Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$U(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with U(2) state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $U(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building S_{3} DTran T from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page

Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
Modern Physics and its Classical Foundations

2014 AMOP
2017 Group Theory for QM
2018 AMOP

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- Jeigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Bovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Svmmetry in Quantum Rotors - harter - ims - 2001
Bepresentaions Of Multidimensional Symmetries In Networks - harter-imp-1973
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. This bad boy will be a sure force multiplier.

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $U(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)
$U(2)$ tensor product states and S_{n} permutation symmetry
Typical U(2) transformations (Just like spin- $1 / 2$ irep in basis $\{1=+1 / 2,1=-1 / 2\}$) Rank-1 tensor

$$
\begin{aligned}
& \phi_{1}^{\prime}=\mathbf{u} \phi_{1}=\phi_{1} D_{11}+\phi_{2} D_{21} \\
& \phi_{2}^{\prime}=\mathbf{u} \psi_{2}=\phi_{1} D_{12}+\phi_{2} D_{22}
\end{aligned} \quad \text { where: } D_{j k}=\left(\phi_{j}^{*}, \phi_{k}^{\prime}\right)=\left(\phi_{j}^{*}, \mathbf{u} \phi_{k}\right)
$$

Dirac notation:

$$
\begin{aligned}
& \left|1^{\prime}\right\rangle=\mathbf{u}|1\rangle=|1\rangle D_{11}+|2\rangle D_{21} \\
& \left|2^{\prime}\right\rangle=\mathbf{u}|2\rangle=|1\rangle D_{12}+|2\rangle D_{22}
\end{aligned}
$$

$$
\text { where: } D_{j k}(\mathbf{u})=\left\langle j \mid k^{\prime}\right\rangle=\langle j| \mathbf{u}|k\rangle
$$

$U(2)$ tensor product states and S_{n} permutation symmetry
Typical U(2) transformations (Just like spin- $1 / 2$ irep in basis $\{1=+1 / 2,1=-1 / 2\}$)
Rank-1 tensor

matrix representations

$$
\begin{aligned}
& \phi_{1}^{\prime}=\mathbf{u} \phi_{1}=\phi_{1} D_{11}+\phi_{2} D_{21} \\
& \phi_{2}^{\prime}=\mathbf{u} \psi_{2}=\phi_{1} D_{12}+\phi_{2} D_{22}
\end{aligned} \quad \text { where: } D_{j k}=\left(\phi_{j}^{*}, \phi_{k}^{\prime}\right)=\left(\phi_{j}^{*}, \mathbf{u} \phi_{k}\right)
$$

$$
\left|1^{\prime}\right\rangle=\mathbf{u}|1\rangle=|1\rangle D_{11}+|2\rangle D_{21}
$$

$$
\left|2^{\prime}\right\rangle=\mathbf{u}|2\rangle=|1\rangle D_{12}+|2\rangle D_{22}
$$

$$
\begin{aligned}
& |1\rangle=\phi_{1}=\binom{1}{0} \\
& |2\rangle=\phi_{2}=\binom{0}{1} \\
& D_{j k}(\mathbf{u})=\left(\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right)
\end{aligned}
$$

where: $D_{j k}(\mathbf{u})=\left\langle j \mid k^{\prime}\right\rangle=\langle j| \mathbf{u}|k\rangle$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $U(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $U(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

$U(2)$ tensor product states and S_{n} permutation symmetry

Typical $U(2)$ transformations (Just like spin- $1 / 2$ irep in basis $\{1=+1 / 2,1=-1 / 2\}$)
Rank-1 tensor

$$
\begin{aligned}
& \phi_{1}^{\prime}=\mathbf{u} \phi_{1}=\phi_{1} D_{11}+\phi_{2} D_{21} \\
& \phi_{2}^{\prime}=\mathbf{u} \psi_{2}=\phi_{1} D_{12}+\phi_{2} D_{22}
\end{aligned} \quad \text { where: } D_{j k}=\left(\phi_{j}^{*}, \phi_{k}^{\prime}\right)=\left(\phi_{j}^{*}, \mathbf{u} \phi_{k}\right)
$$

matrix representations

Dirac notation:

$$
\begin{aligned}
& \left|1^{\prime}\right\rangle=\mathbf{u}|1\rangle=|1\rangle D_{11}+|2\rangle D_{21} \\
& \left|2^{\prime}\right\rangle=\mathbf{u}|2\rangle=|1\rangle D_{12}+|2\rangle D_{22}
\end{aligned} \quad \text { where: } D_{j k}(\mathbf{u})=\left\langle j \mid k^{\prime}\right\rangle=\langle j| \mathbf{u}|k\rangle \quad D_{j k}(\mathbf{u})=\left(\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right)
$$

$$
\begin{aligned}
& |1\rangle=\phi_{1}=\binom{1}{0} \\
& |2\rangle=\phi_{2}=\binom{0}{1}
\end{aligned}
$$

Rank-2 tensor (2 particles each with $U(2)$ state space)
$|1\rangle|1\rangle=\phi_{1} \otimes \phi_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),|1\rangle|2\rangle=\phi_{1} \otimes \phi_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),|2\rangle|1\rangle=\phi_{2} \otimes \phi_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),|2\rangle|2\rangle=\phi_{2} \otimes \phi_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$
2-particle $U(2)$ transform

$$
\begin{aligned}
& \left|j^{\prime}\right\rangle\left|k^{\prime}\right\rangle=\mathbf{u}|j\rangle \mathbf{u}|k\rangle \\
& =\sum_{j, k}|j\rangle|k\rangle D_{j j^{\prime}} D_{k k^{\prime}} \\
& =\sum_{j, k}|j\rangle|k\rangle D \otimes D_{j k: j^{\prime} k^{\prime}}
\end{aligned}
$$

$U(2)$ tensor product states and S_{n} permutation symmetry

Typical $U(2)$ transformations (Just like spin- $1 / 2$ irep in basis $\{1=+1 / 2,1=-1 / 2\}$)

Rank-1 tensor

$$
\begin{aligned}
& \phi_{1}^{\prime}=\mathbf{u} \phi_{1}=\phi_{1} D_{11}+\phi_{2} D_{21} \\
& \phi_{2}^{\prime}=\mathbf{u} \psi_{2}=\phi_{1} D_{12}+\phi_{2} D_{22}
\end{aligned} \quad \text { where: } D_{j k}=\left(\phi_{j}^{*}, \phi_{k}^{\prime}\right)=\left(\phi_{j}^{*}, \mathbf{u} \phi_{k}\right)
$$

Dirac notation:

$$
\begin{aligned}
& \left|1^{\prime}\right\rangle=\mathbf{u}|1\rangle=|1\rangle D_{11}+|2\rangle D_{21} \quad \text { where: } D_{j k}(\mathbf{u})=\left\langle j \mid k^{\prime}\right\rangle=\langle j| \mathbf{u}|k\rangle \\
& \left|2^{\prime}\right\rangle=\mathbf{u}|2\rangle=|1\rangle D_{12}+|2\rangle D_{22}
\end{aligned}
$$

