a}_{1}, a_{2} \bar{a}_{2}, a_{3} \bar{a}_{3}$)
Tableaus with the same total number $N=n_{1}+n_{2}+n_{3}$ lie in the same plane normal to (1,1,1). $\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}, \mathbf{a}_{3}^{\dagger} \mathbf{a}_{3}\right)$ Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum

$$
\begin{aligned}
& D=\left\langle L_{z}\right\rangle=n_{3}-n_{1}=M_{L} \\
& Q=\left\langle L_{z}^{2}\right\rangle=n_{3}+n_{1}=N-n_{2}
\end{aligned}
$$

Structure of $\mathrm{U}(3)$ irep bases Fundamental $\ell \square=6$ "di-quark"

Each tableau has 3D Cartesian integer coordinates (n_{1}, n_{2}, n_{3}) determined by number operators ($a_{1} \bar{a}_{1}, a_{2} \bar{a}_{2}, a_{3} \bar{a}_{3}$)
Tableaus with the same total number $N=n_{1}+n_{2}+n_{3}$ lie in the same plane normal to (1,1,1). $\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}, \mathbf{a}_{3}^{\dagger} \mathbf{a}_{3}\right)$
Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum

$$
\begin{aligned}
& D=\left\langle L_{z}\right\rangle=n_{3}-n_{1}=M_{L} \\
& Q=\left\langle L_{z}^{2}\right\rangle=n_{3}+n_{1}=N-n_{2}
\end{aligned}
$$

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of U(3) irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots Hooklength formulas

Each tableau has 3D Cartesian integer coordinates $\left(n_{1}, n_{2}, n_{3}\right)$ determined by number operators ($a_{1} \bar{a}_{1}, a_{2} \bar{a}_{2}, a_{3} \bar{a}_{3}$)
Tableaus with the same total number $N=n_{1}+n_{2}+n_{3}$ lie in the same plane normal to (1,1,1). $\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}, \mathbf{a}_{3}^{\dagger} \mathbf{a}_{3}\right)$ Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum $\quad D=\left\langle L_{z}\right\rangle=n_{3}-n_{1}=M_{L}$ and the quadrupole-sum Q of squared-z-component momentum.
$Q=\left\langle L_{z}^{2}\right\rangle=n_{3}+n_{1}=N-n_{2}$

 The decapalet $\ell \quad=10$ and Ω^{-}

Each tableau has 3D Cartesian integer coordinates (n_{1}, n_{2}, n_{3}) determined by number operators ($a_{1} \bar{a}_{1}, a_{2} \bar{a}_{2}, a_{3} \bar{a}_{3}$)
Tableaus with the same total number $N=n_{1}+n_{2}+n_{3}$ lie in the same plane normal to (1,1,1). $\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}, \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}, \mathbf{a}_{3}^{\dagger} \mathbf{a}_{3}\right)$ Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum

$$
\begin{aligned}
& D=\left\langle L_{z}\right\rangle=n_{3}-n_{1}=M_{L} \\
& Q=\left\langle L_{z}^{2}\right\rangle=n_{3}+n_{1}=N-n_{2}
\end{aligned}
$$

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of $\mathrm{U}(3)$ irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas

Fig. 8 Weight or Moment Diagrams of Atomic $(p)^{n}$ States Each tableau is located at point ($x_{1} x_{2} x_{3}$) in a cartesian co-ordinate system for which x_{n} is the number of n 's in the tableau. An alternative co-ordinate system is ($\mathrm{v}_{0}^{2}, \mathrm{v}_{0}^{1}, \mathrm{v}_{0}^{0}$) defined by Eq. 16 which gives the $z z$-quadrupole moment,
z-magnetic dipole moment, and number of particles, respectively. The last axis (v_{0}^{0}) would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

A Unitary Calculus for Electronic Orbitals

William G. Harter and Christopher W. Patterson
Springer-Verlag Lectures in Physics 491976

Alternative basis for the theory of complex spectra I William G. Harter
Physical Review A 83 p2819 (1973)
Alternative basis for the theory of complex spectra II
William G. Harter and Christopher W. Patterson
Physical Review A 133 p1076-1082 (1976)
Alternative basis for the theory of complex spectra III William G. Harter and Christopher W. Patterson Physical Review A ??

