AMOP reference links on following page 3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ group operator structure *Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ subgroup chain correlations

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $\mathbf{O} \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_1}_{0404}$, $\mathbf{P}^{\mathrm{T}_2}_{1414}$, $\mathbf{P}^{\mathrm{T}_2}_{1414}$, Collected \mathbf{P}_{mm} results Table

O⊃C₄ induced representation $0_4(C_4)$ ↑O ~A₁⊕T₁⊕E and spectral analysis examples Elementary induced representation $0_4(C_4)$ ↑O Projection reduction of induced representation $0_4(C_4)$ ↑O Introduction to ortho-complete eigenvalue-parameter relations Examples for SF₆ spectroscopy

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Rotational energy surfaces and high-J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989
- III) Half-integral angular momentum harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $O(3) \supset (\text{Octahedral } O_h \supset O)$: Deriving $D^{(\alpha)}$ -matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ group operator structure Review Octahedral $O_h \supset O \supset D_4 \supset C_4$ subgroup chain correlations

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m^4m^4}$ for $\mathbf{O} \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors $\mathbf{P}^{\mu}_{m^4m^4}$ and representations $D^{\mu}_{m^4m^4}$ Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_1}_{0404}$, $\mathbf{P}^{\mathrm{T}_1}_{1414}$, $\mathbf{P}^{\mathrm{T}_2}_{2424}$, $\mathbf{P}^{\mathrm{T}_2}_{1414}$,

	$\ell^{A_{I=}}$ $\ell^{A_{2=}}$ $\ell^{E} =$ $\ell^{T_{I=}}$	= 1 = 1 = 2 = 3 = 3	Exa Cub Gro	ample ic-Octa up O	e: G= hedral	= <mark>0</mark> Cen Ran Ord	trum: k: er:	$\kappa(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$ $\rho(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{I}} = 1$ $\circ(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$	$1^{0}+1^{0}+2^{0}+3^{0}$ $1^{1}+1^{1}+2^{1}+3^{1}$ $1^{2}+1^{2}+2^{2}+3^{2}$	$+3^{0}=5$ $+3^{1}=10$ $2^{2}+3^{2}=24$
<i>s-orbital r²</i> <i>d-orbitals</i> {x ² +y ² -2z ² ,x ² <i>p-orbitals</i> {x, {xz,yz,xy} <i>d-orbitals</i>	$O \ grov$ $\chi^{\alpha}_{\kappa_g}$ $\alpha = A$ A_2 $(y, z) T_1$ T_2	up	g = 1 1 2 3 3	$r_{1-4} \\ ilde{r}_{1-4} \\ 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0$	$ ho_{xyz}$ 1 1 2 -1 -1 -1	$\begin{array}{c} R_{xyz} \\ \tilde{R}_{xyz} \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array}$	i_{1-6} 1 -1 0 -1 1	Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr P	R, r ₂ =r ₂ ² r ₂	R P J P J J J J J P
$O \supset C_{4}(0)_{2}$ $A_{1} \begin{bmatrix} 1 \\ \bullet \\ A_{2} \\ \bullet \\ E \\ T_{1} \\ 1 \\ T_{2} \end{bmatrix} \bullet$	4 (1) ₄ (• • 1 1	2) ₄ • 1 1 • 1	(3) ₄ =(- • • 1 1	$O \supset C_3$ A_1 A_2 E T_1 T_2	(0) ₃ (1 1 1 1 1 1	1) ₃ (2) • • 1 1 1 1 1 1	3=(-1)	$\widetilde{\mathbf{R}}_{x} = \mathbf{R}_{x}$	Ra Par Ra Ra Ra Ra Ra Ra Ra	

Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry *Order* $^{\circ}O=6$ *hexahedron squares* \cdot *4 pts* =24 =8 octahedron triangles \cdot 3 pts =24 =12 lines \cdot 2 pts =24 positions Î3 Octahedral group O operations Class of 1: 1 R.J R_2^2 R., B $\mathbf{r}_{k} = \mathbf{r}_{k}$ $\mathbf{R}_{x,y,z} = \mathbf{R}_{1,2,3}$ Pr $\tilde{\mathbf{r}}_2 = \mathbf{r}_2^2$ Class of 8: Class of 6: $\pm 120^{\circ}$ rotations $\pm 90^{\circ}$ rotations on [111] axes The an on[100] axes r2 ¹5Class of 6: RZ R2 r23 R3 180° rotations Class of 3: 22 on [110] diagonals RT-8-6 180° rotations Ś $\mathbf{i}_k = \mathbf{i}_k$ on [100] axes հ R 12 $\rho_{x,y,z} = \mathbf{R}_{1,2,3}^2$ R₃ $\tilde{\mathbf{r}}_k = \mathbf{r}_k^2 = \mathbf{r}_k^{-1} \mathbf{r}_4^2$ $\widetilde{\mathbf{R}}_{x} = \mathbf{R}_{x}$ $\tilde{\mathbf{R}}_{x,y,z} = \mathbf{R}_{1,2,3}^{\overline{3}} = \mathbf{R}_{1,2,3}^{-1}$ \mathbf{R}_{x}^{3} Tetrahedral symmetry becomes Icosahedral R β **A B** T symmetry T_h symmetry I_b symmetry $r_4 = r_4$ (If rectangles have R, *Golden Ratio* $\underline{1\pm\sqrt{5}}$ 2. J LB

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$ Octahedral groups $O_h \supset O \sim T_d$ and $O_h \supset T_h \supset T$

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h , T_d , and O. The Abelian D_2 subgroup of T is indicated also. Fig. 4.1.5 from <u>Principles of Symmetry, Dynamics and Spectroscopy</u>

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $O(3) \supset (\text{Octahedral } O_h \supset O)$: Deriving $D^{(\alpha)}$ -matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ group operator structure *Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ subgroup chain correlations

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $O \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_1}_{0404}$, $\mathbf{P}^{\mathrm{T}_1}_{1414}$, $\mathbf{P}^{\mathrm{T}_2}_{2424}$, $\mathbf{P}^{\mathrm{T}_2}_{1414}$,

$0 \supset D_4 \supset C$	C4 level spla	itting	$C_4 \{ 1,$	\mathbf{R}_{z}^{1} ,	\mathbf{R}_{z}^{2}	$\{ \mathbf{R}_{z}^{3} \}$		
Tetragona	al Moving Wave	e Chain	{ 1,	\mathbf{R}_{3}^{2}	$, \mathbf{R}_{3}^{2},$	$\{\mathbf{R}_{3}^{3}\}$		
Octahedral O	Tetragonal D4	Cyclic-4 C4	$\begin{array}{c c} 0_4 & 1 \\ 1_4 & 1 \end{array}$	1 i	1 -1	1 -i		
A 1	A1	04	$\begin{array}{c c} 2_4 & 1 \\ \hline 3_4 & 1 \end{array}$	-1 -i	1 -1	-1 i		1 ₄ =
	o mus e el sej		$D_4 \downarrow$	C_4	04	14	24	34
A ₂	B1	24	A_1		1	•	•	•
		्वे हुस्टह्यस ः	B_1			•	1	•
			A_2		1	•	•	•
E	A1	04	B_2			•	1	•
E	B1	24	E		•	1	•	1
]	$\mathbf{r}, \mathbf{\tilde{r}}_i$	$ ho_{xyz}$	R,Ã	kyz.
T 1	E		0	1	r	\mathbf{R}^2	\mathbf{R}^3	\mathbf{i}_k
			A_1	1	1	1	1	1
		04	A_2	1	1	1	-1	-1
T 2	Е	14	E	2	-1	2	0	0
* *	===	34	T ₁	3	0	-1	1	-1
in ji sore A nabae	B2	24	T ₂	3	0	-1	-1	1

1 ρ_z \mathbf{R}_z $\rho_{x,y}$ $\mathbf{i}_{3,4}$

1

-1

1

-1

1 1

1

1

1

2 -2 0

1

1

1

1

1

-1

-1

0

1

-1

-1

1

0

 D_4

 A_1

 B_1

 A_2

 B_2

E

O↓ D ₄	A_1	B_1	A_2	B_2	E	$\mathbf{O} \downarrow \mathbf{C}_4$	04	14	24	$3_4 = \overline{1}_4$
A ₁	1	•	•	•	•	A_1	1	•	•	•
A_2	•	1	•	•	•	A_2	•	•	1	•
E	1	1	•	•	•	E	1	•	1	•
T_1	•	•	1	•	1	T_1	1	1	•	1
T_2	•	•	•	1	1	T_2	•	1	1	1

$O \supset D_4 \supset D_2$ level splitting

D_4	1	ρ	\mathbf{R}_{z}	$\mathbf{\rho}_{x,y}$	i _{3,4}	\square
A_1	1	1	1	1	1	
B_1	1	1	-1	1	-1	
A_2	1	1	1	-1	-1	
B_2	1	1	-1	-1	1	
E	2	-2	0	0	0	
NOr	ma	$l D_2$	= {1	$, \mathbf{R}_{3}^{2}$	$, \mathbf{R}_{1}^{2},$	R_{2}^{2}
Л		1	A	ַ		ם
D_4	\mathbf{V}_2	1	\mathbf{A}_1	B ₁	A_2	B ₂
1	4 ₁		1	•	•	•
1	B_1		1	•	•	.
A	A ₂		•	•	1	
1	B_2		•	•	1	
	Ē		•	1		1

D_2^{Nm}	{ 1,	\mathbf{R}_z^2	, R ² _x	\mathbf{R}_{y}^{2}	;	
A_1	1	1	1	1	1	
B_1	1	-1	1	-1		
A_2	1	1	-1	-1		
B_2	1	-1	-1	1		
					-	I ₄ =
	$D_4 \downarrow$	C_4	0_4	1_4	24	34
	A	1	1	•	•	•
	B	1	•	•	1	•
	A	2	1	•	•	•
	B	>	•	•	1	•
	E	•	•	1	•	1
					~	
]	$\mathbf{r}, \tilde{\mathbf{r}}_i$	$ ho_{\scriptscriptstyle xyz}$	$\mathbf{R}, \mathbf{R}_{x}$	tyz
	0	1	r	\mathbf{R}^2	\mathbf{R}^3	\mathbf{i}_k
	A_1	1	1	1	1	1
	A_2	1	1	1	-1	-1
	E	2	-1	2	0	0
	T_1	3	0	-1	1	-1
	T_2	3	0	-1	-1	1
_	_					

NOrmal $D_2 = \{1, \mathbf{R}_3^2, \mathbf{R}_1^2, \mathbf{R}_2^2\}$

$O \downarrow D_2$	A_1	B_1	A_2	B ₂
A_1	1	•	•	•
A_2	1	•	•	•
E	2	•	•	•
T_1	•	1	1	1
T_2	•	1	1	1

O↓ D ₄	A_1	B_1	A_2	B_2	E	$O \downarrow C_4$	04
A ₁	1	•	•	•	•	A_1	1
A_2	•	1	•	•	•	A_2	•
E	1	1	•	•	•	E	1
T_1	•	•	1	•	1	T_1	1
T_2	•	•	•	1	1	T_2	•

$\mathbf{O} \downarrow \mathbf{C}_4$	0_4	1_{4}	24	$3_4 = \overline{1}_4$
A_1	1	•	•	•
A_2	•	•	1	•
E	1	•	1	•
T_1	1	1	•	1
T_2	•	1	1	1

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $O(3) \supset (\text{Octahedral } O_h \supset O)$: Deriving $D^{(\alpha)}$ -matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ group operator structure *Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ subgroup chain correlations

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $\mathbf{O} \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_1}_{0404}$, $\mathbf{P}^{\mathrm{T}_1}_{1414}$, $\mathbf{P}^{\mathrm{T}_2}_{2424}$, $\mathbf{P}^{\mathrm{T}_2}_{1414}$,

two kinds of D_2 subgroup

NOrmal $D_2 = \{1, \mathbf{R}_3^2, \mathbf{R}_1^2, \mathbf{R}_2^2\}$

$O \downarrow D_2$	A_1	B_1	A_2	B ₂
A_1	1	•	•	•
A_2	1	•	•	•
E	2	•	•	•
T_1	•	1	1	1
T ₂	•	1	1	1

O↓ D ₄	A_1	B_1	A_2	B_2	E	$\mathbf{O} \downarrow C_4$
A_1	1	•	•	•	•	A_1
A_2	•	1	•	•	•	A_2
E	1	1	•	•	•	E
T_1		•	1	•	1	T ₁
T_2		•	•	1	1	T_2

$\mathbf{O} \mathbf{V} \mathbf{C}_4$	04	14	24	$3_4 = \overline{1}_4$
A ₁	1	•	•	•
A_2		•	1	•
E	1	•	1	•
T_1	1	1	•	1
T_2	•	1	1	1

 T_2

 T_2

 T_2

 T_2

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ group operator structure *Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ subgroup chain correlations

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $O \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_1}_{0404}$, $\mathbf{P}^{\mathrm{T}_1}_{1414}$, $\mathbf{P}^{\mathrm{T}_2}_{2424}$, $\mathbf{P}^{\mathrm{T}_2}_{1414}$,

$O_h \supset D_{4h} \supset C_{4v} \supset C_4$ subgroup splitting

$O_h \supset C_{4v}$	A'	B'	A''	<i>B</i> ″′	E
$A_{lg} \downarrow C_{4v}$	1	•	•	•	•
$A_{2g} \downarrow C_{4v}$	•	1	•	•	
$E_g \downarrow C_{4v}$	1	1	•	•	
$T_{1g} \downarrow C_{4v}$	•	•	1	•	1
$T_{2g} \downarrow C_{4v}$				1	1
$A_{lg} \downarrow C_{4v}$	•	•	1	•	•
$A_{2u} \downarrow C_{4v}$	•	•	•	1	•
$E_u \downarrow C_{4v}$	•	•	1	1	
$T_{1u} \downarrow C_{4v}$	1	•	•	•	1
$T_{2u} \downarrow C_{4v}$	•	1	•	•	1

$O_h \supset D_{4h} \supset C_{4v} \supset C_{2v}$ subgroup splitting

$O_h \supset C_{4v}$	A'	<i>B</i> ′	A''	B''	E
$A_{lg} \downarrow C_{4v}$	1	•	•	•	•
$A_{2g} \downarrow C_{4v}$	•	1	•	•	
$E_g \downarrow C_{4v}$	1	1	•	•	
$T_{1g} \downarrow C_{4v}$	•	•	1	•	1
$T_{2g} \downarrow C_{4v}$	•	•	•	1	1
$A_{1g} \downarrow C_{4v}$	•	•	1	•	
$A_{2u} \downarrow C_{4v}$	•	•	•	1	
$E_u \downarrow C_{4v}$	•	•	1	1	
$T_{1u} \downarrow C_{4v}$	1	•	•	•	1
$T_{2u} \downarrow C_{4v}$	•	1	•	•	1
1.	na daa		racy		
nc	is ueg	zene	rucy		
<i>nc</i>	amb	igui	ty]	
$O_h \supset C_{2v}^z$	amb A'	igui B'	ty A"	<i>B</i> ″	
$\frac{O_h \supset C_{2v}^z}{A_{1g} \downarrow C_{2v}^z}$	$ \begin{array}{c} amb \\ A' \\ 1 \\ \end{array} $	igui B'	$\frac{fucy}{ty}$	<i>B</i> " .	
$ \frac{O_h \supset C_{2v}^z}{A_{1g} \downarrow C_{2v}^z} $ $ \frac{A_{2g} \downarrow C_{2v}^z}{A_{2g} \downarrow C_{2v}^z} $	amb A' 1 1	igui B'	ty <u>A''</u>	<i>B</i> "	
$O_h \supset C_{2v}^z$ $A_{1g} \downarrow C_{2v}^z$ $A_{2g} \downarrow C_{2v}^z$ $E_g \downarrow C_{2v}^z$	amb <u>A'</u> 1 1 2	igui B'	<i>ty</i> <u>A''</u>	<i>B</i> "	
$O_h \supset C_{2v}^z$ $A_{1g} \downarrow C_{2v}^z$ $A_{2g} \downarrow C_{2v}^z$ $E_g \downarrow C_{2v}^z$ $T_{1g} \downarrow C_{2v}^z$	$ \begin{array}{c} \text{amb} \\ A' \\ 1 \\ 1 \\ 2 \\ . \end{array} $	<i>igui</i> <i>B'</i>	<i>ty</i> <u>A''</u>	<i>B</i> " • • 1	
$O_{h} \supset C_{2v}^{z}$ $A_{1g} \downarrow C_{2v}^{z}$ $A_{2g} \downarrow C_{2v}^{z}$ $E_{g} \downarrow C_{2v}^{z}$ $T_{1g} \downarrow C_{2v}^{z}$ $T_{2g} \downarrow C_{2v}^{z}$	amb <u>A'</u> 1 1 2	<i>igui</i> <i>B'</i> 1 1	<i>ty</i> <u>A''</u> · · 1 1	<i>B</i> ". 1 1	
$O_h \supset C_{2v}^z$ $A_{1g} \downarrow C_{2v}^z$ $A_{2g} \downarrow C_{2v}^z$ $E_g \downarrow C_{2v}^z$ $T_{1g} \downarrow C_{2v}^z$ $T_{2g} \downarrow C_{2v}^z$ $A_{1g} \downarrow C_{2v}^z$	amb A' 1 1 2	<i>igui</i> <i>B'</i>	<i>ty</i> <i>A''</i> · · 1 1 1	<i>B</i> "	
$O_{h} \supset C_{2v}^{z}$ $A_{1g} \downarrow C_{2v}^{z}$ $A_{2g} \downarrow C_{2v}^{z}$ $E_{g} \downarrow C_{2v}^{z}$ $T_{1g} \downarrow C_{2v}^{z}$ $T_{2g} \downarrow C_{2v}^{z}$ $A_{1g} \downarrow C_{2v}^{z}$ $A_{1g} \downarrow C_{2v}^{z}$	amb A' 1 1 2	<i>igui</i> <i>B'</i>	<i>ty</i> <i>A</i> " · · 1 1 1 1	<i>B</i> "	
$\begin{array}{c} O_h \supset C_{2v}^z \\ \hline A_{1g} \downarrow C_{2v}^z \\ \hline A_{2g} \downarrow C_{2v}^z \\ \hline E_g \downarrow C_{2v}^z \\ \hline T_{1g} \downarrow C_{2v}^z \\ \hline T_{2g} \downarrow C_{2v}^z \\ \hline A_{1g} \downarrow C_{2v}^z \\ \hline A_{1g} \downarrow C_{2v}^z \\ \hline A_{2u} \downarrow C_{2v}^z \\ \hline E_u \downarrow C_{2v}^z \end{array}$	amb A' 1 1 2	<i>igui</i> <i>B'</i>	<i>ty</i> <i>A''</i> · · 1 1 1 1 2	B" 1 1	
$\begin{array}{c} O_h \supset C_{2v}^z \\ \hline A_{1g} \downarrow C_{2v}^z \\ \hline A_{2g} \downarrow C_{2v}^z \\ \hline E_g \downarrow C_{2v}^z \\ \hline T_{1g} \downarrow C_{2v}^z \\ \hline T_{2g} \downarrow C_{2v}^z \\ \hline A_{1g} \downarrow C_{2v}^z \\ \hline T_{1u} \downarrow C_{2v}^z \end{array}$	amb A' 1 1 2	<i>igui</i> <i>B'</i>	<i>ty</i> <i>A''</i> · · 1 1 1 1 2 ·	B" 1 1	

ha	s no	dege	eneracy
	an	ıbigı	uity
$O_h \supset C_{2v}^i$	A'	B'	A" B"
$A_{lg} \downarrow C_{2v}^i$	1	•	• •
$A_{2g} \downarrow C_{2v}^i$		1	
$E_g \downarrow C_{2v}^i$	1	1	doko Non S
$T_{1g} \downarrow C_{2v}^i$		1	1 1
$T_{2g} \downarrow C_{2v}^i$	1	•	1 1
$A_{lg} \downarrow C_{2v}^i$		•	1 .
$A_{2u} \downarrow C_{2v}^i$		•	· 1
$E_u \downarrow C_{2v}^i$		•	1 1
$T_{1u} \downarrow C_{2v}^i$	1	1	· 1
$T_{2u} \downarrow C_{2v}^i$	1	1	1

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors P^μ into irreducible projectors P^μ_{m4m4} for O⊃C4
 Left-cosets and coefficient arrays
 Development of irreducible projectors P^μ_{m4m4} and representations D^μ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₂₄₂₄, P^{T1}₀₄₀₄, P^{T1}₁₄₁₄, P^{T2}₂₄₂₄, P^{T2}₁₄₁₄, Collected P_{mm} results Table

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m_{4}m_{4}}$ for $O \supset C_{4}$ $O \supset C_{4}$ Correlation table shows which \mathbf{P}^{μ} splittings are allowed:

O op	erat	ors	(Two	o no	otati	ons:	Old	ler F	Princ.	of Syn	mm.Ľ	ynan	nics d	and S	pectro	a. an	d N	ewei	r Int.	J.Mo	l.Sci)	l		
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	\mathbf{r}_2^2	\mathbf{r}_3^2	\mathbf{r}_4^2	R_{1}^{2}	${f R}_{2}^{2}$	R_{3}^{2}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\boldsymbol{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	i ₅	\mathbf{i}_6

