AMOP reference links on following page 2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D**₃ **Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g=1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g=\Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{ab}{}^{E}$ and ireps $D_{ab}{}^{E}$ Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis General formulae for spectral decomposition (D₃ examples) Weyl \mathbf{g} -expansion in irep $D^{\mu}{}_{jk}(\mathbf{g})$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $\mathbf{P}^{\mu}{}_{jk}$ transforms right-and-left $\mathbf{P}^{\mu}{}_{jk}$ -expansion in \mathbf{g} -operators: Inverse of Weyl form D₃ Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global- \mathbf{g} matrix structure versus D₃ local- matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) <u>Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)</u>

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989

II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989

III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

AMOP Ch 32 Molecular Symmetry and Dynamics - 2019

AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank

- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g = 1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g = \Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis General formulae for spectral decomposition (D₃ examples) Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(\mathbf{g})$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl form D₃ Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global- \mathbf{g} matrix structure versus D₃ local- \mathbf{g} matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes

Review 1. Global vs Local symmetry and Mock-Mach principle

"Give me a place to stand... and I will move the Earth" Archimedes 287-212 B.C.E

Recall AMO12 p.41

Ideas of duality/relativity go way back (... VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global) \mathbf{R} vs. Body-fixed (Intrinsic-Local) $\mathbf{\bar{R}}$

...But *how* do you actually *make* the \mathbf{R} and $\mathbf{\bar{R}}$ operations?

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g = 1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g = \Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis General formulae for spectral decomposition (D₃ examples) Weyl **g**-expansion in irep $D^{\mu}_{jk}(\mathbf{g})$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators: Inverse of Weyl form D₃ Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global-**g** matrix structure versus D₃ local-**g** matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes

Recall AMO12 p.50

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g = 1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g = \Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis General formulae for spectral decomposition (D₃ examples) Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(\mathbf{g})$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl form D₃ Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global- \mathbf{g} matrix structure versus D₃ local- \mathbf{g} matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes

Review 3. Global vs Local sym	metry expansion of D ₃ Han	niltonian Recall AMO12 p.58
Example of RELATIVITY-DUALIT	<u>Y for D</u>	
To represent <i>external</i> { I , U , V ,	$H = \langle 1 \mathbb{H} 1 \rangle = H^*$	$\frac{12}{2}$ $\frac{1}{2}$
$R^G(1) = \qquad R^G(\mathbf{r}) = \qquad R^G(\mathbf{r}^2) =$	$R^{G}(\mathbf{i}_{1}) = \langle \mathbf{r}_{1} = \langle \mathbf{r} \mathbb{H} 1 \rangle = r_{2}^{*}$	$\langle \mathbf{r} \rangle$
$\begin{pmatrix} 1 & \cdots & \cdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \cdots & 1 & \cdots & \cdots \\ 1 & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} \cdots & 1 & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} \cdots & 1 & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots &$	$r_{2} = \langle r^{2} H 1 \rangle = r_{1}^{2}$	r_1
		$\langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle $
$ \cdot \cdot \cdot 1 \cdot \cdot ' \cdot \cdot \cdot 1 \cdot ' \cdot \cdot \cdot 1 \cdot '$	$ \mathbf{l}_1 = \langle \mathbf{l}_1 \mathbf{l}_1 \rangle = \mathbf{l}_1^*$	\mathbf{i}_{3} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{2}
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$i_{2} = \langle i_{2} \mathbb{H} 1 \rangle = i_{2}^{*}$	
	$i_3 = \langle i_3 \mathbb{H} 1 \rangle = i_3^*$	$ \mathbf{i}_1\rangle$
<u>RESULT:</u>	So an H -matrix	$ \mathbf{r}^2\rangle$ 1
Any $R(\mathbf{T})$	having Global symmetryD ₃	local-D -defined
$\frac{commute}{\text{with any } R(\mathbf{\overline{U}})}$	$\mathbb{H} = H1^0 + r_1\mathbf{\bar{r}}^1 + r_2\mathbf{\bar{r}}^2 + i_1\mathbf{\bar{i}}_1 + i_2\mathbf{\bar{i}}_2 + i_3\mathbf{\bar{i}}_3$	3 Hamiltonian matrix
<u><i>commute</i></u> (Even if T and U do <u>not</u>) with any $R(\overline{U})$ and $\overline{T} \cdot \overline{U} = \overline{V}$ if \overline{A} only if $\overline{T} \cdot \overline{\overline{U}} = \overline{V}$.	$\mathbf{H} = H1^{0} + r_{1}\mathbf{\bar{r}}^{1} + r_{2}\mathbf{\bar{r}}^{2} + i_{1}\mathbf{\bar{i}}_{1} + i_{2}\mathbf{\bar{i}}_{2} + i_{3}\mathbf{\bar{i}}_{3}$ is made from []	Hamiltonian matrix $H \equiv 1\rangle r\rangle r^2\rangle i_1\rangle i_2\rangle i_3\rangle$
<u>commute</u> (Even if T and U do <u>not</u>) with any $R(\overline{\mathbf{U}})$ and $\mathbf{T} \cdot \mathbf{U} = \mathbf{V}$ if \mathbf{A} only if $\overline{\mathbf{T}} \cdot \overline{\mathbf{U}} = \overline{\mathbf{V}}$.	$\mathbf{H} = H\mathbf{I}_{+}^{0} \mathbf{r}_{1}^{1} \mathbf{r}_{2}^{1} \mathbf{r}_{+}^{2} \mathbf{r}_{1}^{2} \mathbf{i}_{1} + \mathbf{i}_{2}^{2} \mathbf{i}_{2} + \mathbf{i}_{3}^{2} \mathbf{i}_{3}$ is made from [Local symmetry matrices	Hamiltonian matrix $H \equiv 1\rangle \mathbf{r}\rangle \mathbf{r}^2\rangle \mathbf{i}_1\rangle \mathbf{i}_2\rangle \mathbf{i}_3\rangle \\ (1 H \mathbf{r}_1 \mathbf{r}_2 \mathbf{i}_2 \mathbf{i}_1 \mathbf{i}_2 \mathbf{i}_3\rangle$
$\underbrace{commute}_{\text{with any } R(\overline{\mathbf{U}})}$ with any $R(\overline{\mathbf{U}})$ and $\mathbf{T} \cdot \mathbf{U} = \mathbf{V}$ if \mathbf{A} only if $\overline{\mathbf{T}} \cdot \overline{\mathbf{U}} = \overline{\mathbf{V}}$. To represent <i>internal</i> { $\overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}},$ }	$\mathbf{H} = H1_{+}^{0} r_{1} \mathbf{\bar{r}}_{+}^{1} r_{2} \mathbf{\bar{r}}_{+}^{2} i_{1} \mathbf{\bar{i}}_{1} + i_{2} \mathbf{\bar{i}}_{2} + i_{3} \mathbf{\bar{i}}_{3}$ is made from [Local symmetry matrices This is a <u>complete</u> se	Hamiltonian matrix $H \equiv 1\rangle \mathbf{r}\rangle \mathbf{r}^{2}\rangle \mathbf{i}_{1}\rangle \mathbf{i}_{2}\rangle \mathbf{i}_{3}\rangle$ $(1 H r_{1} r_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3}$ $t (\mathbf{r} r_{2} H r_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3}$
<u>commute</u> (Even if T and U do <u>not</u>) with any $R(\overline{\mathbf{U}})$ and $\mathbf{T} \cdot \mathbf{U} = \mathbf{V}$ if \mathbf{A} only if $\overline{\mathbf{T}} \cdot \overline{\mathbf{U}} = \overline{\mathbf{V}}$. To represent <i>internal</i> { $\overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}},$ } $R^{G}(\overline{\mathbf{I}}) = R^{G}(\overline{\mathbf{r}}) = R^{G}(\overline{\mathbf{r}}^{2}) =$	$\mathbf{H} = H1_{+}^{0} \mathbf{r}_{1}^{1} \mathbf{r}_{2}^{1} \mathbf{r}_{-}^{2} \mathbf{r}_{1}^{2} \mathbf{i}_{1} + \mathbf{i}_{2}^{2} \mathbf{i}_{2} + \mathbf{i}_{3}^{2} \mathbf{i}_{3}$ is made from $\mathbf{Local} \text{ symmetry matrices}$ $\mathbf{Local} \text{ symmetry matrices}$ $\mathbf{This is a \underline{complete} \text{ se}}$ $\mathbf{of } D_{3}$	Hamiltonian matrix $H \equiv 1\rangle \mathbf{r}\rangle \mathbf{r}^{2}\rangle \mathbf{i}_{1}\rangle \mathbf{i}_{2}\rangle \mathbf{i}_{3}\rangle$ $(1 H r_{1} r_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3}$ $\mathbf{t} (\mathbf{r} r_{2} \mathbf{k} \mathbf{k} \mathbf{r}_{1} \mathbf{r}_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1}$ $(\mathbf{r}^{2} \mathbf{k} \mathbf{k} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{1} \mathbf{i}_{3} \mathbf{r}_{1}$
$\underline{commute}_{R^{G}(\overline{\mathbf{I}})} (\text{Even if } \overline{\mathbf{T}} \text{ and } \overline{\mathbf{U}} \text{ do } \underline{\text{not}})$ with any $R(\overline{\mathbf{U}})$ and $\overline{\mathbf{T} \cdot \mathbf{U}} = \overline{\mathbf{V}}$ if $\overline{\mathbf{v}}$ only if $\overline{\mathbf{T} \cdot \overline{\mathbf{U}}} = \overline{\mathbf{V}}$. To represent <i>internal</i> $\{\overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}},\}$. $R^{G}(\overline{\mathbf{I}}) = R^{G}(\overline{\mathbf{r}}) = R^{G}(\overline{\mathbf{r}}^{2}) = (1 \cdot \cdots \cdot 1)(\cdots \cdot 1 \cdot \cdots \cdot 1)(\cdots \cdot 1)(\cdots \cdot 1 \cdot \cdots \cdot 1)(\cdots \cdot 1$	$\mathbf{H} = H1_{+}^{0} \mathbf{r}_{1}^{\mathbf{r}} \mathbf{r}_{+}^{2} \mathbf{r}_{2}^{\mathbf{r}} \mathbf{i}_{1}^{\mathbf{i}} \mathbf{i}_{2}^{\mathbf{i}} \mathbf{i}_{2}^{\mathbf{i}} \mathbf{i}_{3}^{\mathbf{i}}$ is made from <i>Local symmetry matrices</i> $\mathbf{Local symmetry matrices}$ This is a <u>complete</u> se of D ₃ <i>coupling</i> or	$Hamiltonian matrix H = 1) r r^{2} i_{1} i_{2} i_{3} i_{3} i_{1} I I I I I I I I I I$
$\frac{commute}{\mathbf{v}} \text{ (Even if } \mathbf{T} \text{ and } \mathbf{U} \text{ do } \underline{\text{not}})$ with any $R(\overline{\mathbf{U}})$ and $\mathbf{T} \cdot \mathbf{U} = \mathbf{V}$ if \mathbf{A} only if $\overline{\mathbf{T}} \cdot \overline{\mathbf{U}} = \overline{\mathbf{V}}$. To represent <i>internal</i> $\{\overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}},\}$. $R^{G}(\overline{\mathbf{I}}) = R^{G}(\overline{\mathbf{r}}) = R^{G}(\overline{\mathbf{r}}^{2}) = \left(\begin{array}{ccc} 1 & \cdots & \cdots \\ \cdots & 1 & \cdots & \cdots \\ 1 & \cdots & \cdots & 1 \\ \end{array}\right) \left(\begin{array}{ccc} 1 & \cdots & \cdots \\ \cdots & 1 & \cdots & \cdots \\ 1 & \cdots & \cdots & \cdots \\ 1 & \cdots & \cdots & \cdots \\ \end{array}\right) \left(\begin{array}{ccc} \cdots & 1 & \cdots & \cdots \\ 1 & \cdots & \cdots \\ 1 & \cdots & \cdots \\ 1 & \cdots \\ 1 & \cdots & \cdots \\ 1 & \cdots \\$	$\mathbb{H} = H1_{+}^{0} r_{1} \mathbf{\bar{r}}_{+}^{1} r_{2} \mathbf{\bar{r}}_{+}^{2} i_{1} \mathbf{\bar{i}}_{1} + i_{2} \mathbf{\bar{i}}_{2} + i_{3} \mathbf{\bar{i}}_{3}$ is made from <i>Local symmetry matrices</i> $Ihis is a complete se of D_{3}$ <i>coupling or "tunnelino"</i>	Hamiltonian matrix $H \equiv 1 \mathbf{r} \mathbf{r}^{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} $ $(1 H r_{1} r_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} $ $(1 H r_{1} r_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} $ $(1 H r_{1} r_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{2} \mathbf{i}_{3} $ $(1 H r_{1} r_{2} \mathbf{i}_{3} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{2} \mathbf{i}_{3} $ $(1 r_{1} r_{2} \mathbf{i}_{3} \mathbf{i}_{3} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} i$
$\underbrace{commute}_{\mathbf{W}} \text{ (Even if } \mathbf{T} \text{ and } \mathbf{U} \text{ do } \underline{\text{not}})}_{\mathbf{W}} \text{ with any } R(\overline{\mathbf{U}})$ $\dots \text{ and } \mathbf{T} \cdot \mathbf{U} = \mathbf{V} \text{ if } \mathbf{X} \text{ only if } \overline{\mathbf{T}} \cdot \overline{\mathbf{U}} = \overline{\mathbf{V}}.$ $\text{To represent internal } \{\dots, \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \dots\}.$ $R^{G}(\overline{\mathbf{I}}) = R^{G}(\overline{\mathbf{r}}) = R^{G}(\overline{\mathbf{r}}^{2}) = \left(\begin{array}{ccc} 1 & \cdots & \cdots \\ 1 & \cdots & \cdots & 1 \\ \cdots & 1 & \cdots & \cdots \\ 1 & \cdots & \cdots & 1 \\ \end{array} \right) \left(\begin{array}{ccc} 1 & \cdots & \cdots \\ 1 & \cdots & \cdots \\ 1 & \cdots & \cdots \\ \cdots & \cdots & 1 \\ \cdots & \cdots & \cdots \\ 1 & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots &$	$\mathbb{H} = H1_{+}^{0} \mathbf{r}_{1}^{\mathbf{r}} \mathbf{r}_{+}^{2} \mathbf{r}_{2}^{\mathbf{r}} \mathbf{i}_{1}^{\mathbf{i}} \mathbf{i}_{2}^{\mathbf{i}} \mathbf{i}_{2}^{\mathbf{i}} \mathbf{i}_{3}^{\mathbf{i}}$ is made from $Local \text{ symmetry matrices}$ $I = H1_{+}^{0} \mathbf{r}_{+}^{\mathbf{r}} \mathbf{r}_{+}^{2} \mathbf{r}_{2}^{\mathbf{r}} \mathbf{i}_{1}^{\mathbf{i}} \mathbf{i}_{2}^{\mathbf{i}} \mathbf{i}_{2}^{\mathbf{i}} \mathbf{i}_{3}^{\mathbf{i}} \mathbf{i}_{3}^{\mathbf{i}}$ $Local \text{ symmetry matrices}$ $This is a complete se of D_{3}$ $coupling \text{ or } \mathbf{i}_{1}^{\mathbf{i}} \mathbf{i}_{1}^{\mathbf{i}} \mathbf{i}_{1}^{\mathbf{i}} \mathbf{i}_{1}^{\mathbf{i}} \mathbf{i}_{2}^{\mathbf{i}} \mathbf{i}_{3}^{\mathbf{i}} \mathbf{i}_{3}^{$	Hamiltonian matrix $H \equiv 1 \mathbf{r} \mathbf{r}^{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} (1 H \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} (1 H \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{3} \mathbf{i}_{1} (\mathbf{r}^{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{r}_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{r}_{2} \mathbf{i}_{3} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{2} \mathbf{r}_{$
$\underbrace{commute}_{\mathbf{v}} \text{ (Even if } \mathbf{T} \text{ and } \mathbf{U} \text{ do } \underline{\text{not}})}_{\text{with any } R(\overline{\mathbf{U}})}$ $\dots \text{ and } \mathbf{T} \cdot \mathbf{U} = \mathbf{V} \text{ if } \mathbf{v} \text{ only if } \overline{\mathbf{T}} \cdot \overline{\mathbf{U}} = \overline{\mathbf{V}}.$ $\text{To represent internal } \{\overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \}.$ $R^{G}(\overline{\mathbf{I}}) = R^{G}(\overline{\mathbf{r}}) = R^{G}(\overline{\mathbf{r}}^{2}) =$ $\begin{pmatrix} 1 & \cdots & \cdots \\ \ddots & 1 & \cdots \\ \ddots & 1 & \cdots \\ \ddots & 1 & \cdots \\ \ddots & \cdots & 1 & \cdots \\ \vdots & \cdots & \vdots & \vdots \\ \vdots & \cdots & \vdots \\ \vdots &$	$\mathbb{H} = H1_{+}^{0} r_{1}^{*} \mathbf{\bar{r}}_{+}^{1} r_{2}^{*} \mathbf{\bar{r}}_{+}^{2} i_{1}^{*} i_{1} + i_{2}^{*} i_{2} + i_{3}^{*} i_{3}^{*}$ is made from Local symmetry matrices This is a <u>complete</u> se of D ₃ coupling or <i>R^G(i) R^G(i) Coupling Coupling</i>	Hamiltonian matrix $H \equiv 1 \mathbf{r} \mathbf{r}^{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} $ $(1 H r_{1} r_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} $ $(1 H r_{1} r_{2} \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} $ $(\mathbf{r} r_{2} H r_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1} $ $(\mathbf{r}^{2} r_{1} r_{2} H r_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1} $ $(\mathbf{r}^{2} r_{1} \mathbf{i}_{2} \mathbf{i}_{3} H r_{1} \mathbf{i}_{2} $ $(\mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1} r_{2} H r_{1} $ $(\mathbf{i}_{2} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1} r_{2} H r_{1} $ $(\mathbf{i}_{2} \mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1} r_{2} H r_{1} $

