William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General $U(2)$ Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page

Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
Modern Physics and its Classical Foundations

2014 AMOP
2017 Group Theory for QM
2018 AMOP

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- Jeigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - ajp-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12 C 60 and 13 C 60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Bovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Svmmetry in Quantum Rotors - harter - ims - 2001
Bepresentaions Of Multidimensional Symmetries In Networks - harter-imp-1973
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. This bad boy will be a sure force multiplier.

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure

- Kronecker product states and operators

Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital
electron-proton spin-spin interaction gives a simple example of hyperfine spectra Ket-kets for spin-up and spin-dn states and column matrix representations..

$$
\begin{aligned}
& \left.|\uparrow\rangle|\uparrow\rangle=\left|\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right\rangle^{\text {proton }}\left|\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right\rangle^{\text {electron }},|\uparrow\rangle|\downarrow\rangle=\left|\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right\rangle^{\text {proton }}\left|\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right\rangle^{\text {electron }},|\downarrow\rangle|\uparrow\rangle=\left|\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right\rangle^{\text {proton }}\left|\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right\rangle^{\text {electron }}, \left.|\downarrow\rangle|\downarrow\rangle=\left|\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right\rangle^{\text {proton }} \right\rvert\, \begin{array}{l}
\frac{1}{2} \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
\text { electron } \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.

$$
D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{cc}
D_{+1 / 2,1 / 2}^{1 / 2} & D_{+1 / 2-1 / 2}^{1 / 2} \\
D_{-1 / 2,+1 / 2}^{1 / 2} & D_{-1 / 2,-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{ccc}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right)
$$ electron-proton spin-spin interaction gives a simple example of hyperfine spectra Ket-kets for spin-up and spin-dn states and column matrix representations..

$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { electron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{cc}
D_{+1 / 2,1 / 2}^{1 / 2} & D_{+1 / 2,-1 / 2}^{1 / 2} \\
D_{-1 / 2+1 / 2}^{1 / 2} & D_{-1 / 2-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{ccc}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right) \\
& \text { for NO interaction. }
\end{aligned}
$$

Applies to outer product symmetry $U(2)$ proton $\times U(2)$ electron for NO interaction. electron-proton spin-spin interaction gives a simple example of hyperfine spectra Ket-kets for spin-up and spin-dn states and column matrix representations..

$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

Applies to outer product symmetry $U(2)$ proton $\times U(2)$ electron for NO interaction.

$$
\left(\begin{array}{rc}
\cos \frac{\beta_{p}}{2} & -\sin \frac{\beta_{p}}{2} \\
\sin \frac{\beta_{p}}{2} & \cos \frac{\beta_{p}}{2}
\end{array}\right) \otimes\left(\begin{array}{cc}
\cos \frac{\beta_{e}}{2} & -\sin \frac{\beta_{e}}{2} \\
\sin \frac{\beta_{e}}{2} & \cos \frac{\beta_{e}}{2}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2} & -\cos \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} & -\sin \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2} & \sin \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} \\
\cos \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} & \cos \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2} & -\sin \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} & -\sin \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2} \\
\sin \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2} & -\sin \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} & \cos \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2} & -\cos \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} \\
\sin \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} & \sin \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2} & \cos \frac{\beta_{p}}{2} \sin \frac{\beta_{e}}{2} & \cos \frac{\beta_{p}}{2} \cos \frac{\beta_{e}}{2}
\end{array}\right)
$$

Interaction reduces symmetry:
(Only $\left(\alpha_{e}, \beta_{e}, \gamma_{e}\right)=\left(\alpha_{p}, \beta_{p}, \gamma_{p}\right)$
is allowed!
Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Spin-spin (1/2)² product states: Hydrogen hyperfine structure

 electron-proton spin-spin interaction gives a simple example of hyperfine spectra Ket-kets for spin-up and spin-dn states and column matrix representations..$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { electron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{cc}
D_{+1 / 2,1 / 2}^{1 / 2} & D_{+1 / 2,-1 / 2}^{1 / 2} \\
D_{-1 / 2+1 / 2}^{1 / 2} & D_{-1 / 2-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{ccc}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
\text { on for NO interaction. } \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

Applies to outer product symmetry $U(2)$ proton $\times U(2)$ electron for NO interaction.

Interaction reduces symmetry:
(Only $\left(\alpha_{e}, \beta_{e}, \gamma_{e}\right)=\left(\alpha_{p}, \beta_{p}, \gamma_{p}\right)$
is allowed!

Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{\text {e }+p}$
$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\end{array}\right) \cdot\left(\begin{array}{cccc}\cos ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} & \sin 2 \frac{\beta}{2} \\ \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2} & -\sin ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} \\ \sin \frac{\beta}{2} \cos \frac{\beta}{2} & -\sin ^{2} \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} \\ \sin ^{2} \frac{\beta}{2} & \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2}\end{array}\right) \cdot\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ 0 & 0 & 1 & 0\end{array}\right)$

Spin-spin (1/2)² product states: Hydrogen hyperfine structure

 electron-proton spin-spin interaction gives a simple example of hyperfine spectra Ket-kets for spin-up and spin-dn states and column matrix representations..$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { electron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{cc}
D_{+1 / 2,1 / 2}^{1 / 2} & D_{+1 / 2,-1 / 2}^{1 / 2} \\
D_{-1 / 2+1 / 2}^{1 / 2} & D_{-1 / 2-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{ccc}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
\text { on for NO interaction. } \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

Applies to outer product symmetry $U(2)$ proton $\times U(2)$ electron for NO interaction.

Interaction reduces symmetry:
(Only $\left(\alpha_{e}, \beta_{e}, \gamma_{e}\right)=\left(\alpha_{p}, \beta_{p}, \gamma_{p}\right)$
is allowed!

Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{\text {e }+p}$
$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\end{array}\right) \cdot\left(\begin{array}{cccc}\cos ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} & \sin 2 \frac{\beta}{2} \\ \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2} & -\sin ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} \\ \sin \frac{\beta}{2} \cos \frac{\beta}{2} & -\sin ^{2} \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} \\ \sin ^{2} \frac{\beta}{2} & \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2}\end{array}\right) \cdot\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ 0 & 0 & 1 & 0\end{array}\right)$

Spin-spin (1/2)² product states: Hydrogen hyperfine structure

 electron-proton spin-spin interaction gives a simple example of hyperfine spectra Ket-kets for spin-up and spin-dn states and column matrix representations..$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { electron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{ll}
D_{+1 / 2,+1 / 2}^{1 / 2} & D_{+1 / 2-1 / 2}^{1 / 2} \\
D_{-1 / 2+1 / 2}^{1 / 2} & D_{-12,-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{cc}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right) \\
& \text { for NO interaction. }
\end{aligned}
$$

Applies to outer product symmetry $U(2)$ proton $\times U(2)$ electron for NO interaction.

Interaction reduces symmetry:
(Only $\left(\alpha_{e}, \beta_{e}, \gamma_{e}\right)=\left(\alpha_{p}, \beta_{p}, \gamma_{p}\right)$
is allowed!

Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
 ...and "irreducible" becomes "reducible"...

