3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients *Multi-spin (1/2)^N product states Magic squares* Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital

6th rank tensor example with exact splitting of f-orbital

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978 Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984 Galloping waves and their relativistic properties - ajp-1985-Harter Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989
- III) Half-integral angular momentum harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001 Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973 Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u>.

H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>.

Hyperf. theory Ch. 24 p48.

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

> Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>.

Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>.

CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>.

> Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables <u>Unit 8 Ch. 25 p12</u>.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. *Intro 3-particle coupling.* <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26) (PSDS - Ch. 5, 7)

3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin (1/2)² product states: Hydrogen hyperfine structure *Kronecker product states and operators* Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

$$\uparrow \rangle | \uparrow \rangle = \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{electron}, |\uparrow \rangle | \downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{electron}, |\downarrow \rangle | \uparrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{electron}, |\downarrow \rangle | \downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} \end{vmatrix}^{proton} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton}$$

Intro spin $\frac{1}{2}$ coupling <u>Unit 8 Ch. 24 p3</u>.

$$\uparrow \rangle |\uparrow \rangle = \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{electron}, |\uparrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{electron}, |\downarrow \rangle |\uparrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{electron}, |\downarrow \rangle |\downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}^{proton} |\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}$$

Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

Same spin-1/2 representation applies to either proton or electron kets. *Kronecker product* $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$ *D*^{1/2} $(\alpha\beta\gamma) = \begin{pmatrix} D_{+1/2,+1/2}^{1/2} & D_{+1/2,-1/2}^{1/2} \\ D_{-1/2,+1/2}^{1/2} & D_{-1/2,-1/2}^{1/2} \end{pmatrix} = \begin{pmatrix} e^{\frac{-i(\alpha+\gamma)}{2}} \cos\frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}} \sin\frac{\beta}{2} \\ e^{\frac{i(\alpha+\gamma)}{2}} \cos\frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos\frac{\beta}{2} \end{pmatrix}$ Applies to *outer product symmetry* $U(2)^{proton} \times U(2)^{electron}$ for NO interaction.

$$\begin{pmatrix} \cos\frac{\beta_{p}}{2} & -\sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p}}{2} & \cos\frac{\beta_{e}}{2} \end{pmatrix} \otimes \begin{pmatrix} \cos\frac{\beta_{e}}{2} & -\sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} & \cos\frac{\beta_{e}}{2} \end{pmatrix} = \begin{pmatrix} \cos\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} & -\cos\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} \\ \cos\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} & \cos\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} & -\sin\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} & -\sin\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} & -\sin\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} & \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} & \cos\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p}}{2}\cos\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p}}{2} \\ \sin\frac$$

(for
$$\alpha = 0 = \gamma$$
)

Intro spin $\frac{1}{2}$ *coupling* Unit 8 Ch. 24 p3.

$$\uparrow \rangle | \uparrow \rangle = \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{electron}, |\uparrow \rangle | \downarrow \rangle = \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \end{vmatrix}^{proton} \end{vmatrix}^{proton} \end{vmatrix}^{proton} \begin{vmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{vmatrix}^{proton} \end{vmatrix}^{proton}$$

Same spin-1/2 representation applies to either proton or electron kets. $N^{1/2}(\alpha\beta\gamma) = \begin{pmatrix} D_{+1/2,+1/2}^{1/2} & D_{+1/2,-1/2}^{1/2} \\ D_{-1/2,+1/2}^{1/2} & D_{-1/2,-1/2}^{1/2} \end{pmatrix} = \begin{pmatrix} e^{\frac{-i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}}\sin\frac{\beta}{2} \\ e^{\frac{i(\alpha+\gamma)}{2}}\sin\frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} \end{pmatrix}$

Kronecker product
$$D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$$

Applies to outer product symmetry $U(2)^{proton} \times U(2)^{electron}$ for NO interaction.

$$\cos\frac{\beta_{p}}{2} - \sin\frac{\beta_{p}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} \\ \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} \\ \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} \\ \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} \\ \cos\frac{\beta_{e}}{2} \\ \cos\frac{\beta$$

Interaction reduces symmetry:

Intro spin $\frac{1}{2}$ coupling

<u>Unit 8 Ch. 24 p3</u>.

(Only
$$(\alpha_e, \beta_e, \gamma_e) = (\alpha_p, \beta_p, \gamma_p)$$

is allowed!

3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin (1/2)² product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors

4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

$$\begin{split} |\uparrow\rangle|\uparrow\rangle = \begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{electron}, |\uparrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\uparrow\rangle = \begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\+\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\+\frac{1}{2$$

Same spin-1/2 representation applies to either proton or electron kets. $D^{1/2}(\alpha\beta\gamma) = \begin{pmatrix} D^{1/2}_{+1/2,+1/2} & D^{1/2}_{+1/2,-1/2} \\ D^{1/2}_{-1/2,+1/2} & D^{1/2}_{-1/2,-1/2} \end{pmatrix} = \begin{pmatrix} e^{\frac{-i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}}\sin\frac{\beta}{2} \\ e^{\frac{i(\alpha+\gamma)}{2}}\sin\frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} \end{pmatrix}$

Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

Applies to outer product symmetry $U(2)^{proton} \times U(2)^{electron}$ for NO interaction.

$$\left[\cos\frac{\beta_{p}}{2} - \sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p}}{2} - \sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p$$

Interaction reduces symmetry:

(Only $(\alpha_e, \beta_e, \gamma_e) = (\alpha_p, \beta_p, \gamma_p)$

is allowed!

$\left(\begin{array}{c}1\end{array}\right)$	0	0	0) ($\cos^2\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\sin^2 \frac{\beta}{2}$	1	0	0	0
0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0		$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\cos^2\frac{\beta}{2}$	$-\sin^2\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	0	$\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$
0	0	0	1		$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$-\sin^2\frac{\beta}{2}$	$\cos^2\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	0	$\frac{1}{\sqrt{2}}$	0	$\frac{-1}{\sqrt{2}}$
0	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	0		$\sin^2\frac{\beta}{2}$	$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\cos^2\frac{\beta}{2}$	0	0	1	0)

$$\begin{split} |\uparrow\rangle|\uparrow\rangle = \begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{electron}, |\uparrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\uparrow\rangle = \begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\+\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\+\frac{1}{2$$

Same spin-1/2 representation applies to either proton or electron kets. $D^{1/2}(\alpha\beta\gamma) = \begin{pmatrix} D^{1/2}_{+1/2,+1/2} & D^{1/2}_{+1/2,-1/2} \\ D^{1/2}_{-1/2,+1/2} & D^{1/2}_{-1/2,-1/2} \end{pmatrix} = \begin{pmatrix} e^{\frac{-i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}}\sin\frac{\beta}{2} \\ e^{\frac{i(\alpha+\gamma)}{2}}\sin\frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} \end{pmatrix}$

Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

Applies to outer product symmetry $U(2)^{proton} \times U(2)^{electron}$ for NO interaction.

$$\left[\cos\frac{\beta_{p}}{2} - \sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p}}{2} - \sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{e}}{2} - \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \sin\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \cos\frac{\beta_{e}}{2} \\ \sin\frac{\beta_{p}}{2} \\ \sin\frac{\beta_{p$$

Interaction reduces symmetry:

(Only $(\alpha_e, \beta_e, \gamma_e) = (\alpha_p, \beta_p, \gamma_p)$

is allowed!

