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Seems to imply:   r1ρ3(r1)-1=r1ρ3r2= ρ1

Deriving D3 ~ C3v equivalence transformations and classes
Transforming D3 operators using D3 operators 
Example: Rotating ρ3 axis crank using r1 puts it down onto ρ1 
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Abelian (Commutative) C2, C2, ...,C6 ...
H diagonalized by rp symmetry operators that COMMUTE
with H (rpH =H rp),
and with each other (rprq =rp+q =rqrp).

Non-Abelian (do not commute) D3, Oh,...
While all H symmetry operations COMMUTE
with H (UH =HU )
most do not with each other (UV ≠ VU ).

Q: So how do we write H in terms of non-commutative U ?

What we need to learn now:

Non-commutative symmetry expansion: Global-Local solution 
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used previously.
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RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

So an HH-matrix
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is made from
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Global vs Local symmetry matrix duality for D3
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To represent external {..T,U,V,... }switch g g† on top of group table
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RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

So an HH-matrix
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is made from
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Global vs Local symmetry expansion of D3 Hamiltonian
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i3 = 〈i3|HH|1〉= i3*

H = 〈1 |HH| 1 〉=H*
r1 = 〈 r |HH|1〉= r2*

i1 = 〈i1|HH|1〉= i1*
r2 = 〈r2|HH|1〉= r1*

i2 = 〈i2|HH|1〉= i2*

Global vs Local symmetry expansion of D3 Hamiltonian
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RESULT:
Any R(T)
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(Even if T and U do not...)
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Local HH matrix
parametrized by g’s

i3 = 〈i3|HH|1〉= i3*

H = 〈1 |HH| 1 〉=H*
r1 = 〈 r |HH|1〉= r2*

i1 = 〈i1|HH|1〉= i1*
r2 = 〈r2|HH|1〉= r1*

i2 = 〈i2|HH|1〉= i2*

All the global g commute
with general local HH matrix.

Global vs Local symmetry expansion of D3 Hamiltonian
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Group theory of D3 Center (Class algebra) 

Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)

°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

gtκ kgt
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°sk is an integer count of D3 operators gs that commute with gk.

Class-sum κk commutes with all gt
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Review:Spectral resolution of D3 Center (Class algebra) 
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Class-sum κk commutes with all gt

…now a few pages to prove  
and apply this key integer ratio 
related to Laggrange’s theorems.
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If an operator gt transforms gk into a different element g′k of its class: gtgkgt-1=g′k , then so does gtgs . 
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that is: gtgsgk(gtgs)-1=gtgsgkgs-1gt-1=gtgkgt-1=g′k ,

D3 class algebra

°sk is an integer count of D3 operators gs that commute with gk.
These operators gs form the gk-self-symmetry group sk . Each gs transforms gk into itself: gsgkgs-1=gk
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Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
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°sk=order of gk-self-symmetry:(°s1 = 6,  °sr = 3,  °si = 2)
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Subgroup  sk ={g0=1,  g1=gk,  g2,…} has ℓ=(°κk-1) Left Cosets (one coset for each member of class κk). 
             g1 sk = g1{g0=1,  g1=gk,  g2,…}, 
             : 

:

that is: gtgsgk(gtgs)-1=gtgsgkgs-1gt-1=gtgkgt-1=g′k ,
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°sk is an integer count of D3 operators gs that commute with gk.
These operators gs form the gk-self-symmetry group sk . Each gs transforms gk into itself: gsgkgs-1=gk

If an operator gt transforms gk into a different element g′k of its class: gtgkgt-1=g′k , then so does gtgs . 
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Subgroup  sk ={g0=1,  g1=gk,  g2,…} has ℓ=(°κk-1) Left Cosets (one coset for each member of class κk). 
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°sk is an integer count of D3 operators gs that commute with gk.
These operators gs form the gk-self-symmetry group sk . Each gs transforms gk into itself: gsgkgs-1=gk

If an operator gt transforms gk into a different element g′k of its class: gtgkgt-1=g′k , then so does gtgs . 
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Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)

°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

gtκ kgt
−1 = κ k   where: κk = g j
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−1

°sk=order of gk-self-symmetry:(°s1 = 6,  °sr = 3,  °si = 2)

°sk= °G / °κ k   

Subgroup  sk ={g0=1,  g1=gk,  g2,…} has ℓ=(°κk-1) Left Cosets (one coset for each member of class κk). 
             g1 sk = g1{g0=1,  g1=gk,  g2,…}, 
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They will divide the group of order °D3 = °κk·°sk evenly into °κk subsets each of order °sk.    
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→
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κ 1 κ 1 κ r κ i

κ r κ r 2κ 1 +κ r 2κ i

κ i κ i 2κ i 3κ 1 + 3κ r

Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)

°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)
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These operators gs form the gk-self-symmetry group sk . Each gs transforms gk into itself: gsgkgs-1=gk
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that is: gtgsgk(gtgs)-1=gtgsgkgs-1gt-1=gtgkgt-1=g′k ,

 These results are known as Lagrange’s Coset Theorem(s) 

D3 class algebra

If an operator gt transforms gk into a different element g′k of its class: gtgkgt-1=g′k , then so does gtgs . 

