4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

```
    S<sub>3</sub> symmetry of U(3): Applying S<sub>3</sub> projection
Applying S<sub>3</sub> character theory
Frequency formula for D<sup>[µ]</sup> with tensor trace values
    Effect of S<sub>3</sub> DTran T on intertwining S<sub>3</sub> - U(3) irep matrices
```

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978 Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984 Galloping waves and their relativistic properties - ajp-1985-Harter Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989
- III) Half-integral angular momentum harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001 Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973 Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u>.

H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>.

Hyperf. theory Ch. 24 p48.

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

> Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>.

Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>.

CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>.

> Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables <u>Unit 8 Ch. 25 p12</u>.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. *Intro 3-particle coupling.* <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26) (PSDS - Ch. 5, 7)

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

S₃ symmetry of U(3): Applying S₃ projection
 Applying S₃ character theory
 Frequency formula for D^[µ] with tensor trace values
 Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

U(3) tensor product states and S_n permutation symmetry Generic U(3) \supset R(3) transformations (Just like $\ell = 1$ vector basis $\{1 = x, 2 = y, 3 = z\}$) $\operatorname{uark}^{*}\operatorname{triplet} \operatorname{in} \operatorname{U}(5) \quad \operatorname{ur} \quad r$ where: $D_{jk} = (\phi_j^*, \phi_k') = (\phi_j^*, \mathbf{u}\phi_k)$ $|1\rangle = \phi_1 = \begin{pmatrix} 1 \\ \cdot \\ \cdot \end{pmatrix}$ $|3\rangle = \phi_3 = \begin{pmatrix} \cdot \\ \cdot \\ 1 \end{pmatrix}$ $(2) = \phi_2 = \begin{pmatrix} \cdot \\ 1 \\ \cdot \end{pmatrix}$ $(2) = \phi_2 = \begin{pmatrix} \cdot \\ 1 \\ \cdot \end{pmatrix}$ Rank-1 vector in R(3) or "quark"-triplet in U(3) or *p*-triplet in U(3) shell model $\phi_1' = \mathbf{u}\phi_1 = \phi_1 D_{11} + \phi_2 D_{21} + \phi_3 D_{31}$ $\phi'_{2} = \mathbf{u}\phi_{2} = \phi_{1}D_{12} + \phi_{2}D_{22} + \phi_{3}D_{32}$ $\phi'_{3} = \mathbf{u}\phi_{3} = \phi_{1}D_{13} + \phi_{2}D_{23} + \phi_{3}D_{33}$ **Dirac notation:** where: $D_{jk}(\mathbf{u}) = \langle j | k' \rangle = \langle j | \mathbf{u} | k \rangle$ $|1'\rangle = \mathbf{u}|1\rangle = |1\rangle D_{11} + |2\rangle D_{21} + |3\rangle D_{31}$ $D_{jk}(\mathbf{u}) = \left(\begin{array}{ccc} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{21} & D_{22} & D_{33} \end{array}\right)$ $|2'\rangle = \mathbf{u}|2\rangle = |1\rangle D_{12} + |2\rangle D_{22} + |3\rangle D_{32}$ $|3'\rangle = \mathbf{u}|3\rangle = |1\rangle D_{13} + |2\rangle D_{23} + |3\rangle D_{33}$

U(3) tensor product states and S_n permutation symmetry Typical U(3) \supset R(3) transformations (Just like $\ell = 1$ vector basis $\{1=x, 2=y, 3=z\}$) where: $D_{jk} = (\phi_j^*, \phi_k') = (\phi_j^*, \mathbf{u}\phi_k)$ $|1\rangle = \phi_1 = \begin{pmatrix} 1 \\ \cdot \\ \cdot \end{pmatrix}$ $|3\rangle = \phi_3 = \begin{pmatrix} \cdot \\ \cdot \\ 1 \end{pmatrix}$ $|2\rangle = \phi_2 = \begin{pmatrix} \cdot \\ 1 \\ \cdot \end{pmatrix}$ Rank-1 vector in R(3) or "quark"-triplet in U(3) or *p*-triplet in U(3) shell model $\phi_1' = \mathbf{u}\phi_1 = \phi_1 D_{11} + \phi_2 D_{21} + \phi_3 D_{31}$ $\phi'_{2} = \mathbf{u}\phi_{2} = \phi_{1}D_{12} + \phi_{2}D_{22} + \phi_{3}D_{32}$ $\phi'_{3} = \mathbf{u}\phi_{3} = \phi_{1}D_{13} + \phi_{2}D_{23} + \phi_{3}D_{33}$ **Dirac notation:** where: $D_{jk}(\mathbf{u}) = \langle j | k' \rangle = \langle j | \mathbf{u} | k \rangle$ $|1'\rangle = \mathbf{u}|1\rangle = |1\rangle D_{11} + |2\rangle D_{21} + |3\rangle D_{31}$ $D_{jk}(\mathbf{u}) = \begin{pmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{pmatrix}$ $|2'\rangle = \mathbf{u}|2\rangle = |1\rangle D_{12} + |2\rangle D_{22} + |3\rangle D_{32}$ $|3'\rangle = \mathbf{u}|3\rangle = |1\rangle D_{13} + |2\rangle D_{23} + |3\rangle D_{33}$