$\left(\begin{array}{c}1\end{array}\right)$	0	0	0) ($\cos^2\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\sin^2 \frac{\beta}{2}$	1	0	0	0
0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0		$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\cos^2\frac{\beta}{2}$	$-\sin^2\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	0	$\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$
0	0	0	1		$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$-\sin^2\frac{\beta}{2}$	$\cos^2\frac{\beta}{2}$	$-\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	0	$\frac{1}{\sqrt{2}}$	0	$\frac{-1}{\sqrt{2}}$
0	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	0		$\sin^2\frac{\beta}{2}$	$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\sin\frac{\beta}{2}\cos\frac{\beta}{2}$	$\cos^2\frac{\beta}{2}$	0	0	1	0)

$$|\uparrow\rangle|\uparrow\rangle = \begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{electron}, |\uparrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\uparrow\rangle = \begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{proton}\begin{vmatrix}\frac{1}{2}\\\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\+\frac{1}{2}\\-\frac{1}{2}\end{vmatrix}^{electron}, |\downarrow\rangle|\downarrow\rangle = \begin{vmatrix}\frac{1}{2}\\+$$

Same spin-1/2 representation applies to either proton or electron kets. $D^{1/2}(\alpha\beta\gamma) = \begin{pmatrix} D^{1/2}_{+1/2,+1/2} & D^{1/2}_{+1/2,-1/2} \\ D^{1/2}_{-1/2,+1/2} & D^{1/2}_{-1/2,-1/2} \end{pmatrix} = \begin{vmatrix} e^{\frac{i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} & -e^{\frac{i(\alpha+\gamma)}{2}}\sin\frac{\beta}{2} \\ e^{\frac{i(\alpha-\gamma)}{2}}\sin\frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}}\cos\frac{\beta}{2} \end{vmatrix}$

Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

Applies to outer product symmetry $U(2)^{proton} \times U(2)^{electron}$ for NO interaction

$$\left[\cos\frac{\beta_p}{2} - \sin\frac{\beta_p}{2} - \sin\frac{\beta_e}{2} \\ \sin\frac{\beta_e}{2} - \cos\frac{\beta_e}{2} \\ \sin\frac{\beta_e}{2} - \cos\frac{\beta_e}{2} \\ \sin\frac{\beta_e}{2} - \sin\frac{\beta_e}{2} \\ \sin\frac{\beta_e}{2} \\$$

Interaction reduces symmetry:

(Only $(\alpha_e, \beta_e, \gamma_e) = (\alpha_p, \beta_p, \gamma_p)$

is allowed!

Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$

 $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{\sin\beta}{2}\cos\beta\frac{\beta}{2} & -\sin^{2}\frac{\beta}{2} & -\sin^{2}\frac{\beta}{2} & -\sin\frac{\beta}{2}\cos\frac{\beta}{2} \\ \sin\frac{\beta}{2}\cos\frac{\beta}{2} & -\sin^{2}\frac{\beta}{2} & \cos^{2}\frac{\beta}{2} & -\sin\frac{\beta}{2}\cos\frac{\beta}{2} \\ \sin\frac{\beta}{2}\cos\frac{\beta}{2} & -\sin^{2}\frac{\beta}{2} & \cos^{2}\frac{\beta}{2} & -\sin\frac{\beta}{2}\cos\frac{\beta}{2} \\ \sin\frac{\beta}{2}\cos\frac{\beta}{2} & \sin\frac{\beta}{2}\cos\frac{\beta}{2} & \sin\frac{\beta}{2}\cos\frac{\beta}{2} & -\sin\frac{\beta}{2}\cos\frac{\beta}{2} \\ \sin\frac{\beta}{2}\cos\frac{\beta}{2} & \sin\frac{\beta}{2}\cos\frac{\beta}{2} & \sin\frac{\beta}{2}\cos\frac{\beta}{2} & \cos^{2}\frac{\beta}{2} \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \sin^{2}\frac{\beta}{2} & -\frac{\sin\beta}{\sqrt{2}} & \sin^{2}\frac{\beta}{2} & 0 \\ \frac{\sin\beta}{\sqrt{2}} & \cos\beta & \frac{-\sin\beta}{\sqrt{2}} & 0 \\ \frac{\sin\beta}{\sqrt{2}} & \frac{\sin\beta}{\sqrt{2}} & \cos^{2}\frac{\beta}{2} & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \sin^{2}\frac{\beta}{2} & -\frac{\sin\beta}{\sqrt{2}} & \sin^{2}\frac{\beta}{2} & 0 \\ \frac{\sin\beta}{\sqrt{2}} & \cos\beta & \frac{-\sin\beta}{\sqrt{2}} & 0 \\ \frac{\sin\beta}{\sqrt{2}} & \frac{\sin\beta}{\sqrt{2}} & \cos^{2}\frac{\beta}{2} & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \sin\beta}{\sqrt{2}} & \frac{\sin\beta}{\sqrt{2}} & \cos^{2}\frac{\beta}{2} & 0 \\ \frac{\sin\beta}{\sqrt{2}} & \frac{\sin\beta}{\sqrt{2}} & \cos^{2}\frac{\beta}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$...and "irreducible" becomes "reducible"...

3.26.18 class 18.0: Symmetry Principles for AMOP reference links Advanced Atomic-Molecular-Optical-Physics on page 2 William G. Harter - University of Arkansas $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin (1/2)² product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

$$\left| \begin{smallmatrix} J & (1/2 \otimes 1/2) \\ M \end{smallmatrix} \right\rangle = \sum_{m_1, m_2} C_{m_1 \ m_2 \ M}^{1/2 \ 1/2 \ J} \left| \begin{smallmatrix} 1/2 \\ m_1 \end{smallmatrix} \right\rangle \left| \begin{smallmatrix} 1/2 \\ m_2 \end{smallmatrix} \right\rangle$$

3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin (1/2)² product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