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m_{4}m_{4}}$ for $O \supset C_{4}$ $O \supset C_{4}$ Correlation table shows which \mathbf{P}^{μ} splittings are allowed:

$O \supset C_A$	0,	1,	2,	3,	1	$1 \cdot \mathbf{P}^{\mu} =$	(p ₀₄	+ ${\bf p}_{1_4}$	+ p ₂₄	$+\mathbf{p}_{3_4})\cdot\mathbf{P}^{\mu}$
$\frac{4}{A_1 \downarrow C_4}$	4	•	•	•	$\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}}_{0_{4}0_{4}} \qquad 1$	$\mathbf{I} \cdot \mathbf{P}^{A_1} =$	$\mathbf{P}_{0_4 0_4}^{A_1}$	+0	+0	+0
$A_2 \downarrow C_4$		•	1	•	and $\mathbf{P}^{A_2} = \mathbf{P}^{A_2}$ 1	$ \cdot \mathbf{P}^{A_2} =$	0	+0	+ $\mathbf{P}_{2_4 2_4}^{A_2}$	+0
$E \downarrow C_4$	1	•	1	•	$\begin{array}{c} cannot \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$1 \cdot \mathbf{P}^E =$	$\mathbf{P}_{0_{4}0_{4}}^{E}$	+0	$+ \mathbf{P}_{2_4 2_4}^E$	+0
$T_1 \downarrow C_4$	1	1		1	split 1	$\mathbf{l} \cdot \mathbf{P}^{T_1} =$	$\mathbf{P}_{0_4 0_4}^{T_1}$	+ $\mathbf{P}_{1_{4}1_{4}}^{T_{1}}$	+0	$+ \mathbf{P}_{3_{4}3_{4}}^{T_{1}}$
$T_2 \downarrow C_4$		1	1	1	1	$\mathbf{l} \cdot \mathbf{P}^{T_2} =$	0	$+\mathbf{P}_{1,1,1}^{T_2}$	$+\mathbf{P}_{2,2}^{T_2}$	$+\mathbf{P}_{3,3,4}^{T_2}$

O op	erat	ors	(Two	o no	otatio	ons:	Old	ler I	Princ.	of Syn	mm.L) ynan	nics d	and S	pectro	a. an	nd N	ewe	r Int	J.Mo	l.Sci)	I.		
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	\mathbf{r}_2^2	\mathbf{r}_3^2	\mathbf{r}_4^2	R_{1}^{2}	${f R}_{2}^{2}$	R_{3}^{2}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\boldsymbol{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m_{4}m_{4}}$ for $O \supset C_{4}$ $O \supset C_{4}$ Correlation table shows which \mathbf{P}^{μ} splittings are allowed:

$0 \supset C_4$	0,	1,	2,	3,	$1 \cdot \mathbf{P}^{\mu}$	=	(p ₀₄	+ p_{1_4}	+ p ₂₄	$+\mathbf{p}_{3_4})\cdot\mathbf{P}^{\mu}$
$\frac{4}{A C }$	4	•	•	4	$\mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0_4 0_4} \qquad 1 \cdot \mathbf{P}^{A_1}$	=	$\mathbf{P}_{0_{4}0_{4}}^{A_{1}}$	+0	+0	+0
$A_{a} \downarrow C_{A}$	•	•	1	•	and $\mathbf{P}^{A_2} - \mathbf{P}^{A_2} = 1 \cdot \mathbf{P}^{A_2}$	=	0	+0	$+\mathbf{P}_{2,2}^{A_2}$	+0
$E \downarrow C_4$	1	•	1		$\begin{array}{c} \mathbf{I} -\mathbf{I}_{2_4 2_4} \\ cannot \qquad \qquad 1 \cdot \mathbf{P}^E \end{array}$	_	$\mathbf{P}_{0,0}^{E}$	+0	$+\mathbf{P}_{2,2}^{E}$	+0
$T_1 \downarrow C_A$	1	1		1	split $1 \cdot \mathbf{P}^{T_1}$	=	$\mathbf{P}_{0,0}^{T_1}$	$+ \mathbf{P}_{1,1}^{T_1}$	+0	$+\mathbf{P}_{3,3}^{T_{1}}$
$T_2 \downarrow C_4$		1	1	1	$1 \cdot \mathbf{P}^{T_2}$	=	0	$+\mathbf{P}_{1,1,1}^{T_2}$	$+\mathbf{P}_{2,2}^{T_2}$	$+\mathbf{P}_{3,3}^{T_2}$

 $O \supset C_4$ splitting done by C_4 projectors applied to O class projectors

$$\mathbf{P}^{E} = \frac{2}{8}\mathbf{1} - \frac{1}{8}\mathbf{c}_{r} + \frac{2}{8}\mathbf{c}_{\rho} + \frac{0}{8}\mathbf{c}_{R} - \frac{0}{8}\mathbf{c}_{i}$$
$$\mathbf{P}^{T_{1}} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_{r} - \frac{1}{8}\mathbf{c}_{\rho} + \frac{1}{8}\mathbf{c}_{R} - \frac{1}{8}\mathbf{c}_{i}$$
$$\mathbf{P}^{T_{2}} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_{r} - \frac{1}{8}\mathbf{c}_{\rho} - \frac{1}{8}\mathbf{c}_{R} + \frac{1}{8}\mathbf{c}_{i}$$

	I	0	chara	icters	-	
<u></u> Ο: χ	$\frac{u}{g} =$	$\begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{1} \\ \mathbf{r}_{1} \end{bmatrix}$	-4 ρ	xyz	R _{xyz} R _{xyz}	i ₁₋₆
$\mu = A$	1 1	1	-	1	1	1
A_2	1	1	-	1	-1	-1
E	2	-	1	2	0	0
T_1	3	C) .	-1	1	-1
T_2	3	()	-1	-1	1
C	$d_{\mathbf{R}^{p}}^{m_{4}}$	g=1	$C_4 \ ch \\ \mathbf{R}_z^1$	$\rho_z = \mathbf{F}$	$\frac{ers}{k_z^2}$ \tilde{R}_z	$=\mathbf{R}_z^3$
m	$a_4 = 0_4$	1	1	1		1
	14	1	- <i>i</i>	-1		i
	2 ₄	1	-1	1		-1
	3,	1	- <i>i</i>	-1		- <i>i</i>

O op	erat	ors	(Two	o no	tati	ons:	Old	ler I	Princ.	of Sys	mm.L	Dynan	nics a	ind Sp	pectro	a. an	id N	ewei	r Int.	J.Mo	l.Sci)			
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	\mathbf{r}_2^2	${\bf r}_{3}^{2}$	\mathbf{r}_4^2	\mathbf{R}_1^2	${f R}_{2}^{2}$	R_{3}^{2}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\mathbf{\rho}_{y}$	ρ	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m_4m_4}$ for $O \supset C_4$ *O characters* \mathbf{R}_{xyz} $O \supset C_4$ Correlation table shows which \mathbf{P}^{μ} splittings are allowed: $O:\chi_g^\mu$ g=1 ρ_{xyz} **i**₁₋₆ $\tilde{\mathbf{R}}_{xyz}$ $\tilde{\mathbf{r}}_{1-4}$ $+\mathbf{p}_{3_4})\cdot\mathbf{P}^{\mu}$ $1 \cdot \mathbf{P}^{\mu} =$ (p₀ +p₂₄ +**p**_{1,4} $O \supset C_4$ $0_4 \quad 1_4 \quad 2_4 \quad 3_4$ $\mu = A_1$ $\mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0_4 0_4}$ $\mathbf{1} \cdot \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{\mathbf{0}_A \mathbf{0}_A}$ +0 +0 +0 $A_1 \downarrow C_4$ A_{2} -1 and $1 \cdot \mathbf{P}^{A_2} =$ +0 $+\mathbf{P}_{2,2,4}^{A_2}$ 0 +0 $\mathbf{P}^{A_2} = \mathbf{P}_{2,2}^{A_2}$ $A_2 \downarrow C_4$ E0 $\mathbf{1} \cdot \mathbf{P}^E = \mathbf{P}^E_{\mathbf{0}_4 \mathbf{0}_4}$ $+\mathbf{P}_{2_{A}2_{A}}^{E}$ +0 cannot +0 $E \downarrow C_4$ T_1 -1 split $\mathbf{1} \cdot \mathbf{P}^{T_1} = \mathbf{P}^{T_1}_{\mathbf{0}_{\mathcal{A}}\mathbf{0}_{\mathcal{A}}}$ $T_1 \downarrow C_4$ $+ \mathbf{P}_{1_{4}1_{4}}^{T_{1}}$ $+\mathbf{P}_{3_43_4}^{T_1}$ +0 T_2 C_4 characters $T_2 \downarrow C_4$ $+ \mathbf{P}_{1_{4}1_{4}}^{T_{2}}$ $1 \cdot \mathbf{P}^{T_2} =$ $+\mathbf{P}_{3_{4}3_{4}}^{T_{2}}$ $C_4: d_{\mathbf{R}^p}^{m_4}$ $+\mathbf{P}_{2_{A}2_{A}}^{T_{2}}$ **g=1** \mathbf{R}_z^1 $\rho_z = \mathbf{R}_z^2$ $\tilde{\mathbf{R}}_z = \mathbf{R}_z^3$ 1 1 0 $\mathbf{p}_{0_{A}} = (1 + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4$ $m_{\Delta} = 0_{\Lambda}$ 1 1 $O \supset C_4$ splitting done by C_4 projectors $\mathbf{p}_{1_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$ $\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p =$ -1 1 i -i applied to O class projectors 2₄ -1 -1 $\mathbf{p}_{2_{4}} = (1 - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4$ 34 -*i* -1 -i $\mathbf{P}^{E} = \frac{2}{8}\mathbf{1} - \frac{1}{8}\mathbf{c}_{r} + \frac{2}{8}\mathbf{c}_{\rho} + \frac{0}{8}\mathbf{c}_{R} - \frac{0}{8}\mathbf{c}_{i}$ C_4 characters $\mathbf{p}_{3} = (1 - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4$ $\frac{2\pi i m_4 \cdot p}{4}$ $d_{R^p}^{m_4} = e$ $\mathbf{P}^{T_1} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho + \frac{1}{8}\mathbf{c}_R - \frac{1}{8}\mathbf{c}_i$ $\mathbf{P}^{T_2} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho - \frac{1}{8}\mathbf{c}_R + \frac{1}{8}\mathbf{c}_i$

O ope	erat	ors	(Two	o no	tati	ons:	Old	ler I	Princ.	of Syn	mm.Ľ) ynan	nics d	and S	pectr	a. ar	id N	ewei	r Int.	J.Mo	l.Sci)			
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	\mathbf{r}_2^2	${\bf r}_{3}^{2}$	\mathbf{r}_4^2	\mathbf{R}_1^2	R_{2}^{2}	R_{3}^{2}	\mathbf{R}_{1}	\mathbf{R}_2	\mathbf{R}_3	R ₁ ³	R_{2}^{3}	R_{3}^{3}	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_{1}	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\boldsymbol{\rho}_{v}$	ρ	\mathbf{R}_{x}	\mathbf{R}_{v}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{R}}_{v}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	i ₅	\mathbf{i}_6

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m_4m_4}$ for $O \supset C_4$ O characters \mathbf{R}_{xyz} $O \supset C_4$ Correlation table shows which \mathbf{P}^{μ} splittings are allowed: $O: \chi_g^\mu$ $\mathbf{\rho}_{xyz}$ g=1 i₁₋₆ $\tilde{\mathbf{R}}_{xyz}$ $\tilde{\mathbf{r}}_{1-4}$ $+\mathbf{p}_{3_4})\cdot\mathbf{P}^{\mu}$ $1 \cdot \mathbf{P}^{\mu} =$ +p₂₄ (p₀ +**p**_{1,4} $O \supset C_4$ $0_4 \quad 1_4 \quad 2_4 \quad 3_4$ $\mu = A_1$ $\mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0_A 0_4}$ $\mathbf{1} \cdot \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{\mathbf{0}_4 \mathbf{0}_4}$ +0 +0+0 $A_1 \downarrow C_4$ A_{2} -1 and $1 \cdot \mathbf{P}^{A_2} =$ $+\mathbf{P}_{2,2}^{A_2}$ +0 0 +0 $\mathbf{P}^{A_2} = \mathbf{P}_{2,2}^{A_2}$ $A_2 \downarrow C_4$ E0 $\mathbf{1} \cdot \mathbf{P}^E = \mathbf{P}^E_{\mathbf{0}_4 \mathbf{0}_4}$ $+\mathbf{P}_{2_{A}2_{A}}^{E}$ +0 cannot +0 $E \downarrow C_A$ T_1 -1 split $\mathbf{1} \cdot \mathbf{P}^{T_1} = \mathbf{P}^{T_1}_{\mathbf{0}_4 \mathbf{0}_4}$ $+ \mathbf{P}_{1_{4}1_{4}}^{T_{1}}$ $+\mathbf{P}_{3_{4}3_{4}}^{T_{1}}$ $T_1 \downarrow C_4$ +0 C_4 characters $T_2 \downarrow C_4$ $+\mathbf{P}_{1,1}^{T_2}$ $C_4: d_{\mathbf{R}^p}^{m_4}$ $1 \cdot \mathbf{P}^{T_2} =$ $+\mathbf{P}_{2_{A}2_{A}}^{T_{2}}$ $+\mathbf{P}_{3_{4}3_{4}}^{T_{2}}$ 1 1 0 **g=1** \mathbf{R}_z^1 $\rho_z = \mathbf{R}_z^2$ $\tilde{\mathbf{R}}_z = \mathbf{R}_z^3$ $\mathbf{p}_{\mathbf{0}_{4}} = (\mathbf{1} + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4$ $m_{\Delta} = 0_{\Lambda}$ 1 1 $O \supset C_4$ splitting done by C_4 projectors $\mathbf{p}_{1_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$ -1 $\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = 0$ i 1 -i applied to O class projectors 2₄ -1 -1 $\mathbf{p}_{2_{4}} = (1 - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4$ 34 -*i* -1 -i $\mathbf{P}^{E} = \frac{2}{8}\mathbf{1} - \frac{1}{8}\mathbf{c}_{r} + \frac{2}{8}\mathbf{c}_{\rho} + \frac{0}{8}\mathbf{c}_{R} - \frac{0}{8}\mathbf{c}_{i}$ C_4 characters $\mathbf{p}_{3} = (1 - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4$ $2\pi i m_4 \cdot p$ $\mathbf{P}^{T_1} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho + \frac{1}{8}\mathbf{c}_R - \frac{1}{8}\mathbf{c}_i$ $\mathbf{P}^{T_2} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho - \frac{1}{8}\mathbf{c}_R + \frac{1}{8}\mathbf{c}_i$

$$\mathbf{P}_{m_4m_4}^{\mu} \equiv \mathbf{p}_{m_4}\mathbf{P}^{\mu} = \mathbf{P}^{\mu}\mathbf{p}_{m_4}$$

O op	erat	ors	(Two	o no	otatio	ons:	Ola	ler I	Princ.	of Sy	mm.L) ynan	nics a	ind Sp	pectra	. an	d N	ewei	r Int	.J.Mo	l.Sci)			
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	\mathbf{r}_2^2	${\bf r}_{3}^{2}$	\mathbf{r}_4^2	\mathbf{R}_{1}^{2}	\mathbf{R}_{2}^{2}	${f R}_{3}^{2}$	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	\mathbf{R}_3^3	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	i
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	$\mathbf{\rho}_x$	$\mathbf{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\mathbf{\tilde{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	i

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m_{4}m_{4}}$ for $O \supset C_{4}$ O characters $O \supset C_4$ Correlation table shows which \mathbf{P}^{μ} splittings are allowed: $O:\chi_g^{\mu}$ g=1 ρ_{xyz} **i**₁₋₆ $+\mathbf{p}_{3_4})\cdot\mathbf{P}^{\mu}$ +p₂₄ (p₀ +**p**₁ $\begin{array}{c|ccccc} O \supset C_4 & \mathbf{0}_4 & \mathbf{1}_4 & \mathbf{2}_4 & \mathbf{3}_4 \\ \hline \mathbf{4} \mid C_1 & \mathbf{1} & \cdot & \cdot & \cdot \\ \end{array}$ $\mathbf{1} \cdot \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{\mathbf{0}_4\mathbf{0}_4}$ $\mu = A_1$ $\mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0_4 0_4}$ +0 +0 +0 $A_1 \downarrow C_4$ 1 A_{2} 1 -1 and $1 \cdot \mathbf{P}^{A_2} =$ +0 0 $+\mathbf{P}_{2,2}^{A_2}$ +0 $\mathbf{P}^{A_2} = \mathbf{P}_{2,2}^{A_2}$ $A_2 \downarrow C_4$ E0 +0 + $\mathbf{P}_{2_{4}2_{4}}^{E}$ $\mathbf{1} \cdot \mathbf{P}^E = \mathbf{P}^E_{\mathbf{0},\mathbf{0},\mathbf{0}}$ cannot +0 T_1 $E \downarrow C_A$ -1 split $\mathbf{1} \cdot \mathbf{P}^{T_1} = \mathbf{P}^{T_1}_{\mathbf{0}_{A}\mathbf{0}_{A}} + \mathbf{P}^{T_1}_{\mathbf{1}_{A}\mathbf{1}_{A}}$ $+\mathbf{P}_{3_{4}3_{4}}^{T_{1}}$ $T_1 \downarrow C_4$ +0 T_2 **1** 1 · 1 C_4 characters $0 + \mathbf{P}_{1_{A}1_{A}}^{T_{2}} + \mathbf{P}_{2_{A}2_{A}}^{T_{2}}$ $T_2 \downarrow C_4$ $1 \cdot \mathbf{P}^{T_2} =$ $C_4: d_{\mathbf{R}^p}^{m_4}$ · 1 $+\mathbf{P}_{3,3,4}^{T_2}$ **g=1** \mathbf{R}_z^1 $\rho_z = \mathbf{R}_z^2$ $\tilde{\mathbf{R}}_z = \mathbf{R}_z^3$ $\mathbf{p}_{0_{A}} = (1 + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4$ $m_{\Lambda} = \mathbf{0}_{\Lambda}$ $O \supset C_4$ splitting done by C_4 projectors $\mathbf{p}_{1_4} = (\mathbf{1} + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$ $\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p = \left\{ \frac{1}{4} \sum_{p=0}^{3} e^{\frac{2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p \right\}$ 1 -i -1 i applied to O class projectors $\mathbf{p}_{2_{A}} = (\mathbf{1} \cdot \mathbf{R}_{z} + \rho_{z} \cdot \tilde{\mathbf{R}}_{z})/4$ 2₄ -1 $\mathbf{P}^{E} = \frac{2}{8}\mathbf{1} - \frac{1}{8}\mathbf{c}_{r} + \frac{2}{8}\mathbf{c}_{\rho} + \frac{0}{8}\mathbf{c}_{R} - \frac{0}{8}\mathbf{c}_{i} \qquad \overbrace{C_{4} \text{ characters}}^{2\pi i m_{4} \cdot p}$ -i -1 -i $\mathbf{p}_{3} = (1 - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4$ $d_{R^p}^{m_4} = e$ $\mathbf{P}^{T_1} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho + \frac{1}{8}\mathbf{c}_R - \frac{1}{8}\mathbf{c}_i$ $\mathbf{P}^{T_2} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho - \frac{1}{8}\mathbf{c}_R + \frac{1}{8}\mathbf{c}_i$...with examples: $\mathbf{P}_{0_4 0_4}^{T_1} \equiv \mathbf{p}_{0_4} \mathbf{P}^{T_1} = \mathbf{P}_{1_1}^{T_1} \mathbf{p}_{0_4}$ $\mathbf{P}_{1_4 1_4}^{T_1} \equiv \mathbf{p}_{1_4} \mathbf{P}^{T_1} = \mathbf{P}_{1_4}^{T_1} \mathbf{p}_{1_4}$ *Following development of irreducible projectors:* $\mathbf{P}_{m_{A}m_{A}}^{\mu} \equiv \mathbf{p}_{m_{A}}\mathbf{P}^{\mu} = \mathbf{P}^{\mu}\mathbf{p}_{m_{A}}$ etc.

