William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C $C_{2}$-axis $D_{3}$ vs. 3-C $C_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$
Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathbf{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $\boldsymbol{D}_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D ${ }_{3}$ symmetry
All-commuting operators $\mathbf{K}_{k} \quad$ All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}{ }^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local $D_{3}$
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors
...and classes
3rd-Stage spectral decomposition of $A L L$ of $D_{3}$
GLOBAL vs LOCAL symmetry of states
...and of Hamiltonian $\mathbf{H}$ ...and group $\mathbf{H}$ parameters $\left\{r, i_{1}, i_{2}, i_{3}\right\}$

## AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page
Quantum Theory for the Computer Age
2014 AMOP
UAF Physics UTube channel
Principles of Symmetry, Dynamics, and Spectroscopy
Classical Mechanics with a Bang!
2017 Group Theory for QM
2018 AMOP
Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978
Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984
Galloping waves and their relativistic properties - aip-1985-Harter
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979
Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)
Theory of hyperfine and superfine levels in symmetric polyatomic molecules.
I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)
II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)
Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59- icp-Reimer-Harter-1997 (HiRez)
Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013
Rotation-vibration spectra of icosahedral molecules.
I) Icosahedral symmetry analysis and fine structure - harter-weeks-icp-1989
II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-icp-1989
III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30-2013
AMOP Ch 32 Molecular Symmetry and Dynamics - 2019
AMOP Ch 0 Space-Time Symmetry - 2019
RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)
Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996
Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001
*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,

AMOP reference links on page 2
2.21.18 class 12.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$ Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathbf{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes

## Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian Group theory and algebra of $\boldsymbol{D}_{3}$ Center (Class algebra)

Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D ${ }_{3}$ symmetry
All-commuting operators $\mathbf{K}_{k} \quad$ All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}{ }^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order 2nd-Stage spectral decompositions of global/local D3

Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$

Crystal-Point Group Zoo having 32 groups (Showing 16 Abelian Crystal Groups)

Fig. 2.11.1 PSDS


Abelian means all its elements
commute

Crystal-Point Group Zoo having 32 groups (Showing


The other 16 crystal-point groups
are
Non-Abelian

$\mathrm{D}_{\mathbf{4 h}}$


16 Abelian Crystal Groups)

Fig. 2.11.1 PSDS

Abelian means all its elements
commute



Crystal-Point Group Zoo having 32 groups (Showing 16 Abelian Crystal Groups)

Fig. 2.11.1 PSDS

Abelian means all its elements
commute
$\mathrm{D}_{4 \mathrm{~h}}$


From GTQM Lecture 12.6 p. 134
Character Trace of n-fold rotation
where: $\ell^{j}=2 j+1$
is $U(2)$ irrep dimension

$$
\chi^{j}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{\pi}{n}(2 j+1)}{\sin \frac{\pi}{n}}=\frac{\sin \frac{\pi \ell^{J}}{n}}{\sin \frac{\pi}{n}}
$$

To be a crystal-point group the Character Trace of $n$-fold vector rotation for: $\ell^{l}=2+1=3$ $\chi^{1}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{\pi}{1}(2 j+1)}{\sin \frac{\pi}{n}}=\frac{\sin \frac{3 \pi}{n}}{\sin \frac{\pi}{n}}=$ integer
some elements
so not commute


Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

$$
\begin{aligned}
& \frac{\sin \frac{3 \pi}{2}}{\sin \frac{\pi}{2}}=-1(n=2 \mathrm{ok}) \\
& \frac{\sin \frac{3 \pi}{3}}{\sin \frac{\pi}{3}}=+1(n=3 \mathrm{ok}) \\
& \frac{\sin \frac{3 \pi}{4}}{\sin \frac{\pi}{4}}=+1(n=4 \mathrm{ok}) \\
& \frac{\sin \frac{3 \pi}{5}}{\sin \frac{\pi}{5}}=G^{+} \quad(n=5 \mathrm{NO}!) \\
& \frac{\sin \frac{3 \pi}{6}}{\sin \frac{\pi}{6}}=+2(n=6 \mathrm{ok})
\end{aligned}
$$

Crystal-Point Group Zoo having 32 groups (Showing 16 Abelian Crystal Groups)

Fig. 2.11.1 PSDS


The other 16 crystal-point groups are
$\begin{array}{ll}\mathrm{D}_{4} & \\ \mathrm{D}_{2 \mathrm{~d}} & \mathrm{D}_{4 \mathrm{~h}}\end{array}$


Non-Abelian


Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

# Abelian shown in Black 

 Non-Abelian in \VTThif:Crystal-Point Group Zoo having 32 groups
(Showing
16 Non-Abelian
Crystal Groups)
Fig. 2.11.1 PSDS

Abelian
means all its elements
commute
$\longrightarrow$ most groups are Non-Abelian

and most groups are unkown to physicsts

Non-Abelian means

some elements
do not commute
Log-histogram of all groups of order

$$
{ }^{\circ} G=1 \text { to } 64
$$

Abelian shown in Black


Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 16 non-Abelian groups. (See also Figure 2.11.1.)

# 2.21.18 class 12.0: Symmetry Principles for Advanced Atomic-Molecular-Optical-Physics 

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics: $\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators

32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$
Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathbf{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $\boldsymbol{D}_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D ${ }_{3}$ symmetry
All-commuting operators $\mathbf{K}_{k} \quad$ All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}{ }^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors
...and classes
3rd-Stage spectral decomposition of $A L L$ of $D_{3}$
GLOBAL vs LOCAL symmetry of states
...and of Hamiltonian $\mathbf{H}$ ... and group $\mathbf{H}$ parameters $\left\{r, i_{1}, i_{2}, i_{3}\right\}$

William G. Harter - University of Arkansas
Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$
Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathbf{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $D_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of $D_{3}$ symmetry

All-commuting operators $\boldsymbol{\kappa}_{k}$ All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}\left({ }^{(\alpha)} \quad\right.$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local $D_{3}$
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$ GLOBAL vs LOCAL symmetry of states ... and of Hamiltonian $\mathbf{H}$ ... and group $\mathbf{H}$ parameters $\left\{r, i_{1}, i_{2}, i_{3}\right\}$


William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $C_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$ Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathbf{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $D_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D ${ }_{3}$ symmetry

All-commuting operators $\mathbf{\kappa}_{k}$ All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order 2nd-Stage spectral decompositions of global/local $D_{3}$

Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$ GLOBAL vs LOCAL symmetry of states ... and of Hamiltonian $\mathbf{H}$ ... and group $\mathbf{H}$ parameters $\left\{r, i_{1}, i_{2}, i_{3}\right\}$

3-Dihedral-axes group $D_{3}$ vs.


Figure 3.1.3 Pictorial comparison of $D_{3}$ and $C_{3 v}$ symmetry. A propeller having $D_{3}$ symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, $\rho_{3}$ is a $180^{\circ}$ rotation around the $y$ axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)

*isomorphic means mathematically the same abstract group even if physically different action.

Showing that $D_{3}$ and $C_{3 v}$ are isomorphic* ( $D_{3} \sim C_{3 v}$ share product table)

3-Dihedral-axes group $D_{3}$ vs.


3-Vertical-mirror-plane group $C_{3 v}$ $\mathrm{c}_{3 \mathrm{v}}$


Figure 3.1.3 Pictorial comparison of $D_{3}$ and $C_{3 v}$ symmetry. A propeller having $D_{3}$ symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, $\rho_{3}$ is a $180^{\circ}$ rotation around the $y$ axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$ maps to: XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group $D_{3}$ vs.


Figure 3.1.3 Pictorial comparison of $D_{3}$ and $C_{3 v}$ symmetry. A propeller having $D_{3}$ symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, $\rho_{3}$ is a $180^{\circ}$ rotation around the $y$ axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$ maps to: XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group $D_{3} \quad v s$.


3-Vertical-mirror-plane group $C_{3 v}$

## $\mathrm{C}_{3 \mathrm{v}}$

$$
\sigma_{3}=\left(\begin{array}{ccc}
+1 & \cdot & \cdot \\
\cdot & -1 & \cdot \\
\cdot & \cdot & +1
\end{array}\right)
$$

$=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$=\begin{aligned} & \rho_{3} \cdot \mathbf{I} \\ & =\end{aligned} \quad \mathbf{I} \cdot \rho_{3}$
Inversion

$$
\mathbf{I}=-\mathbf{1}
$$

commutes
with

$$
\text { all } \mathbf{R}
$$

*isomorphic means mathematically the same abstract group even if physically different action.

3-Dihedral-axes group $D_{3} \quad v s$.

Fig. 3.1.3 PSDS


Figure 3.1.3 Pictorial comparison of $D_{3}$ and $C_{3 v}$ symmetry. A propeller having $D_{3}$ symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, $\rho_{3}$ is a $180^{\circ}$ rotation around the $y$ axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$ maps to: XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
$180^{\circ} D_{3}-\rho_{2}$-axis-rotation: $\rho_{2}$ maps to $: \perp \rho_{2}$-mirror-plane reflection: $\sigma_{2}=\rho_{2} \cdot \mathrm{I}=\mathrm{I} \rho_{2}$

| Inversion |
| :---: |
| $\mathbf{I}=\mathbf{-}$ |
| commutes |
| with |
| all $\mathbf{R}$ |

*isomorphic means mathematically the same abstract group even if physically different action.

Showing that $D_{3}$ and $C_{3 v}$ are isomorphic* $\left(D_{3} \sim C_{3 v}\right.$ share product table)

3-Dihedral-axes group $D_{3} \quad v s$. Fig.3.1.3PSDS

Figure 3.1.3 Pictorial comparison of $D_{3}$ and $C_{3 v}$ symmetry. A propeller having $D_{3}$ symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, $\rho_{3}$ is a $180^{\circ}$ rotation around the $y$ axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)

## 3-Vertical-mirror-plane group $C_{3 v}$ <br> $\mathrm{c}_{3 \mathrm{v}}$


$=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$=\begin{array}{r}\rho_{3} \mathbf{I}=\quad \mathbf{I} \cdot \rho_{3}\end{array}, l$

maps to: XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
Inversion
$\mathbf{I}=\mathbf{-}$
commutes
with
all $\mathbf{R}$ maps to $: \perp \rho_{2}$-mirror-plane reflection: $\sigma_{2}=\rho_{2} \cdot \mathrm{I}=\mathrm{I} \cdot \rho_{2}$ maps to $: \perp \rho_{1}$-mirror-plane reflection: $\sigma_{1}=\rho_{1} \cdot \mathrm{I}=\mathrm{I} \cdot \rho_{1}$
*isomorphic means mathematically the same abstract group even if physically different action.

Showing that $D_{3}$ and $C_{3 v}$ are isomorphic* ( $D_{3} \sim C_{3 v}$ share product table)

3-Dihedral-axes group $D_{3} \quad v s$. Fig.3.1.3PSDS

Figure 3.1.3 Pictorial comparison of $D_{3}$ and $C_{3 v}$ symmetry. A propeller having $D_{3}$ symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, $\rho_{3}$ is a $180^{\circ}$ rotation around the $y$ axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)

## 3-Vertical-mirror-plane group $C_{3 v}$ <br> $\mathrm{c}_{3 \mathrm{~V}}$

$$
\sigma_{3}=\left(\begin{array}{ccc}
+1 & \cdot & \cdot \\
\cdot & -1 & \cdot \\
\cdot & \cdot & +1
\end{array}\right)
$$

$=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$=\begin{aligned} & \rho_{3} \mathbf{I}=\end{aligned} \quad \mathbf{I} \cdot \rho_{3}$

$$
180^{\circ} D_{3} \text {-Y-axis-rotation: } \rho_{3}=\left(\begin{array}{ccc}
-1 & \cdot & \cdot \\
\cdot & +1 & \cdot \\
\cdot & \cdot & -1
\end{array}\right) \text { maps to : XZ-mirror-plane reflection: } \sigma_{3}=\left(\begin{array}{ccc}
+1 & \cdot & \cdot \\
\cdot & -1 & \cdot \\
\cdot & \cdot & +1
\end{array}\right)
$$

| Inversion |
| :---: |
| $\mathbf{I}=\mathbf{- 1}$ |
| commutes |
| with |
| all $\mathbf{R}$ | maps to $: \perp \rho_{2}$-mirror-plane reflection: $\sigma_{2}=\rho_{2} \cdot \mathrm{I}=\mathrm{I} \cdot \rho_{2}$ maps to $: \perp \rho_{1}$-mirror-plane reflection: $\sigma_{1}=\rho_{1} \cdot \mathrm{I}=\mathrm{I} \cdot \rho_{1}$ maps to: $\quad C_{3 v}$-product: $\sigma_{1} \sigma_{2}=\rho_{1} \mathrm{II} \rho_{2}=\rho_{1} \rho_{2}$

*isomorphic means mathematically the same abstract group even if physically different action.

Showing that $D_{3}$ and $C_{3 v}$ are isomorphic* ( $D_{3} \sim C_{3 v}$ share product table)

3-Dihedral-axes group $D_{3}$ vs.