Class-sum κk commutes with all gt
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EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

 r κi r-1 = i2 + i3 + i1 = κi   or:    r κi  = κi r

κg's are mutually commuting with respect to themselves  
and all-commuting with respect to the whole group.

   
hgh−1

h=1

°G
∑ =υgκ g  ,           where: υg = °G

°κ g
= integer

°κg is order of class κg and must evenly divide group order °G.
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Spectral analysis of non-commutative “Group-table Hamiltonian”

Note also:
κ22 − κ2 − 2·1 = 0

κ23 = 3·κ2 +3·1
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Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)

Note also:
κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)

κ23 = 3·κ2 +3·1
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aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PENote also:

κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)



11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

0 = (κ3−3·1)P
A1

κ3P
A1 =+3·PA1

PA1 =
(κ3+3·1)(κ3 −0·1)
(+3+3)(+3−0)

Note also:
κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)
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(κ3 + 3·1)(κ3 − 0·1)
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Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

0 = (κ3−3·1)P
A1

κ3P
A1 =+3·PA1

0 = (κ3+3·1)P
A2

κ3P
A2 = −3·PA2

0 = (κ3−0·1)P
E

κ3P
E =+0·PE

Note also:
κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)

κ1= κ1 = 1·PA1 + 1·PA2 +  1·PE

κ2= κr = 2·PA1+ 2·PA2 − 1·PE

κ3= κ i = 3·PA1 − 3·PA2 + 0·PE

Note also:
κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)

PA1 =
(κ3 + 3·1)(κ3 − 0·1)
(+3+ 3)(+3− 0)

PA2 =
(κ3 − 3·1)(κ3 − 0·1)
(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)
(+0− 3)(+0+ 3)

κ2
r = κ r + 2·1⇒ (κ r − 2·1)(κ r +1) = 0

So: κ r  has an eigenvalue 2  and -1
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11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
ccoommmmuutteess wwiitthh aallll ooff DD33..

Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

IInnvveerrssee rreessoolluuttiioonn ggiivveess DD33 Character Table

PA1= (κκ3+3·1)(κκ3-0·1)
(+3+3) (+3-0)

PA2= (κκ3-3·1)(κκ3-0·1)
(-3-3) (-3-0)

PE= (κκ3-3·1)(κκ3+3·1)
(+0-3) (+0+3)

0 = (κ3−3·1)P
A1

κ3P
A1 =+3·PA1

0 = (κ3+3·1)P
A2

κ3P
A2 = −3·PA2

0 = (κ3−0·1)P
E

κ3P
E =+0·PE

Note also:
κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)

PA1 = (κ1 + κ2 + κ3)/6 = (1+ r + r
2 + i1 + i2 + i3)/6

κ1= κ1 = 1·PA1 + 1·PA2 +  1·PE

κ2= κr = 2·PA1+ 2·PA2 − 1·PE

κ3= κ i = 3·PA1 − 3·PA2 + 0·PE

PA1 = 1
18 κ3

2 + 3κ3( ) = 1
18 3κ1 + 3κ2 + 3κ3( )

PA1 =
(κ3 + 3·1)(κ3 − 0·1)
(+3+ 3)(+3− 0)

PA2 =
(κ3 − 3·1)(κ3 − 0·1)
(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)
(+0− 3)(+0+ 3)

κ2
r = κ r + 2·1⇒ (κ r − 2·1)(κ r +1) = 0

So: κ r  has an eigenvalue 2  and -1



11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
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Spectral analysis of non-commutative “Group-table Hamiltonian”
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CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

IInnvveerrssee rreessoolluuttiioonn ggiivveess DD33 Character Table

PA1= (κκ3+3·1)(κκ3-0·1)
(+3+3) (+3-0)

PA2= (κκ3-3·1)(κκ3-0·1)
(-3-3) (-3-0)

PE= (κκ3-3·1)(κκ3+3·1)
(+0-3) (+0+3)

0 = (κ3−3·1)P
A1

κ3P
A1 =+3·PA1

0 = (κ3+3·1)P
A2

κ3P
A2 = −3·PA2

0 = (κ3−0·1)P
E

κ3P
E =+0·PE

Note also:
κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)

