William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1 st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}$ with: $\mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{jj}}$
Review 6. $3^{\text {rd }}$-Stage: $\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}$ and Weyl \mathbf{g}-expansion: $\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha_{\mathrm{ij}}}$.
Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page
Quantum Theory for the Computer Age
2014 AMOP
UAF Physics UTube channel
Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
2017 Group Theory for QM
2018 AMOP
Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - aip-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)
Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013
Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
AMOP Ch 32 Molecular Symmetry and Dynamics - 2019
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1 st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P E}_{11}+\mathbf{P}_{22}$ with $: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $|\mathbb{P}(\mu)\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}^{\mu_{j k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}{ }_{j k}$-expansion in g-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Review 1. Global vs Local symmetry and Mock-Mach principle
"Give me a place to stand... and I will move the Earth"

Ideas of duality/relativity go way back (...vanveck, Casimiri.., Mach, Newton, Archinedes..)
Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$

\mathbf{R} commutes
with all $\overline{\mathbf{R}}$
(because they're independent
or "unentangled")
Mock-Mach
relativity principle
$\mathbf{R}|1\rangle=\overline{\mathbf{R}}^{-1}|1\rangle$

Body Based Operations

...But how do you actually make the \mathbb{R} and $\overline{\mathbf{R}}$ operations?
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1 st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P E}_{11}+\mathbf{P}_{22}$ with: $\mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $|\mathbb{P}(\mu)\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}^{\mu_{j k}}(g)$ and projectors $\mathbf{P}_{j k}$ $\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}$-expansion in g-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Review 2. Global vs Local symmetry matrix duality for D_{3}
Example of RELATIVITY-DUALITY for $D_{3} \underline{\sim} \underline{C}_{3 v}$
To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$ \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\mathbf{G}}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table

$g{ }^{\dagger} \mathrm{g}$-table		
c1	r \mathbf{r}^{2}	$\begin{array}{lll}\mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{1}_{3}\end{array}$
	$\left\lvert\, \begin{array}{cc}1 & r \\ \mathbf{r}^{2} & 1\end{array}\right.$	\mathbf{i}_{2} \mathbf{i}_{3} \mathbf{i}_{1} \mathbf{i}_{3} \mathbf{i}_{7} \mathbf{i}_{2}
1	$\mathrm{i}_{2} \quad \mathrm{i}_{3}$	$1 \quad r \quad r^{2}$
H_{2}	(13) \mathbf{i}_{1}	$\mathbf{r}^{2} 1 \mathbf{r}$
		$\begin{array}{lll}1 & \mathbf{r}^{2} \quad 1\end{array}$

2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1 st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P E}_{11}+\mathbf{P}_{22}$ with: $\mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $|\mathbb{P}(\mu)\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}^{\mu_{j k}}(g)$ and projectors $\mathbf{P}_{j k}$ $\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}$-expansion in g-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian Recall AMO12 p. 58 Example of RELATIVITY-DUALITY for D

RESULT:
 Any R (T)

commute (Even if T and U do not...) with any $R(\overline{\mathrm{U}}) \ldots$
\ldots and $\mathrm{T} \cdot \mathrm{U}=\mathrm{V}$ if \& only if $\overline{\mathrm{T}} \cdot \overline{\mathrm{U}}=\overline{\mathrm{V}}$.

$$
\begin{aligned}
H & =\langle 1| \mathbb{E}|1\rangle=H^{*} \\
r_{1} & =\langle\mathrm{r}| \mathbb{B}|1\rangle=r_{2}^{*} \\
r_{2} & =\left\langle\mathrm{r}^{2}\right| \mathbb{B}|1\rangle=r_{1}^{*} \\
i_{1} & =\left\langle\mathrm{i}_{1}\right| \mathbb{R}|1\rangle=i_{1}^{*} \mathbf{i}_{3}- \\
i_{2} & =\left\langle i_{2}\right| \mathbb{R}|1\rangle=i_{2}^{*} \\
i_{3} & =\left\langle i_{3}\right| \mathbb{B}|1\rangle=i_{3}^{*}
\end{aligned}
$$

So an BI-matrix having Global symmetry D_{3}

$$
\mathbb{B I}=H \overline{\mathbf{l}}^{0}+r_{1} \overline{\mathbf{r}}^{I}+r_{2} \overline{\mathbf{r}}^{2}+i_{1} \overline{\mathbf{i}}_{l}+i_{2} \overline{\mathbf{i}}_{2}+i_{3} \overline{\mathbf{i}}_{3}
$$

is made from
Local symmetry matrices

This is a complete set of D_{3}
coupling
or
"tunneling"
parameters!

$$
\left.\left.\left.\left.\mathbb{R}=\mid \mathbf{1}) \mid \mathbf{r}) \mid \mathbf{r}^{2}\right) \mid \mathbf{i}_{1}\right) \mid \mathbf{i}_{2}\right) \mid \mathbf{i}_{3}\right)
$$

$$
\left.\begin{array}{l|l|ll|lll|}
(\mathbf{1} \mid & H & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \\
(\mathrm{r} \mid & r_{2} & H & r_{1} & i_{2} & i_{3} & i_{1} \\
\left(\mathrm{r}^{2} \mid\right. & r_{1} & r_{2} & H & i_{3} & i_{1} & i_{2} \\
\left(\mathrm{i}_{1} \mid\right. & i_{1} & i_{2} & i_{3} & H & r_{1} & r_{2} \\
\left(\mathrm{i}_{2} \mid\right. & i_{2} & i_{3} & i_{1} & r_{2} & H & r_{1} \\
\left(i_{3}| |\right. & i_{3} & i_{1} & i_{2} & r_{1} & r_{2} & H
\end{array} \right\rvert\,
$$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1 st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P E}_{11}+\mathbf{P}_{22}$ with $: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $|\mathbb{P}(\mu)\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}^{\mu_{j k}}(g)$ and projectors $\mathbf{P}_{j k}$ $\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}{ }_{j k}$-expansion in g-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Review 4. Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Recall AMO12 p. 93
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\left(0 \mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}\right.
$$

$$
{ }^{\circ} G=\text { order of group: } \quad\left({ }^{\circ} D_{3}=6\right)
$$

$$
{ }^{\circ} \kappa_{k}=\text { order of class } \kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)
$$

$$
\mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad \text { (Class completeness) }
$$

$$
\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}
$$

$$
\mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
$$

D_{3} Class projectors:
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$
D_{3} Class characters:

χ_{k}^{α}	χ_{1}^{α}	χ_{r}^{α}	χ_{i}^{α}
$\alpha=A_{1}$	1	1	1
$\alpha=A_{2}$	1	1	-1
$\alpha=E$	2	-1	0

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1 st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P E}_{11}+\mathbf{P}_{22}$ with: $\mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $|\mathbb{P}(\mu)\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}^{\mu_{j k}}(g)$ and projectors $\mathbf{P}_{j k}$ $\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}{ }_{j k}$-expansion in g-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
{ }^{\circ} G=\text { order of group: } \quad\left({ }^{\circ} D_{3}=6\right)
$$

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

$$
{ }^{\circ} \kappa_{k}=\text { order of class } \kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)
$$

$$
\mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbb{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad \text { (Class completeness) }
$$

$$
\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}
$$

$$
\mathbf{\kappa}_{i}^{r}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
$$

D3 Class projectors:
Subgroup $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$ relabels irreducible class projectors:
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \rightarrow \mathbf{P} A_{l}=\mathbf{P}_{02} A_{2}$
$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3$
\ldots and splits reducible projector $\mathbf{P}^{E_{l}}=\mathbf{P}_{0202}^{E_{l}}+\mathbf{P}_{12 I_{2}}^{E_{1}}$

Review 5. Spectral resolution of D_{3} Center (Class algebra) or its C_{3} subgroup splitting

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1 st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. 2nd_Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}$ with $: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b^{E}}$ and ireps $D_{a b^{E}}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl g-expansion in irep $D_{j k}^{\mu_{j k}}(g)$ and projectors $\mathbf{P}_{j k}$ $\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbb{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Review 6.
3rd-Stage: $\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}_{12}=\left(\mathbf{P}_{21}\right)^{\dagger}$ and Weyl \mathbf{g}-expansion: $\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}_{\mathrm{ij}}$

$\text { Centrum } \kappa\left(\mathbb{D}_{3}\right)=3$ idempotents	$D_{3} \kappa=\mathbf{1} \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$
$\mathbb{P}^{(\alpha)}$	$\mathbf{P}^{4_{l}}=\begin{array}{lll}1 & 1 & 1 / 6\end{array}$
	$\mathbb{P}^{4_{2}}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$
	$\mathbb{P}^{E}=\begin{array}{lll}2 & -1 & 0\end{array}$

3 rd and Final Step:

Spectral resolution of ALL 6 of D3 :

The old ' g -equals-1-times-g-times-1' Trick

$$
\left.\mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m)} k^{g}\right) \mathbf{P}_{e b}^{(m)}
$$

$$
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
$$

$$
\mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
$$

Six D_{3} projectors: 4 idempotents +2 nilpotents (off-diag.)

$$
\begin{aligned}
& \left.\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{\begin{array}{c}
R a n k
\end{array}\left(D_{3}\right)=4} \begin{array}{c}
\left.A_{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right. \\
\text { idempotents } \\
\mathbf{P}_{n, n}^{(\alpha)}
\end{array}\right] \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{1_{2}{ }^{1}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{12}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

Review 6.

3rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :
The old 'g-equals-1-times-g-times-1' Trick

$$
\left.\mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m)} k_{e}\right) \mathbf{P}_{e b}^{(m)}
$$

$\left.\mathbf{P}_{e b}^{(m)}=\left(\text { norm } \Sigma_{g} D_{e b}^{(m)}\right)^{*}\right) \mathbf{g}$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x \times}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, \Downarrow}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} \\
& \text { Six } D_{3} \text { projectors: } 4 \text { idempotents }+2 \text { nilpotents (off-diag.) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { where } D_{3} \\
\text { irreducible represent } \\
\text { are: }
\end{array} \quad D_{D_{1}(\mathbf{g})=+1, \quad D^{2}(\mathbf{g})= \pm 1,}
\end{aligned}
$$

$$
D^{\varepsilon}(\mathbf{l})=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . D^{\varepsilon}\left(\mathbf{r} \mathbf{)}=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
\sqrt{\frac{\sqrt{3}}{4}} & -\frac{1}{2}
\end{array}\right), D^{\varepsilon}\left(\mathbf{(}^{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
-\sqrt{\frac{\sqrt{3}}{4}} & -\frac{1}{2}
\end{array}\right), D^{\varepsilon}\left(\mathbf{i}_{1}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{\sqrt{3}}{4}} \\
-\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{\varepsilon}\left(\mathbf{i}_{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{\varepsilon}\left(\mathbf{i}_{3}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right.
$$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D_{j k}^{\mu_{j k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}$-expansion in g-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b} b^{E}$ $D_{0_{2} 0_{2}}^{E}\left(r^{1}\right) \mathbf{P}_{0_{2} 0_{2}}^{E} \mathbf{r}_{0_{0_{2}} \mathbf{P}_{2}}^{E}=\mathbf{P}_{0_{2} 0_{2}}^{E}$ with $\mathbf{P}_{0_{2} 0_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ is represented by

This gives on-diagonal irep component: $D_{0_{2} 0_{2}}^{E}\left(r^{1}\right)$

$$
D_{0_{2} 0_{2}}^{E}\left(r^{1}\right)=\frac{1}{12}\left(\begin{array}{cccccc}
2 & -1 & -1 & -1 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
-1 \\
2 \\
-1
\end{array}\right)=\frac{1}{12}(-2-2+1+1-2-2)=\frac{-6}{12}=\frac{-1}{2}
$$

2-index $\mathbf{P}_{a b}{ }^{E}$ projectors were split from class (all-commuting) \mathbf{P}^{E}

$$
\begin{aligned}
\mathbf{P}_{0_{2}}^{E}=\mathbf{P}^{E} \mathbf{p}^{0_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) & =\mathbf{P}_{0_{0} 0_{2}}^{E} \\
+\mathbf{P}_{1_{2}}^{E}=\mathbf{P}^{E} \mathbf{p}^{1_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) & =\mathbf{P}_{1_{2} 1_{2}}^{P^{2}}
\end{aligned} \mathbf{P}^{E}=\frac{1}{3}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}\right)
$$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b^{E}}$ and ireps $D_{a b^{E}}$

$$
\mathbf{P}_{0_{2} 0_{2}}^{E} \mathbf{r}_{1_{2_{1}^{2}}^{1}}^{E}=D_{0_{2} l_{2}}^{E}\left(r^{1}\right) \mathbf{P}_{0_{2} 1_{2}}^{E} \text { with } \mathbf{P}_{1_{12} l_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) \text { is represented by }
$$

...but this fails to give off-diagonal irep $D_{02^{12}}^{E}\left(r^{1}\right)$

$$
D_{0_{2} l_{2}}^{E}\left(r^{1}\right)=\frac{1}{12}\left(\begin{array}{llllll}
2 & -1 & -1 & -1 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
+1 \\
-2 \\
+1
\end{array}\right)=\frac{1}{12}(-2-2+1-1+2+2)=0 \quad \begin{aligned}
& \text { Zero!!? } \\
& \ldots g r-r r!
\end{aligned}
$$

2-index $\mathbf{P}_{a b}{ }^{E}$ projectors were split from class (all-commuting) \mathbf{P}^{E}

$$
\begin{aligned}
\mathbf{P}_{0_{2}}^{E}=\mathbf{P}^{E} \mathbf{p}^{0_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right) & =\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)
\end{aligned}=\mathbf{P}_{00_{2}}^{E}, ~=\mathbf{P}_{1_{21}{ }_{2}}^{+\mathbf{P}_{1_{1}}^{E}=\mathbf{P}^{E} \mathbf{p}^{1_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)} \begin{aligned}
\mathbf{P}^{E} & =\frac{1}{3}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}\right)
\end{aligned}
$$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }^{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and \quad off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b} E$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl g-expansion in irep $D^{\mu}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}_{j k}$-expansion in g-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b} b^{E}$
Deriving $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$ given: $\mathbf{P}_{0_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ and: $\mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)$

$D_{3} \mathbf{g} \mathbf{g}^{\dagger}$ form	$-\mathbf{1}$	$-\mathbf{r}^{2}$	$2 \mathbf{r}^{1}$	$+\mathbf{i}_{1}$	$-2 \mathbf{i}_{2}$	$+\mathbf{i}_{3}$
$2 \mathbf{1}$	$-2 \mathbf{1}$	$-2 \mathbf{r}^{2}$	$4 \mathbf{r}^{1}$	$2 \mathbf{i}_{1}$	$-4 \mathbf{i}_{2}$	$2 \mathbf{i}_{3}$
$-\mathbf{r}^{1}$	\mathbf{r}^{1}	$\mathbf{1}$	$-2 \mathbf{r}^{2}$	$-\mathbf{i}_{3}$	$2 \mathbf{i}_{1}$	$-\mathbf{i}_{2}$
$-\mathbf{r}^{2}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$-2 \mathbf{1}$	$-\mathbf{i}_{2}$	$2 \mathbf{i}_{3}$	$-\mathbf{i}_{1}$
$-\mathbf{i}_{1}$	\mathbf{i}_{1}	\mathbf{i}_{3}	$-2 \mathbf{i}_{2}$	$-\mathbf{1}$	$2 \mathbf{r}^{1}$	$-\mathbf{r}^{2}$
$-\mathbf{i}_{2}$	\mathbf{i}_{2}	\mathbf{i}_{1}	$-2 \mathbf{i}_{3}$	$-\mathbf{r}^{2}$	$2 \mathbf{1}$	$-\mathbf{r}^{1}$
$2 \mathbf{i}_{3}$	$-2 \mathbf{i}_{3}$	$-2 \mathbf{P}_{1_{2}}^{E}$	$4 \mathbf{i}_{1}$	$2 \mathbf{r}^{1}$	$-4 \mathbf{r}^{2}$	$2 \mathbf{1}$

Definition of $\mathbf{P}_{0_{2} 0_{2}}^{E}$:
$D_{0_{2} 0_{2}}^{E}\left(\mathrm{r}^{1}\right) \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{0_{2}}^{E}$

Definition of $\mathbf{P}_{0_{2}{ }^{1}}^{E}$:
$D_{0_{2}{ }^{1} 2}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{0_{2}{ }^{1} 2}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b} b^{E}$
Deriving $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$ given: $\mathbf{P}_{0_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ and: $\mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)$

$D_{3} \mathbf{g} \mathbf{g}^{\dagger}$ form	$\operatorname{-i}^{\mathbf{1}}$	$-\mathbf{r}^{2}$	$2 \mathbf{r}^{1}$	$+\mathbf{i}_{1}$	$-2 \mathbf{i}_{2}$	$+\mathbf{i}_{3}$
$2 \mathbf{1}$	$-2 \mathbf{1}$	$-2 \mathbf{r}^{2}$	$4 \mathbf{r}^{1}$	$2 \mathbf{i}_{1}$	$-4 \mathbf{i}_{2}$	$2 \mathbf{i}_{3}$
$-\mathbf{r}^{1}$	\mathbf{r}^{1}	$\mathbf{1}$	$-2 \mathbf{r}^{2}$	$-\mathbf{i}_{3}$	$2 \mathbf{i}_{1}$	$-\mathbf{i}_{2}$
$-\mathbf{r}^{2}$	\mathbf{r}^{2}	\mathbf{r}^{1}	$-2 \mathbf{1}$	$-\mathbf{i}_{2}$	$2 \mathbf{i}_{3}$	$-\mathbf{i}_{1}$
$-\mathbf{i}_{1}$	\mathbf{i}_{1}	\mathbf{i}_{3}	$-2 \mathbf{i}_{2}$	$-\mathbf{1}$	$2 \mathbf{r}^{1}$	$-\mathbf{r}^{2}$
$-\mathbf{i}_{2}$	\mathbf{i}_{2}	\mathbf{i}_{1}	$-2 \mathbf{i}_{3}$	$-\mathbf{r}^{2}$	$2 \mathbf{1}$	$-\mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{1}+\mathbf{i}_{3}+\mathbf{i}_{1}-2 \mathbf{i}_{2}\right)$
$2 \mathbf{i}_{3}$	$-2 \mathbf{i}_{3}$	$-2 \mathbf{i}_{2}$	$4 \mathbf{i}_{1}$	$2 \mathbf{r}^{1}$	$-4 \mathbf{r}^{2}$	$2 \mathbf{1}$

Definition of $\mathbf{P}_{0_{2} 0_{2}}^{E}$:
$D_{0_{2} 0_{2}}^{E}\left(\mathrm{r}^{1}\right) \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{0_{2}}^{E}$