Rank-2 tensor (2 particles each with $U(2)$ state space)

$$
|1\rangle|1\rangle=\phi_{1} \otimes \phi_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|1\rangle|2\rangle=\phi_{1} \otimes \phi_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),|2\rangle|1\rangle=\phi_{2} \otimes \phi_{1}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|2\rangle|2\rangle=\phi_{2} \otimes \phi_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

2-particle $\mathrm{U}(2)$ transform and outer-product $\mathrm{U}(2)$ transform matrix $\quad D_{j j^{\prime}} D_{k k^{\prime}}=D \otimes D_{j k: j^{\prime} k^{\prime}}=$
$\left|j^{\prime}\right\rangle\left|k^{\prime}\right\rangle=\mathbf{u}|j\rangle \mathbf{u}|k\rangle$
$=\sum_{j, k}|j\rangle|k\rangle D_{j j^{\prime}} D_{k k^{\prime}}$
$=\sum_{j, k}|j\rangle|k\rangle D \otimes D_{j k: j^{\prime} k^{\prime}}$

$$
=\left(\begin{array}{llll}
D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12} \\
D_{11} D_{21} & D_{11} D_{22} & D_{12} D_{21} & D_{12} D_{22} \\
D_{21} D_{11} & D_{21} D_{12} & D_{22} D_{11} & D_{22} D_{12} \\
D_{21} D_{21} & D_{21} D_{22} & D_{22} D_{21} & D_{22} D_{22}
\end{array}\right)=\left(\begin{array}{ll}
D_{11}\binom{D_{11} D_{12}}{D_{21} D_{22}} & D_{12}\binom{D_{11} D_{12}}{D_{21} D_{22}} \\
D_{21}\binom{D_{11} D_{12}}{D_{21} D_{22}} & D_{22}\binom{D_{11} D_{12}}{D_{21} D_{22}}
\end{array}\right)
$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $U(2)$ state space)
2-particle $U(2)$ transform and permutation operation
S_{2} symmetry of $U(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin $(1 / 2)^{\mathrm{N}}$ product state (Comparison to previous cases)

$U(2)$ tensor product states and S_{n} permutation symmetry

2-particle $\mathrm{U}(2)$ transform and outer-product $\mathrm{U}(2)$ transform matrix $\quad D_{j j^{\prime}} D_{k k^{\prime}}=D \otimes D_{j k \cdot j k}=$

2-particle permutation operation: $\quad \mathbf{s}(a b)|j\rangle_{a}|k\rangle_{b}=|k\rangle_{a}|j\rangle_{b}$
$\left.\left.\mathbf{s}(a b)|1\rangle_{d}|1\rangle_{b}=1\right\rangle_{d} 1\right\rangle_{b}, \mathbf{s}(a b)|1\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|1\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|1\rangle_{b}=|1\rangle_{a}|2\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|2\rangle_{b}$
$\mathrm{S}_{2}=\{(a)(b),(a b)\}$ represented by matrices: $\quad S((a)(b))=\quad S((a b))=$ in basis: $|1\rangle|1\rangle=|1\rangle|2\rangle=|2\rangle|1\rangle=|2\rangle|2\rangle=$

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

$U(2)$ tensor product states and S_{n} permutation symmetry

2-particle $\mathrm{U}(2)$ transform and outer-product $\mathrm{U}(2)$ transform matrix $\quad D_{j j^{\prime}} D_{k k^{\prime}}=D \otimes D_{j k j^{\prime} k^{\prime}}=$
$\left|j^{\prime}\right\rangle\left|k^{\prime}\right\rangle=\mathbf{u}|j\rangle \mathbf{u}|k\rangle$
$=\left(\begin{array}{llll}D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12} \\ D_{11} D_{21} & D_{11} D_{22} & D_{12} D_{21} & D_{12} D_{22} \\ D_{21} D_{11} & D_{21} D_{12} & D_{22} D_{11} & D_{22} D_{12} \\ D_{21} D_{21} & D_{21} D_{22} & D_{22} D_{21} & D_{22} D_{22}\end{array}\right)=$
$D_{11}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$
$D_{12}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$
$D_{21}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$
$D_{22}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$

2-particle permutation operation: $\quad \mathbf{s}(a b)|j\rangle_{a}|k\rangle_{b}=|k\rangle_{a}|j\rangle_{b}$
$\left.\left.\mathbf{s}(a b)|1\rangle_{d}|1\rangle_{b}=1\right\rangle_{d} 1\right\rangle_{b}, \mathbf{s}(a b)|1\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|1\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|1\rangle_{b}=|1\rangle_{a}|2\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|2\rangle_{b}$
$\mathrm{S}_{2}=\{(a)(b),(a b)\}$ represented by matrices:

$$
S((a)(b))=\quad S((a b))=
$$ in basis: $|1\rangle|1\rangle=|1\rangle|2\rangle=\quad|2\rangle|1\rangle=|2\rangle|2\rangle=$

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

2-particle permutation $\mathbf{s}(a b)$ commutes with $\mathrm{U}(2)$ transform matrix $D \otimes D$:

$$
\mathbf{s}(a b) D \otimes D \phi_{j} \phi_{k}=\sum_{m, n} \mathbf{s}(a b) \phi_{m} \phi_{n} D_{j m} D_{k n}=\sum_{m, n} \phi_{n} \phi_{m} D_{j m} D_{k n}=\sum_{m, n} \phi_{n} \phi_{m} D_{k n} D_{j m}=D \otimes D \phi_{k} \phi_{j}=D \otimes D \mathbf{s}(a b) \phi_{j} \phi_{k}
$$

$U(2)$ tensor product states and S_{n} permutation symmetry

2-particle $\mathrm{U}(2)$ transform and outer-product $\mathrm{U}(2)$ transform matrix $\quad D_{j j^{\prime}} D_{k k^{\prime}}=D \otimes D_{j k j^{\prime} k^{\prime}}=$
$\left|j^{\prime}\right\rangle\left|k^{\prime}\right\rangle=\mathbf{u}|j\rangle \mathbf{u}|k\rangle$
$=\left(\begin{array}{llll}D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12} \\ D_{11} D_{21} & D_{11} D_{22} & D_{12} D_{21} & D_{12} D_{22} \\ D_{21} D_{11} & D_{21} D_{12} & D_{22} D_{11} & D_{22} D_{12} \\ D_{21} D_{21} & D_{21} D_{22} & D_{22} D_{21} & D_{22} D_{22}\end{array}\right)=$
$D_{11}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$
$D_{12}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$
$D_{21}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$
$D_{22}\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$