Hydrogen hyperfine structure: Fermi-contact interaction Racah's trick for energy eigenvalues

$$a_{ep}\mathbf{J}^{proton} \bullet \mathbf{J}^{electron} = \frac{a_{ep}}{2} \left[\left(\mathbf{J}^{proton} + \mathbf{J}^{electron} \right)^2 - \left(\mathbf{J}^{proton} \right)^2 - \left(\mathbf{J}^{electron} \right)^2 \right]$$
$$= \frac{a_{ep}}{2} \left[\left(\mathbf{J}^{total} \right)^2 - \left(\mathbf{J}^{proton} \right)^2 - \left(\mathbf{J}^{electron} \right)^2 \right].$$

$$\begin{pmatrix} J (1/2 \otimes 1/2) \\ M \end{pmatrix} H_{contact} \begin{vmatrix} J (1/2 \otimes 1/2) \\ M \end{vmatrix} \ge \frac{a_{ep}}{2} \left[J \left(J + 1 \right) - \frac{1}{2} \left(\frac{1}{2} + 1 \right) - \frac{1}{2} \left(\frac{1}{2} + 1 \right) \right]$$

$$= \begin{cases} a_{ep} / 4 \text{ for the } (J = 1) & \text{triplet state,} \\ -3a_{ep} / 4 \text{ for the } (J = 0) & \text{singlet state.} \end{cases}$$

$$H_{1s-B-field} = -a_p B_z J_z^{proton} + a_e B_z J_z^{electron} + a_{ep} \mathbf{J}^{proton} \bullet \mathbf{J}^{electron}$$

	g – factor	Bohr – magneton	gyromagnetic factor	Fermi – contact factor
electron	$g_{_e}$	$\mu_e = \frac{e\hbar}{2m_e}$	$a_e = g_e \mu_e$	$a_{ep} = \mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} a_e a_p = 9.427 \cdot 10^{-25} J$
	= 2.0023	$=9.27401 \cdot 10^{-24} \frac{J}{T}$	$= 1.8570 \cdot 10^{-23} \frac{J}{T}$	$\mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} \frac{a_e a_p}{h} = 1.4227 \cdot 10^9 Hz$
proton	${\mathcal g}_p$	$\mu_p = \frac{e\hbar}{2m_p}$	$a_p = g_p \mu_p$	$\mu_0 \frac{2}{3} \frac{1}{\pi a^3} \frac{a_e a_p}{hc} = 4.746 m^{-1}$
F	= 5.585	$= 5.05078 \cdot 10^{-27} \frac{J}{T}$	$= 2.8209 \cdot 10^{-26} \frac{J}{T}$	$=\frac{1}{21.1}cm^{-1}$

Magnetic constant : $\mu_0 / 4\pi = 10^{-7} N / A^2$

$$H_{1s-B-field} = -a_p B_z J_z^{proton} + a_e B_z J_z^{electron} + a_{ep} \mathbf{J}^{proton} \bullet \mathbf{J}^{electron}$$

				_	
	g – factor	Bohr – magneton	gyromagnetic factor		Fermi – contact factor
electron	$g_e = 2.0023$	$\mu_e = \frac{e\hbar}{2m_e}$ $= 9.27401 \cdot 10^{-24} \frac{J}{T}$	$a_{e} = g_{e}\mu_{e}$ = 1.8570 \cdot 10^{-23} \frac{J}{T}		$a_{ep} = \mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} a_e a_p = 9.427 \cdot 10^{-25} J$ $\mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} \frac{a_e a_p}{T} = 1.4227 \cdot 10^9 Hz$
proton	<i>g</i> _{<i>p</i>} = 5.585	$\mu_p = \frac{e\hbar}{2m_p}$ $= 5.05078 \cdot 10^{-27} \frac{J}{T}$	$a_p = g_p \mu_p$ $= 2.8209 \cdot 10^{-26} \frac{J}{T}$		$\mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} \frac{a_e a_p}{hc} = 4.746 m^{-1}$ $= \frac{1}{211} cm^{-1}$
1.6		10-7.11.1	,		21.1

Magnetic constant : $\mu_0 / 4\pi = 10^{-7} N / A^2$

 $\left\langle -a_p B_z J_z^{proton} + a_e B_z J_z^{electron} \right\rangle =$

	$\left \uparrow^{p}\uparrow^{e}\right\rangle$	$\left \uparrow^{p}\downarrow^{e}\right\rangle$	$\left \downarrow^{p}\uparrow^{e}\right\rangle$	$\left \downarrow^{p}\downarrow^{e}\right\rangle$
$\left\langle \uparrow^p \uparrow^e \right $	$\frac{1}{2}\left(a_{e}-a_{p}\right)B_{z}$			
$\left\langle \uparrow^p \downarrow^e \right $		$\frac{-1}{2}(a_e + a_p)B_z$	0	
$\left\langle \downarrow^p \uparrow^e \right\rangle$		0	$\frac{1}{2}\left(a_{e}+a_{p}\right)B_{z}$	•
$\left\langle \downarrow^p \downarrow^e \right $	·		•	$\frac{-1}{2}(a_e - a_p)B_z$

 $\left\langle a_{ep} \mathbf{J}^{proton} \bullet \mathbf{J}^{electron} \right\rangle =$

	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\left \begin{array}{c} 1\\ 0 \end{array} \right\rangle$	$\left \begin{array}{c} 0\\ 0 \end{array} \right\rangle$	$\left \begin{array}{c} 1 \\ -1 \end{array} \right\rangle$
$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\frac{a_{_{ep}}}{4}$	•		
$\begin{pmatrix} 1\\ 0 \end{bmatrix}$	•	$\frac{a_{_{ep}}}{4}$	0	•
$\begin{pmatrix} 0\\ 0 \end{bmatrix}$	•	0	$\frac{-3a_{ep}}{4}$	•
$\begin{pmatrix} 1 \\ -1 \end{bmatrix}$	•	•	•	$\frac{a_{_{ep}}}{4}$

$$H_{1s-B-field} = -a_p B_z J_z^{proton} + a_e B_z J_z^{electron} + a_{ep} \mathbf{J}^{proton} \bullet \mathbf{J}^{electron}$$

	g – factor	Bohr – magneton	gyromagnetic factor	Fermi – contact factor		<i>J</i> =1	1	1	0	
		$\mu_{i} = -\frac{e\hbar}{2}$	$a = g \mu$	$a_{12} = \mu_0 \frac{2}{2} \frac{1}{a_1 a_2} a_2 a_3 = 9.427 \cdot 10^{-25} J$	$\frac{1}{2}$	<i>M</i> =1	0	-1	0	
electron	$g_e = 2.0023$	$r^{e} 2m_{e}$	$-1.8570 \ 10^{-23} J$	e^{p} a_{0}^{3} πa_{0}^{3} e^{-p}	$\frac{1}{2}, \frac{1}{2}$	1	0	0	0	
	- 2.0025	$=9.27401 \cdot 10^{-24} \frac{J}{T}$	$= 1.8370 \cdot 10 \overline{T}$	$\mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} \frac{d_e d_p}{h} = 1.4227 \cdot 10^9 Hz$	$\frac{1}{2}, \frac{-1}{2}$	0	$\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{2}}$	$= \left\langle C_{m}^{\frac{1}{2}} \right\rangle_{M}^{\frac{1}{2}}$
proton	g_{p}	$\mu_p = \frac{e\hbar}{2m_p}$	$a_p = g_p \mu_p$	$\mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} \frac{a_e a_p}{hc} = 4.746 m^{-1}$	$\frac{-1}{2}, \frac{1}{2}$	0	$\frac{1}{\sqrt{2}}$		$\sqrt{2}$ $-\frac{1}{\sqrt{2}}$	$\left(\begin{array}{c} m_p \\ m_e \end{array} \right)$
	= 5.585	$= 5.05078 \cdot 10^{-27} \frac{J}{T}$	$=2.8209\cdot10^{-26}\frac{\sigma}{T}$	$=\frac{1}{21}cm^{-1}$	$\frac{-1}{2}, \frac{-1}{2}$	0	0	1	0	