Definition of $\mathbf{P}_{0_{2}{ }^{1}}^{E}$:
$D_{0_{2}{ }^{1} 2}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{0_{2}{ }^{1} 2}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b} b^{E}$ and ireps $D_{a b} b^{E}$
Deriving $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$ given: $\mathbf{P}_{0_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ and: $\mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)$

So: $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{4}\left(\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$ has transpose: $\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\frac{1}{4}\left(-\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$

Definition of $\mathbf{P}_{0_{2} 0_{2}}^{E}$:
$D_{0_{2} 0_{2}}^{E}\left(\mathrm{r}^{1}\right) \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{0_{2}}^{E}$

Definition of $\mathbf{P}_{0_{2}{ }^{1}}^{E}$:
$D_{0_{2}{ }^{1} 2}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{0_{2}{ }^{1} 2}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b} b^{E}$
Deriving $\mathbf{P}_{0_{2}}^{E}{ }^{1} \mathbf{P}_{1_{2}}^{E}$ given: $\mathbf{P}_{0_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ and: $\mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)$

| $\substack{D_{3} \mathbf{g} \mathbf{g}^{\dagger} \\ \text { form }}$ | $-\mathbf{1}$ | $-\mathbf{r}^{2}$ | $2 \mathbf{r}^{1}$ | $+\mathbf{i}_{1}$ | $-2 \mathbf{i}_{2}$ | $+\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad so: $\mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{1}+\mathbf{i}_{3}+\mathbf{i}_{1}-2 \mathbf{i}_{2}\right)$

So: $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{4}\left(\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$, has transpose: $\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\frac{1}{4}\left(-\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$
Product: ${ }^{\prime} \mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}: \mathbf{P}_{1}{ }_{1} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E_{1}}$

$$
\begin{aligned}
& \text { Definition of } \mathbf{P}_{0_{2}{ }_{2}}^{E} \text { : } \\
& D_{0_{2^{1} 2}}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{0_{2}{ }^{1}-2}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}
\end{aligned}
$$

Definition of $\mathbf{P}_{1_{2} 0_{0}}^{E}$:
$D_{1_{2} 0_{2}}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{1_{2} 0_{2}}^{E}=\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{0_{2}}^{E}$

Definition of $\mathbf{P}_{1_{2}}^{E}$:
$D_{1_{2} 1_{2}}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b} b^{E}$
Deriving $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$ given: $\mathbf{P}_{0_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ and: $\mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)$

$\begin{aligned} & D_{\mathbf{3}} \mathbf{g g}^{\dagger} \\ & \text { form } \end{aligned}$	L^{-1}	$-r^{2}$	$2 \mathrm{r}^{1}$	$+\mathbf{i}_{1}$	$-2 i_{2}$	$+\mathrm{i}_{3}$	so: $\mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{1}+\mathbf{i}_{3}+\mathbf{i}_{1}-2 \mathbf{i}_{2}\right)$
21	-21	$-2 \mathbf{r}^{2}$	$4 \mathrm{r}^{1}$	$2 i_{1}$	$-4 i_{2}$	$2 i_{3}$	
-rr ${ }^{1}$	\mathbf{r}^{1}	1	$-2 \mathrm{r}^{2}$	$-i_{3}$	$2 \mathbf{i}_{1}$	$-\mathrm{i}_{2}$	
$-\mathrm{r}^{2}$	\mathbf{r}^{2}	\mathbf{r}^{1}	-21	$-\mathrm{i}_{2}$	$2 \mathbf{i}_{3}$	$-i_{1}$	$=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{36}\left(0 \mathbf{1}+9 \mathbf{r}^{1}-9 \mathbf{r}^{2}+9 \mathbf{i}_{1}-9 \mathbf{i}_{2}+0 \mathbf{i}_{3}\right)$
$-i_{1}$	i_{1}	I_{3}	$-2 \mathbf{i}_{2}$	-1	$2 \mathrm{r}^{1}$	-r ${ }^{2}$	
$-\mathrm{i}_{2}$	i_{2}	i_{1}	$-2 \mathbf{i}_{3}$	$-r^{2}$	21	-r ${ }^{1}$	
$2 i_{3}$	$-2 i_{3}$	$-2 i_{2}$	$4 i_{1}$	$2 \mathrm{r}^{1}$	$-4 \mathrm{r}^{2}$	21	

So: $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{4}\left(\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$, has transpose: $\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\frac{1}{4}\left(-\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$
Product: ${ }_{1} \mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}: \mathbf{P}_{1_{2}}^{E} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{1} \mathbf{P}_{0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E}$

$$
\begin{aligned}
& \text { Definition of } \mathbf{P}_{0_{2}{ }_{2}}^{E} \text { : } \\
& D_{0_{2}{ }^{1} 2}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{0_{2} 1_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}
\end{aligned}
$$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b} b^{E}$
Deriving $\mathbf{P}_{0_{2}}^{E}{ }^{1} \mathbf{P}_{1_{2}}^{E}$ given: $\mathbf{P}_{0_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$ and: $\mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)$

| $\substack{D_{3} \mathbf{g} \mathbf{g}^{\dagger} \\ \text { form }}$ | $-\mathbf{1}$ | $-\mathbf{r}^{2}$ | $2 \mathbf{r}^{1}$ | $+\mathbf{i}_{1}$ | $-2 \mathbf{i}_{2}$ | $+\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad so: $\mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{6}\left(2 \mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{1}+\mathbf{i}_{3}+\mathbf{i}_{1}-2 \mathbf{i}_{2}\right)$

So: $\mathbf{P}_{0}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{4}\left(\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$, has transpose: $\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\frac{1}{4}\left(-\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$
Product: ${ }^{\prime} \mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}: \mathbf{P}_{1_{2}} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{1} \mathbf{P}_{0_{2}}^{E}=\mathbf{P}_{0_{2}}^{E}$

$$
\begin{aligned}
& \text { Definition of } \mathbf{P}_{0_{2}{ }_{2}}^{E} \text { : } \\
& D_{0_{2^{1} 2}}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{0_{2}{ }^{1}-2}^{E}=\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}
\end{aligned}
$$

Definition of $\mathbf{P}_{1_{2} 0_{0}}^{E}$:
$D_{1_{2} 0_{2}}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{1_{2} 0_{2}}^{E}=\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{0_{2}}^{E}$

Definition of $\mathbf{P}_{1_{2}}^{E}$:
$D_{1_{2} 1_{2}}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}$

$\mathbf{D}_{\mathbf{3}} \mathbf{g g}^{\dagger}$ form	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
$\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}^{1}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}^{1}	\mathbf{r}^{1}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}^{2}	\mathbf{r}^{1}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
\mathbf{i}_{3}	\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

Find product of : $\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E}=\frac{1}{4}\left(\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$ and transpose: $\mathbf{P}_{1_{2}}^{E} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\frac{1}{4}\left(-\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)$
$\mathbf{P}_{0_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{1_{2}}^{E} \mathbf{P}_{1_{2}}^{E} \mathbf{r}^{2} \mathbf{P}_{0_{2}}^{E}=\frac{1}{8}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}{ }^{-} \mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)$

	r^{2}	$-\mathrm{r}^{1}$	1	$-i_{2}$
\mathbf{r}^{1}	1	$-r^{2}$	i_{3}	$-i_{1}$
$\frac{1}{16}-r^{2}$	$-\mathrm{r}^{1}$	1	$-i_{2}$	I_{3}
i_{1}	i_{3}	$-\mathrm{i}_{2}$	1	$-r^{1}$
$-\mathrm{i}_{2}$	$-i_{1}$	i_{3}	$-r^{2}$	1

$=D_{0_{2}{ }^{1} 2}^{E}\left(\mathbf{r}^{1}\right) \mathbf{P}_{0_{2^{1} 2}}^{E} D_{1_{1_{2}} 2}^{E}\left(\mathbf{r}^{2}\right) \mathbf{P}_{1_{2} 0_{2}}^{E}=\left|D_{0_{2}{ }^{1} 2}^{E}\left(\mathbf{r}^{1}\right)\right|^{2} \mathbf{P}_{0_{2} 0_{2}}^{E}$

Compare to original projector: $\mathbf{P}_{0_{2}}^{E}=\frac{1}{6}\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)=\mathbf{P}_{0_{2} 0_{2}}^{E} \quad$ Solve for: $\left|D_{0_{2}{ }^{1} 2}^{E}\left(\mathbf{r}^{1}\right)\right|^{2}=\frac{\frac{1}{8}}{\frac{1}{6}}=\frac{3}{4}$

$$
D_{0_{2^{1}}{ }_{2}}^{E}\left(\mathbf{r}^{1}\right)= \pm \frac{\sqrt{3}}{2}
$$