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g = 1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g = \Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis General formulae for spectral decomposition (D₃ examples) Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators: Inverse of Weyl form D₃ Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global-**g** matrix structure versus D₃ local- $\mathbf{\bar{g}}$ matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes

Review 4. Spectral resolution of D₃ Center (Class algebra)

Recall AMO12 p.93

D₃ Class projectors: $\mathbf{P}^{A_1} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r + \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6$ $\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_r - \mathbf{\kappa}_i)/6 = (\mathbf{1} + \mathbf{r} + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6$ $\mathbf{P}^E = (2\mathbf{\kappa}_1 - \mathbf{\kappa}_r + 0)/3 = (2\mathbf{1} - \mathbf{r} - \mathbf{r}^2)/3$

*D*₃ Class characters:

${\boldsymbol \chi}^{lpha}_k$	χ_1^{lpha}	χ^{lpha}_{r}	χ^{lpha}_{i}
$\alpha = A_1$	1	1	1
$\alpha = A_2$	1	1	-1
$\alpha = E$	2	-1	0

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g=1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g=\Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis General formulae for spectral decomposition (D₃ examples) Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators: Inverse of Weyl form D₃ Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global-**g** matrix structure versus D₃ local-**g** matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes Review 5. Spectral resolution of D_3 Center (Class algebra) and its C_2 subgroup splitting

Review 5. Spectral resolution of D₃ Center (Class algebra) or its C₃ subgroup splitting

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g = 1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g = \Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis General formulae for spectral decomposition (D₃ examples) Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(\mathbf{g})$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl form D₃ Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global- \mathbf{g} matrix structure versus D₃ local- \mathbf{g} matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes Review 6.

3rd-Stage: $\mathbf{g}=\mathbf{1}\cdot\mathbf{g}\cdot\mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12}=(\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g}=\Sigma D^{\alpha}_{ij}(\mathbf{g})\mathbf{P}^{\alpha}_{ij}$

Review 6.

3rd-Stage: $\mathbf{g}=\mathbf{1}\cdot\mathbf{g}\cdot\mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}_{12}=(\mathbf{P}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g}=\Sigma D^{\alpha}_{ij}(\mathbf{g})\mathbf{P}^{\alpha}_{j}$

$$\begin{aligned} 3^{rd} & and \ Final \ Step: \\ Spectral \ resolution \ of \ ALL \ 6 \ of \ D3 \ : \\ g = \sum_{m} \sum_{e} \sum_{b} D_{eb}^{(m)} \otimes \mathbf{P}_{eb}^{(m)} \\ \mathbf{P}_{eb}^{(m)} = (m^{m}) \sum_{g} D_{g}^{(m)} \otimes \mathbf{P}_{g}^{(m)} \\ \mathbf{P}_{g}^{(m)} = (m^{m}) \sum_{g} D_{g}$$

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D_3 Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- \mathbf{g} matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} $D_{0_20_2}^E(r^1)\mathbf{P}_{0_20_2}^E\mathbf{r}^1\mathbf{P}_{0_20_2}^E = \mathbf{P}_{0_20_2}^E$ with $\mathbf{P}_{0_20_2}^E = \frac{1}{6}(2\mathbf{1} - \mathbf{r}^1 - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)$ is represented by This gives *on*-diagonal irep component: $D_{0,0,0}^{E}(r^{1})$

2-index \mathbf{P}_{ab}^{E} projectors were split from class (all-commuting) \mathbf{P}^{E}

$$\mathbf{P}_{0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3}) = \mathbf{P}_{0_{2}0_{2}}^{E} + \mathbf{P}_{1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{1_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3}) = \mathbf{P}_{1_{2}1_{2}}^{E} + \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} = \frac{1}{3} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2})$$

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} $\mathbf{P}_{0,0_2}^{E}\mathbf{r}^{1}\mathbf{P}_{1,1_2}^{E} = D_{0,1_2}^{E}(r^{1})\mathbf{P}_{0,1_2}^{E}$ with $\mathbf{P}_{1,1_2}^{E} = \frac{1}{6}(2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$ is represented by ...but this fails to give off-diagonal irep $D_{0,1}^{E}(r^{1})$

2-index \mathbf{P}_{ab}^{E} projectors were split from class (all-commuting) \mathbf{P}^{E}

$$\mathbf{P}_{0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3}) = \mathbf{P}_{0_{2}0_{2}}^{E} \\ + \mathbf{P}_{1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{1_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3}) = \mathbf{P}_{1_{2}1_{2}}^{E} \\ \mathbf{P}^{E} = \frac{1}{3} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2})$$

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D_3 Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g=1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g=\Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basis versus Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

General formulae for spectral decomposition (D₃ examples) Weyl **g**-expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk}

 \mathbf{P}^{μ}_{jk} transforms right-and-left

 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators: Inverse of Weyl form

 D_3 Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis

|P^(µ)⟩-basis D₃ global-g matrix structure versus D₃ local-g matrix structure Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory Ortho-complete D₃ parameter analysis of eigensolutions Classical analog for bands of vibration modes

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^E and ireps D_{ab}^E									
	Deriving	$\mathbf{P}_{0_2}^E \mathbf{r}^1 \mathbf{P}$	$\frac{E}{l_2}$ given	n: $\mathbf{P}_{0_2}^E =$	$\frac{1}{6}(21-1)$	$r^{1}-r^{2}-$	$-i_1 - i_2$	+2 \mathbf{i}_3) and: $\mathbf{P}_{1_2}^E = \frac{1}{6}(21 - \mathbf{r}^1 - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)$	
	D ₃ gg [†] form	-1	$-\mathbf{r}^2$	$2\mathbf{r}^1$	$+\mathbf{i}_1$	-2 i ₂	+ i ₃	so: $\mathbf{r}^{1}\mathbf{P}_{1_{2}}^{E} = \frac{1}{6}(2\mathbf{r}^{1} - \mathbf{r}^{2} - 1 + \mathbf{i}_{3} + \mathbf{i}_{1} - 2\mathbf{i}_{2})$	
1.	21	-21	$-2\mathbf{r}^2$	$4\mathbf{r}^1$	2 i ₁	-4 i ₂	2 i ₃		
	$-\mathbf{r}^1$	\mathbf{r}^1	1	$-2\mathbf{r}^2$	-i ₃	$2i_1$	- i ₂		
	-r ²	\mathbf{r}^2	\mathbf{r}^1	-21	-i ₂	2 i ₃	- i ₁	$= \mathbf{P}_{0_2}^E \mathbf{r}^{T} \mathbf{P}_{1_2}^E$	
	-i ₁	i ₁	i ₃	$-2i_{2}$	-1	$2\mathbf{r}^1$	-r ²		
	-i ₂	\mathbf{i}_2	\mathbf{i}_1	$-2i_{3}$	$-\mathbf{r}^2$	21	-r ¹		
	2 i ₃	$-2i_{3}$	$-2i_{2}$	4 i ₁	2 r ¹	$-4r^{2}$	21		

Definition of $\mathbf{P}_{0_2 0_2}^E$: $D_{0_2 0_2}^E(\mathbf{r}^1)\mathbf{P}_{0_2 0_2}^E = \mathbf{P}_{0_2}^E \mathbf{r}^1 \mathbf{P}_{0_2}^E$

Definition of $\mathbf{P}_{0_{2}1_{2}}^{E}$: $D_{0_{2}1_{2}}^{E}(\mathbf{r}^{1})\mathbf{P}_{0_{2}1_{2}}^{E} = \mathbf{P}_{0_{2}}^{E}\mathbf{r}^{1}\mathbf{P}_{1_{2}}^{E}$

D	Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^E and ireps D_{ab}^E									
	Deriving	$\mathbf{P}_{0_2}^E \mathbf{r}^1 \mathbf{P}$	$\frac{E}{l_2}$ given	n: $\mathbf{P}_{0_2}^E =$	$\frac{1}{6}(21-1)$	$r^{1}-r^{2}-$	$-i_1 - i_2$	+2 \mathbf{i}_3) and: $\mathbf{P}_{1_2}^E = \frac{1}{6}(21 - \mathbf{r}^1 - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)$		
	D3 gg [†] form	-1	$-\mathbf{r}^2$	2 r ¹	+ i ₁	-2 i ₂	+ i ₃	so: $\mathbf{r}^{1}\mathbf{P}_{1_{2}}^{E} = \frac{1}{6}(2\mathbf{r}^{1} - \mathbf{r}^{2} - 1 + \mathbf{i}_{3} + \mathbf{i}_{1} - 2\mathbf{i}_{2})$		
	21	-21	$-2\mathbf{r}^2$	$4\mathbf{r}^1$	2 i ₁	-4 i ₂	2 i ₃			
	-r ¹	\mathbf{r}^1	1	$-2\mathbf{r}^2$	-i ₃	2 i ₁	-i ₂			
	-r ²	\mathbf{r}^2	\mathbf{r}^1	-21	- i ₂	2 i ₃	- i ₁	$= \mathbf{P}_{0_2}^E \mathbf{r}^1 \mathbf{P}_{1_2}^E = \frac{1}{36} \left(01 + 9\mathbf{r}^1 - 9\mathbf{r}^2 + 9\mathbf{i}_1 - 9\mathbf{i}_2 + 0\mathbf{i}_3 \right)$		
	-i ₁	\mathbf{i}_1	i ₃	$-2i_{2}$	-1	$2\mathbf{r}^1$	-r ²			
	-i ₂	\mathbf{i}_2	\mathbf{i}_1	$-2i_{3}$	-r ²	21	- r ¹			
	2 i ₃	$-2i_{3}$	$-2i_{2}$	4 i ₁	$2\mathbf{r}^1$	$-4r^{2}$	21			

Definition of
$$\mathbf{P}_{0_2 0_2}^E$$
:
 $D_{0_2 0_2}^E(\mathbf{r}^1)\mathbf{P}_{0_2 0_2}^E = \mathbf{P}_{0_2}^E \mathbf{r}^1 \mathbf{P}_{0_2}^E$

Definition of $\mathbf{P}_{0_{2}1_{2}}^{E}$: $D_{0_{2}1_{2}}^{E}(\mathbf{r}^{1})\mathbf{P}_{0_{2}1_{2}}^{E} = \mathbf{P}_{0_{2}}^{E}\mathbf{r}^{1}\mathbf{P}_{1_{2}}^{E}$

Deriving diagonal and off-diagonal projectors
$$\mathbf{P}_{ab}^{E}$$
 and ireps D_{ab}^{E}
Deriving $\mathbf{P}_{02}^{E} \mathbf{r}^{1} \mathbf{P}_{12}^{E}$ given: $\mathbf{P}_{02}^{E} = \frac{1}{6}(2\mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2\mathbf{i}_{3})$ and: $\mathbf{P}_{12}^{E} = \frac{1}{6}(2\mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2\mathbf{i}_{3})$
 $\begin{bmatrix} D_{3} gg^{\dagger} \\ form \end{bmatrix} = -\mathbf{1} - -\mathbf{r}^{2} - 2\mathbf{r}^{1} + \mathbf{i}_{1} - 2\mathbf{i}_{2} + \mathbf{i}_{3} \\ \hline \mathbf{21} - 2\mathbf{1} - 2\mathbf{r}^{2} - 4\mathbf{r}^{1} - 2\mathbf{i}_{1} - 4\mathbf{i}_{2} - 2\mathbf{i}_{3} \\ \mathbf{r}^{1} \\ \mathbf{r}^{1} \\ \mathbf{r}^{1} \\ \mathbf{r}^{1} \\ \mathbf{r}^{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{1} - 2\mathbf{1} \\ -2\mathbf{1} \\ -2\mathbf{1} \\ \mathbf{r}^{2} \\ \mathbf{r}^{1} \\ \mathbf{r}^{1} \\ \mathbf{i}_{1} \\ \mathbf{i}_{3} \\ -2\mathbf{i}_{2} - 1 \\ \mathbf{i}_{2} \\ \mathbf{i}_{1} \\ -2\mathbf{i}_{3} \\ -2\mathbf{i}_{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{2} \\ \mathbf{r}^{1} \\ \mathbf{P}_{12}^{E} = \frac{1}{36}(0\mathbf{1}+9\mathbf{r}^{1}-9\mathbf{r}^{2}+9\mathbf{i}_{1}-9\mathbf{i}_{2}+0\mathbf{i}_{3})$
So: $\mathbf{P}_{02}^{E}\mathbf{r}^{1}\mathbf{P}_{12}^{E} = \frac{1}{4}(\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2})$ has transpose: $\mathbf{P}_{12}^{E}\mathbf{r}^{2}\mathbf{P}_{02}^{E} = \frac{1}{4}(-\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2})$

