Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like: XY_{6}.
How does level clustering affect nuclear hyperfine?

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page
Quantum Theory for the Computer Age
2014 AMOP
UAF Physics UTube channel
Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
2017 Group Theory for QM
2018 AMOP
Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- Jeigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - aip-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59-icp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

1) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-icp-1991

QTCA Unit 10 Ch 30 - 2013
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - ims - 2001
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,
(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26)
(PSDS - Ch. 5, 7)

William G. Harter - University of Arkansas
$S_{1} \subset S_{2} \subset S_{3} \subset S_{4} \subset S_{5} \ldots$ permutation symmetry algebra and spinor-rotor correlations

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles
tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like:XY 6 .
How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} cycle notation

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time. You find the $\mathbf{1 - b a l l}$ and switch it with the 4 -ball (that was in the number- 1 position).

$$
(14)|4,2,8,6,3,7,1,5\rangle=\mid \mathbf{1 , 2 , 8 , 6 , 3 , 7 , 4 , 5 \rangle}
$$

Such a "2-flip" operation (14) is called a transposition or a bicycle operation.

Substitution Group products: S_{n} cycle notation

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the 1 -ball and switch it with the 4 -ball (that was in the number- 1 position).

$$
(\mathbf{1 4})|\widehat{4,2,8,6,3,7,1,5\rangle}=| \overparen{\mathbf{1}, 2,8,6,3,7,4,5\rangle}
$$

Such a "2-flip" operation (14) is called a transposition or a bicycle operation.
Next you see the 2-ball already in the number-2 position so you leave it alone.

$$
\text { (2) }|1,2,8,6,3,7,4,5\rangle=|1,2,8,6,3,7,4,5\rangle=(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle
$$

Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.

Substitution Group products: S_{n} cycle notation

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the $\mathbf{1}$-ball and switch it with the 4 -ball (that was in the number- 1 position).

$$
(14)|\widehat{4,2,8,6,3,7,1,5\rangle}=| \widehat{1,2,8,6,3,7,4,5\rangle}
$$

Such a "2-flip" operation (14) is called a transposition or a bicycle operation.
Next you see the 2-ball already in the number-2 position so you leave it alone.

$$
\text { (2) }|1,2,8,6,3,7,4,5\rangle=|1,2,8,6,3,7,4,5\rangle=(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle
$$

Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.
Next you see 3-ball has to switch $\mathbf{8}$-ball out of $\mathbf{3}$'s rightful position- $\mathbf{3}$ and into position-5.

$$
(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(\mathbf{3 8})|1, \mathbf{2}, 8,6,3,7,4,5\rangle=|1,2, \overparen{3,6, \mathbf{8}}, 7,4,5\rangle
$$

Substitution Group products: S_{n} cycle notation

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the $\mathbf{1}$-ball and switch it with the 4 -ball (that was in the number- 1 position).

$$
(14)|\widehat{4,2,8,6,3,7,1,5\rangle}=| \widehat{1,2,8,6,3,7,4,5\rangle}
$$

Such a "2-flip" operation (14) is called a transposition or a bicycle operation.
Next you see the 2-ball already in the number-2 position so you leave it alone.

$$
\text { (2) }|1,2,8,6,3,7,4,5\rangle=|1,2,8,6,3,7,4,5\rangle=(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle
$$

Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.
Next you see 3-ball has to switch $\mathbf{8}$-ball out of $\mathbf{3}$'s rightful position- $\mathbf{3}$ and into position-5.

$$
(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(\mathbf{3 8})|1, \mathbf{2}, 8,6,3,7,4,5\rangle=|1,2, \overparen{3,6, \mathbf{8}}, 7,4,5\rangle
$$

Next bicycle (46) puts 4-ball into $4^{\text {th }}$ spot where $\mathbf{6}$-ball was sitting (but now dropped to $7^{\text {th }}$).

$$
(\mathbf{4 6})(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(46)|1,2,3,6,8,7,4,5\rangle=|1,2,3,4,8,7,6,5\rangle
$$

Substitution Group products: S_{n} cycle notation

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the $\mathbf{1}$-ball and switch it with the 4 -ball (that was in the number- 1 position).

$$
(14)|\widehat{4,2,8,6,3,7,1,5\rangle}=| \widehat{1,2,8,6,3,7,4,5\rangle}
$$

Such a "2-flip" operation (14) is called a transposition or a bicycle operation.
Next you see the 2-ball already in the number-2 position so you leave it alone.

$$
\text { (2) }|1,2,8,6,3,7,4,5\rangle=|1,2,8,6,3,7,4,5\rangle=(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle
$$

Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.
Next you see 3-ball has to switch $\mathbf{8}$-ball out of $\mathbf{3}$'s rightful position-3 and into position-5.

$$
(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(\mathbf{3 8})|1, \mathbf{2}, 8,6,3,7,4,5\rangle=|1,2, \overparen{3,6, \mathbf{8}}, 7,4,5\rangle
$$

Next bicycle (46) puts 4-ball into $4^{\text {th }}$ spot where $\mathbf{6}$-ball was sitting (but now dropped in $7^{\text {th }}$).

$$
(\mathbf{4 6})(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(\mathbf{4 6})|1,2,3,6,8,7,4,5\rangle=|1,2,3,4,8,7,6,5\rangle
$$

Then bicycle (58) puts $\mathbf{5}$-ball into $5^{\text {th }}$ spot where $\mathbf{8}$-ball was sitting (but now dropped to $8^{\text {th }}$).

$$
(\mathbf{5 8})(\mathbf{4 6})(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(\mathbf{5 8})|1,2,3,4,8,7,6,5\rangle=|1,2,3,4,5,7,6,8\rangle
$$

Substitution Group products: S_{n} cycle notation

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the $\mathbf{1}$-ball and switch it with the 4 -ball (that was in the number- 1 position).

$$
\text { (14) }|\overparen{4,2,8,6,3,7,1,5\rangle}=| \overparen{\mathbf{1}, 2,8,6,6,7,4,5},
$$

Such a "2-flip" operation (14) is called a transposition or a bicycle operation.
Next you see the 2-ball already in the number-2 position so you leave it alone.

$$
\text { (2) }|1,2,8,6,3,7,4,5\rangle=|1,2,8,6,3,7,4,5\rangle=(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle
$$

Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.
Next you see 3-ball has to switch $\mathbf{8}$-ball out of $\mathbf{3}$'s rightful position-3 and into position-5.

$$
(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(\mathbf{3 8})|1, \mathbf{2}, 8,6,3,7,4,5\rangle=|1,2, \overparen{3,6, \mathbf{8}}, 7,4,5\rangle
$$

Next bicycle (46) puts 4 -ball into $4^{\text {th }}$ spot where 6 -ball was sitting (but now dropped in $7^{\text {th }}$).

$$
(\mathbf{4 6})(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle=(\mathbf{4 6})|1,2,3,6,8,7,4,5\rangle=|1,2,3,4,8,7,6,5\rangle
$$

Then bicycle (58) puts $\mathbf{5}$-ball into $5^{\text {th }}$ spot where $\mathbf{8}$-ball was sitting (but now dropped to $8^{\text {th }}$).

$$
\begin{aligned}
(\mathbf{5 8})(\mathbf{4 6})(\mathbf{3 8})(\mathbf{2})(\mathbf{1 4})|4,2,8,6,3,7,1,5\rangle & =(\mathbf{5 8})|1,2,3,4,8,7,6,5\rangle=|1,2,3,4,5,7,6,8\rangle \\
(\mathbf{6 7})(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle & =|1,2,3,4,5,6,7,8\rangle \quad \mid(\mathbf{6 7}) \text { finishes the job. }
\end{aligned}
$$

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like:XY 6 .
How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} cycle notation and algebra
Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

This permutation has 5 bicycle ($\mathbf{a b}$) operations so it is an ODD-permutation.
$\left.\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ (\mathbf{6} 7\end{array}\right)\binom{\downarrow}{5}(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=\mid 1,2,3,4,5$, , $\left., 7,8\right\rangle$
(67) finishes the job.