2-particle permutation operation: $\quad \mathbf{s}(a b)|j\rangle_{a}|k\rangle_{b}=|k\rangle_{a}|j\rangle_{b}$
$\left.\left.\mathbf{s}(a b)|1\rangle_{d}|1\rangle_{b}=1\right\rangle_{d} 1\right\rangle_{b}, \mathbf{s}(a b)|1\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|1\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|1\rangle_{b}=|1\rangle_{a}|2\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|2\rangle_{b}$
$\mathrm{S}_{2}=\{(a)(b),(a b)\}$ represented by matrices:

$$
S((a)(b))=\quad S((a b))=
$$ in basis: $|1\rangle|1\rangle=|1\rangle|2\rangle=\quad|2\rangle|1\rangle=\quad|2\rangle|2\rangle=$

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

2-particle permutation $\mathbf{s}(a b)$ commutes with $\mathrm{U}(2)$ transform matrix $D \otimes D$:
$\mathbf{s}(a b) D \otimes D \phi_{j} \phi_{k}=\sum_{m, n} \mathbf{s}(a b) \phi_{m} \phi_{n} D_{j m} D_{k n}=\sum_{m, n} \phi_{n} \phi_{m} D_{j m} D_{k n}=\sum_{m, n} \phi_{n} \phi_{m} D_{k n} D_{j m}=D \otimes D \phi_{k} \phi_{j}=D \otimes D \mathbf{s}(a b) \phi_{j} \phi_{k}$

$$
\mathbf{s}(a b) D \otimes D=D \otimes D \mathbf{s}(a b)
$$

$U(2)$ tensor product states and S_{n} permutation symmetry
2-particle $\mathrm{U}(2)$ transform and outer-product $\mathrm{U}(2)$ transform matrix $\quad D_{j j^{\prime}} D_{k k^{\prime}}=D \otimes D_{j k j^{\prime} k^{\prime}}=$
$\left|j^{\prime}\right\rangle\left|k^{\prime}\right\rangle=\mathbf{u}|j\rangle \mathbf{u}|k\rangle$
$=\sum_{j, k}|j\rangle|k\rangle D_{j j^{\prime}} D_{k k^{\prime}}$
$=\sum_{j, k}|j\rangle|k\rangle D \otimes D_{j k: j k^{\prime}}$

$$
=\left(\begin{array}{llll}
D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12} \\
D_{11} D_{21} & D_{11} D_{22} & D_{12} D_{21} & D_{12} D_{22} \\
D_{21} D_{11} & D_{21} D_{12} & D_{22} D_{11} & D_{22} D_{12} \\
D_{21} D_{21} & D_{21} D_{22} & D_{22} D_{21} & D_{22} D_{22}
\end{array}\right)=\left(\begin{array}{l}
D_{11}\binom{D_{11} D_{12}}{D_{21} D_{22}} \\
D_{12}\binom{D_{11} D_{12}}{D_{21} D_{22}} \\
D_{21}\binom{D_{12}}{D_{21} D_{22}} \\
D_{22}\left(\begin{array}{l}
D_{11} D_{12} \\
D_{21} \\
D_{22}
\end{array}\right)
\end{array}\right)
$$

2-particle permutation operation: $\quad \mathbf{s}(a b)|j\rangle_{a}|k\rangle_{b}=|k\rangle_{a}|j\rangle_{b}$
$\left.\left.\mathbf{s}(a b)|1\rangle_{d}|1\rangle_{b}=1\right\rangle_{d} 1\right\rangle_{b}, \mathbf{s}(a b)|1\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|1\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|1\rangle_{b}=|1\rangle_{a}|2\rangle_{b}, \mathbf{s}(a b)|2\rangle_{d}|2\rangle_{b}=|2\rangle_{a}|2\rangle_{b}$
$\mathrm{S}_{2}=\{(a)(b),(a b)\}$ represented by matrices: $\quad S((a)(b))=\quad S((a b))=$ in basis: $|1\rangle|1\rangle=|1\rangle|2\rangle=\quad|2\rangle|1\rangle=|2\rangle|2\rangle=$

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

2-particle permutation $\mathbf{s}(a b)$ commutes with $\mathrm{U}(2)$ transform matrix $D \otimes D$:
$\mathbf{s}(a b) D \otimes D \phi_{j} \phi_{k}=\sum_{m, n} \mathbf{s}(a b) \phi_{m} \phi_{n} D_{j m} D_{k n}=\sum_{m, n} \phi_{n} \phi_{m} D_{j m} D_{k n}=\sum_{m, n} \phi_{n} \phi_{m} D_{k n} D_{j m}=D \otimes D \phi_{k} \phi_{j}=D \otimes D \mathbf{s}(a b) \phi_{j} \phi_{k}$
So $\mathrm{S}_{2}=\{\mathbf{s}(a b)\}$ is symmetry of $\mathrm{U}(2) \ldots \quad \mathbf{s}(a b) D \otimes D=D \otimes D \mathbf{s}(a b)$... and vice-versa!

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $U(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $U(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify

It might help to matrix-verify the S_{2} symmetry of 2-particle $U(2)$ transformations

$$
\begin{aligned}
& S((a b)) \cdot D \otimes D \quad D=? \quad D \otimes D \cdot S((a b))
\end{aligned}
$$

S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify

It might help to matrix-verify the S_{2} symmetry of 2-particle $U(2)$ transformations

S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify

It might help to matrix-verify the S_{2} symmetry of 2-particle $U(2)$ transformations

...but the matrices are numerically equal.
So S_{2}-symmetry of 2-particle $U(2)$ tensor representation is verified.

S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify

It might help to matrix-verify the S_{2} symmetry of 2-particle $U(2)$ transformations

...but the matrices are numerically equal.
So S_{2}-symmetry of 2-particle $\mathrm{U}(2)$ tensor representation is verified.
So also is S_{2}-symmetry of any 2-particle $\mathrm{U}(m)$ tensor.
Showing S_{3}-symmetry of any 3-particle $\mathrm{U}(m)$ tensor is treated later.
$S((a b)) \cdot D \otimes D \cdot S((a b))$

