4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)2-particle U(2) transform and permutation operationS₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

 S_3 permutations related to $C_{3v}\!\!\sim\!\!D_3$ geometry

S₃ permutation matrices

Hooklength formula for S_n reps

S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis) Building S₃ DTran T from projectors

Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices Multi-spin $(1/2)^N$ product state (Comparison to previous cases)

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978 Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984 Galloping waves and their relativistic properties - ajp-1985-Harter Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989
- III) Half-integral angular momentum harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001 Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973 Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u>.

H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>.

Hyperf. theory Ch. 24 p48.

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

> Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>.

Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>.

CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>.

> Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables <u>Unit 8 Ch. 25 p12</u>.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. *Intro 3-particle coupling.* <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26) (PSDS - Ch. 5, 7)

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)
2-particle U(2) transform and permutation operation
S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

U(2) tensor product states and S_n *permutation symmetry* Typical U(2) transformations (Just like spin- $\frac{1}{2}$ irep in basis {1=+ $\frac{1}{2}$,1=- $\frac{1}{2}$ }) Rank-1 tensor

$$\phi_{1}' = \mathbf{u}\phi_{1} = \phi_{1}D_{11} + \phi_{2}D_{21}$$

where: $D_{jk} = (\phi_{j}^{*}, \phi_{k}') = (\phi_{j}^{*}, \mathbf{u}\phi_{k})$

Dirac notation:

$$\begin{vmatrix} \mathbf{1'} \rangle = \mathbf{u} & |\mathbf{1}\rangle = |\mathbf{1}\rangle D_{11} + |\mathbf{2}\rangle D_{21} \\ |\mathbf{2'}\rangle = \mathbf{u} & |\mathbf{2}\rangle = |\mathbf{1}\rangle D_{12} + |\mathbf{2}\rangle D_{22} \end{aligned}$$
 where: $D_{jk}(\mathbf{u}) = \langle j | \mathbf{k'} \rangle = \langle j | \mathbf{u} | \mathbf{k} \rangle$

U(2) tensor product states and S_n permutation symmetry Typical U(2) transformations (Just like spin- $\frac{1}{2}$ irep in basis {1=+ $\frac{1}{2}$,1=- $\frac{1}{2}$ }) Rank-1 tensor matrix representations

$$\phi_1' = \mathbf{u}\phi_1 = \phi_1 D_{11} + \phi_2 D_{21}$$

$$\phi_2' = \mathbf{u}\psi_2 = \phi_1 D_{12} + \phi_2 D_{22}$$

where: $D_{jk} = (\phi_j^*, \phi_k') = (\phi_j^*, \mathbf{u}\phi_k)$

$$\begin{vmatrix} 1 \rangle = \phi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{vmatrix} 2 \rangle = \phi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Dirac notation:

$$|1'\rangle = \mathbf{u} |1\rangle = |1\rangle D_{11} + |2\rangle D_{21}$$

$$|2'\rangle = \mathbf{u} |2\rangle = |1\rangle D_{12} + |2\rangle D_{22}$$
where: $D_{jk}(\mathbf{u}) = \langle j|k'\rangle = \langle j|\mathbf{u}|k\rangle$

$$D_{jk}(\mathbf{u}) = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{pmatrix}$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space) 2-particle U(2) transform and permutation operation S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

 $\begin{array}{l} S_3 \mbox{ permutations related to $C_{3v}\sim D_3$ geometry} \\ S_3 \mbox{ permutation matrices} \\ \mbox{ Hooklength formula for S_n reps} \\ S_3 \mbox{ symmetry of U(2): Applying S_3 projection (Note Pauli-exclusion principle basis)} \\ \mbox{ Building S_3 DTran T from projectors} \\ \mbox{ Effect of S_3 DTran T: Introducing intertwining $S_3 - U(2)$ irep matrices} \\ \mbox{ Multi-spin (1/2)^N$ product state (Comparison to previous cases)} \end{array}$

U(2) tensor product states and S_n permutation symmetry Typical U(2) transformations (Just like spin- $\frac{1}{2}$ irep in basis {1=+ $\frac{1}{2}$,1=- $\frac{1}{2}$ }) Rank-1 tensor matrix representations

$$\phi_1' = \mathbf{u}\phi_1 = \phi_1 D_{11} + \phi_2 D_{21}$$

$$\phi_2' = \mathbf{u}\psi_2 = \phi_1 D_{12} + \phi_2 D_{22}$$

where: $D_{jk} = (\phi_j^*, \phi_k') = (\phi_j^*, \mathbf{u}\phi_k)$

$$\begin{vmatrix} 1 \rangle = \phi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{vmatrix} 2 \rangle = \phi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Dirac notation:

$$|1'\rangle = \mathbf{u} |1\rangle = |1\rangle D_{11} + |2\rangle D_{21}$$

$$|2'\rangle = \mathbf{u} |2\rangle = |1\rangle D_{12} + |2\rangle D_{22}$$
where: $D_{jk}(\mathbf{u}) = \langle j|k'\rangle = \langle j|\mathbf{u}|k\rangle$

$$D_{jk}(\mathbf{u}) = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{pmatrix}$$

Rank-2 tensor (2 particles each with U(2) state space)

$$|1\rangle|1\rangle = \phi_1 \otimes \phi_1 = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \ |1\rangle|2\rangle = \phi_1 \otimes \phi_2 = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \ |2\rangle|1\rangle = \phi_2 \otimes \phi_1 = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \ |2\rangle|2\rangle = \phi_2 \otimes \phi_2 = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

2-particle U(2) transform

$$|j'\rangle|k'\rangle = \mathbf{u}|j\rangle\mathbf{u}|k\rangle$$
$$= \sum_{j,k}|j\rangle|k\rangle D_{jj'}D_{kk'}$$
$$= \sum_{j,k}|j\rangle|k\rangle D\otimes D_{jk:j'k'}$$

U(2) tensor product states and S_n permutation symmetry Typical U(2) transformations (Just like spin- $\frac{1}{2}$ irep in basis {1=+ $\frac{1}{2}$,1=- $\frac{1}{2}$ }) Rank-1 tensor matrix representations

$$\phi_1' = \mathbf{u}\phi_1 = \phi_1 D_{11} + \phi_2 D_{21}$$

$$\phi_2' = \mathbf{u}\psi_2 = \phi_1 D_{12} + \phi_2 D_{22}$$

where: $D_{jk} = (\phi_j^*, \phi_k') = (\phi_j^*, \mathbf{u}\phi_k)$

$$|1\rangle = \phi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|2\rangle = \phi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Dirac notation:

$$\begin{vmatrix} \mathbf{1'} \rangle = \mathbf{u} \begin{vmatrix} \mathbf{1} \rangle = \begin{vmatrix} \mathbf{1} \rangle D_{11} + \begin{vmatrix} \mathbf{2} \rangle D_{21} \\ \begin{vmatrix} \mathbf{2'} \rangle = \mathbf{u} \begin{vmatrix} \mathbf{2} \rangle = \begin{vmatrix} \mathbf{1} \rangle D_{12} + \begin{vmatrix} \mathbf{2} \rangle D_{22} \end{vmatrix}$$
 where: $D_{jk}(\mathbf{u}) = \langle j | \mathbf{k'} \rangle = \langle j | \mathbf{u} | \mathbf{k} \rangle$ $D_{jk}(\mathbf{u}) = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{pmatrix}$

Rank-2 tensor (2 particles each with U(2) state space)

$$\begin{aligned} |1\rangle|1\rangle = \phi_{1} \otimes \phi_{1} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \ |1\rangle|2\rangle = \phi_{1} \otimes \phi_{2} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \ |2\rangle|1\rangle = \phi_{2} \otimes \phi_{1} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \ |2\rangle|2\rangle = \phi_{2} \otimes \phi_{2} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \end{aligned}$$
2-particle U(2) transform and outer-product U(2) transform matrix
$$D_{jj'}D_{kk'} = D \otimes D_{jk;j'k'} = \\ |j'\rangle|k'\rangle = \mathbf{u}|j\rangle\mathbf{u}|k\rangle = \sum_{j,k}|j\rangle|k\rangle D_{jj'}D_{kk'} = \\ = \begin{pmatrix} D_{11}D_{11} & D_{11}D_{12} & D_{12}D_{11} & D_{12}D_{12} \\ D_{11}D_{21} & D_{11}D_{22} & D_{12}D_{21} & D_{12}D_{22} \\ D_{21}D_{11} & D_{21}D_{12} & D_{22}D_{11} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \\ \end{pmatrix} = \begin{pmatrix} D_{11}\begin{pmatrix} D_{11} & D_{11}D_{12} & D_{12}D_{12} \\ D_{21}\begin{pmatrix} D_{11} & D_{12} & D_{12}D_{22} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{22} \\ \end{pmatrix} = \begin{pmatrix} D_{11}\begin{pmatrix} D_{11} & D_{12} & D_{12} \\ D_{11}\begin{pmatrix} D_{11} & D_{12} & D_{12} \\ D_{21}\begin{pmatrix} D_{11} & D_{12} & D_{22} \\ D_{21}\begin{pmatrix} D_{11} & D_{12} & D_{22} \\ D_{21}D_{21} & D_{22}D_{22} & D_{22}D_{22} \\ \end{pmatrix} = \begin{pmatrix} D_{11}\begin{pmatrix} D_{11} & D_{12} & D_{12} \\ D_{11}\begin{pmatrix} D_{11} & D_{12} & D_{12} \\ D_{21}\begin{pmatrix} D_{11} & D_{12} & D_{22} \\ D_{21} & D_{22} & D_{22} \\ \end{pmatrix} \end{pmatrix}$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)
2-particle U(2) transform and permutation operation
S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

