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Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

...But how do you actually make the R and R operations?

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

R commutes

with allR

Mock-Mach
relativity principle

R|1〉=R-1|1〉
...for one state |1) only!

(because they’re independent 
or “unentangled”)

Review 1. Global vs Local symmetry and Mock-Mach principle

Recall AMO12 p.41 



Review 1. Global vs Local symmetry and Mock-Mach principle 
Review 2. LAB-BOD (Global -Local) mutually commuting representations of D3~C3v     

Review 3. Global vs Local symmetry expansion of D3 Hamiltonian         

Review 4. 1st-Stage: Spectral resolution of D3 Center (All-commuting class projectors and characters)  
Review 5. 2nd-Stage: D3⊃C2 or D3⊃C3 sub-group-chain projectors split class projectors PE=PE11+PE22 with:1=ΣPαjj 

Review 6. 3rd-Stage: g=1·g·1 trick gives nilpotent projectors PE12=(PE21)† and Weyl g-expansion: g=ΣDα
ij(g)Pαij . 

Deriving diagonal and off-diagonal projectors PabE and ireps DabE   
Comparison: Global vs Local ⏐g〉-basis       versus                    Global vs Local ⏐P(µ)〉-basis 
 General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left    
          Pµjk -expansion in g-operators: Inverse of Weyl form 
D3  Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis  
          ⏐P(µ)〉-basis D3 global-g matrix structure versus D3 local-   matrix structure 
           Local vs global x-symmetry and y-antisymmetry D3  tunneling band theory 
                    Ortho-complete D3 parameter analysis of eigensolutions 
           Classical analog for bands of vibration modes    

                    

AMOP  
reference links 

 on page 2

2.26.18 class 13.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Discrete symmetry subgroups of  O(3) using Mock-Mach principle:D3~C3v LAB vs BOD 
group and projection operator formulation of ortho-complete eigensolutions 

 g



1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 1

DD33 llooccaall
gg††gg--ttaabbllee

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

To represent internal {..T,U,V,... } switch g g† on side of group table
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RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.
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Review 2. Global vs Local symmetry matrix duality for D3

Recall AMO12 p.50 
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RESULT:

Any R(T)

commute

with any R(U)...

(Even if T and U do not...)

...and T·U=V if & only if T·U=V.
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So an HH-matrix

having GGlloobbaall symmetryD
3

is made from

LLooccaall symmetry matrices

HH = 1 rr rr ii ii iiH r r i i i0 1 2

1 2 3+ + + + +
1 2 1 2 3

Review 3. Global vs Local symmetry expansion of D3 Hamiltonian

This is a complete set 
of D3  

coupling  
or 

“tunneling”  
parameters!

Recall AMO12 p.58 
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D3 Algebra

i
1

i
2 i

3

κκ
1
=1κκ
1
=1

κκ
i
= i
1
+ i
2
+i
3

κκ
i
= i
1
+ i
2
+i
3 κκ

r
= r2 + rκκ
r
= r2 + r

D3 Center
(All-commuting

operators)

r2

r

A Maximal Set of Commuting

Operators

PA1
PA2
PE1

PE
xx yy
PE

PE
11

22
PE

PE
xy yx
PE

PE
12

21
PE

Another

Maximal Set

of Commuting

Operators(All-commuting
operators)

PA1
PA2
PE1

Review 4. Spectral resolution of D3 Center (Class algebra) 

1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

→

κ 1 = 1 κ r = r + r
2 κ i = i1 + i2 + i3

κ 1 κ 1 κ r κ i

κ r κ r 2κ 1 +κ r 2κ i

κ i κ i 2κ i 3κ 1 + 3κ r

Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

Class-sum κk commutes with all gt

PA1 = (κ1 + κ r + κ i )/6 = (1+ r + r
2 + i1 + i2 + i3)/6

PA2 = (κ1 + κ r − κ i )/6 = (1+ r + r
2 − i1 − i2 − i3)/6

PE = (2κ1 − κ r + 0)/3= (21− r − r
2 )/3

κ1 = 1·PA1 + 1·PA2 +  1·PE

κ r = 2·PA1+ 2·PA2 − 1·PE

κ i = 3·PA1 − 3·PA2 + 0·PE

=1    (Class completeness)