Substitution Group products: S_{n} cycle notation and algebra
Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

This permutation has 5 bicycle ($\mathbf{a b}$) operations so it is an ODD-permutation.
$\left.\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ (\mathbf{6 7} \\ \hline\end{array}\right)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle \quad$ (67) finishes the job.
Flip any single pair and it becomes EVEN.
This permutation has 6 bicycle (ab) operations so it is an EVEN-permutation.

Substitution Group products: S_{n} cycle notation and algebra
Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

This permutation has 5 bicycle ($\mathbf{a b}$) operations so it is an ODD-permutation.
$\left.\begin{array}{ccccc}1 & 2 & \stackrel{3}{\downarrow} & 4 & \stackrel{5}{\downarrow} \\ (\mathbf{6} 7\end{array}\right)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
(67) finishes the job.

Flip any single pair and it becomes EVEN.
This permutation has 6 bicycle (ab) operations so it is an EVEN-permutation.
$\begin{array}{ccccc}1 & 2 & 3 & 4 & \stackrel{5}{\downarrow} \\ (67) \\ (58) & \stackrel{\downarrow}{\downarrow} \\ (46)\end{array}(38)(2)(14)(67)|4,2,8,7,3,6,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
or: $(67)(58)(46)(38)(2)(14)(84)|8,2,4,7,3,6,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$

Substitution Group products: S_{n} cycle notation and algebra
Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
The inverse of our permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
\ldots is simply reverse-ordered products: $|4,2,8,6,3,7,1,5\rangle=(14)(2)(38)(46)(58)(67)|1,2,3,4,5,6,7,8\rangle$

This permutation has 5 bicycle ($\mathbf{a b}$) operations so it is an ODD-permutation.
$\left.\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ (\mathbf{6} 7\end{array}\right)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
(67) finishes the job.

Flip any single pair and it becomes EVEN.
This permutation has 6 bicycle (ab) operations so it is an EVEN-permutation.

$$
\begin{aligned}
\left.\begin{array}{c}
1 \\
\downarrow
\end{array}\right) & \left.\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right) \\
(67)(58)(46)(38)(2)(14)(67)|4,2,8,7,3,6,1,5\rangle & =|1,2,3,4,5,6,7,8\rangle \\
\text { or: }(67)(58)(46)(38)(2)(14)(84)|8,2,4,7,3,6,1,5\rangle & =|1,2,3,4,5,6,7,8\rangle
\end{aligned}
$$

Substitution Group products: S_{n} cycle notation and algebra
Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
The inverse of our permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
\ldots is simply reverse-ordered products: $|4,2,8,6,3,7,1,5\rangle=(14)(2)(38)(46)(58)(67)|1,2,3,4,5,6,7,8\rangle$
Note all bicycle (ab) operations have flip-order symmetry (ab) $\equiv(\mathbf{b a})=(\mathbf{a b})^{-1}$

This permutation has 5 bicycle ($\mathbf{a b}$) operations so it is an ODD-permutation.
$\left.\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ (\mathbf{6} 7\end{array}\right)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5, \curvearrowleft, 7,8\rangle$
(67) finishes the job.

Flip any single pair and it becomes EVEN.
This permutation has 6 bicycle (ab) operations so it is an EVEN-permutation.

$$
\begin{aligned}
\left.\begin{array}{c}
1 \\
\downarrow
\end{array}\right) & \left.\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right) \\
(67)(58)(46)(38)(2)(14)(67)|4,2,8,7,3,6,1,5\rangle & =|1,2,3,4,5,6,7,8\rangle \\
\text { or: }(67)(58)(46)(38)(2)(14)(84)|8,2,4,7,3,6,1,5\rangle & =|1,2,3,4,5,6,7,8\rangle
\end{aligned}
$$

Substitution Group products: S_{n} cycle notation and algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
The inverse of our permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
...is simply reverse-ordered products: $|4,2,8,6,3,7,1,5\rangle=(14)(2)(38)(46)(58)(67)|1,2,3,4,5,6,7,8\rangle$
Note all bicycle ($\mathbf{a b}$) operations have flip-order symmetry $(\mathbf{a b}) \equiv(\mathbf{b a})=(\mathbf{a b})^{-1}$
...minimal equation $(\mathbf{a b})^{2}=\mathbf{1} \equiv(\mathbf{a})(\mathbf{b})$ i.e., $(\mathbf{a b})^{2} \mathbf{- 1}=\mathbf{0}$

This permutation has 5 bicycle ($\mathbf{(a b)}$ operations so it is an ODD-permutation.
$\left.\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ (\mathbf{6} 7\end{array}\right)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
(67) finishes the job.

Flip any single pair and it becomes EVEN.
This permutation has 6 bicycle ($\mathbf{a b}$) operations so it is an EVEN-permutation.

$$
\begin{aligned}
& \left.\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
(67) & \stackrel{\downarrow}{\downarrow} \\
58
\end{array}\right)(46)(3 \stackrel{\downarrow}{8})(2)(14)(67)|4,2,8,7,3,6,1,5\rangle=|1,2,3,4,5,6,7,8\rangle \\
& \text { or: }(67)(58)(46)(38)(2)(14)(84)|8,2,4,7,3,6,1,5\rangle=|1,2,3,4,5,6,7,8\rangle
\end{aligned}
$$

Substitution Group products: S_{n} cycle notation and algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
The inverse of our permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
...is simply reverse-ordered products: $|4,2,8,6,3,7,1,5\rangle=(14)(2)(38)(46)(58)(67)|1,2,3,4,5,6,7,8\rangle$
Note all bicycle ($\mathbf{a b}$) operations have flip-order symmetry $(\mathbf{a b}) \equiv(\mathbf{b a})=(\mathbf{a b})^{-1}$

$$
\begin{aligned}
& \text {...minimal equation }(\mathbf{a b})^{2}=\mathbf{1} \equiv(\mathbf{a})(\mathbf{b}) \text { i.e., }(\mathbf{a b})^{2}-\mathbf{1}=\mathbf{0}=((\mathbf{a b})-\mathbf{1})((\mathbf{a b})+\mathbf{1}) \\
& \ldots \text { eigenvalues of } \pm 1
\end{aligned}
$$

This permutation has 5 bicycle ($\mathbf{(a b}$) operations so it is an ODD-permutation.
$\left.\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ (\mathbf{6} 7\end{array}\right)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
(67) finishes the job.