Rank-2 tensor (2 particles each with U(3) state space)

$$\begin{aligned} \left| j' \right\rangle \left| k' \right\rangle &= \mathbf{u} \left| j \right\rangle \mathbf{u} \left| k \right\rangle \\ &= \sum_{j,k} \left| j \right\rangle \left| k \right\rangle D_{jj'} D_{kk'} \\ &= \sum_{j,k} \left| j \right\rangle \left| k \right\rangle D \otimes D_{jk:j'k'} \end{aligned}$$

U(3) tensor product states and S_n permutation symmetry Typical U(3) \supset R(3) transformations (Just like $\ell = 1$ vector basis $\{1=x, 2=y, 3=z\}$) Rank-1 vector in R(3) or "quark"-triplet in U(3) or *p*-triplet in U(3) shell model Dirac notation: $|1'\rangle = \mathbf{u}|1\rangle = |1\rangle D_{11} + |2\rangle D_{21} + |3\rangle D_{31}$ where: $D_{jk}(\mathbf{u}) = \langle j|k'\rangle = \langle j|\mathbf{u}|k\rangle$ $D_{jk}(\mathbf{u}) = \begin{pmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{pmatrix}$

Rank-2 tensor (2 particles each with U(3) state space)

 $|3'\rangle = \mathbf{u}|3\rangle = |1\rangle D_{13} + |2\rangle D_{23} + |3\rangle D_{33}$

$$\begin{aligned} \left| j' \right\rangle \left| k' \right\rangle &= \mathbf{u} \left| j \right\rangle \mathbf{u} \left| k \right\rangle \\ &= \sum_{j,k} \left| j \right\rangle \left| k \right\rangle D_{jj'} D_{kk'} \\ &= \sum_{j,k} \left| j \right\rangle \left| k \right\rangle D \otimes D_{jk:j'k'} \end{aligned}$$

 $= \begin{pmatrix} D_{11}D_{11} & D_{11}D_{12} & D_{11}D_{13} & D_{12}D_{11} & D_{12}D_{12} & D_{12}D_{13} & \cdots \\ D_{11}D_{21} & D_{11}D_{22} & D_{11}D_{23} & D_{12}D_{21} & D_{12}D_{22} & D_{12}D_{23} & \cdots \\ D_{11}D_{31} & D_{11}D_{32} & D_{11}D_{33} & D_{12}D_{21} & D_{12}D_{22} & D_{12}D_{23} & \cdots \\ D_{21}D_{11} & D_{21}D_{12} & \vdots & D_{22}D_{11} & D_{22}D_{12} & \vdots & \cdots \\ \vdots & \ddots \end{pmatrix}$

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

 U(3) tensor product states and S_n permutation symmetry 2-particle U(3) transform. 2-particle permutation operations
 S₂ symmetry of U(3): Applying S₂ projection Matrix representation of *Diagonalizing Transform* (DTran *T*) Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

S₃ symmetry of U(3): Applying S₃ projection
 Applying S₃ character theory
 Frequency formula for D^[µ] with tensor trace values
 Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

U(3) tensor product states and S_n permutation symmetry 2-particle U(3) transform and outer-product U(3) transform matrix $D_{jj'}D_{kk'} = D \otimes D_{jk;j'k'} =$ $D_{11}D_{11} \quad D_{11}D_{12} \quad D_{11}D_{13} \quad D_{12}D_{11} \quad D_{12}D_{12} \quad D_{12}D_{13} \quad D_{13}D_{11} \quad D_{13}D_{12} \quad D_{13}D_{13}$ $D_{11}D_{21}$ $D_{11}D_{22}$ $D_{11}D_{23}$ $D_{12}D_{21}$ $D_{12}D_{22}$ $D_{12}D_{23}$ $D_{13}D_{21}$ $D_{13}D_{22}$ $D_{13}D_{23}$ $D_{11}D_{31}$ $D_{11}D_{32}$ $D_{11}D_{33}$ $D_{12}D_{31}$ $D_{12}D_{22}$ $D_{12}D_{33}$ $D_{13}D_{31}$ $D_{13}D_{23}$ $D_{13}D_{33}$ $D_{21}D_{11} \quad D_{21}D_{12} \quad D_{21}D_{13} \quad D_{22}D_{11} \quad D_{22}D_{12} \quad D_{22}D_{13} \quad D_{23}D_{11} \quad D_{23}D_{12} \quad D_{23}D_{13}$ $= \begin{bmatrix} D_{21}D_{21} & D_{21}D_{22} & D_{21}D_{23} & D_{22}D_{21} & D_{22}D_{22} & D_{22}D_{23} & D_{23}D_{21} & D_{23}D_{22} & D_{23}D_{23} \end{bmatrix}$ $D_{21}D_{31} \quad D_{21}D_{32} \quad D_{21}D_{33} \quad D_{22}D_{31} \quad D_{22}D_{32} \quad D_{22}D_{33} \quad D_{23}D_{31} \quad D_{23}D_{23} \quad D_{23}D_{33} \quad D_{2$ $D_{31}D_{11}$ $D_{31}D_{12}$ $D_{31}D_{13}$ $D_{32}D_{11}$ $D_{32}D_{12}$ $D_{32}D_{13}$ $D_{33}D_{11}$ $D_{33}D_{12}$ $D_{33}D_{13}$ $D_{31}D_{21} \quad D_{31}D_{22} \quad D_{31}D_{23} \quad D_{32}D_{21} \quad D_{32}D_{22} \quad D_{32}D_{23} \quad D_{33}D_{21} \quad D_{33}D_{22} \quad D_{33}D_{23}$ $D_{31}D_{31} \quad D_{31}D_{23} \quad D_{31}D_{33} \quad D_{32}D_{31} \quad D_{32}D_{32} \quad D_{32}D_{33} \quad D_{33}D_{31} \quad D_{33}D_{23} \quad D_{33}D_{33} \quad D_{$