Recall AMO12 p.93 

χ k
α χ1

α χ r
α χ i

α

α = A1 1 1 1

α = A2 1 1 −1

α = E 2 −1 0

D3  Class projectors:

D3  Class characters:
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...and splits reducible projector PE1=PE1+PE1 0202       1212

Subgroup C2={1,i3} relabels  
irreducible class projectors:  
PA1=PA1 

PA2=PA2

D3 Algebra
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Review 5.Spectral resolution of D3 Center (Class algebra) and its C2 subgroup splitting 
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r 2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r 2 1 r
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κ1 =1 κ r = r + r 2 κ i = i1+ i2 + i 3
κ1 κ1 κ r κ i
κ r κ r 2κ1+κ r 2κ i
κ i κ i 2κ i 3κ1+ 3κ r

Class-sum κk commutes with all gt

   P0202

E = P Ep02 = PE 2
1(1+ i3) =6

1(21− r1 − r2 − i1 − i2 + 2i3)
+P1212

E = P Ep12 = PE 2
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1(21− r1 − r2 + i1 + i2 − 2i3)

                                             =3
1(21− r1 − r2 )
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D3  Class projectors:

Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

κ1 = 1·PA1 + 1·PA2 +  1·PE

κ r = 2·PA1+ 2·PA2 − 1·PE

κ i = 3·PA1 − 3·PA2 + 0·PE

=1    (Class completeness)

PA1 = (κ1 + κ r + κ i )/6 = (1+ r + r
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PE = (2κ1 − κ r + 0)/3= (21− r − r
2 )/3

D3  Class characters:
χ k

α χ1
α χ r

α χ i
α

α = A1 1 1 1

α = A2 1 1 −1

α = E 2 −1 0

C2 1 i3
02 1 1

12 1 −1



...and splits reducible projector PE=PE+PE 0202       1212

Subgroup C2={1,i3} relabels  
irreducible class projectors:  
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Review 5.Spectral resolution of D3 Center (Class algebra)  or its C3 subgroup splitting 
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Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)
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   ...and splits 
differently 
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SSppeeccttrraall rreessoolluuttiioonn ooff AALLLL 66 ooff DD33 ::

The old ‘gg-equals-11-times-gg-times-11’ Trick

Order
ο(DD

33
)=6

projectors
P(α)m,n

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3
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PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSiixx DD
33
pprroojjeeccttoorrss:: 44 iiddeemmppootteennttss ++ 22 nniillppootteennttss ((ooffff--ddiiaagg..))

g=Σ
m
Σ
e
Σ
b
D(m) PP(m)

PP(m)= (norm)ΣgD
(m)* g

ebeb

ebeb

(g)

(g)

g = 1 ⋅g ⋅1 = (Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E ) ⋅g ⋅(Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E )

g = DA1(g)Px ,x
A1+ DA2(g)Py ,y

A2 + Dx ,x
E (g)Px ,x

E + Dy ,y
E (g)Py ,y

E +Dx ,y
E (g)Px ,y

E + Dy ,x
E (g)Py ,x

E

                                                     

Review 6.  
3rd-Stage: g=1·g·1 trick gives nilpotent projectors PE12=(PE21)† and Weyl g-expansion: g=ΣDαij(g)Pαij  
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where D3  irreducible representations
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PSDSFig.3.4.3

Deriving diagonal and off-diagonal projectors PabE  and ireps DabE   
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The simplest way to compute 
(and visualize) D3 irep DE(r)   
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Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis
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⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

DD33 gglloobbaall
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|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

i1

i3



1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 1

DD33 llooccaall
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Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

To represent internal {..T,U,V,... } switch g g† on side of group table

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG(r) = RG (r2) = RG( i1) = RG ( i2) = RG( i3) =

RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

DD33 gglloobbaall
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|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

i2

i1

i3

Compare Global vs Local ⏐g〉-basis



Review 1. Global vs Local symmetry and Mock-Mach principle 
Review 2. LAB-BOD (Global -Local) mutually commuting representations of D3~C3v     

Review 3. Global vs Local symmetry expansion of D3 Hamiltonian         

Review 4. 1st-Stage: Spectral resolution of D3 Center (All-commuting class projectors and characters)  
Review 5. 2nd-Stage: D3⊃C2 or D3⊃C3 sub-group-chain projectors split class projectors PE=PE11+PE22 with:1=ΣPαjj 

Review 6. 3rd-Stage: g=1·g·1 trick gives nilpotent projectors PE12=(PE21)† and Weyl g-expansion: g=ΣDα
ij(g)Pαij . 