Flip any single pair and it becomes EVEN.
This permutation has 6 bicycle (ab) operations so it is an EVEN-permutation.

$$
\begin{aligned}
\left.\begin{array}{c}
1 \\
\downarrow
\end{array}\right) & \left.\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right) \\
(67)(58)(46)(38)(2)(14)(67)|4,2,8,7,3,6,1,5\rangle & =|1,2,3,4,5,6,7,8\rangle \\
\text { or: }(67)(58)(46)(38)(2)(14)(84)|8,2,4,7,3,6,1,5\rangle & =|1,2,3,4,5,6,7,8\rangle
\end{aligned}
$$

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles

tricycles
quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like: XY_{6}.

How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $\quad(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither a nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & & \text { since: }(58)(46) \\
= & =(46)(58)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and }:(58)(14) & =(14)(58) \text { etc. } .
\end{aligned}
$$

Substitution Group products: S_{n} cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations ($\mathbf{a b}$) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46) & =(46)(58) \text { etc } \\
& =(67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14) & =(14)(58) \text { etc. } .
\end{aligned}
$$

Consider two bicycles (58)(38) sharing an 8-ball:

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles.) quadricycles, etc.)

Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations ($\mathbf{a b}$) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46) & =(46)(58) \mathrm{etc} \\
& =(67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14) & =(14)(58) \mathrm{etc} .
\end{aligned}
$$

Consider two bicycles (58)(38) sharing an 8-ball:
First, 3-ball replaces $\mathbf{8}$-ball. (Right operator (38) acts first.)

$$
|1,2,, 4,5,6,7,3\rangle
$$

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles.) quadricycles, etc.)

Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations ($\mathbf{a b}$) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46) & =(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14) & =(14)(58) \mathrm{etc} .
\end{aligned}
$$

Consider two bicycles (58)(38) sharing an 8-ball:
First, 3-ball replaces $\mathbf{8}$-ball. (Right operator (38) acts first.)

$$
|1,2,, 4,5,6,7,3\rangle
$$

(2D diagrams are better...)

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles.) quadricycles, etc.)

Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations ($\mathbf{a b}$) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46) & =(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14) & =(14)(58) \text { etc. } .
\end{aligned}
$$

Consider two bicycles (58)(38) sharing an 8-ball:
First, 3-ball replaces $\mathbf{8}$-ball. (Right operator (38) acts first.)

(2D diagrams are better...)

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles.) quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations ($\mathbf{a b}$) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{array}{rlrl}
\text { So }: & :(67)(58)(46)(38)(2)(14) & & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. }
\end{array}
$$

Consider two bicycles (58)(38) sharing an 8-ball:
First, 3-ball replaces $\mathbf{8}$-ball. (Right operator (38) acts first.) Second, $\mathbf{8}$-ball, in turn displaces $\mathbf{5}$-ball. (Left operator (58) acts next.)
(1D diagrams tend to be confusing...)

(2D diagrams are better...)

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles.) quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither a nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\text { So: } \begin{aligned}
& (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46) & =(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14) & =(14)(58) \mathrm{etc} .
\end{aligned}
$$

(1D diagrams tend
to be confusing...)

Consider two bicycles (58)(38) sharing an 8-ball:
First, 3-ball replaces $\mathbf{8}$-ball. (Right operator (38) acts first.) Second, $\mathbf{8}$-ball, in turn displaces $\mathbf{5}$-ball. (Left operator (58) acts next.)

So two bicycles (58)(38) sharing an 8 -ball make a tricycle ...(58)(38)=(385)

(2D diagrams are better...)

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles.) quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither a nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & :(67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. }
\end{aligned}
$$

(1D diagrams tend to be confusing...)

Consider two bicycles (58)(38) sharing an 8-ball:

First, 3-ball replaces 8-ball. (Right operator (38) acts first.) Second, $\mathbf{8}$-ball, in turn displaces $\mathbf{5}$-ball. (Left operator (58) acts next.)
$|1,2,8,4,5,6,7,3\rangle$

So two bicycles (58)(38) sharing an 8-ball make a tricycle \ldots. (58)(38)=(385)=(538)=(853)
...that may be written three different ways.

(2D diagrams are better...)

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles.) quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither a nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & :(67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. }
\end{aligned}
$$

(1D diagrams tend to be confusing...)

Consider two bicycles (58)(38) sharing an 8-ball:
First, 3-ball replaces $\mathbf{8}$-ball. (Right operator (38) acts first.) Second, $\mathbf{8}$-ball, in turn displaces $\mathbf{5}$-ball. (Left operator (58) acts next.)

So two bicycles (58)(38) sharing an 8-ball make a tricycle...(58)(38)=(385)=(538)=(853) Here is inverse of $(58)(38): \ldots(38)(58)=(358)=(583)=(835) \quad \ldots$ also written three different ways.

(385)
(2D diagrams are better...)

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like:XY 6 .
How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order: \{1,2,3,4,5,6,7,8\}.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations ($\mathbf{a b}$) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. } .
\end{aligned}
$$

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5 $\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46) & =(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14) & =(14)(58) \text { etc. } .
\end{aligned}
$$

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14)

Suppose pool balls are stored in numerical order: \{1,2,3,4,5,6,7,8\}.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... (67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5 $\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & =(67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. } .
\end{aligned}
$$

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: \{1,2,3,4,5,6,7,8\}.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
& =(67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. } .
\end{aligned}
$$

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: \{1,2,3,4,5,6,7,8\}.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. } .
\end{aligned}
$$

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: \{1,2,3,4,5,6,7,8\}.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$
Permutation operations (ab) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. } .
\end{aligned}
$$

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:

" 1 goes to 4 goes to 6 goes to 7 goes ton 1 "

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: \{1,2,3,4,5,6,7,8\}.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$ Permutation operations (ab) and (cd) commute if and only if neither a nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. } .
\end{aligned}
$$

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14)

"1 goes to 4 goes to 6 goes to 7 goes ton 1 "

So three bicycles (67)(46)(14)
give a quadricycle (1467) that may be written four ways...

$$
(67)(46)(14)=(1467)=(7146)=(6714)=(4671)
$$

$=(1467)$

Substitution Group products: S_{n} cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: $\{1,2,3,4,5,6,7,8\}$.
Let players return them in a permuted order, say: $\{4,2,8,6,3,7,1,5\}$.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time. Much faster with multi-cycles (tricycles, quadricycles, etc.)
Rewriting permutation operation... $(67)(58)(46)(38)(2)(14)|4,2,8,6,3,7,1,5\rangle=|1,2,3,4,5,6,7,8\rangle$ Permutation operations (ab) and (cd) commute if and only if neither \mathbf{a} nor \mathbf{b} equals \mathbf{c} or \mathbf{d}.

$$
\begin{aligned}
\text { So }: & (67)(58)(46)(38)(2)(14) & \text { since: }(58)(46)=(46)(58) \text { etc } \\
= & (67)(46)(14) \cdot(58)(38) \cdot(2) . & \text { and: }(58)(14)=(14)(58) \text { etc. } .
\end{aligned}
$$

...with tricycle (58)(38)
Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball: $\quad=(385)=(538)=(853)$ (67)(46)(14)

(An ODD permutation)
So three bicycles (67)(46)(14)
give a quadricycle (1467) that may be written four ways...

$$
(67)(46)(14)=(1467)=(7146)=(6714)=(4671)
$$

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
\Rightarrow Permutation unraveling Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and $X Y_{n}$ molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like:XY 6 .
How does level clustering affect nuclear hyperfine?