Magnetic constant : $\mu_0 / 4\pi = 10^{-7} N / A^2$

 $\left\langle -a_p B_z J_z^{proton} + a_e B_z J_z^{electron} \right\rangle =$

	$\left \uparrow^{p}\uparrow^{e}\right\rangle$	$\left \uparrow^{p}\downarrow^{e}\right\rangle$	$\left \downarrow^{p}\uparrow^{e}\right\rangle$	$\left \downarrow^{p}\downarrow^{e}\right\rangle$
$\left\langle \uparrow^p \uparrow^e \right $	$\frac{1}{2}\left(a_{e}-a_{p}\right)B_{z}$			•
$\left\langle \uparrow^p \downarrow^e \right $	·	$\frac{-1}{2}(a_e + a_p)B_z$	0	·
$\left\langle \downarrow^p \uparrow^e \right $		0	$\frac{1}{2}\left(a_e + a_p\right)B_z$	•
$\left\langle \downarrow^p \downarrow^e \right $				$\frac{-1}{2}(a_e - a_p)B_z$

 $\left\langle a_{ep} \mathbf{J}^{proton} \bullet \mathbf{J}^{electron} \right\rangle =$

	$\left \begin{array}{c} 1 \\ 1 \end{array} \right\rangle$	$\left \begin{array}{c} 1 \\ 0 \end{array} \right\rangle$	$\left \begin{array}{c} 0\\ 0 \end{array} \right\rangle$	$\left \begin{array}{c} 1 \\ -1 \end{array} \right\rangle$
$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\frac{a_{_{ep}}}{4}$	•	•	
$\begin{pmatrix} 1\\ 0 \end{bmatrix}$	•	$\frac{a_{_{ep}}}{4}$	0	•
$\begin{pmatrix} 0\\0 \end{bmatrix}$	•	0	$\frac{-3a_{ep}}{4}$	•
$\begin{pmatrix} 1\\ -1 \end{bmatrix}$	•	•	·	$\frac{a_{_{ep}}}{4}$

$$H_{1s-B-field} = -a_p B_z J_z^{proton} + a_e B_z J_z^{electron} + a_{ep} \mathbf{J}^{proton} \bullet \mathbf{J}^{electron}$$

		1								-
		g – faci	tor Bohr – magne	eton	gyromagnetic	factor			Fermi – contact factor	
	electron	$g_e = 2.002$	$\mu_e = \frac{e\hbar}{2m_e}$	T	$a_e = g_e \mu_e$	<u>J</u>		a _{ep} =	$= \mu_0 \frac{2}{3} \frac{1}{\pi a_0^3} a_e a_p = 9.427 \cdot 10^{-25} J$	
		- 2.002	$=9.27401 \cdot 10^{-2}$	$\frac{J}{T}$	-1.8570.10	T	-	$\mu_0 \frac{2}{3}$	$\frac{2}{3}\frac{1}{\pi a_0^3}\frac{a_e a_p}{h} = 1.4227 \cdot 10^9 Hz$	
	proton	g_p	$\mu_p = \frac{en}{2m_p}$		$a_p = g_p \mu_p$	хJ		$\mu_0 \frac{2}{3}$	$\frac{2}{3}\frac{1}{\pi a_0^3}\frac{a_e^a a_p}{hc} = 4.746m^{-1}$	
		= 5.58	$5 = 5.05078 \cdot 10^{-5}$	$\frac{J}{T}$	= 2.8209 · 10	$\frac{1}{T}$			$=\frac{1}{21.1}cm^{-1}$	
	Magnet	tic consta	$nt: \ \mu_0 / 4\pi = 10^{-7} \Lambda$	I / A^2						J
$\left\langle -a_p B_z J_z \right\rangle$	$a_e^{proton} + a_e B_z$	$J_z^{electron}$	$\rangle =$							$a_{ep}\mathbf{J}^{pr}$
	$\uparrow^p\uparrow^e$	\rangle	$\left \uparrow^{p}\downarrow^{e}\right\rangle$		$\left \downarrow^{p}\uparrow^{e}\right\rangle$		$\downarrow^p \downarrow^e \rangle$			
$\left\langle \uparrow^p \uparrow^e \right $	$\frac{1}{2}(a_e - a_p)$	B_z			•		•		_	$\langle \uparrow^p \uparrow$
$\left\langle \uparrow^p \downarrow^e \right $	•	-	$\frac{-1}{2}\left(a_{e}+a_{p}\right)B_{z}$		0					$\langle \uparrow^p \downarrow$
$\left\langle \downarrow^p \uparrow^e \right $			0	$\frac{1}{2}($	$a_e + a_p \Big) B_z$				_	$\langle \downarrow^p \uparrow$
$\left\langle \downarrow^p \downarrow^e \right $	·				•	$\frac{-1}{2}$	$a_e - a_p$	B _z		$\langle \downarrow^p \downarrow$
$\left\langle -a_{p}B_{z}\right\rangle$	$J_z^{proton} + a_e$	$B_z J_z^{electr}$	$\left \right\rangle =$. –		I	I	$\langle a_{ep} \rangle$
	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$		$\left \begin{array}{c} 1\\ 0 \end{array} \right\rangle$		$\left \begin{array}{c} 0\\ 0 \end{array} \right\rangle$		$\begin{vmatrix} 1 \\ -1 \end{vmatrix}$			
$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\frac{1}{2}(a_e - a_p)$	B_{z}			•					\ 1

 $\frac{-1}{2} \left(a_e + a_p \right) B_z$

0

•

 $\frac{-1}{2}(a_e - a_p)B_z$

0

 $\frac{-1}{2}(a_e + a_p)B_z$

 $\begin{pmatrix} 1\\ 0 \end{pmatrix}$

 $\left\langle \begin{array}{c} 0\\ 0 \end{array} \right|$

 $\begin{pmatrix} 1 \\ -1 \end{bmatrix}$

$\frac{1}{1}$	<i>J</i> =1	1	1	0	
2 2 2	<i>M</i> =1	0	-1	0	
$\frac{1}{2}, \frac{1}{2}$	1	0	0	0	,
$\frac{1}{2}, \frac{-1}{2}$	0	$\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{2}}$	$= \left\langle C_{m_p \ m_e}^{\frac{1}{2} \ \frac{1}{2}} \right _{M}^{J}$
$\frac{-1}{2}, \frac{1}{2}$	0	$\frac{1}{\sqrt{2}}$		$-\frac{1}{\sqrt{2}}$	
$\frac{-1}{2}, \frac{-1}{2}$	0	0	1	0	