κ1= κ1 = 1·PA1 + 1·PA2 +  1·PE

κ2= κr = 2·PA1+ 2·PA2 − 1·PE

κ3= κ i = 3·PA1 − 3·PA2 + 0·PE

PA1 = 1
18 κ3

2 + 3κ3( ) = 1
18 3κ1 + 3κ2 + 3κ3( )PA1 = (κ1 + κ2 + κ3)/6 = (1+ r + r

2 + i1 + i2 + i3)/6
PA2 = (κ1 + κ2 − κ3)/6 = (1+ r + r

2 − i1 − i2 − i3)/6
PA2 = 1

18 κ3
2 − 3κ3( ) = 1

18 3κ1 + 3κ2 − 3κ3( )

PA1 =
(κ3 + 3·1)(κ3 − 0·1)
(+3+ 3)(+3− 0)

PA2 =
(κ3 − 3·1)(κ3 − 0·1)
(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)
(+0− 3)(+0+ 3)

κ2
r = κ r + 2·1⇒ (κ r − 2·1)(κ r +1) = 0

So: κ r  has an eigenvalue 2  and -1
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κ3P
A1 =+3·PA1

0 = (κ3+3·1)P
A2

κ3P
A2 = −3·PA2

0 = (κ3−0·1)P
E

κ3P
E =+0·PE

Note also:
κ22 − κ2 − 2·1 = 0
0 = (κ2 − 2·1)(κ2+1)

κ1= κ1 = 1·PA1 + 1·PA2 +  1·PE

κ2= κr = 2·PA1+ 2·PA2 − 1·PE

κ3= κ i = 3·PA1 − 3·PA2 + 0·PE

PA1 = 1
18 κ3

2 + 3κ3( ) = 1
18 3κ1 + 3κ2 + 3κ3( )

PA2 = 1
18 κ3

2 − 3κ3( ) = 1
18 3κ1 + 3κ2 − 3κ3( )

PE = −1
9 κ3

2 − 9 ⋅1( ) = −1
9 3κ1 + 3κ2 − 9κ1( )

PA1 = (κ1 + κ2 + κ3)/6 = (1+ r + r
2 + i1 + i2 + i3)/6

PA2 = (κ1 + κ2 − κ3)/6 = (1+ r + r
2 − i1 − i2 − i3)/6

PE = (2κ1 − κ2 + 0)/3= (21− r − r
2 )/3

PA1 =
(κ3 + 3·1)(κ3 − 0·1)
(+3+ 3)(+3− 0)

PA2 =
(κ3 − 3·1)(κ3 − 0·1)
(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)
(+0− 3)(+0+ 3)

κ2
r = κ r + 2·1⇒ (κ r − 2·1)(κ r +1) = 0

So: κ r  has an eigenvalue 2  and -1
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k
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Spectral analysis of non-commutative “Group-table Hamiltonian”
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CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

IInnvveerrssee rreessoolluuttiioonn ggiivveess DD33 Character Table

PA1= (κκ3+3·1)(κκ3-0·1)
(+3+3) (+3-0)

PA2= (κκ3-3·1)(κκ3-0·1)
(-3-3) (-3-0)

PE= (κκ3-3·1)(κκ3+3·1)
(+0-3) (+0+3)

PA1 = (κ1 + κ2 + κ3)/6 = (1+ r + r
2 + i1 + i2 + i3)/6

PA2 = (κ1 + κ2 − κ3)/6 = (1+ r + r
2 − i1 − i2 − i3)/6

PE = (2κ1 − κ2 + 0)/3= (21− r − r
2 )/3

0 = (κ3−3·1)P
A1

κ3P
A1 =+3·PA1

0 = (κ3+3·1)P
A2

κ3P
A2 = −3·PA2

0 = (κ3−0·1)P
E

κ3P
E =+0·PE

χ k
α χ1

α χ2
α χ3

α

α = A1 1 1 1

α = A2 1 1 −1

α = E 2 −1 0

κ1= κ1 = 1·PA1 + 1·PA2 +  1·PE

κ2= κr = 2·PA1+ 2·PA2 − 1·PE

κ3= κ i = 3·PA1 − 3·PA2 + 0·PE

PA1 =
(κ3 + 3·1)(κ3 − 0·1)
(+3+ 3)(+3− 0)

PA2 =
(κ3 − 3·1)(κ3 − 0·1)
(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)
(+0− 3)(+0+ 3)



11sstt SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff DD33--CCeenntteerr ((CCllaassss aallggeebbrraa ooff DD33 ))
EEaacchh ccllaassss--ssuumm κ

k
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Spectral analysis of non-commutative “Group-table Hamiltonian”