Definition of $\mathbf{P}_{0_2 0_2}^E$: $D_{0_2 0_2}^E(\mathbf{r}^1)\mathbf{P}_{0_2 0_2}^E = \mathbf{P}_{0_2}^E \mathbf{r}^1 \mathbf{P}_{0_2}^E$

Definition of $\mathbf{P}_{0_{2}1_{2}}^{E}$: $D_{0_{2}1_{2}}^{E}(\mathbf{r}^{1})\mathbf{P}_{0_{2}1_{2}}^{E} = \mathbf{P}_{0_{2}}^{E}\mathbf{r}^{1}\mathbf{P}_{1_{2}}^{E}$

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab}^{E} *and ireps* D_{ab}^{E}

Deriving diagonal and off-diagonal projectors \mathbf{P}_{ab^E} and ireps D_{ab^E} Defining $D_{1,0}^{E}(r^{1})\mathbf{P}_{1,2}^{E}\mathbf{r}^{1}\mathbf{P}_{0,2}^{E} = \mathbf{P}_{1,0,2}^{E}$ for off-diagonal $D_{1,0,2}^{E}(r^{1})$ projector $\mathbf{P}_{1,0,2}^{E}$ is represented by $D_{0_{2}0_{2}}^{E}(r^{1}) = \frac{1}{\sqrt{12}} \begin{pmatrix} 2 & -1 & -1 & -1 & 2 \end{pmatrix} \begin{vmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{vmatrix} = \frac{1}{4\sqrt{3}} \begin{pmatrix} 2 - 0 + 1 + 1 - 0 + 2 \end{pmatrix} = \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2}$ -0000000 Using normalized: $\left|\mathbf{P}_{0,1}^{E}\right\rangle = \frac{1}{2}(\mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} - \mathbf{i}_{2})\left|\mathbf{1}\right\rangle$ or transpose: $\left\langle \mathbf{P}_{1,0}^{E} \right| = \left\langle \mathbf{1} \right| (-\mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} - \mathbf{i}_{2}) \frac{1}{2}$ $\mathbf{P}_{\mathbf{0}_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{\mathbf{0}_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})$ $+ \mathbf{P}_{\mathbf{1}_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{\mathbf{1}_{2}} = \mathbf{P}^{E} \frac{1}{2} (\mathbf{1} + \mathbf{i}_{3}) = \frac{1}{6} (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})$ <u>√3</u> +2 $=\left(\frac{1}{2}\right)$ $=\frac{1}{2}(21-r^{1}-r^{2})$

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{jj}$ Review 6. 3rd-Stage: $g = 1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g = \Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} P^{μ}_{jk} transforms right-and-left P^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- \mathbf{g} matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

Compare Global vs Local $|\mathbf{g}\rangle$ *-basis vs. Global vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Change Global to Local by switching \dots column-g with column-g[†] and row-g with row-g[†] Just switch **r** with $r^{\dagger} = r^2$. (all others are self-conjugate) **i**₂ \mathbf{r}^2 İ1 D₂ local r^{2} 1 group **1**3 \mathbf{i}_2 (\mathbf{i}_3) table 1

r²

 (\mathbf{i}_3)

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $P^E = P^E_{11} + P^E_{22}$ with: $1 = \Sigma P^{\alpha}_{ij}$ Review 6. 3rd-Stage: $g = 1 \cdot g \cdot 1$ trick gives nilpotent projectors $P^E_{12} = (P^E_{21})^{\dagger}$ and Weyl g-expansion: $g = \Sigma D^{\alpha}_{ij}(g)P^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D_3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}{}_{jk}(g)$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $P^{\mu}{}_{jk}$ transforms right-and-left $P^{\mu}{}_{jk}$ -expansion in \mathbf{g} -operators: Inverse of Weyl form D_3 Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D_3 global- \mathbf{g} matrix structure versus D_3 local- $\mathbf{\bar{g}}$ matrix structureLocal vs global x-symmetry and y-antisymmetry D_3 tunneling band theory
Ortho-complete D_3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Compare Global vs Local $|\mathbf{g}\rangle$ *-basis vs. Global vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

D₃ global group product table

(Just switch \mathbf{P}_{yy}^{E} with $\mathbf{P}_{yy}^{E'} = \mathbf{P}_{xy}^{E}$.)

Change Global to Local by switching

...column-P with column-P^{\dagger}

....and row-P with row-P[†]

GLOBAL P-matrix commutes LOCAL P-matrix

а	b			A	•	В	•		A		В	.	a	b		
С	d	•	•	•	A	•	В	_	•	A	•	В	С	d	•	•
•	•	а	b	С		D		-	С		D				а	b
•	•	С	d		С		D			С		D	.	•	С	d

aA	bA	аB	bB		Aa	Ab	Ba	Bb
сА	dA	сВ	dB	_	Ac	Ad	Bc	Bd
aC	bC	аD	bD	_	Ca	Cb	Da	Db
сC	dC	сD	dD		Сс	Cd	Dc	Dd

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D**₃ **Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}{}_{jk}(\mathbf{g})$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $\mathbf{P}^{\mu}{}_{jk}$ transforms right-and-left $\mathbf{P}^{\mu}{}_{jk}$ -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- \mathbf{g} matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

Weyl exp	pansion of g in irep $D^{\mu}_{jk}(g)$	\mathbf{P}^{μ}_{jk}	"g-equals-1.g.1-trick"			
Irreducible	<i>idempotent completeness</i> $1 = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}^{A_2}$	$\mathbf{P}_{xx}^{E_1} + \mathbf{P}_{yy}^{E_1}$ completely expands $\boldsymbol{\xi}$	group by $g=1 \cdot g \cdot 1$			
		$\frac{1}{4} = \frac{1}{2} \left(\sum_{i=1}^{n} \frac{1}{2} \sum_{$	Previous notation:			
$\mathbf{g} = 1 \cdot \mathbf{g} \cdot 1 = \sum_{\mu}$	$\sum_{m} \sum_{n} D^{\mu}_{mn}(g) \mathbf{P}^{\mu}_{mn} = D^{\mathcal{A}}_{xx}(g) \mathbf{P}^{\mathcal{A}} + D^{\mathcal{A}}_{yy}(g)$	$\mathbf{P}^{A2} + D_{\mathbf{xx}}^{L1}(\mathbf{g})\mathbf{P}_{\mathbf{xx}}^{L1} + D_{\mathbf{xy}}^{L1}(\mathbf{g})\mathbf{P}_{\mathbf{xy}}^{L1}$	$\mathbf{P}_{0202}^{A_1} = \mathbf{P}_{xx}^{A_1}$			
	For irreducible class idempotents	$+ D^{E_1}(\mathbf{q}) \mathbf{P}^{E_1} + D^{E_1}(\mathbf{q}) \mathbf{P}^{E_1}$	$\mathbf{P}_{1212}^{A_2} = \mathbf{P}_{yy^2}^{A_2}$			
where:	sub-indices _{xx} or _{yy} are <u>optional</u>	$y_{x}(8) - y_{x} - y_{y}(8) - y_{y}$	$\mathbf{P}_{0202}^{E_1} = \mathbf{P}_{xx}^{E_1} \mathbf{P}_{0212}^{E_1} = \mathbf{P}_{xy}^{E_1}$			
$\mathbf{P}_{xx}^{A_1} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_1}$	$= D_{xx}^{A_1}(g) \mathbf{P}_{xx}^{A_1}, \mathbf{P}_{yy}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_2} = D_{yy}^{A_2}(g) \mathbf{P}_{yy}^{A_2},$	$\mathbf{P}_{\mathbf{xx}}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{\mathbf{xx}}^{E_1} = D_{\mathbf{xx}}^{E_1} \left(\mathbf{g} \right) \mathbf{P}_{\mathbf{xx}}^{E_1},$	$\mathbf{P}_{1202}^{E_{1}} = \mathbf{P}_{yx}^{E_{1}} \mathbf{P}_{1212}^{E_{1}} = \mathbf{P}_{yy}^{E_{1}}$			
	For split idempotents	\mathbf{P}^{E_1}	$\mathbf{P}^{E_1} = \mathcal{D}^{E_1}(\mathbf{q}) \mathbf{P}^{E_1}$			
	sub-indices _{xx} or _{yy} are <u>essential</u>	_ <i>уу</i>	$S \downarrow_{yy} D_{yy}(S) \downarrow_{yy}$			

Weyl expansion of g in irep $D^{\mu}_{ik}(g)\mathbf{P}^{\mu}_{ik}$ "g-equals-1.g.1-trick" Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{xx}^{E_1} + \mathbf{P}_{yy}^{E_1}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ Previous notation: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_1} \left(\mathbf{g} \right) \mathbf{P}^{A_1} + D_{yy}^{A_2} \left(\mathbf{g} \right) \mathbf{P}^{A_2} + D_{xx}^{E_1} \left(\mathbf{g} \right) \mathbf{P}_{xx}^{E_1} + D_{xy}^{E_1} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{E_1}$ $\mathbf{P}_{0202}^{A_{1}} = \mathbf{P}_{xx}^{A_{1}}$ + $D_{yx}^{E_1}(g)\mathbf{P}_{yx}^{E_1} + D_{yy}^{E_1}(g)\mathbf{P}_{yy}^{E_1} \begin{bmatrix} \mathbf{P}_{A_2} = \mathbf{P}_{yy}^{A_2} \\ - \end{bmatrix}$ For irreducible class idempotents sub-indices xx or yy are optional $\mathbf{P}_{0202}^{E_1} = \mathbf{P}_{xx}^{E_1}$ $\mathbf{P}_{0212}^{E_1} = \mathbf{P}_{xy}^{E_1}$ where: $\begin{bmatrix} \mathbf{P}_{l_{202}}^{E} = \mathbf{P}_{yx}^{E_{l}} & \mathbf{P}_{l_{212}}^{E_{l}} = \mathbf{P}_{yy}^{E_{l}} \\ \end{bmatrix}$ $\mathbf{P}_{xx}^{A_1} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_1} = D_{xx}^{A_1} \left(g\right) \mathbf{P}_{xx}^{A_1}, \quad \mathbf{P}_{yy}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_2} = D_{yy}^{A_2} \left(g\right) \mathbf{P}_{yy}^{A_2}, \quad \mathbf{P}_{xx}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_1} = D_{xx}^{E_1} \left(g\right) \mathbf{P}_{xx}^{E_1},$ For split idempotents $\mathbf{P}_{vv}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{vv}^{E_1} = D_{vv}^{E_1} \left(g\right) \mathbf{P}_{vv}^{E_1}$ sub-indices xx or yy are essential $\mathbf{P}^{A_1}, \mathbf{P}^{A_2}, \mathbf{P}^{E_1}, \text{ and } \mathbf{P}^{E_1}_{m}$ Besides four *idempotent* projectors

$$\begin{aligned} & \text{Weyl expansion of } \mathbf{g} \text{ in irep } D^{\mu}{}_{jk}(g) \mathbf{P}^{\mu}{}_{jk} & \text{"g-equals-1-g-1-trick"} \\ & \text{Irreducible idempotent completeness } \mathbf{1} = \mathbf{P}^{A_{1}} + \mathbf{P}^{A_{2}} + \mathbf{P}^{E_{1}}_{xx} + \mathbf{P}^{E_{1}}_{yy} \text{ completely expands group by } \mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{g} \cdot \mathbf{g}^{E_{1}} \\ & \mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D^{\mu}_{mn}(g) \mathbf{P}^{\mu}_{mn} = D^{A_{1}}_{xx}(g) \mathbf{P}^{A_{1}} + D^{A_{2}}_{yy}(g) \mathbf{P}^{A_{2}} + D^{E_{1}}_{xx}(g) \mathbf{P}^{E_{1}}_{xx} + D^{E_{1}}_{xy}(g) \mathbf{P}^{E_{1}}_{xy} \\ & \text{For irreducible class idempotents} \\ & \text{sub-indices } xx \text{ or } yy \text{ are optional} \\ & \mathbf{P}^{A_{1}}_{xx} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{1}}_{xx} = D^{A_{1}}_{xx}(g) \mathbf{P}^{A_{1}}_{xx}, \quad \mathbf{P}^{A_{2}}_{yy} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{2}}_{yy} = D^{A_{2}}_{yy}(g) \mathbf{P}^{A_{2}}_{yy}, \quad \mathbf{P}^{E_{1}}_{xx} \cdot \mathbf{g} \cdot \mathbf{P}^{E_{1}}_{xx} = D^{E_{1}}_{xx}(g) \mathbf{P}^{E_{1}}_{xx} \\ & \mathbf{P}^{A_{1}}_{xx} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{1}}_{xx} = D^{A_{1}}_{xx}(g) \mathbf{P}^{A_{1}}_{xx}, \quad \mathbf{P}^{A_{2}}_{yy} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{2}}_{yy} = D^{A_{2}}_{yy}(g) \mathbf{P}^{A_{2}}_{yy}, \quad \mathbf{P}^{E_{1}}_{xx} \cdot \mathbf{g} \cdot \mathbf{P}^{E_{1}}_{xx} = D^{E_{1}}_{xx}(g) \mathbf{P}^{E_{1}}_{xx}, \quad \mathbf{P}^{E_{1}}_{yy} = D^{E_{1}}_{xy}(g) \mathbf{P}^{E_{1}}_{yy} \\ & \text{For split idempotents} \\ & \text{sub-indices } xx \text{ or } yy \text{ are essential} \\ & \text{sub-indices } xx \text{ or } yy \text{ are essential} \\ & \text{Besides four idempotent} \text{ projectors} \quad \mathbf{P}^{A_{1}}_{x}, \mathbf{P}^{A_{2}}_{x}, \mathbf{P}^{E_{1}}_{xx} = D^{E_{1}}_{xx}(g) \mathbf{P}^{E_{1}}_{xx}, \quad \mathbf{P}^{E_{1}}_{yy} \cdot \mathbf{g} \cdot \mathbf{P}^{E_{1}}_{yy} = D^{E_{1}}_{yy}(g) \mathbf{P}^{E_{1}}_{yy} \\ & \mathbf{P}^{E_{1}}_{yy} \cdot \mathbf{g} \cdot \mathbf{P}^{E_{1}}_{xx} = D^{E_{1}}_{yy}(g) \mathbf{P}^{E_{1}}_{yy}, \quad \mathbf{P}^{E_{1}}_{yy} = D^{E_{1}}_{yy}(g) \mathbf{P}^{E_{1}}_{yy} \\ & \text{there arise two nilpotent projectors} \quad \mathbf{P}^{A_{1}}_{x}, \mathbf{P}^{A_{2}}_{xy}, \mathbf{P}^{E_{1}}_{xy} = D^{E_{1}}_{yy}(g) \mathbf{P}^{E_{1}}_{yy} \\ & \mathbf{P}^{E_{1}}_{yy} \cdot \mathbf{g} \cdot \mathbf{P}^{E_{1}}_{yy} = \mathbf{P}^{E_{1}}_{yy} \cdot \mathbf{g} \cdot \mathbf{P}^{E_{1}}_{yy} \\ & \mathbf{P}^{E_{1}}_{yy} \cdot \mathbf{P}^{E_{1}}_{yy} = \mathbf{P}^{E_{1}}_{yy}(g) \mathbf{P}^{E_{1}}_{yy} \\ & \mathbf{P}^{E_{1}}_{yy}$$