3-Vertical-mirror-plane group $C_{3 v}$

$=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$
$=\begin{array}{r}\rho_{3} \mathbf{I} \\ =\end{array} \quad \mathbf{I} \cdot \rho_{3}$

$$
=\quad \rho_{3} \mathbf{I} \quad=\quad \mathbf{I} \cdot \rho_{3}
$$

Figure 3.1.3 Pictorial comparison of $D_{3}$ and $C_{3 v}$ symmetry. A propeller having $D_{3}$ symmetry is shown next to a three-plane paddle having $C_{3 v}$ symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, $\rho_{3}$ is a $180^{\circ}$ rotation around the $y$ axis, while $I \rho_{3}=\sigma_{3}$ is a reflection through the $x z$ plane. (Here axes are fixed and the objects rotate.)
$180^{\circ} D_{3}$-Y-axis-rotation: $\rho_{3}=\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1\end{array}\right)$ maps to: XZ-mirror-plane reflection: $\sigma_{3}=\left(\begin{array}{ccc}+1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1\end{array}\right)$
Inversion
$\mathbf{I}=\mathbf{- 1}$
commutes
with
all $\mathbf{R}$
$180^{\circ} D_{3}-\rho_{2}$-axis-rotation: $\rho_{2}$ $180^{\circ} D_{3}-\rho_{1}$-axis-rotation: $\rho_{1}$

$$
\begin{array}{ll}
D_{3} \text {-product: } & \rho_{1} \rho_{2} \\
D_{3} \text {-product: } & \rho_{1} \mathbf{r}^{p}
\end{array}
$$

maps to $: \perp \rho_{2}$-mirror-plane reflection: $\sigma_{2}=\rho_{2} \cdot \mathrm{I}=\mathrm{I} \cdot \rho_{2}$ maps to $: \perp \rho_{1}$-mirror-plane reflection: $\sigma_{1}=\rho_{1} \cdot \mathrm{I}=\mathrm{I} \cdot \rho_{1}$ maps to: $\quad C_{3 v}$-product: $\sigma_{1} \sigma_{2}=\rho_{1} \mathrm{II} \rho_{2}=\rho_{1} \rho_{2}$ maps to: $\quad C_{3 v}$-product: $\sigma_{1} \mathbf{r}^{p}=\rho_{1} \mathbf{I} \mathbf{r}^{p}=\rho_{1} \mathbf{r}^{p} \mathrm{I}=\mathrm{I} \rho_{1} \mathbf{r}^{p}$
*isomorphic means mathematically the same abstract group even if physically different action.

Showing that $D_{3}$ and $C_{3 v}$ are isomorphic* ( $D_{3} \sim C_{3 v}$ share product table)

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$ Relating $C_{2}$ - $180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathbf{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $D_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of $D_{3}$ symmetry

All-commuting operators $\mathbf{K}_{k}$
All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local $D_{3}$
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$ GLOBAL vs LOCAL symmetry of states ... and of Hamiltonian $\mathbf{H}$ ... and group $\mathbf{H}$ parameters $\left\{r, i_{1}, i_{2}, i_{3}\right\}$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Building
$C_{3 v}$ Group
"slide-rule"


Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$



$$
\sigma_{3}|1\rangle=\mid{ }_{z} z
$$



Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$

left is last
(like Hebrew)

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$


Other $\boldsymbol{\sigma}_{1}$ results from graph:

$$
\begin{aligned}
& \boldsymbol{\sigma}_{1}\left\{\mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}\right\} \\
& =\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}, \mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}
\end{aligned}
$$


$\sigma_{3}|1\rangle=\left|{ }^{2}\right\rangle$


Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$


Example: Find $C_{3 v}$ product $\boldsymbol{\sigma}_{1} \mathbf{r}^{1}|1\rangle=\boldsymbol{\sigma}_{1}\left|\mathbf{r}^{1}\right\rangle$


Other $\boldsymbol{\sigma}_{1}$ results from graph: $\boldsymbol{\sigma}_{1}\left\{\mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}\right\}$
$=\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}, \mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$
....whole $C_{3 v}$ group table:


$\left.\sigma_{3}|1\rangle=\mid \sigma_{3}\right)^{2}$



William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-Cr-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$ Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathbf{g}|1\rangle$ of position ket $|\mathrm{g}\rangle<$ Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian Group theory and algebra of $\boldsymbol{D}_{3}$ Center (Class algebra)

Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of $D_{3}$ symmetry
All-commuting operators $\mathbf{K}_{k} \quad$ All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local $D_{3}$
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$ GLOBAL vs LOCAL symmetry of states

Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes


Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes


Seems to imply: $\mathbf{r}^{1} \rho_{3}\left(\mathbf{r}^{1}\right)^{-1}=\mathbf{r}^{1} \rho_{3} \mathbf{r}^{2}=\rho_{1}$


Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes


Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes


William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$
Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{\boldsymbol{z}}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathrm{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $D_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D ${ }_{3}$ symmetry
All-commuting operators $\mathbf{K}_{k} \quad$ All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local $D_{3}$
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes
3rd-Stage spectral decomposition of $A L L$ of $D_{3}$
... and of Hamiltonian $\mathbf{H}$
GLOBAL vs LOCAL symmetry of states

Non-commutative symmetry expansion: Global-Local solution Abelian (Commutative) $C_{2}, C_{3}, \ldots, C_{6} \ldots$
H diagonalized by $r^{p}$ symmetry operators that COMMUTE with $H \quad\left(r^{p} H=H r^{p}\right)$,
and with each other $\left(r^{p} p^{q}=r^{p+q}=r^{q} p^{p}\right)$.

Non-commutative symmetry expansion: Global-Local solution Abelian (Commutative) $C_{2}, C_{3}, \ldots, C_{6} \ldots$
$H$ diagonalized by $r^{p}$ symmetry operators that COMMUTE with $H \quad\left(r^{D} H=H r^{p}\right)$, and with each other $\left(r^{p} r^{q}=r^{p+q}=r^{q} p^{p}\right)$.

## What we need to learn now:

Non-Abelian (do not commute) $D_{3}, O_{h} \ldots$ While all H symmetry operations COMMUTE with $H \quad(\mathrm{U} H=H \mathbf{U})$
most do not with each other ( $\mathbf{V} \neq \mathbf{V} \mathbf{~})$.

Non-commutative symmetry expansion: Global-Local solution
Abelian (Commutative) $C_{2}, C_{2}, \ldots, C_{6} \ldots$
$H$ diagonalized by $r^{p}$ symmetry operators that COMMUTE with $H \quad\left(r^{p} H=H r^{p}\right)$, and with each other $\left(r^{p} p^{q}=r^{p+q}=r^{q} p^{p}\right)$.

## What we need to learn now:

Non-Abelian (do not commute) $D_{3}, O_{h}, \ldots$ While all H symmetry operations COMMUTE with $H \quad(\mathbf{U} H=H \mathbf{U})$
most do not with each other ( $\mathbf{U} \mathbf{V} \neq \mathbf{V} \mathbf{~ )}$.

Q: So how do we write $\boldsymbol{H}$ in terms of non-commutative $\mathbf{U}$ ?

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
    Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C C iv isomorphic to permutation-S S
        Relating C2-180'rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\boldsymbol{z}}{}\mathrm{ , and inversion I operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
    Non-commutative symmetry expansion and Global-Local solution
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
        Group theory and algebra of D}\mp@subsup{D}{3}{}\mathrm{ Center (Class algebra)
            Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
    All-commuting operators }\mp@subsup{\mathbf{K}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
    D3-invariant irep characters }\mp@subsup{\chi}{k}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D}\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
        GLOBAL vs LOCAL symmetry of states
        ... and of Hamiltonian H
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```

Global vs Local symmetry and Mock-Mach principle
"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...vanveck, Casimir..., Mach, Newton, Archinedes..)

## Lab-fixed (Extrinsic-Global)R



Global vs Local symmetry and Mock-Mach principle
"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...vanvecc, Casimiri... Mach, Newton, Archimedes..)

## Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$



Body Based Operations


Global vs Local symmetry and Mock-Mach principle
"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...vanvecc, Casimiri... Mach, Newton, Archimedes..)

## Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$



Body Based Operations
$\mathbf{R}$ commutes
with all $\overline{\mathbf{R}}$
(because they're independent or "unentangled")


Global vs Local symmetry and Mock-Mach principle
"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...Vanveck, Casimit..., Mach, Newton, Archinedes..)

## Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$


$\mathbf{R}$ commutes with all $\overline{\mathbf{R}}$
(because they're independent or "unentangled")

Mock-Mach relativity principle $\mathbf{R}|1\rangle=\overline{\mathbf{R}}^{-1}|1\rangle$
...for one state |1) only!


Global vs Local symmetry and Mock-Mach principle
> "Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...Vanveck, Casimit..., Mach, Newton, Archinedes..)

## Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$


$\mathbf{R}$ commutes
with all $\overline{\mathbf{R}}$
(because they're independent
or "unentangled")
Mock-Mach
relativity principle
$\mathbf{R}|1\rangle=\overline{\mathbf{R}}^{-1}|1\rangle$

Body Based Operations

...But how do you actually make the $\mathbf{R}$ and $\overline{\mathbf{R}}$ operations?

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C C vv isomorphic to permutation-S S
    Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{\mathbf{z}}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\boldsymbol{z}}{}\mathrm{ , and inversion I operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
    Non-commutative symmetry expansion and Global-Local solution
        Global vs Local symmetry and Mock-Mach principle
    - Global vs Local matrix duality for D D 
    Global vs Local symmetry expansion of D D Hamiltonian
    Group theory and algebra of D}\mp@subsup{D}{3}{}\mathrm{ Center (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
    All-commuting operators }\mp@subsup{\mathbf{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
    D}\mp@subsup{]}{3}{}\mathrm{ -invariant irep characters }\mp@subsup{\chi}{k}{(\alpha)}\mathrm{ (avvariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D}\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
    GLOBAL vs LOCAL symmetry of states
    ... and of Hamiltonian H
    ...and group H parameters {r,i, i, i, i, i_ }
```

Example of GLOBAL vs LOCAL symmetry algebra for $D 3 \sim C 3 v$


Here group operator notation 1, $\mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}$ matches $1, \mathbf{r}^{1}, \mathbf{r}^{2}, \rho_{1}, \rho_{2}, \rho_{3}$ used previously.


Example of GLOBAL vs LOCAL symmetry algebra for $D 3 \sim C 3 v$


Here group operator notation 1, $\mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}$ matches $1, \mathbf{r}^{1}, \mathbf{r}^{2}, \rho_{1}, \rho_{2}, \rho_{3}$ used previously. $D_{3}$ Group $\rho_{3} \rho_{3}$
"slide-rule" axis


Global vs Local symmetry matrix duality for $D_{3}$

## Example of RELATIVITY-DUALITY for $\underline{D}_{\underline{3}} \underline{\sim}_{\underline{3 v}}$

To represent external $\{. . T, \mathbf{U}, \mathbf{V}, \ldots\}$ switch $g \underset{g^{\dagger}}{\leftrightarrows}$ on top of group table



Global vs Local symmetry matrix duality for $D_{3}$ Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$
To represent external $\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots\}$ switch $\mathrm{g} \underset{\mathrm{g}^{\dagger}}{ }$ on top of group table


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\[
A \rightarrow A \text { A }
\]} \\
\hline 1 \& \\
\hline \(\mathbf{r}^{2}\) \& \begin{tabular}{cccc|ccc}
1 \& \(\mathbf{r}^{2}\) \& \(\mathbf{i}_{3}\) \& \(\mathbf{i}_{1}\) \& \(\mathbf{i}_{2}\) \\
\(\mathbf{r}\) \& \(\mathbf{1}\) \& \(\mathbf{i}_{2}\) \& \(\mathbf{i}_{13}\) \& \(\mathbf{i}_{1}\)
\end{tabular} \\
\hline \(\mathbf{i}_{1}\)
\(\mathbf{i}_{2}\)
\(\mathbf{i}_{1}\)
\(\mathbf{i}_{3}\) \& [1/ \\
\hline \& \(D_{3}\) global
gg

table <br>
\hline
\end{tabular}


$\mathrm{D}_{3}$ local
To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\rightarrow}{\leftrightarrows} \mathbf{g}^{\dagger}$ on side of group table $\mathrm{g}^{\dagger} \mathrm{g}$-table


| \$ 1 | r $\mathbf{r}^{2}$ | $\mathbf{i}_{1} \mathbf{i}_{2}$ ( $\mathbf{1}_{3}$ |
| :---: | :---: | :---: |
|  | $\begin{array}{ll} 1 & \mathbf{r} \\ \mathbf{r}^{2} & 1 \end{array}$ | $\mathbf{i}_{2}\left(\mathbf{I}_{3}\right) \mathbf{i}_{1}$ |
|  | $i_{2}$ ( ${ }^{13}$ | $1 \mathrm{r} \mathrm{r}^{2}$ |
| $i_{2}$ | (13) $\mathbf{i}_{1}$ | $\mathrm{r}^{2} 11 \mathrm{r}$ |
| 4 | i, $i_{2}$ | r $\mathrm{r}^{2} 1$ |

Global vs Local symmetry matrix duality for $D_{3}$ Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$
To represent external $\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots\}$ switch $\mathrm{g} \underset{\mathrm{g}^{\dagger}}{ }$ on top of group table

| $R^{G}(\mathbb{l})=$ | $R^{G}(\mathbf{r})=$ | $R^{G}\left(\mathbf{r}^{2}\right)=$ | $R^{G}\left(\mathbf{i}_{1}\right)=$ | $R^{G}\left(\mathbf{i}_{2}\right)=$ |  |  | (1) $=$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{llll}1 & \cdot & \cdot & . \\ \cdot & 1 & \cdot & \\ \cdot & \cdot & 1 & \\ & & & \end{array}\right.$ | $)\left(\begin{array}{ccc}\cdot & \cdot & 1 \\ 1 & \cdot & \\ \cdot & 1 & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{array}\right.$ | $)\left(\begin{array}{lll}\cdot & 1 & \\ \cdot & \cdot & 1 \\ 1 & \cdots \\ \cdot & \cdots \\ \cdot & \cdots\end{array}\right.$ |  |  |  |  | $)\left(\begin{array}{c}3 \\ \cdots \\ \cdots \\ \vdots \\ \cdot \\ 1 \\ 1 \\ 1\end{array}\right.$ |



## RESULT: <br> Any $R(\mathrm{~T})$

commute (Even if T and U do not...)
with any $R(\overline{\mathrm{U}})$..
$\ldots$...and $\mathrm{T} \mathbf{U}=\mathrm{V}$ if \& only if $\overline{\mathrm{T}} \overline{\mathbf{U}}=\overline{\mathbf{V}}$.


To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\boldsymbol{\Phi}}{\leftrightarrows} \mathbf{g}^{\dagger}$ on side of group table



William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
    Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
    Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{z}{}\mathrm{ , and inversion II operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
    Non-commutative symmetry expansion and Global-Local solution
        Global vs Local symmetry and Mock-Mach principle
        Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
                4
    Group theory and algebra of D> Center (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
    All-commuting operators }\mp@subsup{\mathbf{K}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
    D3-invariant irep characters }\mp@subsup{\chi}{k}{(\alpha)}\mathrm{ (nvariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D 䍇 split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
    GLOBAL vs LOCAL symmetry of states
    ... and of Hamiltonian H
    ... and group H parameters {r,i, i, i, i, i_ }
```

