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Interwining (S1⊂S2⊂S3⊂S4⊂S5 …)*(U(1)⊂U(2)⊂U(3)⊂U(4)⊂U(5) …) algebras 
and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and Sn permutation symmetry       
 Rank-1 tensor (or spinor)  

 Rank-2 tensor (2 particles each with U(2) state space) 
       2-particle U(2) transform and permutation operation                                
        S2 symmetry of U(2): Trust but verify  

Applying S2 projection to build DTran 
            Applying DTran for S2 

                Applying DTran for U(2) 

S3 permutations related to C3v~D3 geometry 
    S3 permutation matrices 
      Hooklength formula for Sn reps 
      S3 symmetry of U(2): Applying S3 projection (Note Pauli-exclusion principle basis) 
        Building S3 DTran T from projectors 
                      Effect of S3 DTran T: Introducing intertwining S3 - U(2) irep matrices            
                      Multi-spin (1/2)N product state (Comparison to previous cases) 
              



AMOP reference links (Updated list given on 2nd page of each class presentation) 

Web Resources - front page 2014 AMOP

2018 AMOP
UAF Physics UTube channel 2017 Group Theory for QM

Classical Mechanics with a Bang!
Principles of Symmetry, Dynamics, and Spectroscopy

Quantum Theory for the Computer Age

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)


Theory of hyperfine and superfine levels in symmetric polyatomic molecules. 

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)


Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013 

Rotation–vibration spectra of icosahedral molecules.

I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989

II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989

III) Half-integral angular momentum - harter-reimer-jcp-1991


QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 
AMOP Ch 0 Space-Time Symmetry - 2019


RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973 

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,  
and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.  This bad boy will be a sure force multiplier.

https://modphys.hosted.uark.edu/markup/Harter-SoftWebApps.html
https://modphys.hosted.uark.edu/markup/QTCA_Info_2014.html
https://modphys.hosted.uark.edu/markup/AMOP_Info_2018.html
https://www.youtube.com/channel/UC2KBYYdZOfotnkUOTthDjRA
https://modphys.hosted.uark.edu/markup/GTQM_Info_2017.html
https://modphys.hosted.uark.edu/markup/CMwBang_UnitsDetail_2017.html
https://modphys.hosted.uark.edu/markup/PSDSWeb.html
https://modphys.hosted.uark.edu/markup/QTCA_UnitsDetail.html
https://modphys.hosted.uark.edu/markup/MPCF_Info_2012.html
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Frame_transformation_relations_and_multipole_transitions_in_symmetric_polyatomic_molecules_-_Harter-Patterson-Paixao-RMP-1978.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotational%20energy%20surfaces%20and%20high-%20J%20eigenvalue%20structure%20of%20polyatomic%20molecules%20-%20Harter%20-%20Patterson%20-%201984.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Galloping_waves_and_their_relativistic_properties_-_ajp-1985-harter.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Asymptotic%20eigensolutions%20of%20fourth%20and%20sixth%20rank%20octahedral%20tensor%20operators%20-Harter-Patterson-jmp-1979.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLC60SpinWts%20HiRes%2bErrata.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Reimer%20-%20harter1992.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Erratum%20-%201-s2.0-000926149285077N-main.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20Trigonal%20and%20tetrahedral%20molecules%3a%20Elementary%20spin-1%3a2%20cases%20in%20vibronic%20ground%20states%20-%20pra%20-1979-Harter-Patterson.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.I%20CF4.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20II.%20Elementary%20cases%20in%20octahedral%20hexafluoride%20molecules%20-%20Harter-PRA-1981.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.II%20SF6.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation-vibration%20scalar%20coupling%20zeta%20coefficients%20and%20spectroscopic%20band%20shapes%20of%20buckminsterfullerene%20-%20weeks-harter-cpl-1991.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLBzetaCoeff%20C60.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Fullerene%20symmetry%20reduction%20and%20rotational%20level%20fine%20structure:%20the%20Buckyball%20isotopomer%2012C%2013C59%20-%20jcp%20-%20reimer%20-%20harter%20-%201997.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/C60symmReduct&fine%20structure12C13C59%20ReimerHarter1997hiRes.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Molecular_Eigensolution_Symmetry_Analysis_and_Fine_Structure_-_IJMS-harter-mitchell-2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._I._Icosahedral_symmetry_analysis_and_fine_structure_-_harter-weeks-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._II._Icosahedral_symmetry%2c_vibrational_eigenfrequencies%2c_and_normal_modes_of_buckminsterfullerene_-_weeks-harter-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._III_-_Half-integral_angular_momentum_-_harter-reimer-jcp-1991.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_10_Ch.30_2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Springer_Handbooks_of_Atomic_Molecular_and_Optical_Physics_-_Harter-Ch32_-_2006.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/AMOP%20Ch%200%20SpaceTimeSymm.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20And%20Revivals%20%20I.%20Quantum%20Rotor%20And%20Infinite-Well%20Dynamics%20-%20Harter-Li-ISMS-Columbus-2012.pdf
https://kb.osu.edu/dspace/handle/1811/52324
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Resonant%20Beats%20and%20Revivals%20in%20the%20Morse%20Oscillators%20and%20Rotors%20-%202013-Li-Diss.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20harter%20-%20weeks%20-%20cpl%20-%201986.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20scan%20-%20RovibeIcosCPL132p387-392(1986).pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Gas%20Phase%20Level%20Structure%20of%20C60%20Buckyball%20and%20Derivatives%20Exhibiting%20Broken%20Icosahedral%20Symmetry%20-%20reimer-diss-1996.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Revivals%20of%20Morse%20Oscillators%20and%20Farey-Ford%20Geometry%20-%20Li%20-%20Harter%20-%20cpl%20-%202013%20-%201308.4470.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Wave%20Node%20Dynamics%20and%20Revival%20Symmetry%20in%20Quantum%20Rotors%20-%20harter%20-%20jms%20-%202001.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Representations_of_multidimensional_symmetries_in_networks_-_jmp-Harter-1974.pdf
https://modphys.hosted.uark.edu/markup/AMOP_References.html


(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 23-26 ) 
(PSDS - Ch. 5, 7 ) 

Irrep Tensor building 
Unit 8 Ch. 25 p5.          