Unraveling a permutation (Starting with " 1 ")

Unraveling a permutation (Starting with " 1 ")

(Next higher number that has not been used is a " 2 ")

$$
\begin{gathered}
|4,2,8,6,3,7,1,5\rangle \\
\downarrow \\
\downarrow \\
1
\end{gathered} \begin{gathered}
1 \\
1
\end{gathered} 45657 \text { Closes on a permutation } \begin{gathered}
\text { unicycle }
\end{gathered}
$$

Unraveling a permutation (Starting with " 1 ")

Closes on a permutation
quadracycle
$(1764)=(4176)=$ etc.
(Next higher number that has not been used is a "2")

(Next higher number that has not been used is a ' 3 ")

"OK, but its the inverse of the pool ball operation"
Final result: $(1764)(2)(358)=(358)(1764)$

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling

S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like: XY_{6}.
How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
								(14)
								(38)
								(46)
								(58)
								(67)
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$$
(67)(58)(46)(38)(14)=?
$$

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
4	2	3	1	5	6	7	8	(14)
								(38)
(46)								
(58)								
167$)$								
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$$
(67)(58)(46)(38)(14)=?
$$

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	$\mathbf{3}$	(38)
								(46)
								(58) (67)

$$
(67)(58)(46)(38)(14)=?
$$

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	$\mathbf{3}$	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
(58)								
(67)								

$$
\begin{equation*}
(67)(58)(46)(38)(14)=? \tag{1467}
\end{equation*}
$$

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	$\mathbf{3}$	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
6	2	$\mathbf{5}$	1	$\mathbf{8}$	4	7	3	(58)
7	2	5	1	8	4	$\mathbf{6}$	3	(67)
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$$
\begin{equation*}
(67)(58)(46)(38)(14)=? \tag{1467}
\end{equation*}
$$

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	$\mathbf{3}$	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
6	2	$\mathbf{5}$	1	$\mathbf{8}$	4	7	3	(58)
7	2	5	1	8	4	6	3	(67)
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$$
(67)(58)(46)(38)(14)=?
$$

(14
(2) Sort into distinct ordered (abc..e)-cycles

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	3	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
6	2	$\mathbf{5}$	1	$\mathbf{8}$	4	7	3	(58)
7	2	5	1	8	4	6	3	(67)
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$$
(67)(58)(46)(38)(14)=?
$$

(2) Sort into distinct ordered (abc..e)-cycles

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	$\mathbf{3}$	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
6	2	$\mathbf{5}$	1	$\mathbf{8}$	4	7	3	(58)
7	2	5	1	8	4	$\mathbf{6}$	3	(67)
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$$
(67)(58)(46)(38)(14)=?
$$

(1467
(2) Sort into distinct ordered (abc..e)-cycles

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	3	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
6	2	5	1	$\mathbf{8}$	4	7	3	(58)
7	2	5	1	8	4	$\mathbf{6}$	3	(67)
1	2	-3	4	5	6	7	8	$\langle 1\rangle$
(1467)								

$$
\begin{equation*}
(67)(58)(46)(38)(14)=? \tag{1467}
\end{equation*}
$$

(2) Sort into distinct ordered (abc..e)-cycles

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
4	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	3	(38)
6	2	8	1	5	4	7	3	(46)
6	2	5	1	$\mathbf{8}$	4	7	3	(58)
7	2	5	1	8	4	6	3	(67)
1	2	-3	4	5	6	7	8	$\langle 1\rangle$

(67)
$N_{\text {new }}$
$N_{\text {old }}$
$\begin{array}{ll}\underline{N_{\text {new }}} & \text { tells which new number } \underline{N}_{\text {new }} \\ \underline{N}_{\text {old }} & \begin{array}{l}\text { now sits in the space that } \\ \text { started with old number } N_{\text {old }}\end{array}\end{array}$
(1467)
(2) Sort into distinct ordered (abc..e)-cycles

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	$\mathbf{3}$	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
6	2	$\mathbf{5}$	1	$\mathbf{8}$	4	7	3	(58)
$\mathbf{7}$	2	5	1	8	4	$\mathbf{6}$	3	(67)
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$$
(67)(58)(46)(38)(14)=(385)(1467)
$$

(2) Sort into distinct ordered (abc..e)-cycles

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles
tricycles
quadricycles

Permutation unraveling Product arrays
S_{n} class transformation algebra
S_{n} class cycle labeling S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like:XY 6 .
How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.) (1) Apply n-cycle (right-most $1^{\text {st) }}$) to each row starting on $\langle 1\rangle=1,2,3,4,5, \ldots, n_{\max }$

1	2	3	4	5	6	7	8	$\langle 1\rangle$
$\mathbf{4}$	2	3	$\mathbf{1}$	5	6	7	8	(14)
4	3	$\mathbf{8}$	1	5	6	7	$\mathbf{3}$	(38)
$\mathbf{6}$	2	8	1	5	$\mathbf{4}$	7	3	(46)
6	2	$\mathbf{5}$	1	$\mathbf{8}$	4	7	3	(58)
$\mathbf{7}$	2	5	1	8	4	$\mathbf{6}$	3	(67)
1	2	3	4	5	6	7	8	$\langle 1\rangle$

$(67)(58)(46)(38)(14)=(385)(1467)$
(2) Sort into distinct ordered (abc..e)-cycles

A shortcut method to reduce cycle products like : (67)(46)(14) (58)(38)

Last op (67) moves 6 to $7 . \quad 6 \rightarrow 7$
But whence came 7?
But whence came 1?
But whence came 4?
Last op (58) moves 5 to 8 .

This implies (67
This implies (671
This implies (6714
This implies (6714) that is (1467)
This implies (53
This implies (538
This implies (538) that is (385)

Shortcut method reduces cycle products like : (12)(13)(14)(15)
(12 implied by last op involving 2: $\quad 1 \rightarrow 2$
(123 implied by last op involving 3:
(1234 implied by last op involving 4:
(12345 implied by last op involving 5:
(12345) implied by last op involving 5:

$$
\begin{aligned}
& 2 \rightarrow 1 \rightarrow 3 \\
& 3 \rightarrow 1 \rightarrow 4 \\
& 4 \rightarrow 1 \rightarrow 5 \\
& 5 \rightarrow 1
\end{aligned}
$$

Shortcut method reduces cycle products like : (12)(13)(14)(15) Start with any number (say 3) (34 implied by last op involving 3: $\quad 3 \rightarrow 1 \rightarrow 4$
(345 implied by last op involving 4:
(3451 implied by last op involving 5:
(34512 implied by last op involving 1 :
(34512) implied by last op involving 2 :
$4 \rightarrow 1 \rightarrow 5$
$5 \rightarrow 1$
$1 \rightarrow 2$

$$
2 \rightarrow 1 \rightarrow 3
$$

Shortcut: (1234)(456)

Shortcut: (456)(1234)
(12 $\quad 1 \rightarrow 2$
(123 2 $\rightarrow 3$
(1234
(12345
$4 \rightarrow 5$
(123456
(123456)

Test:

Test: | 1 | 2 | 3 | 4 | 5 | 6 | $\langle 1\rangle$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{4}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | 5 | 6 | (1234) |
| $\mathbf{6}$ | 1 | 2 | 3 | $\mathbf{4}$ | $\mathbf{5}$ | (456) | |
| | | | | | | | |
| 1 | 2 | 3 | 4 | 5 | 6 | $\langle 1\rangle$ | |$=(123456)$

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles
tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
$\Rightarrow \mathrm{S}_{\mathrm{n}}$ class transformation algebra
S_{n} class cycle labeling S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like:XY6.