$$
\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)\left(\begin{array}{llll}
D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12} \\
D_{11} D_{21} & D_{11} D_{22} & D_{12} D_{21} & D_{12} D_{22} \\
D_{21} D_{11} & D_{21} D_{12} & D_{22} D_{11} & D_{22} D_{12} \\
D_{21} D_{21} & D_{21} D_{22} & D_{22} D_{21} & D_{22} D_{22}
\end{array}\right)\left(\begin{array}{llll}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llll}
D_{11} D_{11} & D_{12} D_{11} & D_{11} D_{12} & D_{12} D_{12} \\
D_{11} D_{21} & D_{12} D_{21} & D_{11} D_{22} & D_{12} D_{22} \\
D_{21} D_{11} & D_{22} D_{11} & D_{21} D_{12} & D_{22} D_{12} \\
D_{21} D_{21} & D_{22} D_{21} & D_{21} D_{22} & D_{22} D_{22}
\end{array}\right)=\left(\begin{array}{llll}
D_{11} D_{11} & D_{12} D_{11} & D_{11} D_{12} & D_{12} D_{12} \\
D_{21} D_{11} & D_{22} D_{11} & D_{21} D_{12} & D_{22} D_{12} \\
D_{11} D_{21} & D_{12} D_{21} & D_{11} D_{22} & D_{12} D_{22} \\
D_{21} D_{21} & D_{22} D_{21} & D_{21} D_{22} & D_{22} D_{22}
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{llll}
D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12}
\end{array}\right) \quad \text { you might assume it passes thru } \\
& \left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & . \\
\cdot & 1 & \cdot & . \\
\cdot & \cdot & . & 1
\end{array}\right)\left(\begin{array}{llll}
D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12} \\
D_{11} D_{21} & D_{11} D_{22} & D_{12} D_{21} & D_{12} D_{22} \\
D_{21} D_{11} & D_{21} D_{12} & D_{22} D_{11} & D_{22} D_{12} \\
D_{21} D_{21} & D_{21} D_{22} & D_{22} D_{21} & D_{22} D_{22}
\end{array}\right)\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \cdot & 1 \\
\cdot & 1 & . \\
\cdot & \cdot & . \\
\hline & . & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
D_{11} D_{11} & D_{11} D_{12} & D_{12} D_{11} & D_{12} D_{12} \\
D_{21} D_{11} & D_{21} D_{12} & D_{22} D_{11} & D_{22} D_{12} \\
D_{11} D_{21} & D_{11} D_{22} & D_{12} D_{21} & D_{12} D_{22} \\
D_{21} D_{21} & D_{21} D_{22} & D_{22} D_{21} & D_{22} D_{22}
\end{array}\right)\left(\begin{array}{llll}
1 & . & . & . \\
. & . & 1 & . \\
\cdot & 1 & . & . \\
\cdot & . & .
\end{array}\right)=\left(\begin{array}{llll}
D_{11} D_{11} & D_{12} D_{11} & D_{11} D_{12} & D_{12} D_{12} \\
D_{21} D_{11} & D_{22} D_{11} & D_{21} D_{12} & D_{22} D_{12} \\
D_{11} D_{21} & D_{12} D_{21} & D_{11} D_{22} & D_{12} D_{22} \\
D_{21} D_{21} & D_{22} D_{21} & D_{21} D_{22} & D_{22} D_{22}
\end{array}\right) \\
& S((a b)) \cdot D \otimes D \cdot S((a b))
\end{aligned}
$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $U(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)
S_{2} symmetry of $\mathrm{U}(2)$: Applying S_{2} projection
S_{2} matrix eigen-solution found by projectors: Minimal eq. (ab) ${ }^{2} \mathbf{- 1}=0=((\mathbf{a b})+\mathbf{1})((\mathbf{a b})+\mathbf{1})$ yields:
Symmetric (\square): $\mathbf{P}^{\square \square}=\frac{1}{2}[\mathbf{1}+(\mathbf{a b})]$
$\operatorname{Anti-Symmetric}(\boxminus): \mathbf{P}^{\square}=\frac{1}{2}[\mathbf{1 - (a b)}]$
S_{2} symmetry of $\mathrm{U}(2)$: Applying S_{2} projection
S_{2} matrix eigen-solution found by projectors: Minimal eq. (ab) ${ }^{2} \mathbf{- 1}=0=((\mathbf{a b})+\mathbf{1})((\mathbf{a b})+\mathbf{1})$ yields:

Symmetric $(\square): \mathbf{P}^{\square \square}=\frac{1}{2}[\mathbf{1}+(\mathbf{a b})]$
Matrix representations of projectors:

$$
S(\mathbf{P} \square \square)=\frac{1}{2}[S(\mathbf{1})+S(\mathbf{a b})]=\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \frac{1}{2} & \frac{1}{2} & \cdot \\
\cdot & \frac{1}{2} & \frac{1}{2} & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

$$
S\left(\mathbf{P}^{\square}\right)=\frac{1}{2}[S(\mathbf{1})-S(\mathbf{a b})]=\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \frac{1}{2} & \frac{-1}{2} & \cdot \\
\cdot & \frac{-1}{2} & \frac{1}{2} & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)
$$

S_{2} symmetry of $\mathrm{U}(2)$: Applying S_{2} projection
S_{2} matrix eigen-solution found by projectors: Minimal eq. (ab) ${ }^{2} \mathbf{1}=0=((\mathbf{a b})+\mathbf{1})((\mathbf{a b})+\mathbf{1})$ yields:

$$
\left.\left.\operatorname{Symmetric}(\square): \mathbf{P}^{\square \square}=\frac{1}{2}[\mathbf{1}+\mathbf{(a b})\right] \quad \operatorname{Anti-Symmetric}(\square): \mathbf{P}^{\square}=\frac{1}{2}[\mathbf{1}-\mathbf{(a b})\right]
$$

Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting \mathbf{P}-columns

$$
\begin{aligned}
S\left(\mathbf{P}^{\square \square}\right)=\frac{1}{2}[S(\mathbf{1})+S(\mathbf{a b})]= & \left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \left.\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \cdot \\
\cdot & \frac{1}{2} & \frac{1}{2} \\
\cdot & \cdot \\
\cdot & \cdot & 1
\end{array}\right) \\
& \left(\left.\begin{array}{ccc}
\square \\
1 & \cdot & \cdot \\
\cdot & \frac{1}{\sqrt{2}} & \cdot \\
\cdot & \cdot & \frac{1}{\sqrt{2}} \\
\cdot & \frac{1}{\sqrt{2}} & \cdot \\
\cdot & \cdot & \frac{-1}{\sqrt{2}}
\end{array} \right\rvert\,\right)=T \\
\cdot & \cdot & 1 & \cdot
\end{array}\right)
\end{aligned}
$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $\mathrm{U}(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)
S_{2} symmetry of $\mathrm{U}(2)$: Applying S_{2} projection
S_{2} matrix eigen-solution found by projectors: Minimal eq. (ab) ${ }^{2} \mathbf{- 1}=0=((\mathbf{a b})+\mathbf{1})((\mathbf{a b})+\mathbf{1})$ yields:

$$
\left.\left.\operatorname{Symmetric}(\square): \mathbf{P}^{\square \square}=\frac{1}{2}[\mathbf{1}+\mathbf{(a b})\right] \quad \operatorname{Anti-Symmetric}(\square): \mathbf{P}^{\square}=\frac{1}{2}[\mathbf{1}-\mathbf{(a b})\right]
$$

Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting \mathbf{P}-columns

$$
\begin{aligned}
& S\left(\mathbf{P}^{\square \square}\right)=\frac{1}{2}[S(\mathbf{1})+S(\mathbf{a b})]=\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \left.\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\cdot \\
\cdot & \frac{1}{2} \\
\frac{1}{2} & \cdot \\
\cdot & \cdot \\
\cdot & 1
\end{array}\right) \quad S\left(\mathbf{P}^{\square}\right)=\frac{1}{2}[S(\mathbf{1})-S(\mathbf{a b})]=\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \begin{array}{cc}
\frac{1}{2} & \frac{-1}{2} \\
\cdot & \cdot \\
\cdot \frac{-1}{2} & \frac{1}{2} \\
\cdot & \cdot \\
\cdot & \cdot
\end{array} \\
T^{\dagger} & \cdot
\end{array}\right)
\end{array}\right. \\
& \left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \frac{1}{\sqrt{2}} & \cdot \frac{1}{\sqrt{2}} & \\
\cdot & & \cdot & 1 \\
\cdot & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \cdot
\end{array}\right)\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \frac{1}{\sqrt{2}} & \cdot \\
\cdot & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \cdot & \frac{-1}{\sqrt{2}}
\end{array}\right)=T^{\dagger} S(a b) T \\
& \text { Next apply DTran } T \\
& \text { and its transpose } T^{\dagger} \\
& \text { to the } S(a b) \text { matrix to } \\
& \text { find } T^{\dagger} S(a b) T \text {. }
\end{aligned}
$$

S_{2} symmetry of $\mathrm{U}(2)$: Applying S_{2} projection
S_{2} matrix eigen-solution found by projectors: Minimal eq. (ab) ${ }^{2} \mathbf{- 1}=0=((\mathbf{a b})+\mathbf{1})((\mathbf{a b})+\mathbf{1})$ yields:

$$
\left.\operatorname{Symmetric}(\square): \mathbf{P}^{\square \square}=\frac{1}{2}[\mathbf{1}+\mathbf{(a b})\right] \quad \operatorname{Anti-Symmetric}(\boxminus): \mathbf{P}^{\square}=\frac{1}{2}[\mathbf{1}-(\mathbf{a b})]
$$

Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting \mathbf{P}-columns
S_{2} symmetry of $\mathrm{U}(2)$: Applying S_{2} projection
S_{2} matrix eigen-solution found by projectors: Minimal eq. (ab) ${ }^{2} \mathbf{- 1}=0=((\mathbf{a b})+\mathbf{1})((\mathbf{a b})+\mathbf{1})$ yields:
Symmetric (\square): $\mathbf{p}^{\square \square}=\frac{1}{2}[\mathbf{1}+(\mathbf{a b})]$ $\operatorname{Anti-Symmetric}(\exists): \mathbf{P}^{\square}=\frac{1}{2}[\mathbf{1 - (a b)}]$
Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting \mathbf{P}-columns

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

$$
\left(\right)\left(\begin{array}{cccc}
D_{1111} & D_{1112} & D_{1211} & D_{1212} \\
D_{1121} & D_{1122} & D_{1221} & D_{1222} \\
D_{1121} & D_{1221} & D_{1122} & D_{1222} \\
D_{2121} & D_{2122} & D_{2122} & D_{2222}
\end{array}\right)\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \frac{1}{\sqrt{2}} & \cdot \\
\cdot & \frac{1}{\sqrt{2}} \\
\cdot & \frac{1}{\sqrt{2}} & \cdot \\
\frac{-1}{\sqrt{2}} \\
\cdot & \cdot & 1
\end{array}\right)=T^{\dagger} D \otimes D T
$$

$$
\begin{aligned}
& D \otimes D \\
& \text { Finally, apply DTran } T \\
& \text { to find } T^{\dagger} D \otimes D T \text {. }
\end{aligned}
$$

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $U(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

New geometry
$\mathrm{C}_{3 \mathrm{v}}$ geometry differs slightly from earlier Lecture 12 plots. σ_{1} and σ_{2} plane are switched.

$\substack{C_{3 v} \mathbf{g g}^{\dagger} \\ \text { form }}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$
$\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$
\mathbf{r}^{1}	\mathbf{r}^{1}	$\mathbf{1}$	\mathbf{r}^{2}	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$
\mathbf{r}^{2}	\mathbf{r}^{2}	\mathbf{r}^{1}	$\mathbf{1}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$
$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}
$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$	\mathbf{r}^{1}	$\mathbf{1}$	\mathbf{r}^{2}
$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\mathbf{1}$

Fig. 25.3.0 QTforCA Unit 8 Ch. 25 pdfp28

$C_{3 v} \mathbf{g g}^{\dagger}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$
form						

Fig. 25.3.1 Relating D_{3} and S_{3} permutation operations

$[1]$	$[132]$	$[123]$	$[23]$	$[13]$	$[12]$
$[123]$	$[1]$	$[132]$	$[13]$	$[12]$	$[23]$
$[132]$	$[123]$	$[1]$	$[12]$	$[23]$	$[13]$
$[23]$	$[13]$	$[12]$	$[1]$	$[132]$	$[123]$
$[13]$	$[12]$	$[23]$	$[123]$	$[1]$	$[132]$
$[12]$	$[23]$	$[13]$	$[132]$	$[123]$	$[1]$

Fig. 25.3.1 Relating D_{3} and S_{3} permutation operations

(bc) $\left|1_{a}, 2_{b}, 3_{c}\right\rangle=\left|1_{a}, 2_{c}, 3_{b}\right\rangle$
[13] $\left|1_{a}, 2_{b}, 3_{c}\right\rangle=\left|3_{a}, 2_{b}, 1_{c}\right\rangle$

$[1]$	$[132]$	$[123]$	$[23]$	$[13]$	$[12]$
$[123]$	$[1]$	$[132]$	$[13]$	$[12]$	$[23]$
$[132]$	$[123]$	$[1]$	$[12]$	$[23]$	$[13]$
$[23]$	$[13]$	$[12]$	$[1]$	$[132]$	$[123]$
$[13]$	$[12]$	$[23]$	$[123]$	$[1]$	$[132]$
$[12]$	$[23]$	$[13]$	$[132]$	$[123]$	$[1]$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $U(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)
S_{3} symmetry of $\mathrm{U}(2)$: Applying S_{3} projection
Rank-3 tensor basis $|\mathrm{ijk}\rangle$ (3 particles each with $\mathrm{U}(2)$ state space)

$[12]$	$\|111\rangle$	$\|112\rangle$	$\|121\rangle$	$\|122\rangle$	$\|211\rangle$	$\|212\rangle$	$\|221\rangle$	$\|222\rangle$
$\langle 111\|$	1	\cdot						
$\langle 112\|$	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 121\|$	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot
$\langle 122\|$	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot
$\langle 211\|$	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 212\|$	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot
$\langle 221\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot
$\langle 222\|$	\cdot	1						