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b^{E}}$ and ireps $D_{a b} b^{E}$ Defining $D_{1_{2} 0_{2}}^{E}\left(r^{1}\right) \mathbf{P}_{1_{2}}^{E} \mathbf{r}^{1} \mathbf{P}_{0_{2}}^{E}=\mathbf{P}_{1_{2} 0_{2}}^{E}$ for off-diagonal $D_{1_{2} 0_{2}}^{E}\left(r^{1}\right)$ projector $\mathbf{P}_{1_{2} 0_{2}}^{E}$ is represented by

$$
\begin{aligned}
& D_{0_{2} 0_{2}}^{E}\left(r^{1}\right)=\frac{1}{\sqrt{12}}\left(\begin{array}{llllll}
2 & -1 & -1 & -1 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1 \\
-1 \\
0 \\
1
\end{array}\right) \\
& \text { Using normalized: }\left|\mathbf{P}_{0_{2^{1}}}^{E}\right\rangle=\frac{1}{2}\left(\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right)|\mathbf{1}\rangle
\end{aligned}
$$ or transpose: $\left\langle\mathbf{P}_{1_{2} 0_{2}}^{E}\right|=\langle\mathbf{1}|\left(-\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}-\mathbf{i}_{2}\right) \frac{1}{2}$

$$
\begin{aligned}
\mathbf{P}_{0_{2}}^{E} & =\mathbf{P}^{E} \mathbf{p}^{0_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) \\
+\mathbf{P}_{1_{2}}^{E}=\mathbf{P}^{E} \mathbf{p}^{1_{2}}=\mathbf{P}^{E} \frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right) & =\frac{1}{6}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) \\
& =\frac{1}{3}\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}\right)
\end{aligned}
$$

The simplest way to compute (and visualize) D_{3} irep $\mathrm{D}^{E}(\mathbf{r})$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
General formulae for spectral decomposition ( \(D_{3}\) examples)
    Weyl g-expansion in irep \(D^{\mu}{ }_{j k}(g)\) and projectors \(\mathbf{P}_{j k}\)
        \(\mathbf{P}^{\mu}{ }_{j k}\) transforms right-and-left
    \(\mathbf{P}_{j k}{ }_{j k}\)-expansion in g-operators: Inverse of Weyl form
\(D_{3}\) Hamiltonian and \(D_{3}\) group matrices in global and local \(\left|\mathbf{P}^{(\mu)}\right\rangle\)-basis
    \(\left|\mathbf{P}^{(\mu)}\right\rangle\)-basis \(D_{3}\) global-g matrix structure versus \(D_{3}\) local- \(\overline{\mathbf{g}}\) matrix structure
    Local vs global \(x\)-symmetry and y-antisymmetry \(D_{3}\) tunneling band theory
        Ortho-complete D3 parameter analysis of eigensolutions
    Classical analog for bands of vibration modes
```

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} globall	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
group	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
product	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	
table	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{13}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

Change Global to Local by switching
...column-g with column-g ${ }^{\dagger}$
....and row-g with row-g ${ }^{\dagger}$

Compare Global vs Local |g〉-basis

Example of RELATIVITY-DUALITY for $D_{3} \underline{-C}_{3 v}$

To represent external $\{. . T, \mathbf{U}, \mathbf{V}, \ldots\}$ switch $g \mathrm{~g}^{\dagger}$ on top of group table

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{r} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{13} |
| \mathbf{r} | $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{i}_{3} | \mathbf{i}_{1} | \mathbf{i}_{2} |
| \mathbf{r}^{2} | \mathbf{r} | $\mathbf{1}$ | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{1} |
| \mathbf{i}_{1} | \mathbf{i}_{13} | \mathbf{i}_{2} | $\mathbf{1}$ | \mathbf{r} | \mathbf{r}^{2} |
| \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{i}_{3} | \mathbf{r}^{2} | $\mathbf{1}$ | \mathbf{r} |
| \mathbf{i}_{13} | \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{r} | \mathbf{r}^{2} | $\mathbf{1}$ |

D_{3} global
gg ${ }^{\dagger}$-table

Compare Global vs Local $|\mathbf{g}\rangle$-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$ \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\boldsymbol{\sim}}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table

D_{3} global gs ${ }^{\dagger}$-table
g † g-table

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
Deriving diagonal and off-diagonal projectors \(\mathbf{P}_{a b}{ }^{E}\) and ireps \(D_{a b}{ }^{E}\)
Comparison: Global vs Local \(|\mathbf{g}\rangle\)-basis versus \(\quad\) Global vs Local \(\left|\mathbf{P}^{(\mu)}\right\rangle\)-basis
General formulae for spectral decomposition ( \(D_{3}\) examples)
    Weyl \(\mathbf{g}\)-expansion in irep \(D_{j k}^{\mu_{j k}}(g)\) and projectors \(\mathbf{P}_{j k}\)
    \(\mathbf{P}_{j k}{ }_{j k}\) transforms right-and-left
    \(\mathbf{P}_{j k}{ }_{j k}\)-expansion in g-operators: Inverse of Weyl form
\(D_{3}\) Hamiltonian and \(D_{3}\) group matrices in global and local \(\left|\mathbf{P}^{(\mu)}\right\rangle\)-basis
    \(\left|\mathbf{P}^{(\mu)}\right\rangle\)-basis \(D_{3}\) global-g matrix structure versus \(D_{3}\) local- \(\overline{\mathbf{g}}\) matrix structure
    Local vs global \(x\)-symmetry and y-antisymmetry \(D_{3}\) tunneling band theory
        Ortho-complete D3 parameter analysis of eigensolutions
    Classical analog for bands of vibration modes
```

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $|\mathbf{P}(\mu)\rangle$-basis

D_{3} global	1	$\mathbf{r}^{2} \mathrm{r}$	$\mathbf{i}_{1} \quad \mathbf{i}_{2} \quad\left(\mathbf{i}_{3}\right.$
group	r	$1 \mathrm{r}^{2}$	
product	\mathbf{r}^{2}	r 1	$\mathrm{i}_{2}\left(\mathrm{i}_{3} \mathrm{i}_{1} \mathbf{i}_{1}\right.$
	1 \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{13}	$\begin{array}{\|ll} \hline\left(\mathbf{i}_{3}\right) & \mathbf{i}_{2} \\ \mathbf{i}_{1} & \mathbf{i}_{13} \\ \mathbf{i}_{2} & \mathbf{i}_{1} \\ \hline \end{array}$	$\begin{array}{ccc}1 & r & r^{2} \\ \mathbf{r}^{2} & 1 & r \\ r & r^{2} & 1\end{array}$

D_{3} global			${ }^{\prime} \mathbf{p}_{x x}^{E} \mathbf{p}_{x y}^{E} \mid \mathbf{P}_{v x}^{E} \mathbf{P}_{v y}^{E}$	
	\mathbb{P}_{2}^{4}	\mathbb{P}_{12}^{4}		
	$\mathbb{R}_{1 \times}^{E}$		$\mathbb{P}_{x}^{E} \mathbb{P}_{x y}^{E}$	
product	\mathbf{p}^{E}		$\mathbb{P}_{v x}^{E} \mathbb{P}_{v}^{E}$	
table	$\mathbb{R}_{v,}^{E}$			$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$
	\mathbf{P}_{t}^{E}			$\mathbf{P}_{v}^{E} \mathbf{P}_{v}^{E}$

Change Global to Local by switching $\mathbf{P}_{a b}^{(n)} \mathbf{P}_{c d}^{(n)}=\delta^{m n} \delta_{b c} \mathbf{P}_{a d}^{(n)}$

...column-P with column-P ${ }^{\dagger}$

and row-P with row- P^{\dagger}| $\left(\right.$ Just switch $\mathbb{P}_{y x}^{E}$ with $\left.\mathbf{P}_{y x}^{E}=\mathbb{P}_{x y}^{E}.\right)$ |
| :---: |

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL g operators in ${\underset{\mathrm{E}}{ } \mathrm{D}_{3}}^{\mathrm{E}}$

${ }^{D_{3}}$			$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	$\mathbf{p}_{y x}^{E} \mathbf{P}_{y y}^{E}$
$\mathbf{P}_{\text {Px }}^{4_{1}}$	$\mathbf{P}_{x x}^{4_{1}}$			
$\mathbf{P}_{y y}^{A_{2}}$		$\mathbf{P}_{y y}^{4}$		
$\mathbf{P}_{x x}^{E}$			$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	
$\mathbf{P}_{\underline{x}}^{E}$			$\mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E}$	
$\mathbf{B}^{E}{ }_{y}^{E}$				$\mathbf{P}_{x x}^{E} \mathbf{P}^{E}{ }^{E}$
\mathbf{P}_{y}^{E}				$\mathbf{P}_{y}^{E} \mathbf{P}_{y}^{E}$

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Matrix "Placeholders" $P_{a b}^{(m)}$ for GLOBAL g operators in D_{3}

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL \mathbf{g} operators in D_{3}

$\overline{\mathbf{P}}_{a b b}^{(0)} .$. for LOCAL $\overline{\bar{g}}$ operators in $\overline{D_{3}}$
 ${ }^{D_{3}}\left|\mathbf{P}_{x x}^{A_{1}}\right| \mathbf{P}_{y y}^{A_{2}}\left|\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}\right| \mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E} \quad$ GLOBAL \mathbf{P}-matrix commutes LOCAL \mathbf{P}-matrix

$\begin{array}{ll} a & b \\ c & d \\ \hline \end{array}$				B				B	B	$\begin{array}{ll}a & b \\ c & d\end{array}$		
	$\begin{array}{ll}a & b \\ c & d\end{array}$			D		C		D				b
	$a A$ $c A$ c		$a B$ $c B$	b			a	$A b$ $A d$		$B b$ $B d$		
	$a C$ $c C$		$a D$ $c D$	b			a	Cb		D b $D d$		