How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} class transformation algebra

$$
\begin{aligned}
\text { Similarity transform } \mathbf{y}=\mathbf{t} \cdot \mathbf{x} \cdot \mathbf{t}^{-1}=(15)(2738496) \cdot & \cdot(5678)(19)(234) \cdot(51)(2694837) \\
& =(1923)(45)(678)
\end{aligned}
$$

$$
(15)(2738496) \cdot(5678)(19)(234) \cdot(51)(2694837)
$$

$$
(19 \quad 1 \rightarrow 5 \rightarrow 6 \rightarrow 9
$$

$$
(192 \quad 9 \rightarrow 6 \rightarrow 7 \rightarrow 2
$$

(1923
(1923)

$$
2 \rightarrow 7 \rightarrow 8 \rightarrow 3
$$

$$
3 \rightarrow 8 \rightarrow 5 \rightarrow 1
$$

$$
(45 \quad 4 \rightarrow 9 \rightarrow 1 \rightarrow 5
$$

$$
\begin{equation*}
5 \rightarrow 1 \rightarrow 9 \rightarrow 4 \tag{45}
\end{equation*}
$$

$$
(67 \quad 6 \rightarrow 2 \rightarrow 3 \rightarrow 7
$$

(678

$$
7 \rightarrow 3 \rightarrow 4 \rightarrow 8
$$

(678)

$$
8 \rightarrow 4 \rightarrow 2 \rightarrow 6
$$

1	2	3	4	5	6	7	8	9	$\langle 1\rangle$		
5	7	8	9	1	2	3	4	6	$(15)(2694837)$		
8	6	7	1	9	4	2	3	5	$(5678)(19)(234)$		
3	9	2	5	4	8	6	7	1	$(51)(2738496)$		
1	2	3	4	5	6	7	8	9	$\langle 1\rangle$	\quad	$(1923)(45)(678)=t \cdot \mathbf{x} \cdot t-1$
:---											

Substitution Group products: S_{n} class transformation algebra Similarity transform $\mathbf{y}=\mathbf{t} \cdot \mathbf{x} \cdot \mathbf{t}^{-1}=(15)(2738496) \cdot(5678)(19)(234) \cdot(51)(2694837)$

$$
=(1923)(45)(678)
$$

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles
tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like:XY6.

How does level clustering affect nuclear hyperfine?

Permutations are classified by the numbers of v_{1} of unicycles, v_{2} of bicycles, v_{3} of tricycles, etc.
Ball-numbers can't be repeated after cycle reduction. So cycle length sum is number N of balls.

$$
v_{1}+2 v_{2}+3 v_{3}+4 v_{4}+5 v_{5}+\ldots+N v_{N}=N
$$

Permutations are classified by the numbers of v_{1} of unicycles, v_{2} of bicycles, v_{3} of tricycles, etc.
Ball-numbers can't be repeated after cycle reduction. So cycle length sum is number $N=n$ of balls.

$$
v_{1}+2 v_{2}+3 v_{3}+4 v_{4}+5 v_{5}+\ldots+N v_{N}=N
$$

$$
\begin{gathered}
S_{4} \text { example } \\
v_{1}=1 v_{2}=0 v_{3}=1 \\
(4) \quad(321)
\end{gathered}
$$

Number of classes of S_{n} equals the number of partitions of integer $N=n$.

Permutations are classified by the numbers of v_{1} of unicycles, v_{2} of bicycles, v_{3} of tricycles, etc.
Ball-numbers can't be repeated after cycle reduction. So cycle length sum is number $N=n$ of balls.

$$
v_{1}+2 v_{2}+3 v_{3}+4 v_{4}+5 v_{5}+\ldots+N v_{N}=N \quad \begin{gathered}
v_{1}=1 v_{2}=0 v_{3}=1 \\
(321)
\end{gathered}
$$

Number of classes of S_{n} equals the number of partitions of integer $N=n$.

$$
\begin{array}{cc}
& S_{14} \text { example } \\
v_{1}=5 & v_{2}=3 \\
11 \\
11)(10) & (98)(76)(54)(321)
\end{array}
$$

Substitution Group products: S_{n} class cycle labeling
Permutations are classified by the numbers of v_{1} of unicycles, v_{2} of bicycles, v_{3} of tricycles, etc.
Ball-numbers can't be repeated after cycle reduction. So cycle length sum is number $N=n$ of balls.

$$
v_{1}+2 v_{2}+3 v_{3}+4 v_{4}+5 v_{5}+\ldots+N v_{N}=N \quad \begin{gathered}
v_{1}=1 v_{2}=0 v_{3}=1 \\
(421)
\end{gathered}
$$

Number of classes of S_{n} equals the number of partitions of integer $N=n$.

$$
\begin{array}{rr}
S_{14} \text { example } \\
v_{1}=5 \quad v_{2}=3 \quad v_{3}=1
\end{array}
$$

$$
(14)(13)(12)(11)(10)(98)(76)(54)(321)
$$

For $N=2$ there are just two classes of two permutations.
Class $\left\{\mathrm{v}_{1}=2, \mathrm{v}_{2}=0\right\}$ corresponding to partition: $2=1+1 \quad \stackrel{\circ}{\circ}$
One permutation : (1)(2)
Class $\left\{\mathrm{v}_{1}=0, \mathrm{v}_{2}=1\right\}$ corresponding to partition: $2=2$
One permutation : (12)

Substitution Group products: S_{n} class cycle labeling
Permutations are classified by the numbers of v_{1} of unicycles, v_{2} of bicycles, v_{3} of tricycles, etc.
Ball-numbers can't be repeated after cycle reduction. So cycle length sum is number $N=n$ of balls.

$$
v_{1}+2 v_{2}+3 v_{3}+4 v_{4}+5 v_{5}+\ldots+N v_{N}=N \quad v_{1}=1 v_{(4)}^{v_{2}=0 v_{3}=1}
$$

Number of classes of S_{n} equals the number of partitions of integer $N=n$.

$$
\begin{gathered}
\mathrm{S}_{14} \text { example } \\
v_{1}=5 \quad v_{2}=3, v_{3}=1
\end{gathered}
$$

$$
(14)(13)(12)(11)(10)(98)(76)(54)(321)
$$

For $N=2$ there are just two classes of two permutations.
Class $\left\{\mathrm{v}_{1}=2, \mathrm{v}_{2}=0\right\}$ corresponding to partition: $2=1+1 \quad \stackrel{\circ}{\circ}$
One permutation : (1)(2)
Class $\left\{\mathrm{v}_{1}=0, \mathrm{v}_{2}=1\right\}$ corresponding to partition: $2=2$
One permutation : (12)

For $N=3$ there are three classes of six permutations.
Class $\left\{v_{1}=3, v_{2}=0, v_{3}=0\right\}$ corresponding to partition : $3=1+1+1 \quad \stackrel{\odot}{\odot}$
One permutation :: (1)(2)(3)
Class $\left\{\mathrm{v}_{1}=1, \mathrm{v}_{2}=1, \mathrm{v}_{3}=0\right\}$ corresponding to partition: $3=2+1$
Three permutations: (12)(3), (13)(2), (23)(1)
Class $\left\{v_{1}=0, v_{2}=0, v_{3}=1\right\}$ corresponding to partition : $3=3$

Two permutations : (123), (132)

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and $X Y_{\mathrm{n}}$ molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like: XY_{6}.