S_{3} symmetry of $\mathrm{U}(2)$: Applying S_{3} projection
Rank-3 tensor basis $|\mathrm{ijk}\rangle$ (3 particles each with $\mathrm{U}(2)$ state space)

Representation of bicycle (ab) or [12]

Representation of bicycle (ac) or [13]

$[13]$	$\|111\rangle$	$\|112\rangle$	$\|121\rangle$	$\|122\rangle$	$\|211\rangle$	$\|212\rangle$	$\|221\rangle$	$\|222\rangle$
$\langle 111\|$	1	\cdot						
$\langle 112\|$	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot
$\langle 121\|$	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 122\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot
$\langle 211\|$	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 212\|$	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot
$\langle 221\|$	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot
$\langle 222\|$	\cdot	1						

S_{3} symmetry of $\mathrm{U}(2)$: Applying S_{3} projection
Rank-3 tensor basis $|\mathrm{ijk}\rangle$ (3 particles each with $\mathrm{U}(2)$ state space)

Representation of bicycle (ab) or [12]

Representation of bicycle (ac) or [13]

[12]	\|111	$\|112\rangle$	\|121)	$\|122\rangle$	\|211>	\|212 \rangle	\|221>	\|222>	[13]	\|111	$\|112\rangle$	$\|121\rangle$	\|122 ${ }^{\text {¢ }}$	\|211>	\|212>	\|221>	\|222>	[23]	\|111)	\|112>	$\|121\rangle$	\|122 ${ }^{\text {¢ }}$	\|211>	\|212>	$\|221\rangle$	\|222>
$\langle 111\|$	1	$\langle 111$	1					.			<111	1		.					
<112\|	.	1	<112\|	.	.	.		1	.		.	<112\|	.	.	1
$\langle 121\|$	1	.	.	.	<121\|			1			.			<121\|		1	-
<122\|	1	.	.	<122\|	.				.	.	1		<122\|	.	.	.	1		.	.	.
<211\|	.	.	1	<211\|		1			.	.		.	$\langle 211$	1	.	.	.
<212\|	.	.	-	1	.	.			<212\|						1			<212\|							1	.
<221\|	.	.	.	-	-	.	1	-	<221\|	.			1	-	-			$\langle 221$		1	-	.
<222\|	1	<222\|	.				.	.		1	<222\|		1

S_{3} symmetry of $\mathrm{U}(2)$: Applying S_{3} projection
Rank-3 tensor basis $|\mathrm{ijk}\rangle$ (3 particles each with $\mathrm{U}(2)$ state space)

| ${ }_{[1][2] \mid 3]}$ | \|111) |112) | \|121) | \|122) | \|211) | ${ }^{\text {212 }}$ \| | \|221) | \|222) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| <111] | 1. | . | . | | . | . | |
| <112\| | 1 | | | | | | |
| <121\| | | 1 | - | | | . | |
| <122\| | - | | 1 | . | | . | |
| <211\| | | | | 1 | | | |
| <212\| | | | | | 1 | | |
| <221\| | | | | | | 1 | |
| <222\| | | | | | | . | 1 |

Representation of tricycle (abc) or [123]

$[\mathbf{1 2 3]}$	$\|111\rangle$	$\|112\rangle$	$\|121\rangle$	$\|122\rangle$	$\|211\rangle$	$\|212\rangle$	$\|221\rangle$	$\|222\rangle$
$\langle 111\|$	1	\cdot						
$\langle 112\|$	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 121\|$	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot
$\langle 122\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot
$\langle 211\|$	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 212\|$	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot
$\langle 221\|$	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot
$\langle 222\|$	\cdot	1						

	111	112	:121				1121	12.2	21222
111									
112									
121									
122									
211									
212									
221									
222									

Representation of tricycle (acb) or [132]
[132] is transpose or inverse of [123]

$[132]$	$\|111\rangle$	$\|112\rangle$	$\|121\rangle$	$\|122\rangle$	$\|211\rangle$	$\|212\rangle$
$\langle 11\|$	1	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 112\|$	\cdot	\cdot	\cdot	\cdot	1	\cdot
$\|222\rangle$						
$\langle 121\|$	\cdot	1	\cdot	\cdot	\cdot	\cdot
$\langle 122\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 211\|$	\cdot	\cdot	1	\cdot	\cdot	\cdot
$\langle 212\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 221\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 222\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot

S_{3} symmetry of $\mathrm{U}(2)$: Applying S_{3} projection
Rank-3 tensor basis $|\mathrm{ijk}\rangle$ (3 particles each with $\mathrm{U}(2)$ state space)

$[1][2][3] \mid$	$1111\rangle$	$\|112\rangle$	$\|121\rangle$	$\|122\rangle$	$\|211\rangle$	$\|212\rangle$	$\|221\rangle$	$\|222\rangle$
$\langle 111\|$	1	\cdot						
$\langle 112\|$	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 121\|$	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 122\|$	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot
$\langle 211\|$	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot
$\langle 212\|$	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot
$\langle 221\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot
$\langle 222\|$	\cdot	1						

Need smaller boxes!

$$
\begin{array}{c|ccccccccc|}
{[123]} & |111\rangle & |112\rangle & |121\rangle & |122\rangle & |211\rangle & |212\rangle & |221\rangle & |222\rangle \\
\hdashline\langle 111| & 1 & \cdot \\
\langle 112| & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\langle 121| & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\langle 122| & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\langle 211| & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\langle 212| & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\langle 221| & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\langle 222| & \cdot & 1
\end{array}
$$

$[132]$	$\|111\rangle$	$\|112\rangle$	$\|121\rangle$	$\|122\rangle$	$\|211\rangle$	$\|212\rangle$	$\|221\rangle$	$\|222\rangle$
$\langle 111\|$	1	\cdot						
$\langle 112\|$	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot
$\langle 121\|$	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 122\|$	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot
$\langle 211\|$	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot
$\langle 212\|$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot
$\langle 221\|$	\cdot	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot
$\langle 222\|$	\cdot	1						

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

$$
\begin{aligned}
& D_{\left(\sigma_{2}\right)}^{E}=D^{[2,1]}(b c)=\begin{array}{ll}
\frac{a b}{c} \\
\frac{a c}{c} \\
\frac{a c}{b}
\end{array}\left(\begin{array}{cc}
-1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right) \\
& D^{[2,1]}(a b)=\frac{\begin{array}{l}
a b \\
c \\
\frac{a c}{b}
\end{array}}{\frac{\square}{\square}}\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \text { From unpublished Ch. } 10 \text { for } \\
& \text { Principles of Symmetry, Dynamics \& Spectroscopy }
\end{aligned}
$$

Fig. 10.1.2 Yamanouchi formulas for permutation operators.
Integer d is the "city block" distance between (n) and $(n-1)$ blocks, i.e., the minimum number of streets to be crossed when traveling from one to the other. Note that when numbers (n) and ($n-1$) are ordered smaller above larger, the permutation is negative (anti-symmetric if $\mathrm{d}=1$), and positive (symmetric if $\mathrm{d}=1$) when the smaller number is left of the larger number. [The $(n-1)$ will never be above and left of (n) since that arrangement would be "non-standard."]