Global vs Local symmetry expansion of $D_{3}$ Hamiltonian Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$
To represent external $\left\{. . T, \mathbf{U}, \mathbf{V}, \ldots\right.$ \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table



$\mathrm{D}_{3}$ local $\mathrm{g}^{\dagger} \mathrm{g}$-table To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\sim}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table


| 1 | r $\mathbf{r}^{2}$ | $i_{1} i_{2}$ |
| :---: | :---: | :---: |
|  | 1 r | $\mathbf{i}_{2}\left(i_{1} \mathbf{i}_{1}\right.$ |
|  | $\mathrm{r}^{2} 1$ | (i) $i_{1} i_{1} \mathbf{i}_{2}$ |
|  | $i_{2}$ ( ${ }^{1}$ | $1 \mathrm{rr}^{2}$ |
| $\mathrm{i}_{2}$ | (13) $\mathbf{i}_{1}$ | $\mathrm{r}^{2} 1$ |
| 西 | $i_{1} i_{2}$ | $\mathrm{r}^{\text {r }}$ |

Global vs Local symmetry expansion of $D_{3}$ Hamiltonian

## Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\underset{\rightarrow}{\boldsymbol{\rightarrow}} \mathbf{g}^{\dagger}$ on top of group table

 with any $R(\mathbb{U})$...
...and $T \mathbf{U}=\mathbf{V}$ if \& only if $\overline{\mathbf{T}} \overline{\mathbf{U}}=\overline{\mathbf{V}}$.
So an 18-matrix having Global symmetry $D_{3}$


To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\sim}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table

locall $D_{3}$ defined
Hamiltonian matrix


Global vs Local symmetry expansion of $D_{3}$ Hamiltonian

## Example of RELATIVITY－DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\underset{\rightarrow}{\boldsymbol{\rightarrow}} \mathbf{g}^{\dagger}$ on top of group table


RESULT：
Any R（T）

commute（Even if T and U do not．．．） with any $R(\overline{\mathrm{U}})$ ．．
．．．and $T \mathbf{U}=\mathbf{V}$ if \＆only if $\overline{\mathbf{T}} \overline{\mathbf{U}}=\overline{\mathbf{V}}$ ．
$\mathbb{B I}=H \mathbf{I}_{+}^{0}+r_{1} \overline{\mathbf{r}}^{1}+r_{2} \overline{\mathbf{r}}^{2}+i_{1} \overline{\mathbf{i}}_{l}+i_{2} \overline{\overline{\mathbf{I}}}_{2}+i_{3} \overline{\mathbf{i}}_{3}$
is made from
Local symmetry matrices


So an 11－matrix having Global symmetry $D_{3}$

$$
\begin{aligned}
& H=\langle 1| \text { 且 }|1\rangle=H^{*} \\
& r_{1}=\langle\mathrm{r} \mid 1\rangle=r_{2}^{*} \\
& r_{2}=\left\langle\mathrm{r}^{2} \mid 1\right\rangle=r_{1}^{*} \\
& \lambda=\left\langle\mathrm{i}_{1}\right| \text { 且 } \mid \lambda=i_{1}{ }^{*}
\end{aligned}
$$

All the global g commute

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\boldsymbol{\rightarrow}}{\boldsymbol{G}} \mathbf{g}^{\dagger}$ on side of group table

locall $\mathrm{D}_{3}$ defined
Hamiltonian matrix
配 $\left.\left.=\mid \mathbf{1}) \mid \mathbf{r})\left|\mathbf{r}^{2}\right|\left(\mathbf{i}_{1}\right) \mid \mathbf{i}_{2}\right) \mid \mathbf{i}_{3}\right)$

| $(\mathbf{1} \mid$ | $H$ | $r_{1}$ | $r_{2}$ | $i_{1}$ | $i_{2}$ | $i_{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(\mathrm{r} \mid$ | $r_{2}$ | $H$ | $r_{1}$ | $i_{2}$ | $i_{3}$ | $i_{1}$ |
| $\left(\mathrm{r}^{2}\right.$ | $r_{1}$ | $r_{2}$ | $H$ | $i_{3}$ | $i_{1}$ | $i_{2}$ |
| $\left(\mathrm{i}_{1}\| \|\right.$ | $i_{1}$ | $i_{2}$ | $i_{3}$ | $H$ | $r_{1}$ | $r_{2}$ |
| $\left(\mathrm{i}_{2}\right.$ | $i_{2}$ | $i_{3}$ | $i_{1}$ | $r_{2}$ | $H$ | $r_{1}$ |
| $\left(\mathrm{i}_{3}\| \|\right.$ | $i_{3}$ | $i_{1}$ | $i_{2}$ | $r_{1}$ | $r_{2}$ | $H$ |$|$

Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Example of RELATIVITY-DUALITY for D


RESULT:
Any $R(T)$
commute (Even if T and U do not...) with any $R(\overline{\mathrm{U}}) \ldots$

$$
\begin{aligned}
H & =\langle 1| \mathbb{R}|1\rangle=H^{*} \\
r_{1} & =\langle\mathrm{r}| \mathbb{R}|1\rangle=r_{2}{ }^{*} \\
r_{2} & =\left\langle\mathrm{r}^{2}\right| \mathbb{R}|1\rangle=r_{1}{ }^{*} \\
i_{1} & =\left\langle\mathrm{i}_{1}\right| \mathbb{R}|1\rangle=i_{1}^{*} \mathbf{i}_{3} \\
i_{2} & =\left\langle\mathrm{i}_{2}\right| \mathbb{R}|1\rangle=i_{2}^{*} \\
i_{3} & =\left\langle\mathrm{i}_{3}\right| \mathbb{R}|1\rangle=i_{3}{ }^{*}
\end{aligned}
$$

So an BI-matrix
having Global symmetry $D_{3}$
$\mathbb{B I}=H \overline{\mathbf{I}}^{0}+r_{1} \overline{\mathbf{r}}^{1}+r_{2} \overline{\mathbf{r}}^{2}+i_{1} \overline{\mathbf{i}}_{l}+i_{2} \overline{\mathbf{i}}_{2}+i_{3} \overline{\mathbf{i}}_{3}$
is made from
Local symmetry matrices


William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$
Relating $C_{2}$ - $180^{\circ}$ rotations $\mathbf{R}_{z}, C_{\imath}$-plane reflections $\boldsymbol{\sigma}_{z}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathrm{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $\boldsymbol{D}_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D $D_{3}$ symmetry

All-commuting operators $\mathbf{\kappa}_{k}$
$D_{3}$-invariant irep characters $\chi_{k}{ }^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal $D_{3}$
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$ GLOBAL vs LOCAL symmetry of states ... and of Hamiltonian $\mathbf{H}$ $\ldots$ and group $\mathbf{H}$ parameters $\left\{r, i_{1}, i_{2}, i_{3}\right\}$

Class algebra $\left\{\mathbf{\kappa}_{1}, \mathbf{\kappa}_{2}, \mathbf{\kappa}_{3},\right\}$ of $\boldsymbol{D}_{3}$ Center


## Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)



## Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)



William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$
Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{\boldsymbol{z}}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathrm{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $\boldsymbol{D}_{3}$ Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D ${ }_{3}$ symmetry

All-commuting operators $\mathbf{\kappa}_{k}$
All-commuting projectors $\mathbf{P}^{(\alpha)}$
$D_{3}$-invariant irep characters $\chi_{k}\left({ }^{(\alpha)} \quad\right.$ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal $D_{3}$
Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$ GLOBAL vs LOCAL symmetry of states ... and of Hamiltonian $\mathbf{H}$ $\ldots$ and group $\mathbf{H}$ parameters $\left\{r, i_{1}, i_{2}, i_{3}\right\}$

## Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)


${ }^{\circ}{ }_{S_{k}}=$ order of $\mathrm{g}_{k}$-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ}{ }_{S_{i}}=2\right)$

Group theory of $\boldsymbol{D}_{3}$ Center (Class algebra)

${ }^{\circ} S_{k}=$ order of $\mathbf{g}_{k}$-self-symmetry: $\left({ }^{\circ}{ }_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$.

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis $D_{3}$ vs. 3-C $\boldsymbol{C}_{v}$-plane $C_{3 v}$ isomorphic to permutation- $S_{3}$
Relating $C_{2}-180^{\circ}$ rotations $\mathbf{R}_{z}, C_{v}$-plane reflections $\boldsymbol{\sigma}_{\boldsymbol{z}}$, and inversion $\mathbf{I}$ operators
Deriving $D_{3} \sim C_{3 v}$ products by group definition $|\mathrm{g}\rangle=\mathrm{g}|1\rangle$ of position ket $|\mathrm{g}\rangle$
Deriving $D_{3} \sim C_{3 v}$ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for $D_{3}$
Global vs Local symmetry expansion of $D_{3}$ Hamiltonian
Group theory and algebra of $\boldsymbol{D}_{3}$ Center (Class algebra)
Self-symmetry (Normalizer).
Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D 3 symmetry All-commuting operators $\mathbf{K}_{k} \quad$ All-commuting projectors $\mathbf{P}^{(\alpha)}$ $D_{3}$-invariant irep characters $\chi_{k}^{(\alpha)} \quad$ Invariant numbers: Centrum, Rank, and Order 2nd-Stage spectral decompositions of global/local $D_{3}$

Subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ split class projectors ...and classes 3rd-Stage spectral decomposition of $A L L$ of $D_{3}$ ... and of Hamiltonian $\mathbf{H}$ GLOBAL vs LOCAL symmetry of states

## Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)


${ }^{\circ}{ }_{S_{k}}=$ order of $\mathbf{g}_{k}$-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }^{\circ}={ }^{\circ} G /{ }^{\circ}{ }^{\circ} K_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$
...now a few pages to prove
and apply this key integer ratio
related to Laggrange's theorems.

## Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)

$$
\text { Class-sum } \boldsymbol{\kappa}_{k} \text { invariance: } \quad \mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

## $D_{3}$ class algebra



$$
{ }^{\circ} G=\text { order of group: } \quad\left({ }^{\circ} D_{3}=6\right)
$$

以 쁨

$$
{ }^{\circ} \kappa_{k}=\text { order of class } \kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)
$$

$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k}$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ} S_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
${ }^{\circ} S_{k}=$ order of $\mathbf{g}_{k}$-self-symmetry: $\left({ }^{\circ}{ }_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S}{ }_{k}={ }^{\circ} G /{ }^{\circ}{ }_{K_{k}} \quad{ }^{\circ}{ }_{S k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$.
These operators $\mathbf{g}_{s}$ form the $\mathbf{g}_{k}$-self-symmetry group $s k$. Each $\mathbf{g}_{s}$ transforms $\mathbf{g}_{k}$ into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$

Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)

${ }^{\circ} S_{k}=$ order of $\mathrm{g}_{k}$-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$.
These operators $\mathbf{g}_{s}$ form the $\mathbf{g}_{k}$-Self-symmetry group sk. Each $\mathbf{g}_{s}$ transforms $\mathbf{g}_{k}$ into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator $\mathbf{g}_{t}$ transforms $\mathbf{g}_{k}$ into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{t} g_{k} \mathbf{g}_{t}{ }^{1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$. that is: $\mathbf{g}_{t} \mathbf{g}_{s} \mathbf{g}_{k}\left(\mathbf{g}_{t} \mathrm{~g}_{s}\right)^{-1}=\mathbf{g}_{t} \mathrm{~g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}_{t} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$,

Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)

${ }^{\circ} S_{k}=$ order of $\mathrm{g}_{k}$-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$.
These operators $\mathbf{g}_{s}$ form the $\mathbf{g}_{k}$-Self-symmetry group sk. Each $\mathbf{g}_{s}$ transforms $\mathbf{g}_{k}$ into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator $\mathbf{g}_{t}$ transforms $\mathbf{g}_{k}$ into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\left.{ }^{\boldsymbol{K}_{k}}-1\right)}\right.$ Left Cosets (one coset for each member of class $\left.\boldsymbol{\kappa}_{k}\right)$. $\mathbf{g}_{l S_{k}}=\mathbf{g}_{l}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$,

Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)

${ }^{\circ}{ }_{S_{k}}=$ order of $\mathrm{g}_{k}$-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ}{ }_{S_{i}}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$.
These operators $\mathbf{g}_{s}$ form the $\mathbf{g}_{k}$-Self-symmetry group sk. Each $\mathbf{g}_{s}$ transforms $\mathbf{g}_{k}$ into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator $\mathbf{g}_{t}$ transforms $\mathbf{g}_{k}$ into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $s_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\left.{ }^{\kappa_{k}}-1\right)}\right.$ Left Cosets (one coset for each member of class $\boldsymbol{\kappa}_{k}$ ).
$\mathbf{g}_{l} S_{k}=\mathbf{g}_{l}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$,
$\mathbf{g}_{2} S_{k}=\mathbf{g}_{2}\left\{\mathbf{g}_{0}=1, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}, \ldots$
$\mathbf{g}_{\ell} S_{k} \doteq \mathbf{g}_{\ell}\left\{\mathbf{g}_{0}=1, \quad \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$

Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)

${ }^{\circ}{ }_{S_{k}}=$ order of $\mathrm{g}_{k}$-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ}{ }_{S_{i}}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$.
These operators $\mathbf{g}_{s}$ form the $\mathbf{g}_{k}$-Self-symmetry group sk. Each $\mathbf{g}_{s}$ transforms $\mathbf{g}_{k}$ into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator $\mathbf{g}_{t}$ transforms $\mathbf{g}_{k}$ into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\left.{ }^{\circ} \kappa_{k}-1\right)}\right.$ Left Cosets (one coset for each member of class $\left.\boldsymbol{\kappa}_{k}\right)$.

$$
\begin{array}{ll}
\mathbf{g}_{l} S_{k}=\mathbf{g}_{1}\left\{\mathbf{g}_{0}=1,\right. & \mathbf{g}_{1}=\mathbf{g}_{k}, \\
\left.\mathbf{g}_{2}, \ldots\right\}, \\
\mathbf{g}_{2} S_{k}=\mathbf{g}_{2}\left\{\mathbf{g}_{0}=1,\right. & \mathbf{g}_{1}=\mathbf{g}_{k}, \\
\left.\mathbf{g}_{2}, \ldots\right\}
\end{array}, \ldots, \ldots,
$$

They will divide the group of order ${ }^{\circ} D_{3}={ }^{\circ} \kappa_{k} \cdot{ }^{\circ} S_{k}$ evenly into ${ }^{\circ} \kappa_{k}$ subsets each of order ${ }^{\circ}{ }_{S k}$.

Review:Spectral resolution of $\boldsymbol{D}_{3}$ Center (Class algebra)

${ }^{\circ} S_{k}=$ order of $\mathbf{g}_{k}$-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of $D_{3}$ operators $\mathbf{g}_{s}$ that commute with $\mathbf{g}_{k}$.
These operators $\mathbf{g}_{s}$ form the $\mathbf{g}_{k}$-self-symmetry group sk. Each $\mathbf{g}_{s}$ transforms $\mathbf{g}_{k}$ into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator $\mathbf{g}_{t}$ transforms $\mathbf{g}_{k}$ into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\circ} \boldsymbol{\kappa}_{k}-1\right)$ Left Cosets (one coset for each member of class $\left.\boldsymbol{\kappa}_{k}\right)$.

$$
\left.\begin{array}{ll}
\mathbf{g}_{l} S_{k}=\mathbf{g}_{1}\left\{\mathbf{g}_{0}=1,\right. & \mathbf{g}_{1}=\mathbf{g}_{k}, \\
\left.\mathbf{g}_{2}, \ldots\right\}
\end{array}\right\},
$$

These results are known as Lagrange's Coset Theorem(s)
They will divide the group of order ${ }^{\circ} D_{3}={ }^{\circ} \kappa_{k} \cdot{ }^{\circ}{ }_{S k}$ evenly into ${ }^{\circ} \kappa_{k}$ subsets each of order ${ }^{\circ}{ }_{S k}$.

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators

```
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
    Relating C2-180'rotations }\mp@subsup{\mathbf{R}}{\mathbf{z}}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\mathbf{z}}{}\mathrm{ , and inversion I operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D D ~ C C3v equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of 丳两enter (Class algebra)
            Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D D symmetry
        All-commuting operators \mp@subsup{\boldsymbol{\kappa}}{k}{}}\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
        D3-invariant irep characters \chik}\mp@subsup{}{(}{(\alpha)}\quad\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D D C C split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
        GLOBAL vs LOCAL symmetry of states
        ... and of Hamiltonian H
        ... and group H parameters {r,i, i, i, ,i, i}
```

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| 1 | $\mathrm{r}^{1} \quad \mathrm{r}^{2}$ | $\begin{array}{lll}\mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3}\end{array}$ | Each class-sum $\kappa_{k}$ commutes with all of $D_{3}$. |
| :---: | :---: | :---: | :---: |
| 2 | $1 \mathrm{r}^{1}$ | ! |  |


| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |$\rightarrow$


| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
| $\kappa_{3}$ | $2 \kappa_{3}$ | $3 \kappa_{1}+3 \kappa_{2}$ |

$\boldsymbol{\kappa}_{g}$ 's are mutually commuting with respect to themselves and all-commuting with respect to the whole group.

$$
\begin{aligned}
& \mathbf{r} \boldsymbol{\kappa}_{i} \mathbf{r}^{-1}=\mathbf{i}_{2}+\mathbf{i}_{3}+\mathbf{i}_{l}=\boldsymbol{\kappa}_{i} \quad \text { or: } \quad \mathbf{r} \boldsymbol{\kappa}_{i}=\boldsymbol{\kappa}_{i} \mathbf{r} \\
& \sum_{\mathbf{h}=1}^{\circ} \mathbf{h} \mathbf{h g h}^{-1}=v_{g} \boldsymbol{\kappa}_{g}, \quad \text { where: } v_{g}=\frac{{ }^{\circ} G}{{ }^{\circ} \kappa_{g}}=\text { integer }
\end{aligned}
$$

${ }^{\circ} \kappa g$ is order of class $\kappa g$ and must evenly divide group order ${ }^{\circ} G$.

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |  |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |  |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |  |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |  |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |  |

## Note also:

$$
\mathbf{\kappa}_{2}^{2}-\boldsymbol{\kappa}_{2}-2 \cdot \mathbf{1}=0
$$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
    Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
        Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{z}{}\mathrm{ , and inversion II operators
    Deriving D D ~ C C products by group definition |g\rangle=g}|1\rangle\mathrm{ of position ket |g}
    Deriving D3~}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of D}\mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
    1st-Stage spectral decomposition of "Group-table" Hamiltonian of D D symmetry
        All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mathbf{P}(\alpha
        D3-invariant irep characters \chi}\mp@subsup{k}{}{(\alpha)}\mp@subsup{}{}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D }\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
        GLOBAL vs LOCAL symmetry of states
        ... and of Hamiltonian H
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )


$$
0=\left(\kappa_{2}-2 \cdot \mathbf{1}\right)\left(\kappa_{2}+\mathbf{1}\right)
$$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
    Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
        Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{z}{}\mathrm{ , and inversion II operators
    Deriving D D ~ C C products by group definition |g\rangle=g}|1\rangle\mathrm{ of position ket |g}
    Deriving D3~}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of D}\mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
    1st-Stage spectral decomposition of "Group-table" Hamiltonian of D D symmetry
        All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mathbf{P}(\alpha
        D3-invariant irep characters \chi}\mp@subsup{k}{}{(\alpha)}\mp@subsup{}{}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D }\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
        GLOBAL vs LOCAL symmetry of states
        ... and of Hamiltonian H
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of $D_{3}$.

| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and $\mathbf{P}^{E}$

$$
0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathrm{r}^{2}$ | $\mathbf{1}$ | $\mathrm{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathrm{i}_{1}$ | $\mathrm{i}_{2}$ | $\mathrm{i}_{3}$ | $\mathbf{1}$ | $\mathrm{r}^{1}$ | $\mathrm{r}^{2}$ |
| $\mathrm{i}_{2}$ | $\mathrm{i}_{3}$ | $\mathrm{i}_{1}$ | $\mathrm{r}^{2}$ | $\mathbf{1}$ | $\mathrm{r}^{1}$ |
| $\mathrm{i}_{3}$ | $\mathrm{i}_{1}$ | $\mathrm{i}_{2}$ | $\mathrm{r}^{1}$ | $\mathrm{r}^{2}$ | $\mathbf{1}$ |

Each class-sum $\underline{K}_{k}$ commutes with all of $D_{3}$.

| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{4_{1}}, \mathbb{P}^{4_{2}}$, and $\mathbf{P}^{E}$
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$
$0=\left(\kappa_{2}-2 \cdot \mathbf{1}\right)\left(\kappa_{2}+\mathbb{1}\right)$
$0=\left(\kappa_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}}$
$\boldsymbol{K}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}$

$$
\mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )


Each class-sum $\kappa_{k}$ commutes with all of $D_{3}$.

$\rightarrow$| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
|  | $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{4_{1}}, \mathbb{P}^{4_{2}}$, and $\mathbb{P}^{E}$
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$
$0=\left(\kappa_{2}-2 \cdot 1\right)\left(\kappa_{2}+\mathbb{1}\right)\left(\boldsymbol{\kappa}_{3}-\mathbf{3} \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}}$
$\boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}$

$$
\begin{aligned}
& 0=\left(\kappa_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}^{A_{2}} \\
& \kappa_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathrm{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)}
\end{aligned}
$$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
    Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
        Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{z}{}\mathrm{ , and inversion II operators
    Deriving D D ~ C C products by group definition |g\rangle=g}|1\rangle\mathrm{ of position ket |g}
    Deriving D3~}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of D}\mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
    1st-Stage spectral decomposition of "Group-table" Hamiltonian of D D symmetry
        All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mathbf{P}(\alpha
        D3-invariant irep characters \chi}\mp@subsup{k}{}{(\alpha)}\mp@subsup{}{}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D }\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
        GLOBAL vs LOCAL symmetry of states
        ... and of Hamiltonian H
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| 1 |  |  | $\begin{array}{lll}\mathrm{i}_{1} & \mathrm{i}_{2} & \mathrm{i}_{3}\end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{r}^{2}$ |  |  |  | $\mathrm{i}_{3}$ | $\mathrm{i}_{1}$ |
| $\mathrm{r}^{1}$ | $\mathrm{r}^{2}$ | 1 |  | $\mathrm{i}_{1}$ | $\mathrm{i}_{2}$ |
| $\mathrm{i}_{1}$ |  | $\mathrm{i}_{3}$ |  | $\mathrm{r}^{1}$ | $\mathrm{r}^{2}$ |
| $\mathrm{i}_{2}$ |  | $\mathrm{i}_{1}$ |  | 1 | $\mathrm{r}^{1}$ |
| $\mathrm{i}_{3}$ |  | $\mathrm{i}_{2}$ | $\mathrm{r}^{1}$ | $\mathrm{r}^{2}$ | 1 |

Each class-sum $\kappa_{k}$ commutes with all of $D_{3}$.

$\rightarrow$| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
|  | $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{4_{1}}, \mathbb{P}^{4_{2}}$, and $\mathbb{P}^{E}$
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\boldsymbol{3}}=\left(\kappa_{\boldsymbol{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\boldsymbol{3}}-0 \cdot \mathbf{1}\right)$

$$
\begin{aligned}
& { }_{2}^{+1)} 0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}^{A_{2}} \\
& \boldsymbol{\kappa}_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathbb{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
0=\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
\mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E} \\
\mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
\mathbf{P}^{A_{2}}=\frac{\left(\mathbf{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)} \\
\mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\mathbf{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
    Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
        Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{z}{}\mathrm{ , and inversion II operators
    Deriving D D ~ C C products by group definition |g\rangle=g}|1\rangle\mathrm{ of position ket |g}
    Deriving D3~}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of D}\mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
    1st-Stage spectral decomposition of "Group-table" Hamiltonian of D D symmetry
        All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mathbf{P}(\alpha
        D3-invariant irep characters \chi}\mp@subsup{k}{}{(\alpha)}\mp@subsup{}{}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D }\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
        GLOBAL vs LOCAL symmetry of states
        ... and of Hamiltonian H
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |

Each class-sum $\underline{K}_{k}$ commutes with all of $D_{3}$.