\langle	$(a_{ep}\mathbf{J}^{proton})$	• J ^{electro}	$\left \right\rangle =$			
		$\uparrow^p\uparrow^e$	$\rangle \uparrow^{p} \downarrow$	$\left \downarrow^{p}\uparrow\right $	$ \downarrow\rangle$	$^{p}\downarrow^{e}$
	$\left\langle \uparrow^p \uparrow^e \right $	$\frac{a_{_{ep}}}{4}$	•			•
	$\left\langle \uparrow^p \downarrow^e \right $		$\frac{-a_{e_{i}}}{4}$	$\frac{a_{ep}}{2}$	-	•
	$\left\langle \downarrow^p \uparrow^e \right $		$\frac{a_{_{ep}}}{2}$	$\frac{-a_e}{4}$	<u>p</u>	
-	$\left\langle \downarrow^p \downarrow^e \right $	•	•	•	-	$\frac{a_{ep}}{4}$
	$\left\langle a_{ep}\mathbf{J}^{\mu}\right\rangle$	proton •	J ^{electron}	$\rangle =$	·	
		$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\left \begin{array}{c} 1\\ 0 \end{array} \right\rangle$	$\left \begin{array}{c} 0\\ 0 \end{array} \right\rangle$	$\begin{vmatrix} 1 \\ -1 \end{pmatrix}$	
	$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\frac{a_{_{ep}}}{4}$	•		•	
	$\begin{pmatrix} 1\\ 0 \end{bmatrix}$		$\frac{a_{_{ep}}}{4}$	0	•	
	$\left\langle \begin{array}{c} 0\\ 0 \end{array} \right $		0	$\frac{-3a_{ep}}{4}$	•	
	$\begin{pmatrix} 1 \\ -1 \end{bmatrix}$	•	•		$\frac{a_{_{ep}}}{4}$	

3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin (1/2)² product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital

6th rank tensor example with exact splitting of f-orbital

Anatomy of electric dipole vs magnetic dipole of Fermi-contact interaction + B-field

3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case* • *Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

$(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ case

			2	2	2	2	2	1	1	1	0
	1 ⊗	1	2	1	0	-1	-2	1	0	-1	0
	1	1	1	•	•	•	•		•		
	1	0		$\frac{1}{\sqrt{2}}$			•	$\frac{1}{\sqrt{2}}$			
	1	-1		•	$\frac{1}{\sqrt{6}}$		•	•	$\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{3}}$
$\begin{vmatrix} C_{m}^{1} & L \\ m & m \end{matrix} =$	0	1		$\frac{1}{\sqrt{2}}$			•	$-\frac{1}{\sqrt{2}}$	•		
$m_1 m_2 m_1$	0	0			$\sqrt{\frac{2}{3}}$						$-\frac{1}{\sqrt{3}}$
	0	-1		•		$\frac{1}{\sqrt{2}}$	•			$\frac{1}{\sqrt{2}}$	
	-1	1	.		$\frac{1}{\sqrt{6}}$		•	•	$-\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{3}}$
	-1	0				$\frac{1}{\sqrt{2}}$	•			$-\frac{1}{\sqrt{2}}$	•
	-1	-1					1				•

Intro 2p3p coupling Unit 8 Ch. 24 p17.

Figure 24.1.3 Atomic ${}^{2S+1}L$ multiplet levels for two (l = l) p electrons.

 $\overline{1}$ $\overline{1}$

$\frac{\sqrt{2}}{\sqrt{2}}$ 1 $\overline{1}$ -	$-\frac{1}{\sqrt{2}}$ 0	0
V 3	V 3	

0

 $\frac{0}{1}$

Pauli-Fermi selection rules requires total anti-symmetry

3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case* Effect of Pauli-Fermi-Dirac symmetry General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

Wigner 3j vs. Clebsch-Gordon (CGC)

3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

Figure 24.1.4 Fine-structure $n\ell_j$ *levels for atomic hydrogen. Hyperfine splitting is not shown.*

AMOP reference links on page 2 3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case* Effect of Pauli-Fermi-Dirac symmetry General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations •Angular momentum uncertainty cones related to 3j coefficients *Multi-spin (1/2)*^N product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

Higher-J product states

Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Figure 24.1.6 Level-splitting and vector-addition picture of angular-momentum coupling.

Figure 24.1.6 Level-splitting and vector-addition picture of angular-momentum coupling.

Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Lande'g-factor <u>Unit 8 Ch. 24 p26</u>.

Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Figure 24.1.8 Clebsch-Gordan coefficients plotted next to their angular-momentum cones.

Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Figure 24.1.8 Clebsch-Gordan coefficients plotted next to their angular-momentum cones.

The Lande g-factor (Atomic LS-coupled gyro-magnetic factor)

$$g_{Lande'} = \frac{3J(J+1) - L(L+1) + S(S+1)}{2J(J+1)} \text{ where: } \left\langle m_{TOTAL} B_z \right\rangle = g_{Lande'} \mu_{Bohr} m_3 B_z$$

Lande'g-factor <u>Unit 8 Ch. 24 p26</u>. AMOP reference links on page 2 3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin (1/2)^N product states Magic squares Intro to U(2) Young Tableaus *Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry* U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

$$\left(\frac{1}{2}\otimes\frac{1}{2}\right)\otimes\frac{1}{2}$$

$$(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}) = d^0 + d^1$$

 $\begin{pmatrix} d^{\frac{1}{2}} \otimes d^{\frac{1}{2}} \end{pmatrix} = d^{0} + d^{1}$ $\begin{pmatrix} d^{\frac{1}{2}} \otimes d^{\frac{1}{2}} \end{pmatrix} = d^{0} + d^{1} \\ (d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}) \otimes d^{\frac{1}{2}} = (d^{0} + d^{1}) \otimes d^{\frac{1}{2}} = d^{0} \otimes d^{\frac{1}{2}} + d^{1} \otimes d^{\frac{1}{2}}$ $= d^{\frac{1}{2}} + d^{\frac{1}{2}} + d^{\frac{3}{2}} = 2d^{\frac{1}{2}} + d^{\frac{3}{2}}$ $(d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}) \otimes (d^{\frac{1}{2}} \otimes d^{\frac{1}{2}}) = (2d^{\frac{1}{2}} + d^{\frac{3}{2}}) \otimes d^{\frac{1}{2}}$ $(d^{0} + d^{1}) \otimes (d^{0} + d^{1}) = d^{0} + 2d^{0} \otimes d^{1} + d^{1} \otimes d^{1}$ $=d^{0}+2d^{1}$ $+d^{0}+d^{1}+d^{2}=2d^{0}+3d^{1}+1d^{2}$ S = 5/2[4,0] ↑↑ S=2 *S*=*3*/*2* $\ell[3,0]$ Spin S *S*=1 [2,0] ↑ [3,1] ↓ |↑||↑||↓| \uparrow S = 1/2 \leftarrow *N*=*1* ℓ[1,1] ↑ ► $\uparrow\uparrow$ *[*[2,2] S=0=1ParticleNumber