Weyl expansion of g in irep $D^{\mu}_{ik}(g)\mathbf{P}^{\mu}_{ik}$ "g-equals-1.g-1-trick" Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{yy}^{E_1} + \mathbf{P}_{yy}^{E_1}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ Previous notation: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{\mathcal{A}_{1}} \left(\mathbf{g} \right) \mathbf{P}^{\mathcal{A}_{1}} + D_{yy}^{\mathcal{A}_{2}} \left(\mathbf{g} \right) \mathbf{P}^{\mathcal{A}_{2}} + D_{xx}^{\mathcal{E}_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xx}^{\mathcal{E}_{1}} + D_{xy}^{\mathcal{E}_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{\mathcal{E}_{1}} + D_{xy}^{\mathcal{E}_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{\mathcal{E}_{$ $P_{0202}^{E_1} = P_{xx}^{E_1} P_{0212}^{E_1} = P_{xy}^{E_1}$ $+ D_{yx}^{E_{1}}(g)\mathbf{P}_{yx}^{E_{1}} + D_{yy}^{E_{1}}(g)\mathbf{P}_{yy}^{E_{1}} \qquad \underbrace{\mathbf{P}_{I_{2}0_{2}}^{E_{1}}=\mathbf{P}_{yx}^{E_{1}}}_{\mathbf{P}_{I_{2}1_{2}}^{E_{1}}=\mathbf{P}_{yy}^{E_{1}}}$ For irreducible class idempotents sub-indices xx or yy are optional where: $\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}} \left(g\right) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}} \left(g\right) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}} \left(g\right) \mathbf{P}_{xx}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{xy}^{E_{1}} \left(g\right) \mathbf{P}_{xy}^{E_{1}}$ sub-indices xx or yy are <u>essential</u>, $\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_1} = D_{yx}^{E_1}(g) \mathbf{P}_{yx}^{E_1}$, $\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_1} = D_{yy}^{E_1}(g) \mathbf{P}_{yy}^{E_1}$ *For split idempotents* $\mathbf{P}^{\overline{A_1}}, \mathbf{P}^{\overline{A_2}}, \mathbf{P}^{E_1}_{\mathbf{xx}}, \text{ and } \mathbf{P}^{E_1}_{\mathbf{xx}}$ Besides four *idempotent* projectors $\mathbf{P}_{vx}^{E_1}$, and $\mathbf{P}_{xv}^{E_1}$ there arise two *nilpotent* projectors

Idempotent projector orthogonality... $(\mathbf{P}_i \ \mathbf{P}_j = \delta_{ij} \ \mathbf{P}_i = \mathbf{P}_j \ \mathbf{P}_i)$

Generalizes...

Weyl expansion of g in irep $D^{\mu}_{ik}(g)\mathbf{P}^{\mu}_{ik}$ "g-equals-1·g·1-trick" Irreducible idempotent completeness $\mathbf{1} = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{yy}^{E_1} + \mathbf{P}_{yy}^{E_1}$ completely expands group by $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ Previous notation: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu} \left(\mathbf{g} \right) \mathbf{P}_{mn}^{\mu} = D_{xx}^{\mathcal{A}_{1}} \left(\mathbf{g} \right) \mathbf{P}^{\mathcal{A}_{1}} + D_{yy}^{\mathcal{A}_{2}} \left(\mathbf{g} \right) \mathbf{P}^{\mathcal{A}_{2}} + D_{xx}^{\mathcal{E}_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xx}^{\mathcal{E}_{1}} + D_{xy}^{\mathcal{E}_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{\mathcal{E}_{1}} + D_{xy}^{\mathcal{E}_{1}} \left(\mathbf{g} \right) \mathbf{P}_{xy}^{\mathcal{E}_{$ $P_{0202}^{E_1} = P_{xx}^{E_1} P_{0212}^{E_1} = P_{xy}^{E_1}$ $+ D_{yx}^{E_{1}}(g) \mathbf{P}_{yx}^{E_{1}} + D_{yy}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}} \qquad \underbrace{\mathbf{P}_{I202}^{E} = \mathbf{P}_{yx}^{E_{1}} \quad \mathbf{P}_{I212}^{E} = \mathbf{P}_{yy}^{E_{1}}}_{\mathbf{Y}}$ For irreducible class idempotents sub-indices xx or yy are optional where: $\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}} \left(g\right) \mathbf{P}_{xx}^{A_{1}}, \quad \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}} \left(g\right) \mathbf{P}_{yy}^{A_{2}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}} \left(g\right) \mathbf{P}_{xx}^{E_{1}}, \quad \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_{1}} = D_{xy}^{E_{1}} \left(g\right) \mathbf{P}_{xy}^{E_{1}}$ *For split idempotents* For split idempotents sub-indices xx or yy are essential , $\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_1} = D_{yx}^{E_1}(g) \mathbf{P}_{yx}^{E_1}$, $\mathbf{P}_{yy}^{E_1} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{E_1} = D_{yy}^{E_1}(g) \mathbf{P}_{yy}^{E_1}$ $\mathbf{P}^{A_1}, \mathbf{P}^{A_2}, \mathbf{P}^{E_1}_{\mathbf{rr}}$, and $\mathbf{P}^{E_1}_{\mathbf{rr}}$ Besides four *idempotent* projectors $\mathbf{P}_{vx}^{E_1}$, and $\mathbf{P}_{xv}^{E_1}$ there arise two *nilpotent* projectors

Idempotent projector orthogonality... $(\mathbf{P}_i \ \mathbf{P}_j = \delta_{ij} \ \mathbf{P}_i = \mathbf{P}_j \ \mathbf{P}_i)$

Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra: $\mathbf{P}_{jk}^{\mu}\mathbf{P}_{mn}^{\nu} = \delta^{\mu\nu}\delta_{km}\mathbf{P}_{jn}^{\mu}$

<i>Weyl expansion of</i> g <i>in irep</i> $D^{\mu}_{jk}(g)\mathbf{P}^{\mu}_{jk}$	" g- е	"g-equals-1·g·1-trick"					
<i>Irreducible idempotent completeness</i> $1 = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{xx}^{E_1} + \mathbf{P}_{yy}^{E_1}$ <i>completeness</i> $1 = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{xx}^{E_1} + \mathbf{P}_{yy}^{E_1}$	letely	expo	ands	grou	p by	g =1	·g·1
$\mathbf{g} = 1 \cdot \mathbf{g} \cdot 1 = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu}(g) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}}(g) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}}(g) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{2}}$ For irreducible class idempotents sub-indices xx or yy are <u>optional</u> $+ D_{yx}^{E_{1}}(g) \mathbf{P}_{yx}^{E_{2}}(g) \mathbf{P}_{yx$	$\frac{E_1}{2} + D$ $\frac{E_1}{yx} + D$	$D_{xy}^{E_1}(g)$ $D_{yy}^{E_1}(g)$	$\left(\frac{1}{g} \right) \mathbf{P}_{xy}^{E_1}$		$ \begin{array}{c} Previo \\ PE_{1} = \\ 0202 \\ PE_{1} = \\ 1202 \end{array} $	$\begin{bmatrix} E_{1} \\ xx \\ PE_{1} \\ yx \end{bmatrix}$	tation: $\mathbf{P}_{0212}^{E_1} = \mathbf{P}_{xy}^{E_1}$ $\mathbf{P}_{1212}^{E_1} = \mathbf{P}_{yy}^{E_1}$
$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}$ For split idempotents sub-indices xx or yy are essential Besides four idempotent projectors $\mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{yy}^{E_{1}}$	$\frac{1}{2}\left(g\right)\mathbf{F}$ $\frac{1}{2}\left(g\right)\mathbf{F}$ $\frac{1}{2}\left(g\right)\mathbf{F}$ $\frac{1}{2}\left(g\right)\mathbf{F}$ $\frac{1}{2}\left(g\right)\mathbf{F}$	$P_{yx}^{E_1}$, $P_{yx}^{E_1}$, oup p impl	$\mathbf{P}_{xx}^{E_{1}}$ \mathbf{P}_{yy}^{E} <i>produ e pro</i>	• g • P • : • : • : • : • : • : • : • :	E ₁ =D yy E ₁ =L ble b or ma	$ \begin{aligned} P_{xy}^{E_1}(g) \\ P_{yy}^{E_1}(g) \\ oils of a constant and constant and a constant and a constant and a constant a$	$(\mathbf{p}_{xy}^{E_{1}}) \mathbf{P}_{yy}^{E_{1}}$ $(\mathbf{p}_{yy}^{E_{1}}) \mathbf{P}_{yy}^{E_{1}}$ $(\mathbf{p}_{yy}^{E_{1}})$ $(\mathbf{p}_$
there arise two <i>nilpotent</i> projectors $\mathbf{P}_{yx}^{L_1}$, and $\mathbf{P}_{xy}^{L_1}$		$\mathbf{P}_{xx}^{A_{\mathrm{l}}}$	$\mathbf{P}_{yy}^{A_2}$	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$
Idempotent projector orthogonality $(\mathbf{D} \ \mathbf{D} - \mathbf{S} \ \mathbf{D} - \mathbf{D} \ \mathbf{D})$	$\mathbf{P}_{xx}^{A_{1}}$	$\mathbf{P}_{xx}^{A_{l}}$	•	•	•	•	•
$\mathbf{r}_{i} \mathbf{r}_{j} - 0_{ij} \mathbf{r}_{i} - \mathbf{r}_{j} \mathbf{r}_{i}$	$\mathbf{P}_{yy}^{A_2}$	•	$\mathbf{P}_{yy}^{A_2}$	•	•	•	•
Generalizes to idempotent/nilpotent orthogonality	$\mathbf{P}_{\mathbf{xx}}^{E_1}$	•	•	$\mathbf{P}_{\mathbf{x}\mathbf{x}}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	•	
$\left(\mathbf{P}_{jk}^{\mu}\mathbf{P}_{mn}^{\nu}=\delta^{\mu\nu}\delta_{km}\mathbf{P}_{jn}^{\mu}\right)$	$\mathbf{P}_{yx}^{E_1}$	•	•	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$	•	•
	$\mathbf{P}_{xy}^{E_1}$	•	•	•	•	$\mathbf{P}_{\mathbf{xx}}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$
	$\mathbf{P}_{yy}^{E_1}$		•	•		$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$

Weyl expansion of g in irep $D^{\mu}_{jk}(g)\mathbf{P}^{\mu}_{jk}$			" g- е	equals-	1 ·g ·1-	trick"				
<i>Irreducible idempotent completeness</i> $1 = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{xx}^{E_1} + \mathbf{P}_{yy}^{E_1}$ <i>completely expands group by</i> $\mathbf{g} = 1 \cdot \mathbf{g} \cdot 1$										
$\mathbf{g} = 1 \cdot \mathbf{g} \cdot 1 = \sum_{\mu} \sum_{n} \sum_{n} D_{mn}^{\mu}(g) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}}(g) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}}(g) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}} + I$ For irreducible class idempotents sub-indices xx or yy are <u>optional</u> $+ D_{yx}^{E_{1}}(g) \mathbf{P}_{yx}^{E_{1}} + I$	$D_{xy}^{E_1}(g)$ $D_{yy}^{E_1}(g)$	$\left(\frac{1}{g} \right) \mathbf{P}_{xy}^{E_1}$	E_1	$ \begin{array}{c} Previo \\ PE_{1} = \\ 0202 \\ PE_{1} = \\ 1202 \end{array} $	$\begin{bmatrix} \mathbf{P}E_{1} \\ \mathbf{X}\mathbf{X} \\ \mathbf{P}E_{1} \\ \mathbf{Y}\mathbf{X} \end{bmatrix}$	tation: $P_{0212}^{E_1} = P_{xy}^{E_1}$ $P_{1212}^{E_1} = P_{yy}^{E_1}$				
$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{yx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{yx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{yx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{yx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{F}_{xx}^{E_{1}} = D$	$\mathbf{P}_{xx}^{E_1},$ $\mathbf{P}_{yx}^{E_1},$ $pup p$ simpl	\mathbf{P}_{xx}^{E} \mathbf{P}_{yy}^{E} produ e pro	$\begin{bmatrix} 1 & \mathbf{g} \cdot \mathbf{P} \end{bmatrix}$ $\begin{bmatrix} 1 & \mathbf{g} \cdot \mathbf{P} \end{bmatrix}$ $\begin{bmatrix} ct & ta \\ b \end{bmatrix}$	$E_1 = D$ $y_y = D$ $F_1 = L$ $ble b$ or ma	$P_{xy}^{E_1}(g)$ $P_{yy}^{E_1}(g)$ oils outrix of	$) \mathbf{P}_{xy}^{E_{1}}$ $(f) \mathbf{P}_{yy}^{E_{1}}$ $(f) \mathbf{P}_{yy}^{E_{1}}$ $(f) \mathbf{P}_{yy}^{E_{1}}$ $(f) \mathbf{P}_{yy}^{E_{1}}$ $(f) \mathbf{P}_{yy}^{E_{1}}$				
there arise two <i>nilpotent</i> projectors $\mathbf{P}_{yx}^{L_1}$, and $\mathbf{P}_{xy}^{L_1}$	$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{yy}^{A_2}$	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$				
Idempotent projector orthogonality $\mathbf{P} = \mathbf{P} = \mathbf{P} = \mathbf{P}$	$\mathbf{P}_{xx}^{A_1}$	•	•	•	•	•				
$\mathbf{F}_{i} \mathbf{F}_{j} - \mathbf{O}_{ij} \mathbf{F}_{i} - \mathbf{F}_{j} \mathbf{F}_{i}$ $\mathbf{P}_{yy}^{A_{2}}$	•	$\mathbf{P}_{yy}^{A_2}$	•	•	•	•				
Generalizes to idempotent/nilpotent orthogonality $\mathbf{P}_{xx}^{E_1}$		•	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	•					
$\mathbf{P}_{jk}^{\mu}\mathbf{P}_{mn}^{\nu} = \delta^{\mu\nu}\delta_{km}\mathbf{P}_{jn}^{\mu} \qquad \mathbf{P}_{yx}^{E_1}$	•	•	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$	•	•				
$\mathbf{P}_{xy}^{E_1}$		•	•	•	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$				
$\underbrace{Coefficients}_{\mathbf{g}=1} D^{\mu}_{mn}(g)_{\mathbf{r}^{1}} are irreducible representations (ireps) of \mathbf{g}_{\mathbf{i}_{2}} \qquad \mathbf{i}_{3} \mathbf{P}^{E_{1}}_{yy}$.	•	•		$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$				
$D^{A_{1}}(\mathbf{g}) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 \\ 1 & \begin{vmatrix} 1 & 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{vmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$										