Deriving diagonal and                  off-diagonal projectors PabE and ireps DabE   
Comparison: Global vs Local ⏐g〉-basis       versus                    Global vs Local ⏐P(µ)〉-basis 
 General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms right-and-left    
          Pµjk -expansion in g-operators: Inverse of Weyl form 
D3  Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis  
          ⏐P(µ)〉-basis D3 global-g matrix structure versus D3 local-   matrix structure 
           Local vs global x-symmetry and y-antisymmetry D3  tunneling band theory 
                    Ortho-complete D3 parameter analysis of eigensolutions 
           Classical analog for bands of vibration modes    

                    

AMOP  
reference links 

 on page 2

2.26.18 class 13.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Discrete symmetry subgroups of  O(3) using Mock-Mach principle:D3~C3v LAB vs BOD 
group and projection operator formulation of ortho-complete eigensolutions 

 g



PP(m)PP(n)== δmnδ PP(m)ab cd bc ad
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yx
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A A E E E
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EE
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E
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EE

E1 2

1 1 ⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ 0
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0⋅ ⋅

⋅ ⋅ 0
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0
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E

xx
E
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yx
E
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E
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E

xy
E

xx
E

xy
E

y
E

y
E

y
E

1 2

1 1 ⋅ ⋅ ⋅ ⋅ ⋅

2 ⋅ 2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

D3

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 1
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PP(m)PP(n)== δmnδ PP(m)ab cd bc ad

DD33 gglloobbaall
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CChhaannggee GGlloobbaall ttoo LLooccaall bbyy sswwiittcchhiinngg
......ccoolluummnn--PP wwiitthh ccoolluummnn--PP†

........aanndd rrooww--PP wwiitthh rrooww--PP†

JJuusstt sswwiittcchh r wwiitthh r =r2..
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((JJuusstt sswwiittcchh wwiitthh = ..))PPyxE PPyxE
†

†

PP yx
E
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(all others are
self-conjugate)

Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis



Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis
MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD
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gg = PP PP PP
A1 A2 E

xx+ + + + +

D

D

D
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xx
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⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅
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⎟
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1 ⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
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⎜
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+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
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⎝
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⎜
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⎜
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis
MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD
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gg = PP PP PP
A1 A2 E

xx+ + + + +
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D

D

D

xx

yy
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yy

⋅ ⋅ ⋅ ⋅ ⋅
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⎜
⎜
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⎜
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⎠
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Review 4. 1st-Stage: Spectral resolution of D3 Center (All-commuting class projectors and characters)  
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Deriving diagonal and                  off-diagonal projectors PabE and ireps DabE   
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Discrete symmetry subgroups of  O(3) using Mock-Mach principle:D3~C3v LAB vs BOD 
group and projection operator formulation of ortho-complete eigensolutions 
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⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

Pµjk -expansion in g-operators  Need inverse of Weyl form:

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )



   
g =

′µ
∑

′m

ℓµ

∑ D ′m ′n
′µ g( )

′n

ℓµ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( )

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

Pµjk -expansion in g-operators  Need inverse of Weyl form:

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )



   
g =

′µ
∑

′m

ℓµ

∑ D ′m ′n
′µ g( )

′n

ℓµ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

Pµjk -expansion in g-operators  Need inverse of Weyl form:

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )



   
g =

′µ
∑

′m

ℓµ

∑ D ′m ′n
′µ g( )

′n

ℓµ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension ℓ(µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A1
A2