U(3) tensor product states and $S_2=S_n$ permutation symmetry 2-particle U(3) transform and outer-product U(3) transform matrix $D_{ii'}D_{kk'} = D \otimes D_{ik;i'k'} =$ $D_{11}D_{11}$ $D_{11}D_{12}$ $D_{11}D_{13}$ $D_{12}D_{11}$ $D_{12}D_{12}$ $D_{12}D_{13}$ $D_{13}D_{11}$ $D_{13}D_{12}$ $D_{13}D_{13}$ $D_{11}D_{22}$ $D_{11}D_{23}$ $D_{12}D_{21}$ $D_{12}D_{22}$ $D_{12}D_{23}$ $D_{13}D_{21}$ $D_{13}D_{22}$ $D_{13}D_{23}$ $D_{11}D_{21}$ $D_{11}D_{31}$ $D_{11}D_{32}$ $D_{11}D_{33}$ $D_{12}D_{31}$ $D_{12}D_{22}$ $D_{12}D_{33}$ $D_{13}D_{31}$ $D_{13}D_{23}$ $D_{13}D_{33}$ $D_{21}D_{11}$ $D_{21}D_{12}$ $D_{21}D_{13}$ $D_{22}D_{11}$ $D_{22}D_{12}$ $D_{22}D_{13}$ $D_{23}D_{11}$ $D_{23}D_{12}$ $D_{23}D_{13}$ $D_{21}D_{22}$ $D_{21}D_{23}$ $D_{22}D_{21}$ $D_{22}D_{22}$ $D_{22}D_{23}$ $D_{23}D_{21}$ $D_{23}D_{22}$ $D_{23}D_{23}$ $D_{21}D_{21}$ = $D_{21}D_{31} \quad D_{21}D_{32} \quad D_{21}D_{33} \quad D_{22}D_{31} \quad D_{22}D_{32} \quad D_{22}D_{33} \quad D_{23}D_{31} \quad D_{23}D_{23} \quad D_{23}D_{33}$ $D_{31}D_{11}$ $D_{31}D_{12}$ $D_{31}D_{13}$ $D_{32}D_{11}$ $D_{32}D_{12}$ $D_{32}D_{13}$ $D_{33}D_{11}$ $D_{33}D_{12}$ $D_{33}D_{12}$ $D_{31}D_{21}$ $D_{31}D_{22}$ $D_{31}D_{23}$ $D_{32}D_{21}$ $D_{32}D_{22}$ $D_{32}D_{23}$ $D_{33}D_{21}$ $D_{33}D_{22}$ $D_{33}D_{23}$ $D_{31}D_{31} \quad D_{31}D_{23} \quad D_{31}D_{33} \quad D_{32}D_{31} \quad D_{32}D_{32} \quad D_{32}D_{33} \quad D_{33}D_{31} \quad D_{33}D_{23} \quad D_{33}D_{33}$ $\mathbf{s}(a)(b) | j \rangle_a | k \rangle_b = | j \rangle_a | k \rangle_b$, $\mathbf{s}(ab) | j \rangle_a | k \rangle_b = | k \rangle_a | j \rangle_b$ 2-particle permutation operations: Represented by matrices: 12 13 21 22 23 31 32 13 21 22 23 31 32 33 11 12 33 11 11 11 12 12 13 13 . . 1 . . 21 21 $\mathbf{s}(a)(b) =$ $\mathbf{s}(ab) =$ 22 22 23 23 31 31 32 32 33 33

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

S₃ symmetry of U(3): Applying S₃ projection
 Applying S₃ character theory
 Frequency formula for D^[µ] with tensor trace values
 Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