Fig. 1 Young Frames
(a) A Young frame of 13 particles corresponding to all orbital states $\left({ }^{6} \mathrm{~L}\right)$ of spin multiplicity $2 \mathrm{~S}+1=6$
(b) A frame conjugate to (a) obtained by converting rows to columns, corresponds to spin states of total spin $S=5 / 2$ since only 5 of the 13 spins are unpaired. (These are represented by the single row of 5 boxes.)

$\cdots u_{3} \supset u_{2} \supset u_{1}$

Fig. 2 Unitary State Labeling
(a) Gelfand Pattern - The j th row of integers ($\lambda_{1, j} \lambda_{2, j} \ldots$
.. $\lambda_{j, j}$) tells to which representation of U_{j} the state belongs,
and similarily for the $j-1$ th row ($\lambda_{1, j-1} \lambda_{2, j-i} \ldots \lambda_{j-1, j-1}$)
which labels a unique representation of U_{j-1} contained in
$\left(\lambda_{1, j} \lambda_{2}, j \ldots \lambda_{j, j}\right)$. In this way each state has a unique
genealogy chain and labeling.
(b) Young Tableau - Tableaus are a completely equivalent but non-algebraic "picture" of the Gelfand patterns. (When labeled algebraically, it is just an up-side-down Gelfand Pattern.)

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Characters of intertwining $\left(\mathrm{S}_{\mathrm{n}}\right)^{*}(\mathrm{U}(\mathrm{m}))$ algebras and quantum applications

Generic $\mathrm{U}(3) \supset \mathrm{R}(3)$ transformations: p-triplet in $\mathrm{U}(3)$ shell model
Rank-1 vector in $\mathrm{R}(3)$ or "quark"-triplet in $\mathrm{U}(3)$
Rank-2 tensor (2 particles each with $U(3)$ state space)
$\mathrm{U}(3)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(3)$ transform. 2-particle permutation operations
S_{2} symmetry of $U(3)$: Applying S_{2} projection
Matrix representation of Diagonalizing Transform (DTran T)
Effect of S_{2} DTran T on intertwining $\mathrm{S}_{2}-\mathrm{U}(3)$ irep matrices
S_{3} symmetry of $U(3)$: Applying S_{3} projection
Applying S_{3} character theory
Frequency formula for $\mathrm{D}^{[\mu]}$ with tensor trace values
Effect of $S_{3} D T r a n T$ on intertwining $S_{3}-U(3)$ irep matrices
Structure of $\mathrm{U}(3)$ irep bases
Fundamental "quark" irep. "anti-quark". "di-quark".
The octet "eightfold way" The decapalet and Ω^{-}
The p-shell in $U(3)$ tableau plots
Hooklength formulas
(a) Dimension
of

;
=
representation of Sn_{n}
$n!$

$\left.\theta_{\text {of } s_{4}}=\frac{4!}{\frac{3}{3} 2} \begin{array}{l}\left.\frac{2}{2} \right\rvert\, 1\end{array}\right]=2$

\square of $U_{3}=$| 3 4
 2 3
 3 2
 2 1 | $=6$ |
| :--- | :--- |

Fig. 6 Hall - Robinson Hooklength Formulas
Dimension of representations of (a) S_{n} and (b) U_{m} labeled by a single tableau are given by the formulas. A hooklength of a tableau box is simply the number of boxes in a "hook" consisting of all the boxes below it, to the right of it, and itself.

