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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure 
          Kronecker product states and operators 
          Spin-spin interaction reduces symmetry U(2)proton×U(2)electron to U(2)e+p 
                 Elementary ½ × ½  Clebsch-Gordan coefficients  
         Hydrogen hyperfine levels: Fermi-contact interaction, Racah’s trick for energy eigenvalues 
                        B-field gives avoided crossing 
Higher-J product states: (J=1)⊗(J=1)=2⊕1⊕0 case 
          Effect of Pauli-Fermi-Dirac symmetry 
          General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula 
                  LS to jj Level corralations 
           Angular momentum uncertainty cones related to 3j coefficients 
Multi-spin (1/2)N product states Magic squares 
         Intro to U(2) Young Tableaus 
         Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry 
U(2) and U(3) tensor expansion of H operator   
        Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors 
        Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 
                     4th rank tensor example with exact splitting of d-orbital
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U(2)~O(3)⊃Oh Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor 
matrices giving exact orbital splitting for O(3)⊃Oh symmetry breaking

6th rank tensor example with exact splitting of f-orbital



Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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electron-proton spin-spin interaction gives a simple example of hyperfine spectra
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Same spin-1/2 representation applies to either proton or electron kets.

Intro spin ½ coupling 
Unit 8 Ch. 24 p3.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=3


Kronecker product             D
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Applies to  outer product symmetry U(2)proton×U(2)electron for NO interaction. 
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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electron-proton spin-spin interaction gives a simple example of hyperfine spectra
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Same spin-1/2 representation applies to either proton or electron kets.

(for α=0=γ)
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure

Ket-kets for spin-up and spin-dn states and column matrix representations..
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Ket-kets for spin-up and spin-dn states and column matrix representations..
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Ket-kets for spin-up and spin-dn states and column matrix representations..
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U(2)~O(3)⊃Oh Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor 
matrices giving exact orbital splitting for O(3)⊃Oh symmetry breaking

3.26.18 class 18.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

6th rank tensor example with exact splitting of f-orbital



U(2) and U(3) tensor expansions of Hamiltonian
22
kk
--ppoollee eexxppaannssiioonn ooff aann NN--bbyy--NN mmaattrriixx HH

22--bbyy--22 ccaassee:: HH== (( )) == (( )) (( )) (( )) (( ))
== 11 σσ
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yy
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33--bbyy--33 ccaassee:: HH==(( ))H
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H
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H
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H
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H
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H
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UU((22)) ggeenneerraattoorrss (spin J=1/2)

rank-1
(vector)

rank-0
(scalar)

rank-1
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rank-0
(scalar)

rank-2
(tensor)

UU((33)) ggeenneerraattoorrss (spin J=1)
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commuting

diagonal operators

Wigner-Clebsch-Gordan expressions for Tensor Tq
k

′M
′J Tq

k
M
J = ′M

 ′J  q
k
−M
    J( )( ′J k J ) = Cq

k
M
J

′M
′J ′J k J

Irrep Tensor building 
Unit 8 Ch. 25 p5.          
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CG-Products of spin-1/2 ket-bras{           } give scalar/vector operators

Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors
m1
1/2 , m2

1/2

Tq
k = ∑

m1
Cm1
1/2

m2
1/2

q
k
m1
1/2

−m2
1/2 −1( )12−m2

       T−1
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−1 0
⎛

⎝⎜
⎞

⎠⎟
                  T0

1 = 1
2

−1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
                             T1

1 = 0 1
0 0

⎛

⎝⎜
⎞

⎠⎟

  = − 1/ 2
−1/ 2

1/ 2
1/ 2

, = − 1
2

1/ 2
1/ 2

1/ 2
1/ 2

− 1/ 2
−1/ 2

1/ 2
−1/ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, = 1/ 2

1/ 2
1/ 2

−1/ 2
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                                 T0
0 = − 1

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

                  = − 1
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1/ 2
1/ 2

1/ 2
1/ 2
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

analogous to: 
M
J (1/2⊗1/2) = ∑

m1,m2
Cm1
1/2

m2

1/2
M
J

m1

1/2
m2

1/2

analogous to: 