$\rightarrow$|  | $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |  |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |

Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbb{P}^{A_{2}}$, and $\mathbf{P}^{E}$
$\kappa_{2}^{2}-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\boldsymbol{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$

$$
\begin{aligned}
& 0=\left(\mathbf{\kappa}_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}^{A_{2}} \\
& \mathbf{\kappa}_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathbb{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue $\cdot$ Projector
$\boldsymbol{\kappa}_{\mathbf{1}}=\boldsymbol{\kappa}_{\mathbf{1}}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{2}=\boldsymbol{\kappa}_{\mathbf{r}}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \longleftarrow \boldsymbol{\kappa}^{2}{ }_{r}=\boldsymbol{\kappa}_{r}+2 \cdot \mathbf{1} \Rightarrow\left(\boldsymbol{\kappa}_{r}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{r}+\mathbf{1}\right)=\mathbf{0}$
$\boldsymbol{\kappa}_{3}=\boldsymbol{\kappa}_{\mathbf{i}}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E} \quad$ So: $\boldsymbol{\kappa}_{r}$ has an eigenvalue 2 and -1

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

Note also:
$\mathbf{\kappa}_{2}^{2}-\mathbf{K}_{2}-2 \cdot \mathbf{1}=0$
$0=\left(\boldsymbol{\kappa}_{2}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{2}+\mathbf{1}\right)$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
    Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
        Relating C2-180'rotations }\mp@subsup{\mathbf{R}}{\mathbf{z}}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\mathbf{z}}{}\mathrm{ , and inversion I operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D D ~ C C3v equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of 丳两enter (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
    1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
        All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}|\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
        D3-invariant irep characters \chi}\mp@subsup{k}{}{(\alpha)}\mp@subsup{}{}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D D C C split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
        GLOBAL vs LOCAL symmetry of states
        ... and of Hamiltonian H
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of $D_{3}$.

$\rightarrow$|  | $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ | $\kappa_{3} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |
| $2 \kappa_{3}$ |  |  |

Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and $\mathbf{P}^{E}$ $\mathbb{\kappa}_{2}^{2}-\kappa_{2}-2 \cdot \mathbb{1}=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$
$0=\left(\mathbb{K}_{2}-2 \cdot \mathbb{1}\right)\left(\mathbb{K}_{2}+\mathbb{1}\right)$
$0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}}$

$$
0=\left(\kappa_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}
$$

$$
\boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
$$

$$
\mathbf{\kappa}_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathbb{P}^{A_{2}}
$$

Class resolution into sum of eigenvalue • Projector
$\boldsymbol{\kappa}_{1}=\boldsymbol{\kappa}_{\mathbf{1}}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{2}=\boldsymbol{\kappa}_{\mathbf{r}}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \longleftarrow \boldsymbol{\kappa}_{r}^{2}=\boldsymbol{\kappa}_{r}+2 \cdot \mathbf{1} \Rightarrow\left(\boldsymbol{\kappa}_{r}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{r}+\mathbf{1}\right)=\mathbf{0}$
$\boldsymbol{\kappa}_{3}=\boldsymbol{\kappa}_{\mathbf{i}}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbb{P}^{A_{2}}+0 \cdot \mathbf{P}^{E} \quad$ So: $\boldsymbol{\kappa}_{r}$ has an eigenvalue 2 and -1

$$
\begin{aligned}
& 0=\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\mathbf{P}^{A_{1}}=\frac{\left(\kappa_{3}+3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(+3+3)(+3-0)}
$$

$$
\mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)}
$$

$$
\mathbf{P}^{E}=\frac{\left(\mathbf{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
$$

Inverse resolution gives $\mathbb{D}_{3}$ Character Table
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}+\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$

$$
\mathbf{P}^{A_{1}}=\frac{1}{18}\left(\mathbf{\kappa}_{3}^{2}+3 \mathbf{\kappa}_{3}\right)=\frac{1}{18}\left(3 \mathbf{\kappa}_{1}+3 \mathbf{\kappa}_{2}+3 \mathbf{\kappa}_{3}\right) \longleftarrow
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of $D_{3}$.

$\rightarrow$|  | $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |  |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |
| $2 \kappa_{3}$ |  |  |

Class products give spectral polynomial and all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and $\mathbf{P}^{E}$
$-\kappa_{2}-2 \cdot 1=0 \quad 0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}^{A_{2}} \\
& \mathbf{\kappa}_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathbb{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue • Projector
$\boldsymbol{\kappa}_{1}=\boldsymbol{\kappa}_{\mathbf{1}}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{2}=\boldsymbol{\kappa}_{\mathbf{r}}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \longleftarrow \boldsymbol{\kappa}_{r}^{2}=\boldsymbol{\kappa}_{r}+2 \cdot \mathbf{1} \Rightarrow\left(\boldsymbol{\kappa}_{r}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{r}+\mathbf{1}\right)=\mathbf{0}$
$\boldsymbol{\kappa}_{3}=\boldsymbol{\kappa}_{\mathbf{i}}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbb{P}^{A_{2}}+0 \cdot \mathbf{P}^{E} \quad$ So: $\boldsymbol{\kappa}_{r}$ has an eigenvalue 2 and -1

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

Inverse resolution gives $\mathbb{D}_{3}$ Character Table

$$
\begin{array}{ll}
\mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}+\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 & \mathbf{P}^{A_{1}}=\frac{1}{18}\left(\mathbf{\kappa}_{3}^{2}+3 \boldsymbol{\kappa}_{3}\right)=\frac{1}{18}\left(3 \boldsymbol{\kappa}_{1}+3 \boldsymbol{\kappa}_{2}+3 \boldsymbol{\kappa}_{3}\right) \\
\mathbf{P}^{A_{2}}=\left(\mathbf{K}_{1}+\mathbf{\kappa}_{2}-\mathbf{K}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 & \mathbf{P}^{A_{2}}=\frac{1}{18}\left(\boldsymbol{\kappa}_{3}^{2}-3 \boldsymbol{\kappa}_{3}\right)=\frac{1}{18}\left(3 \boldsymbol{\kappa}_{1}+3{\left.\boldsymbol{\kappa}_{2}-3 \boldsymbol{\kappa}_{3}\right)}^{2} \quad\right.
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
+1) \\
0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}}
\end{array} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{aligned}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of $D_{3}$.

$\rightarrow$| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |

Class products give spectral polynomial and all-commuting projectors $\mathbb{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and $\mathbf{P}^{E}$

$$
0=\kappa_{3}^{3}-9 \kappa_{3}=\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot \mathbf{1}\right)\left(\kappa_{3}-0 \cdot \mathbf{1}\right)
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right) \mathbb{P}^{A_{2}} \\
& \mathbf{\kappa}_{3} \mathbb{P}^{A_{2}}=-3 \cdot \mathbb{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\mathbf{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue • Projector
$\boldsymbol{\kappa}_{1}=\boldsymbol{\kappa}_{\mathbf{1}}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{2}=\boldsymbol{\kappa}_{\mathbf{r}}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbb{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \longleftarrow \boldsymbol{\kappa}_{r}^{2}=\boldsymbol{\kappa}_{r}+2 \cdot \mathbf{1} \Rightarrow\left(\boldsymbol{\kappa}_{r}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{r}+\mathbf{1}\right)=\mathbf{0}$
$\boldsymbol{\kappa}_{3}=\boldsymbol{\kappa}_{\mathbf{i}}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbb{P}^{A_{2}}+0 \cdot \mathbf{P}^{E} \quad$ So: $\boldsymbol{\kappa}_{r}$ has an eigenvalue 2 and -1

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

Inverse resolution gives $D_{3}$ Character Table

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}+\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}-\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{2}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\frac{1}{18}\left(\mathbf{\kappa}_{3}{ }^{2}+3 \mathbf{\kappa}_{3}\right)=\frac{1}{18}\left(3 \mathbf{\kappa}_{1}+3 \mathbf{\kappa}_{2}+3 \mathbf{k}_{3}\right) \\
& \mathbf{P}^{A_{2}}=\frac{1}{18}\left(\mathbf{\kappa}_{\mathbf{3}}{ }^{2}-3 \mathbf{\kappa}_{3}\right)=\frac{1}{18}\left(3 \mathbf{\kappa}_{1}+3 \mathbf{\kappa}_{2}-3 \mathbf{\kappa}_{3}\right) \\
& \mathbf{P}^{E}=\frac{-1}{9}\left(\mathbf{\kappa}_{3}{ }^{2}-9 \cdot \mathbf{1}\right)=\frac{-1}{9}\left(3 \mathbf{\kappa}_{1}+3 \mathbf{\kappa}_{2}-9 \mathbf{\kappa}_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
+1) \\
0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}}
\end{array} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{aligned}
$$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$\mathrm{D}_{3}$ and $\mathrm{C}_{3 \mathrm{v}}$ group products, classes, and irrep projection operators

```
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
    Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
    Relating C2-180'rotations }\mp@subsup{\mathbf{R}}{\mathbf{z}}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\mathbf{z}}{}\mathrm{ , and inversion I operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D D ~ C C3v equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D}\mp@subsup{D}{3}{}\mathrm{ Hamiltonian
Group theory and algebra of 丳两enter (Class algebra)
                    Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D D symmetry
    All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{
                                    All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
    D3-invariant irep characters \mp@subsup{\chi}{k}{(\alpha)}}\mp@subsup{}{}{(2}\quad\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal D
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D }\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D}\mp@subsup{D}{3}{
    GLOBAL vs LOCAL symmetry of states
    ...and of Hamiltonian \mathbf{H}
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ |

Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of $D_{3}$.

|  | $\kappa_{1}=1$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ |
| :---: | :---: | :---: |
| $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |  |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ |
| $2 \kappa_{3}$ |  |  |

Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and $\mathbf{P}^{E}$

$$
0=\kappa_{3}^{3}-9 \kappa_{3}=\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot \mathbf{1}\right)\left(\kappa_{3}-0 \cdot \mathbf{1}\right)
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
& \boldsymbol{\kappa}_{3} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{aligned}
$$

Class resolution into sum of eigenvalue • Projector
$\mathbf{\kappa}_{1}=\boldsymbol{\kappa}_{\mathbf{1}}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{2}=\boldsymbol{\kappa}_{\mathbf{r}}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}$
$\boldsymbol{\kappa}_{3}=\boldsymbol{\kappa}_{\mathbf{i}}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}$
Inverse resolution gives $\boldsymbol{D}_{3}$ Character Table

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}+\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}-\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E}=\left(2 \boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{2}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \mathbf{\kappa}_{3} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E} \\
& \mathbf{P}^{A_{1}}=\frac{\left(\boldsymbol{\kappa}_{3}+3 \cdot 1\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot 1\right)}{(+3+3)(+3-0)} \\
& \mathbb{P}^{A_{2}}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}-0 \cdot \mathbf{1}\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{3}+3 \cdot \mathbf{1}\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" 1st Step: Spectral resolution of $D_{3}$-Center (Class algebra of $D_{3}$ )

| $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ |
| $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ |
| $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ |
| $\mathbf{i}_{2}$ | $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | $\mathbf{r}^{1}$ |
| $\mathbf{i}_{3}$ | $\mathbf{i}_{1}$ | $\mathbf{i}_{2}$ | $\mathbf{r}^{1}$ | $\mathbf{r}^{2}$ | $\mathbf{1}$ | Each class-sum $\underline{K}_{\mathrm{k}}$ commutes with all of $\mathbb{D}_{3}$.


$\rightarrow$|  | $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: | :---: |
|  | $\kappa_{2}$ | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
|  | $\kappa_{3}$ | $2 \kappa_{3}$ | $3 \kappa_{1}+3 \kappa_{2}$ |

Class products give spectral polynomial and all-commuting projectorss $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}$, and $\mathbf{P}^{E}$

$$
0=\kappa_{3}^{3}-9 \kappa_{3}=\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot \mathbf{1}\right)\left(\kappa_{3}-0 \cdot \mathbf{1}\right)
$$

$$
\begin{array}{ll}
0=\left(\boldsymbol{\kappa}_{3}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
\boldsymbol{\kappa}_{\mathbf{3}} \mathbf{P}^{A_{1}}=+\mathbf{3} \cdot \mathbf{P}^{A_{1}}
\end{array}
$$

Class resolution into sum of eigenvalue • Projector

$$
\begin{aligned}
& \boldsymbol{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Inverse resolution gives $D_{3}$ Character Table

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}+\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}-\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E}=\left(2 \boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{2}+0\right) / \mathbf{3}=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
\end{aligned}
$$



Review: 1st-Stage Spectral resolution of $\boldsymbol{D}_{3}$ Center (All-commuting class projectors)


William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C C vv isomorphic to permutation-S S
    Relating C2-180'rotations }\mp@subsup{\mathbf{R}}{\mathbf{z}}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\mathbf{z}}{}\mathrm{ , and inversion I operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D D ~ C C3v equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D}\mp@subsup{D}{3}{}\mathrm{ Hamiltonian
Group theory and algebra of 丳两enter (Class algebra)
            Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
    All-commuting operators \mp@subsup{\mathbf{K}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)}
    D3-invariant irep characters }\mp@subsup{\chi}{k}{(\alpha)}\longrightarrow\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of globalllocal D}\mp@subsup{D}{3}{
    Subgroup chains D}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and D D}\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors ...and classes
3rd-Stage spectral decomposition of ALL of D3
    GLOBAL vs LOCAL symmetry of states
    ... and of Hamiltonian H
        ...and group H parameters {r,i,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},\mp@subsup{i}{3}{}}
```



## Important invariant numbers or "characters"

| $D_{3} \mathrm{k}=1$ | $\mathbf{r}^{\prime}+$ | $\mathbf{r}^{2} \mathbf{i}$ | +i, + |
| :---: | :---: | :---: | :---: |
| $\mathbf{P}^{4}=1$ | 1 | 1 | /6 |
| $\mathbb{P}^{4}=1$ | 1 | -1 | $1 / 6$ |
| $\mathbb{P}^{E}=2$ | -1 | 0 |  |