Multi-spin $(1/2)^N$ product states

Intro 3-particle coupling. <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

AMOP reference links on page 2 3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin (1/2)^N product states Magic squares Intro to U(2) Young Tableaus • Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors

4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

Magic squares - Intro to Young Tableaus Introducing U(N)

AMOP reference links on page 2 3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

$$U(2) \text{ and } U(3) \text{ tensor expansions of Hamiltonian}$$

$$2^{k}\text{-pole expansion of an N-by-N matrix H}$$

$$2\text{-by-2 case: } \mathbf{H} = \begin{pmatrix} 1 & R^{+}C \\ 1 + iC & D \end{pmatrix} = \frac{4+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \binom{0}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \binom{0}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \frac{4+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{1} + B \mathbf{G}_{x} + C \mathbf{G}_{y} + \frac{4+D}{2} \mathbf{G}_{z}$$

$$= \frac{4+D}{2} \mathbf{I}_{z} + \frac{4+D}{2} \mathbf{I}_{z} + \frac{4+D}{2} \mathbf{I}_{z}$$

$$= \frac{4+D}{2} \mathbf{I}_{z} + \frac{4+D}{2} \mathbf{I}_{z} + \frac{4+D}{2} \mathbf{I}_{z}$$

$$= \frac{4+D}{2} \mathbf{I}_{z} + \frac{4+D}$$

$$\begin{aligned} \begin{array}{l} Tensor \ operators \ for \ spin-1/2 \ states: \ Outer \ products \ give \ Hamilton-Pauli-spinors \\ CG-Products \ of \ spin-1/2 \ ket-bras \left\{ \begin{vmatrix} 1/2 \\ m_1 \\ m_2 \end{vmatrix} \right\} \ give \ scalar/vector \ operators \ analogous \ to: \ \ ket-kets \\ T_q^k &= \sum_{m_1} C_{m_1 \ m_2 \ m_2}^{1/2 \ 1/2 \ 1/2 \ m_1} \left\{ \begin{pmatrix} 1/2 \\ m_1 \\ m_2 \end{pmatrix} \right\} \ analogous \ to: \ \left\{ \begin{array}{c} J \ (1/2 \otimes 1/2) \\ M \ \end{array} \right\} = \sum_{m_1, m_2} C_{m_1 \ m_2 \ M}^{1/2 \ 1/2 \ 1/2 \ m_1} \right\} \left\| \begin{pmatrix} 1/2 \\ m_2 \end{pmatrix} \right\| \\ m_2 \end{pmatrix} \\ \begin{array}{c} T_1^1 &= \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \\ = - \left| \frac{1/2}{-1/2} \\ \frac{1/2 \ 1/$$

1st three operators are a *vector* set with following Cartesian combinations:

 $T_{x} \equiv -\frac{T_{-1}^{1} - T_{1}^{1}}{\sqrt{2}} \qquad T_{y} \equiv -i\frac{T_{-1}^{1} + T_{1}^{1}}{\sqrt{2}} \qquad T_{z} \equiv -T_{0}^{1} \qquad \text{(Some old friends!)}$ $= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \sigma_{X} \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_{Y} \rightarrow \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_{Z} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$ $\equiv \frac{1}{\sqrt{2}} \sigma_{x} \qquad \equiv \frac{1}{\sqrt{2}} \sigma_{y} \qquad \equiv \frac{1}{\sqrt{2}} \sigma_{z}$ $\equiv \sqrt{2}J_{x} \qquad \equiv \sqrt{2}J_{y} \qquad \equiv \sqrt{2}J_{z}$

Spherical vs. Cartesian operators

$$T_{-1}^{1} = J_{-}/2 = (J_{x} - iJ_{y})/\sqrt{2}, \qquad T_{0}^{1} = J_{z}/\sqrt{2}, \qquad T_{-1}^{1} = J_{+}/2 = (J_{x} + iJ_{y})/2.$$

$$\begin{aligned} \begin{array}{l} \text{Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors} \\ \text{CG-Products of spin-1/2 ket-bras} \left\{ \begin{vmatrix} 1/2 \\ m_1 \\ m_2 \end{vmatrix} \right\} \text{ give scalar/vector operators analogous to: } & \text{ket-kets} \\ T_q^k &= \sum_{m_1} C_{m_1 \ m_2 \ m_2}^{1/2 \ 1/2} \left| \frac{1/2}{m_1} \right\rangle \left\langle \frac{1/2}{m_2} \right| \left(-1 \right)^{\frac{1}{2} - m_2} \\ &= - \left| \frac{1/2}{-1/2} \right\rangle \left| \frac{1/2}{1/2} \right| \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_1} \right| \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right| \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1/2}{-1/2} \right\rangle \left| \frac{1/2}{1/2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_1} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1/2}{-1/2} \right\rangle \left| \frac{1/2}{1/2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1/2}{\sqrt{2}} \right| \left| \frac{1/2}{1/2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1/2}{\sqrt{2}} \right| \left| \frac{1/2}{1/2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1}{\sqrt{2}} \left| \frac{1/2}{1/2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1}{\sqrt{2}} \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1}{\sqrt{2}} \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1}{\sqrt{2}} \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \left| \frac{1/2}{m_2} \right\rangle \\ &= - \left| \frac{1}{\sqrt{2}} \left| \frac{1/2}{m_2} \right\rangle \left| \frac$$

1st three operators are a *vector* set with following Cartesian combinations:

$$\begin{array}{cccc} R(0\beta0) & T_0^1 & R^{\dagger}(0\beta0) & = T_0' \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\ \left(\cos\frac{\beta}{2} & -\sin\frac{\beta}{2} \\ \sin\frac{\beta}{2} & \cos\frac{\beta}{2} \end{array} \right) & \left(-1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{array} \right) & \left(\cos\frac{\beta}{2} & \sin\frac{\beta}{2} \\ -\sin\frac{\beta}{2} & \cos\frac{\beta}{2} \end{array} \right) = -\frac{1}{\sqrt{2}} \left(\cos\beta & \sin\beta \\ \sin\beta & -\cos\beta \end{array} \right) \\ = D_{10}^1(0\beta0)T_1^1 & +D_{00}^1(0\beta0)T_0^1 & +D_{-10}^1(0\beta0)T_{-1}^1 \\ \downarrow & \downarrow & \downarrow & \downarrow & \\ = \frac{-\sin\beta}{\sqrt{2}} \left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right) & +\cos\beta \left(\begin{array}{c} -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{array}\right) & +\frac{\sin\beta}{\sqrt{2}} \left(\begin{array}{c} 0 & 0 \\ -1 & 0 \end{array}\right) \end{array}$$

Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors CG-Products of spin-1/2 ket-bras $\left\{ \begin{vmatrix} 1/2 \\ m_1 \end{vmatrix}, \left\langle \frac{1/2}{m_2} \right\rangle \right\}$ give scalar/vector operators analogous to: ket-kets $T_{q}^{k} = \sum_{m_{1}} C_{m_{1}}^{1/2} \frac{1/2}{m_{2}} \left| \frac{1/2}{m_{1}} \right| \left(-1 \right)^{\frac{1}{2} - m_{2}} \left| \frac{1/2}{m_{2}} \right| \left(-1 \right)^{\frac{1}{2} - m_{2}} \left| \frac{1}{m_{2}} \right| \left(-1 \right)^{\frac{1}{2} - m_{2}} \left| \frac{1}{m$ $T_{-1}^{1} = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \qquad T_{0}^{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad T_{1}^{1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ = - \begin{vmatrix} 1/2 \\ -1/2 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \end{vmatrix}, \quad = -\frac{1}{\sqrt{2}} \begin{bmatrix} 1/2 \\ 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix} \begin{pmatrix} 1/2 \\ -1$ $\begin{cases} 1(1/2\otimes 1/2) \\ -1 \end{pmatrix} = \begin{vmatrix} 1/2 \\ -1/2 \end{vmatrix} \begin{vmatrix} 1/2 \\ -1/2 \end{vmatrix}$ analogous to: $\begin{cases} 0(1/2\otimes 1/2) \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1/2 \\ 1/2 \end{vmatrix} \begin{vmatrix} 1/2 \\ -1/2 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{vmatrix} 1/2 \\ -1/2 \end{vmatrix} \begin{vmatrix} 1/2 \\ 1/2 \end{vmatrix}$ $T_0^0 = -\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $= -\frac{1}{\sqrt{2}} \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ \end{pmatrix} \begin{pmatrix} 1/2 \\$

1st three operators are a *vector* set with following Cartesian combinations:

So do expectation

T'

AMOP reference links on page 2 3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors. 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

$$\mathbf{v}_{q}^{*} = \begin{cases} \frac{1}{2} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac$$

Octahedral 4th-rank A_{lg} tensor operator T^[4]: Application to splitting d-orbital (l=j=2)

$$\mathbf{T}^{[4]}(\mathbf{A}_{lg}) = D\left[x^4 + y^4 + z^4 - \frac{3}{4}r^4\right] = D\left[\frac{2}{\sqrt{70}}\left(X_4^4 + X_{-4}^4\right) + \frac{2}{5}X_0^4\right]$$
$$\left\langle \mathbf{T}^{[4]}(\mathbf{A}_{lg})\right\rangle_{j=2} = D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_4^4 + \mathbf{v}_{-4}^4\right) + \frac{2}{5}\mathbf{v}_0^4\right\rangle_{j=2}\frac{\sqrt{5}}{3}\left\langle 2\right|\left|\mathbf{v}^4\right|\left|2\right\rangle.$$

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

g tensor operator T^[4]: Application to splitting d-orbital (l=j=2)

$${}^{4} + z^{4} - \frac{3}{4}r^{4} \Big] = D \Big[\frac{2}{\sqrt{70}} \Big(X_{4}^{4} + X_{-4}^{4} \Big) + \frac{2}{5}X_{0}^{4} \Big]$$
$$\Gamma^{[4]}(A_{1g})\Big\rangle_{j=2} = D \Big\langle \frac{2}{\sqrt{70}} \Big(\mathbf{v}_{4}^{4} + \mathbf{v}_{-4}^{4} \Big) + \frac{2}{5}\mathbf{v}_{0}^{4} \Big\rangle_{j=2} \frac{\sqrt{5}}{3} \Big\langle 2 \Big| \Big| \mathbf{v}^{4} \Big| \Big| 2 \Big\rangle.$$

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>. Octahedral 4th-rank A_{lg} tensor operator T^[4]: Application to splitting d-orbital (l=j=2)

$$\mathbf{T}^{[4]}(\mathbf{A}_{lg}) = D\left[x^{4} + y^{4} + z^{4} - \frac{3}{4}r^{4}\right] = D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4} + X_{-4}^{4}\right) + \frac{2}{5}X_{0}^{4}\right]$$
$$\left\langle \mathbf{T}^{[4]}(\mathbf{A}_{lg})\right\rangle_{j=2} = D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4} + \mathbf{v}_{-4}^{4}\right) + \frac{2}{5}\mathbf{v}_{0}^{4}\right\rangle_{j=2}\frac{\sqrt{5}}{3}\left\langle 2\right|\left|\mathbf{v}^{4}\right|\left|2\right\rangle.$$

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

(d) l = 2

Octahedral 4th-rank A_{lg} tensor operator T^[4]: Application to splitting d-orbital (l=j=2)

$$\mathbf{T}^{[4]}(\mathbf{A}_{lg}) = D\left[x^4 + y^4 + z^4 - \frac{3}{4}r^4\right] = D\left[\frac{2}{\sqrt{70}}\left(X_4^4 + X_{-4}^4\right) + \frac{2}{5}X_0^4\right]$$
$$\left\langle \mathbf{T}^{[4]}(\mathbf{A}_{lg})\right\rangle_{j=2} = D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_4^4 + \mathbf{v}_{-4}^4\right) + \frac{2}{5}\mathbf{v}_0^4\right\rangle_{j=2}\frac{\sqrt{5}}{3}\left\langle 2\right|\left|\mathbf{v}^4\right|\left|2\right\rangle.$$

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

(d) l = 2
Octahedral 4th-rank A_{lg} tensor operator T^[4]: Application to splitting d-orbital (l=j=2)

$$\mathbf{T}^{[4]}(\mathbf{A}_{lg}) = D\left[x^{4} + y^{4} + z^{4} - \frac{3}{4}r^{4}\right] = D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4} + X_{-4}^{4}\right) + \frac{2}{5}X_{0}^{4}\right]$$
$$\left\langle \mathbf{T}^{[4]}(\mathbf{A}_{lg})\right\rangle_{j=2} = D\left\langle\frac{2}{\sqrt{70}}\left(\mathbf{v}_{4}^{4} + \mathbf{v}_{-4}^{4}\right) + \frac{2}{5}\mathbf{v}_{0}^{4}\right\rangle_{j=2}\frac{\sqrt{5}}{3}\left\langle 2\right|\left|\mathbf{v}^{4}\right|\left|2\right\rangle.$$