	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E}$	$\mathbf{P}_{y x}^{E}$	$\mathbf{P}_{x y}^{E}$	$\mathbf{P}_{y y}^{E}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{y y}^{A_{2}}$	\cdot	$\mathbf{P}_{y y}^{A_{2}}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{x x}^{E}$	\cdot	\cdot	$\mathbf{P}_{x x}^{E}$	0	$\mathbf{P}_{x y}^{E}$	0
$\mathbf{P}_{x y}^{E}$	\cdot	\cdot	0	$\mathbf{P}_{x x}^{E}$	0	$\mathbf{P}_{x y}^{E}$
$\mathbf{P}_{y x}^{E}$	\cdot	\cdot	$\mathbf{P}_{y x}^{E}$	0	$\mathbf{P}_{y y}^{E}$	0
$\mathbf{P}_{y y}^{E}$	\cdot	\cdot	0	$\mathbf{P}_{y x}^{E}$	0	$\mathbf{P}_{y y}^{E}$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }^{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```


Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$

Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbb{P}{ }^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbb{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Weyl expansion of \mathbf{g} in irep $D_{j k}^{\mu_{j k}}(g) \mathbf{P}_{j k}^{\mu_{j k}}$ Irreducible idempotent completeness $\mathbf{1}=\mathbf{P}^{A_{1}}+\mathbf{P}^{A_{2}}+\mathbf{P}_{x x}^{E_{1}}+\mathbf{P}_{y y}^{E_{1}}$ completely expands group by $\mathbf{g}=\mathbf{1} \cdot \mathrm{g} \cdot \mathbf{1}$

$$
\begin{aligned}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}= & \sum_{\mu} \sum_{m} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
& \text { sub-indices xx or yy are optional }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Weyl expansion of \mathbf{g} in irep $D_{j k}^{\mu_{j k}}(g) \mathbf{P}_{j k}^{\mu_{j k}}$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathrm{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleflass idempotents }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}} . \quad \begin{aligned}
& \text { sub-indices xx or are optional }
\end{aligned}
$$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}},
$$

For split idempotents
sub-indices $x x$ or yy are essential

Weyl expansion of \mathbf{g} in irep $D_{j k}^{\mu_{j k}}(g) \mathbf{P}_{j k}^{\mu_{j k}}$ Irreducible idempotent completeness $\mathbf{1}=\mathbf{P}^{A_{1}}+\mathbf{P}^{A_{2}}+\mathbf{P}_{x x}^{E_{1}}+\mathbf{P}_{y y}^{E_{1}}$ completely expands group by $\mathbf{g}=\mathbf{1} \cdot \mathrm{g} \cdot \mathbf{1}$ $\begin{array}{ll}\mathbf{g}=\mathbf{1} . \mathrm{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\ & \quad \text { For irreducibleflass idenpotents }\end{array} \quad+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$.

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}
$$

For split idempotents
sub-indices xx or yy are essential
Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{t_{1}}$

Weyl expansion of \mathbf{g} in irep $D^{\mu_{j k}}(g) \mathbf{P}_{j k}^{\mu_{j k}}$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{n} \sum_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
& \text { where: } \text { sub-indices xx or } y \text { are optional }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{l}}=\mathbf{P}_{x x}^{E_{1}} \quad \mathbf{P}_{2212}^{E_{l}}=\mathbf{P}_{x y}^{E}$
$\mathbf{P}_{12 d_{2}}^{E_{1}}=\mathbf{P}_{x x}^{E_{1}} \quad \mathbf{P}_{1212}^{E_{1}}=\mathbf{P}_{v i}^{E_{1}}$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}
$$

$\begin{aligned} & \text { For split idempotents } \\ & \text { sub-indices xx or are essential }\end{aligned} \quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g)^{)^{-\cdots x}} \mathbf{P}_{1,}^{E_{1}} \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\mathbf{P}_{y x}^{E_{1},} \text {, and } \mathbf{P}_{x y}^{E_{1}}
$$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
& \text { where: } \text { sub-indices xx or yy are optional }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}} .
$$

where:

Previous notation:

$\mathbf{P}_{12 d}^{E_{2}}=\mathbf{P}_{y x}^{E_{1}} \quad \mathbf{P}_{12 / 2}^{E_{1}=} \mathbf{P}_{x}^{E}$
$\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}$
$\begin{aligned} & \text { For split idempotents } \\ & \text { sub-indices } x x \text { or } y y \text { are essential }\end{aligned} \quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g)^{\prime} \mathbf{P}_{y x}^{E_{1}}, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$
Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\boldsymbol{P}_{x x}^{E_{1}} \text { and } \mathbf{P}_{x y}^{E_{1}}
$$

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes...

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\sum_{\mu} \sum_{m} \sum_{m} \sum_{n} D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}=D_{x x}^{A_{1}}(g) \mathbf{P}^{A_{1}}+D_{y y}^{A_{2}}(g) \mathbf{P}^{A_{2}}+D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}+D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For irreducibleclass idempotents } \\
& \text { where: } \text { sub-indices xx or yy are optional }
\end{aligned}+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}} .
$$

where:

Previous notation:
$\mathbf{P}_{022}^{E_{1}=\mathbf{P}_{x x} E_{x}} \quad \mathbf{P}_{021}^{E_{1}=\mathbf{P}_{x y}}{ }_{x}^{E}$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}
$$

$\begin{aligned} & \text { For split idempotents } \\ & \text { sub-indices } x x \text { or } y y \text { are essential }\end{aligned} \quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$
there arise two nilpotent projectors

$$
\mathbf{P}_{x x}^{E_{1}} \text {, and } \mathbf{P}_{x y}^{E_{1}}
$$

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{1}}=\mathbf{P}_{x x}^{E_{1}} \quad \mathbf{P}_{0212} E_{1}=\mathbf{P}_{x y} E_{1}$
$\mathbf{P}_{12}^{E_{2}}=\mathbf{P}_{y x}^{E_{1}} \quad \mathbf{P}_{1212}^{E_{l}}=\mathbf{P}_{y y} E_{y}$

$$
\left.\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g)\right) \mathbf{P}_{x y}^{E_{1}}
$$

For split idempotents
sub-indices $x x$ or $y y$ are essential,$\left.\quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g)\right)^{P_{1}} E_{y}, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$ Group product table boils down
there arise two nilpotent projectors

$$
\mathbf{P}_{y x}^{E_{1}} \text { and } \mathbf{P}_{x y}^{E_{1}}
$$ to simple projector matrix algebra

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{y y}^{A_{2}}$	\cdot	$\mathbf{P}_{y y}^{A_{2}}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{x x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{y x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$
$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$

where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

Previous notation:
$\mathbf{P}_{0202}^{E_{1}}=\mathbf{P}_{x x}^{E_{1}} \quad \mathbf{P}_{0212}^{E_{1}=} \mathbf{P}_{x y}^{E_{y}}$
$\mathbf{P}_{122=2}^{E_{2}=\mathbf{P}_{y x}^{E_{1}}} \mathbf{P}_{1212}^{E_{1}=\mathbf{P}_{2 k}}$

$$
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}=D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad \mathbf{P}_{x x}^{E_{1}} \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}}
$$

For split idempotents
sub-indices $x x$ or y are essential $\quad, \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y}^{E_{1}}(g) \mathbf{P}_{y 1}^{E_{1}} \vdots \quad \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}$ Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$ Group product table boils down to simple projector matrix algebra there arise two nilpotent projectors

Idempotent projector orthogonality $\ldots \mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}$
Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

$\underset{\mathbf{g}=}{\text { Coefficients }} D_{\mathbf{1}^{2}}^{\mu}(g)_{\mathbf{r}^{\prime}}$ are irreducible representations (reps) of $\mathbf{\mathbf { r } ^ { 2 }} \mathbf{I}_{\mathbf{i}_{1}}$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and
off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $|\mathbb{P}(\mu)\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl g-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}$ transforms left and right
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbb{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes
$\mathbf{P}_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed \mathbf{g} acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\left(\begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} n
\end{array}\right.
$$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

$$
\mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu}
$$

$\mathbf{P}_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed \mathbf{g} acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.
$\mathbf{P}_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \underset{\mathbf{P}^{\prime}}{\mu^{\prime} n^{\prime}}, \mathbf{P}_{m n}^{\mu} \ldots \ldots .\binom{\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality }}{\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}}\right. \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} m}^{\boldsymbol{P}_{m^{\prime} n}^{\prime}} \mathbf{P}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime}}^{\mu^{\prime} n^{\prime}} \mathbf{P}_{m_{n}}^{\mu} \ldots \ldots . \quad \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array}\right. \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime}} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime}}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathrm{g}\left|{ }_{m n}^{\mu}\right\rangle=\sum_{m^{\prime}}^{\mu^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu} \ldots \ldots \ldots\right. \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} m}^{\prime} \mathbf{P}_{m^{\prime} n}^{\mu} \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& =\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{\mathbf { P } _ { m n } ^ { \mu }}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \ldots \ldots .: \begin{array}{l}
\text { Use } \mathbf{P}_{m n^{\prime}}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime}} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m_{n}\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed \mathbf{g} acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathrm{g}\left|\begin{array}{c}\mu \\ m_{n}\end{array}\right\rangle=\frac{\mathrm{gP}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle{ }_{m^{\prime} n}^{\mu}\right| \mathrm{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime}, \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{array}{ll}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle \quad & =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{array}
$$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbb{P}{ }^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu}{ }_{j k}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms left and \square right
$\mathbf{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbb{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local-g matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}}{\text { norm. }}|\mathbf{1}\rangle$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle \quad & =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\left.\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m n^{\prime}}^{\mu^{\prime}}(g)\right)_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}}^{\mu^{\mu}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{\delta_{n^{\prime} m}^{\prime}} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\mu^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{\mu} \mathrm{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Projector conjugation