O op	erat	ors	(Two	o no	tations:	· Old	ler I	Princ.	of Syl	mm.L) ynan	nics a	ind Sp	pectro	a. an	nd N	ewei	r Int.	J.Mo	l.Sci)	l		
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	r ₃	$r_4 r_1^2$	\mathbf{r}_2^2	${\bf r}_{3}^{2}$	\mathbf{r}_4^2	R_{1}^{2}	${f R}_{2}^{2}$	\mathbf{R}_{3}^{2}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	\mathbf{R}_3^3	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	$\mathbf{r}_4 \tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\mathbf{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $\mathbf{O} \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_{1}}_{0404}$, $\mathbf{P}^{\mathrm{T}_{2}}_{1414}$, $\mathbf{P}^{\mathrm{T}_{2}}_{2424}$, $\mathbf{P}^{\mathrm{T}_{2}}_{1414}$, Collected \mathbf{P}_{mm} results Table

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors $\mathbf{P}^{\mu}_{m_4m_4}$ for $O \supset C_4$ *O* characters $O \supset C_4$ Correlation table shows which \mathbf{P}^{μ} splittings are allowed: $O: \chi^{\mu}_{\sigma}$ g=1 ρ_{xyz} $+ \mathbf{p}_{3_4}) \cdot \mathbf{P}^{\mu}$ $+p_{1_4}$ +p₂₄ (**p**₀ $O \supset C_4$ $0_4 \quad 1_4 \quad 2_4 \quad 3_4$ $\mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{0_A 0_4}$ $\mu = A_1$ $\mathbf{1} \cdot \mathbf{P}^{A_1} = \mathbf{P}^{A_1}_{\mathbf{0}_A \mathbf{0}_A}$ +0 +0+0 $A_1 \downarrow C_4$ 1 A_{2} and $1 \cdot \mathbf{P}^{A_2} =$ +0 $+\mathbf{P}_{2,2}^{A_2}$ 0 +0 $A_2 \downarrow C_4$ $\mathbf{P}^{A_2} = \mathbf{P}^{A_2}$ E() $\mathbf{1} \cdot \mathbf{P}^E = \mathbf{P}^E_{\mathbf{0}_4 \mathbf{0}_4}$ $+\mathbf{P}_{2_{A}2_{A}}^{E}$ +0 cannot +0 $E \downarrow C_A$ -1 split $\mathbf{1} \cdot \mathbf{P}^{T_1} = \mathbf{P}^{T_1}_{\mathbf{0}_{\mathsf{A}}\mathbf{0}_{\mathsf{A}}}$ $+ \mathbf{P}_{1_{4}1_{4}}^{T_{1}}$ $+\mathbf{P}_{3_{4}3_{4}}^{T_{1}}$ $T_1 \downarrow C_4$ +0 1 • C_4 characters $T_2 \downarrow C_4$ $+ \mathbf{P}_{1_{4}1_{4}}^{T_{2}} + \mathbf{P}_{2_{4}2_{4}}^{T_{2}}$ $C_4: d_{\mathbf{R}^p}^{m_4}$ $1 \cdot \mathbf{P}^{T_2} =$ $+\mathbf{P}_{3_{A}3_{A}}^{T_{2}}$ 1 0 **g=1** \mathbf{R}_z^1 $\rho_z = \mathbf{R}_z^2$ $\tilde{\mathbf{R}}_z = \mathbf{R}_z^3$ $\mathbf{p}_{0_{4}} = (1 + \mathbf{R}_{z} + \rho_{z} + \tilde{\mathbf{R}}_{z})/4$ $m_4 = 0_4$ $O \supset C_4$ splitting done by C_4 projectors $\mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$ 1 i $\mathbf{p}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{\frac{2\pi i m_4 \cdot p}{4}} \mathbf{R}_z^p =$ applied to O class projectors 2₄ -1 $\mathbf{p}_{2_{A}} = (1 - \mathbf{R}_{z} + \rho_{z} - \tilde{\mathbf{R}}_{z})/4$ *-i* -1 -i $\mathbf{P}^{E} = \frac{2}{8}\mathbf{1} - \frac{1}{8}\mathbf{c}_{r} + \frac{2}{8}\mathbf{c}_{\rho} + \frac{0}{8}\mathbf{c}_{R} - \frac{0}{8}\mathbf{c}_{i}$ C₄ characters $\mathbf{p}_{3} = (1 - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4$ $\mathbf{P}^{T_1} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho + \frac{1}{8}\mathbf{c}_R - \frac{1}{8}\mathbf{c}_i$ $\mathbf{P}^{T_2} = \frac{3}{8}\mathbf{1} + \frac{0}{8}\mathbf{c}_r - \frac{1}{8}\mathbf{c}_\rho - \frac{1}{8}\mathbf{c}_R + \frac{1}{8}\mathbf{c}_i$...with examples: $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{T_{1}} \equiv \mathbf{p}_{\mathbf{0}_{4}}\mathbf{P}^{T_{1}} = \mathbf{P}^{T_{1}}\mathbf{p}_{\mathbf{0}_{4}}$ $\mathbf{P}_{\mathbf{1}_{4}\mathbf{1}_{4}}^{T_{1}} \equiv \mathbf{p}_{\mathbf{1}_{4}}\mathbf{P}^{T_{1}} = \mathbf{P}^{T_{1}}\mathbf{p}_{\mathbf{1}_{4}}$ *Following development of irreducible projectors:* $\mathbf{P}_{m_4m_4}^{\mu} \equiv \mathbf{p}_{m_4}\mathbf{P}^{\mu} = \mathbf{P}^{\mu}\mathbf{p}_{m_4}$...and projector "factoring"... ... uses left-coset combinations... $\mathbf{1}C_{4} = \mathbf{1}\{\mathbf{1}, \rho_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\}, \ \rho_{x}C_{4} = \{\rho_{x}, \rho_{y}, \mathbf{i}_{4}, \mathbf{i}_{3}\}, \ \mathbf{r}_{1}C_{4} = \{\mathbf{r}_{1}, \mathbf{r}_{4}, \mathbf{i}_{1}, \mathbf{R}_{y}\}, \ \mathbf{r}_{2}C_{4} = \{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \mathbf{\tilde{R}}_{y}\}, \ \mathbf{\tilde{r}}_{1}C_{4} = \{\mathbf{\tilde{r}}_{1}, \mathbf{\tilde{r}}_{3}, \mathbf{\tilde{R}}_{x}, \mathbf{i}_{6}\}, \ \mathbf{\tilde{r}}_{2}C_{4} = \{\mathbf{\tilde{r}}_{2}, \mathbf{\tilde{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\}.$ Older Princ. of Symm. Dynamics and Spectra. an *O* operators d Newer Int.J.Mol.Sci) \mathbf{r}_{2}^{2} \mathbf{r}_{3}^{2} \mathbf{r}_{4}^{2} $|\mathbf{R}_{1}^{2}$ \mathbf{R}_{2}^{2} \mathbf{R}_{3}^{2} $|\mathbf{R}_{1}$ \mathbf{R}_{2} \mathbf{R}_{3} $|\mathbf{R}_{1}^{3}$ \mathbf{R}_{2}^{3} \mathbf{R}_{3}^{3} $|\mathbf{R}_{1}^{3}$ $|\mathbf{R}_{2}^{3}$ \mathbf{R}_{3}^{3} $|\mathbf{R}_{1}^{3}$ $|\mathbf{R}_{2}^{3}$ $|\mathbf{R}_{3}^{3}$ $|\mathbf{R}_{2}^{3}$ $|\mathbf{R}_{3}^{3}$ $|\mathbf$ ${\bf r}_1^2$ \mathbf{i}_1 **PSDS**: \mathbf{r}_{4} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{i}_{A} i₅ \mathbf{r}_1 IJMS: $\tilde{\mathbf{r}}_2$ $\tilde{\mathbf{r}}_3$ $\tilde{\mathbf{r}}_4$ ρ_x ρ_y ρ_z \mathbf{R}_x \mathbf{R}_y \mathbf{R}_z $\tilde{\mathbf{R}}_x$ $\tilde{\mathbf{R}}_y$ $\tilde{\mathbf{R}}_z$ \mathbf{i}_1 1 $\tilde{\mathbf{r}}_1$ \mathbf{i}_2 $\mathbf{i}_3 \mathbf{i}_4$ \mathbf{i}_5 \mathbf{r}_1 \mathbf{r}_{2} \mathbf{r}_{4} \mathbf{r}_{3}

 $\begin{bmatrix} \mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z} \end{bmatrix} \begin{bmatrix} \boldsymbol{\rho}_{x}, \boldsymbol{\rho}_{y}, \mathbf{i}_{4}, \mathbf{i}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1}, \mathbf{r}_{4}, \mathbf{i}_{1}, \mathbf{R}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \mathbf{\tilde{R}}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{\tilde{r}}_{1}, \mathbf{\tilde{r}}_{3}, \mathbf{\tilde{R}}_{x}, \mathbf{i}_{6} \end{bmatrix} \begin{bmatrix} \mathbf{\tilde{r}}_{2}, \mathbf{\tilde{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5} \end{bmatrix} \text{ Cosets of } \mathbf{C}_{4} \\ \mathbf{1} & (\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}), \quad \boldsymbol{\rho}_{x} (\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}), \quad \mathbf{r}_{1} (\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}), \quad \mathbf{r}_{2} (\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}), \quad \mathbf{\tilde{r}}_{2} (\mathbf{1}, \mathbf{\rho}_{z}, \mathbf{R}_{z}, \mathbf{R}_{z}, \mathbf{R}_{z}), \quad \mathbf{\tilde{r}}_{3} (\mathbf{\rho}_{z}, \mathbf{1}, \mathbf{\tilde{R}}_{z}, \mathbf{R}_{z}), \quad \mathbf{\tilde{r}}_{3} (\mathbf{\rho}_{z}, \mathbf{1}, \mathbf{\tilde{R}}_{z}, \mathbf{R}_{z}), \quad \mathbf{\tilde{r}}_{3} (\mathbf{\rho}_{z}, \mathbf{1}, \mathbf{\tilde{R}}_{z}, \mathbf{R}_{z}), \quad \mathbf{\tilde{r}}_{4} (\mathbf{\rho}_{z}, \mathbf{1}, \mathbf{R}_{z}, \mathbf{R}_{z}), \quad \mathbf{\tilde{r}}_{4} (\mathbf{\rho}_{z}, \mathbf{1}, \mathbf{\tilde{R}}_{z}, \mathbf{R}_{z}), \quad \mathbf{\tilde{r}}_{4} (\mathbf{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\rho}_{z}, \mathbf{1}, \mathbf{\rho}_{z}), \quad \mathbf{\tilde{r}}_{4} (\mathbf{R}_{z}, \mathbf{R}_{z}, \mathbf{\rho}_{z}, \mathbf{1}, \mathbf{\rho}_{z}), \quad \mathbf{\tilde{r}}_{4} ($

Coset array that helps sum character products for O projector splitting

1					-			. –					. –				. –			. –										
		1	$\mathbf{\rho}_{z}$	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{z}$		ρ_x	ρ	i ₄	i ₃		r ₁	r ₄	i ₁	\mathbf{R}_{y}		r ₂	r ₃	i ₂	$\tilde{\mathbf{R}}_{y}$		$\tilde{\mathbf{r}}_{1}$	$\tilde{\mathbf{r}}_{3}$	$\tilde{\mathbf{R}}_{x}$	i ₆		$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_4$	\mathbf{R}_{x}	i ₅
]																								
]	1	1	ρ_z	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{z}$	ρ_x	1	ρ	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{z}$	r ₁	1	ρ	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{z}$	r ₂	1	ρ	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{z}$	$\tilde{\mathbf{r}}_1$	1	ρ	R _z	$\tilde{\mathbf{R}}_{z}$	$\tilde{\mathbf{r}}_2$	1	ρ	R _z	$\mathbf{\tilde{R}}_{z}$
] 																								
ĥ) _z	ρ_z	1	$\tilde{\mathbf{R}}_{z}$	R _z	ρ	ρ	1	$\tilde{\mathbf{R}}_{z}$	R _z	r ₄	ρ	1	$\tilde{\mathbf{R}}_{z}$	R _z	r ₃	ρ	1	$\tilde{\mathbf{R}}_{z}$	R _z	$\tilde{\mathbf{r}}_{3}$	ρ	1	$\tilde{\mathbf{R}}_{z}$	R _z	$\tilde{\mathbf{r}}_4$	ρ_z	1	$\tilde{\mathbf{R}}_{z}$	\mathbf{R}_{z}
R	R _z	$\tilde{\mathbf{R}}_{z}$	R _z	1	ρ	i ₄	$\tilde{\mathbf{R}}_{z}$	R _z	1	ρ	i ₁	$\tilde{\mathbf{R}}_{z}$	\mathbf{R}_{z}	1	ρ	i ₂	$\tilde{\mathbf{R}}_{z}$	\mathbf{R}_{z}	1	ρ	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{R}}_{z}$	R _z	1	ρ	\mathbf{R}_{x}	$\tilde{\mathbf{R}}_{z}$	R _z	1	ρ
]																			
Ŕ	z	R _z	$\tilde{\mathbf{R}}_{z}$	ρ_z	1	i ₃	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1	R _y	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1	$\tilde{\mathbf{R}}_{y}$	R _z	ĨR₂	ρ	1	i ₆	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1	i ₅	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1
						-	•	•		•			•	•	•	•	•	•	•	•										フ

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors P^µ into irreducible projectors P^µ_{m4m4} for O⊃C4
 Left-cosets and coefficient arrays
 Development of irreducible projectors P^µ_{m4m4} and representations D^µ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₂₄₂₄, P^{T1}₀₄₀₄, P^{T1}₁₄₁₄, P^{T2}₂₄₂₄, P^{T2}₁₄₁₄, Collected P_{mm} results Table

General development of $O \supset C_4$ irreducible projectors $\mathbf{P}_{m_4m_4}^{\mu} = \sum_{n=0}^{\infty} \frac{\ell^n}{O} D_{m_4m_4}^{\mu^*}(g) \mathbf{g}$ $\mathbf{P}^{\mu}_{m_4m_4} = \mathbf{p}^{m_4}\mathbf{P}^{\mu} = \mathbf{P}^{\mu}\mathbf{p}^{m_4}$ Deriving diagonal irreducible *O*-representation components $D_{m_4m_4}^{\mu^*}(g)$ $=\sum_{a}^{\circ O} \frac{\ell^{\mu}}{\circ O}(\chi_{g}^{\mu^{*}}) \cdot \mathbf{g}(\mathbf{p}^{m_{4}})$ $= \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{1}^{\mu^{*}}\right) \cdot \mathbf{1} \left(\mathbf{1} + d_{\rho_{z}}^{m_{4}} \mathbf{\rho}_{z} + d_{R_{z}}^{m_{4}} \mathbf{R}_{z} + d_{\tilde{R}_{z}}^{m_{4}} \mathbf{\tilde{R}}_{z}\right) \frac{1}{4}$ +++ $\rho_x C_4 = \rho_x \left\{ \mathbf{1}, \rho_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z \right\} = \left\{ \rho_x, \rho_y, \mathbf{i}_4, \mathbf{i}_3 \right\} Coset$ + $O: \chi_{g}^{\mu} \begin{vmatrix} O & characters \\ \mathbf{r}_{1-4} & \mathbf{R}_{xyz} \\ \mathbf{\tilde{r}}_{1-4} & \mathbf{\rho}_{xyz} & \mathbf{\tilde{R}}_{xyz} \end{vmatrix}$ + $\mu = A_1$ A_2 +E T_1 + T_{2} $\mathbf{r}_1 C_4 = \mathbf{r}_1 \{ \mathbf{1}, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z \} = \{ \mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y \} Coset$

$$\begin{aligned} & General development of irep projectors \quad \mathbf{p}_{m,m_{i}}^{\mu} = \sum_{k=0}^{\infty} \frac{\ell^{\mu}}{O} D_{m_{i}m_{i}}^{\mu}(g) \quad g \quad for subgroup chain O \supset D_{4} \supset C_{4} \\ & \mathbf{p}_{m,m_{i}}^{\mu} = \mathbf{p}^{m_{i}} \mathbf{P}^{n} = \mathbf{P}^{m_{i}} \\ & (Deriving diagonal irreducible O-representation ("irep") components $D_{m,m_{i}}^{\mu^{\mu}}(g) \\ & = \sum_{k=0}^{\infty} \frac{\ell^{\mu}}{O}(\chi_{k}^{\mu^{n}}) \cdot \mathbf{I} \Big(\mathbf{I} + d_{\rho}^{n_{i}} \mathbf{p}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} \Big) \frac{1}{4} = \Big(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{96}\Big) \Big(\mathbf{I} \cdot \mathbf{I} + d_{\rho}^{n_{i}} \mathbf{p}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} \Big) \frac{1}{4} = \Big(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{96}\Big) \Big(\mathbf{I} \cdot \mathbf{I} + d_{\rho}^{n_{i}} \mathbf{p}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} \Big) \frac{1}{4} = \Big(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{96}\Big) \Big(\mathbf{I} \cdot \mathbf{I} + d_{\rho}^{n_{i}} \mathbf{p}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} \Big) \frac{1}{4} = \Big(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{96}\Big) \Big(\mathbf{I} \cdot \mathbf{I} + d_{\rho}^{n_{i}} \mathbf{p}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} \Big) \Big) \\ + \frac{1}{\ell_{i}} \frac{1}{24} \Big(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{1 + \ell_{\rho}} \mathbf{P}_{i} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} \Big) \Big) \Big(\mathbf{I} \cdot \mathbf{I} + d_{\rho}^{n_{i}} \mathbf{R}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} + d_{\overline{k}}^{n_{i}} \mathbf{R}_{2} \Big) \Big) \\ + \frac{\ell_{i}} \frac{\ell_{i}}{44} \Big) \Big(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{1 + \ell_{\rho}} \mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i}^{n_{i}} \mathbf{R}_{i}^{n_{i}}$$$

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{p}_{m,m_{1}}^{\mu} = \sum_{k=0}^{2} \frac{\ell^{\mu}}{O} D_{m,m_{1}}^{\mu}(g) \quad \text{for subgroup chain } O \supset D_{4} \supset C_{4} \\ & \mathbf{p}_{m,m_{1}}^{\mu} = \mathbf{p}^{m_{1}} \mathbf{p}^{\mu} = \mathbf{p}^{m_{2}} \\ & \text{(Deriving diagonal irreducible O-representation ("irep") components $D_{m,m_{1}}^{\mu^{2}}(g)$ \\ & = \sum_{j=0}^{2} \frac{\ell^{\mu}}{O}(\chi_{k}^{\mu^{2}}) \cdot \mathbf{q}(\mathbf{p}^{m_{1}}) \\ & = \left(\frac{\ell^{\mu}}{24}\right)(\chi_{k}^{\mu^{2}}) \cdot \mathbf{1}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}}{96}\right)\left(1 \cdot 1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \\ & + \left(\frac{\ell^{m}}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4} \end{aligned}$$

$$+ \left(\frac{\ell^{m}}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4} \end{aligned}$$

$$+ \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4} \end{aligned}$$

$$+ \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4} \end{aligned}$$

$$+ \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4} \end{aligned}$$

$$+ \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4}$$

$$+ \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4}$$

$$+ \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4}$$

$$+ \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}}) \cdot \mathbf{p}_{k}\left(1 + d_{\mu}^{m_{1}} \mathbf{p}_{2} + d_{\mu}^{m_{1}} \mathbf{R}_{2}\right) \frac{1}{4} + \left(\frac{\partial}{24}\right)(\chi_{\mu}^{\mu^{2}} \mathbf{P}_{2} - (\pi_{1} \mathbf{R}_{2} - \pi_{2} - \pi_{$$

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{p}_{m,m_{n}}^{\mu} = \sum_{s}^{\infty} \frac{\ell^{\mu}}{s} D_{m_{m}m_{s}}^{\mu}(g) \quad \text{for subgroup chain } O \supset D_{4} \supset C_{4} \\ & \mathbf{p}_{m,m_{n}}^{\mu} = \mathbf{p}^{m_{0}} \mathbf{P}^{\mu} = \mathbf{P}^{\mu} \mathbf{p}^{n_{1}} \\ & \text{(Deriving diagonal irreducible O-representation ("irep") components $D_{m,m_{s}}^{\mu^{\mu}}(g)$ \\ & = \sum_{s}^{\infty} \frac{\ell^{\mu}}{s} O(\chi_{s}^{\mu^{s}}) \cdot \mathbf{q}(\mathbf{p}^{n_{1}}) \\ & = \left(\frac{\ell^{\nu}}{24}\right) (\chi_{s}^{\mu^{s}}) \cdot \mathbf{1} \left(\mathbf{1} + d_{\rho_{s}}^{n_{s}} \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{p}^{\mu^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{1} + d_{\rho_{s}}^{n_{s}} \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\chi_{p}^{\mu^{s}}) \cdot \mathbf{p}_{s} \left(\mathbf{1} + d_{\rho_{s}}^{n_{s}} \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{p}^{\mu^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\chi_{p}^{\mu^{s}}) \cdot \mathbf{p}_{s} \left(\mathbf{1} + d_{\rho_{s}}^{n_{s}} \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{p}^{\mu^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\chi_{p}^{\mu^{s}}) \cdot \mathbf{p}_{s} \left(\mathbf{1} + d_{\rho_{s}}^{n_{s}} \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{p}^{\mu^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{p}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s} + d_{\bar{k}_{s}}^{n_{s}} \mathbf{R}_{s}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\chi_{p}^{\mu^{s}}) \cdot \mathbf{p}_{s} \left(\mathbf{1} + d_{\rho_{s}}^{n_{s}} \mathbf{p}_{s} + d_{\bar{k}}^{n_{s}} \mathbf{R}_{s}\right) \frac{\ell^{\mu}}{26} \left(\frac{\ell^{\mu} \chi_{p}^{\mu^{s}}}{\mathbf{p}_{s}} - \frac{\ell^{\mu} \chi_{p}^{\mu^{s}}}{\mathbf{p}_{s}} \mathbf{R}_{s}^{\mu^{s}}} \mathbf{R}_{s}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}}} \frac{\ell^{\mu}}{4} \left(\frac{\ell^{\mu} \chi_{p}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}}}{\mathbf{p}_{s}} \left(\frac{\ell^{\mu} \chi_{p}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}}} \mathbf{R}_{s}^{\mu^{s}} \mathbf{R}_{s}^{\mu^{s}}$$