Irrep Tensor Tables 
Unit 8 Ch. 25 p12.          

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

Intro 3-particle coupling.    
Unit 8 Ch. 25 p28.          

Wigner-Eckart tensor Theorem.    
Unit 8 Ch. 25 p17.          

Tensors Applied to high J levels.    
Unit 8 Ch. 25 p63.          

Intro spin ½ coupling 
Unit 8 Ch. 24 p3.          

H atom hyperfine-B-level crossing 
Unit 8 Ch. 24 p15.         

Intro 2p3p coupling 
Unit 8 Ch. 24 p17.          

Intro LS-jj coupling 
Unit 8 Ch. 24 p22.          

CG coupling derived (start) 
Unit 8 Ch. 24 p39.          

CG coupling derived (formula) 
Unit 8 Ch. 24 p44.          

Hyperf. theory Ch. 24 p48.         

Hyperf. theory Ch. 24 p48.   
Deeper theory ends p53        

Lande’ g-factor 
Unit 8 Ch. 24 p26.         

Intro 3,4-particle Young Tableaus   
GrpThLect29 p42.          

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=5
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=12
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=28
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=63
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=3
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=15
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=22
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=39
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=44
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=48
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=53
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=26
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=42
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
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Interwining (S1⊂S2⊂S3⊂S4⊂S5 …)*(U(1)⊂U(2)⊂U(3)⊂U(4)⊂U(5) …) algebras 
and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and Sn permutation symmetry       
 Rank-1 tensor (or spinor)  

 Rank-2 tensor (2 particles each with U(2) state space) 
       2-particle U(2) transform and permutation operation                                
        S2 symmetry of U(2): Trust but verify  

Applying S2 projection to build DTran 
            Applying DTran for S2 

                Applying DTran for U(2) 

S3 permutations related to C3v~D3 geometry 
    S3 permutation matrices 
      Hooklength formula for Sn reps 
      S3 symmetry of U(2): Applying S3 projection (Note Pauli-exclusion principle basis) 
        Building S3 DTran T from projectors 
                      Effect of S3 DTran T: Introducing intertwining S3 - U(2) irep matrices            
                      Multi-spin (1/2)N product state (Comparison to previous cases) 
              



U(2) tensor product states and Sn permutation symmetry
Typical U(2) transformations (Just like spin-½ irep in basis {1=+½ ,1=-½}) 
Rank-1 tensor   

Dirac notation:
′1 = u  1 = 1 D11 + 2 D21

′2 = u 2 = 1 D12 + 2 D22

 where:  Djk (u) = j ′k = j u k

′φ1 = uφ1 = φ1D11 +φ2D21
′φ2 = uψ 2 = φ1D12 +φ2D22

 where:  Djk = (φ j
*, ′φk ) = (φ j

*,uφk )



U(2) tensor product states and Sn permutation symmetry
Typical U(2) transformations (Just like spin-½ irep in basis {1=+½ ,1=-½}) 
Rank-1 tensor                                                                            matrix representations

Dirac notation:
′1 = u  1 = 1 D11 + 2 D21

′2 = u 2 = 1 D12 + 2 D22

 where:  Djk (u) = j ′k = j u k

    1 = φ1  = 1
0

⎛

⎝⎜
⎞

⎠⎟
  

    2 = φ2  = 0
1

⎛
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⎞
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 Djk (u) =
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⎝
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⎠
⎟
⎟

′φ1 = uφ1 = φ1D11 +φ2D21
′φ2 = uψ 2 = φ1D12 +φ2D22

 where:  Djk = (φ j
*, ′φk ) = (φ j

*,uφk )
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2-particle U(2) transform

′j ′k = u  j u  k

=  j  k Dj ′j Dk ′k
j ,k
∑

=  j  k D⊗Djk: ′j ′k
j ,k
∑
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2-particle U(2) transform

′j ′k = u  j u  k

=  j  k Dj ′j Dk ′k
j ,k
∑

=  j  k D⊗Djk: ′j ′k
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U(2) tensor product states and Sn permutation symmetry

2-particle permutation operation: s(ab)  j
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2-particle U(2) transform

′j ′k = u  j u  k

=  j  k Dj ′j Dk ′k
j ,k
∑

=  j  k D⊗Djk: ′j ′k
j ,k
∑

and outer-product U(2) transform matrix Dj ′j Dk ′k = D⊗Djk: ′j ′k =
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D21 D22

⎛
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U(2) tensor product states and Sn permutation symmetry
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2-particle U(2) transform

′j ′k = u  j u  k

=  j  k Dj ′j Dk ′k
j ,k
∑

=  j  k D⊗Djk: ′j ′k
j ,k
∑

and outer-product U(2) transform matrix Dj ′j Dk ′k = D⊗Djk: ′j ′k =
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s(ab)D⊗Dφ jφk= s(ab)φmφnDjmDk n
m,n
∑ = φnφmDjmDk n

m,n
∑ = φnφmDk nDjm

m,n
∑ = D⊗Dφkφ j = D⊗Ds(ab)φ jφk

2-particle permutation s(ab) commutes with U(2) transform matrix D⊗D: 