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General $U(2)$ Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$

Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$

Cle

Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$

	$\frac{1}{2} \otimes \frac{1}{2}$		1	1 -1 0			
Clebsch-Gordan coefficients(CGC)	$\frac{1}{2}, \frac{1}{2}$	1	0	0			
$\begin{array}{lll\|l} C_{m}^{\frac{1}{2}} \frac{1}{2} & J \\ \hline \end{array} \equiv\left\{\begin{array}{cc\|c} \frac{1}{2} & \frac{1}{2} & J \end{array}\right\rangle$	$\frac{1}{2}, \frac{-1}{2}$	0	$\sqrt{1}$	0		$\frac{1}{2}$	$=\left\langle\begin{array}{cc\|c}C_{m_{p}}^{\frac{1}{2}} \frac{1}{2} & m_{e} & \\ M\end{array}\right\rangle$
$m_{p} m_{e} M^{-} \left\lvert\, \begin{array}{ll\|l\|} m_{p} & m_{e} & M \end{array}\right.$	$\frac{-1}{2}, \frac{1}{2}$	0		0			
reduce $D^{1 / 2} \otimes D^{1 / 2}$ to $D^{1} \oplus D^{0}$	$\frac{-1}{2}, \frac{-1}{2}$	0	0	1			

$$
\sum_{m_{1} m_{1}^{\prime} m_{2} m_{2}^{\prime}} C_{m_{1}}^{\frac{1}{2}} \frac{1}{2} m_{1}^{\prime} M_{m_{1} m_{2}}^{\frac{1}{2}} D_{m_{1}^{\prime} m_{2}^{\prime}}^{\frac{1}{2}} C_{m_{2} m_{2}^{\prime} M^{\prime}}^{\frac{1}{2}} \frac{\frac{1}{2}}{J^{\prime}}=\boldsymbol{\delta}^{J J^{\prime}} D_{M M^{\prime}}^{J}
$$

$$
\left|\begin{array}{l}
J(1 / 2 \otimes 1 / 2) \\
M
\end{array}\right\rangle=\sum_{m_{1}, m_{2}} C_{m_{1}}^{1 / 2} \begin{array}{lll}
1 / 2 & J
\end{array}\left|\begin{array}{l}
1 / 2 \\
m_{1}
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
m_{2}
\end{array}\right\rangle
$$

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2)2 product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients

\rightarrow
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues B-field gives avoided crossing
Higher- J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Hydrogen hyperfine structure: Fermi-contact interaction

 Racah's trick for energy eigenvalues$$
\begin{aligned}
& a_{e p} \mathbf{J}^{\text {proton }} \bullet J^{\text {electron }}=\frac{a_{e p}}{2}\left[\left(\mathbf{J}^{\text {proton }}+\mathbf{J}^{\text {electron }}\right)^{2}-\left(\mathbf{J}^{\text {proton }}\right)^{2}-\left(\mathbf{J}^{\text {electron }}\right)^{2}\right] \\
&= \frac{a_{e p}}{2}\left[\left(\mathbf{J}^{\text {total }}\right)^{2}-\left(\mathbf{J}^{\text {proton }}\right)^{2}-\left(\mathbf{J}^{\text {electron }}\right)^{2}\right] . \\
& \begin{aligned}
\left\langle{ }_{M}^{J(1 / 2 \otimes / / 2)}\right| H_{\text {contact }}\left|{ }_{M}^{J(1 / 2 \otimes / 2)}\right\rangle & =\frac{a_{e p}}{2}\left[J(J+1)-\frac{1}{2}\left(\frac{1}{2}+1\right)-\frac{1}{2}\left(\frac{1}{2}+1\right)\right] \\
& =\left\{\begin{aligned}
a_{e p} / 4 \text { for the }(J=1) & \text { triplet state, } \\
-3 a_{e p} / 4 \text { for the }(J=0) & \text { singlet state. }
\end{aligned}\right.
\end{aligned} .
\end{aligned}
$$

Hydrogen hyperfine structure: Fermi-contact interaction $+B$-field

$$
H_{1 s-B-\text { field }}=-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {electron }}+a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathrm{J}^{\text {electron }}
$$

	$g-$ factor	Bohr-magneton	gyromagnetic factor
electron	g_{e} $=2.0023$	$\mu_{e}=\frac{e \hbar}{2 m_{e}}$ $=9.27401 \cdot 10^{-24}$	$a_{e}=g_{e} \mu_{e}$ $=1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~T}}$
proton	g_{p} $=5.585$	$\mu_{p}=\frac{e \hbar}{2 m_{p}}$ $=5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{T}$	$a_{p}=g_{p} \mu_{p}$ $=2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{\mathrm{~T}}$

$$
\begin{gathered}
\text { Fermi-contact factor } \\
\hline a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1} \\
=\frac{1}{21.1} \mathrm{~cm}^{-1}
\end{gathered}
$$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} \mathrm{~N} / \mathrm{A}^{2}$

Hydrogen hyperfine structure: Fermi-contact interaction $+B$-field

$$
H_{1 s-B-\text { field }}=-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {lectron }}+a_{e p} J^{\text {proton }} \bullet \mathrm{J}^{\text {electron }}
$$

	g - factor	Bohr - magneton	gyromagnetic factor
electron	$\begin{aligned} & g_{e} \\ & =2.0023 \end{aligned}$	$\begin{aligned} & \mu_{e}=\frac{e \hbar}{2 m_{e}} \\ & =9.27401 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{e}=g_{e} \mu_{e} \\ & =1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{T} \end{aligned}$
proton	$\begin{aligned} & g_{p} \\ & =5.585 \end{aligned}$	$\begin{aligned} & \mu_{p}=\frac{e \hbar}{2 m_{p}} \\ & =5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{p}=g_{p} \mu_{p} \\ & =2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{T} \end{aligned}$

$$
\begin{gathered}
\text { Fermi-contact factor } \\
a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1} \\
=\frac{1}{21.1} \mathrm{~cm}^{-1}
\end{gathered}
$$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} N / A^{2}$
$\left\langle-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {lectron }}\right\rangle=$

	$\left\|\uparrow^{p} \uparrow^{c}\right\rangle$	$\left\|\uparrow^{p} \downarrow^{e}\right\rangle$	$\left\|\downarrow^{p} \uparrow^{c}\right\rangle$	$\left\|\downarrow^{p} \downarrow^{e}\right\rangle$
$\left\langle\uparrow^{p} \uparrow^{e}\right\|$	$\frac{1}{2}\left(a_{e}-a_{p}\right) B_{z}$	\cdot	\cdot	\cdot
$\left\langle\uparrow^{p} \downarrow^{e}\right\|$	\cdot	$\frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z}$	0	\cdot
$\left\langle\downarrow^{p} \uparrow^{e}\right\|$	\cdot	0	$\frac{1}{2}\left(a_{e}+a_{p}\right) B_{z}$	\cdot
$\left\langle\downarrow^{p} \downarrow^{e}\right\|$	\cdot	\cdot	\cdot	$\frac{-1}{2}\left(a_{e}-a_{p}\right) B_{z}$

$\left\langle a_{e p} \mathbf{J}^{\text {proton }} \cdot \mathrm{J}^{\text {electron }}\right\rangle=$

Hydrogen hyperfine structure: Fermi-contact interaction $+B$-field

$$
H_{1 s-B-\text { field }}=-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {lectron }}+a_{e p} \mathrm{~J}^{\text {proton }} \bullet \mathrm{J}^{\text {lectron }}
$$

	$g-$ factor	Bohr-magneton	gyromagnetic factor
electron	$\begin{aligned} & g_{e} \\ & =2.0023 \end{aligned}$	$\begin{aligned} & \mu_{e}=\frac{e \hbar}{2 m_{e}} \\ & =9.27401 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{e}=g_{e} \mu_{e} \\ & =1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$
proton	$\begin{aligned} & g_{p} \\ & =5.585 \end{aligned}$	$\begin{aligned} & \mu_{p}=\frac{e \hbar}{2 m_{p}} \\ & =5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{p}=g_{p} \mu_{p} \\ & =2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$

$$
\begin{gathered}
\text { Fermi-contact factor } \\
a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1} \\
=\frac{1}{21.1} \mathrm{~cm}^{-1}
\end{gathered}
$$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} N / A^{2}$
$\left\langle-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {electron }}\right\rangle=$