 $\begin{array}{l} U(2) \ tensor \ product \ states \ and \ S_n \ permutation \ symmetry\\ \textbf{2-particle U(2) transform \ and \ outer-product U(2) \ transform \ matrix} \quad D_{jj'}D_{kk'} = D \otimes D_{jk;j'k'} = \\ |j'\rangle|k'\rangle = \mathbf{u}|j\rangle|k\rangle\\ = \sum_{j,k}|j\rangle|k\rangle D_{jj'}D_{kk'}\\ = \sum_{j,k}|j\rangle|k\rangle D \otimes D_{jk;j'k'} \end{array} \qquad = \begin{pmatrix} D_{11}D_{11} & D_{11}D_{12} & D_{12}D_{11} & D_{12}D_{12} \\ D_{11}D_{21} & D_{11}D_{22} & D_{12}D_{21} & D_{12}D_{22} \\ D_{21}D_{11} & D_{21}D_{12} & D_{22}D_{11} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \\ \end{array} \right) = \begin{pmatrix} D_{11}\begin{pmatrix}D_{11}D_{12} & D_{12}\\ D_{21}\begin{pmatrix}D_{11}D_{12} & D_{12}\\ D_{21}\begin{pmatrix}D_{11}D_{12} & D_{22}\\ D_{21}D_{22} & D_{22}\end{pmatrix} & D_{22}\begin{pmatrix}D_{11}D_{12} & D_{22}\\ D_{21}D_{21} & D_{22}\end{pmatrix} \\ \end{array} \right)$

 $\begin{array}{l} U(2) \ tensor \ product \ states \ and \ S_n \ permutation \ symmetry\\ \textbf{2-particle U(2) transform \ and \ outer-product U(2) \ transform \ matrix} \quad D_{jj'}D_{kk'} = D \otimes D_{jk;j'k'} = \\ |j'\rangle|k'\rangle = \textbf{u}|j\rangle \textbf{u}|k\rangle\\ = \sum_{j,k} |j\rangle|k\rangle D_{jj'}D_{kk'}\\ = \sum_{j,k} |j\rangle|k\rangle D \otimes D_{jk;j'k'} \end{array} = \begin{pmatrix} D_{11}D_{11} & D_{11}D_{12} & D_{12}D_{11} & D_{12}D_{12} \\ D_{11}D_{21} & D_{11}D_{22} & D_{12}D_{21} & D_{12}D_{22} \\ D_{21}D_{11} & D_{21}D_{12} & D_{22}D_{11} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \\ \end{array} = \begin{pmatrix} D_{11}\begin{pmatrix}D_{11} & D_{12} \\ D_{11}\begin{pmatrix}D_{11} & D_{12} \\ D_{21}\begin{pmatrix}D_{11} & D_{12} \\ D_{21}\begin{pmatrix}D_{11} & D_{12} \\ D_{21}\begin{pmatrix}D_{11} & D_{12} \\ D_{21}& D_{22}\end{pmatrix} & D_{22}\begin{pmatrix}D_{11} & D_{12} \\ D_{21}& D_{22}\end{pmatrix} \\ \end{array} \end{pmatrix}$

2-particle permutation operation: $\mathbf{s}(ab)|j\rangle_{a}|k\rangle_{b} = |k\rangle_{a}|j\rangle_{b}$ $\mathbf{s}(ab)|1\rangle_{a}|1\rangle_{b} = |1\rangle_{a}|1\rangle_{b}, \mathbf{s}(ab)|1\rangle_{a}|2\rangle_{b} = |2\rangle_{a}|1\rangle_{b}, \mathbf{s}(ab)|2\rangle_{a}|1\rangle_{b} = |1\rangle_{a}|2\rangle_{b}, \mathbf{s}(ab)|2\rangle_{a}|2\rangle_{b} = |2\rangle_{a}|2\rangle_{b}$ $\mathbf{S}_{2} = \{(a)(b), (ab)\}$ represented by matrices: S((a)(b)) = S((ab)) =in basis: $|1\rangle|1\rangle = |1\rangle|2\rangle = |2\rangle|1\rangle = |2\rangle|2\rangle = (1 \cdot \cdots)$ $\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\0\\0\\1\end{pmatrix}$

2-particle permutation $\mathbf{s}(ab)$ commutes with U(2) transform matrix $D \otimes D$: $\mathbf{s}(ab)D \otimes D\phi_{j}\phi_{k} = \sum_{m,n} \mathbf{s}(ab)\phi_{m}\phi_{n}D_{jm}D_{kn} = \sum_{m,n}\phi_{n}\phi_{m}D_{jm}D_{kn} = \sum_{m,n}\phi_{n}\phi_{m}D_{kn}D_{jm} = D \otimes D\phi_{k}\phi_{j} = D \otimes D\mathbf{s}(ab)\phi_{j}\phi_{k}$ $\begin{array}{l} U(2) \ tensor \ product \ states \ and \ S_n \ permutation \ symmetry \\ \textbf{2-particle U(2) transform \ and \ outer-product U(2) \ transform \ matrix \ D_{jj'}D_{kk'} = D \otimes D_{jk;j'k'} = \\ |j'\rangle|k'\rangle = \textbf{u}|j\rangle \textbf{u}|k\rangle \\ = \sum_{j,k} |j\rangle|k\rangle D_{jj'}D_{kk'} \\ = \sum_{j,k} |j\rangle|k\rangle D \otimes D_{jk;j'k'} \end{array} = \begin{pmatrix} D_{11}D_{11} \ D_{11}D_{12} \ D_{12}D_{12} \ D_{12}D_{21} \ D_{12}D_{21} \ D_{12}D_{22} \ D_{22}D_{11} \ D_{22}D_{22} \ D_{22}D_{11} \ D_{22}D_{22} \ D_{22}D_{21} \ D_{22}D_{22} \ D_{21}D_{22} \ D_{22}D_{22} \ D_{21}D_{22} \ D_{22}D_{22} \ D_{22}D_{22}D_{22} \ D_{22}D_{22} \ D_{22}D_{22} \ D_{22}D_{22} \ D_{2$

2-particle permutation operation: $\mathbf{s}(ab)|j\rangle_{a}|k\rangle_{b} = |k\rangle_{a}|j\rangle_{b}$ $\mathbf{s}(ab)|1\rangle_{a}|1\rangle_{b} = |1\rangle_{a}|1\rangle_{b}, \mathbf{s}(ab)|1\rangle_{a}|2\rangle_{b} = |2\rangle_{a}|1\rangle_{b}, \mathbf{s}(ab)|2\rangle_{a}|1\rangle_{b} = |1\rangle_{a}|2\rangle_{b}, \mathbf{s}(ab)|2\rangle_{a}|2\rangle_{b} = |2\rangle_{a}|2\rangle_{b}$ $\mathbf{S}_{2}=\{(a)(b), (ab)\}$ represented by matrices: $\mathbf{s}((a)(b)) = \mathbf{s}((ab)) =$ in basis: $|1\rangle|1\rangle = |1\rangle|2\rangle = |2\rangle|1\rangle = |2\rangle|2\rangle = (1 \cdot \cdots + 1) \cdot (1 \cdot \cdots + 1)$

2-particle permutation $\mathbf{s}(ab)$ commutes with U(2) transform matrix $D \otimes D$: $\mathbf{s}(ab)D \otimes D\phi_{j}\phi_{k} = \sum_{m,n} \mathbf{s}(ab)\phi_{m}\phi_{n}D_{jm}D_{kn} = \sum_{m,n}\phi_{n}\phi_{m}D_{jm}D_{kn} = \sum_{m,n}\phi_{n}\phi_{m}D_{kn}D_{jm} = D \otimes D\phi_{k}\phi_{j} = D \otimes D\mathbf{s}(ab)\phi_{j}\phi_{k}$ $\mathbf{s}(ab)D \otimes D = D \otimes D\mathbf{s}(ab)$ $\begin{array}{l} U(2) \ tensor \ product \ states \ and \ S_n \ permutation \ symmetry \\ \textbf{2-particle U(2) transform \ and \ outer-product U(2) \ transform \ matrix \ D_{jj'}D_{kk'} = D \otimes D_{jk;j'k'} = \\ |j'\rangle|k'\rangle = \textbf{u}|j\rangle|\textbf{u}|k\rangle \\ = \sum_{j,k}|j\rangle|k\rangle D_{jj'}D_{kk'} \\ = \sum_{j,k}|j\rangle|k\rangle D \otimes D_{jk;j'k'} \end{array} = \begin{pmatrix} D_{11}D_{11} \ D_{11}D_{12} \ D_{12}D_{12} \ D_{12}D_{11} \ D_{12}D_{12} \ D_{12}D_{12} \ D_{12}D_{12} \ D_{12}D_{12} \ D_{12}(D_{11}D_{12}) \$