U(2) tensor product states and Sn permutation symmetry
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2-particle U(2) transform

′j ′k = u  j u  k

=  j  k Dj ′j Dk ′k
j ,k
∑

=  j  k D⊗Djk: ′j ′k
j ,k
∑

and outer-product U(2) transform matrix Dj ′j Dk ′k = D⊗Djk: ′j ′k =
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⎛
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2-particle permutation s(ab) commutes with U(2) transform matrix D⊗D: 
s(ab)D⊗Dφ jφk= s(ab)φmφnDjmDk n

m,n
∑ = φnφmDjmDk n

m,n
∑ = φnφmDk nDjm

m,n
∑ = D⊗Dφkφ j = D⊗Ds(ab)φ jφk

s(ab)D⊗D = D⊗Ds(ab)



U(2) tensor product states and Sn permutation symmetry
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2-particle U(2) transform

′j ′k = u  j u  k

=  j  k Dj ′j Dk ′k
j ,k
∑

=  j  k D⊗Djk: ′j ′k
j ,k
∑

and outer-product U(2) transform matrix Dj ′j Dk ′k = D⊗Djk: ′j ′k =

=

D11
D11 D12
D21 D22

⎛

⎝⎜
⎞

⎠⎟
D12
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⎝⎜
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2-particle permutation s(ab) commutes with U(2) transform matrix D⊗D: 
s(ab)D⊗Dφ jφk= s(ab)φmφnDjmDk n

m,n
∑ = φnφmDjmDk n

m,n
∑ = φnφmDk nDjm

m,n
∑ = D⊗Dφkφ j = D⊗Ds(ab)φ jφk

s(ab)D⊗D = D⊗Ds(ab)So S2={s(ab)} is symmetry of U(2)… …and vice-versa! 
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 Rank-1 tensor (or spinor)  
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It might help to matrix-verify the S2 symmetry of 2-particle U(2) transformations

               S (ab)( ) ⋅D⊗D                                                        ?=?                                                         D⊗D ⋅S (ab)( )     

   

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  
?
=
?

 

D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                    

S2 symmetry of U(2): Trust but verify



It might help to matrix-verify the S2 symmetry of 2-particle U(2) transformations

               S (ab)( ) ⋅D⊗D                                                        ?=?                                                         D⊗D ⋅S (ab)( )     

   

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  
?
=
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D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                    

  

D11D11 D11D12 D12D11 D12D12

D21D11 D21D12 D22D11 D22D12

D11D21 D11D22 D12D21 D12D22

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  =  

D11D11 D12D11 D11D12 D12D12

D11D21 D12D21 D11D22 D12D22

D21D11 D22D11 D21D12 D22D12

D21D21 D22D21 D21D22 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

                    

(mid-rows  
  switched)

(mid-columns switched)

S2 symmetry of U(2): Trust but verify



It might help to matrix-verify the S2 symmetry of 2-particle U(2) transformations
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⎟
⎟
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⎛
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⎜
⎜
⎜
⎜
⎜
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⎜
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⎟
⎟

                    

  

D11D11 D11D12 D12D11 D12D12
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D11D21 D11D22 D12D21 D12D22
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⎛
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⎜
⎜
⎜
⎜
⎜
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⎟
⎟
⎟
⎟
⎟

  =  

D11D11 D12D11 D11D12 D12D12
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⎛

⎝

⎜
⎜
⎜
⎜
⎜
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⎠
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(mid-rows  
  switched)

(mid-columns switched)

…but the matrices are numerically equal.  
So S2-symmetry of 2-particle U(2) tensor representation is verified.

S2 symmetry of U(2): Trust but verify



It might help to matrix-verify the S2 symmetry of 2-particle U(2) transformations

               S (ab)( ) ⋅D⊗D                                                        ?=?                                                         D⊗D ⋅S (ab)( )     
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⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  
?
=
?

 

D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                    

  

D11D11 D11D12 D12D11 D12D12

D21D11 D21D12 D22D11 D22D12

D11D21 D11D22 D12D21 D12D22

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  =  

D11D11 D12D11 D11D12 D12D12

D11D21 D12D21 D11D22 D12D22

D21D11 D22D11 D21D12 D22D12

D21D21 D22D21 D21D22 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

                    

(mid-rows  
  switched)

(mid-columns switched)

…but the matrices are numerically equal.  
So S2-symmetry of 2-particle U(2) tensor representation is verified.

So also is S2-symmetry of any 2-particle U(m) tensor.
Showing S3-symmetry of any 3-particle U(m) tensor is treated later.

S4 4

S2 symmetry of U(2): Trust but verify



               S (ab)( ) ⋅D⊗D ⋅S (ab)( )     

   

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

D11D11 D11D12 D12D11 D12D12

D21D11 D21D12 D22D11 D22D12

D11D21 D11D22 D12D21 D12D22

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

D11D11 D12D11 D11D12 D12D12

D21D11 D22D11 D21D12 D22D12

D11D21 D12D21 D11D22 D12D22

D21D21 D22D21 D21D22 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

                                   S (ab)( ) ⋅  D⊗D ⋅S (ab)( )     

   

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

D11D11 D11D12 D12D11 D12D12

D11D21 D11D22 D12D21 D12D22

D21D11 D21D12 D22D11 D22D12

D21D21 D21D22 D22D21 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D11D11 D12D11 D11D12 D12D12

D11D21 D12D21 D11D22 D12D22

D21D11 D22D11 D21D12 D22D12

D21D21 D22D21 D21D22 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

D11D11 D12D11 D11D12 D12D12

D21D11 D22D11 D21D12 D22D12

D11D21 D12D21 D11D22 D12D22

D21D21 D22D21 D21D22 D22D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

                    

If S(ab) commuted with D⊗D  
you might assume it passes thru 
to give S(ab) S(ab)=1 leaving 
D⊗D unchanged.  
That is true numerically, but all  
components have flipped order.