	$\left\|\uparrow^{p} \uparrow^{c}\right\rangle$	$\left\|\uparrow^{p} \downarrow^{e}\right\rangle$	$\left\|\downarrow^{p} \uparrow^{c}\right\rangle$	$\left\|\downarrow^{p} \downarrow^{e}\right\rangle$
$\left\langle\uparrow^{p} \uparrow^{e}\right\|$	$\frac{1}{2}\left(a_{e}-a_{p}\right) B_{z}$	\cdot	\cdot	\cdot
$\left\langle\uparrow^{p} \downarrow^{e}\right\|$	\cdot	$\frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z}$	0	\cdot
$\left\langle\downarrow^{p} \uparrow^{e}\right\|$	\cdot	0	$\frac{1}{2}\left(a_{e}+a_{p}\right) B_{z}$	\cdot
$\left\langle\downarrow^{p} \downarrow^{e}\right\|$	\cdot	\cdot	\cdot	$\frac{-1}{2}\left(a_{e}-a_{p}\right) B_{z}$

$\left\langle a_{\text {ep }} \mathbf{J}^{\text {proton }} \cdot \mathrm{J}^{\text {electron }}\right\rangle=$

	$\left\|\begin{array}{l}1 \\ 1\end{array}\right\rangle$	$\left\|\begin{array}{l}1 \\ 0\end{array}\right\rangle \quad\left\|\begin{array}{l}0 \\ 0\end{array}\right\rangle$	$\left\|\begin{array}{c}1 \\ -1\end{array}\right\rangle$
$\left\langle\begin{array}{l}1 \\ 1\end{array}\right\|$	$\frac{a_{e p}}{4}$	- -	
$\left\langle\begin{array}{l}1 \\ 0\end{array}\right\|$	-	$\frac{a_{e p}}{4} \quad 0$	-
$\left\langle\begin{array}{l}0 \\ 0\end{array}\right\|$		$0 \quad \frac{-3 a_{e p}}{4}$.
$\left\langle\begin{array}{l}1 \\ -1\end{array}\right\|$		- -	$\frac{a_{e p}}{4}$

Hydrogen hyperfine structure: Fermi-contact interaction $+B$-field

$$
H_{1 s-B-\text { feild }}=-a_{p} B_{z} J_{z}^{\text {prototon }}+a_{e} B_{z} J_{z}^{J^{\text {lectron }}+a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathbf{J}^{\text {electron }} .}
$$

	$g-$ factor	Bohr-magneton	gyromagnetic factor
electron	$\begin{aligned} & g_{e} \\ & =2.0023 \end{aligned}$	$\begin{aligned} & \mu_{e}=\frac{e \hbar}{2 m_{e}} \\ & =9.27401 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{e}=g_{e} \mu_{e} \\ & =1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$
proton	$\begin{aligned} & g_{p} \\ & =5.585 \end{aligned}$	$\begin{aligned} & \mu_{p}=\frac{e \hbar}{2 m_{p}} \\ & =5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{p}=g_{p} \mu_{p} \\ & =2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$

Fermi-contact factor
$a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J}$
$\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz}$
$\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1}$
$=\frac{1}{21.1} \mathrm{~cm}^{-1}$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} N / A^{2}$
$\left\langle-a_{p} B_{z} z_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {electron }}\right\rangle=$

	$\left\|\uparrow^{p} \uparrow^{c}\right\rangle$	$\left\|\uparrow^{p} \downarrow^{c}\right\rangle$	$\left\|\downarrow^{p} \uparrow^{c}\right\rangle$	$\left\|\downarrow^{p} \downarrow^{c}\right\rangle$
$\left\langle\uparrow^{p} \uparrow^{c}\right\|$	$\frac{1}{2}\left(a_{e}-a_{p}\right) B_{z}$	\cdot	\cdot	\cdot
$\left\langle\uparrow^{p} \downarrow^{c}\right\|$	\cdot	$\frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z}$	0	\cdot
$\left\langle\downarrow^{p} \uparrow^{e}\right\|$	\cdot	0	$\frac{1}{2}\left(a_{e}+a_{p}\right) B_{z}$	\cdot
$\left\langle\downarrow^{p} \downarrow^{c}\right\|$	\cdot	\cdot	\cdot	$\frac{-1}{2}\left(a_{e}-a_{p}\right) B_{z}$

	$\left\|\begin{array}{l}1 \\ 1\end{array}\right\rangle$	$\left\|\begin{array}{l}1 \\ 0\end{array}\right\rangle \quad\left\|\begin{array}{l}0 \\ 0\end{array}\right\rangle$	$\left\|\begin{array}{l}1 \\ -1\end{array}\right\rangle$
$\left\langle\begin{array}{l}1 \\ 1\end{array}\right\|$	$\frac{1}{2}\left(a_{e}-a_{p}\right) B_{z}$		
$\left\langle\begin{array}{l}1 \\ 0\end{array}\right\|$ $\left\langle\begin{array}{l}0 \\ 0\end{array}\right\|$		$\begin{array}{cc} 0 & \frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z} \\ \frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z} & 0 \end{array}$.
$\left\langle\begin{array}{l}1 \\ -1\end{array}\right\|$			$\frac{-1}{2}\left(a_{e}-a_{p}\right) B_{z}$

$\left\langle a_{\varphi p}{ }^{\mathrm{promon}} \cdot \mathrm{J}^{\text {dececron }}\right\rangle=$

	$\mid{ }^{\uparrow \rho \uparrow \uparrow\rangle}$	$\left\|\uparrow^{p} \downarrow^{0}\right\rangle\left\|\downarrow^{\square} \uparrow{ }^{\wedge}\right\rangle$	$\left\|\downarrow^{p} \downarrow^{c}\right\rangle$
$\langle\uparrow \uparrow \uparrow \uparrow$	$\frac{a_{\text {ce }}}{4}$		
$\begin{aligned} & \langle\uparrow \downarrow \downarrow \downarrow\| \\ & \langle\downarrow \downarrow \uparrow \downarrow\| \end{aligned}$		$\begin{array}{cc}\frac{-a_{\text {cp }}}{4} & \frac{a_{\text {cp }}}{2} \\ \frac{a_{e p}}{2} & \frac{-a_{e p}}{4}\end{array}$	
$\left\langle\downarrow^{p} \downarrow^{\prime}\right\rangle$			$\frac{a_{\text {ep }}}{4}$

$\left\langle a_{\text {ep }} \mathbf{J}^{\text {protonn }} \bullet \mathrm{J}^{\text {electron }}\right\rangle=$

	$\left\|\begin{array}{cc}1 \\ 1\end{array}\right\rangle$	$\left\|\begin{array}{c}1 \\ 0\end{array}\right\rangle$	$\left\|\begin{array}{c}0 \\ 0\end{array}\right\rangle$	
$\left\langle\begin{array}{c}1 \\ -1\end{array}\right\|$				
$\left\langle\begin{array}{l}1 \\ 1\end{array}\right\|$	$\frac{a_{e p}}{4}$	\cdot	\cdot	\cdot
$\left\langle\begin{array}{c}1 \\ 1 \\ 0\end{array}\right\|$	\cdot	$\frac{a_{e p}}{4}$	0	\cdot
$\left\langle\begin{array}{c}0 \\ 0 \\ 0\end{array}\right\|$	\cdot	0	$\frac{-3 a_{e p}}{4}$	\cdot
$\left\langle\begin{array}{c}1 \\ -1\end{array}\right\|$	\cdot	\cdot	\cdot	$\frac{a_{e p}}{4}$