2-particle permutation operation: $\mathbf{s}(ab)|j\rangle_{a}|k\rangle_{b} = |k\rangle_{a}|j\rangle_{b}$ $\mathbf{s}(ab)|1\rangle_{a}|1\rangle_{b} = |1\rangle_{a}|1\rangle_{b}, \mathbf{s}(ab)|1\rangle_{a}|2\rangle_{b} = |2\rangle_{a}|1\rangle_{b}, \mathbf{s}(ab)|2\rangle_{a}|1\rangle_{b} = |1\rangle_{a}|2\rangle_{b}, \mathbf{s}(ab)|2\rangle_{a}|2\rangle_{b} = |2\rangle_{a}|2\rangle_{b}$ $\mathbf{S}_{2} = \{(a)(b), (ab)\}$ represented by matrices: $\mathbf{s}((a)(b)) = \mathbf{s}((ab)) =$ in basis: $|1\rangle|1\rangle = |1\rangle|2\rangle = |2\rangle|1\rangle = |2\rangle|2\rangle =$ $\begin{pmatrix}1 & \cdots & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 \\$

2-particle permutation $\mathbf{s}(ab)$ commutes with U(2) transform matrix $D \otimes D$: $\mathbf{s}(ab)D \otimes D\phi_{j}\phi_{k} = \sum_{m,n} \mathbf{s}(ab)\phi_{m}\phi_{n}D_{jm}D_{kn} = \sum_{m,n}\phi_{n}\phi_{m}D_{jm}D_{kn} = \sum_{m,n}\phi_{n}\phi_{m}D_{kn}D_{jm} = D \otimes D\phi_{k}\phi_{j} = D \otimes D\mathbf{s}(ab)\phi_{j}\phi_{k}$ So $\mathbf{S}_{2} = \{\mathbf{s}(ab)\}$ is symmetry of U(2)... $\mathbf{s}(ab)D \otimes D = D \otimes D\mathbf{s}(ab)$...and vice-versa!

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)
2-particle U(2) transform and permutation operation
S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

It might help to matrix-verify the S₂ symmetry of 2-particle U(2) transformations

$S((ab)) \cdot D \otimes D$?=?	$D \otimes D \cdot S((ab))$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} {}_{2}D_{12} \\ {}_{2}D_{22} \\ {}_{2}D_{12} \\ {}_{2}D_{22} \end{array} \end{array} \begin{array}{c} ? \\ = \\ ? \\ {}_{2}D_{12} \\ {}_{2}D_{22} \end{array} \end{array} \begin{array}{c} ? \\ = \\ ? \\ D_{21}D_{11} \\ D_{21}D_{21} \\ D_{21}D_{12} \\ D_{21}D_{21} \\ D_{21}D_{22} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

It might help to matrix-verify the S_2 symmetry of 2-particle U(2) transformations

S((ab))	$\cdot D \otimes D$?=?				$D \otimes D$	$\cdot S((ab))$	
$ \left(\begin{array}{ccccccccc} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{array}\right) $ (mid-rows)	$ \begin{pmatrix} D_{11}D_{11} \\ -D_{11}D_{21} \\ -D_{21}D_{11} \\ D_{21}D_{21} \end{pmatrix} $	$egin{array}{llllllllllllllllllllllllllllllllllll$	$D_{12}D_{11}$ $D_{12}D_{21}$ $D_{22}D_{11}$ $D_{22}D_{21}$	$ \begin{array}{c} D_{12}D_{12} \\ D_{12}D_{22} \\ D_{22}D_{12} \\ D_{22}D_{22} \end{array} $? = ?	$\begin{pmatrix} D_{11}D_{11} & D_{11} \\ D_{11}D_{21} & D_{11} \\ D_{21}D_{11} & D_{21} \\ D_{21}D_{11} & D_{21} \\ D_{21}D_{21} & D_{21} \end{pmatrix}$	D_{12}	$D_{12}D_{11} \\ D_{12}D_{21} \\ D_{22}D_{11} \\ D_{22}D_{21} \\ \dots \\ $	$ \begin{array}{c} D_{12}D_{12} \\ D_{12}D_{22} \\ D_{22}D_{12} \\ D_{22}D_{22} \end{array} $	$ \left(\begin{array}{ccc} 1 & \cdot \\ \cdot & \cdot \\ \cdot & 1 \\ \cdot & \cdot \\ \cdot $	$\left.\begin{array}{c} \cdot & \cdot \\ 1 & \cdot \\ \cdot & \cdot \\ \cdot & 1 \end{array}\right)$
switched)	$\begin{array}{c} D_{11}D_{11} \\ D_{21}D_{11} \\ D_{11}D_{21} \\ D_{21}D_{21} \\ D_{21}D_{21} \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$D_{12}D_{12} \\ D_{22}D_{12} \\ D_{12}D_{22} \\ D_{22}D_{22} \\ D_{22}D_{2} \\ D_{22}D_{2} \\ D_{2}D_{2} \\ D_{2}D_{2} \\ D_{2}D_{2}$) =	$\begin{pmatrix} D_{11}D_{11} & D_{1} \\ D_{11}D_{21} & D_{1} \\ D_{21}D_{11} & D_{2} \\ D_{21}D_{11} & D_{2} \end{pmatrix}$	$D_{12}D_{11}$ $D_{12}D_{21}$ $D_{22}D_{11}$ $D_{22}D_{21}$	$D_{11}D_{12}$ $D_{11}D_{22}$ $D_{21}D_{12}$ $D_{21}D_{22}$	$D_{12}D_{12} \\ D_{12}D_{22} \\ D_{22}D_{12} \\ D_{22}D_{22} $.ciica)

It might help to matrix-verify the S₂ symmetry of 2-particle U(2) transformations

 $S((ab)) \cdot D \otimes D$ $D \otimes D \cdot S((ab))$... but the matrices are numerically equal.

So S_2 -symmetry of 2-particle U(2) tensor representation is verified.

It might help to matrix-verify the S₂ symmetry of 2-particle U(2) transformations

 $S((ab)) \cdot D \otimes D \qquad ?=? \qquad D \otimes D \cdot S((ab))$ $\begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & - & \cdot \\ \cdot & 2_1D_{11} & D_{21}D_{12} & D_{22}D_{11} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{11} & D_{12}D_{12} \\ D_{21}D_{21} & D_{11}D_{22} & D_{12}D_{21} & D_{12}D_{22} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{11} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \\ D_{21}D_{21} & D_{22}D_{22} & D_{22}D$

... but the matrices <u>are</u> numerically equal.

So S_2 -symmetry of 2-particle U(2) tensor representation is verified.

So also is S₂-symmetry of any 2-particle U(m) tensor. Showing S₃-symmetry of any 3-particle U(m) tensor is treated later. S₄ 4