$$
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m|
$$

$$
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
$$

$$
\begin{aligned}
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell_{n^{\prime}}^{\mu}} \sum_{m^{\prime} n^{\prime}}^{\ell^{\mu}} D_{n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }{ }^{*}}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle \quad & =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mathrm{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}}^{\mu^{\prime} \sum_{\prime^{\prime}}^{\mu}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{\delta_{n^{\prime} m}^{\prime}} \mathbf{P}_{m^{\prime \prime}}^{\mu} \\
& =\sum_{m^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime}}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{\mu} \mathrm{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Projector conjugation

$$
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m|
$$

$$
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
$$

$$
\begin{aligned}
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell_{n^{\prime}}^{\mu}} \sum_{m^{\prime} n^{\prime}}^{\ell^{\mu}} D_{n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle \quad & =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mathrm{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}}^{\mu^{\mu}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m}^{\prime} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime}}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\begin{gathered}
\hline \text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} & =\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}}^{\mu_{m^{\prime}}^{\mu}} \sum_{n^{\prime}}^{\mu} D_{m n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m m^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\mu^{\prime}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A less-simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathrm{g}^{\dagger}\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu n \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle \quad & =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mathrm{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed gacting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}}^{\mu^{\prime} \sum_{\prime^{\prime}}^{\mu}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{\delta_{n^{\prime} m}^{\prime}} \mathbf{P}_{m^{\prime \prime}}^{\mu} \\
& =\sum_{m^{\prime}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime}}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{\mu} \mathrm{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

$$
\begin{gathered}
\text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{gathered}
$$

$$
\begin{aligned}
= & \sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
= & \sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

Right-action transforms irep-bra $\left\langle\begin{array}{l}\mu \\ m n\end{array}\right| \mathrm{g}^{\dagger}=\frac{\left\langle\mathbf{1} \mathbf{P}_{\mathrm{P} m \mathrm{~m}^{\mu} \mathrm{g}^{\dagger}}^{\mathrm{norm}^{\dagger}}\right.}{}$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A less-simple irep expression...

$$
\begin{aligned}
\left\langle\begin{array}{c}
\langle \\
\mu n
\end{array}\right| g^{\dagger}\left|m_{m^{\prime} n}^{\mu}\right\rangle & =D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right) \\
& =D_{m m^{\prime}}^{\mu^{*}}(g)
\end{aligned}
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle \quad & =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\text { if } D \text { is unitary }
$$

AMOP reference links on page 2
2.26.18 class 13.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 v} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: }}\) Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }^{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbb{P}{ }^{(\mu)}\right\rangle$-basis

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms left and right
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbb{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local-g matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D D_{3} parameter analysis of eigensolutions
Classical analog for bands of vibration modes
$\mathbf{P}_{j k} \mu_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$
Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
$\mathbf{P}_{j k} \mu_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}
$$

$\mathbf{P}_{j k} \mu_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} \sum_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h}, \text { where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

$\mathbf{P}_{j k}^{\mu_{j k}}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}}^{\prime \prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

Regular representation of $D_{3} \sim C_{3 v}$

$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{o^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{{ }^{\circ} G} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})
$$

Regular representation of $D_{3} \sim C_{3 v}$

$$
\begin{aligned}
& R^{G}(\mathbb{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{o^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})
$$

Regular representation of $D_{3} \sim C_{3 v}$

$$
\begin{aligned}
& R^{G}(\mathbf{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}(\mathbf{i})=\quad R^{G}(\mathbf{i})=
\end{aligned}
$$

$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{o^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathbf{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\vdots} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation of $D_{3} \sim C_{3 v}$

$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{\alpha^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{\alpha^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} \sum_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

$\mathbf{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} \sum_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right)$

$\mathbf{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} \sum_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{TraceR}\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$\mathbf{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} \sum_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right)
$$

$\mathbf{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} \sum_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \quad \text { Use: } \operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu_{m}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \text { Trace } R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathbf{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}}^{\mu} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g}
$$

$\mathbf{P}_{j k}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathbf{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{TraceR}\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \quad \text { Use: Trace } R\left(\mathbf{P}_{m n}^{\mu}\right. \\
= & \frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right) \quad\left(=\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathbf{f}) \text { for unitary } D_{n m}^{\mu}\right) \\
\mathbf{P}_{m n}^{\mu}= & \frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \quad\left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g} \text { for unitary } D_{n m}^{\mu}\right.
\end{aligned}
$$

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: } S p e c t r a l ~ r e s o l u t i o n ~ o f ~} \boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }^{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbb{P}{ }^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms left and right
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|{ }_{m n}^{\mu}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }^{\circ} G}{{ }_{\mathrm{G}}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m}{ }_{\mathrm{g}}^{\circ} \sum_{\mathrm{G}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{l}\mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { orm }^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }^{\circ} G}{{ }_{\mathrm{G}}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{\circ} \sum_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\begin{array}{l}\mu_{m^{\prime} n^{\prime}}^{\prime} \mid m n\end{array}\right|=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime} \mathbf{P}_{m n}^{\prime}}^{\mu^{\prime}} \mathbf{P}^{\mu}|\mathbf{1}\rangle}{n o r m^{2}}=\delta^{\mu^{\prime} \mu^{\prime}} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{n o r m^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }^{\circ} G}{{ }_{\mathrm{G}}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(\mathrm{~g}) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{\circ} \sum_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \left\lvert\, \begin{array}{l}\mu n \\ \mu\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu} \mathbf{P}^{\mu}| \rangle}{\text { orm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G{ }^{\circ} G}{g} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \left\lvert\, \begin{array}{l}\mu n \\ \mu\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}{ }^{\mu}|\mathbf{1}\rangle}{\text { orm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$
$\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }^{\circ} G}{{ }_{\mathrm{g}}}{ }_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime} \mid}^{\mu^{\prime} \mid} \left\lvert\, \begin{array}{l}\mu n\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}{ }^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$
$\left.\left.\mathrm{g}\left|{ }_{m n}^{\mu}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\right)_{m^{\prime} n}^{\mu}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime} \mid}^{\mu^{\prime} \mid} \left\lvert\, \begin{array}{l}\mu n\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}{ }^{\mu}|\mathbf{1}\rangle}{\text { orm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle \quad$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different
$\left.\left.\mathrm{g}\left|{ }_{m n}^{\mu}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\right)_{m^{\prime}{ }^{\prime}}^{\mu}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\begin{aligned}
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& \text { Use } \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $\left.\backslash \mathbf{1}\right\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime} \mid}^{\mu^{\prime} \mid} \left\lvert\, \begin{array}{l}\mu n\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}{ }^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\begin{aligned}
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \begin{array}{c}
\text { Use } \\
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
& =\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \text { inverse }
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }^{\circ} G}{{ }_{G}} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $\left.\backslash \mathbf{1}\right\rangle$
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime} \mid}^{\mu^{\prime} \mid} \left\lvert\, \begin{array}{l}\mu n\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}{ }^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{n_{n}^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle \quad$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\left.\mathrm{g}\left|{ }_{m n}^{\mu}\right\rangle=\left.\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\right|_{m^{\prime} n} ^{\mu}\right\rangle
$$

Matrix is same as given on p.23-28

$$
\begin{aligned}
& \overline{\mathrm{g}}\left|\begin{array}{c}
\mu \\
\mu
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{\sigma^{\frac{G}{G}}}{\ell^{(\mu)}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} g^{-1}|\mathbf{1}\rangle \sqrt{\frac{\rho^{G}}{\ell^{(\mu)}}} \longleftarrow \stackrel{\text { inverse }}{ }
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{g} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu^{\dagger}}$ acting on original let $\left.\backslash \mathbf{1}\right\rangle$
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime} \mid}^{\mu^{\prime} \mid} \left\lvert\, \begin{array}{l}\mu n\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}{ }^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{n_{n}^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\begin{array}{c}
\text { and }
\end{array}} \\
& =\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\text { inverse }}{\longleftarrow}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}=\sum_{m^{\prime}=1}^{\ell^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right) \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} \stackrel{\ddots}{\mathbf{p}_{m n^{\prime}}^{\mu}} \underset{\dot{\prime}^{\prime}}{\prime \prime} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: $(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{g} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu^{\dagger}}$ acting on original ket $\left.\backslash \mathbf{1}\right\rangle$
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }_{\mathrm{G}}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle{ }_{m^{\prime} n^{\prime} \mid}^{\mu^{\prime} \mid} \left\lvert\, \begin{array}{l}\mu n\end{array}\right.\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}{ }^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1} & =\sum_{m^{\prime}=1}^{\ell^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right) \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n^{\prime}}^{\mu} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)
\end{aligned}
$$

$$
=\mathbf{P}_{m n} \tilde{\mu}^{\mu} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \longleftrightarrow \text { inverse } \\
& \left.=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu} \mathbf{1}\right\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
\end{aligned}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right\rangle
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

For unitary $D^{(\mu)}:(p .33)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p.23-28
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu^{\prime}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \longleftarrow \text { inverse } \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
\end{aligned}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right\rangle
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

For unitary $D^{(\mu)}$: (p.33)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{|c}\mu n \\ \mu\end{array}\right\rangle$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p.23-28