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2)2 product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues

B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Anatomy of electric dipole vs magnetic dipole of Fermi-contact interaction $+B$-field
(a) Electric Dipole E-Field
(b) Magnetic Dipole B-Field

Proton

Hyperf. theory Ch. 24 p48. Hyperf. theory Ch. 24 p48.
Deeper theory ends p53

$$
H_{e-p-s p i n}=\frac{\mu_{0}\left|g_{e} \mu_{e} g_{p} \mu_{p}\right|}{4 \pi}\left[\frac{8 \pi}{3} \delta(\mathbf{0}) \mathbf{J}^{e} \bullet \mathbf{J}^{p}+\frac{\mathbf{L}^{e} \bullet \mathbf{J}^{p}}{r^{3}}-\frac{\mathbf{J}^{e} \bullet \mathbf{J}^{p}}{r^{3}}+\frac{3\left(\mathbf{J}^{e} \bullet \mathbf{r}\right)\left(\mathbf{J}^{p} \bullet \mathbf{r}\right)}{r^{5}}\right]
$$

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)$ electron to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
\rightarrow Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations
Angular momentum uncertainty cones related to 3j coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Higher-J product states

Higher-J product states

Figure 24.1.3 Atomic ${ }^{2 \mathrm{~S}+1} \mathrm{~L}$ multiplet levels for two $(\mathrm{l}=1) \mathrm{p}$ electrons.

Higher-J product states

(b) Mixed Configuration

Figure 24.1.3 Atomic ${ }^{2 \mathrm{~S}+}{ }^{+} \mathrm{L}$ multiplet levels for two $(1=1) \mathrm{p}$ electrons.

Higher-J product states

$$
\begin{gathered}
(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0 \text { case } \\
\left|\begin{array}{cccccccccc|c|}
C_{m_{1}}^{1} & 1 & L \\
m_{2} & M
\end{array}\right\rangle=\begin{array}{|cc|ccccccccc|}
\hline 1 & 1 & 1 & \cdot \\
1 & 0 & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot \\
1 & -1 & \cdot & \cdot & \frac{1}{\sqrt{6}} & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{3}} \\
0 & 1 & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \cdot & \sqrt{\frac{2}{3}} & \cdot & \cdot & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{3}} \\
0 & -1 & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot \\
-1 & 1 & \cdot & \cdot & \frac{1}{\sqrt{6}} & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{3}} \\
-1 & 0 & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{2}} & \cdot \\
-1 & -1 & . & . & \cdot & \cdot & 1 & . & \cdot & \cdot & \cdot \\
\hline
\end{array}
\end{gathered}
$$

(b) Mixed Configuration

Pauli-Fermi selection rules
requires total anti-symmetry

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Higher-J product states

General $U(2)$ case
CG coupling derived (start)
Unit 8 Ch. 24 p 39.

$$
\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{i_{1}-j_{2}-m_{3}} C_{m_{1} m_{2} m_{3}}^{j_{3} j_{2} j_{3}} /\left(2 j_{3}+1\right)^{\frac{1}{2}}
$$

(b) Mixed Configuration

Pauli-Fermi selection rules
requires total anti-symmetry
Wigner $3 j$ vs. Clebsch-Gordon (CGC)

(b) Mixed Configuration
(2p3p)
Figure 24.1.3 Atomic ${ }^{2 \mathrm{~S}+\mathrm{l}} \mathrm{L}$ multiple levels for two $(1=1) \mathrm{p}$ electrons.
General $U(2)$ case
CG coupling derived (formula)
Unit 8 Ch. 24 p 44.

$$
\begin{aligned}
& \left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{1}-j_{2}-m_{3}} C_{m_{1} m_{2} m_{3}}^{j_{2}} /\left(2 j_{3}+1\right)^{\frac{1}{2}} \quad \text { requires total anti-symmetry } \\
& \left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{1}-j_{2}-n_{3}} \sqrt{\frac{\left(j_{1}+j_{2}-j_{3}\right)!\left(j_{1}-j_{2}+j_{3}\right)\left(-j_{1}+j_{2}+j_{3}\right)}{\left(j_{1}+j_{2}+j_{3}+1\right)!}} \\
& \sum_{k} \frac{(-1)^{k}}{k!} \frac{\sqrt{\left(j_{1}+m_{1}\right)!\left(j_{1}-m_{1}\right)!\left(j_{2}+m_{2}\right)!\left(j_{2}-m_{2}\right)!\left(j_{3}+m_{3}\right)!\left(j_{3}-m_{3}\right)!}}{\left(j_{1}-m_{1}-k\right)!\left(j_{2}-m_{2}-k\right)!\left(j_{1}+j_{2}-j_{3}-k\right)!\left(j_{3}-j_{2}-m_{1}+k\right)!\left(j_{3}-j_{1}-m_{2}+k\right)!}
\end{aligned}
$$

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)$ electron to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to 3j coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Figure 24.1.4 Fine-structure $n \ell_{j}$ levels for atomic hydrogen. Hyperfine splitting is not shown.

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Figure 24.1.6 Level-splitting and vector-addition picture of angular-momentum coupling.

Higher-J product states

Figure 24.1.6 Level-splitting and vector-addition picture of angular-momentum coupling.

Higher-J product states

Higher-J product states

Figure 24.1.8 Clebsch-Gordan coefficients plotted next to their angular-momentum cones.
Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Figure 24.1.8 Clebsch-Gordan coefficients plotted next to their angular-momentum cones
Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

The Lande g-factor (Atomic LS-coupled gyro-magnetic factor)

$$
g_{\text {Lande }}=\frac{3 J(J+1)-L(L+1)+S(S+1)}{2 J(J+1)} \text { where: }\left\langle m_{\text {TOTAL }} B_{z}\right\rangle=g_{\text {Lande }} \mu_{\text {Bohr }} m_{3} B_{z}
$$

(a) Zeeman

(b) Zeeman

Coupled State
$g_{\text {Lande }}{ }^{\prime}, M$

Lande'g-factor
Unit 8 Ch. 24 p 26.

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)$ electron to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General $U(2)$ Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Multi-spin (1/2)N product states

$$
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}
$$

Multi-spin (1/2)N product states

$$
\left(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}\right)=d^{0}+d^{1}
$$

$$
\left(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}\right)=d^{0}+d^{1}
$$

$$
\left(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}\right) \otimes d^{\frac{1}{2}}=\left(d^{0}+d^{1}\right) \otimes d^{\frac{1}{2}}=d^{0} \otimes d^{\frac{1}{2}}+d^{1} \otimes d^{\frac{1}{2}}
$$

$$
=d^{\frac{1}{2}}+d^{\frac{1}{2}}+d^{\frac{3}{2}}=2 d^{\frac{1}{2}}+1 d^{\frac{3}{2}}
$$

Multi-spin (1/2)N product states

Intro 3-particle coupling.
Unit 8 Ch. 25 p28.

Intro 3,4-particle Young Tableaus
GrpThLect29 p42.

Young Tableau Magic Formulae
GrpThLect29 p46-48.