CCllaassss pprroodduuccttss ggiivvee ssppeeccttrraall ppoollyynnoommiiaall aanndd
aallll--ccoommmmuuttiinngg pprroojjeeccttoorrss PP(α)== PA1, PA2, and PE

CCllaassss rreessoolluuttiioonn iinnttoo ssuumm ooff eigenvalue ·· PPrroojjeeccttoorr

IInnvveerrssee rreessoolluuttiioonn ggiivveess DD33 Character Table

PA1= (κκ3+3·1)(κκ3-0·1)
(+3+3) (+3-0)

PA2= (κκ3-3·1)(κκ3-0·1)
(-3-3) (-3-0)

PE= (κκ3-3·1)(κκ3+3·1)
(+0-3) (+0+3)

0 = (κ3−3·1)P
A1

κ3P
A1 =+3·PA1

0 = (κ3+3·1)P
A2

κ3P
A2 = −3·PA2

0 = (κ3−0·1)P
E

κ3P
E =+0·PE

PA1 =
(κ3 + 3·1)(κ3 − 0·1)
(+3+ 3)(+3− 0)

PA2 =
(κ3 − 3·1)(κ3 − 0·1)
(−3− 3)(−3− 0)

PE =
(κ3 − 3·1)(κ3 + 3·1)
(+0− 3)(+0+ 3)

Irreducible  
characters 
are traces 

χκ(α)=Tr D(α)(rκ)  
of  

irreducible  
representations 

D(α)(rκ)  

PA1 = (κ1 + κ2 + κ3)/6 = (1+ r + r
2 + i1 + i2 + i3)/6

PA2 = (κ1 + κ2 − κ3)/6 = (1+ r + r
2 − i1 − i2 − i3)/6

PE = (2κ1 − κ2 + 0)/3= (21− r − r
2 )/3

κ1 = 1·PA1 + 1·PA2 +  1·PE

κ r = 2·PA1+ 2·PA2 − 1·PE

κ i = 3·PA1 − 3·PA2 + 0·PE

χ k
α χ1

α χ2
α χ3

α

α = A1 1 1 1

α = A2 1 1 −1

α = E 2 −1 0
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PE
xy yx
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PE
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21
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Another
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r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2
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i3 i2 i1 r r2 1
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(α )

°G
χk

(α )*

k
∑ κ k

       = ℓ
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1
6 (1+ r + r

2 − i1 − i2 − i3)
PE = (2κ1 − κ r + 0)/3= (

2
31−

1
3r −

1
3r
2 )

Review: 1st-Stage Spectral resolution of D3 Center (All-commuting class projectors) 
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(α )=Trace D(α )(gk )
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Class ortho-complete Pκ relations
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lα= Irreducible representation (irrep) dimension or level degeneracy
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Rank: ρ(G)=Σ
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DD
33
κ =1 r1+r2 i
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+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

(Fig. 15.2.1 QTCA)

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_5_Ch._15_2013.pdf#page=17
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22nndd SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff CCllaassss PPrroojjeeccttoorr((ss)) ooff DD33

Spectral reduction of non-commutative “Group-table Hamiltonian”

DD33 EExxaammppllee
CCoorrrreellaattee DD33 cchhaarraacctteerrss wwiitthh iittss ssuubbggoouupp((ss)) CC22((ii)) oorr EELLSSEE CC33((rr)) ((CC22 aanndd CC33 ddoonn’’tt ccoommmmuuttee))

Let:

ε=e-2πi/3

0
2

1
2
1
2

0
2
0
2
1
2
1
2

n,n

SSaammee ffoorr Correlation table:

CC22 κ = 1 i3
pp02 = 1 1 /2

pp12 = 1 -1 /2

CC33 κ = 1 r1 r2

pp03= 1 1 1 /3

pp13= 1 ε ε* /3
pp23= 2 ε* ε /3

DD33⊃CC22 02 12
nA1= 1 ·

nA2= · 1

nE = 1 1

11 ==pp02 + pp12
PPA1= PA1 ·

PPA2= · PA2
PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·

nE = · 1 1

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC22-friendly” irep projectors

P(α)11 ==P(α)(pp02 ++ pp12)
==P(α) ++ P(α)

0
2
0
2

1
2
1
2

1
3
1
3

DD33 κ =1 r1+r2 i1+i2+i3
PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6

PPE = 2 -1 0 /3

0
2

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC33-friendly” irreducible projectors

P(α)11 ==P(α)(pp03 + pp13 + pp23)
== P(α) ++ P(α) ++ P(α)

0
2
0
2

DD33⊃CC22 Correlation table
shows which products of
class projector PP(α) with
CC22--uunniitt 11 ==pp

02
++ pp12 will

make IIRRRREEDDUUCCIIBBLLEE P(α) ))