1
1(1/2⊗1/2) = 1/2

1/2
1/2
1/2

-1
 1(1/2⊗1/2) = -1/2

 1/2
-1/2
 1/2

0
1(1/2⊗1/2) =

2
  1

1/2
1/2

-1/2
 1/2 +

2
  1

-1/2
 1/2

1/2
1/2

0
0(1/2⊗1/2) =

2
  1

1/2
1/2

-1/2
 1/2 +

2
 -1

-1/2
 1/2

1/2
1/2analogous to: 

analogous to: ket-kets

1st three operators are a vector set with following Cartesian combinations:

Tx ≡ −
T−1

1 −T1
1

2
     Ty ≡ −i

T−1
1 +T1

1

2
     Tz ≡ −T0

1

= 1
2

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
    = 1

2
0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
    = 1

2
1 0
0 -1
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⎝⎜
⎞

⎠⎟

≡ 1
2
σ x     ≡ 1

2
σ y          ≡ 1

2
σ z
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⎛

⎝⎜
⎞

⎠⎟
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⎛

⎝⎜
⎞

⎠⎟
, σ Z →
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0 −1

⎛

⎝⎜
⎞

⎠⎟
,

(Some old friends!)

T−1
1 = J− 2 = Jx − iJ y( ) 2 , T0

1 = Jz 2 , T−1
1 = J+ 2 = Jx + iJ y( ) 2.

Spherical  vs.  Cartesian operators



CG-Products of spin-1/2 ket-bras{           } give scalar/vector operators

Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors
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⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1 2 0

0 1 2

⎛

⎝
⎜
⎜
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⎟
⎟
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⎜
⎜
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⎟
⎟
⎟
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⎠⎟
+cosβ

−1 2 0

0 1 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ + sinβ

2
0 0
−1 0

⎛

⎝⎜
⎞

⎠⎟



CG-Products of spin-1/2 ket-bras{           } give scalar/vector operators

Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors
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⎟
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β
β

x

y

z

So do  
expectation 
values:



Spin-spin (1/2)2 product states: Hydrogen hyperfine structure 
          Kronecker product states and operators 
          Spin-spin interaction reduces symmetry U(2)proton×U(2)electron to U(2)e+p 
                 Elementary ½ × ½  Clebsch-Gordan coefficients  
         Hydrogen hyperfine levels: Fermi-contact interaction, Racah’s trick for energy eigenvalues 
                        B-field gives avoided crossing 
Higher-J product states: (J=1)⊗(J=1)=2⊕1⊕0 case 
          Effect of Pauli-Fermi-Dirac symmetry 
          General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula 
                  LS to jj Level corralations 
           Angular momentum uncertainty cones related to 3j coefficients 
Multi-spin (1/2)N product states Magic squares 
         Intro to U(2) Young Tableaus 
         Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry 
U(2) and U(3) tensor expansion of H operator   
        Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors 
        Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 
                     4th rank tensor example with exact splitting of d-orbital
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U(2)~O(3)⊃Oh Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor 
matrices giving exact orbital splitting for O(3)⊃Oh symmetry breaking

3.26.18 class 18.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

6th rank tensor example with exact splitting of f-orbital



Tensor operators for spin-1 states: U(1) generalization of Pauli spinors
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1
1
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0
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CGC definition: Wigner 3jm definition:

k=2 
Quadrupole 
tensor T[2] 

row

k=1 
Dipole 

vector T[1] 
row

k=0 
Monopole 
scalar T[0] 
invariant

Irrep Tensor building 
Unit 8 Ch. 25 p5.          
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⎞
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Tensor operators       for spin-j states: 
U(2j+1) generalization of Pauli spinors

Tables for j=1( p-shell), j=2 (d-shell), j=3 ( f -shell),...        

j=ℓ=1

j=ℓ=2

j=ℓ=3

vq
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vq
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4=

vq
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2=
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1=

Irrep Tensor Tables 
Unit 8 Ch. 25 p12.          