S ₂ syn	nm	etr	<i>y</i> 0	fU	(3)	: Aj	ppl	yin	$g S_{2}$	2 pr	ojection											
S_2 matr	ix e	eige	n-se	olut	tion	fou	ndl	by p	oroj	ecto	rs: Minir	nale	eq.	(ab)	² -1	=0=	=((a	b) +:	1)((ab)-	+1)	yields:
Symmetric (\square): $\mathbf{P}^{\square} = \frac{1}{2} [1 + (\mathbf{ab})]$)]		1	Ant	i-Sy	mn	netr	ic ()	: P	$=\frac{1}{2}$	[1-	(ab)]			
		11	12	13	21	22	23	31	32	33	₽ [□] =		11	12	13	21	22	23	31	32	33	
	11	1	•	•	•	•	•	•	•	•		11	0	•	•	•	•	•	•	•	•	
	12	•	$\frac{1}{2}$	•	$\frac{1}{2}$	•	•	•	•	•		12	•	$\frac{1}{2}$	•	$\frac{-1}{2}$	•	•	•	•	•	
	13	•	•	$\frac{1}{2}$	•	•	•	$\frac{1}{2}$	•	•		13	•	•	$\frac{1}{2}$	•	•	•	$\frac{-1}{2}$	•	•	
	21	•	$\frac{1}{2}$	•	$\frac{1}{2}$	•	•	•	•	•		21	•	$\frac{-1}{2}$	•	$\frac{1}{2}$	•	•	•	•	•	
I I	22	•	•	•	•	1	•	•	•	•		22	•	•	•	•	0	•	•	•	•	
	23	•	•	•	•	•	$\frac{1}{2}$	•	$\frac{1}{2}$	•		23	•	•	•	•		$\frac{1}{2}$	•	$\frac{-1}{2}$	•	
-	31	•	•	$\frac{1}{2}$	•	•	•	$\frac{1}{2}$	•	•		31	•	•	$\frac{-1}{2}$	•	•	•	$\frac{1}{2}$	•	•	
	32	•	•	•	•	•	$\frac{1}{2}$	•	$\frac{1}{2}$	•		32	•	•	•	•	•	$\frac{-1}{2}$	•	$\frac{1}{2}$		
	33	•	•	•	•	•	•	•	•	1		33	•	•	•	•		•	•	•	0	
		11	12	13	21	22	23	31	32	33			11	12	13	21	22	23	31	32	33	
-	11	1	•	•	•	•	•	•	•	•		11	1	•	•	•	•	•	•	•	•	
	12	•	1	•	•	•	•	•	•			12	•		•	1	•	•	•	•		
	13	•	•	1	•	•	•	•	•	•		13	•	•	•	•	•	•	1	•	•	
(a)(b) =	21	•	•	•	1	•	•	•	•		(ab) =	21	•	1	•	•	•	•	•	•		
	22	٠	•	•	•	1	•	•	•		()	22	•	•	•	•	1	•	•	•	•	
	23	•	•	•	•	•	<u> </u>	•	•	•		23	•	•	•	•	•	•	•	1	•	
	31	•	•	•	•	•	•	1	•	•		31	•	•	1	•	•	•	•	•		
	32 22	•	•	•	·	•	•	·	1	•		32	•	•	•	•	•	1	•	•	•	
	33	•	•	•	•	•	•	•	•	1		33	•	•	•	•	•	•	•	•	1	

Matrix representation of *Diagonalizing Transform* (DTran T) is made by excerpting P-columns

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

 S₃ symmetry of U(3): Applying S₃ projection Applying S₃ character theory Frequency formula for D^[μ] with tensor trace values
 Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

 S_2 symmetry of U(3): Effect of S_2 DTran T on intertwining S_2 - U(3) irep matrices

S₂ matrix:

$T^{\dagger}S(\mathbf{p}_{ab})T = 6D_{\text{dim}=1}^{\square}(\mathbf{p}) \oplus 3D_{\text{dim}=1}^{\square}(\mathbf{p})$ $D^{\square\square}(\mathbf{p})$ *D* (**p**) *D* (**p**) *D* (**p**) *D* (**p**) *D* (**p**) $D^{\square}(\mathbf{p})$ $D^{\square}(\mathbf{p})$ $D^{\square}(\mathbf{p})$ +1 Diagonalized +1 S_2 bicycle +1 matrix: +1 $T^{\dagger}(\mathbf{ab})T =$ +1 +1 Unicycle -1 **(a)(b)** is unit matrix -1

-1

$$T^{\dagger}D \otimes D(\mathbf{u})T = 1D_{\dim=6}^{\square}(\mathbf{p}) \oplus 1D_{\dim=3}^{\square}(\mathbf{p})$$