Each  
DabDcd 

has become 
DcdDab
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S2 matrix eigen-solution found by projectors:  Minimal eq. (ab)2-1=0=((ab)+1)((ab)+1) yields: 

       Symmetric (       ):                                                    Anti-Symmetric (     ): 

S2 symmetry of U(2): Applying S2 projection

P = 1
2 1+ (ab)⎡⎣ ⎤⎦ P = 1

2 1− (ab)⎡⎣ ⎤⎦



S2 matrix eigen-solution found by projectors:  Minimal eq. (ab)2-1=0=((ab)+1)((ab)+1) yields: 

       Symmetric (       ):                                                    Anti-Symmetric (     ): 

S2 symmetry of U(2): Applying S2 projection

P = 1
2 1+ (ab)⎡⎣ ⎤⎦ P = 1

2 1− (ab)⎡⎣ ⎤⎦
Matrix representations of projectors:

S(P ) = 1
2 S(1)+ S(ab)⎡⎣ ⎤⎦ =

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2 ⋅

⋅ 1
2

1
2 ⋅

⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S(P ) = 1
2 S(1)− S(ab)⎡⎣ ⎤⎦ =

⋅ ⋅ ⋅ ⋅
⋅ 1

2
−1
2 ⋅

⋅ −1
2

1
2 ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟



S2 matrix eigen-solution found by projectors:  Minimal eq. (ab)2-1=0=((ab)+1)((ab)+1) yields: 

       Symmetric (       ):                                                    Anti-Symmetric (     ): 

S2 symmetry of U(2): Applying S2 projection

P = 1
2 1+ (ab)⎡⎣ ⎤⎦ P = 1

2 1− (ab)⎡⎣ ⎤⎦
Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting P-columns 

S(P ) = 1
2 S(1)+ S(ab)⎡⎣ ⎤⎦ =

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2 ⋅

⋅ 1
2

1
2 ⋅

⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S(P ) = 1
2 S(1)− S(ab)⎡⎣ ⎤⎦ =

⋅ ⋅ ⋅ ⋅
⋅ 1

2
−1
2 ⋅

⋅ −1
2

1
2 ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T
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S2 matrix eigen-solution found by projectors:  Minimal eq. (ab)2-1=0=((ab)+1)((ab)+1) yields: 

       Symmetric (       ):                                                    Anti-Symmetric (     ): 

S2 symmetry of U(2): Applying S2 projection

P = 1
2 1+ (ab)⎡⎣ ⎤⎦ P = 1

2 1− (ab)⎡⎣ ⎤⎦
Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting P-columns 

S(P ) = 1
2 S(1)+ S(ab)⎡⎣ ⎤⎦ =

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2 ⋅

⋅ 1
2

1
2 ⋅

⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S(P ) = 1
2 S(1)− S(ab)⎡⎣ ⎤⎦ =

⋅ ⋅ ⋅ ⋅
⋅ 1

2
−1
2 ⋅

⋅ −1
2

1
2 ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1
2

⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

T†                   S(ab)                           T



S2 matrix eigen-solution found by projectors:  Minimal eq. (ab)2-1=0=((ab)+1)((ab)+1) yields: 

       Symmetric (       ):                                                    Anti-Symmetric (     ): 

S2 symmetry of U(2): Applying S2 projection

P = 1
2 1+ (ab)⎡⎣ ⎤⎦ P = 1

2 1− (ab)⎡⎣ ⎤⎦
Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting P-columns 

S(P ) = 1
2 S(1)+ S(ab)⎡⎣ ⎤⎦ =

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2 ⋅

⋅ 1
2

1
2 ⋅

⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S(P ) = 1
2 S(1)− S(ab)⎡⎣ ⎤⎦ =

⋅ ⋅ ⋅ ⋅
⋅ 1

2
−1
2 ⋅

⋅ −1
2

1
2 ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅

⋅ ⋅ ⋅ 1
⋅ −1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

T†                   S(ab)                           T



S2 matrix eigen-solution found by projectors:  Minimal eq. (ab)2-1=0=((ab)+1)((ab)+1) yields: 

       Symmetric (       ):                                                    Anti-Symmetric (     ): 

S2 symmetry of U(2): Applying S2 projection

P = 1
2 1+ (ab)⎡⎣ ⎤⎦ P = 1

2 1− (ab)⎡⎣ ⎤⎦
Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting P-columns 

S(P ) = 1
2 S(1)+ S(ab)⎡⎣ ⎤⎦ =

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2 ⋅

⋅ 1
2

1
2 ⋅

⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S(P ) = 1
2 S(1)− S(ab)⎡⎣ ⎤⎦ =

⋅ ⋅ ⋅ ⋅
⋅ 1

2
−1
2 ⋅

⋅ −1
2

1
2 ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅

⋅ ⋅ ⋅ 1
⋅ −1

2
1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T †S(ab)T = =  

D ⋅ ⋅ ⋅
⋅ D ⋅ ⋅
⋅ ⋅ D ⋅

⋅ ⋅ ⋅ D

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

Three (3) symmetric ireps. D       and one (1) anti-sym D

T†                   S(ab)                           T
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1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅

⋅ ⋅ ⋅ 1
⋅ −1

2
1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T †S(ab)T = =  

D ⋅ ⋅ ⋅
⋅ D ⋅ ⋅
⋅ ⋅ D ⋅

⋅ ⋅ ⋅ D

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

Three (3) symmetric ireps. D       and one (1) anti-sym D

T†                   S(ab)                           T

Finally, apply DTranT 
to find T†D⊗DT.1 ⋅ ⋅ ⋅

⋅ 1
2

⋅ 1
2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †D⊗ DT

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

D11 11 D11 12 D12 11 D12 12
D11 21 D11 22 D12 21 D12 22
D11 21 D12 21 D11 22 D12 22
D21 21 D21 22 D21 22 D22 22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

T†                                     D⊗D                                     T



1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅

⋅ ⋅ ⋅ 1
⋅ −1

2
1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T †S(ab)T = =  

D ⋅ ⋅ ⋅
⋅ D ⋅ ⋅
⋅ ⋅ D ⋅

⋅ ⋅ ⋅ D

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

Three (3) symmetric ireps. D       and one (1) anti-sym D

T†                   S(ab)                           T

Finally, apply DTranT 
to find T†D⊗DT.1 ⋅ ⋅ ⋅

⋅ 1
2

⋅ 1
2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †D⊗ DT

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

D11 11 D11 12 D12 11 D12 12
D11 21 D11 22 D12 21 D12 22
D11 21 D12 21 D11 22 D12 22
D21 21 D21 22 D21 22 D22 22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

T†                                     D⊗D                                     T

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

D11 11
2
1 D11 12 D12 12 0

D11 21 1
2
(D11 22+ D12 21) D12 22 1

2
(D11 22− D12 21)

D11 21 1
2
(D11 22+ D12 21) D12 22 1

2
(D12 21− D11 22)

D21 21
2
1 D21 22 D22 22 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟



1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅

⋅ ⋅ ⋅ 1
⋅ −1

2
1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T †S(ab)T = =  

D ⋅ ⋅ ⋅
⋅ D ⋅ ⋅
⋅ ⋅ D ⋅

⋅ ⋅ ⋅ D

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

Three (3) symmetric ireps. D       and one (1) anti-sym D

T†                   S(ab)                           T

Finally, apply DTranT 
to find T†D⊗DT.1 ⋅ ⋅ ⋅

⋅ 1
2

⋅ 1
2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †D⊗ DT

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

D11 11 D11 12 D12 11 D12 12
D11 21 D11 22 D12 21 D12 22
D11 21 D12 21 D11 22 D12 22
D21 21 D21 22 D21 22 D22 22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

T†                                     D⊗D                                     T

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

D11 11
2
1 D11 12 D12 12 0

D11 21 1
2
(D11 22+ D12 21) D12 22 1

2
(D11 22− D12 21)

D11 21 1
2
(D11 22+ D12 21) D12 22 1

2
(D12 21− D11 22)

D21 21
2
1 D21 22 D22 22 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

D11 11
2
1 D11 12 D12 12 0

2
1 D11 21 D11 22+D12 21

2
1 D12 22 0

D21 21
2
1 D21 22 D22 22 0

0 0 0 D11 22+D12 21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟



1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T †S(ab)T =  

D ⋅ ⋅ ⋅
⋅ D ⋅ ⋅
⋅ ⋅ D ⋅

⋅ ⋅ ⋅ D

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

Three (3) symmetric ireps. D       and one (1) anti-sym D

T†                   S(ab)                           T

Finally, apply DTranT 
to find T†D⊗DT.1 ⋅ ⋅ ⋅

⋅ 1
2

⋅ 1
2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †D⊗ DT

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

D11 11 D11 12 D12 11 D12 12
D11 21 D11 22 D12 21 D12 22
D11 21 D12 21 D11 22 D12 22
D21 21 D21 22 D21 22 D22 22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

T†                                     D⊗D                                     T

=

D11 11
2
1 D11 12 D12 12 0

2
1 D11 21 D11 22+D12 21

2
1 D12 22 0

D21 21
2
1 D21 22 D22 22 0

0 0 0 D11 22+D12 21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

D11 11
2
1 D11 12 D12 12 0

2
1 D11 21 D11 22+D12 21

2
1 D12 22 0

D21 21
2
1 D21 22 D22 22 0

0 0 0 D11 22+D12 21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

D   (of U(2)=D j=1 

D   =Dj=0 

T †D⊗ DT



1 ⋅ ⋅ ⋅
⋅ 1

2
⋅ 1

2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †S(ab)T

1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Next apply DTran T 
and its transpose   T† 
to the S(ab) matrix to 
find T†S(ab)T. 

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ -1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T †S(ab)T =  

D ⋅ ⋅ ⋅
⋅ D ⋅ ⋅
⋅ ⋅ D ⋅

⋅ ⋅ ⋅ D

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

Three (3) symmetric ireps. D       and one (1) anti-sym D

T†                   S(ab)                           T

Finally, apply DTranT 
to find T†D⊗DT.1 ⋅ ⋅ ⋅

⋅ 1
2

⋅ 1
2

⋅ 1
2

⋅ −1
2

⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= T †D⊗ DT

1 ⋅ ⋅ ⋅
⋅ 1

2
1
2

⋅ ⋅ ⋅ 1
⋅ 1

2
−1
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

D11 11 D11 12 D12 11 D12 12
D11 21 D11 22 D12 21 D12 22
D11 21 D12 21 D11 22 D12 22
D21 21 D21 22 D21 22 D22 22

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

T†                                     D⊗D                                     T

=

D11 11
2
1 D11 12 D12 12 0

2
1 D11 21 D11 22+D12 21

2
1 D12 22 0

D21 21
2
1 D21 22 D22 22 0

0 0 0 D11 22+D12 21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

D11 11
2
1 D11 12 D12 12 0

2
1 D11 21 D11 22+D12 21

2
1 D12 22 0

D21 21
2
1 D21 22 D22 22 0

0 0 0 D11 22+D12 21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟D   =Dj=0 