2
3
2
3

PA1=PPA1pp02 =PPA1(1+i3)/2=( 1+ r
1+ r2+ i1+ i2+ i3 )/6

PA2=PPA2pp12 =PPA2(1-i3)/2=( 1+ r
1+ r2 - i1 - i2 - i3 )/6

PE = PPEpp02 = PPE(1+i3)/2=(21- r
1- r2 - i1 - i2+2i3 )/6

PE = PPEpp12 = PPE(1-i3)/2=(21- r
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0
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0
3

0
3
0
3

1
3
1
3

2
3
2
3

Standing-wave 
Subroup chain 
D3⊃C2(ρ3)  
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Rank :  

ρ(G)= ℓ(α )

irrep(α )
∑ =Maximum number of mutually commuting operators
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PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i1 - i2 - i3 )/6
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2.21.18 class 12.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Discrete symmetry subgroups of  O(3) and application to tunneling and vibrational dynamics: 
D3 and C3v group products, classes, and irrep projection operators 

32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups 
Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C3v isomorphic to permutation-S3 
         Relating C2-180°rotations Rz, Cv-plane reflections σz, and inversion I operators 
         Deriving D3 ~ C3v products by group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
         Deriving D3 ~ C3v equivalence transformations and classes  
Non-commutative symmetry expansion and Global-Local solution  
        Global vs Local symmetry and Mock-Mach principle 
        Global vs Local matrix duality for D3 
               Global vs Local symmetry expansion of D3 Hamiltonian 
Group theory and algebra of D3 Center (Class algebra) 
               Self-symmetry (Normalizer).            Lagrange Coset Theorem for classes   
1st-Stage spectral decomposition of “Group-table” Hamiltonian of D3 symmetry 
      All-commuting operators κk                           All-commuting projectors P(α) 
      D3-invariant irep characters χk(α)                     Invariant numbers: Centrum, Rank, and Order 
2nd-Stage spectral decompositions of global/local D3          
      Subgroup chains D3⊃C2 and D3⊃C3 split class projectors                  …and classes 
3rd-Stage spectral decomposition of ALL of D3                          …and of Hamiltonian H 
         GLOBAL vs LOCAL symmetry of states              …and group H parameters{r,i1,i2,i3}
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PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i1 - i2 - i3 )/6
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Standing-wave 
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D3⊃C2(ρ3)  

Moving-wave 
Subroup chain 
D3⊃C3(rp)  

2nd-Stage



11 ==pp03+ pp13+pp23
PPA1= PA1 · ·

PPA2= PA2 · ·

PPE = · PE PE
1
3
1
3
2
3
2
3

0
3
0
3

0
3
0
3

22nndd SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff CCllaassss PPrroojjeeccttoorr((ss)) ooff DD33

Spectral reduction of non-commutative “Group-table Hamiltonian”

DD33 EExxaammppllee
CCoorrrreellaattee DD33 cchhaarraacctteerrss wwiitthh iittss ssuubbggoouupp((ss)) CC22((ii)) oorr EELLSSEE CC33((rr)) ((CC22 aanndd CC33 ddoonn’’tt ccoommmmuuttee))

Let:

ε=e-2πi/3

0
2

1
2
1
2

0
2
0
2
1
2
1
2

n,n

SSaammee ffoorr Correlation table:

CC22 κ = 1 i3
pp02 = 1 1 /2

pp12 = 1 -1 /2

CC33 κ = 1 r1 r2

pp03= 1 1 1 /3

pp13= 1 ε ε* /3
pp23= 2 ε* ε /3

DD33⊃CC22 02 12
nA1= 1 ·

nA2= · 1

nE = 1 1

11 ==pp02 + pp12
PPA1= PA1 ·

PPA2= · PA2
PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·

nE = · 1 1

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC22-friendly” irep projectors

P(α)11 ==P(α)(pp02 ++ pp12)
==P(α) ++ P(α)

0
2
0
2

1
2
1
2

1
3
1
3

DD33 κ =1 r1+r2 i1+i2+i3
PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6

PPE = 2 -1 0 /3

0
2

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC33-friendly” irreducible projectors
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CCoorrrreellaattee DD33 cchhaarraacctteerrss wwiitthh iittss ssuubbggoouupp((ss)) CC22((ii)) oorr EELLSSEE CC33((rr)) ((CC22 aanndd CC33 ddoonn’’tt ccoommmmuuttee))

Let:

ε=e-2πi/3

0
2

1
2
1
2

0
2
0
2
1
2
1
2

n,n

SSaammee ffoorr Correlation table:

CC22 κ = 1 i3
pp02 = 1 1 /2

pp12 = 1 -1 /2

CC33 κ = 1 r1 r2

pp03= 1 1 1 /3

pp13= 1 ε ε* /3
pp23= 2 ε* ε /3

DD33⊃CC22 02 12
nA1= 1 ·

nA2= · 1

nE = 1 1

11 ==pp02 + pp12
PPA1= PA1 ·

PPA2= · PA2
PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·

nE = · 1 1

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC22-friendly” irep projectors

P(α)11 ==P(α)(pp02 ++ pp12)
==P(α) ++ P(α)

0
2
0
2

1
2
1
2

1
3
1
3

DD33 κ =1 r1+r2 i1+i2+i3
PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6

PPE = 2 -1 0 /3

0
2

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC33-friendly” irreducible projectors

P(α)11 ==P(α)(pp03 + pp13 + pp23)
== P(α) ++ P(α) ++ P(α)

0
2
0
2

DD33⊃CC22 Correlation table
shows which products of
class projector PP(α) with
CC22--uunniitt 11 ==pp

02
++ pp12 will

make IIRRRREEDDUUCCIIBBLLEE P(α) ))

2
3
2
3

PA1=PPA1pp02 =PPA1(1+i3)/2=( 1+ r
1+ r2+ i1+ i2+ i3 )/6

PA2=PPA2pp12 =PPA2(1-i3)/2=( 1+ r
1+ r2 - i1 - i2 - i3 )/6

PE = PPEpp02 = PPE(1+i3)/2=(21- r
1- r2 - i1 - i2+2i3 )/6

PE = PPEpp12 = PPE(1-i3)/2=(21- r
1- r2 +i1 + i2-2i3 )/6

PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i1+ i2+ i3 )/6
PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i1 - i2 - i3 )/6
PE = PPEpp13 = PPE(1+ εr1+ ε*r2)/3=(1+ εr1+ ε*r2 )/3
PE = PPEpp23 = PPE(1+ ε*r1+ εr2)/3=(1+ ε*r1+ εr2 )/3

0
3
0
3

0
3
0
3

1
3
1
3

2
3
2
3

2nd-Stage

1

P0202
E

P1212E



AMOP  
reference links 

 on following page

2.21.18 class 12.0: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Discrete symmetry subgroups of  O(3) and application to tunneling and vibrational dynamics: 
D3 and C3v group products, classes, and irrep projection operators 

32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups 
Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C3v isomorphic to permutation-S3 
         Relating C2-180°rotations Rz, Cv-plane reflections σz, and inversion I operators 
         Deriving D3 ~ C3v products by group definition ⏐g〉=g⏐1〉 of position ket ⏐g〉
         Deriving D3 ~ C3v equivalence transformations and classes  
Non-commutative symmetry expansion and Global-Local solution  
        Global vs Local symmetry and Mock-Mach principle 
        Global vs Local matrix duality for D3 
               Global vs Local symmetry expansion of D3 Hamiltonian 
Group theory and algebra of D3 Center (Class algebra) 
               Self-symmetry (Normalizer).            Lagrange Coset Theorem for classes   
1st-Stage spectral decomposition of “Group-table” Hamiltonian of D3 symmetry 
      All-commuting operators κk                           All-commuting projectors P(α) 
      D3-invariant irep characters χk(α)                     Invariant numbers: Centrum, Rank, and Order 
2nd-Stage spectral decompositions of global/local D3          
      Subgroup chains D3⊃C2 and D3⊃C3 split class projectors                  …and classes 
3rd-Stage spectral decomposition of ALL of D3                          …and of Hamiltonian H 
         GLOBAL vs LOCAL symmetry of states              …and group H parameters{r,i1,i2,i3}



22nndd SStteepp:: ((ccoonnttdd..))WWhhiillee ssoommee ccllaassss pprroojjeeccttoorrss PP(α) sspplliitt iinn ttwwoo,,
ssoo AALLSSOO DDOO ssoommee ccllaasssseess κκk

n,n

4 different
idempotent
P(α)n,n

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

0303

0303

1313

2323

PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i
1
+ i
2
+ i
3
)/6

PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i
1
- i
2
- i
3
)/6

PE = PPEpp13 = PPE(1+ εr1+ ε*r2)/3=(1+ εr1+ ε*r2 )/3
PE = PPEpp23 = PPE(1+ ε*r1+ ε r2)/3=(1+ ε*r1+εr2 )/3

PPEE sspplliittss iinnttoo PPEE ==PE +PE ,,
ccllaassss κκi sspplliittss iinnttoo κκ aanndd κκ

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

0202 1212 PPEE sspplliittss iinnttoo PPEE ==PE +PE ,,
ccllaassss κκr sspplliittss iinnttoo κκr1 aanndd κκr2i

12
i
3

23231313

Centrum κ(DD
33
)=3

idempotents
PP(α)