Multi-spin (1/2)N product states

Multi-spin (1/2)N product states

Multi-spin (1/2)N product states

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)$ electron to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General $U(2)$ Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Introducing $U(N)$

(a) N-D Oscillator Degeneracy ℓ of quamtum level v

Principal Quantum Number Dimension of oscillator

(c) Binomial coefficients

$$
\frac{(N-1+v)!}{(N-1)!v!}=\binom{N-1+v}{v}=\binom{N-1+v}{N-1}
$$

Introducing $U(3)$

(b) N-particle 3-level states ...or spin-1 states

Intro 3-particle coupling.
Unit 8 Ch. 25 p 28.

Intro 3,4-particle Young Tableaus
GrpThLect29 p42.

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)$ electron to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General $U(2)$ Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry

$\xrightarrow{U(2)}$
and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital
$U(2)$ and $U(3)$ tensor expansions of Hamiltonian
2^{k}-pole expansion of an $N-b y=N$ matrix \mathbf{H}
2-by-2 case: $\mathbf{H}=\left(\begin{array}{cc}A+B-i C \\ B+i C & D\end{array}\right)=\frac{A+D}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)+C\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)+\frac{A-D}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
=\frac{A+D}{2} \quad \mathbf{1}+B \boldsymbol{\sigma}_{x} \quad+C \boldsymbol{\sigma}_{y} \quad+\frac{A-D}{2} \boldsymbol{\sigma}_{z}
$$

$\mathbf{u}_{+1}^{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \mathbf{u}_{0}^{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \frac{1}{2} \mathbf{u}_{-1}^{1}=\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right) \begin{gathered}\text { rank-1 } \\ \text { (vector) }\end{gathered}$
$\mathbf{u}_{0}^{0}=\left(\begin{array}{ll}1 \\ 0 & 1\end{array}\right)^{2} \frac{1}{2}$
rank-0
(scalar)

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

3-by-3 case: $\mathbf{H}=\binom{H_{H 2} H_{2} H_{H 3}}{H_{31} H_{21} H_{32} H_{33}}$

Irrep Tensor building
Unit 8 Ch. 25 p5.
$U(3)$ generators (spin $J=1$)

$$
\begin{aligned}
& \mathbf{u}_{+2}^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \mathbf{u}_{+1}^{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \frac{1}{2} \mathbf{u}_{0}^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right) \frac{1}{6} \quad \mathbf{u}_{-1}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \frac{1}{\sqrt{2}} \mathbf{u}_{-2}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \text { rank-2 } \quad \text { (tensor) } \\
& \mathbf{u}_{+1}^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \frac{1}{\sqrt{2}} \mathbf{u}_{0}^{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \frac{1}{\sqrt{2}} \mathbf{u}_{-1}^{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \frac{1}{2} \\
& \mathbf{u}_{0}^{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \frac{1}{3} \\
& \text { rank-1 } \\
& \text { (vector) } \\
& \text { rank-0 } \\
& \text { (scalar) }
\end{aligned}
$$

Mutually
commuting diagonal operators

Wigner-Clebsch-Gordan expressions for Tensor $\left\langle\mathbf{T}_{q}^{k}\right\rangle$

$$
\left\langle\begin{array}{l|l|l}
J^{\prime} & \mathbf{T}_{q}^{k} & J \\
M^{\prime} & q & M
\end{array}\right\rangle=\left(\begin{array}{ccc}
J^{\prime} & k & J \\
M^{\prime} & q & -M
\end{array}\right)\left(J^{\prime} \mid\|k\| J\right)=C_{q M M}^{k J} J^{\prime}\left\langle J^{\prime} \mid\|k\| J\right\rangle
$$

Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors

 CG-Products of spin-1/2 ket-bras $\left\{|1 / 2\rangle,\left\langle\frac{1 / 2}{m_{1}}\right\}\right\}$ give scalar/vector operators analogous to: ket-kets$$
\begin{aligned}
& \left.T_{q}^{k}=\sum_{m_{1}} C_{m_{1} m_{2} q}^{1 / 2} 1 / 2 k\left|\begin{array}{c}
1 / 2 \\
m_{1}
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-m_{2}
\end{array}\right|(-1)^{\frac{1}{2}-m_{2}} \quad\right\} \quad \text { analogous to: } \quad\left\{\quad\left|\begin{array}{ll}
J(1 / 2 \otimes 1 / 2) \\
M
\end{array}\right\rangle=\sum_{m_{1}, m_{2}} C_{m_{1}}^{1 / 2} 1 / 2 \quad m_{2} \quad M\left|\begin{array}{l}
1 / 2 \\
m_{1}
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
m_{2}
\end{array}\right\rangle\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.=-\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|,=-\frac{1}{\sqrt{2}}\left[\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|-\left|\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right|\right],=\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right|, \quad\right\} \text { analogous to: }\left\{\left\lvert\, \begin{array}{l}
1(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right.\right\}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle \\
& T_{0}^{0}=-\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left.=-\frac{1}{\sqrt{2}}\left[\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|+\left|\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right|\right] . \quad\right\} \text { analogous to: }\left\{\left\{\begin{array}{l}
0(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{-1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\right.
\end{aligned}
$$

1st three operators are a vector set with following Cartesian combinations:

$$
\begin{aligned}
& T_{x} \equiv-\frac{T_{-1}^{1}-T_{1}^{1}}{\sqrt{2}} \quad T_{y} \equiv-i \frac{T_{-1}^{1}+T_{1}^{1}}{\sqrt{2}} \quad T_{z} \equiv-T_{0}^{1} \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \equiv \frac{1}{\sqrt{2}} \sigma_{x} \quad \equiv \frac{1}{\sqrt{2}} \sigma_{y} \quad \equiv \frac{1}{\sqrt{2}} \sigma_{z} \\
& \equiv \sqrt{2} J_{x} \quad \equiv \sqrt{2} J_{y} \quad \equiv \sqrt{2} J_{z}
\end{aligned}
$$

(Some old friends!)

$$
\sigma_{X} \rightarrow\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{Y} \rightarrow\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{Z} \rightarrow\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Spherical vs. Cartesian operators

$$
T_{-1}^{1}=J_{-} / 2=\left(J_{x}-i J_{y}\right) / \sqrt{2}, \quad T_{0}^{1}=J_{z} / \sqrt{2}, \quad T_{-1}^{1}=J_{+} / 2=\left(J_{x}+i J_{y}\right) / 2 .
$$

Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors

 CG-Products of spin-1/2 ket-bras $\left\{|1 / 2\rangle,\left\langle\frac{1 / 2}{m_{1}}\right\}\right\}$ give scalar/vector operators analogous to: ket-kets$$
\begin{aligned}
& T_{-1}^{1}=\left(\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right) \quad T_{0}^{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) \quad T_{1}^{1}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{l}
1(1 / 2 \otimes 1 / 2) \\
1
\end{array}\right\rangle=\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle \\
& \left.=-\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|,=-\frac{1}{\sqrt{2}}\left[\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|-\left|\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right|\right],=\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right|, \quad\right\} \text { analogous to: }\left\{\left\lvert\, \begin{array}{l}
1(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right.\right\}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle \\
& T_{0}^{0}=-\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left.=-\frac{1}{\sqrt{2}}\left[\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|+\left|\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right|\right] . \quad\right\} \text { analogous to: }\left\{\left\{\begin{array}{l}
0(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{-1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\right.
\end{aligned}
$$