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

$$
\begin{aligned}
& \left.\mathbf{P}_{j, k}^{[\mu]}=\frac{\ell^{[\mu]}}{o_{G}}\left(D_{j, k}^{[\mu]}(1)(\mathbf{1})+D_{j, k}^{[\mu]}(\mathbf{r})(\mathbf{1 2 3})+D_{j, k}^{[\mu]}\left(\mathbf{r}^{\mathbf{2}}\right)(\mathbf{1 3 2})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{1}\right)(\mathbf{2 3})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{2}\right)(\mathbf{1 3})+D_{j, k}^{[\mu]} \mathbf{i}_{\mathbf{i}}\right)(\mathbf{1 2})\right) \\
& \mathrm{p} \square \mathrm{I} \square=\frac{1}{6}((1)(1)+(1)(123)+(1)(132)+(1)(23)+(1)(13)+(1)(12))
\end{aligned}
$$

[1][2][3]

[123]

[132]

[23]

[13]

	11	112	2121	12	22	211	212		122	
111	1									
112		1								
121						1				
122							1			
211			1							
212				1	1					
221								1	1	
222										1

[12]

$$
\begin{aligned}
& \mathbf{P}_{j, k}^{[\mu]}=\frac{\ell^{[\mu]}}{\mathrm{O}_{G}}\left(D_{j, k}^{[\mu]}(1) \mathbf{(1)}+D_{j, k}^{[\mu]}(\mathbf{r})(\mathbf{1 2 3})+D_{j, k}^{[\mu]}\left(\mathbf{r}^{\mathbf{2}}\right)(\mathbf{1 3 2})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{1}\right)(\mathbf{2 3})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{2}\right)(\mathbf{1 3})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{3}\right)(\mathbf{1 2})\right) \\
& \mathbf{P}^{\square \square \square}=\frac{1}{6}((1) \mathbf{(1)}+(1)(\mathbf{1 2 3})+(1)(\mathbf{1 3 2})+(1)(\mathbf{2 3})+(1)(\mathbf{1 3})+(1)(\mathbf{1 2}))
\end{aligned}
$$

Difficult and tedious to sum?
Try MathType overlays (next page)

$\mathrm{g}=$	$1=(1)(2)(3)$	$\mathbf{r}=(123)$	$\mathbf{r}^{\mathbf{2}}=(132)$	$\mathbf{i}_{1}=(23)$	$\mathbf{i}_{2}=(13)$	$\mathbf{i}_{3}=(12)$
$D^{\text {니 }}(\mathbf{g})=$						
-	1	1	1	1	1	1
$D^{\square}(\mathbf{g})=$	1	1	1	-1	-1	-1
$D_{x_{x_{2}} y_{2}}^{\square \square}(\mathbf{g})=$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & \sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & \sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right)$	$\left(\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ -\sqrt{3} / 2 & 1 / 2\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

	111	112	121	122	211	212	221	222		1111	112								111	112																		112									112	121	122	2112		22122
111	1								111	1								111	1								111	1								111	1								111	1						
112		1							112		1							112					1				112			1						112			1						112					1		
121			1						121					1				121			1						121		1							121					1				121		1					
122				1					122						1			122							1		122				1					122							1		122						1	
211					1				211			1						211		1							211					1				211		1							211			1				
212						1			212				1					212						1.			212							1		212				1					212							1
221							1		221							1		221				1					221						1.			221						1			221				1			
222								1	222								1	222								1	222								1	222								1	222							1
[1][2][3]										[12]									[13									[23]									[123									[13	32]					

$$
\begin{aligned}
& \left.\mathbf{P}_{j, k}^{[\mu]}=\frac{\ell^{[\mu]}}{\sigma_{G}}\left(D_{j, k}^{[\mu]}(1)(\mathbf{1})+D_{j, k}^{[\mu]}(\mathbf{r})(\mathbf{1 2 3})+D_{j, k}^{[\mu]}\left(\mathbf{r}^{2}\right)(\mathbf{1 3 2})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{1}\right)(\mathbf{2 3})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{2}\right)(\mathbf{1 3})+D_{j, k}^{[\mu]} \mathbf{i}_{\mathbf{j}}\right)(\mathbf{1 2})\right) \\
& \left.\mathbf{P}_{11}\right]=\frac{1}{6}((2)(\mathbf{1})+(-1)(123)+(-1)(132)+(-1)(23)+(-1)(13)+(+2)(12))
\end{aligned}
$$

[1][2][3]

[123]
\square
[23]
\square
[13]

	111	112	212		22	211	212	222	2122
111	1								
112		1							
121						1			
122							1		
211			1						
212					1				
221								1	
222									1

[12]
$\mathrm{P}_{\text {in }}^{\text {Di }}$

	11						221	222
111								
112		1	-2		1			
121		-2	4		-2			
122				1		-2	1	
211		1	-2		1			
212				-2		4	-2	
221				1		-2	1	
222								

$$
\begin{aligned}
& \mathbf{P}_{j, k}^{[\mu]}=\frac{\ell^{[\mu]}}{\mathrm{O}_{G}}\left(D_{j, k}^{[\mu]}(1) \mathbf{(1)}+D_{j, k}^{[\mu]}(\mathbf{r}) \mathbf{(1 2 3)}+D_{j, k}^{[\mu]}\left(\mathbf{r}^{\mathbf{2}}\right) \mathbf{(1 3 2)}+D_{j, k}^{[\mu]}\left(\mathbf{i}_{1}\right)(\mathbf{2 3})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{2}\right)(\mathbf{1 3})+D_{j, k}^{[\mu]}\left(\mathbf{i}_{3}\right)(\mathbf{1 2})\right) \\
& \mathbf{P}_{21}^{\square \square}=\frac{\sqrt{3}}{2}((0) \mathbf{(1)}+(-1)(\mathbf{1 2 3})+(+1)(\mathbf{1 3 2})+(-1)(\mathbf{2 3})+(0)(\mathbf{1 3})+(+1)(\mathbf{1 2}))
\end{aligned}
$$

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2) ${ }^{\mathrm{N}}$ product state (Comparison to previous cases)

Note all \exists (totally antisymmetric) U(2) (spin-1/2) states

It takes at least 3 distinct $(\mathrm{U}(3))$) states to make a 3 rd rank "determinant" state $\frac{\frac{a}{b}}{\frac{b}{c}}$.

This is the symmetry basis of the Pauli-exclusion principle.