$S((ab)) \cdot D \otimes D \cdot S((ab))$ $\begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix} \begin{pmatrix} D_{11}D_{11} & D_{11}D_{12} & D_{12}D_{11} & D_{12}D_{12} \\ D_{11}D_{21} & D_{11}D_{22} & D_{12}D_{21} & D_{12}D_{22} \\ D_{21}D_{11} & D_{21}D_{12} & D_{22}D_{11} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$	If <i>S(ab)</i> commuted with $D \otimes D$ you might assume it passes thru to give <i>S(ab) S(ab)</i> =1 leaving $D \otimes D$ unchanged. That is true numerically, but all components have flipped order.
$ \begin{pmatrix} D_{11}D_{11} & D_{11}D_{12} & D_{12}D_{11} & D_{12}D_{12} \\ D_{21}D_{11} & D_{21}D_{12} & D_{22}D_{11} & D_{22}D_{12} \\ D_{11}D_{21} & D_{11}D_{22} & D_{12}D_{21} & D_{12}D_{22} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix} = \begin{pmatrix} D_{11}D_{11} & D_{12}D_{11} \\ D_{21}D_{11} & D_{22}D_{11} \\ D_{11}D_{21} & D_{12}D_{21} \\ D_{21}D_{21} & D_{22}D_{21} \end{pmatrix} $	$ \begin{array}{ccc} D_{11}D_{12} & D_{12}D_{12} \\ D_{21}D_{12} & D_{22}D_{12} \\ D_{11}D_{22} & D_{12}D_{22} \\ D_{21}D_{22} & D_{22}D_{22} \end{array} \end{array} \begin{array}{c} \text{Each} \\ D_{ab}D_{cd} \\ \text{has become} \\ D_{cd}D_{ab} \end{array} $
$S((ab)) \cdot D \otimes D \cdot S((ab))$ $\begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix} \begin{pmatrix} D_{11}D_{11} & D_{11}D_{12} & D_{12}D_{11} & D_{12}D_{12} \\ D_{11}D_{21} & D_{11}D_{22} & D_{12}D_{21} & D_{12}D_{22} \\ D_{21}D_{11} & D_{21}D_{12} & D_{22}D_{11} & D_{22}D_{12} \\ D_{21}D_{21} & D_{21}D_{22} & D_{22}D_{21} & D_{22}D_{22} \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$	
$= \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix} \begin{pmatrix} D_{11}D_{11} & D_{12}D_{11} & D_{11}D_{12} & D_{12}D_{12} \\ D_{11}D_{21} & D_{12}D_{21} & D_{11}D_{22} & D_{12}D_{22} \\ D_{21}D_{11} & D_{22}D_{11} & D_{21}D_{12} & D_{22}D_{12} \\ D_{21}D_{21} & D_{22}D_{21} & D_{21}D_{22} & D_{22}D_{22} \end{pmatrix} = \begin{pmatrix} D_{11}D_{11} & D_{12}D_{12} & D_{12}D_{12} \\ D_{21}D_{11} & D_{22}D_{12} & D_{22}D_{12} \\ D_{21}D_{21} & D_{22}D_{21} & D_{21}D_{22} & D_{22}D_{22} \end{pmatrix}$	$ \begin{array}{cccc} D_{11} & D_{11}D_{12} & D_{12}D_{12} \\ D_{11} & D_{21}D_{12} & D_{22}D_{12} \\ D_{21} & D_{11}D_{22} & D_{12}D_{22} \\ D_{21} & D_{21}D_{22} & D_{22}D_{22} \end{array} $

_

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space) 2-particle U(2) transform and permutation operation S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

 S_2 matrix eigen-solution found by projectors: Minimal eq. (ab)²-1=0=((ab)+1)((ab)+1) yields:

Symmetric (): $\mathbf{P}^{\square} = \frac{1}{2} [1 + (\mathbf{ab})]$ Anti-Symmetric (): $\mathbf{P}^{\square} = \frac{1}{2} [1 - (\mathbf{ab})]$

 S_2 matrix eigen-solution found by projectors: Minimal eq. (ab)²-1=0=((ab)+1)((ab)+1) yields:

Symmetric (
$$\Box$$
): $\mathbf{P}^{\Box\Box} = \frac{1}{2} [1 + (ab)]$

Matrix representations of projectors:

$$S(\mathbf{P}^{\Box\Box}) = \frac{1}{2} \Big[S(\mathbf{1}) + S(\mathbf{ab}) \Big] = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \cdot & 1 \end{pmatrix}$$

Anti-Symmetric (\square): $\mathbf{P}^{\square} = \frac{1}{2} [\mathbf{1} - (\mathbf{ab})]$

$$S(\mathbf{P}^{\square}) = \frac{1}{2} \left[S(\mathbf{1}) - S(\mathbf{ab}) \right] = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \frac{-1}{2} & \cdot \\ \cdot & \frac{-1}{2} & \frac{1}{2} & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

 S_2 matrix eigen-solution found by projectors: Minimal eq. (ab)²-1=0=((ab)+1)((ab)+1) yields:

Symmetric ():
$$\mathbf{P}^{\square} = \frac{1}{2} [1 + (\mathbf{ab})]$$
 Anti-Symmetric (): $\mathbf{P}^{\square} = \frac{1}{2} [1 - (\mathbf{ab})]$

Matrix representation of *Diagonalizing Transform* (DTran T) is made by excerpting P-columns

$$S(\mathbf{P}^{\Box\Box}) = \frac{1}{2} \Big[S(\mathbf{1}) + S(\mathbf{ab}) \Big] = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \qquad S(\mathbf{P}^{\Box}) = \frac{1}{2} \Big[S(\mathbf{1}) - S(\mathbf{ab}) \Big] = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \frac{-1}{2} & \cdot \\ \cdot & \frac{-1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{-1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \cdot & 1 & \cdot \end{pmatrix} = T$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)2-particle U(2) transform and permutation operationS₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

 $\begin{array}{l} S_3 \ \text{permutations related to } C_{3v} \sim D_3 \ \text{geometry} \\ S_3 \ \text{permutation matrices} \\ \text{Hooklength formula for } S_n \ \text{reps} \\ S_3 \ \text{symmetry of } U(2) : \ \text{Applying } S_3 \ \text{projection (Note Pauli-exclusion principle basis)} \\ \text{Building } S_3 \ \text{DTran } T \ \text{from projectors} \\ \text{Effect of } S_3 \ \text{DTran } T : \ \text{Introducing intertwining } S_3 - U(2) \ \text{irep matrices} \\ \text{Multi-spin } (1/2)^N \ \text{product state (Comparison to previous cases)} \end{array}$

S₂ symmetry of U(2): Applying S₂ projection S_2 matrix eigen-solution found by projectors: Minimal eq. (ab)²-1=0=((ab)+1)((ab)+1) yields: Anti-Symmetric (\square): $\mathbf{P}^{\square} = \frac{1}{2} [\mathbf{1} - (\mathbf{ab})]$ Symmetric (\square): $\mathbf{P}^{\square\square} = \frac{1}{2} [\mathbf{1} + (\mathbf{ab})]$ Matrix representation of *Diagonalizing Transform* (DTran T) is made by excerpting **P**-columns $S(\mathbf{P}^{\Box\Box}) = \frac{1}{2} \left[S(\mathbf{1}) + S(\mathbf{ab}) \right] = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2}$ $\begin{pmatrix} \cdot & \cdot & \cdot & 1 \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \cdot & 1 \end{pmatrix} \\ T^{\dagger} & S(ab) & T \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \cdot \frac{1}{\sqrt{2}} & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & 1 \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & 1 \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \end{pmatrix} = T^{\dagger}S(ab)T$ Next apply DTran T and its transpose T^{\dagger} to the *S*(*ab*) matrix to find $T^{\dagger}S(ab)T$.

S₂ symmetry of U(2): Applying S₂ projection S_2 matrix eigen-solution found by projectors: Minimal eq. (ab)²-1=0=((ab)+1)((ab)+1) yields: Anti-Symmetric (\square): $\mathbf{P}^{\square} = \frac{1}{2} [\mathbf{1} - (\mathbf{ab})]$ Symmetric (\square): $\mathbf{P}^{\square\square} = \frac{1}{2} [\mathbf{1} + (\mathbf{ab})]$ Matrix representation of *Diagonalizing Transform* (DTran T) is made by excerpting **P**-columns $S(\mathbf{P}^{\Box\Box}) = \frac{1}{2} \Big[S(\mathbf{1}) + S(\mathbf{ab}) \Big] = \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdot \\ \cdot & \frac{1}{2} & \frac{1}$ $\begin{pmatrix} \cdot & \cdot & \cdot & 1 \\ T^{\dagger} & S(ab) \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \cdot &$ Next apply DTran T and its transpose T^{\dagger} to the *S*(*ab*) matrix to find $T^{\dagger}S(ab)T$. $\begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \cdot & 1 & \cdot \end{pmatrix} = T^{\dagger}S(ab)T$

S₂ symmetry of U(2): Applying S₂ projection S_2 matrix eigen-solution found by projectors: Minimal eq. (ab)²-1=0=((ab)+1)((ab)+1) yields: Anti-Symmetric (\square): $\mathbf{P}^{\square} = \frac{1}{2} [\mathbf{1} - (\mathbf{ab})]$ Symmetric (\Box): $\mathbf{P}^{\Box\Box} = \frac{1}{2} [\mathbf{1} + (\mathbf{ab})]$ Matrix representation of *Diagonalizing Transform* (DTran T) is made by excerpting **P**-columns $S(\mathbf{P}^{\square\square}) = \frac{1}{2} \left[S(\mathbf{1}) + S(\mathbf{ab}) \right] = \begin{bmatrix} \mathbf{1} & \cdots & \mathbf{1} \\ \vdots & \frac{1}{2} & \frac{1}{2} & \cdots \\ \vdots & \frac{1}{2} & \frac{1}{2} & \cdots \\ \vdots & \frac{1}{2} & \frac{1}{2} & \cdots \\ \vdots & \vdots & \ddots & 1 \end{bmatrix} \qquad S(\mathbf{P}^{\square}) = \frac{1}{2} \left[S(\mathbf{1}) - S(\mathbf{ab}) \right] = \begin{bmatrix} \cdots & \cdots & \cdots & \cdots \\ \vdots & \frac{1}{2} & \frac{1}{2} & \cdots \\ \vdots & \frac{-1}{2} & \frac{1}{2} & \cdots \\ \vdots & \vdots & \cdots & \cdots \end{bmatrix}$ $\begin{pmatrix} T^{\dagger} & S(ab) \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cdot & \cdot & 1 \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \cdot & 1 & \cdot \end{pmatrix} = T^{\dagger}S(ab)T$ Next apply DTran T and its transpose T^{\dagger} to the *S*(*ab*) matrix to find $T^{\dagger}S(ab)T$. $T^{\dagger}S(ab)T = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \cdot & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cdot & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cdot & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\$ Three (3) symmetric ireps. D^{+} and one (1) anti-sym