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops


## Important invariant numbers or "characters"



Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

$$
\begin{aligned}
\boldsymbol{\kappa}\left(D_{3}\right) & =(1)^{0}+(1)^{0}+(2)^{0}=3 \\
\boldsymbol{\rho}\left(D_{3}\right) & =(1)^{1}+(1)^{1}+(2)^{1}=4 \\
\circ\left(D_{3}\right) & =(1)^{2}+(1)^{2}+(2)^{2}=6
\end{aligned}
$$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C C iv isomorphic to permutation-S S
    Relating C2-180'rotations }\mp@subsup{\mathbf{R}}{\mathbf{z}}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\mathbf{z}}{}\mathrm{ , and inversion I operators
    Deriving D D ~ C C products by group definition |g\rangle=g}|1\rangle\mathrm{ of position ket |g
    Deriving D D ~ C C3v equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of \mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)}
            Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
    All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
    D3-invariant irep characters \chik}\mp@subsup{}{k}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D}\mp@subsup{D}{3}{
    Subgroup chains (D3\supsetC2)and D D}\supset\mp@subsup{C}{3}{}\mathrm{ split class projectors \ ...and classes
3rd-Stage spectral decomposition of ALL of D3 ... and of Hamiltonian H
    GLOBAL vs LOCAL symmetry of states
.. and group H parameters {r,i, i, i, ,i3}
```

Spectral reduction of non-commutative "Group-table Hamiltonian"
$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$
Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$

Spectral reduction of non-commutative "Group-table Hamiltonian" $D_{3}$ Example 2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$
Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$

$$
\begin{array}{llll}
\boldsymbol{D}_{3} & =\mathbf{1} & \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} & \boldsymbol{C}_{2}=\mathbf{1} \\
\mathbf{P}^{4}= & \mathbf{i}_{3} \\
\mathbb{P}^{4_{2}}=1 & 1 & 1 & 1 \\
\hline & -1 / 6 & \boldsymbol{p}^{0_{2}}=1 & 1 / 2 \\
\mathbb{P}^{E}=2 & -1 & 0 & \boldsymbol{p}^{1_{2}}=1 \\
=1 & -1 / 2
\end{array}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"
$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$
Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$
$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with $C_{2}$-unit $1=p^{0_{2}}+p^{l_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$$
\begin{aligned}
& D_{3} \supset C_{2} 0_{2} \quad 12 \\
& n^{A_{1}}=\begin{array}{ll}
1 & \cdot \\
n^{A_{2}}=
\end{array} \quad \begin{aligned}
& \cdot \\
& \cdot 1
\end{aligned} \\
& n^{E}=\begin{array}{ll}
1 & 1
\end{array}
\end{aligned}
$$

## Spectral reduction of non-commutative "Group-table Hamiltonian"

$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$
Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$

$$
\begin{array}{rl}
\boldsymbol{D}_{3} \kappa & =\mathbf{1} \\
\mathbf{r}^{1}+\mathbf{r}^{2} & \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
\mathbf{P}^{4}= & =1 \\
1 & 1 \\
1 & 16 \\
\mathbb{P}^{4_{2}} & =1 \\
1 & -1 / 6 \\
\mathbf{P}^{E} & =2
\end{array}-1 \quad 0 / 1 / 3
$$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with $C_{2}$-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$
$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" $C_{2}$-friendly" irep projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)
$$

$$
=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}
$$

$$
\begin{aligned}
& D_{3} \supset C_{2} 0_{2} \quad 1_{2} \\
& n^{A_{l}}=1 \text {. } \\
& n^{A_{2}}=\quad \cdot 1 \\
& n^{E}=\quad \begin{array}{ll}
1 & 1
\end{array}
\end{aligned}
$$

Rank:
$\rho(\mathrm{G})=\sum_{\text {irrep }(\alpha)} \ell^{(\alpha)}=$ Maximum number of mutually commuting operators

## Spectral reduction of non-commutative "Group-table Hamiltonian"

$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$
Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$

$$
\begin{array}{rl}
\boldsymbol{D}_{3} \kappa & =\mathbf{1} \\
\mathbf{r}^{1}+\mathbf{r}^{2} & \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
\mathbf{P}^{4}= & =1 \\
1 & 1 \\
1 & 16 \\
\mathbb{P}^{4_{2}} & =1 \\
1 & -1 / 6 \\
\mathbf{P}^{E} & =2
\end{array}-1 \quad 0 / 1 / 3
$$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with $C_{2}$-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

Rank $\rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" $C_{2}$-friendly" irep projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)
$$

$$
=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}
$$

Rank:

$$
\begin{aligned}
& \rho(\mathrm{G})=\sum_{\text {irrep }(\alpha)} \ell^{(\alpha)}=\text { Maximum number of } \text { mutually commuting operators }
\end{aligned}
$$

$$
\begin{aligned}
& D_{3} \supset C_{2} 0_{2} \quad 1_{2} \\
& \begin{array}{l}
\left.\left.n^{A_{l}}=\begin{array}{rr}
1 & \cdot \\
n^{A_{2}}= \\
n^{E}= & 1 \\
\cdot & 1 \\
1 & 1
\end{array}\right] . \begin{array}{ll} 
\\
\hline
\end{array}\right]
\end{array}
\end{aligned}
$$

## Spectral reduction of non-commutative "Group-table Hamiltonian"

$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$
Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with $C_{2}$-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{l_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$
$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" $C_{2}$-friendly" irep projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$\downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}$
$\mathbf{P}^{A_{l}}=\mathbf{P}^{4}{ }^{1} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$

Rank:
$\rho(\mathrm{G})=\sum_{\text {irrep }(\alpha)} \ell^{(\alpha)}=$ Maximum number of mutually commuting operators

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C C vv isomorphic to permutation-S S
    Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{z}{}\mathrm{ , and inversion II operators
    Deriving D D ~ C C products by group definition |g\rangle=g}|1\rangle\mathrm{ of position ket |g
    Deriving D D ~ C C3v equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of \mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)}
            Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D D symmetry
    All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
    D3-invariant irep characters \chik}\mp@subsup{}{k}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D}\mp@subsup{D}{3}{
    Subgroup chains D3}\mp@subsup{D}{3}{}\supset\mp@subsup{C}{2}{}\mathrm{ and (D3`C3)split class projectors \...and classes
3rd-Stage spectral decomposition of ALL of D3 ...and of Hamiltonian HI
    GLOBAL vs LOCAL symmetry of states
.. and group H parameters {r,i, i, i, ,i3}
```

Spectral reduction of non-commutative "Group-table Hamiltonian"
$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$ Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and $C_{3}$ don't commute)

Standing-wave Subroup chain $D_{3} \supset C_{2}\left(\rho_{3}\right)$


## 2nd-Stage

## Spectral reduction of non-commutative "Group-table Hamiltonian"

$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$ Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and $C_{3}$ don't commute)

| $D_{3} \kappa=1 \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ | $C_{2}{ }^{\kappa}=1 \quad \mathbf{i}_{3}$ |
| :---: | :---: |
| $\mathbf{P}^{4 l}=1 \begin{array}{lll}1 & 1 & 1\end{array} / 6$ | $\left.\begin{aligned} \boldsymbol{p}^{0_{2}} & =1 \\ \boldsymbol{p}^{1_{2}} & =1 \\ 1 & -1 \end{aligned}\right\|_{1 / 2}$ |
| $\mathbb{P}^{42}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$ |  |
| $\mathbf{P}^{E}=2^{2}-1010 \mid 3$ |  |
| ${ }_{3} \supset \mathrm{C}_{2}$ Correlation table | $D_{3} \supset C_{2} 0_{2} \quad 12$ |
| hows which products of | $n^{4 l}=1$ |
| ass projector $\mathbf{P}^{(\alpha)}$ with | $n^{A_{2}=} \cdot 1$ |
| ${ }_{2}$-unit $1=p^{0_{2}}+p^{l_{2}}$ will | $n^{E}=1$ |


| Let: | $C_{3} \mathrm{k}=\mathbf{1} \quad \mathbf{r}^{1} \quad \mathbf{r}^{2}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon=\mathrm{e}^{-2 \pi i / 3}$ | $p^{03}=$ |  |  |  |  |
|  | $p^{13}=$ | 1 | $\varepsilon$ | $\varepsilon$ | */3 |
|  | $p^{23}=$ | 2 | $\varepsilon$ | * |  |

## 2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"
$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$ Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and $C_{3}$ don't commute)

| $D_{3} \mathrm{\kappa}=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ | $C_{2} \mathrm{~K}=1 \quad \mathrm{i}_{3}$ |
| :---: | :---: |
| $\mathbf{P}^{4_{l}}=1 \begin{array}{lll}1 & 1 & 1\end{array} 6$ | $\begin{array}{rl} \boldsymbol{p}^{0_{2}} & =1 \\ \boldsymbol{p}^{2_{2}} & 1 \\ 1 & -1 / 2 \end{array} 1^{1 / 2}$ |
| $\mathbb{P}^{42}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$ |  |
| $\mathbb{P}^{E}=$2 -1 0 |  |
| $\mathrm{D}_{3} \supset \mathrm{C}_{2}$ Correlation table | $\mathrm{D}_{3} \supset C_{2} 0_{2} 1_{2}$ |
| hows which products of | $n^{A_{l}}=1$ |
| lass projector $\mathbf{P}^{(\alpha)}$ with | $n^{4_{2}}=$ |
| $\mathrm{C}_{2}$-unit $1=p^{0_{2}}+p^{12}$ will | $n^{E}=1$ |


| Let: | $C_{3} \mathrm{k}=\mathbf{1} \quad \mathbf{r}^{1} \quad \mathbf{r}^{2}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon=e^{-2 \pi i / 3}$ | $p^{03}=$ | 1 | 1 |  |  |
|  | $p^{13}=$ | 1 | $\varepsilon$ | $\varepsilon$ |  |
|  | $p^{23}=$ | 1 | $\varepsilon$ | * |  |

Same for Correlation table: $\boldsymbol{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A l}= \\
& n^{A 2}= \\
& n^{E}= \\
& n^{1} \\
& = \\
& 1 \\
& \cdot \\
& \\
& \hline
\end{aligned}
$$ make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$$
\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4 \text { implies }
$$

there will be exactly 4
" $C_{2}$-friendly" irep projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$\downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}$
$\mathbf{P}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-\mathbf{2} \mathbf{i}_{3}\right) / 6$

## 2nd-Stage

## Spectral reduction of non-commutative "Group-table Hamiltonian"

$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$ Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and $C_{3}$ don't commute)

| $D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ | $C_{2} \mathrm{~K}=1 \quad \mathrm{i}_{3}$ |
| :---: | :---: |
| $\mathbf{P}^{4_{l}}=1$1 1 1 | $\left.\begin{aligned} \boldsymbol{p}^{0_{2}} & =1 \\ \boldsymbol{p}^{1_{2}} & =1 \\ 1 & -1 \end{aligned}\right\|_{1 / 2} ^{2}$ |
| $\mathbb{P}^{42}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$ |  |
| $\mathbb{P}^{E}=2^{2}-1010 \mid 3$ |  |
| ${ }_{3} \supset C_{2}$ Correlation table | $D_{3} \supset C_{2} 0_{2} 1_{2}$ |
| hows which products of | $n^{A_{l}}=1$ |
| lass projector $\mathbf{P}^{(\alpha)}$ with | $n^{42}=$ |
| ${ }_{2}$-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will | $n^{E}=1$ |

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

| $C_{3} \mathrm{~K}=$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $p^{03}=$ | 1 | 1 | 1 |
| $p^{13}=$ | 1 | $\varepsilon$ |  |
| $p^{23}=$ |  | $\varepsilon$ | ع |

Same for Correlation table: $\mathbb{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A l}= \\
& n^{A 2}= \\
& n^{E}= \\
& n^{1} \\
& = \\
& 1 \\
& \cdot \\
& \\
& \hline
\end{aligned}
$$

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{3}\right)=4$ implies
there will be exactly 4
" $C_{3}$-friendly" irreducible projectors

$$
\begin{aligned}
\mathbf{P}^{(\alpha)} \mathbb{1} & =\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{3}}+\boldsymbol{p}^{1_{3}}+\boldsymbol{p}^{2_{3}}\right) \\
& =\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{3} 1_{3} 1_{3}}^{\left.\left(\mathbf{P}_{2}+\mathbf{P}_{3}\right)_{3}\right)}
\end{aligned}
$$

## 2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"
$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$
Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and $C_{3}$ don't commute)

| $D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ | $C_{2} \mathrm{\kappa}=1 \quad \mathrm{i}_{3}$ |
| :---: | :---: |
| $\mathbf{P}^{4_{l}}=1 \begin{array}{lll}1 & 1 & 1\end{array} / 6$ | $p^{0_{2}}=11^{1 / 2}$ |
| $\mathbb{P}^{42}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$ | $\left.\boldsymbol{p}^{l_{2}}=1 \begin{array}{ll}1 & -1\end{array}\right)^{\prime 2}$ |
|  |  |
| ${ }_{3} \supset \mathrm{C}_{2}$ Correlation table | $D_{3} \supset C_{2} 0_{2} \quad 12$ |
| hows which products of | $n^{A_{l}}=1$ |
| lass projector $\mathbf{P}^{(\alpha)}$ with | $n^{A_{2}}=\cdot 1$ |
| ${ }_{2}$-unit $1=p^{0_{2}}+p^{12}$ will | $n^{E}=1$ |

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

| $C_{3} \mathrm{k}=$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $p^{0_{3}}$ | 1 | 1 |  | 1 |
| $p^{13}=$ | 1 | $\varepsilon$ |  | * |
| $p^{23}=$ |  | $\varepsilon$ | * $\varepsilon$ |  |