E
xy

Dyx
D

D
xx

yy

DE
xy

Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

Dxx
A1 Dyy

A2 Dxx
E

Dxy
E Dyx

E Dyy
E

Pµjk -expansion in g-operators  Need inverse of Weyl form:

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )



   
g =

′µ
∑

′m

ℓµ

∑ D ′m ′n
′µ g( )

′n

ℓµ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

    Trace R(Pmn
µ )=δmnℓ

(µ)

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
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E
xy

Dyx
D

D
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Dyx
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E
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E
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1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
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E
(g) Dyy

E
(g)

1
1

1

Dxx
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Pµjk -expansion in g-operators  Need inverse of Weyl form:

Regular representation TraceR(       ) is irep dimension ℓ(µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )



   
g =

′µ
∑

′m

ℓµ

∑ D ′m ′n
′µ g( )

′n

ℓµ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

    Trace R(Pmn
µ )=δmnℓ

(µ)

Solving for             :
 
pmn
µ g( )

   

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            
                   

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Pµjk -expansion in g-operators  Need inverse of Weyl form:

Regular representation TraceR(       ) is irep dimension ℓ(µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:
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Pµjk -expansion in g-operators  Need inverse of Weyl form:

Solving for             :
 
pmn
µ g( )

Regular representation TraceR(       ) is irep dimension ℓ(µ) for diagonal       or zero otherwise:  Pmn
µ
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Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
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Pµjk -expansion in g-operators  Need inverse of Weyl form:

Solving for             :
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µ g( )

Regular representation TraceR(       ) is irep dimension ℓ(µ) for diagonal       or zero otherwise:  Pmn
µ
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µ

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
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µ = pmn

µ g( )
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°G
∑ gDerive coefficients             of inverse Weyl expansion:
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Pµjk -expansion in g-operators  Need inverse of Weyl form:

Solving for             :
 
pmn
µ g( )

Regular representation TraceR(       ) is irep dimension ℓ(µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Left action by operator f in group G ={1,…, f, g, h,…}: 
  
Pmn
µ = pmn

µ g( )
g
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∑ gDerive coefficients             of inverse Weyl expansion:
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r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

mn
µ = Pmn

µ 1
norm
1

= ℓ(µ )

°G ⋅norm
Dmn

µ* g( )
g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 = ℓ(µ )

°G
(which will cancel out) 
So, fuggettabout it!

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

Projector conjugation  p.31
(norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

Mock-Mach 
commutation 
r r = r r

(p.89)

(norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
= ℓ(µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 = ℓ(µ )

°G
(which will cancel out) 
So, fuggettabout it!



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(p.18)

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

Coefficients               are irreducible representations (ireps) of g 
Dmn

µ g( )
g = 1 r1 r2 i1 i2 i3

DA1 g( ) =
DA2 g( ) =
Dx,y
E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( ) = rg
g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g 
Dmn

µ g( )



Review 1. Global vs Local symmetry and Mock-Mach principle 
Review 2. LAB-BOD (Global -Local) mutually commuting representations of D3~C3v     

Review 3. Global vs Local symmetry expansion of D3 Hamiltonian         

Review 4. 1st-Stage: Spectral resolution of D3 Center (All-commuting class projectors and characters)  
Review 5. 2nd-Stage: D3⊃C2 or D3⊃C3 sub-group-chain projectors split class projectors PE=PE11+PE22 with:1=ΣPαjj 

Review 6. 3rd-Stage: g=1·g·1 trick gives nilpotent projectors PE12=(PE21)† and Weyl g-expansion: g=ΣDα
ij(g)Pαij . 

Deriving diagonal and                  off-diagonal projectors PabE and ireps DabE   
Comparison: Global vs Local ⏐g〉-basis       versus                    Global vs Local ⏐P(µ)〉-basis 
 General formulae for spectral decomposition (D3 examples) 
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk 
                  Pµjk transforms            left            and              right    
          Pµjk -expansion in g-operators: Inverse of Weyl form 
D3  Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis  
          ⏐P(µ)〉-basis D3 global-g matrix structure versus D3 local-   matrix structure 
           Local vs global x-symmetry and y-antisymmetry D3  tunneling band theory 
                    Ortho-complete D3 parameter analysis of eigensolutions 
           Classical analog for bands of vibration modes    