Rank ρ(DD
33
)=4

idempotents
P(α)

ε=e−2πi/3

2nd-Stage

Compare ahead to Lect.17 p. 12 



22nndd SStteepp:: ((ccoonnttdd..))WWhhiillee ssoommee ccllaassss pprroojjeeccttoorrss PP(α) sspplliitt iinn ttwwoo,,
ssoo AALLSSOO DDOO ssoommee ccllaasssseess κκk

n,n

4 different
idempotent
P(α)n,n

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

0303

0303

1313

2323

PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i
1
+ i
2
+ i
3
)/6

PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i
1
- i
2
- i
3
)/6

PE = PPEpp13 = PPE(1+ εr1+ ε*r2)/3=(1+ εr1+ ε*r2 )/3
PE = PPEpp23 = PPE(1+ ε*r1+ ε r2)/3=(1+ ε*r1+εr2 )/3

PPEE sspplliittss iinnttoo PPEE ==PE +PE ,,
ccllaassss κκi sspplliittss iinnttoo κκ aanndd κκ

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

0202 1212 PPEE sspplliittss iinnttoo PPEE ==PE +PE ,,
ccllaassss κκr sspplliittss iinnttoo κκr1 aanndd κκr2i

12
i
3

23231313

Centrum κ(DD
33
)=3

idempotents
PP(α)

Rank ρ(DD
33
)=4

idempotents
P(α)

|1〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i
1

r
2

r
1

i
3

i
2

Rank ρ(DD
33
)= 4

parameters in
either case

FFoorr LLooccaall

DD
33
⊃CC

22
((ii33))

ssyymmmmeettrryy

i=i
2

must

equal

i
1

r=r
2

must

equal

r
1

i
3
is free parameter

FFoorr LLooccaall

DD
33
⊃CC

33
((rrp))

ssyymmmmeettrryy

i=i
1
=i
2
=i
3

r
1
and r

2
are free

ε=e−2πi/3

2nd-Stage



33rrdd aanndd FFiinnaall SStteepp::

SSppeeccttrraall rreessoolluuttiioonn ooff AALLLL 66 ooff DD33 ::

The old ‘gg-equals-11-times-gg-times-11’ Trick

Order
ο(DD

33
)=6

projectors
P(α)m,n

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

Centrum κ(DD
33
)=3

idempotents
PP(α)

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

Rank ρ(DD
33
)=4

idempotents
P(α)n,n

PA1=x,x
PA2=y,y

PE =
PE =
x,x

y,y

PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSiixx DD
33
pprroojjeeccttoorrss:: 44 iiddeemmppootteennttss ++ 22 nniillppootteennttss ((ooffff--ddiiaagg..))

g=Σ
m
Σ
e
Σ
b
D(m) PP(m)

PP(m)= (norm)ΣgD
(m)* g

ebeb

ebeb

(g)

(g)
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33rrdd aanndd FFiinnaall SStteepp::

SSppeeccttrraall rreessoolluuttiioonn ooff AALLLL 66 ooff DD33 ::

The old ‘gg-equals-11-times-gg-times-11’ Trick

Order
ο(DD

33
)=6

projectors
P(α)m,n

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

Centrum κ(DD
33
)=3

idempotents
PP(α)

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

Rank ρ(DD
33
)=4

idempotents
P(α)n,n

PA1=x,x
PA2=y,y

PE =
PE =
x,x

y,y

PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSiixx DD
33
pprroojjeeccttoorrss:: 44 iiddeemmppootteennttss ++ 22 nniillppootteennttss ((ooffff--ddiiaagg..))

g=Σ
m
Σ
e
Σ
b
D(m) PP(m)

PP(m)= (norm)ΣgD
(m)* g

ebeb

ebeb

(g)

(g)

g = 1 ⋅g ⋅1 = (Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E ) ⋅g ⋅(Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E )

Compare ‘ahead’ to Lect.17 p.14 

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_17_3.16.17.pdf#page=14


33rrdd aanndd FFiinnaall SStteepp::

SSppeeccttrraall rreessoolluuttiioonn ooff AALLLL 66 ooff DD33 ::

The old ‘gg-equals-11-times-gg-times-11’ Trick

Order
ο(DD

33
)=6

projectors
P(α)m,n

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

Centrum κ(DD
33
)=3

idempotents
PP(α)

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

Rank ρ(DD
33
)=4

idempotents
P(α)n,n

PA1=x,x
PA2=y,y

PE =
PE =
x,x

y,y

PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSiixx DD
33
pprroojjeeccttoorrss:: 44 iiddeemmppootteennttss ++ 22 nniillppootteennttss ((ooffff--ddiiaagg..))

g=Σ
m
Σ
e
Σ
b
D(m) PP(m)