1st three operators are a vector set with following Cartesian combinations:

$$
\begin{aligned}
& R(0 \beta 0) \\
& \downarrow \\
& T_{0}^{1} \\
& \downarrow \\
& R^{\dagger}(0 \beta 0) \\
& =T_{0}^{\prime} \\
& \left(\begin{array}{cc}
\cos \frac{\beta}{2} & -\sin \frac{\beta}{2} \\
\sin \frac{\beta}{2} & \cos \frac{\beta}{2}
\end{array}\right) \quad\left(\begin{array}{cc}
-1 / \sqrt{2} & 0 \\
0 & 1 / \sqrt{2}
\end{array}\right) \\
& \left(\begin{array}{cc}
\cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\
-\sin \frac{\beta}{2} & \cos \frac{\beta}{2}
\end{array}\right)=-\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array}\right) \\
& =D_{10}^{1}(0 \beta 0) T_{1}^{1} \\
& +D_{00}^{1}(0 \beta 0) T_{0}^{1} \\
& +D_{-10}^{1}(0 \beta 0) T_{-1}^{1} \\
& =\frac{-\sin \beta}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\cos \beta\left(\begin{array}{cc}
-1 / \sqrt{2} & 0 \\
0 & 1 / \sqrt{2}
\end{array}\right)+\frac{\sin \beta}{\sqrt{2}}\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors

 CG-Products of spin-1/2 ket-bras $\left\{\left\{_{m_{1}}^{12}\right\rangle,\left\langle m_{2}\right|\right\}$ give scalar/vector operators analogous to: ket-kets$$
\begin{aligned}
& T_{-1}^{1}=\left(\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right) \quad T_{0}^{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) \quad T_{1}^{1}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{l}
1(1 / 2 \otimes 1 / 2) \\
1
\end{array}\right\rangle=\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle \\
& \left.=-\left|\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|,=-\frac{1}{\sqrt{2}}\left[\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|-\left|\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right|\right],=\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right|, \quad\right\} \text { analogous to: }\left\{\begin{array}{l}
1(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right\}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle \\
& T_{0}^{0}=-\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left.=-\frac{1}{\sqrt{2}}\left[\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|+\left|\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right|\right] . \quad\right\} \text { analogous to: }\left\{\left\{\begin{array}{l}
0(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle-\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\right.
\end{aligned}
$$

1 st three operators are a vector set with following Cartesian combinations:
So do

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General $U(2)$ Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Tensor operators for spin-1 states: U(1) generalization of Pauli spinors CGC definition:

$$
\begin{aligned}
& \text { Wigner 3jm definition: } \\
& \mathbf{v}_{q}^{k}=\sum_{m, m^{\prime}} C_{m-m^{\prime}}^{j}{ }_{q}{ }_{q}(-1)^{j-m^{\prime}}\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle\left\langle\begin{array}{l}
j \\
m^{\prime}
\end{array}\right|=(-1)^{2 j} T_{q}^{k} . \\
& \mathbf{v}_{q}^{k}=\sum_{m, m^{\prime}}(-1)^{j-m} \sqrt{2 k+1}\left(\begin{array}{rrr}
k & j & j \\
q & m^{\prime} & -m
\end{array}\right)\left|\begin{array}{c}
j \\
m
\end{array}\right\rangle\left\langle\begin{array}{c}
j \\
m^{\prime}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 / \sqrt{2} & 0 & 0 \\
0 & 1 / \sqrt{2} & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1 / \sqrt{2}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & -1 / \sqrt{2} & 0 \\
0 & 0 & -1 / \sqrt{2} \\
0 & 0 & 0
\end{array}\right) \\
& T_{0}^{0}=\frac{\left.\left|\begin{array}{l}
1 \\
1
\end{array}\right\rangle\left\langle\left(\begin{array}{l}
1 \\
1
\end{array}|+| \begin{array}{l}
1 \\
0
\end{array}\right\rangle\left\langle\begin{array}{l}
1 \\
0
\end{array}\right|+\right| \begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)\left\langle\begin{array}{c}
1 \\
-1
\end{array}\right|}{\sqrt{3}} \\
& \mathrm{k}=0 \\
& \rightarrow\left(\begin{array}{ccc}
1 / \sqrt{3} & 0 & 0 \\
0 & 1 / \sqrt{3} & 0 \\
0 & 0 & 1 / \sqrt{3}
\end{array}\right)
\end{aligned}
$$

Tensor operators \mathbf{v}_{q}^{k} for spin-j states: $\mathrm{U}(2 j+1)$ generalization of Pauli spinors

$$
\mathbf{v}_{q}^{k}=\sum_{m, m^{\prime}}(-1)^{j-m} \sqrt{2 k+1}\left(\begin{array}{ccc}
k & j & j \\
q & m^{\prime} & -m
\end{array}\right)\left|\begin{array}{c}
j \\
m
\end{array}\right\rangle\left\langle\begin{array}{c}
j \\
m^{\prime}
\end{array}\right|
$$

Tables for $j=1(p$-shell $), j=2(d$-shell $), j=3(f$-shell $), \ldots$ and $j=\frac{1}{2}, j=\frac{3}{2}, j=\frac{5}{2} \ldots$

Octahedral 4th_rank $A_{\text {lg }}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting d-orbital ($l=j=2$)

$$
\begin{aligned}
\mathbf{T}^{[4]}\left(A_{1 g}\right)=D\left[x^{4}+y^{4}+z^{4}-\frac{3}{4} r^{4}\right] & =D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4}+X_{-4}^{4}\right)+\frac{2}{5} X_{0}^{4}\right] \\
\left\langle\mathbf{T}^{[4]}\left(A_{1 g}\right)\right\rangle_{j=2} & =D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4}+\mathbf{v}_{-4}^{4}\right)+\frac{2}{5} \mathbf{v}_{0}^{4}\right\rangle_{j=2} \frac{\sqrt{5}}{3}\langle 2|\left|\mathbf{v}^{4}\right||2\rangle .
\end{aligned}
$$

Tensors Applied to d,f-levels.

Unit 8 Ch. 25 p 21.

$$
\mathbf{V}_{q}^{3}=\begin{array}{rrrrr|}
\begin{array}{rrrrr}
1 & -\sqrt{3} & 1 & -1 & \cdot \\
\sqrt{3} & -2 & \sqrt{2} & 0 & -1 \\
1 & -\sqrt{2} & 0 & \sqrt{2} & -1 \\
1 & 0 & -\sqrt{2} & 2 & -\sqrt{3} \\
\cdot & 1 & -1 & \sqrt{3} & -1
\end{array} & \begin{array}{l}
\sqrt{2} \\
\sqrt{2} \\
\sqrt{10}
\end{array} \\
& \sqrt{10}
\end{array}
$$

g tensor operator $\mathrm{T}[4]$: Application to splitting d-orbital $(l=j=2)$

$$
\begin{aligned}
& \left.{ }^{4}+z^{4}-\frac{3}{4} r^{4}\right]=D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4}+X_{-4}^{4}\right)+\frac{2}{5} X_{0}^{4}\right] \\
& \left.\Gamma^{[4]}\left(A_{1 g}\right)\right\rangle_{j=2}=D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4}+\mathbf{v}_{-4}^{4}\right)+\frac{2}{5} \mathbf{v}_{0}^{4}\right\rangle_{j=2} \frac{\sqrt{5}}{3}\langle 2|\left|\mathbf{v}^{4}\right||2\rangle .
\end{aligned}
$$

Tensors Applied to d,f-levels.
Unit 8 Ch. 25 p21.