$D_{11}^{\square\square}(\mathbf{u})$	$D_{12}(\mathbf{u})$	$D_{13}({f u})$	$D_{14}(\mathbf{u})$	$D_{15}(\mathbf{u})$	$D_{16}(\mathbf{u})$			
$D_{21}({f u})$	$D_{22}(\mathbf{u})$	$D_{23}({f u})$	$D_{24}({f u})$	$D_{25}(\mathbf{u})$	$D_{26}(\mathbf{u})$			
$D_{31}({f u})$	$D_{32}({f u})$	$D_{33}({f u})$	$D_{34}({f u})$	$D_{35}(\mathbf{u})$	$D_{36}({f u})$			
$D_{41}({f u})$	$D_{42}(\mathbf{u})$	$D_{43}(\mathbf{u})$	$D_{44}(\mathbf{u})$	$D_{45}(\mathbf{u})$	$D_{46}(\mathbf{u})$			
$D_{51}(\mathbf{u})$	$D_{52}(\mathbf{u})$	$D_{53}(\mathbf{u})$	$D_{54}(\mathbf{u})$	$D_{55}(\mathbf{u})$	$D_{56}(\mathbf{u})$			
$D_{61}(\mathbf{u})$	$D_{62}(\mathbf{u})$	$D_{63}(\mathbf{u})$	$D_{64}(\mathbf{u})$	$D_{65}(\mathbf{u})$	$D_{66}(\mathbf{u})$			
						$D_{11}^{\square}(\mathbf{u})$	$D_{12}({f u})$	$D_{13}({f u})$
						$D_{21}({f u})$	$D_{22}(\mathbf{u})$	$D_{23}({f u})$
						$D_{31}({\bf u})$	$D_{32}({f u})$	$D_{33}({f u})$

U(3) matrices:

 S_2 symmetry of U(3): Effect of S_2 DTran T on intertwining S_2 - U(3) irep matrices

S₂ matrix:

U(3) matrices:

$$T^{\dagger}D \otimes D(\mathbf{u})T = 1D_{\dim=6}^{\square}(\mathbf{p}) \oplus 1D_{\dim=3}^{\square}(\mathbf{p})$$

$D_{11}^{\square\square}(\mathbf{u})$	$D_{12}(\mathbf{u})$	$D_{13}({f u})$	$D_{14}(\mathbf{u})$	$D_{15}(\mathbf{u})$	$D_{16}(\mathbf{u})$			
$D_{21}({f u})$	$D_{22}(\mathbf{u})$	$D_{23}(\mathbf{u})$	$D_{24}(\mathbf{u})$	$D_{25}(\mathbf{u})$	$D_{26}(\mathbf{u})$			
$D_{31}({f u})$	$D_{32}({f u})$	$D_{33}({f u})$	$D_{34}({f u})$	$D_{35}(\mathbf{u})$	$D_{36}({f u})$			
$D_{41}(\mathbf{u})$	$D_{42}(\mathbf{u})$	$D_{43}(\mathbf{u})$	$D_{44}(\mathbf{u})$	$D_{45}(\mathbf{u})$	$D_{46}(\mathbf{u})$			
$D_{51}(\mathbf{u})$	$D_{52}(\mathbf{u})$	$D_{53}(\mathbf{u})$	$D_{54}(\mathbf{u})$	$D_{55}(\mathbf{u})$	$D_{56}(\mathbf{u})$			
$D_{61}(\mathbf{u})$	$D_{62}(\mathbf{u})$	$D_{63}(\mathbf{u})$	$D_{64}(\mathbf{u})$	$D_{65}(\mathbf{u})$	$D_{66}(\mathbf{u})$			
						$D_{11}^{\square}(\mathbf{u})$	$D_{12}({f u})$	$D_{13}({f u})$
						$D_{21}({f u})$	$D_{22}(\mathbf{u})$	$D_{23}({f u})$
						$D_{31}({f u})$	$D_{32}({f u})$	$D_{33}({f u})$

 S_2 group hook formula

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

 S₃ symmetry of U(3): Applying S₃ projection Applying S₃ character theory Frequency formula for D^[µ] with tensor trace values Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

S₃ symmetry of U(3): Applying S₃ projection

Rank-3 tensor basis $|ijk\rangle$ (3 particles each with U(3) state space) has dimension $3^3=27$

S₃ symmetry of U(3): Applying S₃ projection

S₃ symmetry of U(3): Applying S₃ projection

Whoa! That's pretty big. So let's solve by *S*₃ *character theory*. Only need traces that are sums of diagonal elements (just one per-class)

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

 S₃ symmetry of U(3): Applying S₃ projection Applying S₃ character theory Frequency formula for D^[µ] with tensor trace values Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

S₃ symmetry of U(3): Applying S₃ character theory

Whoa! That's pretty big. So let's solve by S₃ *character theory*. Only need traces that are sums of diagonal elements (just one per-class) Bicycle character :

Trace s((ab)) counts states like $|j_a j_b k_c\rangle$

S₃ symmetry of U(3): Applying S₃ character theory

Whoa! That's pretty big. So let's solve by S₃ *character theory*. Only need traces that are sums of diagonal elements (just one per-class) Bicycle character : Trace s((ab)) counts