(d) l = 2

 $\begin{aligned} \text{Octahedral 4th-rank } A_{1g} \text{ tensor operator } T^{[4]}: \text{ Application to splitting d-orbital (} l=j=2) \\ T^{[4]}(A_{1g}) &= D \bigg[x^4 + y^4 + z^4 - \frac{3}{4}r^4 \bigg] = D \bigg[\frac{2}{\sqrt{70}} \Big(X_4^4 + X_{-4}^4 \Big) + \frac{2}{5}X_0^4 \bigg] \\ &\Big\langle T^{[4]}(A_{1g}) \Big\rangle_{j=2} = D \Big\langle \frac{2}{\sqrt{70}} \Big(v_4^4 + v_{-4}^4 \Big) + \frac{2}{5}v_0^4 \Big\rangle_{j=2} \frac{\sqrt{5}}{3} \Big\langle 2 \big| \big| v^4 \big| 2 \big\rangle. \end{aligned}$

(d) l = 2

AMOP reference links on page 2 3.26.18 class 18.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

 $U(2) \sim O(3) \supset O_h$ Clebsch-Gordan irep product analysis, spin-orbit multiplets, and Wigner tensor matrices giving exact orbital splitting for $O(3) \supset O_h$ symmetry breaking Spin-spin $(1/2)^2$ product states: Hydrogen hyperfine structure Kronecker product states and operators Spin-spin interaction reduces symmetry $U(2)^{proton} \times U(2)^{electron}$ to $U(2)^{e+p}$ *Elementary* $\frac{1}{2} \times \frac{1}{2}$ *Clebsch-Gordan coefficients* Hydrogen hyperfine levels: Fermi-contact interaction, Racah's trick for energy eigenvalues *B*-field gives avoided crossing *Higher-J product states:* $(J=1)\otimes(J=1)=2\oplus 1\oplus 0$ *case Effect of Pauli-Fermi-Dirac symmetry* General U(2) Clebsch-Gordan-Wigner-3j coupling coefficient formula LS to jj Level corralations Angular momentum uncertainty cones related to 3j coefficients Multi-spin $(1/2)^N$ product states Magic squares Intro to U(2) Young Tableaus *Intro to U(3) and higher Young Tableaus and Lab-Bod or Particle-State summitry* U(2) and U(3) tensor expansion of H operator Tensor operators for spin-1/2 states: Outer products give Hamilton-Pauli-spinors Tensor operators for spin-1 states: U(3) generalization of Pauli spinors 4th rank tensor example with exact splitting of d-orbital 6th rank tensor example with exact splitting of f-orbital

Octahedral 4th-rank A_{1g} tensor operator T^[4]: Application to splitting f-orbital (l=j=3)

$$X^{A_{2u}} = xyz = -i\left(X_{-2}^3 - X_2^3\right) / \sqrt{30}$$
$$\left|A_{2u}\right\rangle = \left(\begin{vmatrix}3\\2\end{vmatrix} - \begin{vmatrix}3\\-2\end{vmatrix}\right) / \sqrt{2}$$

$$X_{3}^{T_{1u}} = \left(x^{2} - y^{2}\right)z = i\left(X_{2}^{3} + X_{-2}^{3}\right)/\sqrt{2}$$
$$\begin{vmatrix}T_{1u}\\3\end{vmatrix} = \left(\begin{vmatrix}3\\2\end{vmatrix} - \begin{vmatrix}3\\-2\end{vmatrix}\right)/\sqrt{2}$$

$$X_{3}^{T_{2u}} = \left(x^{2} + y^{2}\right)z = -X_{0}^{3}/10.$$
$$\begin{vmatrix} T_{2u} \\ 3 \end{vmatrix} = \begin{vmatrix} 3 \\ 0 \end{vmatrix}$$

Octahedral 4th-rank A_{1g} tensor operator T^[4]: Application to splitting f-orbital (l=j=3)

$$X^{A_{2u}} = xyz = -i\left(X^{3}_{-2} - X^{3}_{2}\right) / \sqrt{30}$$
$$\left|A_{2u}\right\rangle = \left(\begin{vmatrix}3\\2\end{vmatrix} - \begin{vmatrix}3\\-2\end{vmatrix}\right) / \sqrt{2}$$

T^[4] eigenvalues

$$\left\langle A_{2u} \left| V^{\left(4\right)} \right| A_{2u} \right\rangle = -12 \delta^{\left(4\right)}$$

$$X_{3}^{T_{1u}} = \left(x^{2} - y^{2}\right)z = i\left(X_{2}^{3} + X_{-2}^{3}\right)/\sqrt{2}$$
$$\begin{vmatrix}T_{1u}\\3\end{vmatrix} = \left(\begin{vmatrix}3\\2\end{vmatrix} - \begin{vmatrix}3\\-2\end{vmatrix}\right)/\sqrt{2}$$
$$\begin{pmatrix}T_{1u}\\3\end{vmatrix} V^{(4)}\begin{vmatrix}T_{1u}\\3\end{vmatrix} = -2\delta^{(4)}$$

$$X_{3}^{T_{2u}} = \left(x^{2} + y^{2}\right)z = -X_{0}^{3}/10.$$
$$\begin{vmatrix} T_{2u} \\ 3 \end{vmatrix} = \begin{vmatrix} 3 \\ 0 \end{vmatrix}$$
$$\begin{pmatrix} T_{2u} \\ 3 \end{vmatrix} V^{(4)} \begin{vmatrix} T_{2u} \\ 3 \end{vmatrix} = 6\delta^{(4)}$$

$$\begin{array}{l} Octahedral \ 4^{th} - rank \ \ A_{1g} \ tensor \ operator \ \ T^{[4]}: \ \ Application \ to \ splitting \ f-orbital \ (l=j=3) \\ & 3 & \ddots & \ddots & \sqrt{15} & \ddots & \ddots \\ & -7 & \ddots & \ddots & 5 & \ddots \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 1 & \ddots & \ddots & \sqrt{15} \\ & \ddots & 5 & \ddots & 1 & \ddots \\ & 5 & \ddots & \ddots & 1 \\ & \ddots & \sqrt{15} & \ddots & \sqrt{15} \\ & \ddots & \sqrt{15} & \ddots & \sqrt{15} \\ & & \sqrt{15} \\ & & \sqrt{15} & \sqrt{15} \\ & & \sqrt{15} & \sqrt{15} \\ & & \sqrt{15} \\ & & \sqrt{15} & \sqrt{15} \\ & & \sqrt{15} \\ &$$

Octahedral 6th-rank A_{lg} tensor operator T^[6]: Application to splitting f-orbital (l=j=3)

On following page:

A_{1g} tensor operators **T**^[4] + **T**^[46] split *61-fold* degeneracy of a (J=30) *f-orbital level*

Compare the preceding J=3 levels to the following pages showing curves of J=30 levels split by combinations of 4th and 6th rank O_h symmetric tensors

J=30 T^[4]+T^[6] levels AMO <u>Lect.17 p 102</u>

In either case the number of linearly dependent O_h operators matches the number of parameters needed to define both the eigenvectors and the eigenvalues belonging to the symmetry.