Wigner-Eckart tensor Theorem.    
Unit 8 Ch. 25 p17.          
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Tensor operators       for spin-j states: 
U(2j+1) generalization of Pauli spinors

vq
k

Tables for j=1( p-shell), j=2 (d-shell), j=3 ( f -shell),...        and j= 1
2 , j= 3

2 , j= 5
2 ....
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T[4](A1g ) = D x4 + y4 + z4 − 34 r
4⎡

⎣
⎤
⎦ = D

2
70

X4
4 + X−4

4( )+ 25 X04⎡

⎣
⎢

⎤

⎦
⎥

Octahedral 4th-rank  A1g tensor operator T[4]: Application to splitting d-orbital (l=j=2) 

T[4](A1g ) j=2
= D 2

70
v4
4 + v−4

4( )+ 25 v04
j=2

5
3
2 v4 2 .

j=ℓ=1
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4=
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1=

vq
2=
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1=

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          
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Octahedral 4th-rank  A1g tensor operator T[4]: Application to splitting d-orbital (l=j=2) 
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Spin-spin (1/2)2 product states: Hydrogen hyperfine structure 
          Kronecker product states and operators 
          Spin-spin interaction reduces symmetry U(2)proton×U(2)electron to U(2)e+p 
                 Elementary ½ × ½  Clebsch-Gordan coefficients  
         Hydrogen hyperfine levels: Fermi-contact interaction, Racah’s trick for energy eigenvalues 
                        B-field gives avoided crossing 
Higher-J product states: (J=1)⊗(J=1)=2⊕1⊕0 case 
          Effect of Pauli-Fermi-Dirac symmetry 
          General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula 
                  LS to jj Level corralations 
           Angular momentum uncertainty cones related to 3j coefficients 
Multi-spin (1/2)N product states Magic squares 
         Intro to U(2) Young Tableaus 
         Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry 
U(2) and U(3) tensor expansion of H operator   
        Tensor operators for spin-1/2  states: Outer products give Hamilton-Pauli-spinors 
        Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 
                     4th rank tensor example with exact splitting of d-orbital 
                     6th rank tensor example with exact splitting of f-orbital

AMOP  
reference links 

 on page 2

U(2)~O(3)⊃Oh Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor 
matrices giving exact orbital splitting for O(3)⊃Oh symmetry breaking

3.26.18 class 18.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas



Octahedral 4th-rank  A1g tensor operator T[4]: Application to splitting f-orbital (l=j=3) 

T[4] eigenfunction f-orbitals 
Tensors Applied to d,f-levels.    

Unit 8 Ch. 25 p21.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21


Octahedral 4th-rank  A1g tensor operator T[4]: Application to splitting f-orbital (l=j=3) 

T[4] eigenfunction f-orbitals 

T[4] eigenvalues 

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21


Octahedral 4th-rank  A1g tensor operator T[4]: Application to splitting f-orbital (l=j=3) 

Octahedral 6th-rank  A1g tensor operator T[6]: Application to splitting f-orbital (l=j=3) 

T[4] and T[6] eigenfunction f-orbitals 

T[4] eigenvalues 

T[6] eigenvalues 

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21


Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

Tensors Applied to high J levels.    
Unit 8 Ch. 25 p63.          

T1u

T1u

T2u

T2u

A2u A2u

A1g tensor operators T[4] and T[46] split 7-fold degeneracy of a (J=3) f-orbital level

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=63


J=30 T[4]+T[6] levels 
AMO Lect.17 p 102

Compare the preceding J=3 levels to the following pages showing curves of  
J=30 levels split by combinations of 4th and 6th rank Oh symmetric tensors

In either case the number of linearly dependent Oh operators  
matches the number of parameters needed to define both the 
eigenvectors and the eigenvalues belonging to the symmetry.  

A1g tensor operators T[4] + T[46] split 61-fold degeneracy of a (J=30) f-orbital level
On following page:

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-17-3.12.18.pdf#page=102
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When Local C2 symmetry dominates

Int.J.Mol.Sci, 14, 714(2013)pdf p78         

https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Molecular_Eigensolution_Symmetry_Analysis_and_Fine_Structure_-_IJMS-harter-mitchell-2013.pdf#page=78


“It’s no “accident!” 

Int.J.Mol.Sci, 14, 714(2013)         
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