Trace s((**ab**)) counts states like $|j_a j_b k_c\rangle$ result: *Tr*(**ab**)=9

S₃ symmetry of U(3): Applying S₃ character theory

Whoa! That's pretty big. So let's solve by S_3 character theory. Only need traces that are sums of diagonal elements (just one per-class) Bicycle character : *Trace s*((**ab**)) counts states like $|j_a j_b k_c\rangle$ result: Tr(ab)=9 Tricycle character : *Trace s*((abc)) counts states like $|j_a j_b j_c\rangle$ result: Tr(abc)=3

S₃ symmetry of U(3): Applying S₃ character theory

Rank-3 tensor basis $|i_a j_b k_c\rangle$ (3 particles each with U(3) state space) has dimension $3^3=27$

Whoa! That's pretty big. So let's solve by S_3 character theory. Only need traces that are sums of diagonal elements (just one per-class) Bicycle character : *Trace s*((**ab**)) counts states like $|j_a j_b k_c\rangle$ result: Tr(ab)=9

Tricycle character : *Trace s*((abc)) counts states like |j_a j_b j_c > result: *Tr*(abc)=3

Unicycle character : result: *Tr*(a)(b)(c)=27

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

S₃ symmetry of U(3): Applying S₃ projection
 Applying S₃ character theory
 Frequency formula for D^[µ] with tensor trace values
 Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

S₃ symmetry of U(3): Applying S₃ character theory Rank-3 tensor basis $|i_a j_b k_c\rangle$ (3 particles each with U(3) state space) has dimension 3³=27 Frequency formula for D^[µ]: $f^{[µ]} = \frac{1}{{}^o S_n} \sum_{classes(k)} {order of \ class(k)} \chi_k^{[µ]} Trace(\mathbf{p}_k)$

Tensor traces: Tr(a)(b)(c)=27, Tr(abc)=3, Tr(ab)=9,

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

S₃ symmetry of U(3): Applying S₃ projection Applying S₃ character theory Frequency formula for $D^{[\mu]}$ with tensor trace values

Effect of S_3 DTran T on intertwining S_3 - U(3) irep matrices

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

S₃ symmetry of U(3): Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices S₃ matrices: U(3) matrices:

S_n Young Tableaus and spin-symmetry for X_n and XY_n molecules Tableau dimension formulae $3\cdot 2\cdot 1$ Examples:

FIG. 28. Robinson formula for statistical weights. The "hooklength" of a box in the tableau is the number of boxes in a "hook" which includes that box and all boxes in the line to the right and in the column below it.

Irep.freq.formula GrpThLect.15p.48.

U(3) group hook formula

=10

3 2

 $n!=n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1$ = • hook-length product

 S_3 group hook formula

S₃ symmetry of U(3): Effect of S₃ DTran T on intertwining S₃ - U(3) irep matrices S₃ matrices: U(3) matrices:

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

```
    S<sub>3</sub> symmetry of U(3): Applying S<sub>3</sub> projection
    Applying S<sub>3</sub> character theory
    Frequency formula for D<sup>[µ]</sup> with tensor trace values
    Effect of S<sub>3</sub> DTran T on intertwining S<sub>3</sub> - U(3) irep matrices
```

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

Each tableau has 3D Cartesian integer coordinates (n_1, n_2, n_3) determined by number operators $(a_1\overline{a}_1, a_2\overline{a}_2, a_3\overline{a}_3)$ Tableaus with the same total number $N = n_1 + n_2 + n_3$ lie in the same plane normal to (1, 1, 1). Plane has orthogonal *D* and *Q* axes for *dipole-sum D* of z-component momentum $D = \langle L_z \rangle = n_3 - n_1 = M_L$ and the *quadrupole-sum Q* of squared-z-component momentum. $Q = \langle L_z^2 \rangle = n_3 + n_1 = N - n_2$

Structure of U(3) *irep bases* (c)Anti-symmetri D.S sextet [20] P-triplet [11] Fundamental $\ell^{[]} = 3$ "anti-quark" -0 13 S single Each tableau has 3D Cartesian integer coordinates (n_1, n_2, n_3) determined by number operators $(a_1\overline{a_1}, a_2\overline{a_2}, a_3\overline{a_3})$ $(\mathbf{a}_1^{\mathsf{T}}\mathbf{a}_1, \mathbf{a}_2^{\mathsf{T}}\mathbf{a}_2, \mathbf{a}_3^{\mathsf{T}}\mathbf{a}_3)$ Tableaus with the same total number $N = n_1 + n_2 + n_3$ lie in the same plane normal to (1,1,1). $\boldsymbol{D} = \left\langle L_z \right\rangle = n_3 - n_1 = M_L$ Plane has orthogonal D and Q axes for *dipole-sum* D of z-component momentum and the *quadrupole-sum Q* of squared-*z*-component momentum. $\boldsymbol{Q} = \left\langle L_z^2 \right\rangle = n_3 + n_1 = N - n_2$ (*b*) (*U*(3) *l*-1 states) (b) (U(3) ℓ -1 states)