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l|l}
\mu & \mathbf{g} & \mu \\
m^{\prime} n & \mathbf{o} & m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathrm{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: } S p e c t r a l ~ r e s o l u t i o n ~ o f ~} \boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3rd-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}^{\mathrm{E}_{21}}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\)
```

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Globalvs Local $\left|\mathbb{P}^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms left and right
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global- \mathbf{g} matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure

$$
R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}=
$$

$D^{A_{1}}(\mathbf{g})$				
	$D^{A_{2}}(\mathbf{g})$. .		e
		$\begin{array}{cc} D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} \\ \hline \end{array}$		$\begin{aligned} & \begin{array}{l} \text { ordering to } \\ \text { concentrate } \end{array} \\ & \text { olohal- } \sigma \end{aligned}$
			$\begin{array}{cc}D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}$	D-matrices

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global- \mathbf{g} matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure

$$
\begin{aligned}
& R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}= \\
& \left|\begin{array}{|l|l|l|}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\right| \begin{array}{l}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\left|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle \\
& R^{P}(\overline{\mathbf{g}})=T R^{G}(\overline{\mathbf{g}}) T^{\dagger}= \\
& \left|\begin{array}{|l|l|l|}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\right| \begin{array}{l}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\left|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle \\
& \text { here }
\end{aligned}
$$

Local $\overline{\mathbf{g}}$-matrix
is not concentrated

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu & m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global- \mathbf{g} matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure

$$
\begin{aligned}
& R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}=
\end{aligned}
$$

$$
\begin{aligned}
& R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}= \\
& \begin{array}{|l|llll}
\left\lvert\, \begin{array}{l}
\mathbf{P}_{x x} \\
A_{1}
\end{array}\right. & \left|\begin{array}{c}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array} \quad\right| \begin{array}{l}
\left.\mathbf{P}_{x x}^{E_{1}}\right\rangle
\end{array} \quad\left|\begin{array}{l}
\mathbf{P}_{y x} E_{1}
\end{array}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array} \\
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\
\hline \cdot & \cdot & D_{y x}^{E^{*}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})
\end{array}\right) \\
& \bar{R}^{P}(\mathbf{g})=\bar{T} R^{G}(\mathbf{g}) \bar{T}^{\dagger}= \\
& \left.\begin{array}{|c|c|c|c|}
\left\lvert\, \begin{array}{l}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\right. & \left|\begin{array}{l}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\right| & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\begin{array}{l}
\mathbf{P}_{x y}^{E_{1}}
\end{array}\right\rangle
\end{array}\left|\begin{array}{|l}
\mathbf{P}_{y x}^{E_{1}}
\end{array}\right\rangle \quad \right\rvert\, \begin{array}{l}
\left.\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array} \\
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}} & \cdot & D_{x y}^{E_{1}} \\
\hline \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}} & \cdot & D_{y y}^{E_{1}}
\end{array}\right) \\
& \text { Local } \overline{\mathbf{g}} \text {-matrix } \\
& \text { is not concentrated } \\
& \text { here } \\
& \text { global g-matrix } \\
& \longleftarrow \text { is not concentrated }
\end{aligned}
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu & m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathbf{g}}$ matrix structure

$$
\begin{aligned}
& R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}=
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\
\cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\
\cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}(\mathbf{g})} & D_{y y}^{E_{1}}
\end{array}\right) \\
& \begin{array}{c}
\left|\mathbf{P}^{(\mu)}\right\rangle \text {-base } \\
\text { ordering to } \\
\text { concentrate }
\end{array} \\
& \text { D-matrices } \\
& \bar{R}^{P}(\mathbf{g})=\bar{T} R^{G}(\mathbf{g}) \bar{T}^{\dagger}= \\
& \begin{array}{|c|c|c|c|}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\begin{array}{|l|l}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\right| & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle
\end{array}\left|\begin{array}{|l|l}
\mathbf{P}_{y x}^{E_{1}}
\end{array}\right\rangle \quad\left|\begin{array}{|l}
\mathbf{P}_{y y}^{E_{1}}
\end{array}\right\rangle \\
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}} & \cdot & D_{x y}^{E_{1}} \\
\hline \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}}(\mathbf{g}) & \cdot \\
\hline \cdot & \cdot & \cdot & D_{y x} & \cdot & D_{y y}
\end{array}\right) \\
& R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=
\end{aligned}
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu & m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. 1st-Stage: Spectral resolution of \(\boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3rd-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\)
```

Deriving diagonal and
off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $|\mathbb{P}(\mu)\rangle$-basis

General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms left and right
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes
D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\begin{aligned}
& \mathbf{H} \text { matrix in } \\
& |\mathbf{g}\rangle \text {-basis: } \\
& \mathbf{H})_{G}=\sum_{g=1}^{o} r_{g} \\
& r_{g} \\
& \overline{\mathbf{g}}
\end{aligned}=\left(\begin{array}{cccccc}
r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\
r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\
r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\
i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\
i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\
i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}
\end{array}\right) \quad \begin{aligned}
& \mathbf{H} \text { matrix in } \\
& |\mathbf{P}(\mu)\rangle \text {-basis: }
\end{aligned}
$$

$$
\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{4}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{x x}^{E_{i}}\right\rangle \mathbf{P}_{y y}^{E_{1}}\right\rangle
$$

$(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=\left(\begin{array}{c|c|cc|cc}\left.\mathbf{H}^{(\mu)}\right\rangle \text {-basis: } \\ H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H_{x x}^{\varepsilon_{1}} & H_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}}\end{array}\right)$

$$
\boldsymbol{H}_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle
$$

$$
\left.\left|\mathbf{P}_{x x}^{A}\right\rangle\left|\mathbf{P}_{y y}^{A}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle \mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$\underset{|\mathbf{g}\rangle \text {-basis: }}{\mathbf{H} \text { matrix in }}(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{llllll}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right)$
\mathbf{H} matrix in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis:
$(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=$
$\left(\begin{array}{c|c|cc|cc}H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}}\end{array}\right)$
$H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle$

Let: $\left|\begin{array}{c}\mu n \\ m\end{array}\right\rangle \equiv\left|\mathbf{P}_{m n}^{\mu}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}$
$\left|\begin{array}{l}\mu n \\ m\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot{ }^{\circ}{ }^{\circ} G{ }^{G} \sum_{\mathrm{g}}} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (which will cancel out)

$$
\left.\left|\mathbf{P}_{x x}^{A}\right\rangle\left|\mathbf{P}_{y y}^{A}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle \mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{a m}^{\mu} \mathbf{H P}_{\frac{n}{\mu}}^{\mu}|\mathbf{1}\rangle
$$

$$
\left[\begin{array}{c}
\text { Projector conjugation } p .3 \lambda \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{array}\right]
$$

$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}} \quad$ (which will cancel out)
D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left.\left|\mathbf{P}_{x x}^{A}\right\rangle\left|\mathbf{P}_{y y}^{A}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle \mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle
$$

subject to normalization (from p. 116-122):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ So, fuggettabout it! (cancel out)

$$
\begin{aligned}
& \text { Mock-Mach } \\
& \text { commutation } \\
& \mathbf{r} \overline{\mathrm{r}}=\overline{\mathrm{r}} \mathbf{r} \\
& \text { (p.89) }
\end{aligned}
$$

$$
\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{4}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{i}}\right\rangle \mathbf{P}_{y y}^{E_{1}}\right\rangle
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{A}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle \mathbf{P}_{y p}^{E_{1}}\right\rangle
$$

Coefficients $D_{m n}^{\mu}(g)$ are irreducible representations (ireps) of \mathbf{g}

D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{4}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle\left|\mathbf{P}_{x x}^{E_{i}}\right\rangle \mathbf{P}_{y y}^{E_{1}}\right\rangle
$$

Coefficients $D_{m n}^{\mu}(g)$ are irreducible representations (ireps) of \mathbf{g}

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

```
Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of \(\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}\)
Review 3. Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Review 4. \(1^{\text {st-Stage: } S p e c t r a l ~ r e s o l u t i o n ~ o f ~} \boldsymbol{D}_{3}\) Center (All-commuting class projectors and characters)
Review 5. 2nd-Stage: \(\mathrm{D}_{3} \supset \mathrm{C}_{2}\) or \(\mathrm{D}_{3} \supset \mathrm{C}_{3}\) sub-group-chain projectors split class projectors \(\mathbf{P}{ }^{\mathrm{E}}=\mathbf{P}_{11}+\mathbf{P}_{22}\) with \(: \mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{j} j}\)
Review 6. 3 \({ }^{\text {rd }}\)-Stage: \(\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}\) trick gives nilpotent projectors \(\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}\) and Weyl \(\mathbf{g}\)-expansion: \(\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }^{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}\).
```

Deriving diagonal and off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbb{P}{ }^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}{ }_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms left and right
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes
D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{A_{y}}\right\rangle \quad\left|\mathbf{P}_{x x}^{E_{1}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle
$$

$H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{4_{1}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}^{*}}\left(i_{3}\right)=r_{0}+r_{4}+r_{1}^{*}+i_{1}+i_{2}+i_{3}$

Coefficients $D_{m n}^{\mu}(g)$ are irreducible representations (ireps) of \mathbf{g}

$$
\left\lvert\, \begin{array}{lll}
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{A_{y}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array}\right.
$$

$$
H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{A_{1}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}^{*}}\left(i_{2}\right)+i_{3} D_{1}^{A_{1}^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3}
$$

$$
H^{A_{2}}=r_{0} D^{4_{2}^{*}}(1)+r_{1} D^{4^{*}}\left(r^{1}\right)+r_{1}^{*} D^{4_{2}^{*}}\left(r^{2}\right)+i_{1} D^{4_{2}^{*}}\left(i_{1}\right)+i_{2} D^{4_{2}^{*}}\left(i_{2}\right)+i_{3} D_{2}^{4_{2}^{*}}\left(i_{3}\right)=r_{0_{0}}+r_{1}+r_{1}^{*}-i_{1_{1}-i_{2}-i_{3}}
$$