How does level clustering affect nuclear hyperfine?

Substitution Group products: S_{n} class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling Each m-cycle can be written m ways by cycling the numbers:

$$
(123 \ldots \mathrm{~m})=(\mathrm{m} 12 \ldots \mathrm{~m}-1)=(\mathrm{m}-1 \mathrm{~m} 123 \ldots \mathrm{~m}-2)=\ldots \quad \text { Example }:(123)=(312)=(231)
$$

Substitution Group products: S_{n} class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling Each m-cycle can be written m ways by cycling the numbers:
$(123 \ldots \mathrm{~m})=(\mathrm{m} 12 \ldots \mathrm{~m}-1)=(\mathrm{m}-1 \mathrm{~m} 123 \ldots \mathrm{~m}-2)=\ldots \quad$ Example: $(123)=(312)=(231)$
If there are v_{m} such m-cycles in a permutation then there are $(\mathrm{m})^{\nu_{m}}$ such reorderings.

Substitution Group products: S_{n} class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling Each m-cycle can be written m ways by cycling the numbers:
$(123 \ldots \mathrm{~m})=(\mathrm{m} 12 \ldots \mathrm{~m}-1)=(\mathrm{m}-1 \mathrm{~m} 123 \ldots \mathrm{~m}-2)=\ldots \quad$ Example: $(123)=(312)=(231)$
If there are v_{m} such m-cycles in a permutation then there are (m) ${ }^{v_{\mathrm{m}}}$ such reorderings.
Each of the v_{m} such m-cycles contain distinct numbers and so mutually commute $\left(\nu_{\mathrm{m}}\right)$! different orders.
Example: $(123)(456)=(456)(231)$

Substitution Group products: S_{n} class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling
Each m-cycle can be written m ways by cycling the numbers:

$$
(123 \ldots \mathrm{~m})=(\mathrm{m} 12 \ldots \mathrm{~m}-1)=(\mathrm{m}-1 \mathrm{~m} 123 \ldots \mathrm{~m}-2)=\ldots \quad \text { Example }:(123)=(312)=(231)
$$

If there are v_{m} such m-cycles in a permutation then there are $(\mathrm{m})^{\nu_{m}}$ such reorderings.
Each of the v_{m} such m-cycles contain distinct numbers and so mutually commute $\left(v_{m}\right)$! different orders.

$$
\text { Example: }(123)(456)=(456)(231)
$$

Dividing N ! by products of numbers $\left(\nu_{m}\right)!(m)^{\nu_{m}}$ of possibility gives the number of distinct partition class members.

$$
\begin{aligned}
& \text { Number in partition class } v_{1} v_{2} v_{3} v_{4} \cdots=\frac{N!}{v_{1}!1^{v_{1}} v_{2}!2^{v_{2}} v_{3}!3^{v_{3}} v_{4}!4^{v_{4}} \ldots} \\
& \text { where: } \quad N=v_{1}+2 v_{2}+3 v_{3}+4 v_{4} \cdots
\end{aligned}
$$

Substitution Group products: S_{n} class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling Each m-cycle can be written m ways by cycling the numbers:

$$
(123 \ldots \mathrm{~m})=(\mathrm{m} 12 \ldots \mathrm{~m}-1)=(\mathrm{m}-1 \mathrm{~m} 123 \ldots \mathrm{~m}-2)=\ldots \quad \text { Example }:(123)=(312)=(231)
$$

If there are v_{m} such m-cycles in a permutation then there are $(\mathrm{m})^{\nu_{m}}$ such reorderings.
Each of the v_{m} such m-cycles contain distinct numbers and so mutually commute $\left(v_{\mathrm{m}}\right)$! different orders.

$$
\text { Example: }(123)(456)=(456)(231)
$$

Dividing N ! by products of numbers $\left(v_{\mathrm{m}}\right)!(\mathrm{m})^{\nu_{\mathrm{m}}}$ of possibility gives the number of distinct partition class members.

$$
\begin{aligned}
& \text { Number in partition class } v_{1} v_{2} v_{3} v_{4} \cdots=\frac{N!}{v_{1}!1^{v_{1}} v_{2}!2^{v_{2}} v_{3}!3^{v_{3}} v_{4}!4^{v_{4}} \cdots} \\
& \text { where: } \quad N=v_{1}+2 v_{2}+3 v_{3}+4 v_{4} \cdots
\end{aligned}
$$

...or Tetrahedral T_{d} classes
$S \sim T$

Substitution Group products: S_{n} class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling Each m-cycle can be written m ways by cycling the numbers:

$$
(123 \ldots \mathrm{~m})=(\mathrm{m} 12 \ldots \mathrm{~m}-1)=(\mathrm{m}-1 \mathrm{~m} 123 \ldots \mathrm{~m}-2)=\ldots \quad \text { Example }:(123)=(312)=(231)
$$

If there are v_{m} such m-cycles in a permutation then there are $(\mathrm{m})^{\nu_{\mathrm{m}}}$ such reorderings.
Each of the v_{m} such m-cycles contain distinct numbers and so mutually commute $\left(v_{\mathrm{m}}\right)$! different orders.

$$
\text { Example: }(123)(456)=(456)(231)
$$

Dividing N ! by products of numbers $\left(\nu_{m}\right)!(\mathrm{m})^{\nu_{\mathrm{m}}}$ of possibility gives the number of distinct partition class members.

$$
\begin{aligned}
& \text { Number in partition class } v_{1} v_{2} v_{3} v_{4} \cdots=\frac{N!}{v_{1}!1^{v_{1}} v_{2}!2^{v_{2}} v_{3}!3^{v_{3}} v_{4}!4^{v_{4}} \ldots} \\
& \text { where: } \quad N=v_{1}+2 v_{2}+3 v_{3}+4 v_{4} \cdots
\end{aligned}
$$

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling S_{n} class cycle counting

- S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules

Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like: XY_{6}.

How does level clustering affect nuclear hyperfine?