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{P}_{m,m_{1}}^{\mu} = \sum_{k=0}^{2} \frac{\ell^{\mu}}{O} D_{m_{k}m_{1}}^{\mu^{\mu}}(g) \; \mathbf{g} \qquad \text{for subgroup chain } O \supset D_{d} \supset C_{d} \\ & \mathbf{P}_{m,m_{1}}^{\mu} = \mathbf{p}^{m_{1}} \mathbf{P}^{m_{2}} = \mathbf{P}^{m_{2}} (\text{Deriving diagonal irreducible } O \text{-representation ("irep") components } D_{m_{k}m_{k}}^{\mu^{\mu}}(g) \\ & = \sum_{k=0}^{n} \frac{\ell^{\mu}}{O} (\chi_{k}^{\mu^{\nu}}) \cdot \mathbf{q} (\mathbf{p}^{m_{1}}) \\ & = \left(\frac{\ell^{\mu}}{24} \right) (\chi_{1}^{\mu^{\nu}}) \cdot \mathbf{1} \left(\mathbf{1} + d_{\rho,}^{\infty} \mathbf{p}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, \right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{\nu}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{1} + d_{\rho,}^{\infty} \mathbf{p}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, \right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{\nu}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{p}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, \right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{\nu}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{p}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, \right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{\nu}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{p}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, \right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{\nu}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{p}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, \right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{\nu}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{p}, + d_{\kappa}^{\infty} \mathbf{R}, \right) \frac{1}{4} + \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{\nu}}}{24} \right) \left(\chi_{1}^{\mu^{\nu}} \mathbf{p}, + d_{\kappa}^{\mu^{\nu}} \mathbf{R}, + d_{\kappa}^{\infty} \mathbf{R}, +$$

$$\begin{aligned} \begin{array}{l} \begin{array}{l} General \ development \ of \ irep \ projectors \\ \mathbf{P}_{m,m_1}^{\mu} = \mathbf{P}^{m} \mathcal{P}^{\mu} = \mathbf{P}^{m} \mathcal{P}^{\mu} = \mathbf{P}^{m} \mathcal{P}^{\mu} \\ \mathbf{P}_{m,m_1}^{\mu} = \mathbf{P}^{m} \mathcal{P}^{\mu} = \mathbf{P}^{m} \mathcal{P}^{\mu} \\ \begin{array}{l} \mathbf{P}_{m,m_1}^{\mu} = \mathbf{P}^{m} \mathcal{P}^{\mu} = \mathbf{P}^{m} \mathcal{P}^{\mu} \\ (Deriving \ diagonal \ irreducible \ O-representation (``irep'') \ components \ D_{m_1m_1}^{\mu^*}(g) \\ \end{array} \\ = \frac{\sum_{i}^{n} \frac{\ell^{\mu}}{c_{O}}}{\left(\chi_{i}^{\mu^{n}}\right) \cdot \mathbf{l}\left(1 + d_{\rho_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{96}\right) \left(1 \cdot 1 + d_{\rho_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{96}\right) \left(1 \cdot 1 + d_{\overline{n}_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{i}^{\mu^{n}}}{96}\right) \left(1 \cdot 1 + d_{\overline{n}_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{P}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{i}^{m^{n}}}{96}\right) \left(1 \cdot \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{96} \right) \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{P}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{R}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{R}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{R}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{p}_{i} + d_{\overline{n}_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{R}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{p}_{i}\right) \frac{1}{4} \\ \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{R}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ \\ + \left(\frac{\ell^{\mu}}{24}\right) \left(\chi_{\mu^{n}}^{\mu^{n}}\right) \cdot \mathbf{R}_{i} \left(1 + d_{\rho_{i}}^{m} \mathbf{R}_{i}\right) \frac{1}{4} \\ \\ + \left(\frac{\ell^{\mu}}{$$

$$\begin{aligned} \begin{array}{l} \begin{array}{l} General \ development \ of \ irep \ projectors \\ \mathbf{P}_{m_{n}m_{n}}^{\mu} = \mathbf{P}^{m_{n}} \underbrace{\mathbf{P}_{m_{n}m_{n}}^{\mu} = \mathbf{P}^{m_{n}} \underbrace{\mathbf{P}_{m_{n}}^{\mu} = \mathbf{P}^{m_{n}} \underbrace{\mathbf{P}^{m_{n}} = \mathbf{P}^{m_{n}$$

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{P}_{m_{q}m_{u}}^{\mu} = \sum_{s}^{O} \frac{\ell^{\mu}}{O} D_{m_{q}m_{u}}^{\mu^{s}}(g) \text{ g} \qquad \text{for subgroup chain } O \supset D_{4} \supset C_{4} \\ & \mathbf{P}_{m_{q}m_{u}}^{\mu} = \mathbf{P}^{n} \mathbf{P}^{\mu} = \mathbf{P}^{n} \mathbf{P}^{n_{u}} \\ & \text{(Deriving diagonal irreducible O-representation ("irep") components } D_{m_{q}m_{u}}^{\mu^{s}}(g) \\ & = \sum_{s}^{O} \frac{\ell^{\mu}}{O} (\chi_{s}^{m}) \cdot \mathbf{g}(\mathbf{p}^{n_{v}}) \\ & = \left(\frac{\ell^{\mu}}{24}\right) (\chi_{1}^{\mu^{s}}) \cdot \mathbf{1} \left(1 + d_{\rho_{u}}^{m} \rho_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{s}}}{96}\right) \left(1 \cdot 1 + d_{\rho_{u}}^{m} \rho_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) + d_{\kappa_{u}}^{m} \mathbf{R}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{s}}}{96}\right) \left(1 \cdot \mathbf{P}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) \left(1 \cdot \mathbf{P}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{s}}}{96}\right) \left(1 \cdot 1 + d_{\rho_{u}}^{m} \rho_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) + d_{\kappa_{u}}^{m} \mathbf{R}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) \\ & + \left(\frac{\ell^{\nu}}{24}\right) (\chi_{1}^{\mu^{s}}) \cdot \mathbf{P}_{c} \left(1 + d_{\rho_{u}}^{m} \rho_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{s}}}{96}\right) \left(1 \cdot \mathbf{P}_{c} + d_{\rho_{u}}^{m} \mathbf{R}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{s}}}{96}\right) \left(d_{\kappa_{u}}^{m^{s}} + 1 + \mathbf{P}_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) + d_{\kappa_{u}}^{m^{s}} \mathbf{R}_{c}\right) + \left(\frac{\ell^{\mu}}{24}\right) (\chi_{1}^{\mu^{s}}) \cdot \mathbf{R}_{c} \left(1 + d_{\rho_{u}}^{m} \rho_{c} + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{m^{s}}}{96}\right) \left(1 \cdot \mathbf{R}_{c} + d_{\rho_{u}}^{m} \mathbf{R}_{c}\right) + d_{\kappa_{u}}^{m^{s}} \mathbf{R}_{c}\right) = \left(\frac{\ell^{\mu} \chi_{1}^{m^{s}}}{96}\right) \left(d_{\kappa_{u}}^{m^{s}} + 1 + d_{\kappa_{u}}^{m} \mathbf{R}_{c}\right) + d_{\kappa_{u}}^{m^{s}} \mathbf{R}_{c}\right) + \left(\frac{\ell^{\mu} \chi_{1}^{m^{s}}}{2}\right) \left(\chi_{1}^{m^{s}} + 1 + d_{\kappa_{u}}^{m^{s}} \mathbf{R}_{c}\right) + \left(\frac{\ell^{\mu} \chi_{1}^{m^{s}}}{2}\right) \left(\chi_{1}^{m^{s}} + 1 + \frac{\ell^{m^{s}} \mathbf{R}_{c}} + d_{\kappa_{u}}^{m^{s}} \mathbf{R}_{c}\right) + \left(\frac{\ell^{\mu} \chi_{1}^{m^{s}}}{2}\right) \left(\chi_{1}^{m^{s}} + 1 + \frac{\ell^{m^{s}} \mathbf{R}_{c}}{2}\right) \left(\frac{\ell^{\mu} \chi_{1}^{m^{s}}}{2}\right) + \left(\frac{\ell^{\mu} \chi_{1}^{m^{s}}}{2}\right) \left(\chi_{1}^{m^{s}} + 1 + \frac{\ell^{m^{s}} \mathbf{R}_{c}} + \frac{\ell^{m^{s}} \mathbf{R}_{c}}{2}\right) \left(\chi_{$$
$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \displaystyle \operatorname{General\ development\ of\ irep\ projectors\ } \mathbf{P}_{m_{a}m_{a}}^{\mu} = \sum_{s}^{O} \frac{\ell^{\mu}}{O} D_{m_{a}m_{a}}^{\mu^{s}}(g)\ g & for\ subgroup\ chain\ O\supset D_{4}\supset C_{4} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \displaystyle P_{m_{a}m_{a}}^{\mu} = \mathbf{P}^{m_{a}}\mathbf{P}^{\mu} = \mathbf{P}^{\mu}\mathbf{P}^{m_{a}} \\ \end{array} & (\text{Deriving\ diagonal\ irreducible\ } O\ -representation\ (``irep'')\ components\ } D_{m_{a}m_{a}}^{\mu^{s}}(g) \\ \end{array} \\ = \frac{2}{s_{s}}^{O} \frac{\ell^{\mu}}{O}(\chi_{s}^{\mu^{s}})\cdot g(\mathbf{p}^{m_{s}}) \\ \end{array} \\ = \left(\frac{\ell^{\mu}}{24}\right)(\chi_{1}^{\mu^{s}})\cdot \mathbf{1}\left(1+d_{\rho_{s}}^{m_{s}}\mathbf{p}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}\right)\frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1\cdot\mathbf{1}+d_{\rho_{s}}^{m_{s}}\mathbf{p}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}\right)\frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{\rho_{c}}^{\mu^{s}}}{96}\right)\left(1\cdot\mathbf{p}_{c}+d_{\rho_{c}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}\right)\left(d_{\rho_{c}}^{m_{s}}\mathbf{1}+1\cdot\mathbf{p}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}\right) \\ + \left(\frac{\ell^{\mu}}{24}\right)(\chi_{\rho_{c}}^{m^{s}})\cdot\mathbf{R}_{c}\left(1+d_{\rho_{c}}^{m_{s}}\mathbf{p}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}\right)\frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{\rho_{c}}^{m^{s}}}{96}\right)\left(1\cdot\mathbf{R}_{c}+d_{\rho_{c}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{1}\right) = \left(\frac{\ell^{\mu}\chi_{\mu_{c}}^{m^{s}}}{96}\right)\left(d_{\overline{k}_{c}}^{m_{s}}\mathbf{1}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{p}_{c}+1\cdot\mathbf{R}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}\right) \\ + \left(\frac{\ell^{\mu}}{24}\right)(\chi_{\overline{k}}^{m^{s}})\cdot\mathbf{R}_{c}\left(1+d_{\rho_{c}}^{m_{s}}\mathbf{p}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{R}_{c}\right)\frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{\mu}^{m^{s}}}{96}\right)\left(1\cdot\mathbf{R}_{c}+d_{\overline{\rho_{c}}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{1}\right) = \left(\frac{\ell^{\mu}\chi_{\mu}^{m^{s}}}{96}\right)\left(d_{\overline{k}_{c}}^{m_{s}}\mathbf{1}+d_{\overline{k}_{c}}^{m_{s}}\mathbf{p}_{c}+1\cdot\mathbf{R}_{c}+d_{\overline{\mu}_{c}}^{m_{s}}\mathbf{R}_{c}\right) + \left(\frac{\ell^{m}\chi_{\mu}^{m^{s}}}{96}\right)\left(1\cdot\mathbf{R}_{c}+d_{\overline{\mu}_{c}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{\mu}_{c}}^{m_{s}}\mathbf{1}\right) = \left(\frac{\ell^{\mu}\chi_{\mu}^{m^{s}}}{96}\right)\left(d_{\overline{k}_{c}}^{m_{s}}\mathbf{1}+d_{\overline{\mu}_{c}}^{m_{s}}\mathbf{p}_{c}+d_{\overline{\mu}_{c}}^{m_{s}}\mathbf{R}_{c}+1\cdot\mathbf{R}_{c}\right) \\ + \left(\frac{\ell^{\mu}}{24}\right)(\chi_{\overline{k}}^{m^{s}})\cdot\mathbf{R}_{c}\left(1+d_{\overline{\mu}_{c}}^{m_{s}}\mathbf{R}_{c}+d_{\overline{\mu}_{c}}^{m_{s}}\mathbf{R}_{c}\right)\frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{\mu}^{m^{s}}}{96}\right)\left(1\cdot\mathbf{R}_{c}+d_{\overline{\mu}_{c}}^{m_{s$$

 $\mathbf{r}_1 C_4 = \mathbf{r}_1 \left\{ \mathbf{1}, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z \right\} = \left\{ \mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y \right\} Coset$

+

+

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{P}_{m_{e}m_{e}}^{\mu} = \sum_{s=0}^{O} \frac{\ell^{\mu}}{O} D_{m_{e}m_{e}}^{\mu^{s}}(g) \text{ g} \qquad \text{for subgroup chain } O \supset D_{d} \supset C_{d} \\ & \mathbf{P}_{m_{e}m_{e}}^{\mu} = \mathbf{P}^{n} \mathbf{P}^{\mu} = \mathbf{P}^{n} \mathbf{P}^{n_{e}} \\ & (\text{Deriving diagonal irreducible O-representation ("irep") components } D_{m_{e}m_{e}}^{\mu^{s}}(g) \\ & = \sum_{s=0}^{n} \frac{\ell^{\mu}}{O}(\chi_{s}^{m}) \cdot \mathbf{g}(\mathbf{p}^{n_{s}}) \\ & = \left(\frac{\ell^{\mu}}{24}\right)(\chi_{1}^{\mu^{s}}) \cdot \mathbf{1}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot 1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(d_{\mu_{e}}^{m}\mathbf{1} + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(\chi_{1}^{\mu^{s}}\right) \cdot \mathbf{P}_{e}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{m}}{96}\right)\left(d_{\mu_{e}}^{m}\mathbf{1} + d_{\mu_{e}}^{m}\mathbf{p}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(\chi_{1}^{\mu^{s}}\right) \cdot \mathbf{P}_{e}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(1 \cdot \mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{2} + \left(\frac{\ell^{\mu}\chi_{1}^{\mu^{s}}}{96}\right)\left(d_{\mu_{e}}^{m}\mathbf{1} + d_{\mu_{e}}^{m}\mathbf{p}_{e}\right) \frac{1}{2} + \left(\frac{\ell$$

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{P}_{m_{g}m_{e}}^{\mu} = \sum_{k=0}^{2} \frac{\ell^{\mu}}{O} D_{m_{g}m_{e}}^{\mu}(\mathbf{g}) \mathbf{g} \qquad \text{for subgroup chain } \mathbf{O} \supset D_{4} \supset C_{4} \\ & \mathbf{P}_{m_{g}m_{e}}^{\mu} = \mathbf{P}^{\mathbf{u}_{4}} = \mathbf{P}^{\mathbf{u}_{4}} \\ & \text{(Deriving diagonal irreducible O-representation ("irep") components $D_{m_{g}m_{e}}^{\mu^{\mu}}(\mathbf{g}) \\ & = \sum_{k=0}^{2} \frac{\ell^{\mu}}{O} (\mathbf{x}_{k}^{\nu^{\mu}}) \cdot \mathbf{I} \Big(\mathbf{1} + d_{\mu_{e}}^{m} \mathbf{p}_{e} + d_{\mu_{e}}^{m} \mathbf{R}_{e} + d_{\mu_{e}}^{m} \mathbf{R}_{e} \Big) \Big(\mathbf{1} \cdot \mathbf{1} + d_{\mu_{e}}^{m} \mathbf{p}_{e} + d_{\mu_{e}}^{m} \mathbf{R}_{e} + d_{\mu_{e}}^{m} \mathbf{R}_{$$$

 $\mathbf{r}_1 C_4 = \mathbf{r}_1 \{ \mathbf{1}, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z \} = \{ \mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y \} Coset$

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{P}_{m_{effn_{1}}}^{\mu} = \sum_{s}^{O} \frac{\ell^{\mu}}{O} D_{m_{effn_{1}}}^{\mu^{s}}(\mathbf{g}) \mathbf{g} \qquad \text{for subgroup chain } \mathbf{O} \supset D_{d} \supset C_{d} \\ & \mathbf{P}_{m_{effn_{1}}}^{\mu} = \mathbf{P}^{n} \mathbf{P}^{\mu} = \mathbf{P}^{n} \mathbf{P}^{n_{e}} \\ & (\text{Deriving diagonal irreducible } O-\text{representation } (``irep'') \text{ components } D_{m_{effn_{1}}}^{\mu^{s}}(\mathbf{g}) \\ & = \sum_{s}^{n} \frac{\ell^{\mu}}{O}(\chi_{s}^{m}) \cdot \mathbf{g}(\mathbf{p}^{n_{1}}) \\ & = \left(\frac{\ell^{\mu}}{24}\right)(\chi_{1}^{\mu^{s}}) \cdot \mathbf{1}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(1 \cdot 1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(1 \cdot 1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \\ & + \left(\frac{\ell^{\nu}}{24}\right)(\chi_{1}^{\mu^{s}}) \cdot \mathbf{P}_{e}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(1 \cdot \mathbf{P}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(d_{\mu_{e}}^{m}\mathbf{1} + 1 \cdot \mathbf{P}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \\ & + \left(\frac{\ell^{\nu}}{24}\right)(\chi_{1}^{\mu^{s}}) \cdot \mathbf{R}_{e}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(1 \cdot \mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(d_{\mu_{e}}^{m}\mathbf{1} + d_{\mu_{e}}^{m}\mathbf{p}_{e} + 1 \cdot \mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \\ & + \left(\frac{\ell^{\nu}}{24}\right)(\chi_{1}^{\mu^{s}}) \cdot \mathbf{R}_{e}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(1 \cdot \mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(d_{\mu_{e}}^{m}\mathbf{1} + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) + \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{24}\right)\left(\chi_{1}^{\mu^{s}}\right) \cdot \mathbf{P}_{e}\left(1 + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(1 \cdot \mathbf{P}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) = \left(\frac{\ell^{\mu}\chi_{1}^{m^{s}}}{96}\right)\left(d_{\mu_{e}}^{m}\mathbf{1} + d_{\mu_{e}}^{m}\mathbf{p}_{e} + d_{\mu_{e}}^{m}\mathbf{R}_{e}\right) \frac{1}{4}$$

$$\begin{aligned} \begin{array}{l} \begin{array}{l} General \ development \ of \ irep \ projectors \ \mathbf{P}_{m_{q}m_{q}}^{\mu} = \sum_{s}^{O} \frac{\ell^{\mu}}{O} D_{m_{s}m_{q}}^{\mu}(g) \ \mathbf{g} \qquad for \ subgroup \ chain \ O \supset D_{4} \supset C_{4} \\ \begin{array}{l} P_{m_{q}m_{q}}^{\mu} = \mathbf{P}^{m_{q}} \mathbf{P}^{\mu} = \mathbf{P}^{m_{q}} \\ (Deriving \ diagonal \ irreducible \ O - representation \ (``irep'') \ components \ D_{m_{q}m_{q}}^{\mu^{\mu}}(g) \\ \end{array} \\ = \sum_{s}^{O} \frac{\ell^{\mu}}{O} (\chi_{s}^{\mu^{s}}) \cdot \mathbf{g} (\mathbf{p}^{m_{q}}) \\ = \left(\frac{\ell^{\mu}}{24} \right) (\chi_{1}^{\mu^{s}}) \cdot \mathbf{1} \left(1 + d_{p_{s}}^{m_{s}} \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{s}}}{96} \right) \left(1 \cdot 1 + d_{p_{s}}^{m_{s}} \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{1}^{\mu^{s}}}{96} \right) \left(1 \cdot 1 + d_{p_{s}}^{m_{s}} \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ + \left(\frac{\ell^{\mu}}{24} \right) (\chi_{1}^{m_{s}}) \cdot \mathbf{p}_{s} \left(1 + d_{p_{s}}^{m_{s}} \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ = \left(\frac{\ell^{\mu} \chi_{k_{s}}^{m_{s}}}{96} \right) \left(1 \cdot \mathbf{p}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} \right) \frac{1}{4} \\ + \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{k_{s}}^{m_{s}} \right) \cdot \mathbf{p}_{s} \left(1 + d_{k_{s}}^{m_{s}} \mathbf{R}_{s} + d_{k_{s}}^{m_{s}} \mathbf{R}_{$$