Structure of U(3) irep bases Fundamental $\ell^{\Box\Box} = 6$ "di-quark"

Each tableau has 3D Cartesian integer coordinates (n_1, n_2, n_3) determined by number operators $(a_1\overline{a}_1, a_2\overline{a}_2, a_3\overline{a}_3)$ Tableaus with the same total number $N = n_1 + n_2 + n_3$ lie in the same plane normal to (1,1,1). Plane has orthogonal *D* and *Q* axes for *dipole-sum D* of z-component momentum $D = \langle L_z \rangle = n_3 - n_1 = M_L$ and the *quadrupole-sum Q* of squared-z-component momentum. $Q = \langle L_z^2 \rangle = n_3 + n_1 = N - n_2$

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

```
    S<sub>3</sub> symmetry of U(3): Applying S<sub>3</sub> projection
    Applying S<sub>3</sub> character theory
    Frequency formula for D<sup>[µ]</sup> with tensor trace values
    Effect of S<sub>3</sub> DTran T on intertwining S<sub>3</sub> - U(3) irep matrices
```

Structure of U(3) irep bases Fundamental "quark" irep. The octet "eightfold way" The p-shell in U(3) tableau plots Hooklength formulas

```
"anti-quark". "di-quark". The decapalet and \Omega^{-}
```


Each tableau has 3D Cartesian integer coordinates (n_1, n_2, n_3) determined by number operators $(a_1\overline{a}_1, a_2\overline{a}_2, a_3\overline{a}_3)$ Tableaus with the same total number $N = n_1 + n_2 + n_3$ lie in the same plane normal to (1, 1, 1). Plane has orthogonal D and Q axes for *dipole-sum* D of z-component momentum $D = \langle L_z \rangle = n_3 - n_1 = M_L$ and the *quadrupole-sum* Q of squared-z-component momentum. $Q = \langle L_z^2 \rangle = n_3 + n_1 = N - n_2$

Each tableau has 3D Cartesian integer coordinates (n_1, n_2, n_3) determined by number operators $(a_1\overline{a}_1, a_2\overline{a}_2, a_3\overline{a}_3)$ Tableaus with the same total number $N = n_1 + n_2 + n_3$ lie in the same plane normal to (1, 1, 1). Plane has orthogonal *D* and *Q* axes for *dipole-sum D* of z-component momentum $D = \langle L_z \rangle = n_3 - n_1 = M_L$ and the *quadrupole-sum Q* of squared-z-component momentum. $Q = \langle L_z^2 \rangle = n_3 + n_1 = N - n_2$

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

```
    S<sub>3</sub> symmetry of U(3): Applying S<sub>3</sub> projection
    Applying S<sub>3</sub> character theory
    Frequency formula for D<sup>[µ]</sup> with tensor trace values
    Effect of S<sub>3</sub> DTran T on intertwining S<sub>3</sub> - U(3) irep matrices
```

Structure of U(3) irep bases
Fundamental "quark" irep.
The octet "eightfold way"
The p-shell in U(3) tableau plots
Hooklength formulas

```
"anti-quark". "di-quark". The decapalet and \Omega^{-}
```


Fig.8 Weight or Moment Diagrams of Atomic $(p)^n$ States Each tableau is located at point $(x_1 \ x_2 \ x_3)$ in a cartesian co-ordinate system for which x_n is the number of n's in the tableau. An alternative co-ordinate system is (v_0^2, v_0^1, v_0^0) defined by Eq.16 which gives the zz-quadrupole moment, z-magnetic dipole moment, and number of particles, respectively. The last axis (v_0^0) would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

A Unitary Calculus for Electronic Orbitals William G. Harter and Christopher W. Patterson Springer-Verlag Lectures in Physics 49 1976

Alternative basis for the theory of complex spectra I William G. Harter Physical Review A 8 3 p2819 (1973)

Alternative basis for the theory of complex spectra II William G. Harter and Christopher W. Patterson Physical Review A 13 3 p1076-1082 (1976)

Alternative basis for the theory of complex spectra III William G. Harter and Christopher W. Patterson Physical Review A ??