T †D⊗ DT

Clearly,THIS 
commutes  

with 
THIS

D   (of U(2)=D j=1 



4.02.18 class 20: Symmetry Principles for 
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Interwining (S1⊂S2⊂S3⊂S4⊂S5 …)*(U(1)⊂U(2)⊂U(3)⊂U(4)⊂U(5) …) algebras 
and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and Sn permutation symmetry       
 Rank-1 tensor (or spinor)  

 Rank-2 tensor (2 particles each with U(2) state space) 
       2-particle U(2) transform and permutation operation                                
        S2 symmetry of U(2): Trust but verify  

Applying S2 projection to build DTran 
            Applying DTran for S2 

                Applying DTran for U(2) 

S3 permutations related to C3v~D3 geometry 
    S3 permutation matrices 
      Hooklength formula for Sn reps 
      S3 symmetry of U(2): Applying S3 projection 
        Building S3 DTran T from projectors 
                      Effect of S3 DTran T: Introducing intertwining S3 - U(2) irep matrices            
                      Multi-spin (1/2)N product state (Comparison to previous cases) 
              



σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

1 1 r2 r1 σ1 σ2 σ3

r1 r1 1 r2 σ2 σ3 σ1

r2 r2 r1 1 σ3 σ1 σ2

σ1 σ1 σ2 σ3 1 r2 r1

σ2 σ2 σ3 σ1 r1 1 r2

σ3 σ3 σ1 σ2 r2 r1 1

S3 permutations related to C3v~D3 geometry

C3v geometry differs slightly 
from earlier Lecture 12 plots. 
σ1 and σ2 plane are switched.

D3<D6 nomogram 
AMOP Class 14 pdf p28

D3<C3v nomogram 
AMOP Class 12 pdf p30

   

 

form
C3v  gg†

1 r2 r1 σ1 σ2 σ3

1 1 r2 r1 σ1 σ2 σ3

r1 r1 1 r2 σ3 σ1 σ2

r2 r2 r1 1 σ2 σ3 σ1

σ1 σ1 σ3 σ2 1 r1 r2

σ2 σ2 σ1 σ3 r2 1 r1

σ3 σ3 σ2 σ1 r1 r2 1

σ1σ1
11

σ2σ2 σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2σ2
plane

σ3
plane

σ1
plane

Earlier 
geometry

New 
geometry

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-14-3.02.18.pdf#page=58
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-12-2.21.18.pdf#page=30


S3 permutations related to C3v~D3 geometry

i3
[12]

i1
[23]

|1〉
a

i2
[13]

|2〉
b

i3
|3〉
c

i1
(bc)

|1〉
a

i2

|2〉
b

r [123]

[132]
r2

(ac)

(ab)

(abc)

(acb)

(a) Lab or State

Based Operators

(b) Body or Particle

Based Operators

r

r2

Fig. 25.3.0 QTforCA Unit 8 Ch.25 pdf p28

D3<D6 nomogram 
AMOP Class 14 pdf p28

D3<C3v nomogram 
AMOP Class 12 pdf p30

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=28
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-14-3.02.18.pdf#page=58
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-12-2.21.18.pdf#page=30


Fig. 25.3.1 Relating D3 and S3 permutation operations

Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29S3 permutations related to C3v~D3 geometry

(1) (acb) (abc) (bc) (ac) (ab)
(abc) (1) (acb) (ac) (ab) (bc)
(acb) (abc) (1) (ab) (bc) (ac)
(bc) (ac) (ab) (1) (acb) (abc)
(ac) (ab) (bc) (abc) (1) (acb)
(ab) (bc) (ac) (acb) (abc) (1)

1 r 2 r i1 i2 i3
r 1 r 2 i2 i3 i1
r 2 r 1 i3 i1 i2
i1 i2 i3 1 r 2 r

i2 i3 i1 r 1 r 2

i3 i1 i2 r 2 r 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

|3〉

|1〉

|2〉

(b) Lab-fixed
particle-3-cycle (120°rotation r)
|r〉=r |1〉
=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[1] [132] [123] [23] [13] [12]
[123] [1] [132] [13] [12] [23]
[132] [123] [1] [12] [23] [13]
[23] [13] [12] [1] [132] [123]
[13] [12] [23] [123] [1] [132]
[12] [23] [13] [132] [123] [1]

[132] 1a ,2b,3c = 2a ,3b,1c [123] 1a ,2b,3c = 3a ,1b,2c

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=29


Fig. 25.3.1 Relating D3 and S3 permutation operations

Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29S3 permutations related to C3v~D3 geometry

(1) (acb) (abc) (bc) (ac) (ab)
(abc) (1) (acb) (ac) (ab) (bc)
(acb) (abc) (1) (ab) (bc) (ac)
(bc) (ac) (ab) (1) (acb) (abc)
(ac) (ab) (bc) (abc) (1) (acb)
(ab) (bc) (ac) (acb) (abc) (1)

1 r 2 r i1 i2 i3
r 1 r 2 i2 i3 i1
r 2 r 1 i3 i1 i2
i1 i2 i3 1 r 2 r

i2 i3 i1 r 1 r 2

i3 i1 i2 r 2 r 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

|3〉

|1〉

|2〉

(b) Lab-fixed
particle-3-cycle (120°rotation r)
|r〉=r |1〉
=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[1] [132] [123] [23] [13] [12]
[123] [1] [132] [13] [12] [23]
[132] [123] [1] [12] [23] [13]
[23] [13] [12] [1] [132] [123]
[13] [12] [23] [123] [1] [132]
[12] [23] [13] [132] [123] [1]
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Fig. 25.3.1 Relating D3 and S3 permutation operations

Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29S3 permutations related to C3v~D3 geometry

1 r 2 r i1 i2 i3
r 1 r 2 i2 i3 i1
r 2 r 1 i3 i1 i2
i1 i2 i3 1 r 2 r

i2 i3 i1 r 1 r 2

i3 i1 i2 r 2 r 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

|3〉

|1〉

|2〉

(b) Lab-fixed
particle-3-cycle (120°rotation r)
|r〉=r |1〉
=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[23] 1a ,2b,3c = 1a ,3b,2c

(ac) 1a ,2b,3c = 1c ,2b,3a (bc) 1a ,2b,3c = 1a ,2c ,3b
[13] 1a ,2b,3c = 3a ,2b,1c

(1) (acb) (abc) (bc) (ac) (ab)
(abc) (1) (acb) (ac) (ab) (bc)
(acb) (abc) (1) (ab) (bc) (ac)
(bc) (ac) (ab) (1) (acb) (abc)
(ac) (ab) (bc) (abc) (1) (acb)
(ab) (bc) (ac) (acb) (abc) (1)

[1] [132] [123] [23] [13] [12]
[123] [1] [132] [13] [12] [23]
[132] [123] [1] [12] [23] [13]
[23] [13] [12] [1] [132] [123]
[13] [12] [23] [123] [1] [132]
[12] [23] [13] [132] [123] [1]

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=29
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Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29S3 permutations related to C3v~D3 geometry

1 r 2 r i1 i2 i3
r 1 r 2 i2 i3 i1
r 2 r 1 i3 i1 i2
i1 i2 i3 1 r 2 r

i2 i3 i1 r 1 r 2

i3 i1 i2 r 2 r 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

|3〉

|1〉

|2〉

(b) Lab-fixed
particle-3-cycle (120°rotation r)
|r〉=r |1〉
=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[23] 1a ,2b,3c = 1a ,3b,2c
                       = 1a ,2c ,3b
                       = 2c ,1a ,3b
                       = 2c ,3b,1a
                       = 3b,2c ,1a
                       = 3b,1a ,2c

(ac) 1a ,2b,3c = 1c ,2b,3a (bc) 1a ,2b,3c = 1a ,2c ,3b
[13] 1a ,2b,3c = 3a ,2b,1c

Only  
relative position  

counts here!
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4.02.18 class 20: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

AMOP  
reference links 

 on page 2

Interwining (S1⊂S2⊂S3⊂S4⊂S5 …)*(U(1)⊂U(2)⊂U(3)⊂U(4)⊂U(5) …) algebras 
and tensor operator applications to spinor-rotor or orbital correlations

U(2) tensor product states and Sn permutation symmetry       
 Rank-1 tensor (or spinor)  

 Rank-2 tensor (2 particles each with U(2) state space) 
       2-particle U(2) transform and permutation operation                                
        S2 symmetry of U(2): Trust but verify  

Applying S2 projection to build DTran 
            Applying DTran for S2 

                Applying DTran for U(2) 

S3 permutations related to C3v~D3 geometry 
    S3 permutation matrices 
      Hooklength formula for Sn reps 
      S3 symmetry of U(2): Applying S3 projection 
        Building S3 DTran T from projectors 
                      Effect of S3 DTran T: Introducing intertwining S3 - U(2) irep matrices            
                      Multi-spin (1/2)N product state (Comparison to previous cases) 
              



S3 symmetry of U(2): Applying S3 projection
Rank-3 tensor basis |ijk〉 (3 particles each with U(2) state space)

[1][2][3] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[12] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

211 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

Representation of 
bicycle (ab) or [12]



S3 symmetry of U(2): Applying S3 projection
Rank-3 tensor basis |ijk〉 (3 particles each with U(2) state space)

[1][2][3] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[12] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

211 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[13] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

211 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

Representation of 
bicycle (ab) or [12]

Representation of 
bicycle (ac) or [13]



S3 symmetry of U(2): Applying S3 projection
Rank-3 tensor basis |ijk〉 (3 particles each with U(2) state space)

[1][2][3] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[12] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

211 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[13] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

211 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[23] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

Representation of 
bicycle (ab) or [12]

Representation of 
bicycle (ac) or [13]

Representation of 
bicycle (bc) or [23]



S3 symmetry of U(2): Applying S3 projection
Rank-3 tensor basis |ijk〉 (3 particles each with U(2) state space)
[1][2][3] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[123] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

211 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[132] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

121 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

211 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

221 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

111 112 121 122 211 212 221 222

111
112
121
122
211
212
221
222

Representation of 
tricycle (abc) or [123]

Representation of 
tricycle (acb) or [132]

[132] is transpose or inverse of [123]



S3 symmetry of U(2): Applying S3 projection
Rank-3 tensor basis |ijk〉 (3 particles each with U(2) state space)
[1][2][3] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[12] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

211 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[13] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

121 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

211 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

221 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[23] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[123] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

211 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

[132] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

121 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

211 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

221 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

111 112 121 122 211 212 221 222

111
112
121
122
211
212
221
222

Need smaller boxes!
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[123] [132]

g = 1 = (1)(2)(3) r = (123) r2 = (132) i1 = (23) i2 = (13) i3 = (12)

D g( ) =

D g( ) =

Dx2y2 g( ) =
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  Pj,k
[µ]     = ℓ

[µ]