Same for Correlation table: $\mathbb{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A_{l}}= \\
& n^{A_{2}}= \\
& n^{E}=
\end{aligned} \begin{array}{lll}
1 & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & 1
\end{array}
$$

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{3}\right)=4$ implies

there will be exactly 4
" $\mathrm{C}_{3}$-friendly" irreducible projectors
$\mathbf{P}^{(\alpha)} \boldsymbol{1}=\mathbf{P}^{(\alpha)}\left(p^{0_{3}}+p^{l_{3}}+p^{2_{3}}\right)$

|  |
| :---: |
|  |  |
|  |  |
|  |  |

## 2nd-Stage

## Spectral reduction of non-commutative "Group-table Hamiltonian"

$D_{3}$ Example
2nd Step: Spectral resolution of Class Projector(s) of $D_{3}$ Correlate $D_{3}$ characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and $C_{3}$ don't commute)

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with $C_{2}$-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{l_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$
$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies there will be exactly 4 " $C_{2}$-friendly" irep projectors $\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$\boldsymbol{V}=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}$
$\mathbf{P}^{A_{l}}=\mathbf{P}^{4}{ }^{1} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{0_{2} 0}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{\theta_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{1212}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$

Let:
$\varepsilon=e^{-2 \pi i / 3}$

| $C_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l} \quad \mathbf{r}^{2}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| p | 1 |  |  |  |
|  | 1 | $\varepsilon$ |  |  |
| p |  | $\varepsilon$ |  |  |

Same for Correlation table: $\boldsymbol{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A_{l}}= \\
& n^{A_{2}}= \\
& n^{E}=
\end{aligned} \begin{array}{lll}
1 & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & 1
\end{array}
$$

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$ implies
there will be exactly 4 " $C_{3}$-friendly" irreducible projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{3}}+\boldsymbol{p}^{1_{3}}+\boldsymbol{p}^{2_{3}}\right)$
$=\quad \mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{3} 1_{3}}^{(\alpha)}+\mathbf{P}_{2_{3}{ }_{3}}^{(\alpha)}$
$\mathbf{P}^{E}={ }^{\cdot} \stackrel{P}{1}_{1_{3} 1_{3}}^{E} \quad \mathbf{P}_{2_{3} 2_{3}}^{E}$
$\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{1}}\left(\mathbf{1}+\mathbf{r}^{l^{l}}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$

$$
\mathbb{P}_{0_{3} O_{3}}^{A_{2}}=\mathbb{P}^{A_{2}} p^{0_{3}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{R}_{3^{2} 3}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{23}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3
$$

William G. Harter - University of Arkansas

Discrete symmetry subgroups of $\mathrm{O}(3)$ and application to tunneling and vibrational dynamics:
$D_{3}$ and $C_{3 v}$ group products, classes, and irrep projection operators

```
3 2 \text { crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups}
Smallest non-Abelian symmetry: 3-C2-axis D D vs. 3-Cv-plane C C vv isomorphic to permutation-S S
    Relating C2-180}\mp@subsup{}{}{\circ}\mathrm{ rotations }\mp@subsup{\mathbf{R}}{z}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{z}{}\mathrm{ , and inversion II operators
    Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
    Deriving D3~}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
    Global vs Local symmetry and Mock-Mach principle
    Global vs Local matrix duality for D3
            Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of \mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)}
            Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
    All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
    D3-invariant irep characters }\mp@subsup{\chi}{k}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D}\mp@subsup{D}{3}{
    Subgroup chains D3>C\mp@subsup{C}{2}{}\mathrm{ and D D}\supset\mp@subsup{C}{3}{}split class projectors
3rd-Stage spectral decomposition of ALL of D}\mp@subsup{D}{3}{
                                    ...and classes

2nd Step: (contd.)While some class projectors \(\mathbb{P}^{(\alpha)}\) split in two,
O, \(\quad D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\dot{\mathbf{i}}_{2}+\mathbf{i}_{3}\) so ALSO DO some classes \(\kappa_{k}\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\(\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4\) \\
idempotents \\
\(\downarrow \mathbf{P}^{(\alpha)}\)
\end{tabular} & \\
\hline \multicolumn{2}{|l|}{\(\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{4} l^{p^{0}} \mathbf{0}^{2}=\mathbf{P}^{4 l}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\begin{array}{l}1+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\dot{\mathbf{i}}_{3}\end{array}\right) / 6\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\[
\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
\]} \\
\hline \multicolumn{2}{|l|}{\[
\left.\mathbb{1}_{1_{2} 1_{2}}^{E_{2}}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right)^{3}=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right)^{\prime}\right)
\]} \\
\hline \multicolumn{2}{|l|}{\(\mathbb{P}^{E}\) splits into \(\mathbb{P}^{E}=\mathbf{P}^{E}+\mathbf{P}^{E}\) class \(k_{i}^{2}\) splits into \(k_{12}\) and \(k_{1}\)} \\
\hline
\end{tabular}

4 different idempotent
\(\downarrow \mathbf{P}_{n, n}^{(\alpha)}\)
\[
\mathbf{P}_{0_{3} 0_{3}}^{A_{1}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{A_{1}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(1+\sqrt{\mathbf{r}^{1}+\mathbf{r}^{2}}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
\]
\[
\mathbb{P}_{0_{3} 0_{3}}^{A_{3}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
\]
\[
\mathbf{P}_{1_{3} 1_{3}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{1_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3{ }_{\varepsilon=e^{-2 \pi i / 3}}
\]
\[
\mathbb{R}_{3^{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{2_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3
\]
\(\mathbb{P}^{E}\) splits into \(\mathbb{P}^{E}=\mathbf{P}_{1_{3} 1_{3}}^{E}+\mathbf{P}_{2_{3}{ }^{2}}^{E}\), class \(K_{\mathbf{r}}\) splits into \(\kappa_{\mathbf{r} 1}\) and \(K_{\mathbf{r} 2}\)

\section*{2nd-Stage}

2nd Step: (contd.) While some class projectors \(\mathbb{P}^{(\alpha)}\) split in two, so ALSO DO some classes \(\kappa_{k}\)
Rank \(\rho\left(\boldsymbol{D}_{3}\right)=4\)
idempotents
\(\downarrow^{(\alpha)}\)
\(\mathbf{P}^{(\alpha)}\) class \(\kappa_{i}\) splits into \(\mathrm{K}_{12}\) and \(\mathrm{K}_{\mathbf{i}_{3}}\)
\begin{tabular}{|ll|}
\hline\(r=r_{2}\) & \(i=i_{2}\) \\
must & must \\
equal & equal \\
\(r_{1}\) & \(i_{1}\) \\
For Local \\
\(\boldsymbol{D}_{3} \supset C_{2}\left(\mathbf{i}_{3}\right)\) \\
symmetry \\
\(i_{3}\) is free parameter \\
\hline
\end{tabular}

\section*{4 different idempotent}
\({ }^{\wedge} \mathbf{P}_{n, n}^{(\alpha)}\)
\(\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{4} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\sqrt\left[\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6\right]{ }\)
\(\mathbb{P}_{0_{3} \sigma_{3}}^{A_{2}}=\mathbb{P}^{4} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\sqrt{\mathbf{1}}+\overline{\mathbf{r}^{1}+\mathbf{r}^{2}}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6\)
\(\mathbf{P}_{1_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\boldsymbol{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3 \quad \varepsilon=e^{-2 \pi i / 3}\)
\(\boldsymbol{P}_{2_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{2_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{2}+\varepsilon \mathbf{r}^{2}\right) / 3 \quad \varepsilon=e^{-2 \pi i / 3}\) class \(\kappa_{\mathrm{r}}\) splits into \(\kappa_{\mathrm{r} 1}\) and \(\kappa_{\mathrm{r} 2}\)

\[
i=i_{1}=i_{2}=i_{3}
\]

For Local
\[
D_{3} \supset C_{3}\left(\mathbb{P}^{p}\right)
\]
symmetry
\[
r_{1} \text { and } r_{2} \text { are free }
\]

\[
\begin{aligned}
& \mathbb{P}_{3, y}^{A_{2}}=\mathbb{P}_{1_{2} \mathbb{R}_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right)^{3} / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbb{P}_{1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
\]

\author{
William G. Harter - University of Arkansas
}

Discrete symmetry subgroups of \(\mathrm{O}(3)\) and application to tunneling and vibrational dynamics:
\(\mathrm{D}_{3}\) and \(\mathrm{C}_{3 \mathrm{v}}\) group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis \(D_{3}\) vs. 3-C \(\boldsymbol{C}_{v}\)-plane \(C_{3 v}\) isomorphic to permutation- \(S_{3}\)
Relating \(C_{2}-180^{\circ}\) rotations \(\mathbf{R}_{z}, C_{v}\)-plane reflections \(\boldsymbol{\sigma}_{z}\), and inversion \(\mathbf{I}\) operators
Deriving \(D_{3} \sim C_{3 v}\) products by group definition \(|\mathrm{g}\rangle=\mathrm{g}|1\rangle\) of position ket \(|\mathrm{g}\rangle\)
Deriving \(D_{3} \sim C_{3 v}\) equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for \(D_{3}\)
Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Group theory and algebra of \(\boldsymbol{D}_{3}\) Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D \({ }_{3}\) symmetry

All-commuting operators \(\boldsymbol{\aleph}_{k}\)
All-commuting projectors \(\mathbf{P}^{(\alpha)}\)
\(D_{3}\)-invariant irep characters \(\chi_{k}^{(\alpha)} \quad\) Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local \(D_{3}\)
Subgroup chains \(D_{3} \supset C_{2}\) qnd \(D_{3} \supset C_{3}\) split class projectors 3 rd-Stage spectral decomposition of \(A L L\) of \(D_{3}\)

GLOBAL vs LOCAL symmetry of states
...and classes ... and of Hamiltonian \(\mathbf{H}\) ...and group \(\mathbf{H}\) parameters \(\left\{r, i_{1}, i_{2}, i_{3}\right\}\)
\begin{tabular}{|c|c|}
\hline \[
\text { Centrum } \kappa\left(D_{3}\right)=3
\] & \(D_{3} \mathrm{\kappa}=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}\) \\
\hline idempotents \(\mathbf{P}^{(\alpha)}\) & \[
\mathbf{P}^{4 l=} \begin{array}{lll}
1 & 1 & 1
\end{array}
\] \\
\hline & \(\mathbb{P}^{4_{2}=} \begin{array}{llll}1 & 1 & -1\end{array}\) \\
\hline & \(\mathbb{P}^{E}=2 \begin{array}{lll}2 & -1 & 0\end{array}\) \\
\hline
\end{tabular}

3 rd and Final Step:
\[
\begin{aligned}
& \operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
& \text { idempotents }
\end{aligned}
\]
\[
\begin{aligned}
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{L_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbb{P}_{1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
\]

Spectral resolution of ALL 6 of \(D_{3}\) :
The old ' g -equals-1-times-g-times-1' Trick
\[
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
\]

Centrum \(\kappa\left(\boldsymbol{D}_{3}\right)=3\)
idempotents
\(\mathbf{P}^{(\alpha)}\)
\[
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \quad \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{rl}
\mathbf{P}^{A_{1}} & =1 \\
\mathbf{P}^{A_{2}} & =1 \\
1 & 1 \\
1 & -1 / 6 \\
\mathbf{P}^{E} & =2 \\
\hline & -1 \\
\hline
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}=\mathbf{P}^{A_{1}} \mathbf{p}^{0_{2}}=\begin{array}{c}
\begin{array}{c}
\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
\text { idempotents } \\
\mathbf{P}_{n, n}^{(\alpha)}
\end{array} \\
\left.\mathbf{1}^{\left(\mathbf{1}+\mathbf{i}_{3}\right.}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}}\right) / 6
\end{array} \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} I_{2}}^{I_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{0} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{12}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
\]

\section*{3 rd and Final Step:}

Spectral resolution of ALL 6 of \(D_{3}\) :
The old ' g -equals-1-times-g-times-1' Trick
\[
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\mathbf{P}_{x, x}^{A_{1}} \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}+\quad 0 \quad+\quad 0 \quad+\quad 0 \\
& +0+\mathbf{P}_{y, y}^{A_{2}} \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}+0+0 \\
& +0+0+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E} \\
& +0+0 \quad+\mathbf{P}_{y, v}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{aligned}
\]
idempotents
\(\mathbf{P}^{(\alpha)}\)


3rd and Final Step:

\section*{Spectral resolution of ALL 6 of D3 :}

The old ' g -equals-1-times-g-times-1' Trick
where:
\[
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}
\]
\[
\mathbf{P}_{y, v}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y,}^{4}
\]
\[
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}
\]
\[
\mathbf{P}_{x, x}^{E} \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}
\]
\[
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
\]
\[
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\]

Need to Define 6 Irreducible Projectors \(\mathbf{P}_{m, n}^{(\alpha)}\) \(\operatorname{Order}^{\circ}\left(D_{3}\right)=6\)
\[
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}+\quad 0 \quad+\quad 0 \quad+\quad 0 \\
& +0+\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}+0 \quad+0 \\
& +0+0+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, v}^{E} \\
& +0+0 \quad+\mathbf{P}_{y, y}^{E} \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{L_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbb{P}_{1_{2}^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{T_{2}}=\mathbb{P}^{E}\left(\mathbf{1} \mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
\]
idempotents
\(\mathbb{P}^{(\alpha)}\)
\(3^{r d}\) and Final Step:

\section*{Spectral resolution of ALL 6 of \(D_{3}\) :}

The old ' g -equals-1-times-g-times-1' Trick
\[
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+\quad 0 \quad+\quad 0+0
\end{aligned}
\]
where:
\[
+0+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+0 \quad+0
\]
\[
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}} \quad+0 \quad+0 \quad+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}
\]
\[
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}} \quad+0 \quad+\quad 0 \quad+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\]
\[
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}
\]
\[
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
\]
\[
\begin{gathered}
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{gathered}
\]

Need to Define 6 Irreducible
Projectors \(\mathbf{P}_{m, n}^{(\alpha)}\)
\(\operatorname{Order}^{\circ}\left(D_{3}\right)=6\)
\[
\begin{aligned}
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{L_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{E}=\mathbb{P}_{1_{2}^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
\]
\[
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
\]
idempotents
\(\mathbf{P}^{(\alpha)}\)
\[
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \quad \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{l}
\mathbf{P}^{A_{1}}=1 \\
\mathbb{P}^{A_{2}}=1 \\
1 \\
1 \\
\mathbf{P}^{E}
\end{array}=21^{1}-1 / 6
\end{aligned}
\]

3 rd and Final Step:

\section*{Spectral resolution of ALL 6 of D3 :}

The old ' g -equals-1-times-g-times-1' Trick
\[
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}
\end{aligned}
\]
where:
\[
+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\]
\[
\begin{array}{ll}
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}} \\
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}} & \\
\mathbf{P}_{x, x}^{E} \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E} & \mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} & \mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{array}
\]

Need to Define 6 Irreducible Projectors \(\mathbf{P}_{m, n}^{(\alpha)}\) \(\operatorname{Order}^{\circ}\left(D_{3}\right)=6\)

Centrum \(\mathrm{K}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3\) idempotents \(\mathbb{P}^{(\alpha)}\)
\[
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \quad \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{l}
\mathbf{P}^{A_{l}}=1 \begin{array}{ccc}
1 & 1 & 1
\end{array} / 6 \\
\mathbb{P}^{A_{2}}=1 \\
1 \\
\mathbf{P}^{E}
\end{array}=2-1 / 6
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{P}_{n, n}^{(\alpha)} \\
& \mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} 1_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbb{P}_{1_{2}{ }^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1 / 2}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{I}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6 \\
& \text { idempotents } \\
& \mathbf{P}_{n, n}^{(\alpha)}
\end{aligned}
\]
\(3^{r d}\) and Final Step:

\section*{Spectral resolution of ALL 6 of D3 :}

The old ' g -equals-1-times-g-times-1' Trick
\[
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{L_{1}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, 2}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, \pm}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
\end{aligned}
\]
idempotents
\(\mathbb{P}^{(\alpha)}\)
\[
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
\]

\section*{3 rd and Final Step:}

\section*{Spectral resolution of ALL 6 of D3 :}

The old ' g -equals-1-times-g-times-1' Trick
\[
\mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m)}()_{e}^{(m)} \mathbf{P}_{c b}^{(m)}
\]
\[
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
\]
\[
\mathbf{g}=D^{4}(\mathbf{g}) \mathbf{P}_{x}^{4}+D^{4}(\mathbf{g}) \mathbf{P}_{y,}^{4}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
\]

Six \(D_{3}\) projectors: 4 idempotents +2 nilpotents (off-diag.)

\[
\begin{aligned}
& \mathbf{P}_{n, n}^{(\alpha)} \\
& \mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} 1_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{E}=\mathbb{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6 \\
& \text { idempotents } \\
& P_{n, n}^{(\alpha)}
\end{aligned}
\]
idempotents
\(\mathbb{P}^{(\alpha)}\)
\[
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{l}
\mathbf{P}^{4_{1}}=1 \begin{array}{lcc|l}
1 & 1 & 1 & / 6 \\
\mathbf{P}^{4_{2}}= & 1 & 1 & -1 / 6 \\
\mathbf{P}^{E} & =2 & -1 & 0
\end{array} / 3
\end{array}
\end{aligned}
\]
\(\mathbf{P}_{n, n}^{(\alpha)}\)
\[
\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
\]
\[
\mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} I_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l_{1}+\mathbf{r}^{2}}-\overline{\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}}\right) / 6
\]
\[
\mathbb{P}_{x, x}^{E}=\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
\]
\[
\mathbb{P}_{y, y}^{E}=\mathbf{P}_{1_{2}^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\]

\section*{3rd and Final Step:}

\section*{Spectral resolution of ALL 6 of \(D_{3}\) :}

The old ' g -equals-1-times-g-times-1' Trick
\[
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
\]
\[
\mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
\]

Six \(D_{3}\) projectors: 4 idempotents +2 nilpotents (off-diag.)

where \(D_{3}\)
irreducible represen
are: \({ }_{D^{4}(\mathbf{g})=+1, \quad D^{2}(\mathbf{g})= \pm 1,}\)
\[
D^{E}(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), D^{E}(\mathbf{r})=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{r}^{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{1}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{3}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\]
\[
\begin{aligned}
& \mathbf{P}_{e b}^{(n)}=(\text { norm }) \Sigma_{\mathbf{g}} D_{e b}^{\left.(m)_{( }^{*}\right)} \mathbf{g}
\end{aligned}
\]

\author{
William G. Harter - University of Arkansas
}

Discrete symmetry subgroups of \(\mathrm{O}(3)\) and application to tunneling and vibrational dynamics:
\(\mathrm{D}_{3}\) and \(\mathrm{C}_{3 \mathrm{v}}\) group products, classes, and irrep projection operators
```