4.04.18 class 21: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Characters of intertwining $(S_n)^*(U(m))$ algebras and quantum applications

Generic U(3) \supset R(3) transformations: *p*-triplet in U(3) shell model Rank-1 vector in R(3) or "quark"-triplet in U(3) Rank-2 tensor (2 particles each with U(3) state space)

U(3) tensor product states and S_n permutation symmetry
2-particle U(3) transform.
2-particle permutation operations
S₂ symmetry of U(3): Applying S₂ projection
Matrix representation of *Diagonalizing Transform* (DTran *T*)
Effect of S₂ DTran T on intertwining S₂ - U(3) irep matrices

```
    S<sub>3</sub> symmetry of U(3): Applying S<sub>3</sub> projection
    Applying S<sub>3</sub> character theory
    Frequency formula for D<sup>[µ]</sup> with tensor trace values
    Effect of S<sub>3</sub> DTran T on intertwining S<sub>3</sub> - U(3) irep matrices
```

Structure of U(3) irep bases
Fundamental "quark" irep.
The octet "eightfold way"
The p-shell in U(3) tableau plots
Hooklength formulas

```
"anti-quark". "di-quark". The decapalet and \Omega^{-}
```


Dimension of representations of (a) S_n and (b) U_m labeled by a single tableau are given by the formulas. A <u>hooklength</u> of a tableau box is simply the number of boxes in a "hook" consisting of all the boxes below it, to the right of it, and itself. Unitary raising and lowering operators E_{jk}

$$\mathbf{a}_{j}^{\dagger}\mathbf{a}_{k} + \mathbf{b}_{j}^{\dagger}\mathbf{b}_{k} + \ldots = E_{jk} = a_{j}\overline{a}_{k} + b_{j}\overline{b}_{k} + \ldots$$

$$\left[E_{jk}, E_{pq}\right] = \delta_{pk} E_{jq} - \delta_{qj} E_{pk}$$

Hooklength formulas for E_{jk} on atomic tableau states

Multi-spin (1/2)^N *product states*

Multi-spin (1/2)^N *product states*

$$= \frac{3!}{6!} \begin{bmatrix} (2ass(1)) & \chi_{13} & \Pi & (a)(0)(0) + (2ass(3)) & \chi_{(3)} & \Pi & (abc) + (2ass(1)(2)) & \chi_{(1)(2)} & \Pi & (ab) \end{bmatrix}$$
$$= \frac{1}{6!} \begin{bmatrix} (1) & 1 & 27 & + (2) & 1 & 3 & + (3) & (-1) & 9 \end{bmatrix} = 1$$

S₃ symmetry of U(3): Applying S₃ projection

Rank-3 tensor basis $|ijk\rangle$ (3 particles each with U(3) state space) has dimension $3^3=27$

	g =	1 = (1)(2)(3)	r = (123)	$r^2 = (132)$	$i_1 = (23)$	i ₂ = (13)	$i_3 = (12)$		
	$D^{\Box\Box\Box}(\mathbf{g}) =$								
	E C	1	1	1	1	1	1		
	$D^{\square}(\mathbf{g}) =$	1	1	1	-1	-1	-1		
		$\begin{pmatrix} 1 & 0 \end{pmatrix}$	$-1/2 - \sqrt{3}/2$	$-1/2 \sqrt{3}/2$	$\begin{pmatrix} -1/2 & \sqrt{3}/2 \end{pmatrix}$	$\begin{pmatrix} -1/2 & -\sqrt{3}/2 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \end{pmatrix}$		
	$D_{x_2y_2}^{[\bot]}\left(\mathbf{g}\right) =$		$\sqrt{3}/2$ $-1/2$	$-\sqrt{3}/2$ $-1/2$	$\sqrt{3/2}$ $\sqrt{3}/2$	$\left(-\sqrt{3}/2 + 1/2 \right)$	(0 -1)		
111 112 121 122 211 212 221 222	111 112 121 12	2 211 212 221 222	111 112 121 122	211 212 221 222	<u>1 111 112 121 122 211 2</u>	212 221 222 111 1	12 121 122 211 212 221 222	111 112 121 12	22 211 212 221 222
	1 1		111 1		111 1	111 1		111 1	
	2 1		112	1	112 1	112	1	112	1
	1	1	121 1		121 1	121	1	121 1	
	2	1	122	1	122 1	122	1	122	1
211 1 21	1 1		211 1		211 1	211		211 1	
	2 1		212	1	212	1 212		212	1
	1		221 1		221	1 221			
	2								
[1][2][3]	[12]		[13]		[23]	[125]		[152]	
111 112 122 211 212 221 111 112 121 111 112 121 121 121 121 121 122 121 121 211 121 121 212 121 211	111 112 121 122 2	2 211 212 221 222	111 112 122 111 112 122 112 121 121 121 122 121 122 121 121 211 122 121		111 112 122 211 2 111 112 1 1 112 1 1 1 121 1 1 1 122 1 1 1 211 1 1 1	221 222 111 111 111 111 111 111 112 121 121 122 211 212 212	12 121 122 211 212 221 222	111 112 121 111 112 121 112 121 121 122 211 212	2 211 212 221 222
221 221			221		221	221		221	
222 222	2		222		222	222		222	
111 112 121 122 211 212 221 222	111 112 121 12:	2 211 212 221 222	111 112 121 122	211 212 221 222	111 112 121 122 211 2	12 221 222	12 121 122 211 212 221 222		2211212221222
	,				111	111		111	
	۲ 		112		112	112		112	
			121			121			
			211					122	
		+			211				
	4	- <u>+</u> +	212		212				
							+		-+
	4	<u> </u>	222		222			222	