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D**₃ **Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \sum \mathbf{P}^{\alpha}_{ij}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \sum D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}{}_{jk}(\mathbf{g})$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $\mathbf{P}^{\mu}{}_{jk}$ transformsleftand $\mathbf{P}^{\mu}{}_{jk}$ -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- $\mathbf{\bar{g}}$ matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(g\right) \mathbf{P}_{m'n'}^{\mu'}\right) \mathbf{P}_{mn}^{\mu}$$

Use
$$\mathbf{P}_{mn}^{\mu}$$
-orthonormality
 $\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \\ \sum_{m'} \sum_{n'}^{\ell^{\mu}} P_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} \\ = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{\delta}_{n'm}^{\mu'} \mathbf{P}_{m'n'}^{\mu} \\ \mathbf{\delta}_{n'm}^{\mu'} \mathbf{P}_{m'n'}^{\mu} \\ \mathbf{G}_{n'm}^{\mu'} \mathbf{P}_{m'n'}^{\mu'} \\ \mathbf{G}_{n'm}^{\mu'} \mathbf{G}_{n'm}^{\mu'} \mathbf{G}_{m'n'}^{\mu'} \\ \mathbf{G}_{n'm}^{\mu'} \mathbf{G}_{n'm}^{\mu'} \mathbf{G}_{m'n'}^{\mu'} \\ \mathbf{G}_{n'm}^{\mu'} \mathbf{G}_{n'm}^{\mu'} \mathbf{G}_{m'n'}^{\mu'} \\ \mathbf{G}_{n'm'}^{\mu'} \mathbf{G}_{m'n'}^{\mu'} \\ \mathbf{G}_{n'm'}^{\mu'} \mathbf{G}_{m'n'}^{\mu'} \\ \mathbf{G}_{n'm'}^{\mu'} \mathbf{G}_{m'n'}^{\mu'} \\ \mathbf{G}_{n'm'}^{\mu'} \\ \mathbf{G}_{m'n'}^{\mu'} \\ \mathbf{G}_{m'n'}^{\mu'$$

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

Left-action transforms irep-ket $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle}{norm}$.

$$\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}\right)\Big|_{m'n}^{\mu}\Big\rangle$$

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

Left-action transforms irep-ket $\mathbf{g} \Big|_{mn}^{\mu} \Big\rangle = \frac{\mathbf{g} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle}{norm}$.

$$\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(g\right)\Big|_{m'n}^{\mu}\Big\rangle$$

$$\left\langle \mu \atop m'n \middle| \mathbf{g} \middle| \mu \atop mn \right\rangle = D^{\mu}_{m'm}(\mathbf{g})$$

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n'}^{\mu} \\ = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm'}^{\mu'} \mathbf{P}_{m'n'}^{\mu} \mathbf{P}_{m'n'}^{\mu} \mathbf{P}_{m'n'}^{\mu} \\ = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$.

$$\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}\right)\Big|_{m'n}^{\mu}\Big\rangle$$

$$\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

$$\dots requires proper normalization: \left\langle \begin{array}{l} \mu'\\m'n' \end{array} \right| \left| \begin{array}{l} \mu\\mn \end{array} \right\rangle = \frac{\left\langle \mathbf{l} \right| \mathbf{P}_{n'm'}^{\mu'}}{norm.} \frac{\mathbf{P}_{mn}^{\mu} \left| \mathbf{l} \right\rangle}{norm^{*}.}$$
$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{l} \right| \mathbf{P}_{n'n}^{\mu'} \left| \mathbf{l} \right\rangle}{|norm.|^{2}}$$
$$= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu}$$
$$= \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$
$$= \sum_{m'}^{\ell^{\mu}} & D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$.

$$\mathbf{g}\Big| \begin{array}{c} \mu\\ mn \end{array} \Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g} \right) \Big| \begin{array}{c} \mu\\ m'n \end{array} \Big\rangle$$

$$\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

$$.requires proper normalization: \left\langle \begin{array}{l} \mu' \\ m'n' \end{array} \right| \left| \begin{array}{l} \mu \\ mn \end{array} \right\rangle = \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{n'm'}^{\mu'}}{norm.} \frac{\mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle}{norm*.}$$
$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{n'n}^{\mu'} \left| \mathbf{1} \right\rangle}{|norm.|^{2}}$$
$$|norm.|^{2} = \left\langle \mathbf{1} \right| \mathbf{P}_{nn}^{\mu} \left| \mathbf{1} \right\rangle = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

$$\begin{pmatrix} \text{Use } \mathbf{P}_{mn}^{\mu} \text{-orthonormality} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \end{pmatrix}$$

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D_3 Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}{}_{jk}(g)$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $\mathbf{P}^{\mu}{}_{jk}$ transformsleftand $\mathbf{P}^{\mu}{}_{jk}$ -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- $\mathbf{\bar{g}}$ matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \mathbf{P}_{mn}^{\mu}$$
$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$
$$= \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$.

$$\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}\right)\Big|_{m'n}^{\mu}\Big\rangle$$

$$\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

$$..requires proper normalization: \left\langle \substack{\mu'\\m'n'} \middle| \substack{\mu\\mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \frac{\mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm}^{*}.$$
$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu'} \middle| \mathbf{1} \right\rangle}{|norm.|^{2}}$$
$$|norm.|^{2} = \left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$

$$\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$$

$$\begin{pmatrix} \text{Use } \mathbf{P}_{mn}^{\mu} \text{-orthonormality} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu} \end{pmatrix}$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g} = \mathbf{P}_{mn}^{\mu} \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right)$$
$$= \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{nm'} \mathbf{P}_{mn'}^{\mu}$$
$$= \sum_{n'}^{\ell^{\mu}} D_{nn'}^{\mu}(g) \mathbf{P}_{mn'}^{\mu}$$

 $\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \ell^{\mu} & \ell^{\mu} \\ \sum_{\mu'} & \sum_{m'} & \sum_{n'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix}$

 $\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & e^{\mu} & e^{\mu} \\ \sum_{\mu'} & \sum_{n'} & \sum_{n'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix}$

$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{1}_{n'n} | \mathbf{1}_{n'} \rangle}{|norm.|^2}$$
$$= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$

 $\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & e^{\mu} & e^{\mu} \\ \sum_{\mu'} & \sum_{n'} & \sum_{n'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix}$

 $\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & e^{\mu} & e^{\mu} \\ \sum_{\mu'} & \sum_{n'} & \sum_{n'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix}$

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D**₃ **Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}{}_{jk}(\mathbf{g})$ and projectors $\mathbf{P}^{\mu}{}_{jk}$ $\mathbf{P}^{\mu}{}_{jk}$ transformsleftand $\mathbf{P}^{\mu}{}_{jk}$ -expansion in \mathbf{g} -operators: Inverse of Weyl form D_3 Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D_3 global- \mathbf{g} matrix structure versus D_3 local- \mathbf{g} matrix structureLocal vs global x-symmetry and y-antisymmetry D_3 tunneling band theory
Ortho-complete D_3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \quad \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$ $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\mathcal{G}} p_{mn}^{\mu}(\mathbf{g}) \, \mathbf{f} \cdot \mathbf{g}$$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in } \mathbf{g} \text{-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu} (g) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\mathbf{G}} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\mathbf{G}} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

 $\mathbf{P}^{\mu}{}_{jk} \text{ -expansion in } \mathbf{g}\text{-operators} \text{ Need inverse of Weyl form: } \mathbf{g} = \left(\sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{g}^{G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator \mathbf{f} in group $G = \{\mathbf{1}, \dots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \dots\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{g}^{G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{ , where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ $Trace R\left(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu'}\right) = \sum_{j}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) TraceR(\mathbf{h})$

 $\mathbf{P}^{\mu}{}_{jk} \text{ -expansion in } \mathbf{g}\text{-operators} \text{ Need inverse of Weyl form: } \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{g}^{G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator \mathbf{f} in group $G = \{\mathbf{1}, \dots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \dots\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{g}^{G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{h=1}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{ , where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ $Trace R\left(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu'}\right) = \sum_{h=1}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) TraceR(\mathbf{h}) = p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{1}) TraceR(\mathbf{1})$

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left[\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\mu} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right]$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{\mathbf{1}, \dots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \dots\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \quad \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{O}G$ $Trace R\left(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu'}\right) = \sum_{\mathbf{h}}^{O} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) TraceR(\mathbf{h}) = p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{1}) TraceR(\mathbf{1}) = p_{mn}^{\mu}(\mathbf{f}^{-1}) \circ G$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in g-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\mu'} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{F} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = ^{\circ}G$

Trace
$$R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ G}$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in g-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\mu'} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{g}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{F} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = ^{\circ}G$

Trace
$$R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ G}$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: $Trace R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in g-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{mn}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{a}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{b}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{\mathcal{C}} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$
$\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{mn}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{a}}^{G} p_{mn}^{\mu} (g) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{b}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{2C} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{k}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in g-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{mn}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{a}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{b}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{2C} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $=\frac{1}{\circ G}\sum_{m'm}^{\ell^{(\mu)}} D^{\mu}_{m'm} \left(\mathbf{f}^{-1}\right) Trace R\left(\mathbf{P}^{\mu}_{m'n}\right)$ $= D_{xx}^{A_1}(g) \mathbf{P}^{A_1} + D_{yy}^{A_2}(g) \mathbf{P}^{A_2} + D_{xx}^{E}(g) \mathbf{P}_{xx}^{E} + D_{xy}^{E}(g) \mathbf{P}_{xy}^{E} + D_{yx}^{E}(g) \mathbf{P}_{yx}^{E} + D_{yy}^{E}(g) \mathbf{P}_{yy}^{E}$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in g-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{mn}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{a}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{b}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{\mathcal{O}} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $= \frac{1}{2C} \sum_{m'm}^{\ell(\mu)} D^{\mu}_{m'm} (\mathbf{f}^{-1}) Trace R(\mathbf{P}^{\mu}_{m'n}) \qquad \text{Use: } Trace R(\mathbf{P}^{\mu}_{mn}) = \delta_{mn} \ell^{(\mu)}$ $\begin{array}{c} \overset{\cdots}{\mathbf{y}} \\ \mathcal{B} \\ \mathcal{D}_{xx}^{4}(g) \\ \mathcal{D}_{xx}^{4}(g) \\ \mathcal{D}_{xx}^{2}(g) \\ \mathcal{D}$

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left[\sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right]$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{mn}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{n=1}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{2C} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $= \frac{1}{2} \sum_{\mu' m'}^{\ell^{(\mu)}} D^{\mu}_{m'm} \left(\mathbf{f}^{-1} \right) Trace R \left(\mathbf{P}^{\mu}_{m'n} \right)$ Use: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ $=\frac{\ell^{(\mu)}}{2C}D_{nm}^{\mu}(\mathbf{f}^{-1})$

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left| \sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{mn}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{n=1}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{2} \operatorname{Trace} R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $= \frac{1}{2} \sum_{\mu' m'}^{\ell^{(\mu)}} D^{\mu}_{m'm} \left(\mathbf{f}^{-1} \right) Trace R \left(\mathbf{P}^{\mu}_{m'n} \right) \qquad \text{Use: } Trace R \left(\mathbf{P}^{\mu}_{mn} \right) = \delta_{mn} \ell^{(\mu)}$ $=\frac{\ell^{(\mu)}}{\Omega}D_{nm}^{\mu}(\mathbf{f}^{-1})$ $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{\mathbf{G}} \sum_{\mathbf{g}}^{\mathbf{G}} D_{nm}^{\mu} \left(g^{-1} \right) \mathbf{g}$

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \quad \mathbf{g} = \left| \sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{mn}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{n=1}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{2} \operatorname{Trace} R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $= \frac{1}{C} \sum_{m'm}^{\ell^{(\mu)}} D^{\mu}_{m'm} \left(\mathbf{f}^{-1} \right) Trace \ R\left(\mathbf{P}^{\mu}_{m'n} \right) \qquad \text{Use: } Trace \ R(\mathbf{P}^{\mu}_{mn}) = \delta_{mn} \ell^{(\mu)}$ $=\frac{\ell^{(\mu)}}{{}^{\circ}G}D_{nm}^{\mu}\left(\mathbf{f}^{-1}\right) \qquad \left(=\frac{\ell^{(\mu)}}{{}^{\circ}G}D_{mn}^{\mu*}\left(\mathbf{f}\right) \quad \text{for unitary } D_{nm}^{\mu}\right)$ $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ \mathbf{G}}{\circ \mathbf{G}} \sum_{\mathbf{g}}^{\mathbf{G}} D_{nm}^{\mu} \left(g^{-1} \right) \mathbf{g} \qquad \left[\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ \mathbf{G}}{\circ \mathbf{G}} \sum_{\mathbf{g}}^{\mathbf{G}} D_{mn}^{\mu^*} \left(g \right) \mathbf{g} \quad \text{for unitary } D_{nm}^{\mu} \right]$

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D**₃ **Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D_3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transformsleftand \mathbf{right} \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl form D_3 Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D_3 global- \mathbf{g} matrix structure versus D_3 local- \mathbf{g} matrix structureLocal vs global x-symmetry and y-antisymmetry D_3 tunneling band theory
Ortho-complete D_3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