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)2-particle U(2) transform and permutation operationS₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

 $\begin{array}{l} S_3 \ \text{permutations related to } C_{3v} \sim D_3 \ \text{geometry} \\ S_3 \ \text{permutation matrices} \\ \text{Hooklength formula for } S_n \ \text{reps} \\ S_3 \ \text{symmetry of } U(2) : \ \text{Applying } S_3 \ \text{projection (Note Pauli-exclusion principle basis)} \\ \text{Building } S_3 \ \text{DTran } T \ \text{from projectors} \\ \text{Effect of } S_3 \ \text{DTran } T : \ \text{Introducing intertwining } S_3 - U(2) \ \text{irep matrices} \\ \text{Multi-spin } (1/2)^N \ \text{product state (Comparison to previous cases)} \end{array}$

$$\begin{pmatrix} T^{\dagger} & D \otimes D & T & \text{Finally, apply DTran}T \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \cdot \end{pmatrix} \begin{pmatrix} D_{11\,11} & D_{11\,12} & D_{12\,11} & D_{12\,12} \\ D_{11\,21} & D_{11\,22} & D_{12\,21} & D_{12\,22} \\ D_{11\,21} & D_{12\,21} & D_{11\,22} & D_{12\,22} \\ D_{21\,21} & D_{21\,22} & D_{21\,22} & D_{22\,22} \end{pmatrix} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{2}} \\ \cdot & \frac{1}{\sqrt{2}} & \cdot & -\frac{1}{\sqrt{2}} \\ \cdot & \cdot & 1 & \cdot \end{pmatrix} = T^{\dagger}D \otimes DT$$

$$\begin{aligned}
 T^{\dagger} & D \otimes D & T & \text{Finally, apply DTran } T \\
 1 & \cdot & \cdot & \cdot \\
 \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
 \cdot & \cdot & \cdot & 1 \\
 \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
 \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}$$

$$\begin{bmatrix} T^{*} & D \otimes D & T & \text{Finally, apply DTran} T \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \cdot \\ \end{bmatrix} \begin{bmatrix} D_{1121} & D_{1221} & D_{1222} & D_{1222} \\ D_{2121} & D_{2122} & D_{2122} & D_{2222} \\ D_{2122} & D_{2122} & D_{2222} \\ D_{2121} & D_{2122} & D_{2122} & 0 \\ D_{2121} & D_{2122} & D_{2122} & 0 \\ 0 & 0 & 0 & D_{1122} + D_{122} \\ 0 & 0 & 0 & D_{1122} + D_{122} \end{bmatrix} = \begin{bmatrix} T^{*}D \otimes DT \\ T^{*}D \otimes DT \end{bmatrix} = \begin{bmatrix} P_{1101} & \frac{f_{1}}{2} P_{112} & P_{122} & 0 \\ \frac{g_{2}}{2} P_{112} & D_{1122} + D_{122} & \frac{g_{2}}{2} P_{222} & 0 \\ 0 & 0 & 0 & D_{1122} + D_{122} \end{bmatrix} = \begin{bmatrix} D^{+}(0) & 0 \\ 0 & 0 & D^{-}(0) & D^{-}(0) \end{bmatrix} = D^{-p^{-p}} \end{bmatrix}$$

$$\begin{bmatrix} T^{*}D \otimes DT \\ \frac{g_{2}}{2} P_{122} & D_{1122} + D_{122} & \frac{g_{2}}{2} P_{222} & 0 \\ 0 & 0 & 0 & D_{1122} + D_{122} \end{bmatrix} = \begin{bmatrix} D^{+}(0) & 0 \\ 0 & 0 & D^{-}(0) & D^{-}(0) \end{bmatrix} = D^{-p^{-p}} \end{bmatrix}$$

$$\begin{bmatrix} T^{*}D \otimes DT \\ \frac{g_{2}}{2} P_{122} & D_{1122} + D_{122} & \frac{g_{2}}{2} P_{222} & 0 \\ 0 & 0 & 0 & D_{1122} + D_{122} \end{bmatrix} = \begin{bmatrix} D^{+}(0) & 0 \\ 0 & 0 & D^{-}(0) & D^{-}(0) \end{bmatrix} = D^{-p^{-p}} \end{bmatrix}$$

$$\begin{bmatrix} T^{*}D \otimes DT \\ \frac{g_{2}}{2} P_{12} & \frac{g_{2}}{2} P_{22} & \frac{g_{2}}{2} P_{222} & 0 \\ 0 & 0 & 0 & D_{1122} + D_{122} \end{bmatrix} = \begin{bmatrix} D^{+}(0) & 0 \\ 0 & 0 & D^{-}(0) & D^{-}(0) \end{bmatrix} = D^{-p^{-p}} \end{bmatrix}$$

$$\begin{bmatrix} T^{*}D \otimes DT \\ \frac{g_{2}}{2} P_{12} & \frac{g_{2}}{2} P_{22} & \frac{g_{2}}{2} P_{222} & 0 \\ 0 & 0 & 0 & D_{1122} + D_{122} \end{bmatrix} = \begin{bmatrix} D^{+}(0) & 0 & D^{-}(0) \\ 0 & 0 & D^{-}(0) & D^{-}(0) \end{bmatrix} = D^{-p^{-p}} \end{bmatrix}$$

$$\begin{bmatrix} T^{*}D \otimes DT \\ \frac{g_{2}}{2} P_{22} & \frac{g_{2}}{2} & \frac{g_{2}}{2} P_{22} & \frac{g_{2}}{2} & \frac$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)2-particle U(2) transform and permutation operationS₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
 S₃ permutation matrices
 Hooklength formula for S_n reps
 S₃ symmetry of U(2): Applying S₃ projection
 Building S₃ DTran T from projectors
 Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
 Multi-spin (1/2)^N product state (Comparison to previous cases)

 S_3 permutations related to $C_{3v} \sim D_3$ geometry

D3<C3v nomogram</th>D3<D6 nomogram</th>AMOP Class 12 pdf p30AMOP Class 14 pdf p28

S₃ permutations related to $C_{3v} \sim D_3$ geometry

D3<C3v nomogram</th>D3<D6 nomogram</th>AMOP Class 12 pdf p30AMOP Class 14 pdf p28

Fig. 25.3.0 QTforCA Unit 8 Ch.25 pdf p28

 $[123] |1_a, 2_b, 3_c\rangle = |3_a, 1_b, 2_c\rangle$

<u>5 pdf p29</u> O	2			Ŏ	1		
plan	e la	_		pla	ne		
				\wedge			
			\mathbb{N}				
σ	3		/0	3		C	5 3
plan	e Tp2	2/	1			pla	ine
		/0	2				
				\checkmark			
σ	1		2		\mathbf{J}_2		
plan	e			p	lane		
	1	r^2	r	\dot{i}_1	i_2	i ₃	
	r	1	r^2	\dot{l}_2	i ₃	<i>i</i> ₁	
	r^2	r	1	i ₃	\dot{i}_1	\dot{l}_2	
	<i>i</i> ₁	i_2	i ₃	1	r^2	r	
	\dot{l}_2	\dot{l}_3	\dot{l}_1	r	1	r^2	
	i ₃	\dot{l}_1	i_2	r^2	r	1	
$C_{3_{V}} \mathbf{g} \mathbf{g}^{\dagger}$ form	1	\mathbf{r}^2	\mathbf{r}^1	σ_1	σ_2	σ	3
(a)(b)(c) = 1	1	r ²	\mathbf{r}^1	σ ₁	σ_2	σ	3
$(abc) = \mathbf{r}^1$	\mathbf{r}^1	1	r ²	σ_2	σ ₃	σ ₁	
$(acb) = \mathbf{r}^2$	r ²	\mathbf{r}^{1}	1	σ ₃	$\boldsymbol{\sigma}_1$	σ_2	2
$(bc) = \sigma_1$	σ ₁	σ_2	σ3	1	\mathbf{r}^2	r ¹	
$(ac) = \sigma_2$	σ_2	σ_3	$\mathbf{\sigma}_1$	\mathbf{r}^1	1	r ²	
$(ab) = \sigma_3$	σ_3	$\boldsymbol{\sigma}_1$	σ_2	r ²	\mathbf{r}^1	1	