3 2 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis D3 vs. 3-Cv-plane C C vv isomorphic to permutation-S S
Relating C2-180'rotations }\mp@subsup{\mathbf{R}}{\mathbf{z}}{},\mp@subsup{C}{v}{}\mathrm{ -plane reflections }\mp@subsup{\boldsymbol{\sigma}}{\mathbf{z}}{}\mathrm{ , and inversion I operators
Deriving D}\mp@subsup{D}{3}{}~\mp@subsup{C}{3v}{}\mathrm{ products by group definition |g}|=\textrm{g}|1\rangle\mathrm{ of position ket |g}
Deriving D3~}~\mp@subsup{C}{3v}{}\mathrm{ equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D3
Global vs Local symmetry expansion of D D Hamiltonian
Group theory and algebra of \mp@subsup{\boldsymbol{D}}{3}{}\mathrm{ Center (Class algebra)}
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D3 symmetry
All-commuting operators }\mp@subsup{\boldsymbol{\kappa}}{k}{}\quad\mathrm{ All-commuting projectors }\mp@subsup{\mathbf{P}}{}{(\alpha)
D3-invariant irep characters \chik}\mp@subsup{}{k}{(\alpha)}\mathrm{ Invariant numbers: Centrum, Rank, and Order

```
2nd-Stage spectral decompositions of global/local D3

Subgroup chains \(D_{3} \supset C_{2}\) and \(D_{3} \supset C_{3}\) split class projectors \(3 r d\)-Stage spectral decomposition of \(A L L\) of \(D_{3}\)

GLOBAL vs LOCAL symmetry of states
...and classes
... and of Hamiltonian \(\mathbf{H}\) ...and group \(\mathbf{H}\) parameters \(\left\{r, i_{1}, i_{2}, i_{3}\right\}\)

Global (LAB) symmetry \(\quad D_{3}>C_{2} \mathbf{i}_{3}\) projector states Local (BOD) symmetry


Ket norm factors detailed in Lect. 17 p.23-30

\[
\begin{aligned}
& \mathbb{P}_{x, x}^{E}=\left(\begin{array}{llllll}
2 & -1 & -1 & -1 & -1+2
\end{array}\right) / 6 \\
& \mathbb{R}_{y, x}^{E}=\left(\begin{array}{llllll}
0 & 1 & -1 & -1 & +1 & 0
\end{array}\right) / \sqrt{3} / 2
\end{aligned}
\]

\[
\mathbf{P}_{x, x}^{A l}=\begin{array}{llllll}
\hline\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
\hline
\end{array} 6
\]
\(D^{A_{1}}(\mathbf{g})=+1, D^{A_{2}}\left(\mathbf{r}^{p}\right)=+1, \quad D^{A_{2}}\left(\mathbf{i}_{q}\right)=-\)
\[
\begin{array}{ccc}
D^{E}(1)= & D^{E}(\mathbf{r})= & D^{E}\left(\mathbf{r}^{2}\right)= \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right) & D^{E}\left(\mathbf{i}_{1}\right)= & \left.D_{\left(\mathbf{i}_{2}\right)=}^{-\frac{1}{2}} \begin{array}{c}
-\sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} \\
\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right)
\end{array} \begin{aligned}
& D^{E}\left(\mathbf{i}_{3}\right)= \\
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
\]
\[
\begin{array}{cc}
\left.\qquad \begin{array}{c}
(m) \\
e b
\end{array}\right\rangle=\underset{A}{\mathbf{P}}(m)|\mathbf{1}\rangle \\
\text { external LAB } & \text { internal BOD } \\
\text { symmety label-e } & \text { symmety label-b } \\
\text { GLOBAL } & \text { LOCAL }
\end{array}
\]


\author{
William G. Harter - University of Arkansas
}

Discrete symmetry subgroups of \(\mathrm{O}(3)\) and application to tunneling and vibrational dynamics:
\(\mathrm{D}_{3}\) and \(\mathrm{C}_{3 \mathrm{v}}\) group products, classes, and irrep projection operators
32 crystal point symmetries: 16 Abelian (commutative) and 16 non-Abelian groups
Smallest non-Abelian symmetry: 3-C2-axis \(D_{3}\) vs. 3-C \(\boldsymbol{C}_{v}\)-plane \(C_{3 v}\) isomorphic to permutation- \(S_{3}\)
Relating \(C_{2}-180^{\circ}\) rotations \(\mathbf{R}_{z}, C_{v}\)-plane reflections \(\boldsymbol{\sigma}_{z}\), and inversion \(\mathbf{I}\) operators
Deriving \(D_{3} \sim C_{3 v}\) products by group definition \(|\mathrm{g}\rangle=\mathrm{g}|1\rangle\) of position ket \(|\mathrm{g}\rangle\)
Deriving \(D_{3} \sim C_{3 v}\) equivalence transformations and classes
Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for \(D_{3}\)
Global vs Local symmetry expansion of \(D_{3}\) Hamiltonian
Group theory and algebra of \(\boldsymbol{D}_{3}\) Center (Class algebra)
Self-symmetry (Normalizer). Lagrange Coset Theorem for classes
1st-Stage spectral decomposition of "Group-table" Hamiltonian of D \({ }_{3}\) symmetry
All-commuting operators \(\mathbf{\kappa}_{k} \quad\) All-commuting projectors \(\mathbf{P}^{(\alpha)}\)
\(D_{3}\)-invariant irep characters \(\chi_{k}^{(\alpha)} \quad\) Invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
Subgroup chains \(D_{3} \supset C_{2}\) and \(D_{3} \supset C_{3}\) split class projectors
...and classes
\(3 r d\)-Stage spectral decomposition of \(A L L\) of \(D_{3}\)
... and of Hamiltonian \(\mathbf{H}\)
GLOBAL vs LOCAL symmetry of states
4 ...and group \(\mathbf{H}\) parameters \(\left\{r, i_{1}, i_{2}, i_{3}\right\}<\)
\[
\mathbf{P}_{m n}^{(\mu)}=\frac{l^{(\mu)} \sum_{\mathrm{g}} D_{m n}^{(\mu)}(\underline{\mathrm{g}}) \mathrm{g}}{}
\]

\section*{Spectral Efficiency: Same \(D(a)_{m n}\) projectors give a lot!}

-Local symmetery eigenvalue formulae (Local Symmetry \(\Rightarrow\) off-diagonal \(=0\) )
\[
\begin{aligned}
& \hline r_{1}=r_{2}=r_{1} *=r, i_{1}=i_{2}=i_{1} *=i \\
& A_{1} \text {-level: } H+2 r+2 i+i_{3} \\
& \text { gives: } A_{2} \text {-level: } H+2 r-2 i-\sum_{3} \\
& E_{x-} \text {-level: } H-r-i+\sum_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3} \\
& \hline
\end{aligned}
\]

Rigorous Global vs Local Calculus begins on p. 90 of Lecture 17. Matrix forms on p. 125-129 and p. 130-146.

Global (LAB) symmetry \(\quad D_{3}>C_{2} \mathbf{i}_{3}\) projector states Local (BOD) symmetry
\[
\begin{aligned}
& \left.\mathbf{i}_{3} \mathbf{i}_{e b}^{(m)}\right\rangle=\mathbf{i}_{3} \mathbf{P}_{e b}^{(n)}|1\rangle \\
& =(-1)^{e}|(m)\rangle \\
& \left|{ }_{e b}^{(m)}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle \\
& \overline{\mathbf{i}}_{3}|e b\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(n)} \overline{\mathbf{i}_{3}}|1\rangle \\
& =\mathbf{P}_{e b}^{(m) \mathbf{i n}_{3}^{\dagger}}{ }^{\dagger}|1\rangle=(-1)^{b}\left|{ }^{(m)}\right\rangle
\end{aligned}
\]


\section*{When there is no there, there...}

Nobody Home
where LOCAL and GLOBAL



(a) Local \(D_{3} \supset C_{2}\left(i_{3}\right)\) model


MolVibes Web Simulation 3 Atom with C3v symmetry```