Unitary raising and lowering operators $\mathrm{E}_{\mathrm{jk}} \quad\left[E_{j k}, E_{p q}\right]=\delta_{p k} E_{j q}-\delta_{q j} E_{p k}$

$$
\mathbf{a}_{j}^{\dagger} \mathbf{a}_{k}+\mathbf{b}_{j}^{\dagger} \mathbf{b}_{k}+\ldots=E_{j k}=a_{j} \bar{a}_{k}+b_{j} \bar{b}_{k}+\ldots
$$

Hooklength formulas for E_{jk} on atomic tableau states
(a) $\left\langle\left[\lambda^{\prime}\right]\right| \mathrm{E}_{\mathrm{ii}}|[\lambda]\rangle=\delta_{\lambda^{\prime} \lambda^{\prime}} n_{i}$
(b) $\left\langle\left[\lambda^{\prime}\right]\right| \mathrm{E}_{\mathrm{ij}}|[\lambda]\rangle=\langle[\lambda]| \mathrm{E}_{\mathrm{ji}}\left|\left[\lambda^{\prime}\right]\right\rangle$

(e)
$\left.\mathrm{E}_{2,3} \sqrt[3]{3}\right]^{3}=\sqrt{\frac{1}{2}} \frac{[}{3}^{2}+\sqrt{\frac{3}{2}}\left[_{2}^{3}\right.$
(f)
$\mathrm{E}_{2,3} \sqrt{2}^{\frac{23}{4}}=\sqrt{\frac{2}{1}}{ }^{\frac{2^{2}}{4}}$

Multi-spin (1/2)N product states

Multi-spin (1/2)N product states
$\left(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}\right)=d^{0}+d^{1}$
$\left(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}\right) \otimes d^{\frac{1}{2}}=\left(d^{0}+d^{1}\right) \otimes d^{\frac{1}{2}}=d^{0} \otimes d^{\frac{1}{2}}+d^{1} \otimes d^{\frac{1}{2}}$

$$
=d^{\frac{1}{2}}+d^{\frac{1}{2}}+d^{\frac{3}{2}}=2 d^{\frac{1}{2}}+1 d^{\frac{3}{2}}
$$

$$
\begin{aligned}
& f^{\square}=\frac{1}{3!}\left(\binom{\text { order of }}{\text { class }(1)} \quad \chi_{1^{3}}^{\square \square} \operatorname{Tr} \mathbf{(a) (b) (\mathbf { c }) + (\begin{array} { l }
{ \text { order of } } \\
{ \text { class } (3) }
\end{array})} \chi_{(3)}^{\square \square} \operatorname{Tr} \mathbf{(a b c)}+\binom{\text { order of }}{\text { class(1)(2) }} \chi_{(1)(2)}^{\square \square} \operatorname{Tr}(\mathbf{a b})\right) \\
& =\frac{1}{6}((1) \cdot 2 \cdot 27+(2) \cdot(-1) \cdot 3+(3) \cdot(0) \cdot 9)=8
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}((1) \cdot 1 \cdot 27+(2) \cdot 1 \cdot 3+(3) \cdot 1 \cdot 9 \quad)=10 \\
& f^{\square}=\frac{1}{3!}\left(\begin{array}{l}
\left.\begin{array}{l}
\text { order of } \\
\text { class }(1)
\end{array}\right)
\end{array} \chi_{1^{3}}^{\square} \operatorname{Tr} \mathbf{(a) (\mathbf { b }) \mathbf { (c) } + (\begin{array} { c }
{ \text { order of } } \\
{ \text { class } (3) }
\end{array})} \chi_{(3)}^{\square} \operatorname{Tr} \mathbf{(\mathbf { a b c }) + (\begin{array} { l }
{ \text { order of } } \\
{ \text { class } (1) (2) }
\end{array})} \chi_{(1)(2)}^{\square} \operatorname{Tr} \mathbf{(a b)}\right) \\
& =\frac{1}{6}((1) \cdot 1 \cdot 27+(2) \cdot 1 \cdot 3+(3) \cdot(-1) \cdot 9)=1
\end{aligned}
$$

S_{3} symmetry of $\mathrm{U}(3)$: Applying S_{3} projection
Rank-3 tensor basis $|\mathrm{ijk}\rangle$ (3 particles each with U(3) state space) has dimension $33=27$