(1)	(acb)	(abc)	(<i>bc</i>)	(<i>ac</i>)	<i>(ab)</i>
(abc)	(1)	(acb)	(<i>ac</i>)	<i>(ab)</i>	(<i>bc</i>)
(acb)	(abc)	(1)	<i>(ab)</i>	(<i>bc</i>)	(<i>ac</i>)
(<i>bc</i>)	(<i>ac</i>)	<i>(ab)</i>	(1)	(acb)	(abc)
(<i>ac</i>)	<i>(ab)</i>	(<i>bc</i>)	(abc)	(1)	(acb)
(<i>ab</i>)	(bc)	<i>(ac)</i>	(acb)	(abc)	(1)

[1]	[132]	[123]	[23]	[13]	[12]
[123]	[1]	[132]	[13]	[12]	[23]
[132]	[123]	[1]	[12]	[23]	[13]
[23]	[13]	[12]	[1]	[132]	[123]
[13]	[12]	[23]	[123]	[1]	[132]
[12]	[23]	[13]	[132]	[123]	[1]

S₃ permutations related to C_{3v}~D₃ geometry Fig. 25.3.1 QTforCA Unit 8 Ch. 25 pdf p29

S₃ permutations related to C_{3v}~D₃ geometry Fig. 25.3.1 QTforCA Unit 8 Ch. 25 pdf p29

 S_3 permutations related to $C_{3\nu} \sim D_3$ geometry Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)2-particle U(2) transform and permutation operationS₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

Rank-3 tensor basis $|ijk\rangle$ (3 particles each with U(2) state space)

[1][2][3]	111	112	121	122	211	212	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112		1					•	
(121			1					
(122				1				
(211					1			
(212						1		
(221							1	
(222)		•					•	1

Representation of bicycle (ab) or [12]

[12]	111	112>	121	$ 122\rangle$	211	$ 212\rangle$	221	$ 222\rangle$
(111)	1	•	•	•	•	•	•	•
(112)	•	1	•	•	•	•	•	
(121	•	•	•	•	1	•	•	•
(122)	•	•	•	•	•	1	•	•
(211	•	•	1	•	•	•	•	•
(212	•	•	•	1	•	•	•	
(221	•	•	•	•	•	•	1	
(222	•	•	•	•	•	•	•	1

Rank-3 tensor basis $|ijk\rangle$ (3 particles each with U(2) state space)

[1][2][3]	111	112	121	$ 122\rangle$	211	$ 212\rangle$	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112	•	1	•					
(121			1					
(122				1				
(211					1			
(212						1		
(221	•						1	
(222	•							1

Representation of bicycle (ab) or [12]

[12]	111	112	121	122	211	212	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112	•	1	•	•			•	
(121			•		1			
(122	•					1		
(211	•		1					
(212				1				
(221							1	
(222								1

Representation of bicycle (ac) or [13]

[13]	111	112>	121	122>	211	$ 212\rangle$	221	$ 222\rangle$
(111)	1	•	•	•	•	•	•	•
(112)	•	•	•	•	1	•	•	•
(121	•	•	1	•	•	•	•	•
(122)	•	•	•	•	•	•	1	
(211)	•	1					•	
(212	•					1	•	
221	•	•	•	1	•	•	•	
\langle 222	•	•	•	•	•	•	•	1

Rank-3 tensor basis $|ijk\rangle$ (3 particles each with U(2) state space)

[1][2][3]	111	112>	121	$ 122\rangle$	211	212	221	$ 222\rangle$
(111	1	•	•	•	•	·	•	
(112	•	1						
(121			1					
(122				1				
(211					1			
(212						1		
(221							1	
(222	•							1

Representation of bicycle (ab) or [12]

[12]	111	112	121	122	211	212	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112	•	1	•					
(121	•		•		1			
(122)	•					1		
(211	•		1					
(212	•			1				
(221	•						1	
(222	•	•				•		1

Representation of bicycle (ac) or [13]

[13]	111>	112>	121	$ 122\rangle$	211	$ 212\rangle$	221	$ 222\rangle$
(111)	1	•	•	·	·	•	·	·
(112	•	•	•		1	•		
(121	•	•	1			•		
(122)	•	•	•				1	
(211	•	1						
(212	•	•				1		
(221	•	•		1				
222								1

Representation of bicycle (bc) or [23]

[23]	111	112>	121	122	211	212	221	$ 222\rangle$
(111)	1	•	•	•	•	•	•	•
(112			1					
(121		1						
(122				1				
(211					1			•
(212							1	
(221						1		•
(222								1

Rank-3 tensor basis $|ijk\rangle$ (3 particles each with U(2) state space)

[1][2][3]	111	112	121	122	211	$ 212\rangle$	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112	•	1	•	•	•	•		
(121			1					
(122)	•			1				
(211	•				1			
(212						1		
(221	•						1	
(222	•							1

	111	112	121	122	211	212	221	222
111								
112								
121								
122								
211								
212								
221								
222								

Representation of tricycle (abc) or [123]

[123]	111	112	121	122>	211	$ 212\rangle$	221	$ 222\rangle$
(111)	1	•	•	•	•	•	•	•
(112	•	•	1	•	•	•	•	
(121	•				1			
(122	•						1	
(211)		1						
(212				1				
221						1		
\(222)	•	•	•		•	•		1

Representation of tricycle (acb) or [132]

[132] is transpose or inverse of [123]

[132]	111	$ 112\rangle$	 121	$ 122\rangle$	$ 211\rangle$	$ 212\rangle$	$ 221\rangle$	$ 222\rangle$
(111)	1	•	•	•	•	•	•	•
(112	•				1			•
(121	•	1						•
(122)	•			•		1	•	•
(211	•		1					•
(212)	•						1	•
(221				1				
(222	•		•			•		1

Rank-3 tensor basis $|ijk\rangle$ (3 particles each with U(2) state space)

[1][2][3]	111	112	121	$ 122\rangle$	211	$ 212\rangle$	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112	•	1	•	•				•
(121			1					
(122				1				
(211					1			
(212						1		
(221							1	
(222)								1

	111	112	121	122	211	212	221	222
111								
112								
121								
122								
211								
212								
221								
222								

Need smaller boxes!

[12]	111>	112	121	122	211	212	221	$ 222\rangle$	
(111	1	•	•	•	•	•	•	•	
(112		1							
(121					1				
(122						1			
(211			1						
(212				1					
(221							1		
(222								1	

[13]	111>	112>	121	122	211	212	221	$ 222\rangle$	[23]	[23]	111
(111	1	·	•	·	•	·	·	•	(111	(111)	1
(112					1				(112	(112	•
(121			1						(121	(121	
(122							1		(122	(122	
(211		1							(211	(211)	
(212						1			(212	(212	
(221				1					(221	(221	
(222								1	(222	(222	
	1								1		

[23]	111>	112>	121	122	211	212	221	$ 222\rangle$
(111)	1	•	•	•	•	•	•	•
(112	•		1					
(121		1						
(122				1				
(211					1			
(212							1	
(221						1		
(222	•		•		•			1

[123]	111	112	121	122	211	212	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112	•		1				•	
(121					1			
(122							1	
(211	•	1					•	
(212	•			1			•	
(221						1		
(222)	•							1

11	112	121	$ 122\rangle$	211	$ 212\rangle$	$ 221\rangle$	$ 222\rangle$
1	•	•	•	•	•	•	
		1					
				1			
						1	
•	1						
			1				
•					1		
							1

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)2-particle U(2) transform and permutation operationS₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

$$D_{(\sigma_2)}^{E} = D^{[2,1]}(bc) = \begin{bmatrix} \frac{ab}{c} \\ \frac{ac}{\sqrt{3}/2} \\ \frac{ac}{b} \end{bmatrix} \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$

$$D^{[2,1]}(ab) = \begin{bmatrix} ab \\ c \\ ac \\ b \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

From unpublished Ch.10 for Principles of Symmetry, Dynamics & Spectroscopy

Fig. 10.1.2 Yamanouchi formulas for permutation operators.

Integer d is the "city block" distance between (n) and (n-1) blocks, i.e., the minimum number of streets to be crossed when traveling from one to the other. Note that when numbers (n) and (n-1) are ordered smaller above larger, the permutation is negative (anti-symmetric if d=1), and positive (symmetric if d=1) when the smaller number is left of the larger number. [The (n-1) will never be above and left of (n) since that arrangement would be "non-standard."]