 $\mathbf{r}_1 C_4 = \mathbf{r}_1 \{ \mathbf{1}, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z \} = \{ \mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y \} Coset$

$$\begin{aligned} \begin{array}{l} \begin{array}{l} General \ development \ of \ irep \ projectors \\ \mathbf{P}_{m_{e}m_{i}}^{\mu} &= \sum_{s}^{O} \frac{\ell^{\mu}}{O} D_{m_{e}m_{i}}^{\mu^{s}} \left(\mathbf{g} \right) \mathbf{g} \\ \begin{array}{l} for \ subgroup \ chain \ O \supset D_{4} \supset C_{4} \\ \mathbf{P}_{m_{e}m_{i}}^{\mu} &= \mathbf{P}^{n} \mathbf{P}^{\mu} &= \mathbf{P}^{n} \mathbf{P}^{n_{i}} \\ (Deriving \ diagonal \ irreducible \ O-representation (``irep'') \ components \ D_{m_{e}m_{i}}^{\mu^{s}} \left(\mathbf{g} \right) \\ &= \sum_{i}^{O} \frac{\ell^{\mu}}{O} (\chi_{i}^{m}) \cdot \mathbf{I} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{I} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{P}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{P}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{P}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &+ \left(\frac{\ell^{\nu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{P}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}} \chi_{i}^{m^{s}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{P}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &+ \left(\frac{\ell^{\nu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{R}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}} \chi_{i}^{m^{s}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &+ \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{R}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}} \chi_{i}^{m^{s}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ \\ &+ \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{R}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{p}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ &= \left(\frac{\ell^{\mu}} \chi_{i}^{m^{s}}}{96} \right) \left(\mathbf{1} \cdot \mathbf{P}_{e} + d_{p_{e}}^{m} \mathbf{R}_{e} \right) \\ \\ &+ \left(\frac{\ell^{\mu}}{24} \right) \left(\chi_{i}^{\mu^{s}} \right) \cdot \mathbf{P}_{e} \left(\mathbf{1} + d_{p_{e}}^{m} \mathbf{R$$

$$\begin{aligned} & \text{General development of irep projectors} \quad \mathbf{P}_{m_{g}m_{e}}^{\mu} = \sum_{s}^{0} \frac{\ell^{\mu}}{2O} D_{m_{g}m_{e}}^{\mu_{s}}(\mathbf{g}) \mathbf{g} \qquad \text{for subgroup chain } \mathbf{O} \supset D_{4} \supset C_{4} \\ & \mathbf{P}_{m_{g}m_{e}}^{\nu} = \mathbf{P}^{m_{e}} \mathbf{P}^{\nu} = \mathbf{P}^{m_{e}} \\ & \text{(Deriving diagonal irreducible O-representation ("irep") components } D_{m_{g}m_{e}}^{\mu^{s}}(\mathbf{g}) \\ & = \sum_{s}^{0} \frac{\ell^{\mu}}{2O} (\mathbf{x}_{s}^{m}) \cdot \mathbf{g}(\mathbf{p}^{m_{e}}) \\ & = \left(\frac{\ell^{\mu}}{24}\right) (\mathbf{x}_{1}^{\mu^{s}}) \cdot \mathbf{1} \left(\mathbf{1} + d_{\rho_{e}}^{m_{e}} \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \mathbf{x}_{1}^{m^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{1} + d_{\rho_{e}}^{m_{e}} \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\mathbf{x}_{1}^{\mu^{s}}) \cdot \mathbf{p}_{e} \left(\mathbf{1} + d_{\rho_{e}}^{m_{e}} \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(d_{\rho_{e}}^{m_{e}} \mathbf{1} + \mathbf{1} \cdot \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\mathbf{x}_{0}^{\mu^{s}}) \cdot \mathbf{P}_{e} \left(\mathbf{1} + d_{\rho_{e}}^{m_{e}} \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(d_{\kappa_{e}}^{m_{e}} \mathbf{1} + d_{\kappa_{e}}^{m_{e}} \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\mathbf{x}_{0}^{\mu^{s}}) \cdot \mathbf{R}_{e} \left(\mathbf{1} + d_{\rho_{e}}^{m_{e}} \mathbf{p}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{R}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(d_{\kappa_{e}}^{m_{e}} \mathbf{1} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \\ & + \left(\frac{\ell^{\mu}}{24}\right) (\mathbf{x}_{0}^{\mu^{s}}) \cdot \mathbf{P}_{e} \left(\mathbf{1} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \mathbf{x}_{0}^{m^{s}}}{96}\right) \left(\mathbf{1} \cdot \mathbf{P}_{e} + d_{\kappa_{e}}^{m_{e}} \mathbf{R}_{e}\right) \left(\frac{\ell^{\mu} \mathbf{x}_{$$

 $\mathbf{r}_1 C_4 = \mathbf{r}_1 \{ \mathbf{1}, \mathbf{\rho}_z, \mathbf{R}_z, \mathbf{\tilde{R}}_z \} = \{ \mathbf{r}_1, \mathbf{r}_4, \mathbf{i}_1, \mathbf{R}_y \} Coset$

$$\begin{aligned} \begin{array}{l} \begin{array}{l} General \ development \ of \ irep \ projectors \quad \mathbf{P}_{m_{n}m_{n}}^{\mu} = \sum_{s}^{o} \frac{\ell^{\mu}}{O} D_{m_{n}m_{n}}^{\mu}(g) \ \mathbf{g} \qquad for \ subgroup \ chain \ \mathsf{O} \supset D_{d} \supset \mathsf{C}_{d} \\ \begin{array}{l} \mathcal{P}_{m_{n}m_{n}}^{\mu} = \mathbf{P}^{m} \mathbf{P}^{n} & (\text{Deriving diagonal irreducible } O-\text{representation } ("irep") \ components \ D_{m_{n}m_{n}}^{\mu}(g) \\ \end{array} \\ = \sum_{s}^{o} \frac{\ell^{\mu}}{O} (\chi_{s}^{\mu^{s}}) \cdot \mathbf{i} \left(1 + d_{\rho,}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{s}^{\mu^{s}}}{96}\right) \left(1 \cdot 1 + d_{\rho,}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{s}^{\mu^{s}}}{96}\right) \left(1 \cdot 1 + d_{\rho,}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{s}^{\mu^{s}}}{96}\right) \left(1 \cdot 1 + d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \left(1 \cdot 1 + d_{\rho,}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{s}^{\mu^{s}}}{96}\right) \left(1 \cdot 1 + d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{s}^{\mu^{s}}}{96}\right) \left(1 \cdot \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{1}{4} = \left(\frac{\ell^{\mu} \chi_{\kappa}^{\mu^{s}}}{96}\right) \left(1 \cdot \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{\ell^{\mu} \chi_{\kappa}^{\mu^{s}}}{96} \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{\ell^{\mu} \chi_{\kappa}^{\mu^{s}}}{96} \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{\ell^{\mu} \chi_{\kappa}^{\mu^{s}}}{96} \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) + d_{\kappa}^{s_{n}} \mathbf{R}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{\ell^{\mu} \chi_{\kappa}^{\mu^{s}}}{96} \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}_{c} + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) + d_{\kappa}^{s_{n}} \mathbf{R}_{c}\right) \frac{\ell^{\mu} \chi_{\kappa}^{\mu^{s}}}{96} \left(1 - d_{\kappa}^{s_{n}} \mathbf{p}$$

General development of irep projectors \mathbf{P}_{m}^{μ}

$$\prod_{m_4m_4}^{\mu} = \sum_{g}^{\circ O} \frac{\ell^{\mu}}{\circ O} D_{m_4m_4}^{\mu^*}(g) \mathbf{g} \qquad for subgroup chain O \supset D_4 \supset C_4$$

$$P_{m_{4}m_{4}}^{\mu} = \mathbf{p}_{m_{4}} \mathbf{P}^{\mu} = \mathbf{P}^{\kappa} \mathbf{p}_{m_{4}} \qquad \text{(Deriving diagonal irreducible O-representation ("irep") components } D_{m_{4}m_{4}}^{\mu^{*}}(g) = \sum_{g}^{\circ O} \frac{\ell^{\mu}}{4^{\circ}O}(\chi_{g}^{\mu^{*}}) \cdot \mathbf{g} \cdot \left(\mathbf{p}_{m_{4}}\right) = \sum_{g}^{\circ O} \frac{\ell^{\mu}}{4^{\circ}O}(\chi_{g}^{\mu^{*}}) \cdot \mathbf{g} \cdot \left(d_{1}^{m_{4}}\mathbf{1} + d_{\rho_{c}}^{m_{4}}\rho_{z} + d_{\mathbf{R}_{z}}^{m_{4}}\mathbf{R}_{z} + d_{\mathbf{R}_{z}}^{m_{4}}\mathbf{R}_{z}\right)$$

$$= \sum_{g}^{\circ O} \frac{\ell^{\mu}}{2O}(\chi_{g}^{\mu^{*}}) \cdot \mathbf{g} \cdot \left(\mathbf{p}_{m_{4}}\right) = \sum_{g}^{\circ O} \frac{\ell^{\mu}}{4^{\circ}O}(\chi_{g}^{\mu^{*}}) \cdot \mathbf{g} \cdot \left(d_{1}^{m_{4}}\mathbf{1} + d_{\rho_{c}}^{m_{4}}\rho_{z} + d_{\mathbf{R}_{z}}^{m_{4}}\mathbf{R}_{z}\right)$$

$$= \sum_{g}^{\circ O} \frac{\ell^{\mu}}{2O}(\chi_{g}^{\mu^{*}}) \cdot \mathbf{g} \cdot \left(\mathbf{p}_{m_{4}}\right) = \sum_{g}^{\circ O} \frac{\ell^{\mu}}{4^{\circ}O}(\chi_{g}^{\mu^{*}}) \cdot \mathbf{g} \cdot \left(d_{1}^{m_{4}}\mathbf{1} + d_{\rho_{c}}^{m_{4}}\rho_{z} + d_{\mathbf{R}_{z}}^{m_{4}}\mathbf{R}_{z}\right)$$

$$= \frac{O \cdot \chi_{g}^{\mu}}{\mu = A_{1}} = \frac{1}{1} + \frac$$

Coset array that helps sum character products for O projector splitting

	1	$\mathbf{\rho}_{z}$	R _z	$\tilde{\mathbf{R}}_{z}$		$\mathbf{\rho}_x$	ρ	i ₄	i ₃		\mathbf{r}_1	r ₄	\mathbf{i}_1	R _y		r ₂	r ₃	i ₂	$\tilde{\mathbf{R}}_{y}$		$\tilde{\mathbf{r}}_{1}$	$\tilde{\mathbf{r}}_{3}$	$\tilde{\mathbf{R}}_{x}$	i ₆		$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_4$	\mathbf{R}_{x}	i ₅
$\overline{\ell\chi_1}$	1	ρ	R _z	$\tilde{\mathbf{R}}_{z}$	<u>εχ</u> ρ _x	1	ρ	R _z	Ñ _z	$\ell \chi r_1$	1	ρ	R _z	Ñ _z	$\frac{\ell \chi r_2}{r_2}$	1	ρ	R _z	Ñ _z	$\ell \chi \tilde{\mathbf{r}}_1$	1	ρ _z	R _z	Ñ _z	$\ell\chi\tilde{r}_2$	1	ρ_z	R _z	Ñ _z
$\ell\chi_{\rho_z}$	ρ	1	R _z	R _z	ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε	ρ	1	R _z	R _z	$\ell \chi_{\mathbf{r}_4}$	ρ _z	1	R _z	R _z	$\frac{\ell \chi_{r_3}}{\ell \chi_{r_3}}$	ρ	1	Ñ _z	R _z	$\frac{1}{\ell \chi_{\tilde{\mathbf{r}}_3}}$	ρ	1	Ř _z	R _z	$\frac{\ell \chi \tilde{\mathbf{r}}_4}{\ell \chi \tilde{\mathbf{r}}_4}$	ρ	1	Ř _z	R _z
land the second	R _z	R _z	1	ρ	$\ell\chi_{\mathbf{i}_4}$	R _z	R _z	1	ρ	$\ell \chi_{\mathbf{i}_1}$	$\tilde{\mathbf{R}}_{z}$	R _z	1	ρ	$\ell \chi_{\mathbf{i}_2}$	R _z	R _z	1	ρ	$\ell_{\tilde{\mathbf{R}}_{x}}$	R _z	R _z	1	ρ	$\ell_{\mathbf{X}_{\mathbf{R}}_{x}}$	$\tilde{\mathbf{R}}_{z}$	R _z	1	ρ
<mark>ℓχ</mark> Ř _z	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1	<i>ε</i> χ. i ₃	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1	lx _y	R _z	Ñ _z	ρ	1	lX _{Ãy}	R _z	R _z	ρ	1	ex i ₆	R _z	Ñ _z	ρ	1	$\ell \chi_{i_5}$	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1

General development of irep projectors **P**

$${}^{\mu}_{m_4m_4} = \sum_{g}^{\circ O} \frac{\ell^{\mu}}{\circ O} D_{m_4m_4}^{\mu^*}(g) \mathbf{g} \qquad for subgroup chain O \supset D_4 \supset C_4$$

 $\mathbf{1}C_{4} = \mathbf{1}\left\{\mathbf{1}, \rho_{z}, \mathbf{R}_{z}, \tilde{\mathbf{R}}_{z}\right\} \rho_{x}C_{4} = \left\{\rho_{x}, \rho_{y}, \mathbf{i}_{4}, \mathbf{i}_{3}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{4}, \mathbf{i}_{1}, \mathbf{R}_{y}\right\} \mathbf{r}_{2}C_{4} = \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \tilde{\mathbf{R}}_{y}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{3}, \mathbf{R}_{x}, \mathbf{i}_{6}\right\} \mathbf{r}_{2}C_{4} = \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \mathbf{R}_{y}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{3}, \mathbf{R}_{x}, \mathbf{i}_{6}\right\} \mathbf{r}_{2}C_{4} = \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \mathbf{R}_{y}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{3}, \mathbf{R}_{x}, \mathbf{i}_{6}\right\} \mathbf{r}_{2}C_{4} = \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \mathbf{R}_{y}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{3}, \mathbf{R}_{x}, \mathbf{i}_{6}\right\} \mathbf{r}_{2}C_{4} = \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \mathbf{R}_{y}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{3}, \mathbf{R}_{x}, \mathbf{i}_{6}\right\} \mathbf{r}_{2}C_{4} = \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{2}, \mathbf{R}_{y}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{3}, \mathbf{R}_{x}, \mathbf{i}_{6}\right\} \mathbf{r}_{2}C_{4} = \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{2}, \mathbf{R}_{y}\right\} \mathbf{r}_{1}C_{4} = \left\{\mathbf{r}_{1}, \mathbf{r}_{3}, \mathbf{R}_{x}, \mathbf{r}_{1}, \mathbf{r}_{1}C_{4}, \mathbf$

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

 Splitting O class projectors P^μ into irreducible projectors P^μ_{m4m4} for O⊃C4 Left-cosets and coefficient arrays
 Development of irreducible projectors P^μ_{m4m4} and representations D^μ_{m4m4}
 Calculating P^E₄₀₄, P^E₂₄₂₄, P^{T₁}₀₄₀₄, P^{T₁}₁₄₁₄, P^{T₂}₂₄₂₄, P^{T₂}₁₄₁₄, Collected P_{mm} results Table

 $\mathbf{P}_{0_{4}0_{4}}^{E} = \frac{1}{12} [(1) \cdot \mathbf{1} \mathbf{p}_{0_{4}} + (1) \cdot \mathbf{\rho}_{x} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{0_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{0_{4}}]$ Broken-class-ordered sum:

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{E} = \frac{1}{12} (\mathbf{1}\cdot\mathbf{1} - \frac{1}{2}\mathbf{r}_{1} - \frac{1}{2}\mathbf{r}_{2} - \frac{1}{2}\mathbf{r}_{3} - \frac{1}{2}\mathbf{r}_{4} - \frac{1}{2}\mathbf{\tilde{r}}_{1} - \frac{1}{2}\mathbf{\tilde{r}}_{2} - \frac{1}{2}\mathbf{\tilde{r}}_{3} - \frac{1}{2}\mathbf{\tilde{r}}_{4} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} + \mathbf{1}\mathbf{\rho}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{R}_{x} - \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{1}{2}\mathbf{\tilde{R}}_{x}$

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

 Splitting O class projectors P^μ into irreducible projectors P^μ_{m4m4} for O⊃C4 Left-cosets and coefficient arrays
 Development of irreducible projectors P^μ_{m4m4} and representations D^μ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₄₂₄, P^{T1}₀₄₀₄, P^{T1}₁₄₁₄, P^{T2}₂₄₂₄, P^{T2}₁₄₁₄, Collected P_{mm} results Table

 $\mathbf{P}_{2_{4}2_{4}}^{E} = \frac{1}{12} [(1) \cdot \mathbf{1} \mathbf{p}_{2_{4}} + (1) \cdot \mathbf{\rho}_{x} \mathbf{p}_{2_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{2_{4}} + (-\frac{1}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{2_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{2_{4}} + (-\frac{1}{2}) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{2_{4}}]$

Broken-class-ordered sum:

 $\mathbf{P}_{2_{4}2_{4}}^{E} = \frac{1}{12} \left(1 \cdot \mathbf{1} - \frac{1}{2} \mathbf{r}_{1} - \frac{1}{2} \mathbf{r}_{2} - \frac{1}{2} \mathbf{r}_{3} - \frac{1}{2} \mathbf{r}_{4} - \frac{1}{2} \mathbf{\tilde{r}}_{1} - \frac{1}{2} \mathbf{\tilde{r}}_{2} - \frac{1}{2} \mathbf{\tilde{r}}_{3} - \frac{1}{2} \mathbf{\tilde{r}}_{4} + 1 \mathbf{\rho}_{x} + 1 \mathbf{\rho}_{x} + 1 \mathbf{\rho}_{x} + 1 \mathbf{\rho}_{x} + \frac{1}{2} \mathbf{R}_{x} + \frac{1}{2} \mathbf{R}_{x} - 1 \mathbf{R}_{z} + \frac{1}{2} \mathbf{\tilde{R}}_{x} - 1 \mathbf{\tilde{R}}_{z} - 1 \mathbf{\tilde{R}}_{z$

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors P^µ into irreducible projectors P^µ_{m4m4} for O⊃C4
 Left-cosets and coefficient arrays
 Development of irreducible projectors P^µ_{m4m4} and representations D^µ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₂₄₂₄, P^T₁₀₄₀₄, P^T₁₄₁₄, P^T₂₄₂₄, P^T₂₁₄₁₄, Collected P_{mm} results Table

$$Calculating \mathbf{P}^{T_{1}}_{0:0i} \xrightarrow{O \subseteq C_{4}} \underbrace{\begin{smallmatrix} 0 & 1 & 1 & 2 & 3 & 3 \\ \hline A_{4}U_{4} & 1 & \cdots & A_{2}U_{4} \\ \hline A_{4}U_{4} & 1 & \cdots & A_{2}U_{4} \\ \hline A_{4}U_{4} & 1 & \cdots & A_{2}U_{4} \\ \hline A_{4}U_{4} & 1 & 1 & 1 & 1 \\ \hline A_{4}U_{4} & 1 & 1 & 1 \\ \hline A_{4}U_{4} & 1 & 1 & 1 \\ \hline A_{4}U_{4} & 1 & 1 \\ \hline A_{4}U_{4}$$

 $\begin{array}{l} +\frac{1}{32}(-1)(+1,1,+1)+\frac{1}{32}(-1)(+1,1,+1)+\frac{1}{32}(0)(+1,1,+1)+\frac{1}{32}(1)(+1,+1,+1)+\frac{1}{32}(1$

 $\mathbf{P}_{0_{4}0_{4}}^{T_{1}} = \frac{1}{8} \left[(1) \cdot \mathbf{1} \mathbf{p}_{0_{4}} + (-1) \cdot \rho_{x} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{r}_{1} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{r}_{2} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{0_{4}} + (0) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{0_{4}} \right]$ Broken-class-ordered sum:

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{T_{1}} = \frac{1}{8} \left(1 \cdot \mathbf{1} + \mathbf{0} +$

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

 Splitting O class projectors P^µ into irreducible projectors P^µ_{m4m4} for O⊃C4 Left-cosets and coefficient arrays
 Development of irreducible projectors P^µ_{m4m4} and representations D^µ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₂₄₂₄, P^{T₁}₀₄₀₄, P^{T₁}₁₄₁₄, P^{T₂}₂₄₂₄, P^{T₂}₁₄₁₄, Collected P_{mm} results Table

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} OC_{4} & \left[0_{4} & 1_{4} & 2_{4} & 3_{4} \\ \hline 4_{4} LC_{4} & 1 & \cdots & \vdots \\ \hline 4_{4} LC_{4} & 1 & \cdots & \vdots \\ \hline 4_{4} LC_{4} & 1 & \cdots & \vdots \\ \hline 4_{4} LC_{4} & 1 & \cdots & \vdots \\ \hline 4_{4} LC_{4} & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 &$$