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $\mathrm{U}(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin $(1 / 2)^{\mathrm{N}}$ product state (Comparison to previous cases)
S_{3} symmetry of $\mathrm{U}(2)$: Building $S_{3} \mathrm{DTran} T$ from projectors

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $U(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of S_{3} DTran T: Introducing intertwining $\mathrm{S}_{3}-\mathrm{U}(2)$ irep matrices
Multi-spin $(1 / 2)^{\mathrm{N}}$ product state (Comparison to previous cases)
S_{3} symmetry of $\mathrm{U}(2)$: Effect of $S_{3} \mathrm{DTran} T$ on intertwining $S_{3}-U(2)$ irep matrices
S_{3} matrices:
$U(2)$ matrices:
$T^{\dagger} D \otimes D \otimes D(\mathbf{u}) T=$

$D_{11}(\mathbf{u})$	$D_{12}(\mathbf{u})$	$D_{13}(\mathbf{u})$	$D_{14}(\mathbf{u})$				
$D_{21}(\mathbf{u})$	$D_{22}(\mathbf{u})$	$D_{23}(\mathbf{u})$	$D_{24}(\mathbf{u})$				
$D_{31}(\mathbf{u})$	$D_{31}(\mathbf{u})$	$D_{31}(\mathbf{u})$	$D_{31}(\mathbf{u})$				
$D_{41}(\mathbf{u})$	$D_{42}(\mathbf{u})$	$D_{43}(\mathbf{u})$	$D_{44}(\mathbf{u})$				
				$D_{11}(\mathbf{u})$		$D_{12}(\mathbf{u})$	
					$D_{12}(\mathbf{u})$		$D_{12}(\mathbf{u})$
				$D_{21}(\mathbf{u})$		$D_{22}(\mathbf{u})$	
					$D_{21}(\mathbf{u})$		$D_{22}(\mathbf{u})$

S_{3} symmetry of $\mathrm{U}(2)$: Effect of $S_{3} \mathrm{DTran} T$ on intertwining $S_{3}-U(2)$ irep matrices
S_{3} symmetry of $\mathrm{U}(2):$ Effect of S_{3} DTran T on intertwining $S_{3}-U(2)$ irep
S_{3} matrices:
$U(2)$ matrices:
S_{3} symmetry of $\mathrm{U}(2):$ Effect of S_{3} DTran T on intertwining $S_{3}-U(2)$ irep
S_{3} matrices:
$U(2)$ matrices:

After flipping rows and columns $(6 \Leftrightarrow 7)$ of T matrix

$T^{\dagger} S\left(\mathbf{p}_{a b c}\right) T=$							
$D(\mathbf{p})$							
	$D(\mathbf{p})$						
		$D(\mathbf{p})$					
			$D(\mathbf{p})$				
				$D_{11}(\mathbf{p})$	$D_{12}(\mathbf{p})$		
				$D_{21}(\mathbf{p})$	$D_{22}(\mathbf{p})$		
						$D_{11}(\mathbf{p})$	$D_{12}(\mathbf{p})$
						$D_{21}(\mathbf{p})$	$D_{22}(\mathbf{p})$

$T^{\dagger} D \otimes D \otimes D(\mathbf{u}) T=$

$D_{11}(\mathbf{u})$	$D_{12}(\mathbf{u})$	$D_{13}(\mathbf{u})$	$D_{14}(\mathbf{u})$				
$D_{21}(\mathbf{u})$	$D_{22}(\mathbf{u})$	$D_{23}(\mathbf{u})$	$D_{24}(\mathbf{u})$				
$D_{31}(\mathbf{u})$	$D_{31}(\mathbf{u})$	$D_{31}(\mathbf{u})$	$D_{31}(\mathbf{u})$				
$D_{41}(\mathbf{u})$	$D_{42}(\mathbf{u})$	$D_{43}(\mathbf{u})$	$D_{44}(\mathbf{u})$				
				$D_{11}(\mathbf{u})$		$D_{12}(\mathbf{u})$	
					$D_{12}(\mathbf{u})$		$D_{12}(\mathbf{u})$
				$D_{21}(\mathbf{u})$		$D_{22}(\mathbf{u})$	
					$D_{21}(\mathbf{u})$		$D_{22}(\mathbf{u})$

S_{3} symmetry of $\mathrm{U}(2)$: Effect of S_{3} DTran T on intertwining $S_{3}-U(2)$ irep matrices

S_{3} matrices:
$U(2)$ matrices:

After flipping rows and columns $(6 \Leftrightarrow 7)$ of T matrix
$T_{67}{ }^{\dagger} S\left(\mathbf{p}_{a b c}\right) T_{67}=$

One 4-by-4 D

Two 2-by-2 $\mathrm{D}^{-}(\mathbf{u})=D^{\frac{1}{2}}$ ireps

4.02.18 class 20: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics
 William G. Harter - University of Arkansas

Interwining $\left(\mathrm{S}_{1} \subset \mathrm{~S}_{2} \subset \mathrm{~S}_{3} \subset \mathrm{~S}_{4} \subset \mathrm{~S}_{5} \ldots\right)^{*}(\mathrm{U}(1) \subset \mathrm{U}(2) \subset \mathrm{U}(3) \subset \mathrm{U}(4) \subset \mathrm{U}(5) \ldots)$ algebras and tensor operator applications to spinor-rotor or orbital correlations
$\mathrm{U}(2)$ tensor product states and S_{n} permutation symmetry
Rank-1 tensor (or spinor)
Rank-2 tensor (2 particles each with $\mathrm{U}(2)$ state space)
2-particle $\mathrm{U}(2)$ transform and permutation operation
S_{2} symmetry of $U(2)$: Trust but verify
Applying S_{2} projection to build DTran
Applying DTran for S_{2}
Applying DTran for $\mathrm{U}(2)$
S_{3} permutations related to $\mathrm{C}_{3 v} \sim \mathrm{D}_{3}$ geometry
S_{3} permutation matrices
Hooklength formula for S_{n} reps
S_{3} symmetry of $U(2)$: Applying S_{3} projection (Note Pauli-exclusion principle basis)
Building $\mathrm{S}_{3} \mathrm{DTran} \mathrm{T}$ from projectors
Effect of $S_{3} D T r a n T$: Introducing intertwining $S_{3}-U(2)$ irep matrices
Multi-spin (1/2)N product state (Comparison to previous cases)

Multi-spin (1/2)N product states
$\left(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}\right)=d^{0}+d^{1}$
$\left(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}\right) \otimes d^{\frac{1}{2}}=\left(d^{0}+d^{1}\right) \otimes d^{\frac{1}{2}}=d^{0} \otimes d^{\frac{1}{2}}+d^{1} \otimes d^{\frac{1}{2}}$

$$
=d^{\frac{1}{2}}+d^{\frac{1}{2}}+d^{\frac{3}{2}}=2 d^{\frac{1}{2}}+1 d^{\frac{3}{2}}
$$

Multi-spin (1/2)N product states