Octahedral $4^{\text {th }}$-rank $A_{\text {lg }}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting d-orbital $(l=j=2)$

$$
\begin{aligned}
\mathbf{T}^{[4]}\left(A_{1 g}\right)=D\left[x^{4}+y^{4}+z^{4}-\frac{3}{4} r^{4}\right] & =D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4}+X_{-4}^{4}\right)+\frac{2}{5} X_{0}^{4}\right] \\
\left\langle\mathbf{T}^{[4]}\left(A_{1 g}\right)\right\rangle_{j=2} & =D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4}+\mathbf{v}_{-4}^{4}\right)+\frac{2}{5} \mathbf{v}_{0}^{4}\right\rangle_{j=2} \frac{\sqrt{5}}{3}\langle 2|\left|\mathbf{v}^{4}\right||2\rangle .
\end{aligned}
$$

$$
\mathbf{v}_{q}^{2}=\begin{array}{rrrrr|}
\begin{array}{rrrrr}
2 & -\sqrt{6} & \sqrt{2} & \cdot & \cdot \\
\sqrt{6} & -1 & -1 & \sqrt{3} & \cdot \\
\sqrt{2} & 1 & -2 & 1 & \sqrt{2} \\
\cdot & \sqrt{3} & -1 & -1 & \sqrt{6} \\
\cdot & \cdot & \sqrt{2} & -\sqrt{6} & 2
\end{array} & \begin{array}{l}
\sqrt{7} \\
\\
\end{array} & \\
& & & \sqrt{14}
\end{array}
$$

$$
\left\langle\hat{\mathbf{T}}^{[4]}\left(A_{1 g}^{j=2}\right)\right\rangle=\left(\begin{array}{ccccc}
2 & \cdot & \cdot & \cdot & 10 \\
\cdot & -8 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 12 & \cdot & \cdot \\
\cdot & \cdot & \cdot & -8 & \cdot \\
10 & \cdot & \cdot & \cdot & 2
\end{array}\right)
$$

Tensors Applied to d,f-levels.
Unit 8 Ch. 25 p 21.

Octahedral $4^{\text {th }}$-rank $A_{\text {lg }}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting d-orbital $(l=j=2)$

$$
\begin{aligned}
\mathbf{T}^{[4]}\left(A_{1 g}\right)=D\left[x^{4}+y^{4}+z^{4}-\frac{3}{4} r^{4}\right] & =D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4}+X_{-4}^{4}\right)+\frac{2}{5} X_{0}^{4}\right] \\
\left\langle\mathbf{T}^{[4]}\left(A_{1 g}\right)\right\rangle_{j=2} & \left.=D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4}+\mathbf{v}_{-4}^{4}\right)+\frac{2}{5} \mathbf{v}_{0}^{4}\right\rangle_{j=2} \frac{\sqrt{5}}{3}\langle 2|\left|\mathrm{v}^{4}\right| 2\right\rangle .
\end{aligned}
$$

Tensors Applied to d,f-levels.
Unit 8 Ch. 25 p 21.

Octahedral $4^{\text {th }}$-rank $A_{\text {lg }}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting d-orbital $(l=j=2)$

$$
\begin{aligned}
\mathbf{T}^{[4]}\left(A_{1 g}\right)=D\left[x^{4}+y^{4}+z^{4}-\frac{3}{4} r^{4}\right] & =D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4}+X_{-4}^{4}\right)+\frac{2}{5} X_{0}^{4}\right] \\
\left\langle\mathbf{T}^{[4]}\left(A_{1 g}\right)\right\rangle_{j=2} & \left.=D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4}+\mathbf{v}_{-4}^{4}\right)+\frac{2}{5} \mathbf{v}_{0}^{4}\right\rangle_{j=2} \frac{\sqrt{5}}{3}\langle 2|\left|\mathrm{v}^{4}\right| 2\right\rangle .
\end{aligned}
$$

(d) $l=2$

Octahedral 4th_rank $A_{\text {lg }}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting d-orbital $(l=j=2)$

$$
\begin{aligned}
\mathbf{T}^{[4]}\left(A_{1 g}\right)=D\left[x^{4}+y^{4}+z^{4}-\frac{3}{4} r^{4}\right] & =D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4}+X_{-4}^{4}\right)+\frac{2}{5} X_{0}^{4}\right] \\
\left\langle\mathbf{T}^{[4]}\left(A_{1 g}\right)\right\rangle_{j=2} & =D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4}+\mathbf{v}_{-4}^{4}\right)+\frac{2}{5} \mathbf{v}_{0}^{4}\right\rangle_{j=2} \frac{\sqrt{5}}{3}\langle 2|\left|\mathrm{v}^{4}\right||2\rangle .
\end{aligned}
$$

$$
\left.\mathbf{v}_{q}^{1}=\begin{array}{|ccccc}
2 & -\sqrt{2} & \cdot & \cdot & \cdot \\
\sqrt{2} & 1 & -\sqrt{3} & \cdot & \cdot \\
\cdot & \sqrt{3} & 0 & -\sqrt{3} & \cdot \\
\cdot & \cdot & \sqrt{3} & -1 & -\sqrt{2} \\
\cdot & \cdot & \cdot & \sqrt{2} & -2
\end{array} \right\rvert\, \begin{aligned}
& \sqrt{10} \\
& \\
&
\end{aligned}
$$

$$
\left\langle\hat{\mathbf{T}}^{[4]}\left(A_{1 g}^{j=2}\right)\right\rangle=\left(\begin{array}{ccccc}
2 & \cdot & \cdot & \cdot & 10 \\
\cdot & -8 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 12 & \cdot & \cdot \\
\cdot & \cdot & \cdot & -8 & \cdot \\
10 & \cdot & \cdot & \cdot & 2
\end{array}\right) \sim\left(\begin{array}{ccccc}
2 & 10 & \cdot & \cdot & \\
10 & 2 & \cdot & \cdot & \cdot \\
\cdot & \cdot & -8 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 12 & \cdot \\
10 & \cdot & \cdot & \cdot & -8
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
12 & \cdot & \cdot & \cdot & \\
\cdot & -8 & \cdot & \cdot & \cdot \\
\cdot & \cdot & -8 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 12 & \cdot \\
\cdot & \cdot & \cdot & \cdot & -8
\end{array}\right)
$$

William G. Harter - University of Arkansas

$\mathrm{U}(2) \sim \mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $\mathrm{O}(3) \supset \mathrm{O}_{\mathrm{h}}$ symmetry breaking

Spin-spin (1/2) ${ }^{2}$ product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)$ proton $\times U(2)$ electron to $U(2)^{e}+p$
Elementary $1 / 2 \times 1 / 2$ Clebsch-Gordan coefficients
Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues
B-field gives avoided crossing
Higher-J product states: $(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
Effect of Pauli-Fermi-Dirac symmetry
General $U(2)$ Clebsch-Gordan-Wigner-3j coupling coefficient formula
LS to jj Level corralations
Angular momentum uncertainty cones related to $3 j$ coefficients
Multi-spin (1/2)N product states Magic squares
Intro to U(2) Young Tableaus
Intro to $U(3)$ and higher Young Tableaus and Lab-Bod or Particle-State summitry
$U(2)$ and $U(3)$ tensor expansion of H operator
Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors
Tensor operators for spin-1 states: U(3) generalization of Pauli spinors
$4^{\text {th }}$ rank tensor example with exact splitting of d-orbital
$6^{\text {th }}$ rank tensor example with exact splitting of f-orbital