 $\frac{1}{8}\left(\underline{1}\underline{1}\underline{-1}\rho_{z}+\underline{i}\mathbf{R}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{0}\rho_{x}+\underline{0}\rho_{y}+\underline{0}\mathbf{i}_{4}+\underline{0}\mathbf{i}_{3}+\underline{i}\underline{i}\mathbf{r}_{1}\underline{-i}\mathbf{r}_{4}\underline{-1}\mathbf{i}_{1}+\underline{i}\underline{2}\mathbf{R}_{y}+\underline{i}\underline{i}\mathbf{r}_{2}\underline{-i}\mathbf{r}_{3}\underline{-1}\mathbf{i}_{2}\mathbf{i}_{2}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{y}-\underline{-i}\underline{i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}+\underline{i}\underline{2}\mathbf{\tilde{R}}_{z}\underline{-i}\mathbf{\tilde{R}}_{z}\mathbf{i}_{2}\mathbf{$

Coset-factored sum:

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8} [(1) \cdot \mathbf{1} \mathbf{p}_{1_{4}} + (0) \cdot \boldsymbol{\rho}_{x} \mathbf{p}_{1_{4}} + (\frac{i}{2}) \cdot \mathbf{r}_{1} \mathbf{p}_{1_{4}} + (\frac{i}{2}) \cdot \mathbf{r}_{2} \mathbf{p}_{1_{4}} + (-\frac{i}{2}) \cdot \tilde{\mathbf{r}}_{1} \mathbf{p}_{1_{4}} + (-\frac{i}{2}) \cdot \tilde{\mathbf{r}}_{2} \mathbf{p}_{1_{4}}]$

Broken-class-ordered sum:

 $\mathbf{P}_{1_{4}1_{4}}^{T_{1}} = \frac{1}{8}(\mathbf{1}\cdot\mathbf{1} + \frac{i}{2}\mathbf{r}_{1} + \frac{i}{2}\mathbf{r}_{2} - \frac{i}{2}\mathbf{r}_{3} - \frac{i}{2}\mathbf{r}_{4} - \frac{i}{2}\mathbf{\tilde{r}}_{1} - \frac{i}{2}\mathbf{\tilde{r}}_{2} + \frac{i}{2}\mathbf{\tilde{r}}_{3} + \frac{i}{2}\mathbf{\tilde{r}}_{4} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \mathbf{0}\mathbf{\rho}_{x} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{R}_{x} + \frac{1}{2}\mathbf{\tilde{R}}_{x} + \frac{1}{2}\mathbf{\tilde{R}}_{x} - \frac{i}{2}\mathbf{\tilde{i}}_{1} - \frac{i}{2}\mathbf{\tilde{i}}_{2} + \mathbf{0}\mathbf{\tilde{i}}_{3} + \mathbf{0}\mathbf{\tilde{i}}_{4} - \frac{i}{2}\mathbf{\tilde{i}}_{5} - \frac{i}{2}\mathbf{\tilde{i}}_{6})$

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors P^µ into irreducible projectors P^µ_{m4m4} for O⊃C4
 Left-cosets and coefficient arrays
 Development of irreducible projectors P^µ_{m4m4} and representations D^µ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₂₄₂₄, P^{T1}₀₄₀₄, P^{T1}₁₄₁₄, P^{T2}₂₄₂₄, P^{T2}₁₄₁₄, Collected P_{mm} results Table

$$Calculating \mathbf{P}^{1_{2}}_{2,2,1} = \mathbf{p}_{2_{n}} \mathbf{P}^{t_{1}}_{2,2,2} = \mathbf{P}^{t_{1}}_{2,2,2,4} = \mathbf{P}^{t_{1}}_{2,2,4} = \mathbf{P}^{t_{1}}_{2,2,4} = \mathbf{P}^{t_{2}}_{2,2,4} = \mathbf{P}^{t_{2}}_{2,2,4} = \mathbf{P}^{t_{2}}_{2,2,4} = \mathbf{P}^{t_{2}}_{2,2,4} = \mathbf{P}^{t_{2}}_{2,4,4} = \mathbf{$$

 $+\frac{1}{32}(-1)(-1, -1, 1, +1) + \frac{1}{32}(+1)(-1, -1, 1, +1) + \frac{1}{32}(+1)(-1, -1, 1, +1) + \frac{1}{32}(+1)(-1, -1, 1, +1) + \frac{1}{32}(-1)(-1, -1, +1) + \frac{1}{32}(-1)(-1, -1, +1) + \frac{1}{32}(-1)(-1, -1) + \frac{1}{32}(-$

 $\frac{1}{8}(11+1\rho_{z}-1R_{z}-1\tilde{R}_{z}-1\rho_{x}-1\rho_{y}+1i_{4}+1i_{3}+0r_{4}+0r_{4}+0r_{4}+0r_{4}+0r_{2}+0r_{3}+0r_{2}+0r_{3}+0r_{2}+0\tilde{R}_{y}+0r_{1}+0r_{3}+0\tilde{r}_{4}+0r_{4}+0$

Coset-factored sum:

 $\mathbf{P}_{2_{4}2_{4}}^{T_{2}} = \frac{1}{8} [(1) \cdot \mathbf{1}\mathbf{p}_{2_{4}} + (1) \cdot \rho_{x}\mathbf{p}_{2_{4}} + (0) \cdot \mathbf{r}_{1}\mathbf{p}_{2_{4}} + (0) \cdot \mathbf{r}_{2}\mathbf{p}_{2_{4}} + (0) \cdot \mathbf{\tilde{r}}_{1}\mathbf{p}_{2_{4}} + (0) \cdot \mathbf{\tilde{r}}_{2}\mathbf{p}_{2_{4}}]$ Broken-class-ordered sum:

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

 Splitting O class projectors P^µ into irreducible projectors P^µ_{m4m4} for O⊃C4 Left-cosets and coefficient arrays
 Development of irreducible projectors P^µ_{m4m4} and representations D^µ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₂₄₂₄, P^{T₁}₀₄₀₄, P^{T₁}₁₄₁₄, P^{T₂}₂₄₂₄, P^{T₂}₁₄₁₄, Collected P_{mm} results Table

$$\begin{array}{c} \underbrace{\frac{O \cap C_{k}}{4_{1}(L_{k}^{2} + \cdots + 1)}}{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{O \cap C_{k}}{R^{-1}} \underbrace{\frac{O \cap C_{k}}{r_{k}(L_{k}^{2} + \cdots + 1)}}{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{O \cap C_{k}}{R^{-1}} \underbrace{\frac{O \cap C_{k}}{r_{k}(L_{k}^{2} + \cdots + 1)}}{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{O \cap C_{k}}{R^{-1}} \underbrace{\frac{O \cap C_{k}}{r_{k}(L_{k}^{2} + \cdots + 1)}}{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2} + \cdots + 1)}} \underbrace{\frac{A_{k}(L_{k}^{2} + \cdots + 1)}{2_{k}(L_{k}^{2$$

 $\mathbf{P}_{1_{4}1_{4}}^{T_{2}} = \frac{1}{8}[(1)\cdot\mathbf{1}\mathbf{p}_{1_{4}} + (0)\cdot\mathbf{\rho}_{x}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{r}_{2}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{1}\mathbf{p}_{1_{4}} + (-\frac{i}{2})\cdot\mathbf{\tilde{r}}_{2}\mathbf{p}_{1_{4}}]$ Broken-class-ordered sum:

 $\mathbf{P}_{\mathbf{1}_{4}\mathbf{1}_{4}}^{T_{2}} = \frac{1}{8} (\mathbf{1} \cdot \mathbf{1} - \frac{i}{2} \mathbf{r}_{1} - \frac{i}{2} \mathbf{r}_{2} + \frac{i}{2} \mathbf{r}_{3} + \frac{i}{2} \mathbf{r}_{4} + \frac{i}{2} \mathbf{\tilde{r}}_{1} + \frac{i}{2} \mathbf{\tilde{r}}_{2} - \frac{i}{2} \mathbf{\tilde{r}}_{3} - \frac{i}{2} \mathbf{\tilde{r}}_{4} + \mathbf{0} \mathbf{\rho}_{x} + \mathbf{0} \mathbf{\rho}_{y} - \mathbf{1} \mathbf{\rho}_{z} - \frac{1}{2} \mathbf{R}_{x} - \frac{1}{2} \mathbf{R}_{x} - \frac{1}{2} \mathbf{\tilde{R}}_{x} - \frac{1}{2} \mathbf{\tilde{R}}_{x} - \frac{1}{2} \mathbf{\tilde{R}}_{z} - \frac{1}{2} \mathbf{\tilde{R}}_{z} - \frac{1}{2} \mathbf{\tilde{R}}_{z} + \mathbf{0} \mathbf{\tilde{R}}$

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors P^µ into irreducible projectors P^µ_{m4m4} for O⊃C4
 Left-cosets and coefficient arrays
 Development of irreducible projectors P^µ_{m4m4} and representations D^µ_{m4m4}
 Calculating P^E₀₄₀₄, P^E₂₄₂₄, P^{T1}₀₄₀₄, P^{T1}₁₄₁₄, P^{T2}₂₄₂₄, P^{T2}₁₄₁₄, Collected P_{mm} results Table

	C_4	04	1 ₄	24	34	$\frac{1 \cdot \mathbf{P}^{\alpha} = (\mathbf{p}^{\alpha})}{1 \cdot \mathbf{P}^{A_{1}} - \mathbf{P}^{\alpha}}$	$\mathbf{P}_{0_4} + \mathbf{I}_{1_4}$	p ₁₄ +	$p_{2_4} + p_{3_4}$	\mathbf{P}^{α}		wher	re: p	$\mathbf{D}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{i m \cdot p/4} \mathbf{R}_z^p$
$A_1 \downarrow$ $A_2 \downarrow$	$\begin{bmatrix} C_4 \\ C_4 \end{bmatrix}$	•	•	1		$1 \cdot \mathbf{P}^{A_2} =$	0 + 0) +	$\mathbf{P}_{2_4 2_4}^{A_2} + 0$					$\mathbf{p}_{0_4} = (1 + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z) / 4$
E↓C	C_4	1	•	1	•	$1 \cdot \mathbf{P}^E = \mathbf{P}_0$	$\frac{E}{0_4 0_4} + 0$) +	$\mathbf{P}_{2_{4}2_{4}}^{E}$ + 0			p,,,	= { F	$\mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$
$T_1 \downarrow 0$	C_4	1	1	•	1	$1 \cdot \mathbf{P}^{T_1} = \mathbf{P}_0^T$	${}^{1}_{40_{4}}$ + P	$T_1 + 1_4 $	$0 + \mathbf{P}_{3_4 3_4}^{T_1}$			- 11	4	$\mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z) / 4$
$T_2\downarrow$	C_4	•	1	1	1	$1 \cdot \mathbf{P}^{T_2} = 0$	+ P_{1}	T_{2} +	$\mathbf{P}_{2_4 2_4}^{T_2} + \mathbf{P}_{3_4 3_4}^{T_2}$				Ĺ	$\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \rho_z + i\mathbf{R}_z)/4$
_	$\mathbf{P}_{n_4 n_4}^{(\alpha)}$	(0]	(C_4)	1	$r_1 r_2 \tilde{r}_3 \tilde{r}_3$	$\tilde{r}_4 \tilde{r}_1 \tilde{r}_2 r_3 r_4$	$ ho_x ho_y$	$ ho_z$	$R_x \tilde{R}_x R_y \tilde{R}_y$	R_{z}	\tilde{R}_{z}	$i_1 i_2 i_5 i_6$	<i>i</i> ₃ <i>i</i> ₄	- Summarv of
	24	$4 \cdot \mathbf{P}_{0_4}^A$	0 ₄	1	1	1	1	1	1	1	1	1	1	$O \supset C_4$
-	24	$4 \cdot \mathbf{P}_{2_4}^A$	2 2 ₄	1	1	1	1	1	-1	-1	-1	-1	-1	diagonal
_	12	$2 \cdot \mathbf{P}_{0_{4}}^{E}$	04	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	projectors
_	12	$2 \cdot \mathbf{P}_{2_4}^E$	2 ₄	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	\mathbf{P}^{μ}_{jj}
	8	$\mathbf{S} \cdot \mathbf{P}_{1_4 1}^{T_1}$	4	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	- <i>i</i>	+i	$-\frac{1}{2}$	0	
	8	$\mathbf{S} \cdot \mathbf{P}_{3_4 3}^{T_1}$	34	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	+i	- <i>i</i>	$-\frac{1}{2}$	0	
_	8	$\mathbf{P}_{0_{4}0}^{\mathbf{T}_{1}}$) ₄	1	0	0	-1	1	0	1	1	0	-1	_
_	8	$\mathbf{S} \cdot \mathbf{P}_{1_{4}1}^{\overline{T_{2}}}$	4	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	<i>—i</i>	+i	$+\frac{1}{2}$	0	
	8	$\mathbf{S} \cdot \mathbf{P}_{3_4 3}^{T_2}$	34	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	-i	$+\frac{1}{2}$	0	
	8	$\mathbf{P}_{2_4^2}^{\mathbf{T}_2}$	24	1	0	0	-1	1	0	-1	-1	0	1	

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $O \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_{1}}_{0404}$, $\mathbf{P}^{\mathrm{T}_{1}}_{1414}$, $\mathbf{P}^{\mathrm{T}_{2}}_{2424}$, $\mathbf{P}^{\mathrm{T}_{2}}_{1414}$, Collected \mathbf{P}_{mm} results Table

$O \supset C_4$ induced representation $O_4 \uparrow O \sim A_1 \oplus T_1 \oplus E$ and spectral analysis examples

*Solve XY*⁶ *radial vibration* **K**=**a***-matrix*

	$\langle \langle 1 \mathbf{a} 1 \rangle$	$\langle 1 \mathbf{a} 2\rangle$	•••	$\langle 1 \mathbf{a} 6\rangle$		h	t	S	S	S	S	
	$\langle 2 \mathbf{a} 1\rangle$	$\langle 2 \mathbf{a} 2\rangle$		$\langle 2 \mathbf{a} 6\rangle$	= (i	t	h	S	S	S	S	
	all'i all	1 01	10.0	Sec.		s	S	h	t	S	S	
-	Station of the	h = 2k	+t,	in lol qu		S	S	t	h	S	S	,
	•	s = k/	2			s	S	S	S	h	t	
	$\langle 6 \mathbf{a} 1\rangle$	$\langle 6 \mathbf{a} 2\rangle$		$\langle y \mathbf{a} 6\rangle$	-	s	S	S	S	t	h	

Solve SF₆ J-tunneling Hamiltonian H

$\langle 1 \mathbf{H} 1\rangle$	$\langle 1 \mathbf{H} 2\rangle$	 $\langle 1 \mathbf{H} 6\rangle$		H	Т	S	S	S	S
$\langle 2 \mathbf{H} 1\rangle$	$\langle 2 \mathbf{H} 2\rangle$	 $\langle 2 \mathbf{H} 6\rangle$	12.0	T	H	S	S	S	S
1-0300 n	from each	n one eler	a <u>o</u> di	S	S	H	Т	S	S
		•		S	S	Т	H	S	S
		$(8) \cdot (8)$	1.2	S	S	S	S	Η	T
$\langle 6 \mathbf{H} 1\rangle$	$\langle 6 \mathbf{H} 2\rangle$	 $\langle 6 \mathbf{H} 6\rangle$	50	S	S	S	S	Т	H

$O \supset C_4$ induced representation $O_4 \uparrow O \sim A_1 \oplus T_1 \oplus E$ and spectral analysis examples

 $|1\rangle = \mathbf{1}|1\rangle = R_3|1\rangle = R_3^2|1\rangle = R_3^3|1\rangle$

O op	erat	ors	(Two	o no	tati	ons:	Old	ler I	Princ.	of Syl	mm.L	Dynan	nics d	and S	pectro	a. ar	nd N	ewe	r Int.	J.Mo	l.Sci)			
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	\mathbf{r}_2^2	r_{3}^{2}	\mathbf{r}_4^2	\mathbf{R}_1^2	${f R}_{2}^{2}$	R_{3}^{2}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\mathbf{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\mathbf{\tilde{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6

$O \supset C_4$ induced representation $0_4 \uparrow O \sim A_1 \oplus T_1 \oplus E$ and spectral analysis examples

Assuming *C*₄-local symmetry conditions for $|1\rangle$ state

 $|1\rangle = \mathbf{1}|1\rangle = R_3|1\rangle = R_3^2|1\rangle = R_3^3|1\rangle$

Using C₄-local symmetry projector equations $P^A \equiv P^{0_4} = (1 + R_3 + R_3^2 + R_3^3)/4$ $|1\rangle = P^{0_4}|1\rangle = (1 + R_3 + R_3^2 + R_3^3)|1\rangle/4.$

O op	erat	ors	(Two	o no	tati	ons:	Ola	ler I	Princ.	of Syr	mm.L) ynan	nics a	and S	pectro	a. an	dN	ewei	r Int.	J.Mo	l.Sci)			
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	\mathbf{r}_2^2	${\bf r}_{3}^{2}$	\mathbf{r}_4^2	R_{1}^{2}	R_{2}^{2}	R_{3}^{2}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	$\mathbf{\rho}_x$	$\mathbf{\rho}_{v}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{v}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{R}}_{v}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6

$O \supset C_4$ induced representation $O_4 \uparrow O \sim A_1 \oplus T_1 \oplus E$ and spectral analysis examples

Assuming *C*₄-local symmetry conditions for $|1\rangle$ state

 $|1\rangle = \mathbf{1}|1\rangle = R_3|1\rangle = R_3^2|1\rangle = R_3^3|1\rangle$

Using C₄-local symmetry projector equations $P^A \equiv P^{0_4} = (1 + R_3 + R_3^2 + R_3^3)/4$

 $|1\rangle = P^{0_4}|1\rangle = (1 + R_3 + R_3^2 + R_3^3)|1\rangle/4.$

These apply to all six $|\mathbf{g}\rangle = \mathbf{g}|\mathbf{1}\rangle$ -base states. $|g\rangle = |gR_3\rangle = |gR_3^2\rangle = |gR_3^2\rangle$ $|g\rangle = g|1\rangle = gR_3|1\rangle = gR_3^2|1\rangle = gR_3^3|1\rangle$

O op	erat	ors	(Two	o no	otation	ns:	Ola	ler I	Princ.	of Sy	mm.L) ynan	nics d	and S	pectro	a. ar	id N	ewei	r Int.	J.Mo	l.Sci)	1		
PSDS:	1	\mathbf{r}_1	r ₂	\mathbf{r}_3	r ₄	${\bf r}_1^2$	\mathbf{r}_2^2	${\bf r}_{3}^{2}$	\mathbf{r}_4^2	\mathbf{R}_1^2	${f R}_{2}^{2}$	R_{3}^{2}	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	\mathbf{R}_3^3	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\mathbf{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\tilde{\mathbf{R}}_{x}$	$\tilde{\mathbf{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	i ₅	\mathbf{i}_6

 $O \supset C_4$ induced representation $O_4 \uparrow O \sim A_1 \oplus T_1 \oplus E$ and spectral analysis examples

Assuming *C*₄-local symmetry conditions for $|1\rangle$ state

 $|1\rangle = \mathbf{1}|1\rangle = R_3|1\rangle = R_3^2|1\rangle = R_3^3|1\rangle$

Using C₄-local symmetry projector equations $P^A \equiv P^{0_4} = (1 + R_3 + R_3^2 + R_3^3)/4$

 $|1\rangle = P^{0_4}|1\rangle = (1 + R_3 + R_3^2 + R_3^3)|1\rangle/4.$

These apply to all six $|\mathbf{g}\rangle = \mathbf{g}|\mathbf{1}\rangle$ -base states. $|g\rangle = |gR_3\rangle = |gR_3^2\rangle = |gR_3^2\rangle$ $|g\rangle = g|1\rangle = gR_3|1\rangle = gR_3^2|1\rangle = gR_3^3|1\rangle$

O op	erat	Ors	(Two	o no	otati	ons:	Old	ler I	Princ.	of Sy	mm.L) ynan	nics a	and Sp	pectro	a. ar	ıd N	ewei	r Int.	J.Mo	l.Sci)	l.		
PSDS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	${\bf r}_1^2$	${\bf r}_{2}^{2}$	${\bf r}_{3}^{2}$	\mathbf{r}_4^2	\mathbf{R}_1^2	R_{2}^{2}	\mathbf{R}_3^2	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	\mathbf{i}_1	\mathbf{i}_2	i ₃	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6
IJMS:	1	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{r}_4	$\tilde{\mathbf{r}}_1$	$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_3$	$\tilde{\mathbf{r}}_4$	ρ_x	$\mathbf{\rho}_{y}$	ρ_z	\mathbf{R}_{x}	\mathbf{R}_{y}	\mathbf{R}_{z}	$\mathbf{\tilde{R}}_{x}$	$\tilde{\mathbf{R}}_{y}$	$\tilde{\mathbf{R}}_{z}$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_4	\mathbf{i}_5	\mathbf{i}_6

 $O \supset C_4$ induced representation $O_4 \uparrow O \sim A_1 \oplus T_1 \oplus E$ and spectral analysis examples