                    

AMOP  
reference links 

 on page 2

2.26.18 class 13.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Discrete symmetry subgroups of  O(3) using Mock-Mach principle:D3~C3v LAB vs BOD 
group and projection operator formulation of ortho-complete eigensolutions 
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Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)=r0 +r1+r1
*+i1+i2 +i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g 
Dmn

µ g( )



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r 2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2-i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g 
Dmn

µ g( )



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r 2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2-i3                

Hxx

E1 = r0Dxx
E*

(1)+ r1Dxx
E*

(r1)+ r1
*Dxx

E*
(r 2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0-r1-r1

*-i1-i2 +2i3)/2 

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g 
Dmn

µ g( )



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r 2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2-i3                

Hxx

E1 = r0Dxx
E*

(1)+ r1Dxx
E*

(r1)+ r1
*Dxx

E*
(r 2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0-r1-r1

*-i1-i2 +2i3)/2      

Hxy

E1 = r0Dxy
E*

(1)+ r1Dxy
E*

(r1)+ r1
*Dxy

E*
(r 2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g 
Dmn

µ g( )



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r 2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2-i3                

Hxx

E1 = r0Dxx
E*

(1)+ r1Dxx
E*

(r1)+ r1
*Dxx

E*
(r 2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0-r1-r1

*-i1-i2 +2i3)/2      

Hxy

E1 = r0Dxy
E*

(1)+ r1Dxy
E*

(r1)+ r1
*Dxy

E*
(r 2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  

Hyy

E1 = r0Dyy
E*

(1)+ r1Dyy
E*

(r1)+ r1
*Dyy

E*
(r 2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0-r1-r1

*+i1+i2-2i3)/2     

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g 
Dmn

µ g( )



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r 2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2-i3                

Hxx

E1 = r0Dxx
E*

(1)+ r1Dxx
E*

(r1)+ r1
*Dxx

E*
(r 2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0-r1-r1

*-i1-i2 +2i3)/2      

Hxy

E1 = r0Dxy
E*

(1)+ r1Dxy
E*

(r1)+ r1
*Dxy

E*
(r 2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  

Hyy

E1 = r0Dyy
E*

(1)+ r1Dyy
E*

(r1)+ r1
*Dyy

E*
(r 2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0-r1-r1

*+i1+i2-2i3)/2     

Hxx

E1 Hxy

E1

Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= 1
2

2r0-r1-r1
*-i1-i2+2i3 3(-r1+r1

*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0-r1-r1

*+i1+i2-2i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r 2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2-i3                =r0 +2r1 -2i12 -i3

Hxx

E1 = r0Dxx
E*

(1)+ r1Dxx
E*

(r1)+ r1
*Dxx

E*
(r 2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0-r1-r1

*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3
Hxy

E1 = r0Dxy
E*

(1)+ r1Dxy
E*

(r1)+ r1
*Dxy

E*
(r 2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  =0

Hyy

E1 = r0Dyy
E*

(1)+ r1Dyy
E*

(r1)+ r1
*Dyy

E*
(r 2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0-r1-r1

*+i1+i2-2i3)/2     =r0 -r1 +i12 -i3

Hxx

E1 Hxy

E1

Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= 1

2
2r0-r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0-r1-r1

*+i1+i2-2i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                       =
r0-r1-i12 +i3 0

0 r0-r1-i12-i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
For: r1=r1

*and: i1=i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

Choosing local C2={1,i3} symmetry with 
local constraints r1=r1*=r2 and i1=i2  

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 



Hab

α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy

E1 ⋅ ⋅

⋅ ⋅ Hyx

E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx

E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r 2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r 2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2-i3                =r0 +2r1 -2i12 -i3