(a) $|\square\rangle=\left|B=\sum_{g}^{+}\right\rangle$
 (b)

FIG. 25. Orbital tableau labeling of a homonuclear diatomic
FIG. 26. Orbital and spin tableaus used to label homonuclear n-atomic molecules ($n=2.3,4 \ldots$.).
(a) BOSE NUCLEI $I=0,1,2$, ORBITAL SPIN
\(\begin{gathered}(b) FERMI NUCLEI

SPIN\end{gathered} \quad i=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \cdots \quad A_{2}\)| 1 | |
| :---: | :---: |
| 2 | 1 |
| 1 | -1 |
| 1 | 1 | ORBITAL SPIN

group S_{n} is equivalent to

S_{2}	
	(1)(2) (12)
A_{1}1 2	11
, ... $A_{2} \frac{1}{2}$	$1-1$

C_{2}	$\boldsymbol{1}$	$\boldsymbol{\sigma}$
A_{1}	1	1
A_{2}	1	-1

(2-1) $S_{2} \sim C_{2}$

$n=2$

$$
\begin{aligned} & S_{n} \text { tableaus spin-symmetry and characters: } X_{n} \text { and } X Y_{n} n \\ & \qquad \begin{array}{l} \text { (a) } \\ |\square\rangle=\left|\mathrm{B}=\sum_{\mathrm{g}}^{+}\right\rangle \end{array} \quad \text { (b) }|\square\rangle=\left|\mathrm{B}=\sum_{\mathrm{u}}^{+}\right\rangle \end{aligned}
$$

$$
\begin{aligned}
& S_{n} \text { tableaus spin-symmetry and characters: } X_{n} \text { and } X Y_{n} m \\
& \qquad \begin{array}{l}
\text { (a) } \\
|\square\rangle=\left|\mathrm{B}=\sum_{\mathrm{g}}^{+}\right\rangle
\end{array} \quad \text { (b) }|\square\rangle=\left|\mathrm{B}=\sum_{\mathrm{u}}^{+}\right\rangle
\end{aligned}
$$

S_{n} tableaus spin-symmetry and characters: X_{n} and $X Y_{n}$ molecules
(a) $|\square\rangle=\left|B=\sum_{g}^{+}\right\rangle$
(b)

FIG. 25. Orbital tableau labeling of a homonuclear diatomic
FIG. 26. Orbital and spin tableaus used to label homonuclear n-atomic molecules ($n=2.3,4 \ldots$. . .
(a) BOSE NUCLEI $I=0,1,2, \ldots$ (b)FERMI NUCLEI $1=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$ ORBITAL SPIN ORBITAL SPIN
$2-1 S_{2} \sim C_{2}$

\qquad

- I I T

$n=4$

$(1)(2)(3)(4)$
(1)(234)
(2)(143)

$(3)(124)$	$(13)(24)$	(1243)	$(23)(1)(4)$
$(4)(132)$	$(14)(23)$	(1324)	$(23)(1)(4)$
$(1)(243)$	$(13)(24)$	(1234)	$(12)(3)(4)$
$(2)(134)$		(1423)	$(24)(1)(3)$
$(3)(142)$		(1342)	$(13)(2)(4)$

Methane-like:XY4

TABLE XIII. T_{d} characters and symmetry.

TABLE XIV. $O_{3}+T_{d}$ correlation.

	A_{1}	A_{2}	E	F_{1}	F_{2}		A_{2}	A_{1}	E	F_{2}	F_{1}
$J^{p}=0^{*}$	1	\cdots	\cdots	\cdots	\cdots	0^{-}	1	\cdots	\cdots	\cdots	\cdots

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and $X Y_{n}$ molecules
\rightarrow
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like: XY_{6}.
How does level clustering affect nuclear hyperfine?

Tableau dimension formulae

From unpublished Ch. 10 for
Principles of Symmetry, Dynamics \& Spectroscopy
Fig. 10.1.5 Hall - Robinson Hooklength Formulas Dimension of representations of (a) S_{n} and (b) U_{m} labeled by a single tableau are given by the formulas. A hooklength of a tableau box is simply the number of boxes in a "hook" consisting of all the boxes below it, to the right of it, and itself.
S_{n} Young Tableaus and spin-symmetry for X_{n} and $X Y_{n}$ molecules Tableau dimension formulae

$$
\begin{aligned}
& =1 \\
& \begin{aligned}
\ell^{A_{2}} & =\ell^{[1,1,]}\left(S_{3}\right)=\frac{3 \cdot 2 \cdot 1}{\sqrt[3]{3}} \\
& =1 \begin{array}{l}
\frac{2}{1} \\
\hline 1 \\
\ell^{E}
\end{array}=\ell^{[2,1,0]}\left(S_{3}\right)=\frac{3 \cdot 2 \cdot 1}{\begin{array}{|l|l}
3 & 1 \\
\hline & \\
\hline
\end{array}}
\end{aligned}
\end{aligned}
$$

Dimension

FIG. 28. Robinson formula for statistical weights. The "hooklength" of a box in the tableau is the number of boxes in a "hook" which includes that box and all boxes in the line to the right and in the column below it.

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like:XY ${ }_{6}$.

How does level clustering affect nuclear hyperfine?

FIG. 28. Robinson formula for statistical weights. The "hooklength" of a box in the tableau is the number of boxes in a "hook" which includes that box and all boxes in the line to the right and in the column below it.
保
Dimension of

$$
l^{\left[\mu_{\mathrm{s}}\right]}=
$$

FIG. 36. Comparison of conventional CH_{4} labeling with present Present Complete T_{d} Labeling

$$
\begin{gathered}
\text { Conventiond } \\
T_{d}{ }^{\sim} O \\
\text { Labeling }
\end{gathered}
$$ labeling. The latter shows clearly the "hidden" structure of inversion doublets which has a structure very much like that of NH_{3}. For CH_{4}, however, only the E levels are actually double according to the statistical weight calculations.

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and $\mathrm{XY} \mathrm{Y}_{\mathrm{n}}$ molecules
Tableau dimension formulae Methane-like XY_{4}

Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like: XY_{6}.
How does level clustering affect nuclear hyperfine?

Introducing rovibrational spectral nomogram

Transitions forbidden between states of different Bare Rotor quantum labels (Spin-symmetry species conserved here)

$S_{4} \sim T$

Present Complete T_{d} Labeling
Conventional
Td O
Labeling

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like:XY ${ }_{6}$.

How does level clustering affect nuclear hyperfine?

APPENDIX C. S_{n} CHARACTER FORMULA

We give a formula (Coleman, 1966) for S_{n} characters
 [$\mu_{1} \cdots \mu_{p}$] wherein μ_{j} means that row j has μ_{j} boxes.
The S_{n} classes are labeled by the notation $1^{\alpha} 2^{\beta} 3^{\gamma} \cdots n$ wherein $\alpha, \beta, \gamma, \ldots$ are the number of permutation 1cycles, 2 -cycles, 3 -cycles, ... respectively. For example, the permutation $(1)(3)(2,5)(4,7,6,8)$ would be in the class $1^{2} 2^{1} 3^{0} 4^{1} 5^{\circ} 6^{0} 7^{0} 8^{\circ}$ of S_{8}. The character then is given by the following formula and definitions. Note that th formula starts with a column of numbers that are the hooklengths of the first column of the tableau. Then the definitions are used to whittle it down to a sum of sequentially numbered columns which each contribute unit according to Def. 2.

$$
\chi_{1}^{\left[\mu_{2} \not \beta_{3} \gamma \mu_{p} \mu_{0}\right]}=\partial_{1}^{\alpha} \partial_{2}^{B} \partial_{3}^{\gamma} \ldots\left|\begin{array}{c}
\mu_{1}+p-1 \\
\cdot \\
\cdot \\
\mu_{p-2}+2 \\
\mu_{p-1}+1 \\
\mu_{p}
\end{array}\right|
$$