(Two notations: Older Princ. of Symm. Dynamics and Spectra. and Newer Int. J. Mol. Sci) *O* operators **PSDS**: $r_4 r_1^2$ \mathbf{r}_{2}^{2} \mathbf{r}_{3}^{2} \mathbf{r}_{4}^{2} $| \mathbf{R}_{1}^{2}$ \mathbf{R}_{2}^{2} \mathbf{R}_{3}^{2} $| \mathbf{R}_{1}$ \mathbf{R}_{2} \mathbf{R}_{3} $| \mathbf{R}_{1}^{3}$ \mathbf{R}_{2}^{3} \mathbf{R}_{3}^{3} 1 \mathbf{r}_{3} i₁ \mathbf{r}_1 \mathbf{r}_{2} İ, İ₅ IJMS: $\tilde{\mathbf{r}}_2$ $\tilde{\mathbf{r}}_3$ $\tilde{\mathbf{r}}_4$ $| \boldsymbol{\rho}_x \quad \boldsymbol{\rho}_y \quad \boldsymbol{\rho}_z$ $| \mathbf{R}_x \quad \mathbf{R}_y \quad \mathbf{R}_z$ $| \tilde{\mathbf{R}}_x \quad \tilde{\mathbf{R}}_y \quad \tilde{\mathbf{R}}_z$ $| \mathbf{i}_1$ 1 $\mathbf{r}_4 \quad \tilde{\mathbf{r}}_1$ i, \mathbf{r}_{2} \mathbf{r}_{3} i₃ \mathbf{r}_1 Ì₄ 15

 $\left\{ \tilde{\mathbf{r}}_{1}, \tilde{\mathbf{r}}_{3}, \tilde{\mathbf{R}}_{x}, \mathbf{i}_{6} \right\}$

 $\left\{\tilde{\mathbf{r}}_{2}, \tilde{\mathbf{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$

16

16

3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $O \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating \mathbf{P}^{E}_{0404} , \mathbf{P}^{E}_{2424} , $\mathbf{P}^{T_{1}}_{0404}$, $\mathbf{P}^{T_{1}}_{1414}$, $\mathbf{P}^{T_{2}}_{2424}$, $\mathbf{P}^{T_{2}}_{1414}$, Collected \mathbf{P}_{mm} results Table

Elementary induced representation $0_4(C_4) \uparrow O$

$=\mathbf{R}_{1}^{2} 1\rangle,$	$=\mathbf{R}_{3}^{3} 1\rangle,$	$=\mathbf{i}_{5} 1\rangle,$	$=\mathbf{i}_{6} 1\rangle,$	$=\mathbf{i}_{2} 1\rangle,$	=i ₁ 1
$= 2\rangle$,	$= 1\rangle$,	$= 6\rangle$,	$= 5\rangle$,	$= 4\rangle$,	= 3>

Elementary induced representation $0_4(C_4) \uparrow O$

This "coset-basis" spans a scalar $0_4(C_4)$ induced representation $0_4(C_4)\uparrow O$ $\mathbf{i}_4|1\rangle=\mathbf{i}_4|1\rangle$, $\mathbf{i}_4|2\rangle=\mathbf{i}_4\mathbf{R}_1^2|1\rangle$, $\mathbf{i}_4|3\rangle=\mathbf{i}_4\mathbf{r}_1|1\rangle$, $\mathbf{i}_4|4\rangle=\mathbf{i}_4\mathbf{r}_2|1\rangle$, $\mathbf{i}_4|5\rangle=\mathbf{i}_4\mathbf{r}_1^2|1\rangle$, $\mathbf{i}_4|6\rangle=\mathbf{i}_4\mathbf{r}_2^2|1\rangle$. $=\mathbf{R}_1^2|1\rangle$, $=\mathbf{R}_3^3|1\rangle$, $=\mathbf{i}_5|1\rangle$, $=\mathbf{i}_6|1\rangle$, $=\mathbf{i}_2|1\rangle$, $=\mathbf{i}_4|1\rangle$. $=|2\rangle$, $=|1\rangle$, $=|6\rangle$, $=|5\rangle$, $=|4\rangle$, $=|3\rangle$. For example here is $0_4(C_4)$ induced representation $0_4(C_4)\uparrow O(\mathbf{i}_4)$

$$\mathscr{I}^{\mathbf{0}_{4}\uparrow \mathcal{O}}(\mathbf{i}_{4}) = \begin{pmatrix} \langle 1|\mathbf{i}_{4}|1\rangle & \langle 1|\mathbf{i}_{4}|2\rangle & \cdots & \langle 1|\mathbf{i}_{4}|6\rangle \\ \langle 2|\mathbf{i}_{4}|1\rangle & \langle 2|\mathbf{i}_{4}|2\rangle & \vdots \\ \vdots & & \vdots \\ \langle 6|\mathbf{i}_{4}|1\rangle & \langle 6|\mathbf{i}_{4}|2\rangle & & \langle 1|\mathbf{i}_{4}|6\rangle \end{pmatrix} = \begin{pmatrix} 1\rangle & |2\rangle & |3\rangle & |4\rangle & |5\rangle & |6\rangle \\ \langle 1| \cdot & I & \cdot & \cdot & \cdot \\ \langle 2|I & \cdot & \cdot & \cdot & \cdot & \cdot \\ \langle 3| \cdot & \cdot & \cdot & \cdot & I & \cdot \\ \langle 4| \cdot & \cdot & \cdot & I & \cdot & \cdot \\ \langle 5| \cdot & \cdot & I & \cdot & \cdot \\ \langle 6| \cdot & I & \cdot & \cdot & \cdot \end{pmatrix}$$

Elementary induced representation $0_4(C_4)\uparrow O$

 $\langle 6 | \mathbf{i}_4 | 1 \rangle$

 $\langle 1 | \mathbf{i}_4 | 6 \rangle$

Elementary induced representation $0_4(C_4) \uparrow O$

Here is $\theta_4(C_4)$ induced representation $\mathcal{I}^{\theta_4 \uparrow O}(\mathbf{I_i})$ of a linear combination of **i**-class rotations

 $\mathbf{I_i} = i_1 \mathbf{i_1} + i_2 \mathbf{i_2} + i_3 \mathbf{i_3} + i_4 \mathbf{i_4} + i_5 \mathbf{i_5} + i_6 \mathbf{i_6}$

AMOP reference links on page 2 3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $O \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating \mathbf{P}^{E}_{0404} , \mathbf{P}^{E}_{2424} , $\mathbf{P}^{T_{1}}_{0404}$, $\mathbf{P}^{T_{2}}_{1414}$, $\mathbf{P}^{T_{2}}_{2424}$, $\mathbf{P}^{T_{2}}_{1414}$, Collected \mathbf{P}_{mm} results Table

 O⊃C₄ induced representation 0₄(C₄)↑O ~A₁⊕T₁⊕E and spectral analysis examples Elementary induced representation 0₄(C₄)↑O
 Projection reduction of induced representation 0₄(C₄)↑O Introduction to ortho-complete eigenvalue-parameter relations Examples from SF₆ model spectroscopy Projection reduction of induced representation $0_4(C_4)\uparrow O$ Scalar A_1 eigenket

$$\left| e_{0_{4}0_{4}}^{A_{1}} \right\rangle = \mathbf{P}_{0_{4}0_{4}}^{A_{1}} \left| 1 \right\rangle / \sqrt{N^{A_{1}}}$$

$$= \frac{1}{24} \sum_{p=1}^{24} D_{0_{4}0_{4}}^{A_{1}*}(g_{p}) \mathbf{g}_{p} \left| 1 \right\rangle / \sqrt{N^{A_{1}}}$$

$$= \left(\left| 1 \right\rangle + \left| 2 \right\rangle + \left| 3 \right\rangle + \left| 4 \right\rangle + \left| 5 \right\rangle + \left| 6 \right\rangle \right) / \sqrt{6}$$

Projection reduction of induced representation $0_4(C_4)\uparrow O$ Scalar A_1 eigenket 0_40_4

$$e_{0_{4}0_{4}}^{A_{1}} \rangle = \mathbf{P}_{0_{4}0_{4}}^{A_{1}} |1\rangle / \sqrt{N^{A_{1}}}$$

= $\frac{1}{24} \sum_{p=1}^{24} D_{0_{4}0_{4}}^{A_{1}*}(g_{p}) \mathbf{g}_{p} |1\rangle / \sqrt{N^{A_{1}}}$
= $(|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / \sqrt{6}$

Projection reduction of induced representation $0_4(C_4)\uparrow O$ Scalar A_1 eigenket 0_40_4

$$e_{0_{4}0_{4}}^{A_{1}} \rangle = \mathbf{P}_{0_{4}0_{4}}^{A_{1}} |1\rangle / \sqrt{N^{A_{1}}}$$

= $\frac{1}{24} \sum_{p=1}^{24} D_{0_{4}0_{4}}^{A_{1}*}(g_{p}) \mathbf{g}_{p} |1\rangle / \sqrt{N^{A_{1}}}$
= $(|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / \sqrt{6}$

Off-Diagonal (*nilpotent*) *Projector* \mathbf{P}^{μ}_{jk}

Derived next lectures

Tensor E-eigenket 2404 $|e_{2_{4}0_{4}}^{E}\rangle = \mathbf{P}_{2_{4}0_{4}}^{E}|1\rangle / \sqrt{N^{E}}$ $= \frac{2}{24} \sum_{p=1}^{24} D_{2_{4}0_{4}}^{E*}(g_{p}) \mathbf{g}_{p}|1\rangle / \sqrt{N^{E}}$ $= (|3\rangle + |4\rangle - |5\rangle - |6\rangle)/2$

Projection reduction of induced representation $0_4(C_4) \uparrow O$ Scalar A₁ eigenket 0₄0₄

$$\left| e_{0_{4}0_{4}}^{A_{1}} \right\rangle = \mathbf{P}_{0_{4}0_{4}}^{A_{1}} \left| 1 \right\rangle / \sqrt{N^{A_{1}}}$$

$$= \frac{1}{24} \sum_{p=1}^{24} D_{0_{4}0_{4}}^{A_{1}*}(g_{p}) \mathbf{g}_{p} \left| 1 \right\rangle / \sqrt{N^{A_{1}}}$$

$$= \left(\left| 1 \right\rangle + \left| 2 \right\rangle + \left| 3 \right\rangle + \left| 4 \right\rangle + \left| 5 \right\rangle + \left| 6 \right\rangle \right) / \sqrt{6}$$

Diagonal *(idempotent) Projector* \mathbf{P}^{μ}_{jj} <u>From p.53</u>:

Е

 T_1

$$\begin{aligned} & \left| e_{0_{4}0_{4}}^{T_{1}} \right\rangle = \mathbf{P}_{0_{4}0_{4}}^{T_{1}} \left| 1 \right\rangle / \sqrt{N^{T_{1}}} \\ &= \frac{1}{24} \sum_{p=1}^{24} D_{0_{4}0_{4}}^{T_{1}*}(g_{p}) \mathbf{g}_{p} \left| 1 \right\rangle / \sqrt{N^{T_{1}}} \\ &= \left(\left| 1 \right\rangle - \left| 2 \right\rangle + 0 + 0 + 0 + 0 \right) / \sqrt{2} \end{aligned}$$

 $\mathbf{P}_{\mathbf{0}_{4}\mathbf{0}_{4}}^{T_{1}} = \frac{1}{8} \left[(1) \cdot \mathbf{1} \mathbf{p}_{\mathbf{0}_{4}} + (-1) \cdot \boldsymbol{\rho}_{x} \mathbf{p}_{\mathbf{0}_{4}} + (0) \cdot \mathbf{r}_{1} \mathbf{p}_{\mathbf{0}_{4}} + (0) \cdot \mathbf{r}_{2} \mathbf{p}_{\mathbf{0}_{4}} + (0) \cdot \mathbf{\tilde{r}}_{1} \mathbf{p}_{\mathbf{0}_{4}} + (0) \cdot \mathbf{\tilde{r}}_{2} \mathbf{p}_{\mathbf{0}_{4}} \right]$

 $\left\{\mathbf{1}, \boldsymbol{\rho}_{z}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{z}\right\} \left\{\boldsymbol{\rho}_{x}, \boldsymbol{\rho}_{y}, \mathbf{i}_{3}, \mathbf{i}_{4}\right\} \left\{\mathbf{r}_{1}, \mathbf{r}_{4}, \mathbf{i}_{1}, \mathbf{R}_{y}\right\} \left\{\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{i}_{2}, \mathbf{\tilde{R}}_{y}\right\} \left\{\mathbf{\tilde{r}}_{1}, \mathbf{\tilde{r}}_{3}, \mathbf{\tilde{R}}_{x}, \mathbf{i}_{6}\right\} \left\{\mathbf{\tilde{r}}_{2}, \mathbf{\tilde{r}}_{4}, \mathbf{R}_{x}, \mathbf{i}_{5}\right\}$

| ^{Eg}) 2 Eg T_{1U}

0

 $\frac{1}{\sqrt{6}}$

1 1

 $\left| e_{0_{4}0_{4}}^{A_{1}} \right\rangle =$

 $0_4 = z$

FREQUENCY OR ENERGY SPECTRUM

Projection reduction of induced representation $0_4(C_4)\uparrow O$ Scalar A_1 eigenket 0_40_4

$$e_{0_{4}0_{4}}^{A_{1}} \rangle = \mathbf{P}_{0_{4}0_{4}}^{A_{1}} |1\rangle / \sqrt{N^{A_{1}}}$$

= $\frac{1}{24} \sum_{p=1}^{24} D_{0_{4}0_{4}}^{A_{1}*}(g_{p}) \mathbf{g}_{p} |1\rangle / \sqrt{N^{A_{1}}}$
= $(|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle) / \sqrt{6}$

 $\begin{array}{l} \textit{Off-Diagonal} \\ \textit{(nilpotent)} \\ \textit{Projector } \mathbf{P}^{\mu_{jk}} \end{array}$

Derived next lectures

Vector
$$T_{I}$$
-eigenket $\pm 1_{4}0_{4}$ and $0_{4}0_{4}$
 $\left| e_{\pm 1_{4}0_{4}}^{T_{1}} \right\rangle = \mathbf{P}_{1_{4}0_{4}}^{T_{1}} \left| 1 \right\rangle / \sqrt{N^{T_{1}}}$
 $= \frac{1}{24} \sum_{p=1}^{24} D_{\pm 1_{4}0_{4}}^{T_{1}*}(g_{p}) \mathbf{g}_{p} \left| 1 \right\rangle / \sqrt{N^{T_{1}}}$
 $= \left(0 + 0 + \left| 3 \right\rangle + \left| 4 \right\rangle \pm i \left| 5 \right\rangle \pm i \left| 6 \right\rangle \right) / 2$

Projection reduction of induced representation $0_4(C_4)\uparrow O$

 $\frac{1}{\sqrt{2}}$

Projection reduction of induced representation $0_4(C_4) \uparrow O$

$\langle 1 \mathbf{H} 1\rangle \langle 1$	$ \mathbf{H} 2\rangle$	 $\langle 1 \mathbf{H} 6\rangle$		H	Т	S	S	S	S)
$\langle 2 \mathbf{H} 1\rangle \langle 2$	$ \mathbf{H} 2\rangle$	 $\langle 2 \mathbf{H} 6\rangle$	is :	T	H	S	S	S	S
ach coset:		n one eler	a <u>o</u> di	S	S	Η	Т	S	S
				S	S	Т	H	S	S
		(8) • (8)	1.29	S	S	S	S	Η	T
$\langle 6 \mathbf{H} 1\rangle$ $\langle 6\rangle$	$ \mathbf{H} 2\rangle$	 $\langle 6 \mathbf{H} 6\rangle$	50	S	S	S	S	Т	H

 $O_h \supset D_{4h} \supset C_{4v} \supset C_{2v}$ subgroup splitting

2937.1

7.2

7.3

	$O_h \supset C_{4v}$	A'	B'	$A^{\prime\prime}$	<i>B</i> ″′	E
	$A_{lg} \downarrow C_{4v}$	1).	•	•	•
	$A_{2g} \downarrow C_{4v}$	•	1	•	•	•
Labels	$E_g \downarrow C_{4v}$	1) 1			
correct	$T_{1g} \downarrow C_{4v}$	•	•	1	•	1
u or g	$T_{2g}\downarrow C_{4v}$		•		1	1
parny.	$A_{lg} \downarrow C_{4v}$	•	•	1	•	•
	$A_{2u} \downarrow C_{4v}$	•	•	•	1	
	$E_u \downarrow C_{4v}$	•	•	1	1	
	$T_{1u} \downarrow C_{4v}$		•	•	•	1
	$T_{2u} \downarrow C_{4v}$	•	1	•	•	1

AMOP reference links on page 2 3.07.18 class 16.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) \supset (Octahedral O_h \supset O): Deriving D^(α)-matrices defined by subgroup-chains $O \supset D_4 \supset C_4$, $O \supset D_4 \supset D_2$, and $O \supset D_3 \supset C_3$ applications to IR spectra of SF₆

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $O \supset C_4$ Left-cosets and coefficient arrays Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating $\mathbf{P}^{\mathrm{E}}_{0404}$, $\mathbf{P}^{\mathrm{E}}_{2424}$, $\mathbf{P}^{\mathrm{T}_{1}}_{0404}$, $\mathbf{P}^{\mathrm{T}_{1}}_{1414}$, $\mathbf{P}^{\mathrm{T}_{2}}_{2424}$, $\mathbf{P}^{\mathrm{T}_{2}}_{1414}$, Collected \mathbf{P}_{mm} results Table

 O⊃C₄ induced representation 0₄(C₄)↑O ~A₁⊕T₁⊕E and spectral analysis examples Elementary induced representation 0₄(C₄)↑O
 Projection reduction of induced representation 0₄(C₄)↑O
 Introduction to ortho-complete eigenvalue-parameter relations Examples from SF₆ model spectroscopy

	$\ell^{A_{I=}}$ $\ell^{A_{2=}}$ $\ell^{E} =$ $\ell^{T_{I=}}$	= 1 = 1 = 2 = 3 = 3	Exa Cub Gro	ample ic-Octa up O	e: G= hedral	= <mark>0</mark> Cen Ran Ord	trum: k: er:	$\kappa(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$ $\rho(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{I}} = 1$ $\circ(\boldsymbol{O}) = \Sigma_{(\alpha)} (\ell^{\alpha})^{\boldsymbol{\theta}} = 1$	$1^{0}+1^{0}+2^{0}+3^{0}$ $1^{1}+1^{1}+2^{1}+3^{1}$ $1^{2}+1^{2}+2^{2}+3^{2}$	$+3^{0}=5$ $+3^{1}=10$ $2^{2}+3^{2}=24$
<i>s-orbital r²</i> <i>d-orbitals</i> {x ² +y ² -2z ² ,x ² <i>p-orbitals</i> {x, {xz,yz,xy} <i>d-orbitals</i>	$O \ grow \\ \chi^{\alpha}_{\kappa_g}$ $\alpha = A$ A_2 $(y, z) T_1$ T_2		g = 1 1 2 3 3	$r_{1-4} \ ilde{r}_{1-4} \ 1 \ 1 \ -1 \ 0 \ 0 \ 0$	$ ho_{xyz}$ 1 1 2 -1 -1 -1	$\begin{array}{c} R_{xyz} \\ \tilde{R}_{xyz} \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array}$	i_{1-6} 1 -1 0 -1 1	P) Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr P	R, r ₂ =r ₂ ² r ₂	
$O \supset C_{4}(0)_{2}$ $A_{1} \begin{bmatrix} 1 \\ \bullet \\ A_{2} \\ \bullet \\ E \\ T_{1} \\ 1 \\ T_{2} \end{bmatrix} \bullet$	4 (1) ₄ (• • 1 1	2) ₄ • 1 1 • 1	(3) ₄ =(- • • 1 1	$O \supset C_3$ A_1 A_2 E T_1 T_2	(0) ₃ (1 1 1 1 1 1	1) ₃ (2) • • 1 1 1 1 1 1	3=(-1)	$\widetilde{\mathbf{R}}_{x} = \mathbf{R}_{x}$	Ra Par Ra Ra Ra Ra Ra Ra	