Coefficients $D_{m n}^{\mu}(g)$ are irreducible representations (ireps) of \mathbf{g}

Coefficients $D_{m n}^{\mu}(g)$ are irreducible representations (reps) of g

$H^{4_{1}}=r_{0} D^{4^{*}}(1)+r_{1} D^{4^{*}}\left(r^{\prime}\right)+r_{1}^{*} D^{4^{*}}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3}$
$H^{4_{1}}=r_{0} D^{4^{*}}(1)+r_{1} D^{4 *}\left(r^{1}\right)+r_{1}^{*} D^{4^{*}}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}$

$H_{x y}^{\epsilon_{y}^{4}}=r_{0} D_{x y}^{\iota^{*}}(1)+r_{1} D_{x y}^{v^{*}}\left(r^{\prime}\right)+r_{1}^{* *} D_{x y}^{\iota^{*}}\left(r^{2}\right)+i_{1} D_{x y}^{\iota^{*}}\left(i_{1}\right)+i_{2} D_{x y}^{r^{*}}\left(i_{2}\right)+i_{3} D_{x y}^{\iota^{*}}\left(i_{3}\right)=\sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) / 2=H_{y x}^{E^{*}}$

Coefficients $D_{m n}^{\mu}(g)$ are irreducible representations (ireps) of \mathbf{g}

\mathbf{H} matrix in
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis:

$$
(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=
$$

$$
H^{4_{1}}=r_{0} D^{4^{4 *}}(1)+r_{1} D^{4^{*}}\left(r^{1}\right)+r_{1}^{*} D^{4^{*}}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4^{4}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{* *}+i_{1}+i_{2}+i_{3}
$$

$$
H^{4_{2}}=r_{0} D^{4^{*}}(1)+r_{1} D^{4^{*}}\left(r^{1}\right)+r_{1}^{*} D^{4^{*}}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}
$$

$$
H_{x x}^{t_{1}}=r_{0} D_{x x}^{t^{* *}}(1)+r_{1} D_{x x}^{t^{* *}}\left(r^{1}\right)+r_{1}^{* *} D_{x x}^{t^{* *}}\left(r^{2}\right)+i_{1} D_{x x}^{2^{* *}}\left(i_{1}\right)+i_{2} D_{x x}^{t^{* *}}\left(i_{2}\right)+i_{3} D_{x x}^{t_{x x}^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2
$$

$$
H_{x y}^{\varepsilon_{1}}=r_{0} D_{x y}^{t_{x}^{* *}}(1)+r_{1} D_{x y}^{t_{x}^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x y}^{t^{* *}}\left(r^{2}\right)+i_{1} D_{x y}^{t^{* *}}\left(i_{1}\right)+i_{2} D_{x y}^{t_{x}^{* *}}\left(i_{2}\right)+i_{3} D_{x y}^{*_{x}^{*}}\left(i_{3}\right)=\sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) / 2=H_{y x}^{E^{* *}}
$$

Coefficients $D_{m n}^{\mu}(g)$ are irreducible representations (ireps) of g

$$
\begin{aligned}
& H^{A_{1}}=r_{0} D^{4^{*}}(1)+r_{1} D^{4 *}\left(r^{\prime}\right)+r_{1}^{*} D^{4 *}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{t_{1}}=r_{0} D^{4^{*}}(1)+r_{1} D^{4^{*}}\left(r^{1}\right)+r_{1}^{*} D^{4^{*}}\left(r^{2}\right)+i_{1} D^{4^{*}}\left(i_{1}\right)+i_{2} D^{4^{*}}\left(i_{2}\right)+i_{3} D^{4^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
& H_{x x}^{t_{1}}=r_{0} D_{x x}^{\iota^{*}}(1)+r_{1} D_{x x}^{*^{*}}\left(r^{1}\right)+r_{1}^{* *} D_{x x}^{\iota^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{\iota^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{v^{* *}}\left(i_{2}\right)+i_{3} D_{x x}^{*^{* *}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{* *}-i_{1}-i_{2}+2 i_{3}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& H_{y y}^{\varepsilon_{1}}=r_{0} D_{y y}^{Q^{*}}(1)+r_{1} D_{y y}^{* *}\left(r^{1}\right)+r_{1}^{*} D_{y p}^{v^{*}}\left(r^{2}\right)+i_{1} D_{y y}^{v^{*}}\left(i_{1}\right)+i_{2} D_{y y}^{* *}\left(i_{2}\right)+i_{3} D_{y y}^{Q^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}\right) / 2
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{(u)}=\frac{\ell_{G}^{(\mu)}}{\sum_{\mathrm{g}}} D_{m n}^{(\mu)}(\underline{g}) \mathrm{g}
$$

Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!
\(\left\lvert\, \begin{aligned} \& \mathbf{P}_{x}^{A l x}=

\& \mathbf{P}_{y_{y}, y}^{A l}=\end{aligned}=\)| $\mathbf{1}$ | \mathbf{r}^{1} | \mathbf{r}^{2} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1)\end{array} / 6\right.$ | | | | | |
| $\left(\begin{array}{llllll}1 & 1 & 1 & -1 & -1 & -1) / 6\end{array}\right.$ | | | | | |\right.

- Eigenstates (shown before)
-Complete Hamiltonian

-Local symmetery eigenvalue formulae (L.S.=> off-diagonal zero.)

$$
\begin{aligned}
r_{1}=r_{2}=r_{1} *=r, & \quad i_{1}=i_{2}=i_{1} *=i \\
& A_{1} \text {-level: } H+2 r+2 i+\dot{\zeta}_{3} \\
\text { gives: }: & A_{1} \text {-level: } H+2 r-2 i-\dot{\zeta}_{3} \\
& E_{x} \text {-level: } H-r-i+\dot{\zeta}_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3}
\end{aligned}
$$

Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states Local (BOD) symmetry

$$
\begin{aligned}
\stackrel{i}{l}_{3} \mid(m) \\
l e b
\end{aligned}={\stackrel{i}{\mathbb{I}_{3}} \mathbf{P}_{e b}^{(m)}|1\rangle}^{==1 e^{e}|(m)\rangle} \quad\left|\begin{array}{c}
(m) \\
e b
\end{array}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle
$$

$$
=(-1)^{e}|(m)\rangle
$$

$$
\begin{aligned}
& \overline{\mathbf{i}}_{3}\left|e_{e b}^{(m)}\right\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{i}}_{3}|1\rangle \\
& =\mathbf{P}_{e b}^{(m) \mathbf{I}_{3}^{\dagger}}|1\rangle=(-1)^{b}|(m)\rangle
\end{aligned}
$$

Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory When there is no there, there...
Nobody Home
where LOCAL and GLOBAL

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ using Mock-Mach principle: $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}} \mathrm{LAB}$ vs BOD group and projection operator formulation of ortho-complete eigensolutions

Review 1. Global vs Local symmetry and Mock-Mach principle
Review 2. LAB-BOD (Global-Local) mutually commuting representations of $\mathrm{D}_{3} \sim \mathrm{C}_{3 \mathrm{v}}$
Review 3. Global vs Local symmetry expansion of D_{3} Hamiltonian
Review 4. 1st-Stage: Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors and characters)
Review 5. $2^{\text {nd }}$-Stage: $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ or $\mathrm{D}_{3} \supset \mathrm{C}_{3}$ sub-group-chain projectors split class projectors $\mathbf{P}^{\mathrm{E}}=\mathbf{P}^{\mathrm{E}}{ }_{11}+\mathbf{P}_{22}$ with: $\mathbf{1}=\Sigma \mathbf{P}^{\alpha}{ }_{\mathrm{ij}}$
Review 6. 3rd-Stage: $\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}$ trick gives nilpotent projectors $\mathbf{P}^{\mathrm{E}_{12}}=\left(\mathbf{P}_{21}\right)^{\dagger}$ and Weyl \mathbf{g}-expansion: $\mathbf{g}=\Sigma \mathrm{D}^{\alpha}{ }_{\mathrm{ij}}(\mathbf{g}) \mathbf{P}^{\alpha_{i j}}$

Deriving diagonal and
off-diagonal projectors $\mathbf{P}_{a b}{ }^{E}$ and ireps $D_{a b}{ }^{E}$
Comparison: Global vs Local $|\mathbf{g}\rangle$-basis versus Global vs Local $\left|\mathbb{P}{ }^{(\mu)}\right\rangle$-basis
General formulae for spectral decomposition (D_{3} examples)
Weyl \mathbf{g}-expansion in irep $D^{\mu_{k k}}(g)$ and projectors $\mathbf{P}_{j k}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms left and right
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators: Inverse of Weyl form
D_{3} Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}{ }^{(\mu)}\right\rangle$-basis
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis D_{3} global-g matrix structure versus D_{3} local- $\overline{\mathrm{g}}$ matrix structure
Local vs global x-symmetry and y-antisymmetry D_{3} tunneling band theory
Ortho-complete D3 parameter analysis of eigensolutions
Classical analog for bands of vibration modes

Classical analog for bands of vibration modes