Hamiltonian and D_3 global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ Hamiltonian and D₃ global-**g** and local-**g** group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ $\left| \mu_{mn}^{\mu} \right\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm}$ Hamiltonian and D₃ global-**g** and local-**g** group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ $\left| {}^{\mu}_{mn} \right\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ Hamiltonian and D₃ global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{g}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{g}^{\circ} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization: $\langle \overset{\mu'}{m'n'}|\overset{\mu}{mn}\rangle = \frac{\langle \mathbf{1}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{norm^{2}}$ Hamiltonian and D₃ global-**g** and local-**g** group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ $\left| {\substack{\mu \\ mn}} \right\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization: $\left\langle {\substack{\mu' \\ m'n'}} \right| {\substack{\mu \\ mn}} \right\rangle = \frac{\left\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \right\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} | \mathbf{1} \right\rangle}{norm^{2}}$ Hamiltonian and D₃ global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{g}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{g}^{^{\circ}G} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization: $\langle \overset{\mu'}{m'n'}|\overset{\mu}{mn}\rangle = \frac{\langle \mathbf{1}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\frac{\langle \mathbf{1}|\mathbf{P}_{n'n}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1}|\mathbf{P}_{nn}^{\mu}|\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}}$ Hamiltonian and D₃ global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{g}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ $|\overset{\mu}{_{mn}}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{_{norm}} = \frac{\ell^{(\mu)}}{^{\circ}G \cdot norm} \sum_{g}^{\circ} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization: $\langle \overset{\mu'}{_{m'n'}}|\overset{\mu}{_{mn}}\rangle = \frac{\langle \mathbf{1}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{_{norm}^{2}} = \delta^{\mu'\mu}\delta_{m'm}\frac{\langle \mathbf{1}|\mathbf{P}_{n'n}^{\mu}|\mathbf{1}\rangle}{_{norm}^{2}} = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1}|\mathbf{P}_{nn}^{\mu}|\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}}$

Left-action of global **g** on irep-ket $\begin{vmatrix} \mu \\ mn \end{vmatrix}$ $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} (g) \begin{vmatrix} \mu \\ m'n \end{vmatrix}$ Hamiltonian and D₃ global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{g}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}} \operatorname{acting on original ket} |\mathbf{1}\rangle$ $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G} norm \sum_{g}^{\circ G} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization: $\langle \overset{\mu'}{mn'} | \overset{\mu}{mn}\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} |\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}}$

Left-action of global **g** on irep-ket
$$\begin{vmatrix} \mu \\ mn \end{vmatrix}$$

 $\mathbf{g} \begin{vmatrix} \mu \\ mn \end{vmatrix} = \sum_{m'}^{\ell^{\mu}} D^{\mu}_{m'm}(\mathbf{g}) \begin{vmatrix} \mu \\ m'n \end{vmatrix}$

Matrix is same as given on p.23-28

$$\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$$

Hamiltonian and D_3 global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{g}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{*}}$ acting on original ket $|\mathbf{1}\rangle$ $\begin{pmatrix} \mu \\ mn \end{pmatrix} = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} : norm} \sum_{g}^{G} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization: $\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{n \circ m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{n \circ m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$ *Left-action of global* **g** *on irep-ket* $\begin{pmatrix} \mu \\ mn \end{pmatrix}$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left| \begin{smallmatrix} \mu \\ mn \end{smallmatrix} \right\rangle$ is quite different $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{n'}^{\ell^{\mu}} D_{m'm}^{\mu} (\mathbf{g})\Big|_{m'n}^{\mu}\Big\rangle$ $\overline{\mathbf{g}} \Big|_{mn}^{\mu} \Big\rangle = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{\overline{g}} | \mathbf{1} \rangle \sqrt{\frac{\mathbf{G}}{\mathbf{g}(\mu)}} \xrightarrow{Mock-Mach}{commutation}$ *Matrix is same as given on p.23-28* $\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$

Hamiltonian and D_3 global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{a}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{*}}$ acting on original ket $|\mathbf{1}\rangle$ $\begin{pmatrix} \mu \\ mn \end{pmatrix} = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} : norm} \sum_{g} D_{mn}^{\mu} (g) |\mathbf{g}\rangle$ subject to normalization: $\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{n \circ m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{n \circ m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$ *Left-action of global* **g** *on irep-ket* $\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left| \begin{smallmatrix} \mu \\ mn \end{smallmatrix} \right\rangle$ is quite different $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{n'}^{\ell^{\mu}} D_{m'm}^{\mu} (\mathbf{g})\Big|_{m'n}^{\mu}\Big\rangle$ $\overline{\mathbf{g}} \Big|_{mn}^{\mu} \Big\rangle = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{\mathbf{G}}{\mathbf{e}^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{\overline{g}} |\mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \xrightarrow{Mock-Mach}{commutation}$ *Matrix is same as given on p.23-28* $\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$ $= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} |\mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\mathbf{g}^{(\mu)}}} \stackrel{inverse}{\leftarrow}$

Hamiltonian and D_3 global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{*}}$ acting on original ket $|\mathbf{1}\rangle$ $\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{g}^{G} D_{mn}^{\mu^{*}}(g) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$ $\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{n \sigma m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{n \sigma m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$ Left-action of global **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ Left-action of local **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ is quite different $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{n'}^{\ell^{\mu}} D_{m'm}^{\mu} (\mathbf{g})\Big|_{m'n}^{\mu}\Big\rangle$ $\overline{\mathbf{g}} \Big|_{mn}^{\mu} \Big\rangle = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$ $\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D_{m'm}^{\mu} \left(\mathbf{g} \right)$ $= \mathbf{P}_{mn}^{\mu} \mathbf{g} \left| \mathbf{1} \right\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{g} \left| \mathbf{1} \right\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \left| \mathbf{1} \right\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \left| \mathbf{1} \right\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} \left| \mathbf{1} \right\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$

Hamiltonian and D_3 global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{G} \sum_{a}^{b} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{+}}$ acting on original ket $|\mathbf{1}\rangle$ $\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{a}^{b} D_{mn}^{\mu^{*}}(g) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$ $\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{n \sigma m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{n \sigma m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$ Left-action of global **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ Left-action of local **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ is quite different $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{n'}^{\ell^{\mu}} D_{m'm}^{\mu} (\mathbf{g})\Big|_{m'n}^{\mu}\Big\rangle$ $\overline{\mathbf{g}} \Big| {}^{\mu}_{mn} \Big\rangle = \overline{\mathbf{g}} \mathbf{P}^{\mu}_{mn} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \overline{\mathbf{g}} |\mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \xrightarrow{Mock-Mach}{commutation}$ *Matrix is same as given on p.23-28* $= \mathbf{P}_{mn}^{\mu} \mathbf{\overline{g}} |\mathbf{1}\rangle \sqrt{\frac{\sigma}{\ell^{(\mu)}}} = \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{m'=1}^{\ell^{\mu}} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{m'n'}^{\mu} D_{m'n'}^{\mu} (g^{-1}) = \mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} |\mathbf{1}\rangle \sqrt{\frac{\sigma}{\ell^{(\mu)}}} = \sum_{m'=1}^{\ell^{\mu}} \mathbf{P}_{mn'}^{\mu} D_{nn'}^{\mu} (g^{-1})$ $\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$

Hamiltonian and D_3 global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{G} \sum_{a}^{b} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{+}}$ acting on original ket $|\mathbf{1}\rangle$ $\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{a}^{G} D_{mn}^{\mu^{*}}(g) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$ $\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{n \circ m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{n \circ m^{2}} = \delta^{\mu' \mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$ Left-action of global **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ Left-action of local **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ is quite different $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{n'}^{\ell^{\mu}} D_{m'm}^{\mu} (\mathbf{g})\Big|_{m'n}^{\mu}\Big\rangle$ $\overline{\mathbf{g}} \Big|_{mn}^{\mu} \Big\rangle = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{\mathbf{G}}{\mathbf{e}^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{\overline{g}} |\mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \xrightarrow{Mock-Mach}{commutation}$ *Matrix is same as given on p.23-28* $\mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{n'=1}^{\ell^{\mu}} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{m'n'}^{\mu} D_{m'n'}^{\mu} (g^{-1})$ $= \sum_{m'=1}^{\ell^{\mu}} \sum_{mn'}^{\ell^{\mu}} \mathbf{P}_{mn'}^{\mu} D_{mn'}^{\mu} (g^{-1})$ $= \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) \mathbf{P}_{mn'}^{\mu} |\mathbf{1}\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$ $\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm}(\mathbf{g})$

Hamiltonian and D_3 global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{G} \sum_{a}^{b} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{+}}$ acting on original ket $|\mathbf{1}\rangle$ $\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{a}^{G} D_{mn}^{\mu^{*}}(g) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$ $\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{2} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{2} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\mathbf{C}}}$ Left-action of global **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ Left-action of local **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ is quite different $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{n'}^{\ell^{\mu}} D_{m'm}^{\mu} (\mathbf{g})\Big|_{m'n}^{\mu}\Big\rangle$ $\overline{\mathbf{g}} \Big|_{mn}^{\mu} \Big\rangle = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{\mathbf{G}}{\mathbf{e}^{(\mu)}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{\overline{g}} |\mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \xrightarrow{Mock-Mach}{commutation}$ *Matrix is same as given on p.23-28* $\frac{23-28}{P_{mn}^{\mu}\mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{n'=1}^{\ell^{\mu}} P_{mn}^{\mu} P_{m'n'}^{\mu} D_{m'n'}^{\mu} (g^{-1})}_{m'' = \sum_{m'=1}^{\ell^{\mu}} \sum_{m''}^{\ell^{\mu}} P_{mn'}^{\mu} D_{mn'}^{\mu} (g^{-1})} = \sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) P_{mn'}^{\mu} |\mathbf{1}\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}} = \sum_{m'=1}^{\ell^{\mu}} D_{nn'}^{\mu} (g^{-1}) P_{mn'}^{\mu} |\mathbf{1}\rangle \sqrt{\frac{\circ G}{\ell^{(\mu)}}}$ $\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm}(\mathbf{g})$ $=\sum_{n'=1}^{\ell^{\mu}} D_{nn'}^{\mu}(g^{-1})\Big|_{mn'}^{\mu}\Big\rangle$

Hamiltonian and D_3 global-g and local- \overline{g} group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis For unitary $D^{(\mu)}$: (p.33) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{G} \sum_{\alpha}^{G} D_{mn}^{\mu^*}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^*}$ acting on original ket $|\mathbf{1}\rangle$ $\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{\alpha}^{G} D_{mn}^{\mu^{*}}(g) \left| \mathbf{g} \right\rangle \quad subject \ to \ normalization:$ $\left\langle \mu'_{m'n'} \middle| \mu_{mn} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{2} = \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu} \middle| \mathbf{1} \right\rangle}{2} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad \text{where: } norm = \sqrt{\left\langle \mathbf{1} \middle| \mathbf{P}_{nn}^{\mu} \middle| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\mathbf{C}}}$ Left-action of global **g** on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\Big|_{mn}^{\mu}\Big\rangle$ is quite different $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{n'}^{\ell^{\mu}} D_{m'm}^{\mu} (\mathbf{g})\Big|_{m'n}^{\mu}\Big\rangle$ $\overline{\mathbf{g}} \Big|_{mn}^{\mu} \Big\rangle = \overline{\mathbf{g}} \mathbf{P}_{mn}^{\mu} \Big| \mathbf{1} \Big\rangle \sqrt{\frac{\mathbf{G}}{\mathbf{g}}}$ $= \mathbf{P}_{mn}^{\mu} \mathbf{\overline{g}} |\mathbf{1}\rangle \sqrt{\frac{\mathbf{G}}{\ell^{(\mu)}}} \overset{Mock-Mach}{\underline{\leftarrow} commutation}$ Matrix is same as given on p.23-28 $= \mathbf{r}_{mn} \mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{\mu}} \sum_{\substack{m'=1 \\ m'=1 \\ m'=1 \\ m''=1 \\ m''}}^{\ell^{\mu}} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{m'n'}^{\mu} D_{m'n'}^{\mu} (g^{-1}) = \sum_{\substack{\ell^{\mu} \\ \ell^{\mu} \\ m''=1 \\ m''}}^{\ell^{\mu}} \mathbf{P}_{mn'}^{\mu} D_{nn'}^{\mu} (g^{-1}) = \sum_{\substack{n'=1 \\ n'=1 \\ m''=1 \\ m''=1 \\ m'''=1 \\ m''$ $\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm}(\mathbf{g})$ $=\sum_{i=1}^{\ell^{\mu}} D_{nn'}^{\mu}(g^{-1}) \Big|_{mn'}^{\mu} \Big\rangle$ Local **g**-matrix component

$$\left\langle \mu_{mn'} \middle| \overline{\mathbf{g}} \middle| \mu_{mn} \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu^*}(g)$$

Hamiltonian and D₃ global-**g** and local-**ğ** group matrices in
$$|\mathbf{P}^{(\mu)}\rangle$$
-basis
For unitary $D^{(\mu)}$: (p.33)
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ G}{\circ G} \sum_{g} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{*}} acting on original ket |\mathbf{1}\rangle$
 $\begin{vmatrix} \mu \\ mn \end{pmatrix} = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\circ G \cdot norm} \sum_{g} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization:
 $\langle \mu'_{m'n'} | \mu \\ mn \rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}}$
Left-action of global **g** on irep-ket $| \mu_{mn} \rangle$ Left-action of local **\bar{g** on irep-ket $| \mu_{mn} \rangle$ is quite different
 $\mathbf{g} | \mu_{mn} \rangle = \frac{g}{m} \mathcal{P}_{m'm}^{\mu}(g) | \mu'_{m'n} \rangle$
Matrix is same as given on p.23-28
 $\langle \mu_{m'n}^{\mu} | \mathbf{g} | \mu_{mn} \rangle = D_{m'm}^{\mu}(g)$
 $\mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} = \sum_{m'=1}^{\ell^{(\mu)}} \mathcal{P}_{mn'}^{\mu} D_{m'n'}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{\ell^{(\mu)}} \mathcal{P}_{mn'}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{\ell^{(\mu)}} \mathcal{P}_{mn'}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{\ell^{(\mu)}} \mathcal{P}_{mn'}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{\ell^{(\mu)}} \mathcal{P}_{mn'}^{\mu}(g^{-1}) | \mu_{mn'} \rangle$
Global g-matrix component
Local **\bar{g**-matrix component

$$\left\langle \mu_{m'n} \middle| \mathbf{g} \middle| \mu_{mn} \right\rangle = D^{\mu}_{m'm} \left(g \right)$$

$$\left\langle \mu_{mn'} \middle| \overline{\mathbf{g}} \middle| \mu_{mn} \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu^*}(g)$$