Rev. Mod. Phys., Vol. 50, No. 1, Part I, January 1978
For example, here is the character of the [56,13] IR of class $2,11,56$ of S_{69} :

$$
\begin{aligned}
\chi_{2,11,56}^{[56,13]} & =\partial_{2} \partial_{11} \partial_{56}\left|\begin{array}{l}
57 \\
13
\end{array}\right|=\partial_{2} \partial_{11}\left|\begin{array}{c}
1 \\
13
\end{array}\right| \\
& =\partial_{2}\left|\begin{array}{l}
1 \\
2
\end{array}\right|=\left|\begin{array}{l}
1 \\
0
\end{array}\right|=1
\end{aligned}
$$

Def. 1:
$\partial_{m}\left|\begin{array}{c}a \\ b \\ c \\ \cdot \\ \cdot \\ \cdot\end{array}\right|=\left|\begin{array}{c}a-m \\ b \\ c \\ \cdot \\ \cdot\end{array}\right|+\left|\begin{array}{c}a \\ b-m \\ c \\ \cdot \\ \cdot \\ \cdot\end{array}\right|+\left|\begin{array}{c}a \\ b \\ c-m \\ \cdot \\ \cdot \\ \cdot\end{array}\right|+\cdots ;$

Def. 2:

$$
\left|\begin{array}{c}
p-1 \\
\cdot \\
\cdot \\
\cdot \\
2 \\
1 \\
0
\end{array}\right|=1 ;
$$

Def. 3:
$\left|\begin{array}{l}a \\ b \\ c \\ \cdot \\ \cdot \\ \cdot\end{array}\right|$
$=0$ if any two numbers in the column are equal, or if any number is less than zero;

Def. 4:

interchanging any two numbers gives a change of sign.

TABLE XV. Characters of permutation group $\left(S_{6}\right)$ and octahedral $\left(O_{h}\right)$ subgroup.

FIG. 27. Spin tableau-(B) correlation for octahedral XY_{6} molecule (see Appendix D).

TABLE I. Permutational - octahedral correlation table $S_{6}+O_{h}$. Only the last four rows are relevant for spin- $\frac{1}{2}$ nuclei.

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles
tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae Hexafluoride-like:XY 6.

How does level clustering affect nuclear hyperfine?
S_{n} Young Tableaus and spin-symmetry for X_{n} and $X Y_{n}$ molecules
(a) $|\square\rangle=\left|B=\sum_{\mathrm{g}}^{+}\right\rangle$
(b)
 $=\left|B=\sum_{u}^{+}\right\rangle$

FIG. 25. Orbital tableau labeling of a homonuclear diatomic
FIG. 26. Orbital and spin tableaus used to label homonuclear n-atomic molecules ($n=2.3,4 \ldots$.).
(a) BOSE NUCLEI $I=0,1,2, \ldots$ (b) FERMI NUCLEI $1=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$,. ORBITAL SPIN ORBITAL SPIN
$2-1 S_{2} \sim C_{2}$

 $\mathrm{S}_{4}^{1}>C_{4 v} \sim D_{4}$

3 (S)

$n=4$

S_{n} Young Tableaus and spin-symmetry for X_{n} and $X Y_{n}$ molecules
(a) $|\square\rangle=\left|B=\sum_{g}^{+}\right\rangle$
(b)
 $=\left|B=\sum_{u}^{+}\right\rangle$

FIG. 25. Orbital tableau labeling of a homonuclear diatomic
FIG. 26. Orbital and spin tableaus used to label homonuclear n-atomic molecules ($n=2.3 .4 \ldots \ldots$).
(a) BOSE NUCLEI $I=0,1,2$, (b) FERMI NUCLEI $1=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$,. ORBITAL SPIN ORBITAL SPIN

2-1 $S_{2} \sim C_{2}$

(1)
$\begin{array}{lll}5 & 4 \\ 6 & -3 & S_{6}>O_{h}\end{array}$
(2)

Hexa-flouride-like:XY 6

FIG. 27. Spin tableau- (B) correlation for octahedral X_{6} molecule (see Appendix D).

Substitution Group products: S_{n} cycle notation
Cyclic product algebra: bicycles tricycles quadricycles
Permutation unraveling
Product arrays shortcuts
S_{n} class transformation algebra
S_{n} class cycle labeling
S_{n} class cycle counting
S_{n} tableaus spin-symmetry and characters: X_{n} and XY_{n} molecules
Tableau dimension formulae
Methane-like $\mathrm{XY}_{4} \quad$ Introducing rovibrational spectral nomogram
Large molecule character and correlation formulae
Hexafluoride-like:XY 6 .
How does level clustering affect nuclear hyperfine?

Entanglement!
How F-nuclei become
entangled total-spin-I-symmetry O_{h} species in $S F_{6}$.

With rotation all six \bigcirc nuclei are equivalent

Spin-Permutation to Octahedral Correlations
$\mathrm{S}_{6} \supset \mathrm{O}_{\mathrm{h}}$

See SF_{6} spectra with $\mathrm{A}_{2} \mathrm{~T}_{2} \mathrm{E}$ level cluster that follows

Internal J gets "stuck" on RES axes Must "tunnel" axis-to-axis at rate s

Tunneling $s=-S$ is negative here

Review $\mathrm{O}\left(0_{4}\right) \supset \mathrm{C}_{4}$ cluster:
0_{4} cluster splitting

DISentanglement!
How F-nuclei become distinguished
(but not distinguishable) in $S F_{6}$.

Without rotation being stuck on C_{4} axis all sixnuclei are equivalent

If polar nuclei in greater B-field than equatorial-nuclei....
If equatorial nuclei in ingreater- $B-f$ field than polar-nuclei...

Example of frequency

 hierarchyfor $16 \mu m$ spectra of CF_{4}
(Freon-14) W.G.Harter Ch. 31
Atomic, Molecular, \& Optical Physics Handbook Am. Int. of Physics Gordon Drake Editor (1996)

(a) $\mathrm{SF}_{6} \nu_{4}$ Rotational Structure

(b) $\mathrm{P}(88)$ Fine Structure (Rotational anisotropy effects)
叫

Harter, Phys. Rev. A 24, 192-263 (1981)

$$
\begin{aligned}
& D_{\left(\sigma_{2}\right)}^{E}=D^{[2,1]}(b c)=\begin{array}{ll}
\frac{a b}{c} \\
\frac{a c}{c} \\
\frac{a c}{b}
\end{array}\left(\begin{array}{cc}
-1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right) \\
& D^{[2,1]}(a b)=\frac{\begin{array}{l}
a b \\
c \\
\frac{a c}{b}
\end{array}}{\frac{\square}{\square}}\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \text { From unpublished Ch. } 10 \text { for } \\
& \text { Principles of Symmetry, Dynamics \& Spectroscopy }
\end{aligned}
$$

Fig. 10.1.2 Yamanouchi formulas for permutation operators.
Integer d is the "city block" distance between (n) and $(n-1)$ blocks, i.e., the minimum number of streets to be crossed when traveling from one to the other. Note that when numbers (n) and ($n-1$) are ordered smaller above larger, the permutation is negative (anti-symmetric if $\mathrm{d}=1$), and positive (symmetric if $\mathrm{d}=1$) when the smaller number is left of the larger number. [The $(n-1)$ will never be above and left of (n) since that arrangement would be "non-standard."]