	C_4	0 ₄	1 ₄	24	34	$\frac{1 \cdot \mathbf{P}^{\alpha} = (\mathbf{p}^{\alpha})}{1 \cdot \mathbf{P}^{A_{1}} - \mathbf{P}^{\alpha}}$	$\mathbf{P}_{0_4} + \mathbf{I}_{1_4}$	wher	re: p	$\mathbf{D}_{m_4} = \frac{1}{4} \sum_{p=0}^{3} e^{i m \cdot p/4} \mathbf{R}_z^p$								
$A_1 \downarrow$ $A_2 \downarrow$	$\begin{bmatrix} C_4 \\ C_4 \end{bmatrix}$	1 •	•	1		$1 \cdot \mathbf{P}^{A_2} =$	0 + 0			$\mathbf{p}_{0_4} = (1 + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z) / 4$								
E↓C	C_4	1	•	1	•	$1 \cdot \mathbf{P}^E = \mathbf{P}_0$	$\frac{E}{0_4 0_4}$ + () +	$\mathbf{P}_{2_4 2_4}^E$ + 0		p,,,	$\mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z)/4$						
$T_1 \downarrow 0$	C_4	1	1	•	1	$1 \cdot \mathbf{P}^{T_1} = \mathbf{P}_0^T$	${}^{1}_{40_{4}}$ + P	$T_1 + 1_4 $	$0 + \mathbf{P}_{3_4 3_4}^{T_1}$		- 11	4	$\mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z) / 4$					
$T_2\downarrow$	C_4	•	1	1	1	$1 \cdot \mathbf{P}^{T_2} = 0$	+ P_{1}	T_{2} +	$\mathbf{P}_{2_4 2_4}^{T_2} + \mathbf{P}_{3_4 3_4}^{T_2}$		Ĺ	$\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \rho_z + i\mathbf{R}_z)/4$						
_	$\mathbf{P}_{n_4 n_4}^{(\alpha)}$	(0]	(C_4)	1	$r_1 r_2 \tilde{r}_3 \tilde{r}_3$	$\tilde{r}_4 \tilde{r}_1 \tilde{r}_2 r_3 r_4$	$ ho_x ho_y$	$ ho_z$	$R_x \tilde{R}_x R_y \tilde{R}_y$	R_{z}	\tilde{R}_{z}	$i_1 i_2 i_5 i_6$	<i>i</i> ₃ <i>i</i> ₄	- Summary of				
	24	$4 \cdot \mathbf{P}_{0_40_4}^{A_1} \qquad 1$			1	1	1	1	1	1 1		1 1		$O \supset C_4$				
-	24	$4 \cdot \mathbf{P}_{2_4}^A$	$\mathbf{P}_{2_4 2_4}^{A_2}$ 1		1	1	1	1	-1	-1	-1	-1	-1	diagonal				
_	12	$2 \cdot \mathbf{P}_{0_{4}}^{E}$	04	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	projectors				
_	12	$2 \cdot \mathbf{P}_{2_4}^E$	2 ₄	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	\mathbf{P}^{μ}_{jj}				
	8	$\mathbf{S} \cdot \mathbf{P}_{1_4 1}^{T_1}$	4	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	- <i>i</i>	+i	$-\frac{1}{2}$	0					
	8	$\mathbf{S} \cdot \mathbf{P}_{3_4 3}^{T_1}$	34	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	+i	- <i>i</i>	$-\frac{1}{2}$	0					
_	8	$\mathbf{P}_{0_{4}0}^{\mathbf{T}_{1}}$) ₄	1	0	0	-1	1	0	1	1	0	-1					
_	8	$\mathbf{S} \cdot \mathbf{P}_{1_{4}1}^{\overline{T_{2}}}$	4	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	<i>—i</i>	+i	$+\frac{1}{2}$	0					
	8	$\mathbf{S} \cdot \mathbf{P}_{3_4 3}^{T_2}$	34	1 -		$+\frac{i}{2}$	0 -		$-\frac{1}{2}$	$\frac{1}{2}$ + <i>i</i>		$+\frac{1}{2}$	0					
	8	$\mathbf{P}_{2_4^2}^{\mathbf{T}_2}$	24	1	0	0	-1	1	0	-1	-1	0	1					

$O \supset C_4$	04	14		2 ₄	34	$1 \cdot \mathbf{P}^{\alpha} =$	= (p ₀₄	+ p ₁₂	$+ p_{2_4} +$	$({\bf p}_{3_4})$	\mathbf{P}^{α}	И	vhere	$\mathbf{p}_{m_{4}} = \frac{1}{4} \sum_{i=1}^{3} e^{ii}$	$m \cdot p/4 \mathbf{R}_z^p$
$A_1 \downarrow C_4$	1	•		•	•	$1 \cdot \mathbf{P}^{\mathbf{A}_{1}} =$	$= \mathbf{P}_{0_4 0_4}^{A_1}$	+ 0	+ 0 +	0	Sum	mary o	of	4 4 p=0	
$A_2 \downarrow C_4$	•	•		1	•	$1 \cdot \mathbf{P}^{A_2}$	= 0	+ 0	+ $\mathbf{P}_{2_4 2_4}^{A_2}$ +	0	C	$D \supset C_4$	0	$p_{0_4} = (1 + R_z +$	$(\rho_z + \tilde{\mathbf{R}}_z)/4$
$E \downarrow C_4$	1	•		1	•	$1 \cdot \mathbf{P}^E$ =	$= \mathbf{P}_{0_40_4}^E \cdot$	+ 0	+ $\mathbf{P}_{2_4 2_4}^E$ +	0	dia	gonal	p =	$\int \mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - 1)$	$(\rho_z - i\tilde{\mathbf{R}}_z)/4$
$T_1 \downarrow C_4$	1	1		•	1	$1 \cdot \mathbf{P}^{T_1} =$	$= \mathbf{P}_{0_A 0_A}^{T_1} \cdot$	+ $\mathbf{P}_{1_{4}1}^{T_{1}}$	+ 0 +	$\mathbf{P}_{3_{A}3_{A}}^{T_{1}}$	iden	npoten	$(t)^{m_4}$	$p_{2_4} = (1 - R_z +$	$(\rho_z - \tilde{\mathbf{R}}_z)/4$
$T_2 \downarrow C_A$	•	1		1	1	$1 \cdot \mathbf{P}^{T_2} =$	= 0 +	$- \mathbf{P}_{1,1}^{T_2}$	$+ \mathbf{P}_{2,2}^{T_2} + 1$	$\mathbf{P}_{3,3}^{T_2}$	pro	jectors	5	$\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \mathbf{k}_z)$	$(\rho_z + i\tilde{\mathbf{R}}_z)/4$
$\mathbf{P}^{(\alpha)}(\mathbf{O})$		$\overline{\mathbf{x}}$	1	14 14 1	~ ~] ~~~~~		-4-2	ΓΩΡΩ	D	\widetilde{D}	\mathbf{P}^{μ}_{jj}	;;	next	next_next
$\mathbf{I}_{n_4 n_4}(\mathbf{O})$		<u>/</u>	1	<i>'</i> 1'2'	'3 ' 4	'1'2'3'4	$\rho_x \rho_y$	P_z	$\Lambda_x \Lambda_x \Lambda_y \Lambda_y$	Λ_{Z}	Λ_{Z}	<i>i</i> ₁ <i>i</i> ₂ <i>i</i> ₅ <i>i</i> ₆	<i>l</i> ₃ <i>l</i> ₄	nearest	nearest
24·I	$A_1 = 0_4 0_4$		1	1		1	1	1	1	1	1	(+1)	1	$Th = 0 \uparrow c$	neignuor
24 · F	A_2		1	1		1	1	1	-1	-1	-1	-1	-1	<i>i</i> 1256	inster
12· F	$E 0_4 0_4$		1		$\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$\left(-\frac{1}{2}\right)$	1	split	split
12· F	<i>E</i> 2 ₄ 2 ₄		1		$\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	$\mathbf{P}_{0_4 0_4}^{A_1}$ +1	
8 · P	$T_{1} \\ 1_{4} 1_{4}$		1		$\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	-i	+i	$-\frac{1}{2}$	0		
8 · P	$T_{1} = 3_{4} 3_{4}$		1	+	$\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	+i	-i	$-\frac{1}{2}$	0	$\mathbf{P}_{0,0}^{T_1}$ 0	
8 · P	$\begin{array}{c} T_1 \\ 0_4 0_4 \end{array}$		1	0)	0	-1	1	0	1	1	0	-1		
8 · P	T_{2} $1_{4}1_{4}$		1	+	$\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	- <i>i</i>	+i	$+\frac{1}{2}$	0	$\mathbf{P}_{0_40_4}^E = \frac{-1/2}{2}$	
8 · P	T_{2} $3_{4}3_{4}$		1	—	$\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	- <i>i</i>	$+\frac{1}{2}$	0		
8 · P	$T_{2}^{}$ $2_{4}^{}2_{4}^{}$		1	0)	0	-1	1	0	-1	-1	0	1		

$O \supset C_4$	04	14	2 ₄	34	$1 \cdot \mathbf{P}^{\alpha} =$	= (p ₀₄	+ p ₁₂	+ p ₂₄	+ p ₃₄)	$\cdot \mathbf{P}^{\alpha}$	1	where •	$\mathbf{n} = \frac{1}{2} \sum_{k=1}^{3} e^{i \mathbf{m} \cdot \mathbf{p}/4} \mathbf{R}^{p}$
$A_1 \downarrow C_4$	1	•	•	•	$1 \cdot \mathbf{P}^{A_1}$	$= \mathbf{P}_{0_4 0_4}^{A_1}$	+ 0	+ 0	+ 0	Sum	marv	of	P_{m_4} 4 $p=0$ T_z
$A_2 \downarrow C_4$	•	•	1	•	$1 \cdot \mathbf{P}^{A_2}$	= 0	+ 0	+ $\mathbf{P}_{2_4 2_4}^{A_2}$	+ 0	С	$D \supset C_4$	-J	$\mathbf{p}_{0_{4}} = (1 + \mathbf{R}_{z} + \boldsymbol{\rho}_{z} + \tilde{\mathbf{R}}_{z}) / 4$
$E \downarrow C_4$	1	•	1	•	$1 \cdot \mathbf{P}^E$	$= \mathbf{P}_{0_40_4}^E$	+ 0	+ $\mathbf{P}_{2_4 2_4}^E$	+ 0	dia	igonal	p =	$\int \mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z) / 4$
$T_1 \downarrow C_4$	1	1	•	1	$1 \cdot \mathbf{P}^{T_1} =$	$= \mathbf{P}_{0_4 0_4}^{T_1}$	+ $\mathbf{P}_{1_4 1}^{T_1}$	₄ + 0	+ $\mathbf{P}_{3_43_4}^{T_1}$	iden	npoter	$(nt)^{m_4}$	$\mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z) / 4$
$T_2 \downarrow C_4$	•	1	1	1	$1 \cdot \mathbf{P}^{T_2} =$	= 0	+ $\mathbf{P}_{1_4 1_4}^{T_2}$	+ $\mathbf{P}_{2_4 2_4}^{T_2}$	+ $\mathbf{P}_{3_43_4}^{T_2}$	pro	jector D μ	S	$\left[\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z - \rho_z + i\tilde{\mathbf{R}}_z)/4 \right]$
$\mathbf{P}_{n_4n_4}^{(\alpha)}(C$	$D \supset C_4$) 1	$r_1 r_1$	$r_2 \tilde{r}_3 \tilde{r}_4$	$\tilde{r}_1\tilde{r}_2r_3r_4$	$\rho_x \rho_y$	$ ho_z$	$R_x \tilde{R}_x R_y$	$\tilde{R}_y R_z$	\tilde{R}_{z}	$i_1i_2i_5i_6$	$i_{3}i_{4}$	next next-next nearest nearest
24.1	$P_{0_4 0_4}^{A_1}$	1		1	1	1	1	1	1	1	+1	(+1)	neighbor neighbor
24.]	$\mathbf{P}_{2_{4}2_{4}}^{A_{2}}$	1		1	1	1	1	-1	-1	-1	-1	-1	$\frac{1}{16} \frac{1}{16} \frac{1}{16} \frac{1}{134}$
12.1	$\mathbf{P}_{0_{4}0_{4}}^{E}$	1		$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	(+1)	split split
12.1	$\mathbf{P}_{2_4 2_4}^E$	1		$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1	$\mathbf{P}_{0_{4}0_{4}}^{A_{1}} \underline{+1} \qquad \underbrace{+1}_{B} \mathbf{P}_{0_{4}0_{4}}^{A_{1}} \mathbf{P}_{0_{4}0_{4}}^{E} \underline{+1}$
8 · F	T_1 $1_4 1_4$	1	-	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	-i	+ <i>i</i>	$-\frac{1}{2}$	0	
8 · P	$\begin{array}{c} T_1 \\ 3_4 3_4 \end{array}$	1		$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	+i	<i>—i</i>	$-\frac{1}{2}$	0	$\mathbf{P}_{1}^{T_{1}}$ 0
8 · P	$\begin{array}{c} T_1 \\ 0_4 0_4 \end{array}$	1		0	0	-1	1	0	1	1	0	(-1)	
8 · F	T_{2} $1_{4}1_{4}$	1		$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	-i	+i	$+\frac{1}{2}$	0	$\mathbf{P}_{0_4 0_4}^E = \frac{1/2}{2}$
8 · P	$T_2 3_4 3_4$	1		$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	- <i>i</i>	$+\frac{1}{2}$	0	$-1 \mathbf{P}_{0_4 0_4}^{T_1}$
8 · P	T_{2} $2_{4}2_{4}$	1		0	0	-1	1	0	-1	-1	0	1	

Elementary induced representation $0_4(C_4) \uparrow O$

Here is $\theta_4(C_4)$ induced representation $\mathcal{I}^{\theta_4 \uparrow O}(\mathbf{I_i})$ of a linear combination of **i**-class rotations

Review Octahedral $O_h \supset O$ *group operator structure Review Octahedral* $O_h \supset O \supset D_4 \supset C_4$ *subgroup chain correlations*

Comparison of $O \supset D_4 \supset C_4$ and $O \supset D_4 \supset D_2$ correlations and level/projector splitting $O \supset D_4 \supset C_4$ subgroup chain splitting $O \supset D_4 \supset D_2$ subgroup chain splitting (nOrmal D_2 vs. unOrmal D_2) $O_h \supset O \supset D_4 \supset C_{4v}$ and $O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup splitting

Splitting O class projectors \mathbf{P}^{μ} into irreducible projectors \mathbf{P}^{μ}_{m4m4} for $O \supset C_4$ Development of irreducible projectors \mathbf{P}^{μ}_{m4m4} and representations D^{μ}_{m4m4} Calculating \mathbf{P}^{E}_{0404} , \mathbf{P}^{E}_{2424} , $\mathbf{P}^{T_1}_{0404}$, $\mathbf{P}^{T_1}_{1414}$, $\mathbf{P}^{T_2}_{2424}$, $\mathbf{P}^{T_2}_{1414}$,

 $O \supset C_4$ induced representation $0_4(C_4) \uparrow O \sim A_1 \oplus T_1 \oplus E$ and spectral analysis examples Elementary induced representation $0_4(C_4) \uparrow O$ Projection reduction of induced representation $0_4(C_4) \uparrow O$ Introduction to ortho-complete eigenvalue-parameter relations Examples in SF₆ spectroscopy

		1	ρ	R _z	$\tilde{\mathbf{R}}_{z}$		ρ _x	ρ _y	i ₄	i ₃	 		r ₁	r ₄	i ₁	\mathbf{R}_{y}		r ₂	r ₃	i ₂	$\tilde{\mathbf{R}}_{y}$		$\tilde{\mathbf{r}}_1$	r ₃	$\tilde{\mathbf{R}}_{x}$	i ₆		$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_4$	\mathbf{R}_{x}	i ₅				
	1	1	ρ	R _z	$\tilde{\mathbf{R}}_{z}$	ρ _x	1	ρ	R _z	Ñ _z		r ₁	1	ρ	R _z	Ĩ,₂	r ₂	1	ρ	R _z	Ñ _z	$\tilde{\mathbf{r}}_{1}$	1	ρ	R _z	Ñ _z	$\tilde{\mathbf{r}}_2$	1	ρ	R _z	ĨR _z				
	ρ	ρ	1	Ĩ,	R		ρ	1	Ĩ,	R _z		r ₄	ρ	1	Ĩ,	R _z	r ₃	ρ,	1	Ĩ,	R _z		ρ	1	Ĩ,	R	r,	ρ	1	Ĩ,	R_				
	R	Ř	R	1	0		Ĩ	R	1	0		i.]	Ř 1	R	1	ρ	 i	Ŕ	R	1	0	 	Ř	R	1	0	R	Ŕ	R	1	0				
	n _z	n _z	ñ	-	P _z	<u></u>		ñ	-	P _z		D 1	Z D	Ω		1	<u> </u>	D	$\tilde{\mathbf{p}}$		Γ _z	;	D D	ñ		P _z	·····	D	ñ	-	P _z				
	K _z	K _z	K _z	$\mathbf{\rho}_{z}$		I ₃		K _z	ρ_z	1	. I				P _z	1	K _y	κ _z	κ _z	\mathbf{P}_{z}	1	I ₆	R _z	R _z	ρ_z		I ₅	K _z	R _z	ρ_z	1				
	1	ρ	F	R _z	$\tilde{\mathbf{R}}_{z}$		$\boldsymbol{\rho}_x$	ρ	i	4	i ₃			r ₁	\mathbf{r}_4	i ₁	R,	v		\mathbf{r}_2	r ₃	i ₂	Í	Ř _y		$\tilde{\mathbf{r}}_1$	r ₃	Ñ	x	i ₆		$\tilde{\mathbf{r}}_2$	$\tilde{\mathbf{r}}_4$	\mathbf{R}_{x}	i ₅
1	1	ρ	F	R _z	Ñ _z	ρ _x	1	ρ	R	R _z	$\tilde{\mathbf{R}}_{z}$			1	ρ	R _z	Ř		r ₂	1	ρ	R	Í	Ř _z	$\tilde{\mathbf{r}}_1$	1	ρ	R	z	Ñ _z	$\tilde{\mathbf{r}}_{2}$	1	ρ _z	R _z	R _z
0	0	1	ĥ	ž	R	0	0	1	Ĩ	2	R			<u> </u>	1	Ŕ	R		r	0	1	Ĩ		2	 ř		1	Ĩ		R	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	1	Ř	R
P _z	\mathbf{P}_{z}			z	ις	\mathbf{P}_{y}	\mathbf{P}_{z}			z	n _z	<u>4</u>	1		1	n _z			•3	\mathbf{P}_{z}			-	* <u>z</u>	1 ₃				z	ι _z	<u> 4 </u>		1		
R _z	$\mathbf{\tilde{R}}_{z}$	R _z		1	ρ_z	i ₄	$\tilde{\mathbf{R}}_{z}$	R _z]	1	ρ_z	i ₁	Ĥ	λ _z	\mathbf{R}_{z}	1	ρ		i ₂	$\tilde{\mathbf{R}}_{z}$	R	<u> </u>	1	D _z	$\tilde{\mathbf{R}}_{x}$	Ĩ, R₂	R _z	1		ρ_z	\mathbf{R}_{x}	R _z	R _z	1	ρ
$\tilde{\mathbf{R}}_{z}$	R _z	R _z		\mathbf{p}_{z}	1	i ₃	R _z	R _z	p) _z	1	R ₁	, F	R _z	Ñ _z	ρ	1		Ñ _y	R _z	R	_ ρ_		1	i ₆	R _z	R _z	ρ	z	1	i	R _z	$\tilde{\mathbf{R}}_{z}$	ρ	1

 $\begin{bmatrix} 1, \rho_{z}, R_{z}, \tilde{R}_{z} \end{bmatrix} \begin{bmatrix} \rho_{x}, \rho_{y}, i_{4}, i_{3} \end{bmatrix} \begin{bmatrix} r_{1}, r_{4}, i_{1}, R_{y} \end{bmatrix} \begin{bmatrix} r_{2}, r_{3}, i_{2}, \tilde{R}_{y} \end{bmatrix} \begin{bmatrix} \tilde{r}_{1}, \tilde{r}_{3}, \tilde{R}_{x}, i_{6} \end{bmatrix} \begin{bmatrix} \tilde{r}_{2}, \tilde{r}_{4}, R_{x}, i_{5} \end{bmatrix} \text{ Cosets of } C_{4} \\ 1 & (1, \rho_{z}, R_{z}, \tilde{R}_{z}), \rho_{x} (1, \rho_{z}, R_{z}, \tilde{R}_{z}), r_{1} (1, \rho_{z}, R_{z}, \tilde{R}_{z}), r_{2} (1, \rho_{z}, R_{z}, \tilde{R}_{z}), \tilde{r}_{1} (1, \rho_{z}, R_{z}, \tilde{R}_{z}), \tilde{r}_{2} (1, \rho_{z}, R_{z}, \tilde{R}_{z}), \tilde{r}_{2} (1, \rho_{z}, R_{z}, \tilde{R}_{z}) \\ \rho_{z} (\rho_{z}, 1, \tilde{R}_{z}, R_{z}), \rho_{y} (\rho_{z}, 1, \tilde{R}_{z}, R_{z}), r_{4} (\rho_{z}, 1, \tilde{R}_{z}, R_{z}), r_{3} (\rho_{z}, 1, \tilde{R}_{z}, R_{z}), \tilde{r}_{3} (\rho_{z}, 1, \tilde{R}_{z}, R_{z}), \tilde{r}_{4} (\rho_{z}, 1, \tilde{R}_{z}, R_{z}) \\ R_{z} (\tilde{R}_{z}, R_{z}, 1, \rho_{z}), i_{4} (\tilde{R}_{z}, R_{z}, 1, \rho_{z}), i_{1} (\tilde{R}_{z}, R_{z}, 1, \rho_{z}), i_{2} (\tilde{R}_{z}, R_{z}, 1, \rho_{z}), \tilde{R}_{x} (\tilde{R}_{z}, R_{z}, 1, \rho_{z}), R_{x} (\tilde{R}_{z}, R_{z}, 1, \rho_{z}) \\ \tilde{R}_{z} (R_{z}, \tilde{R}_{z}, \rho_{z}, 1), i_{3} (R_{z}, \tilde{R}_{z}, \rho_{z}, 1), R_{y} (R_{z}, \tilde{R}_{z}, \rho_{z}, 1), \tilde{R}_{y} (R_{z}, \tilde{R}_{z}, \rho_{z}, 1), i_{6} (R_{z}, \tilde{R}_{z}, \rho_{z}, 1), i_{5} (R_{z}, \tilde{R}_{z}, \rho_{z}, 1) \\ \end{array}$