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of D_3 Center (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D_3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transformsleftandright \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl form D_3 Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D_3 global- \mathbf{g} matrix structure versus D_3 local- $\mathbf{\bar{g}}$ matrix structureLocal vs global x-symmetry and y-antisymmetry D_3 tunneling band theory
Ortho-complete D_3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

 $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global-**g** matrix structure versus D₃ local- $\overline{\mathbf{g}}$ matrix structure

1	$R^{P}(\mathbf{g}) = TR^{G}(\mathbf{g})T^{\dagger} =$											
	$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$						
	$D^{A_{\mathbf{l}}}(\mathbf{g})$			•		•						
	•	$D^{A_2}(\mathbf{g})$	•	•	•	•	$ \mathbf{P}^{(\mu)}\rangle$ -base					
			$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$			ordering to					
			$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$			$\leftarrow \frac{concentrate}{alobal - \mathbf{g}}$					
		•			$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$	D-matrices					
	•				$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$						

Global g-matrix component

 $\left\langle \begin{array}{c} \mu \\ m'n \end{array} | \mathbf{g} \right| \begin{array}{c} \mu \\ mn \end{array} \right\rangle$ $\rangle = D^{\mu}_{m'm}(g)$

Local **g***-matrix component*

 $\left\langle \mu_{mn'} \middle| \overline{\mathbf{g}} \middle| \mu_{mn} \right\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu^*}(g)$

 $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global-**g** matrix structure versus D₃ local- $\overline{\mathbf{g}}$ matrix structure

Ì	$R^{P}(\mathbf{g}) = TR^{G}(\mathbf{g})T^{\dagger} =$								$R^{P}(\overline{\mathbf{g}}) = TR^{G}(\overline{\mathbf{g}})T^{\dagger} =$					
	$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left.\mathbf{P}_{yy}^{E_1}\right\rangle$		$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{y\mathbf{x}}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$	
	$D^{A_1}(\mathbf{g})$			•		•		$\left(D^{A_{l}*}(\mathbf{g}) \right)$			•	•]	
		$D^{A_2}(\mathbf{g})$					$ \mathbf{P}^{(\mu)}\rangle$ -base		$D^{A_2^*}(\mathbf{g})$			•		
			$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$			ordering to			$D_{xx}^{E_1^*}(\mathbf{g})$	•	$D_{xy}^{E_1^*}(\mathbf{g})$		
			$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$			$\leftarrow \frac{concentrate}{\sigma lobal - \sigma}$				$D_{xx}^{E_1^*}(\mathbf{g})$	•	$D_{xy}^{E_1^*}(\mathbf{g})$	
					$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$	D-matrices			$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$		
					$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$					$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$	
	`						·			1				

here Local g-matrix is not concentrated

Global g-matrix component

 $\begin{pmatrix} \mu \\ m'n \end{pmatrix} \mathbf{g} \begin{pmatrix} \mu \\ mn \end{pmatrix} = D^{\mu}_{m'm} (g)$

Local **g***-matrix component*

 $\left\langle \begin{array}{c} \mu\\ mn' \end{array} \middle| \overline{\mathbf{g}} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{nn'}(g^{-1}) = D^{\mu*}_{n'n}(g)$

\rangle -bas	is D_3	glob	al-g	matr	ix st	ructure versu	ıs D3 le	ocal-	matri	ix stru	cture		
$R^P(\mathbf{g}) = TR$	$R^G(\mathbf{g})T^{\dagger} =$	=					$R^P(\overline{\mathbf{g}}) = TR$	$\mathbf{g}^{G}(\overline{\mathbf{g}})T^{\dagger} =$					
$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$		$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{y\mathbf{x}}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$	
$\int D^{A_1}(\mathbf{g})$	•		•		•		$\left(D^{A_{l}*}(\mathbf{g}) \right)$			•	•	•	
	$D^{A_2}(\mathbf{g})$		•			$ \mathbf{P}^{(\mu)}\rangle$ -base		$D^{A_2^*}(\mathbf{g})$					
		$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$			ordering to			$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$		
		$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$			<i>concentrate</i>				$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$	
	•			$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$	D-matrices			$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$		
				$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$					$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$	
$\overline{D}P()$ \overline{T}	$G() = \hat{T}$			\checkmark					1				
$\left \mathbf{P}_{xx}^{A_{1}} \right\rangle$	$\left \mathbf{P}_{yy}^{A_2} \right\rangle$	$\left \mathbf{P}_{xx}^{E_1} \right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$			Local	here g -mati	rix			
$D^{A_1}(\mathbf{g})$ · · ·				.	•		is not concentrated						
	$D^{A_2}(\mathbf{g})$												
		$D_{xx}^{E_1}(\mathbf{g})$) .	$D_{xy}^{E_1}(\mathbf{g})$) .	he	re						
· · · 1			$D_{xx}^{E_1}$		$D_{xy}^{E_1}$	global g -n ← is not con	-matrix ncentrated						
		$D_{yx}^{E_1}(\mathbf{g})$) .	$D_{yy}^{E_1}(\mathbf{g})$) .								
			$D_{yx}^{E_1}$		$D_{yy}^{E_1}$								
bal g-n	natrix o	compo	onent				Lo	cal g -n	natrix co	ompone	nt		

 $\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$

 $\left\langle {}^{\mu}_{mn'} \left| \overline{\mathbf{g}} \right| {}^{\mu}_{mn} \right\rangle = D^{\mu}_{nn'}(g^{-1}) = D^{\mu^*}_{n'n}(g)$

 $|\mathbf{P}^{(\mu)}\rangle$ -basis D₃ global-g matrix structure versus D₃ local- $\overline{\mathbf{g}}$ matrix structure $R^{P}(\overline{\mathbf{g}}) = TR^{G}(\overline{\mathbf{g}})T^{\dagger} =$ $R^{P}(\mathbf{g}) = TR^{G}(\mathbf{g})T^{\dagger} =$ $\left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle$ $\left|\mathbf{P}_{yy}^{A_2}\right\rangle$ $\left|\mathbf{P}_{x\mathbf{x}}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{y\mathbf{x}}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{xy}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle$ $\left|\mathbf{P}_{\mathbf{x}\mathbf{x}}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{yx}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{xy}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{yy}^{A_2}\right\rangle$ $D^{A_1}^*(\mathbf{g})$ $D^{A_{l}}(\mathbf{g})$ $\overline{D^{A_2}}^*(\mathbf{g})$ $D^{A_2}(\mathbf{g})$ $|\mathbf{P}^{(\mu)}\rangle$ -base $D_{xx}^{E_1^*}(\mathbf{g})$ $D_{xy}^{E_1^*}(\mathbf{g})$ $D_{xx}^{E_1}(\mathbf{g})$ $D_{xy}^{E_1}$ ordering to $D_{xx}^{E_1^*}$ $D_{xy}^{E_1*}(\mathbf{g})$ $D_{yx}^{E_1}(\mathbf{g})$ concentrate E_1 D_{yy} (\mathbf{g}) global-g $D_{yy}^{E_1^*}(\mathbf{g})$ $D_{yx}^{E_1^*}(\mathbf{g})$ $D_{xx}^{E_1}(\mathbf{g})$ E_1 D_{xy} *D*-matrices $D_{yy}^{E_1}$ $D_{yx}^{E_1^*}$ $D_{yy}^{E_1^*}(\mathbf{g})$ $D_{yx}^{E_1}(\mathbf{g})$ (\mathbf{g}) $\overline{R}^{P}(\mathbf{g}) = \overline{T}R^{G}(\mathbf{g})\overline{T}^{\dagger} =$ $\overline{R}^{P}(\overline{\mathbf{g}}) = \overline{T}R^{G}(\overline{\mathbf{g}})\overline{T}^{\dagger} =$ $\left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$ $|\mathbf{P}_{x\mathbf{x}}^{E_1}\rangle$ $\mathbf{P}_{xy}^{E_1}$ $\mathbf{P}_{y\mathbf{x}}^{E_1}$ $\mathbf{P}_{\mathbf{x}\mathbf{x}}^{E_1}$ $\mathbf{P}_{yx}^{E_1}$ $\left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$ $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle$ $\mathbf{P}_{xy}^{E_1}$ $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle$ $\left|\mathbf{P}_{yy}^{A_2}\right\rangle$ $\mathbf{P}_{yy}^{A_2}$ $D^{A_1}^*(\mathbf{g})$ $D^{A_{l}}(\mathbf{g})$ $|\mathbf{P}^{(\mu)}\rangle$ -base $\overline{D^{A_2}}^*(\mathbf{g})$ $D^{A_2}(\mathbf{g})$ ordering to $\overline{D_{xx}^{E_1^*}}$ $\overline{D_{xy}^{E_1^*}}$ $D_{xx}^{E_1}(\mathbf{g})$ $D_{xy}^{E_1}(\mathbf{g})$ (\mathbf{g}) (\mathbf{g}) . concentrate, $D_{yx}^{E_1^*}$ $D_{xy}^{E_1}$ $D_{yy}^{E_1^*}(\mathbf{g})$ $D_{xx}^{E_1}$ local- $\overline{\mathbf{g}}$ (\mathbf{g}) **D**-matrices $\overline{D_{xy}^{E_1}}^*$ $\overline{D_{xx}^{E_1}}^*$ $D_{yx}^{E_1}(\mathbf{g})$ $D_{yy}^{E_1}(\mathbf{g})$ (\mathbf{g}) (\mathbf{g}) • and $D_{yx}^{E_1^*}$ $D_{yy}^{E_1^*}$ $D_{yx}^{E_1}$ $D_{yy}^{E_1}$ **H**-matrices (\mathbf{g}) (\mathbf{g}) Global g-matrix component *Local* **g**-*matrix component* $D^{\mu}_{m'm}(g)$ $\rangle = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu^*}(g)$ μ $\begin{bmatrix} \mu \\ mn' \end{bmatrix} \overline{\mathbf{g}} \begin{bmatrix} \mu \\ mn \end{bmatrix}$ $\begin{array}{c|c} \mu \\ m'n \end{array} \mathbf{g} \begin{array}{c} \mu \\ mn \end{array}$

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D_3 Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transformsleftandright \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- $\mathbf{\bar{g}}$ matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

H matrix in $|\mathbf{P}^{(\mu)}\rangle$ -basis:

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

 $(\mathbf{H})_{P} =$

 $H_{ab}^{\alpha} = \left\langle \mathsf{P}_{ma}^{\mu} \right| \mathsf{H} \left| \mathsf{P}_{nb}^{\mu} \right\rangle$

$$\left| \mathbf{P}_{xx}^{A_{1}} \right\rangle \left| \mathbf{P}_{yy}^{A_{2}} \right\rangle \left| \mathbf{P}_{xx}^{E_{1}} \right\rangle \left| \mathbf{P}_{yy}^{E_{1}} \right\rangle \left| \mathbf{P}_{yy}^{E_{1}} \right\rangle \left| \mathbf{P}_{yy}^{E_{1}} \right\rangle \right| \mathbf{P}_{yy}^{E_{1}} \right\rangle$$

$$\left| \mathbf{H} \text{ matrix in} \right| \left| \mathbf{P}^{(\mu)} \right\rangle \text{-basis:}$$

$$\left(\mathbf{H} \right)_{P} = \overline{T} \left(\mathbf{H} \right)_{G} \overline{T}^{\dagger} = \left(\begin{array}{c|c} \frac{H^{A_{1}}}{\cdot} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}} & H^{E_{1}}_{xy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} & H^{E_{1}}_{yy} \end{array} \right)$$

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

H matrix in $|\mathbf{P}^{(\mu)}\rangle$ -basis:

$$\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$$

	$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{xx}^{E_1}\right $	$\left \mathbf{P}_{xy}^{E_1}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$
	$\left(H^{A_{l}} \right)$			•	•	•
	•	H^{A_2}	•	•	•	•
	•	•	$H_{_{XX}}^{^{E_1}}$	$H_{_{xy}}^{^{\scriptscriptstyle E_1}}$	•	•
_			$H_{yx}^{E_1}$	$H_{_{yy}}^{^{E_1}}$	•	•
				•	$H_{_{XX}}^{^{E_1}}$	$H_{_{xy}}^{^{E_1}}$
		•	•	•	$H_{_{\mathcal{Y}\!x}}^{^{E_1}}$	$H_{_{yy}}^{^{E_1}}$

 $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle$

$$Let: \left| \begin{array}{l} \mu \\ mn \end{array} \right\rangle = \left| \mathbf{P}_{mn}^{\mu} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} \\ \left| \begin{array}{l} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\circ G \cdot norm} \sum_{\mathbf{g}}^{\circ G} D_{mn}^{\mu^{*}}(g) \left| \mathbf{g} \right\rangle \\ subject to normalization (from p. 116-122): \\ norm = \sqrt{\left\langle \mathbf{1} \right| \mathbf{P}_{nn}^{\mu} \left| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}} \quad (which will cancel out) \\ So, fuggettabout it! \end{cases}$$

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle$$

$$\underbrace{Projector\ conjugation\ p.31}_{\left(\left| m \right\rangle \left\langle n \right| \right)^{\dagger}} = \left| n \right\rangle \left\langle m \right|$$

$$\left(\mathbf{P}_{mn}^{\mu} \right)^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

$$\binom{\mu}{mn} = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{{}^{\circ}G} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$$

subject to normalization (from p. 116-122):

$$norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}} \quad (which will cancel out)$$

So, fuggettabout it!

 $\mathbf{P}_{xx}^{A_1}$ $\left| \mathbf{P}_{xx}^{E_1} \right\rangle \left| \mathbf{P}_{xy}^{E_1} \right\rangle$ $\left|\mathbf{P}_{yx}^{E_{1}}\right\rangle$ $\mathbf{P}_{yy}^{E_1}$ $\left|\mathbf{P}_{yy}^{A_{2}}\right\rangle$ H matrix in H^{A_1} $|\mathbf{P}^{(\mu)}\rangle$ -basis: H^{A_2} $H_{xx}^{E_1}$ $H_{xy}^{E_1}$ $\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$ $H_{yx}^{E_1}$ $H_{yy}^{E_1}$ $egin{array}{c} H^{^{E_1}}_{xx}\ H^{^{E_1}}_{yx} \end{array}$ $H^{^{E_1}}_{_{xy}}
onumber \ H^{^{E_1}}_{_{yy}}$ · · • •

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle$$

$$Mock-Mach$$

$$commutation$$

$$\mathbf{\Gamma} \mathbf{\Gamma} = \mathbf{\Gamma} \mathbf{\Gamma}$$

$$(p.89)$$

$$\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) \left| \mathbf{g} \right\rangle$$

subject to normalization (from p. 116-122):

 $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}} \quad (which will cancel out)$ So, fuggettabout it!