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)
2-particle U(2) transform and permutation operation
S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

$$\frac{\mathbf{g} = |\mathbf{1} = (1)(2)(3) \mathbf{r} = (123) \mathbf{r}^{2} = (132) \mathbf{i}_{1} = (23) \mathbf{i}_{2} = (13) \mathbf{i}_{3} = (12)}{D^{\square\square}(\mathbf{g}) = |\mathbf{f}|_{1} \mathbf{g}|_{1} \mathbf$$

 $\mathbf{P}^{\square\square} = \frac{1}{6} ((1)(1) + (1)(123) + (1)(132) + (1)(13) + (1)(13) + (1)(12))$

111 112 121 122	211 212 221 222	111 112 121 122 211	212 221 222 111 1	112 121 122 211 212 221 222	111 112 121 122 211 2	212 221 222 111 112 121 12	2 211 212 221 222	111 112 121 122 211 212 221 222
111 1		111 1	111 1		111 1	111 1	11	1 1
112 1		112 1	112	1	112 1	112	1 11	2 1
121 1		121 1	121	1	121 1	121 1	12	1 1
122 1		122	1 122	1	122 1	122	1 12	2 1
211	1	211 1	211	1	211 1	211 1	21	1 1
212	1	212 1	212	1	212	1 212	1 21	2 1
221	1	221	1 221	1	221	1 221 1	22	1
222	1	222	1 222	1	222	1 222	1 22	2 1
[1][2][3]		[123]	[13]	2]	[23]	[13]	t	[12]

$$\frac{\mathbf{g} = \mathbf{1} = (1)(2)(3) \quad \mathbf{r} = (123) \quad \mathbf{r}^{2} = (132) \quad \mathbf{i}_{1} = (23) \quad \mathbf{i}_{2} = (13) \quad \mathbf{i}_{3} = (12)}{\mathbf{D}^{\square\square}(\mathbf{g}) = \mathbf{D}^{\square\square}(\mathbf{g}) = \mathbf{$$

 $\mathbf{P}^{\text{I}} = \frac{1}{6} \left((1)(1) + (1)(123) + (1)(132) + (1)(13) + (1)(12) \right)$

Difficult and tedious to sum? Try MathType overlays (next page)

	g =	1 = (1)(2)	(3)	r = (123)		$r^2 = (132)$	2)	$i_1 = (23)$	3)		$i_2 = (13)$		$i_3 = (12)$					
	$D^{\Box\Box\Box}(\mathbf{g}) = D^{\Box}_{\mathbf{g}}(\mathbf{g}) = D^{\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box}_{x_2y_2}(\mathbf{g}) = D^{\Box\Box}_{x_$	$ \begin{array}{c} 1\\ 1\\ \begin{pmatrix} 1 & 0\\ 0 & 1 \end{array} $	$\left(\begin{array}{c} -1\\ \sqrt{2}\end{array}\right)$	$ \begin{array}{c} 1 \\ 1 \\ 1/2 \\ -\sqrt{3}/2 \\ -1/2 \end{array} $	$\begin{pmatrix} 2\\ 2 \end{pmatrix}$	$ \begin{array}{c} 1 \\ 1 \\ -1/2 \\ \sqrt{3}/2 \\ -\sqrt{3}/2 \end{array} $	$\left(\frac{\overline{3}}{2}\right)$	$ \begin{array}{c} 1 \\ -1 \\ \left(\begin{array}{c} -1/2 \\ \sqrt{3}/2 \end{array} \right) $	√3/2 1/2		$ \begin{array}{r} 1 \\ -1 \\ -\sqrt{3} \\ -\sqrt{3} \\ 2 \\ 1 \\ \end{array} $	$\left(\begin{array}{c} \overline{3}/2\\2\end{array}\right)$	$ \begin{array}{c} 1 \\ -1 \\ \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \end{array} $)				
111 112 122 211 212 222 111 1 1 111 112 112 1 1 121 121 121 1 1 122 121 122 1 1 122 122 211 1 1 211 212 212 1 1 212 212 212 1 1 212 212 221 1 1 212 212 212 1 1 212 212 212 1 1 212 212 212 1 1 212 212 212 1 1 212 212 221 1 1 221 221 222 1 1 222 223 1 1 223 224 224 1 1 224 1 225 1 1 225 1 225 1 <td< td=""><td>111 112 121 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>22 211 212 1 1 1 1 1</td><td>221 222 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2</td><td>111 112 11 1 12 1 21 2 22 2 211 1 212 2 221 2 221 1 212 1 213 1</td><td></td><td></td><td>222 111 112 121 122 211 212 221 1 222</td><td>111 112 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>122 2</td><td>11 212 2 1 1 1 1</td><td>21 222 111 112 121 122 1 21 1 21 1 22 1 22 1 22 1</td><td>1111 112 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1 122 21 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td>222 111 112 121 122 211 212 212 1 222</td><td>111 112 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>21 122 211 1 1 1 1 1</td><td>212 221 222 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></td<>	111 112 121 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	22 211 212 1 1 1 1 1	221 222 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2	111 112 11 1 12 1 21 2 22 2 211 1 212 2 221 2 221 1 212 1 213 1			222 111 112 121 122 211 212 221 1 222	111 112 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	122 2	11 212 2 1 1 1 1	21 222 111 112 121 122 1 21 1 21 1 22 1 22 1 22 1	1111 112 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 122 21 1 1 1 1 1 1 1 1 1 1 1 1		222 111 112 121 122 211 212 212 1 222	111 112 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21 122 211 1 1 1 1 1	212 221 222 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	111	112	121	122	211	212	221	222										
11	1										6							
11	2	11	11		11							2	2		2			
12	21	11	11		11							2	2		2			
12	2			11		11	11							2		2	2	
21	1	11	11		11						-	2	2		2			
21	2			11	•	11	11	6	1					2		2	2	
$\overline{)}$	21			11	•	11	11							2		2	2	
2.2	2							111111										6

$$\frac{\mathbf{g} = \mathbf{1} = (1)(2)(3) \quad \mathbf{r} = (123) \quad \mathbf{r}^{2} = (132) \quad \mathbf{i}_{1} = (23) \quad \mathbf{i}_{2} = (13) \quad \mathbf{i}_{3} = (12)}{D^{\square\square}(\mathbf{g}) = \mathbf{1} \quad \mathbf{$$

$$\mathbf{P}_{11}^{\Box} = \frac{1}{6} \Big((2)(1) + (-1)(123) + (-1)(132) + (-1)(23) + (-1)(13) + (+2)(12) \Big)$$

111 112 121	122 211 212 221 222	111 112 121 122 211 212 221 222	111 112 121 122 211 212 221 222	111 112 121 122 211 212 221 222	111 112 121 122 211 212 221 222	111 112 121 122 211 212 221 222
111 1		111 1	111 1	111 1	111 1	111 1
112 1		112 1	112 1	112 1	112 1	112 1
121 1		121 1	121 1	121 1	121 1	121 1
122	1	122 1	122 1	122 1	122 1	122 1
211	1	211 1	211 1	211 1	211 1	211 1
212	1	212 1	212 1	212 1	212 1	212 1
221	1	221 1	221 1	221 1	221 1	221 1
222	1	222 1	222 1	222 1	222 1	222 1
[1][2][3]		[123]	[132]	[23]	[13]	[12]

$$\frac{\mathbf{g}}{D^{\square\square}(\mathbf{g})} = \frac{1 = (1)(2)(3) \quad \mathbf{r} = (123) \quad \mathbf{r}^{2} = (132) \quad \mathbf{i}_{1} = (23) \quad \mathbf{i}_{2} = (13) \quad \mathbf{i}_{3} = (12)}{\mathbf{p}^{\square\square}(\mathbf{g})} = \frac{1}{D^{\square\square}(\mathbf{g})} = \frac{1}{1} \quad \frac{1}$$

1	1111	12 12	1 122	211 2	12 221	222		111 1	12 121	122 2	211 212	221 22	2	111 112	121 12	2 211 21	2 221 222	11	1 112 12	1 122 2	11 212	221 222	11	1 112 12	1 1 2 2	211 212	221 222		111 112	121 12	2 211	212 221	222
111	1						111	1					111	1				111 1					111 1					111	1				
112		1					112		1				112			1		112	1				112			1		112	1				
121		1					121				1		121	1				121	1				121	1		l		121		Ī	1		1
122			1				122					1	122			1		122		1			122				1	122				1	1
211				1			211]	1				211		1			211			1		211	1				211		1			
212					1		212			1			212				1	212				1	212			1		212		1			
221					1		221				1		221		1			221			1		221		1			221				1	
222						1	222					1	222				1	222				1	222				1	222					1
[1][2]	[3]						[123]						[132]				[]	23]				[1]	3]]	12]				

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)
2-particle U(2) transform and permutation operation
S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

Note all $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (totally antisymmetric) U(2) (spin-1/2) states $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ are non-existent.

$$\begin{vmatrix} \widehat{1} \\ \widehat{1}$$

It takes at least 3 distinct (U(3)) states to make a 3rd rank "determinant" state $\frac{a}{b}{c}$.

This is the symmetry basis of the Pauli-exclusion principle.