PP(m)= (norm)ΣgD
(m)* g

ebeb

ebeb

(g)

(g)

g = 1 ⋅g ⋅1 = (Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E ) ⋅g ⋅(Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E )

g = 1 ⋅g ⋅1 = Px ,x
A1 ⋅g ⋅Px ,x

A1 +        0         +        0       +        0        

                     +   0     +  Py ,y
A2 ⋅g ⋅Py ,y

A2 +        0        +        0

                     +   0       +       0       + Px ,x
E ⋅g ⋅Px ,x

E + Px ,x
E ⋅g ⋅Py ,y

E       

                     +   0       +       0       + Py ,y
E ⋅g ⋅Px ,x

E + Py ,y
E ⋅g ⋅Py ,y

E

Pµmn g-expansion in Lect.17 p. 35-51 Compare ‘ahead’ to Lect.17 p.14 

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_17_3.16.17.pdf#page=35
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_17_3.16.17.pdf#page=14


33rrdd aanndd FFiinnaall SStteepp::

SSppeeccttrraall rreessoolluuttiioonn ooff AALLLL 66 ooff DD33 ::

The old ‘gg-equals-11-times-gg-times-11’ Trick

Order
ο(DD

33
)=6

projectors
P(α)m,n

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

Centrum κ(DD
33
)=3

idempotents
PP(α)

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

Rank ρ(DD
33
)=4

idempotents
P(α)n,n

PA1=x,x
PA2=y,y

PE =
PE =
x,x

y,y

PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSiixx DD
33
pprroojjeeccttoorrss:: 44 iiddeemmppootteennttss ++ 22 nniillppootteennttss ((ooffff--ddiiaagg..))

g=Σ
m
Σ
e
Σ
b
D(m) PP(m)

PP(m)= (norm)ΣgD
(m)* g

ebeb

ebeb

(g)

(g)

g = 1 ⋅g ⋅1 = (Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E ) ⋅g ⋅(Px ,x
A1 + Py ,y

A2 + Px ,x
E + Py ,y

E )

g = 1 ⋅g ⋅1 = Px ,x
A1 ⋅g ⋅Px ,x

A1 +        0         +        0       +        0        

                     +   0     +  Py ,y
A2 ⋅g ⋅Py ,y

A2 +        0        +        0

                     +   0       +       0       + Px ,x
E ⋅g ⋅Px ,x

E + Px ,x
E ⋅g ⋅Py ,y

E       

                     +   0       +       0       + Py ,y
E ⋅g ⋅Px ,x

E + Py ,y
E ⋅g ⋅Py ,y

E

where:
Px ,x
A1 ⋅g ⋅Px ,x

A1 = DA1 (g)Px ,x
A1

Py ,y
A2 ⋅g ⋅Py ,y

A2 = DA2 (g)Py ,y
A2

Px ,x
E ⋅g ⋅Px ,x

E = Dx ,x
E (g)Px ,x

E Px ,x
E ⋅g ⋅Py ,y

E = Dx ,y
E (g)Px ,y

E

Py ,y
E ⋅g ⋅Px ,x

E = Dy ,x
E (g)Py ,x

E Py ,y
E ⋅g ⋅Py ,y

E = Dy ,y
E (g)Py ,y

E

Need to Define  
6 Irreducible 

Projectors Pm, n
(α )

Order °(D3) = 6



33rrdd aanndd FFiinnaall SStteepp::

SSppeeccttrraall rreessoolluuttiioonn ooff AALLLL 66 ooff DD33 ::

The old ‘gg-equals-11-times-gg-times-11’ Trick

Order
ο(DD

33
)=6

projectors
P(α)m,n

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

Centrum κ(DD
33
)=3

idempotents
PP(α)

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6
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https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_17_3.16.17.pdf#page=23
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A1-block

A2-block

(Local Symmetry=>off-diagonal=0)

H r r i i i1 2 1 2 3

3

r1=r2=r1*=r, i1=i2=i1*= i
+ + +r i i2 2 3HA1-level:
+ - -r i i2 2 3HA2-level:
- - +r i i3HEx-level:
- + -r iHEy-level: i

gives:

mn (g)l(µ)
°G mn

(µ)= ΣgD
(µ)* g

Pµmn g-expansion 
in Lect.17 p. 35-51

Rigorous Global vs Local  
Calculus begins on p.90 of 
Lecture 17. Matrix forms on  
p. 125-129 and p. 130-146.

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_17_3.16.17.pdf#page=35
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See p. 10-41 of  
Lecture 18

MolVibes Web Application: https://modphys.hosted.uark.edu/markup/MolVibesWeb.html
MolVibes Web Simulation 
 3 Atom with C3v symmetry
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