Octahedral 4th-rank $A_{l g}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting f-orbital ($l=j=3$)

$$
\begin{aligned}
& X^{h_{21}}=x y z=-i\left(X_{-2}^{3}-X_{2}^{3}\right) / \sqrt{30} . \\
& \left|A_{24}\right\rangle=\left(\begin{array}{l}
\left.\left.\left|\begin{array}{l}
3 \\
2
\end{array}\right\rangle-\begin{array}{r}
3 \\
-2
\end{array} \right\rvert\,\right) / \sqrt{2}, ~
\end{array}\right. \\
& X_{3}^{T_{i .}}=\left(x^{2}-y^{2}\right) z=i\left(X_{2}^{3}+X_{-2}^{3}\right) / \sqrt{2} \\
& \left.\left.\left|\begin{array}{l}
T_{\text {lu }} \\
3
\end{array}\right\rangle=\left(\begin{array}{l}
3 \\
2
\end{array}\right\rangle-\begin{array}{r}
3 \\
-2
\end{array}\right\rangle\right) / \sqrt{2} \\
& X_{3}^{T_{2}=\left(x^{2}+y^{2}\right) z=-X_{0}^{3} / 10 .} \\
& \left.\left|\begin{array}{l}
T_{24} \\
3
\end{array}\right\rangle=\begin{array}{l}
3 \\
0
\end{array}\right\rangle
\end{aligned}
$$

Octahedral 4th-rank $A_{l g}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting f-orbital ($l=j=3$)

$$
\begin{aligned}
& \left|A_{24}\right\rangle=\left(\begin{array}{l}
\left.\left|\begin{array}{l}
3 \\
2
\end{array}\right\rangle-\begin{array}{r}
3 \\
-2
\end{array}\right)
\end{array}\right) / \sqrt{2}
\end{aligned}
$$

$\mathrm{T}^{[4]}$ eigenvalues

$$
\left\langle A_{2 u}\right| V^{(4)}\left|A_{2 u}\right\rangle=-12 \delta^{(4)}
$$

$$
\begin{aligned}
& X_{3}^{T_{1 .}}=\left(x^{2}-y^{2}\right) z=i\left(X_{2}^{3}+X_{-2}^{3}\right) / \sqrt{2} \\
& \left.\left.\left|\begin{array}{l}
T_{\text {Lu }} \\
3
\end{array}\right\rangle=\left(\begin{array}{l}
3 \\
2
\end{array}\right\rangle-\begin{array}{r}
3 \\
-2
\end{array}\right\rangle\right) / \sqrt{2}
\end{aligned}
$$

Octahedral $4^{\text {th }}$-rank $A_{l g}$ tensor operator $\mathrm{T}^{[4]}$: Application to splitting f-orbital ($l=j=3$)

$$
\left.\begin{array}{rl}
X^{4_{21}=x y z}=-i\left(X_{-2}^{3}-X_{3}^{3}\right) / \sqrt{30} \\
\left.\left|A_{24}\right\rangle=\left(\begin{array}{l}
\mid 3 \\
2
\end{array}\right\rangle-\begin{array}{r}
3 \\
-2
\end{array}\right)
\end{array}\right) / \sqrt{2} .
$$

$\mathrm{T}^{[4]}$ eigenvalues

$$
\left\langle A_{2 u}\right| V^{(4)}\left|A_{2 u}\right\rangle=-12 \delta^{(4)}
$$

$$
\begin{aligned}
& X_{3}^{T_{10}}=\left(x^{2}-y^{2}\right) z=i\left(X_{2}^{3}+X_{-2}^{3}\right) / \sqrt{2} \\
&\left|\begin{array}{c}
T_{1 u} \\
3
\end{array}\right\rangle=\left(\begin{array}{|l}
\left.\left.\left\lvert\, \begin{array}{l}
3 \\
2
\end{array}\right.\right)-\left\lvert\, \begin{array}{r}
3 \\
-2
\end{array}\right.\right)
\end{array}\right) / \sqrt{2} \\
&\left(\begin{array}{c}
T_{1 u} \\
3
\end{array}\left|V^{(4)}\right| \begin{array}{c}
T_{1 u} \\
3
\end{array}\right\rangle=-2 \delta^{(4)}
\end{aligned}
$$

$$
X_{3}^{I_{2+}}=\left(x^{2}+y^{2}\right) z=-X_{0}^{3} / 10 .
$$

$$
\left|\begin{array}{l}
T_{2 u} \\
3
\end{array}\right\rangle=\left|\begin{array}{l}
3 \\
0
\end{array}\right\rangle
$$

$$
\left\langle\begin{array}{c}
T_{2 u} \\
3
\end{array}\right| \begin{gathered}
(4)
\end{gathered}\left|\begin{array}{c}
T_{2 u} \\
3
\end{array}\right\rangle=6 \delta^{(4)}
$$

Octahedral $6^{\text {th }}$-rank $A_{l g}$ tensor operator $\mathrm{T}^{[6]}$: Application to splitting f-orbital ($l=j=3$)

$$
\begin{aligned}
& \begin{array}{l}
\left.V^{(6)}=E\left[(\sqrt{8} / 8) X_{0}^{y}-(2 \sqrt{7} / 8)\left(X_{4}^{6}+X_{-4}^{6}\right)\right] \quad\left(V^{(6)}\right)_{j-3}=E\left(\begin{array}{ccccccc}
1 & \cdot & \cdot & \cdot & -7 \sqrt{15} & \cdot & \cdot \\
\cdot & -6 & \cdot & \cdot & \cdot & 42 & \cdot \\
\cdot & \cdot & 15 & \cdot & \cdot & \cdot & -7 \sqrt{15} \\
\cdot & \cdot & \cdot & -20 & \cdot & \cdot & \cdot \\
-7 \sqrt{15} & \cdot & \cdot & \cdot & 15 & \cdot & \cdot \\
\cdot & 42 & \cdot & \cdot & \cdot & -6 & \cdot \\
\cdot & \cdot & -7 \sqrt{15} & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \times\langle 33|\left|X^{6}\right| 3\right\rangle / /(4 \sqrt{462}) \\
\mathrm{T}[6] \text { eigenvalues }
\end{array} \\
& \left\langle A_{2 u}\right| V^{(6)}\left|A_{24}\right\rangle=-12 \delta^{(6)} \\
& \left\langle\begin{array}{c}
T_{14} \\
3
\end{array}\right| V^{(6)}\left|T_{1 u}\right\rangle=98^{(6)} \\
& \left\langle\begin{array}{c}
T_{2 u} \\
3
\end{array}\right| V^{(6)}\left|\begin{array}{c}
T_{2 u} \\
3
\end{array}\right\rangle=-5 \delta^{(6)}
\end{aligned}
$$

$A_{\text {lg }}$ tensor operators $\mathbf{T}{ }^{[4]}$ and $\mathbf{T}{ }^{[46]}$ split 7-fold degeneracy of a $(\mathrm{J}=3)$ f-orbital level

(a) $\mathrm{T}^{(4)}$ Splitting
 (b) $\mathrm{T}^{(6)}$ Splitting

On following page:
$A_{\text {lg }}$ tensor operators $\mathbf{T}^{[4]}+\mathbf{T}^{[46]}$ split 61-fold degeneracy of a $(\mathbf{J}=30)$ f-orbital level
Compare the preceding $J=3$ levels to the following pages showing curves of $J=30$ levels split by combinations of $4^{\text {th }}$ and $6^{\text {th }}$ rank O_{h} symmetric tensors

$$
\begin{aligned}
& \mathrm{J}=30 \mathrm{~T}^{[4]+\mathrm{T}}[6] \text { levels } \\
& \text { AMO Lect. } 17 \mathrm{p} 102
\end{aligned}
$$

In either case the number of linearly dependent O_{h} operators matches the number of parameters needed to define both the eigenvectors and the eigenvalues belonging to the symmetry.