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)
2-particle U(2) transform and permutation operation
S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

S₃ symmetry of U(2): Building S₃ DTran T from projectors

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space) 2-particle U(2) transform and permutation operation S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

S₃ symmetry of U(2): Effect of S₃ DTran T on intertwining S₃ - U(2) irep matrices

S₃ matrices:

U(2) *matrices*:

$T^{\dagger}D \otimes D \otimes D(\mathbf{u})T =$

$D_{11}({f u})$	$D_{12}({f u})$	$D_{13}({f u})$	$D_{14}(\mathbf{u})$				
$D_{21}({f u})$	$D_{22}({f u})$	$D_{23}({f u})$	$D_{24}(\mathbf{u})$				
$D_{31}({\bf u})$	$D_{31}({\bf u})$	$D_{31}({\bf u})$	$D_{31}({\bf u})$				
$D_{41}({f u})$	$D_{42}(\mathbf{u})$	$D_{43}({f u})$	$D_{44}(\mathbf{u})$				
				$D_{11}({\bf u})$		$D_{12}({f u})$	
					$D_{12}({f u})$		$D_{12}(\mathbf{u})$
				$D_{21}({f u})$		$D_{22}(\mathbf{u})$	
					$D_{21}({f u})$		$D_{22}(\mathbf{u})$

S₃ symmetry of U(2): Effect of S₃ DTran T on intertwining S₃ - U(2) irep matrices

S₃ matrices:

U(2) *matrices*:

$T^{\dagger}D \otimes D \otimes D(\mathbf{u})T =$

$D_{11}({\bf u})$	$D_{12}({f u})$	$D_{13}({f u})$	$D_{14}({f u})$				
$D_{21}({f u})$	$D_{22}({f u})$	$D_{23}({f u})$	$D_{24}(\mathbf{u})$				
$D_{31}({\bf u})$	$D_{31}({\bf u})$	$D_{31}({\bf u})$	$D_{31}({\bf u})$				
$D_{41}({f u})$	$D_{42}(\mathbf{u})$	$D_{43}({f u})$	$D_{44}(\mathbf{u})$				
				$D_{11}({f u})$		$D_{12}({f u})$	
					$D_{12}({\bf u})$		$D_{12}({\bf u})$
				$D_{21}({\bf u})$		$D_{22}(\mathbf{u})$	
					$D_{21}({f u})$		$D_{22}(\mathbf{u})$

After flipping rows and columns (6\Leftrightarrow7) of T matrix

T_{ϵ}	$_{57}$ [†] S((\mathbf{p}_{abc})	T_{67}	, =				
f	lip	I	fli	р		1	1	1
	<i>D</i> (p)							
		<i>D</i> (p)						
			<i>D</i> (p)					
				<i>D</i> (p)				
					$D_{11}({\bf p})$		$D_{12}({\bf p})$	
						$D_{11}({\bf p})$		$D_{12}({\bf p})$
					$D_{21}({\bf p})$		$D_{22}({\bf p})$	
						$D_{21}({\bf p})$		$D_{22}({\bf p})$

$T_{67}^{\dagger} D \otimes L$)(8	D(u	T_{67}	=					
flip			flip						
		$D_{11}({f u})$	$D_{12}({f u})$	$D_{13}({\bf u})$	$D_{14}({f u})$				
		$D_{21}({f u})$	$D_{22}(\mathbf{u})$	$D_{23}({f u})$	$D_{24}({f u})$				
		$D_{31}({\bf u})$	$D_{31}({\bf u})$	$D_{31}({\bf u})$	$D_{31}({\bf u})$				
		$D_{41}({f u})$	$D_{42}(\mathbf{u})$	$D_{43}(\mathbf{u})$	$D_{44}(\mathbf{u})$				
						$D_{11}({\bf u})$	$D_{12}(\mathbf{u})$		
						$D_{21}({\bf u})$	$D_{22}(\mathbf{u})$		
								$D_{11}({\bf u})$	$D_{12}({f u})$
								$D_{21}({\bf u})$	$D_{22}({f u})$

S₃ symmetry of U(2): Effect of S₃ DTran T on intertwining S₃ - U(2) irep matrices

After flipping rows and columns (6\Leftrightarrow7) of T matrix

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Interwining $(S_1 \subset S_2 \subset S_3 \subset S_4 \subset S_5 \dots)^* (U(1) \subset U(2) \subset U(3) \subset U(4) \subset U(5) \dots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and S_n permutation symmetry Rank-1 tensor (or spinor)

Rank-2 tensor (2 particles each with U(2) state space)
2-particle U(2) transform and permutation operation
S₂ symmetry of U(2): Trust but verify

Applying S₂ projection to build DTran Applying DTran for S₂ Applying DTran for U(2)

S₃ permutations related to C_{3v}~D₃ geometry
S₃ permutation matrices
Hooklength formula for S_n reps
S₃ symmetry of U(2): Applying S₃ projection (Note Pauli-exclusion principle basis)
Building S₃ DTran T from projectors
Effect of S₃ DTran T: Introducing intertwining S₃ - U(2) irep matrices
Multi-spin (1/2)^N product state (Comparison to previous cases)

Multi-spin (1/2)^N *product states*

Multi-spin (1/2)^N *product states*

	g =	1 = (1)(2)(3)	r = (123)	$r^2 = (132)$	$i_1 = (23)$	$i_2 = (13)$	$i_3 = (12)$		
	$D^{\Box\Box\Box}(\mathbf{g}) =$								
	E C	1	1	1	1	1	1		
	$D^{\square}(\mathbf{g}) =$	1	1	1	-1	-1	-1		
		$\begin{pmatrix} 1 & 0 \end{pmatrix}$	$-1/2 - \sqrt{3}/2$	$-1/2 \sqrt{3}/2$	$\left(-\frac{1}{2} \sqrt{3}/2 \right)$	$\begin{pmatrix} -1/2 & -\sqrt{3}/2 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \end{pmatrix}$		
	$D_{x_2y_2}^{[\bot]}\left(\mathbf{g}\right) =$		$\sqrt{3}/2$ $-1/2$	$-\sqrt{3}/2$ $-1/2$	$\sqrt{3/2}$ $1/2$	$\left(-\sqrt{3}/2 + 1/2 \right)$	(0 -1)		
111 112 121 122 211 212 221 222	111 112 121 12	2 211 212 221 222	111 112 121 122	211 212 221 222	<u>1 111 112 121 122 211 2</u>	212 221 222 111 1	12 121 122 211 212 221 222	111 112 121	122 211 212 221 222
	1 1		111 1		111 1	111 1		111 1	
	2 1		112	1	112 1	112	1	112	1
	1	1	121 1		121 1	121	1	121 1	
	2	1	122	1	122 1	122	1	122	1
211 1 21	1 1		211 1			211	1	211 1	
	2 1		212		212	1 212		212	1
	1	1	221 1		221	1 221		221	1
	2								
[1][2][3]	[12]		[13]		[23]	[123]		[132]	
111 112 122 211 212 221 111 112 111 112 112 111 112 121 121 121 122 121 122 211 121 121 212 121 121	111 112 121 122 2	2 211 212 221 222	111 112 122 111 112 121 112 121 121 122 211 122		111 112 122 211 2 111 1 1 1 112 1 1 1 121 1 1 1 122 1 1 1 211 1 1 1	12 221 222 111 111 111 111 111 111 121 121 122 211 212 212	12 121 122 211 212 221 222	111 112 121 111 1 112 1 121 1 122 1 211 2	
221 221			221		221	221		221	
	2		222		222	222		222	
111 112 121 122 211 212 221 222	111 112 121 12:	2 211 212 221 222	111 112 121 122 2	211 212 221 222	111 112 121 122 211 2	<u>12 221 222 111 11</u>	12 121 122 211 212 221 222		122 211 212 221 222
)	+	112		112	111		112	
			12		12	12		12	
	,					121			
	· 		211		211			211	
	<u></u>	+			212			212	
	1	+			221			221	
	<u> </u>								
	4		222		222	222			

212							212								212	2								212								212	2								212						
221							221								221	1								221								221									221						
222							222								222	2								222								222									222						
																																									i				:		I
	111 11	2 121	122 2	11 2	12 22	1 222		111	112 1	121	122 21	121	12 22	1 222		11	1 112	2 121	122	211	212	221	222		111	112 1	121 1	22 2	211 2	212 22	21 222		111	112	121	122 2	211	212 2	21 22	2	1	11 11	2 121	122	2112	212 2	21 222
111							111								111	L								111								111									111						
112							112		Ì						112	2		1						112								112	r								112		1			Ì	
121							121	ľ							121	l		1						121								121									121						
122							122								122	2		Ī						122								122	r								122						
211							211								21	1								211								211									211						
212							212								212	2								212								212									212						
221							221								221	1								221								221] [221						
222							222								222									222								1222									222						

112	112	112	112	112	112
121	121	121	121	121	121
122	122	122	122	122	122
211	211	211	211	211	211
212	212	212	212	212	212
221	221	221	221	221	221
				222	

 111
 112
 121
 122
 211
 212
 222
 111
 112
 122
 211
 212
 222

 1
 1
 1
 1
 1
 1
 1
 1
 1
 111 112 121 122 211 212 221 222 111 112 121 122 211 212 221 222 111 112 121 122 211 212 221 222 111 112 121 122 211 212 221 222 111

111

111

111

111

[13]	111>	112	121	122	211	212	221	$ 222\rangle$
(111	1	•	•	•	•	•	•	•
(112								
(121								
(122								
(211								
(212								
(221								
(222					•	•	•	•