Hxx

E1 = r0Dxx
E*

(1)+ r1Dxx
E*

(r1)+ r1
*Dxx

E*
(r 2)+ i1Dxx

E*
(i1)+ i2Dxx

E*
(i2)+ i3Dxx

E*
(i3)  =(2r0-r1-r1

*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3
Hxy

E1 = r0Dxy
E*

(1)+ r1Dxy
E*

(r1)+ r1
*Dxy

E*
(r 2)+ i1Dxy

E*
(i1)+ i2Dxy

E*
(i2)+ i3Dxy

E*
(i3)  = 3(-r1+r1

*-i1+i2 )/2 =Hyx
E*  =0

Hyy

E1 = r0Dyy
E*

(1)+ r1Dyy
E*

(r1)+ r1
*Dyy

E*
(r 2)+ i1Dyy

E*
(i1)+ i2Dyy

E*
(i2)+ i3Dyy

E*
(i3)  =(2r0-r1-r1

*+i1+i2-2i3)/2     =r0 -r1 +i12 -i3

Hxx

E1 Hxy

E1

Hyx

E1 Hyy

E1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= 1

2
2r0-r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0-r1-r1

*+i1+i2-2i3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                       =
r0-r1-i12 +i3 0

0 r0-r1-i12-i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
For: r1=r1

*and: i1=i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in 
⏐g〉-basis:

H matrix in 
⏐P(µ)〉-basis:

Choosing local C2={1,i3} symmetry with 
local constraints r1=r1*=r2 and i1=i2  

C2={1,i3}  
Local symmetry 
determines all levels 
and eigenvectors with 
just 4 real parameters

(norm)2 (norm)2 (norm)2

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 



PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSppeeccttrraall EEffffiicciieennccyy:: SSaammee DD((aa))
mmnn
pprroojjeeccttoorrss ggiivvee aa lloott!!

••EEiiggeennssttaatteess ((sshhoowwnn bbeeffoorree))

••CCoommpplleettee HHaammiillttoonniiaann

••LLooccaall ssyymmmmeetteerryy eeiiggeennvvaalluuee ffoorrmmuullaaee

H r r i i i1 2 1 2 3
− − − − +H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

√3
2
( + − +r r i i1 2 1 2 )−

√3
2
( − − +r r i i1 2 1 2 )+ − − + + −H r r i i i1 2 1 2 3

1
2

1
2

1
2

1
2

A
1
-block

A
2
-block

(L.S.=> off-diagonal zero.)

H r r i i i1 2 1 2 3⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

3

r1= r2= r1*= r, i1= i2= i1*= i

+ + +r i i2 2 3HA
1
-level:

+ − −r i i2 2 3HA
1
-level:

− − +r i i3HE
x
-level:

− + −r iHE
y
-level: i

gives:

mn
(g)

l(µ)

°G mn
PP(µ)= ΣgD

(µ)* g
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| 〉E1
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| 〉A1
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| 〉A2
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D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉
eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉

Local vs global x-symmetry and y-antisymmetry D3  tunneling band theory
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When there is no there, there...

ii3 global (y)
anti-symmetry

ii3 global (y)
anti-symmetry

ii3 global
(x) symmetry

ii3 local
(x) symmetry

ii3 local (y)
anti-symmetry

Nobody Home
where LOCAL
and GLOBAL

clash!clash!!

clash!clash!!

clash!clash!!

clash!clash!!
clash!clash!!

Local vs global x-symmetry and y-antisymmetry D3  tunneling band theory



Review 1. Global vs Local symmetry and Mock-Mach principle 
Review 2. LAB-BOD (Global -Local) mutually commuting representations of D3~C3v     

Review 3. Global vs Local symmetry expansion of D3 Hamiltonian         

Review 4. 1st-Stage: Spectral resolution of D3 Center (All-commuting class projectors and characters)  
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          ⏐P(µ)〉-basis D3 global-g matrix structure versus D3 local-   matrix structure 
           Local vs global x-symmetry and y-antisymmetry D3  tunneling band theory 
                    Ortho-complete D3 parameter analysis of eigensolutions 
           Classical analog for bands of vibration modes    

                    

AMOP  
reference links 

 on page 2

2.26.18 class 13.0: Symmetry Principles for 
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Discrete symmetry subgroups of  O(3) using Mock-Mach principle:D3~C3v LAB vs BOD 
group and projection operator formulation of ortho-complete eigensolutions 
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Classical analog for bands of vibration modes



Classical analog for vibration modes