 $\mathbf{P}_{yx}^{E_1}$ $\left| \mathbf{P}_{xx}^{E_1} \right\rangle \left| \mathbf{P}_{xy}^{E_1} \right\rangle$ $|\mathbf{P}_{yy}^{E_1}\rangle$ $\mathbf{P}_{xx}^{A_1}$ $\left|\mathbf{P}_{yy}^{A_{2}}\right\rangle$ H matrix in H^{A_1} $|\mathbf{P}^{(\mu)}\rangle$ -basis: H^{A_2} $H_{xx}^{E_1}$ $H_{xy}^{E_1}$ $\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$ $H_{yx}^{E_1}$ $H_{_{yy}}^{^{E_1}}$ • •

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D_3 Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transformsleftandright \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- \mathbf{g} matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$D_3 \Pi a millor$	llan	100	cai-	- П		iirio	$ces in \mathbf{P}^{(\mu)}\rangle$ -Dasis	$\left \mathbf{P}_{xx}^{\mathcal{A}_{l}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$
H matrix in	r_0	r_{2}	r_1	i_1	i_{2}	i_2	H matrix in	$H^{A_{l}}$		•	.		
$ \mathbf{g}\rangle$ -basis:	r_1	r_0	r_1	i_2	\dot{i}_1	i_2	$ \mathbf{P}^{(\mu)}\rangle$ -basis:		H^{A_2}	•	•	•	•
$(\mathbf{H}) \qquad \overset{o}{\Sigma} =$	r_2	r ₁	r_0	i ₂	i i ₃	<i>i</i> ₁			•	$H_{xx}^{E_1}$	$H_{xy}^{E_1}$	•	
$\left(\mathbf{H}\right)_{G} = \sum_{g=1}^{L} r_{g} \mathbf{g} =$	i _i	i ₃	i ₂	r_0	r_l	r_2	$\mathbf{H}_{P} = \overline{T} \left(\mathbf{H}_{G} \overline{T}^{\dagger} = \right)$		•	$H_{_{yx}}^{^{E_1}}$	$H_{_{yy}}^{^{E_1}}$	•	
	<i>i</i> ₂	<i>i</i> ₁	<i>i</i> ₃	r_2	r_0	r_l		•	•	•	•	$H_{_{XX}}^{^{E_1}}$	$H_{_{xy}}^{^{E_1}}$
	i ₃	i_2	i ₁	r_1	r_2	r_0) ``	•		•	•	$H_{_{yx}}^{^{E_1}}$	$H^{^{E_1}}_{_{yy}}$
$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left \mathbf{H} \right \mathbf{P}_{nb}^{\mu} \right\rangle = \frac{\left\langle 1 \right \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \left 1 \right\rangle}{(norm)^{2}} = \left\langle 1 \left \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \left\langle 1 \left \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \delta_{mn} \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \right 1 \right\rangle = \sum_{g=1}^{\circ G} \left\langle 1 \left \mathbf{H} \right \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}} \left(g \right) = \sum_{g=1}^{\circ G} r_{g} D_{ab}^{\alpha^{*}} \left(g \right)$													
$H^{A_{1}} = r_{0}D^{A_{1}^{*}}(1) + r_{1}D^{A_{1}^{*}}(r^{1}) + r_{1}^{*}D^{A_{1}^{*}}(r^{2}) + i_{1}D^{A_{1}^{*}}(i_{1}) + i_{2}D^{A_{1}^{*}}(i_{2}) + i_{3}D^{A_{1}^{*}}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$													
$H^{A_2} = r_0 D^{A_2^*}(1) + r_1 D^{A_2^*}(r^1) + r_1^* D^{A_2^*}(r^2) + i_1 D^{A_2^*}(i_1) + i_2 D^{A_2^*}(i_2) + i_3 D^{A_2^*}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$													
$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) +$	$r_1 D_{xx}^{E^*}$	(r^{1})	$+r_{1}^{*}$	$D_{xx}^{E^*}$	(r^2)	$+i_1D$	$D_{xx}^{E^{*}}(i_{1}) + i_{2}D_{xx}^{E^{*}}(i_{2}) + i_{3}D_{xx}^{E^{*}}(i_{3}) = (2$	$2r_0 - r_1 - r_1$	*- <i>i</i> ₁ - <i>i</i> ₂ -	$+2i_{3})/2$, ,		
$H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) +$	$r_1 D_{xy}^{E^*}$	(r^{1})	$+r_{1}^{*}$	$D_{xy}^{E^*}$	(r^2)	$+i_1D$	$D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{2}$	$\overline{3}(-r_1+r_2)$	$r_1^* - i_1 + i_1$	(2)/2 = 1	$H_{yx}^{E^*}$		
$H_{yy}^{E_1} = r_0 D_{yy}^{E^*}(1) +$	$r_1 D_{yy}^{E^*}$	(r^{1})	$+r_{1}^{*}$	$D_{yy}^{E^*}$	(r^2)	$+i_1D$	$D_{yy}^{E^{*}}(i_{1}) + i_{2}D_{yy}^{E^{*}}(i_{2}) + i_{3}D_{yy}^{E^{*}}(i_{3}) = (2$	$2r_0 - r_1 - r_1$	$+i_1+i_2$	$(2-2i_3)/2$	2		
$\begin{pmatrix} H_{xx}^{E_{1}} & H_{xy}^{E_{1}} \\ H_{yx}^{E_{1}} & H_{yy}^{E_{1}} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3} & \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2}) \\ \sqrt{3}(-r_{1}^{*}+r_{1}-i_{1}+i_{2}) & 2r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2i_{3} \end{pmatrix}$													

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$\begin{aligned} D_{3} Hamiltonian \ local- \mathbf{H} \ matrix in \\ |\mathbf{g}\rangle - basis: \\ (\mathbf{H})_{G} &= \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{1} & i_{3} & i_{2} & r_{0} & r_{1} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ r_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} & r_{1} \\ r_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ r_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{1} & r_{1} & r_{1} & r_{2} & r_{0} \\ r_{2} & r_{1} & r_{1} & r_{1} & r_{2} & r_{1} \\ r_{2} & r_{1} & r_{1} & r_{1} & r_{2} & r_{1} \\ r_{2} & r_{1} \\ r_{1} & r_{2} & r_{1} \\ r_{2} & r_{1} \\ r_{1} & r_{1} \\ r_{2} & r_{1} \\ r_{1} & r_{2} & r_{1} \\ r_{1} & r_{2} & r_{1} \\ r_{1} & r_{1} & r_{1} & r_{1} & r_{1} & r_{1} & r_$$

 D_3 Hamiltonian local- H matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{p}_{A_1}\rangle |\mathbf{p}_{A_1}\rangle |\mathbf{p}_{A$

	$\left \mathbf{P}_{xx}^{\mathbf{A}_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{xx}^{E_1} \right\rangle \left \mathbf{P}_{xy}^{E_1} \right\rangle$	$\left \mathbf{P}_{yx}^{L_{1}}\right $	$\left \mathbf{P}_{yy}^{L_{1}} \right\rangle$
H matrix in $\begin{pmatrix} r_0 & r_2 & r_1 & i_1 & i_2 & i_3 \end{pmatrix}$ H matrix in	$\left(H^{A_{l}} \right)$		• •		
$ \mathbf{g}\rangle$ -basis: $ \mathbf{r}_1 \ \mathbf{r}_0 \ \mathbf{r}_1 \ \mathbf{i}_3 \ \mathbf{i}_1 \ \mathbf{i}_2$. $ \mathbf{P}^{(\mu)}\rangle$ -basis:		H^{A_2}	• •		•
(II) $\sum_{r_1}^{o_G} = \begin{bmatrix} r_2 & r_1 & r_0 & i_2 & i_3 & i_1 \end{bmatrix}$			$H_{xx}^{^{E_1}}$ $H_{xy}^{^{E_1}}$		•
$(\mathbf{H})_{G} = \sum_{g=1}^{L} r_{g} \mathbf{g} = \begin{bmatrix} i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \end{bmatrix} \qquad (\mathbf{H})_{P} = \overline{T} (\mathbf{H})_{G} \overline{T}^{\dagger}$	= .		$H_{_{V\!X}}^{^{E_1}}$ $H_{_{V\!V}}^{^{E_1}}$		
i_2 i_1 i_3 r_2 r_0 r_1			• •	$H_{rr}^{E_1}$	$H_{rr}^{E_1}$
$\left(\begin{array}{cccc}i_3 & i_2 & i_1 & r_1 & r_2 & r_0\end{array}\right)$				$H_{yx}^{E_1}$	$H_{yy}^{E_1}$
$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left \mathbf{H} \right \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle 1 \left \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \left\langle 1 \left \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \delta_{mn} \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \right 1 \right\rangle = \left\langle 1 \left \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \delta_{mn} \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \right 1 \right\rangle = \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \delta_{mn} \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \right 1 \right\rangle = \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle = \delta_{mn} \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \right 1 \right\rangle = \left\langle 1 \left \mathbf{H} \mathbf{P}_{ab}^{\mu} \mathbf{P}_{nb}^{\mu} \right 1 \right\rangle$	$\sum_{g=1}^{\circ G} \langle 1 \mathbf{H} \mathbf{g} \rangle$	$D_{ab}^{a^*}$	$g\Big) = \sum_{g=1}^{\circ G} r_g D_a$	$\frac{\alpha^*}{b}(g)$,
$H^{A_{1}} = r_{0}D^{A_{1}^{*}}(1) + r_{1}D^{A_{1}^{*}}(r^{1}) + r_{1}^{*}D^{A_{1}^{*}}(r^{2}) + i_{1}D^{A_{1}^{*}}(i_{1}) + i_{2}D^{A_{1}^{*}}(i_{2}) + i_{3}D^{A_{1}^{*}}(i_{3})$	$=r_0+r_1+r_1^*$	$+i_1+i_2-$	+i3 =	$=r_0 + 2r_1$	$+2i_{12}+i_{12}$
$H^{A_2} = r_0 D^{A_2^*}(1) + r_1 D^{A_2^*}(r^1) + r_1^* D^{A_2^*}(r^2) + i_1 D^{A_2^*}(i_1) + i_2 D^{A_2^*}(i_2) + i_3 D^{A_2^*}(i_3)$	$=r_0+r_1+r_1^{-1}$	$i_{1} - i_{2} - i_{2}$	3 =	$r_0 + 2r_1$	$-2i_{12} - i_3$
$H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3)$	$=(2r_0-r_1-r_1)$	$i_1^* - i_1 - i_2^-$	$+2i_{3})/2 =$	<i>r</i> ₀ <i>-r</i> ₁	$-i_{12}+i_{3}$
$H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3)$	$=\sqrt{3}(-r_1+$	$r_1^* - i_1 + i_2$	$_{2})/2 = H_{yx}^{E^{*}} =$	=0	
$H_{yy}^{E_1} = r_0 D_{yy}^{E^*}(1) + r_1 D_{yy}^{E^*}(r^1) + r_1^* D_{yy}^{E^*}(r^2) + i_1 D_{yy}^{E^*}(i_1) + i_2 D_{yy}^{E^*}(i_2) + i_3 D_{yy}^{E^*}(i_3)$	$=(2r_0-r_1-r_1)$	$i_{1}^{*}+i_{1}+i_{2}$	$(2-2i_3)/2 =$	<i>r</i> ₀ <i>-r</i> ₁	$+i_{12} -i_{3}$
$C_{2} = \{1, \mathbf{i}_{3}\} \\ Local symmetry \\ determines all levels \\ \end{bmatrix} \begin{pmatrix} H_{xx}^{E_{1}} & H_{xy}^{E_{1}} \\ H_{yx}^{E_{1}} & H_{yy}^{E_{1}} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3} & \sqrt{3}(-r_{1}+r_{1}^{*}+i_{3}) \\ \sqrt{3}(-r_{1}^{*}+r_{1}-i_{1}+i_{2}) & 2r_{0}-r_{1}-r_{1}^{*}+i_{3} \end{pmatrix}$	$-i_1+i_2)$ $_1+i_2-2i_3$				
and eigenvectors with just 4 real parameters $= \begin{pmatrix} r_0 - r_1 - i_{12} + i_3 & 0 \\ 0 & r_0 - r_1 - i_{12} - i_3 \end{pmatrix} \begin{pmatrix} Chooling \\ loca \\ For: r_1 = r_1^* and \end{pmatrix}_{For: r_1 = r_1^* and}$	osing loc l constra	$cal C_2^{=}$	$=\{1,i_3\}$ sym $=r_1*=r_2$ a	nmetry nd i ₁ =	with i2

 $\mathbf{P}_{mn}^{(\mu)} = \frac{\ell^{(\mu)}}{2} \sum_{g} D_{mn}^{(\mu)} g g$

Spectral Efficiency: Same D(a)_{mn} projectors give a lot!

Local vs global x-symmetry and y-antisymmetry D₃ tunneling band theory When there is no there, there...

AMOP reference links on page 2

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of O(3) using Mock-Mach principle: $D_3 \sim C_{3v}$ LAB vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle Review 2. LAB-BOD (Global -Local) mutually commuting representations of $D_3 \sim C_{3v}$ Review 3. Global vs Local symmetry expansion of D_3 Hamiltonian Review 4. 1st-Stage: Spectral resolution of **D_3 Center** (All-commuting class projectors and characters) Review 5. 2nd-Stage: $D_3 \supset C_2$ or $D_3 \supset C_3$ sub-group-chain projectors split class projectors $\mathbf{P}^{E} = \mathbf{P}^{E}_{11} + \mathbf{P}^{E}_{22}$ with: $\mathbf{1} = \Sigma \mathbf{P}^{\alpha}_{jj}$ Review 6. 3rd-Stage: $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{E}_{12} = (\mathbf{P}^{E}_{21})^{\dagger}$ and Weyl \mathbf{g} -expansion: $\mathbf{g} = \Sigma D^{\alpha}_{ij}(\mathbf{g}) \mathbf{P}^{\alpha}_{ij}$.

Deriving diagonal andoff-diagonal projectors \mathbf{P}_{ab}^{E} and ireps D_{ab}^{E} Comparison: Global vs Local $|\mathbf{g}\rangle$ -basisversusGlobal vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basisGeneral formulae for spectral decomposition (D3 examples)Weyl \mathbf{g} -expansion in irep $D^{\mu}_{jk}(g)$ and projectors \mathbf{P}^{μ}_{jk} \mathbf{P}^{μ}_{jk} transformsleftand \mathbf{P}^{μ}_{jk} -expansion in \mathbf{g} -operators: Inverse of Weyl formD3 Hamiltonian and D3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis $|\mathbf{P}^{(\mu)}\rangle$ -basis D3 global- \mathbf{g} matrix structure versus D3 local- $\mathbf{\bar{g}}$ matrix structureLocal vs global x-symmetry and y-antisymmetry D3 tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutionsClassical analog for bands of vibration modes

Classical analog for bands of vibration modes

Classical analog for vibration modes