OG
Dj,k

[µ](1)(1) + Dj,k
[µ](r)(123) + Dj,k

[µ](r2 )(132)+ Dj,k
[µ](i1)(23)+ Dj,k

[µ](i2 )(13)+ Dj,k
[µ](i3)(12)( )

  P = 1
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(1)(1)    +    (1)(123)      +     (1)(132)   +     (1)(23)   +     (1)(13)   +     (1)(12)( )
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[µ]     = ℓ
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Dj,k

[µ](1)(1) + Dj,k
[µ](r)(123) + Dj,k

[µ](r2 )(132)+ Dj,k
[µ](i1)(23)+ Dj,k

[µ](i2 )(13)+ Dj,k
[µ](i3)(12)( )

  P = 1
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Difficult and tedious to sum? 
Try MathType overlays (next page)
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[1][2][3] [12] [13] [23] [123] [132]

g = 1 = (1)(2)(3) r = (123) r2 = (132) i1 = (23) i2 = (13) i3 = (12)
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↑
↑
↑

=  P
a
b
c

↑
↑
↑

↑,↑,↑ = 0  (Does not exist),
↑
↑
↓

=  P
a
b
c

↑
↑
↓

↑,↑,↓ = 0  (Does not exist),...etc.

Note all    (totally antisymmetric) U(2) (spin-½ ) states                   are non-existent . ↑
↑
↑

 
↑
↑
↓

 
↑
↓
↓

 
↓
↓
↓

 

It takes at least 3 distinct ( U(3) ) states to make a 3rd rank “determinant” state    . 
a
b
c

This is the symmetry basis of the Pauli-exclusion principle.
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S3 symmetry of U(2): Effect of S3 DTran T on intertwining S3 - U(2) irep matrices 

S3 matrices: U(2) matrices:

T †S(pabc )T = T †D⊗D⊗D(u)T =
D(p)

D(p)
D(p)

D(p)
D11(p) D12(p)

D21(p) D22(p)

D11(p) D12(p)

D21(p) D22(p)

D11(u) D12(u) D13(u) D14(u)
D21(u) D22(u) D23(u) D24(u)
D31(u) D31(u) D31(u) D31(u)
D41(u) D42(u) D43(u) D44(u)

D11(u) D12(u)

D12(u) D12(u)

D21(u) D22(u)

D21(u) D22(u)
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D(p)

D(p)
D(p)

D(p)
D11(p) D12(p)

D21(p) D22(p)

D11(p) D12(p)

D21(p) D22(p)

D11(u) D12(u) D13(u) D14(u)
D21(u) D22(u) D23(u) D24(u)
D31(u) D31(u) D31(u) D31(u)
D41(u) D42(u) D43(u) D44(u)

D11(u) D12(u)

D12(u) D12(u)

D21(u) D22(u)

D21(u) D22(u)

D11(u) D12(u) D13(u) D14(u)
D21(u) D22(u) D23(u) D24(u)
D31(u) D31(u) D31(u) D31(u)
D41(u) D42(u) D43(u) D44(u)

D11(u) D12(u)

D21(u) D22(u)

D11(u) D12(u)

D21(u) D22(u)

D(p)
D(p)

D(p)
D(p)

D11(p) D12(p)

D11(p) D12(p)

D21(p) D22(p)

D21(p) D22(p)

T 67
flip

†D⊗D⊗D(u)T67
flip

=
T 67
flip

†S(pabc )T 67
flip

=

After flipping rows and columns (6⇔7) of T matrix 
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S3 matrices: U(2) matrices:
T †S(pabc )T = T †D⊗D⊗D(u)T =
D(p)

D(p)
D(p)

D(p)
D11(p) D12(p)

D21(p) D22(p)

D11(p) D12(p)

D21(p) D22(p)

D11(u) D12(u) D13(u) D14(u)
D21(u) D22(u) D23(u) D24(u)
D31(u) D31(u) D31(u) D31(u)
D41(u) D42(u) D43(u) D44(u)

D11(u) D12(u)

D12(u) D12(u)

D21(u) D22(u)

D21(u) D22(u)

D11(u) D12(u) D13(u) D14(u)
D21(u) D22(u) D23(u) D24(u)
D31(u) D31(u) D31(u) D31(u)
D41(u) D42(u) D43(u) D44(u)

D11(u) D12(u)

D21(u) D22(u)

D11(u) D12(u)

D21(u) D22(u)

D(p)
D(p)

D(p)
D(p)

D11(p) D12(p)

D11(p) D12(p)

D21(p) D22(p)

D21(p) D22(p)

T 67
flip

†D⊗D⊗D(u)T67
flip

=
T 67
flip

†S(pabc )T 67
flip

=

After flipping rows and columns (6⇔7) of T matrix 

One 4-by-4 D (u)

= D
3
2  irep 

Two 2-by-2 D (u) = D
1
2  ireps 

Four 1-by-1 D (p) S3  ireps 

Two 2-by-2 D (u) ireps of S3  
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Fig. 23.3.2 Spin-1/2 and U(2) Tableau branching diagrams 

Multi-spin (1/2)N product states
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2·
=14
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U(2) dimension 
ℓ
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SN  
dimension ℓ[µ]

 Tableau 
dimension 
formulae

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

2N = ℓ S⎡⎣ ⎤⎦

S

N /2
∑ ℓ µ1,µ2⎡⎣ ⎤⎦

= 2S +1( )
S

N /2
∑ ℓ

N+2S
2

,N−2S
2

⎡
⎣
⎢

⎤
⎦
⎥

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
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[13] 111 112 121 122 211 212 221 222

111 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

112 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

121 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

122 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

211 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

212 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

221 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

222 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅


