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CHAPTER 7

THEORY AND APPLICATION

OF SYMMETRY

REPRESENTATION PRODUCTS
(CONTINUOUS ROTATION GROUPS)

In many ways the basic symmetry analysis with continuous Lie groups R, O,
R,, U,, and Uj is similar to that of finite groups. In either case there exist
irreducible representations (irreps) of finite dimension /* which correspond
to [*-fold degenerate energy levels of a symmetric physical system. It will now
be shown that the basic structure and application of irrep outer products of
the continuous groups is similar to that of finite groups which was described
in Chapter 6. In fact, it will not be necessary to repeat many of the details
and motivation which were given in Sections 6.1 and 6.2.

The main difference between the finite and continuous symmetry analyses
lies in the methods used to derive and record their structures. For the
rotation group R, or the closely related SU, there exist formulas for the
group structure (recall (Egs. 5.5.10)], irreps [(Eq. 5.4.45)], characters
[(Eq. 5.6.4)], and now, as we will see, the coupling coefficients. The finite
group theory, on the other hand, does not always provide such convenient
formulas, but then there are only a finite number of things to compute.

7.1 INTRODUCTION TO R; AND U, COUPLING COEFFICIENTS

The R; and U, coupling coefficients are introduced in this section by
reviewing the simplest problems which use angular-momentum coupling.
These and other problems which involve coupling will be discussed in detail,
later, after a more complete mathematical treatment has been given.
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A. Two-Particle Spin States: Hydrogen Hyperfine Structure

The celectron and the proton each have spin- % and a magnetic moment. The

qualitative effects of the electron-proton spin-spin interaction in atomic
hydrogen will be discussed as an example of coupling and symmetry. The
spin-spin interaction is very weak compared to the Coulomb interaction, so
one may assume the electron is fixed in a zero-orbit (1s) ground state and
consider only the spin states of the electron and the proton nucleus.

If no spin-spin interaction existed the following four outer product states

proton electron proton electron
proton electron proton electron

would be degenerate cigenstates. As explained in Section 6.1, one could
rotate either particle independently without changing the energy if
the interaction is zero. All pairs of rotations (R(e,B,v,), R(a B.v,.)
form a symmetry group G = Rj(proton) X Rs(electron). The base states

”j > : >.=_ '% i>are a basis of the irrep 9i1® Pi=9717 of G as shown
1

m, m, m
by the following:
1 1
2 2
m; m,

1
m, >R(aeBe7e)

[N ST
N[= B}

N|= N

OO O =
(ST ST
o O = O

[STE ST
= N|=

= N
Nj= N

[T - R ]
-0 0O

(R(aszﬁ'p)’ R(aeBeYE))

= R(apo'yp)

1
2
m,

l 1
nirl > mzlz‘@rzn'zmz(apﬁp’)/p)

)
|

Zgr%n’lml(apﬁp‘)/p)
m

[u

Z Zgr%n’lml(apﬂp}yp)gr%n’zmz( aeBeye)

my m)

m

2

'

m,
1
2

! ! .
my,  m,

(ST

i

Z 9r%n%l’rn& mlmz(apﬁp‘yP; aeBe‘Ye)

mym’

1 . .
2 18 written as

[N

Using the notation of Eq. (6.1.8) the representation &
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follows:
11
2 2(0[31,00[350)
= 23108,021,08.0) 21,914 F1-1734 P1-171-1
DD PP _1_1 D1 1P 11 Dy _ 1P _1_
22 22 22 2 2 2 2 22 2 2 2 2
D_11Gr1 D_11D1 1 D 1 1911 D_1_191_1
22 22 22 2 2 2 2 22 2 2 2 2
D_119 _11 D 11D 11 D_1_\D_ 11 - PD_1_ 1P _1r_ 1
22 22 22 2 2 2 22 2 2 2 2
cos —2cos —  —cos &sin £ —sin &cos & sin Eﬁsin & ;
2 2 2 2 2 2 2 2
cos &sin & cos &cos = —sin —sin & —sin &cos &
_ 2 2 2 2 2 2 2 2 (7 1 2)
sin —2cos & —sin Zsin & cos &cos & —cos &sin F—e o
2 2 2 2 2 2 2 2
sin —sin & sin B—pcos & cos £gﬁsin & cos &cos Eﬁ
2 2 2 2 2 2 2 2

Here all Euler angles are zero except 8, and B,. (In this section we shall not
need to distinguish between representations and ray representations. We call
either one an irreducible representation or irrep.)

However, with a nonzero interaction we see that (R(a,8,v,), R(a B,y.)
is not a symmetry operator unless @, = «,, 8, = B,, and v, = v,. Only the
“rigid” rotations which preserve the relative orientation of the two spins are
still symmetry operators. Rotation operators such as

(R(0B,0), R(0B,0)) = e/F™ /b5 /it (71.3)

generated by individual angular-momentum operators Jy"’°‘°“ and J;‘“""“

must have equal angles (8, = 8, = B). When the angles are equal one may
write the rigid rotation

(R(OBO)’ R(OBO)) - e(B/ih)(J})roton_'_J;lectron) —_ e(B/ih)Jytotal (71.4)
in terms of the total angular momentum

Jtotal — Jproton + Jelectron

(7.1.5)

In other words, the individual angular momenta of the proton or the electron
may not be conserved when the interaction is on, but the total momentum is
constant. By total momentum we mean here total spin angular momentum

= S. The orbital momentum of an s-state electron is zero. Spin-orbit
interactions will be introduced in Section 7.1.C.

The irrep @ 1@ P of R, X R, is a reducible representation of the rigid
rotation symmetry R5#¢ = { - - (R(0B0), R(0BO)) - - -} generated by J®©®!
operators. The following transformation (which we derive shortly) of the
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matrix P29 gives a reduced representation:

1 0 0 0 coszg —sin %cos g —sin goos % sinzg 1 (U] 0
1 1 B B 1 1
0 — — 0 sin —cos — cos? — —sin’— - sin Ecos E 0 — 0 —
‘/E R 2 2 2 2 2 ‘/2— ﬁ
1 1
0 0 0 1 sin —cos % - sin? g cos? g —sin gcos 7 0 f 0o - —\E
1 1
0 — ——/— 0 sin — sin Ecos E sin —B-cos E cos? E 0 0 1 0
‘/5 \/2— 2 2 2 2 2 2
B —sin
sin? — i sinf— 0
2 2
sin 8 —sin g
—_— cos B 0
- V2 . (7.1.6a)
sin
sin? E id cos? E 0
V2
0 0 0 1

N 0
2'(080)

, 1 0
C'23(0B0) ® 22(0B0)C = =9'¢ 2°. (7.1.6b
0

The standard index notation for this is

Y Zc%%fgé g7

e
mymy M= mym;, mllm,ZCrrfzrr%’zM’ =4 9mm” (716C)
mym'y mymy

where the transformation coefficients

337 % % J
Cxzt = o oM (7.1.6d)
give states of definite total momentum J
S N A a1 T
=X = =

M (2 2) o m m; m m/ M

= Y Cizt 2 %>. (7.1.6¢)
m’m’ mm'M m m'

At the same time it reduces the product representation & @ I* of the
RYEY symmetry as shown in Egs. (7.1.6a) and (7.1.6b)).
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The C::J are examples of CLEBSCH-GORDON or COUPLING CO-
EFFICIENTS of the rotation group R;. Coupling coefficients are usually
tabulated as they appear in the transformation matrix [see Eq. (7.1.6a)] by
arrays of the following form:

ooy
[
—_
ol

®

(7.1.7)

P
9}
i
1=
~———
Il
RPN NN
|
[ S R S e s ST

S - -
RERE

The derivation of the coupling coefficients can be done by appealing to the
generators Jtotal — Jproton + Jelectron and J:(_)tal — Jgroton + Jilectren Applylng
z z z + fu g =+ -
Jiol to the state

J . .
. . i J J
. (j1®y) )= mZm Crill]r':lzzjlll mll m22> (7.1.8)
1 2
yields the following:
J J
]ztmal (jl ®j2) =M (jl ®j2)
M M
iy J J1 Ja 71 J2
— Chri2 J Jproton + Jelectron
ml,Zmz mlsz( : m > m2> m1> : m;

= L Cliu(m+m)

mym,M

h 2
my my [

(Here we assume general values j, and j, of spin for the proton and electron,
respectively.) Using Eq. (7.1.6d) and the usual orthonormality

o 1
my

my, iy

J1 Jo \ _ 5 5
my m, mym° mymy

we see that this implies that either M = m, + m, or C/1 2/ = 0, The total z

mym,M
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component must be the sum of the z components of the factor states.
Therefore the state with the highest z component involving the two factors j;
and j, must be

B .
L (i1 ®J,) ). (7.1.9)

> J=j1+j2
S M=j +j,

Then we apply the total lowering operator J©%@ to this highest state to

give
J . . R .
total : . _ yproton Ji\|J2 I electron J2
J- (/1 ®J3) JP A 1 U IO A ¥ A ),
J J1 /(]2 I J2
I j j o
- - . . —|J1 -
V2(j1 +J2) (Jj1®J2) )= y2i5, |, )+ 2j, Lo )
-1 h=1 7 -1
J - . .
(hei) Y=/ 2= =
J—1 J1+J 1 — 1 J2
J hoJ
/2= ) (7.1.10)
It J2— 1

where Eq. (5.4.23b) was used. For the proton-electron problem with j, = 1 =

2
72, we have
J=1

[STEEE STE

>, (7.1.10),
M=0

which is the second column of the table of (7.1.7). Lowering this state again
gives the third column,

J=1 1 1
2 2

(%®%) =| 1 1>-
M=-1 I

Finally, the fourth column state is obtained by orthogonalizing with the other
M = 0 state we just derived. The result is

J=0 7|1 1 7| 1 1
2 2 2 2

(3 ©3) =\/E P —\/~2- 1 1) (711
M=0 2 2 2 2
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TH+[41)

Triplet : |TT> 5 |~L\L>
" a/4
N 3a/4 i
\\

)N) NT)
2

Figure 7.1.1 Singlet-triplet splitting of levels for two interacting spin- % particles.

Singlet :

This reduction of a four-by-four representation to a three-by-three and a
one-by-one representation implies a splitting of the four spin energy levels of
hydrogen into a “triplet” and a “singlet,” as shown in Figure 7.1.1.

The observed magnitude of this splitting is small, but very important to
radio astronomers. It is one of the more accurately measured quantities:
1,420,405,751.8 + 0.03 Hz or approximate equivalents 5.88 X 107° eV;
0.0474 cm !, or 1/(21.1 cm). It is the well known 21-cm line which is used to
locate atomic hydrogen in intergalactic space.

The spin-spin interaction Hamiltonian which approximately gives this
splitting is the Fermi contact interaction.

Hcontact =al proton Jelectron . (7 1. 123.)

The name “contact” refers to the dependence of the interaction constant

a = (87/3)g.B.8,B,1w(0)° (7.1.12b)

on the value (0) of the electronic wave function at the proton. For a (1s)
wave function one has

Y1 (O = 1/(wa}), (7.1.12¢)

where a, = #%/me* = 0.5292 X 10°® cm is the Bohr radius. The other
constants are the gyromagnetic ratios g, (= 2.0023) and g, (= 5.585) and
magneton moments B, (=eh/2m,c = 09273 x 10~%° erg/ gauss) and B,
=eh/2m,c = 0.50504 X 10~ 2 erg/gauss) of the electron and proton, re-
spectlvely The derivation of the contact interaction follows from the Dirac
equation. This may be found in most advanced quantum theory texts.
The eigenvalues of the contact interaction are easy to find if it is rewritten
in terms of operators that are diagonal in the bases of triplet and singlet
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states (7.1.10), and (7.1.11):
a 2 2 2
proton , yelectron _ __ proton electron _ proton _ electron
al J 2[(J - geteeon)? _ ( porotony® _ ( jetecron)?]
a
— 5[(]total)2 — (Jproton)2 . (Jelectron)z] . (7113)

This trick will be used again many times to evaluate the eigenvalues of
interaction operators. The contact eigenvalues are

J J
H
AL

contact

I

a
) { a4 forthe (J = 1) triplet state, | |

—3a/4 for the (J = 0) singlet state.

This implies that the magnitude of the singlet-triplet splitting is equal to that
of the interaction constant (). Substituting the magnetic constants given with
Eq. (7.1.12) yields the following value:

a(calculated) = 1.500 X 10 ¥ erg = 1422.74 MHz.  (7.1.15)

This agrees with the observed value up to the third decimal place. Further
theory of relativistic spin-% particles is needed to get more accuracy. How-
ever, so far no theory has the 10- or 11-place accuracy of the experiment. At
the very least this is beyond our present accuracy of knowledge of most
fundamental constants.

To continue the coupling analysis for more general values of angular
momentum, one needs to finish the lowering job started in Eq. (7.1.10). After

N lowerings the result is
Ja
Jaf’
(J+m)l(j —m+n)!

J=j1+j2 y Nt roton ”1j1

M >= Lz (72°)
I = J . (1116
m> (j—m)!(j+m—n)! ’m—n> ( )

] >(Jilectron)n2

()" i

=t ny,m—01172!

where N = n,; + n,. Using Eq. (5.4.23b) repeatedly one obtains

(J2)"
This gives the desired result

J=]1+]2 _ Z lejzj
M=m,+m, i mymaM

h I
my m, [’

where J = j; +j, and M = m; + m, are maximal.

1z —
lesz

J— M)! J + M)! 2j)12j)!
\/(,- (7 —M) 7T+ M) (CIRLCIATRNo
1

—m)!(j, — my)! (j1+m1)!(j11+ m,)! Q@
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These are the coupling coefficients for the cases of highest total momentum
J =j; +j,. The coefficients for the other possibilities, J = j, +j, — 1,j; +
j» — 2,...,li; — J,| are obtained by orthogonalization, or by a generalization
of Eq. (7.1.17) which is derived in Section 7.2.D.

B. Two-Electron Atomic Configurations

Consider the elementary electronic structure of the carbon atom which has
six electrons in a configuration (15)*(25)>(2p)?. A very good approximate
model can be made by ignoring, at first, the two pairs of electrons in the
“closed” 1s and 2s shells, and treating the atom as though it had only the

two 2p electrons. The orbital basis of this model is a ninefold product basis
my [|m

’ 1 >| 12 > made from the individual 2p orbitals.

If no electrostatic repulsion or interaction of any kind existed between the
electrons then these nine states would be degenerate in energy. However, in
the presence of electrostatic repulsion one takes the coupled states

1
my

to be model eigenstates. They will generally have different energy for
different values of total orbit momentum L.

Using Eq. (7.1.17) we find the L = 2 coupling coefficients C,, , ¥ shown
in the left-hand block of the following table:

L

(2p) )= X Ciit ,,12> (7.1.18)

M sy

2 2 2 2 2 1 1 1 0
1 e 1}2 1 0 -1 -2 1 0 - 0
1 1 |1 : .
. o 1 1
V2 V2
. . 1 1 1
Ve V2 ¥
o . 1 1
a 2
11 2 1
c = 0 0 z -—
(e 1) 3 ‘/3"
. ) 1 1
V2 V2
. ) 1 1 1
Ve V2 V3
. . 1 1
V2 V2
(7.1.19)

Using the L = 2 results one may orthogonalize and lower to obtain the
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(a) Carbon (2p)? (ev) | (b) Mixed Configuration
.g_ﬂ
1S 1S
-9 /
// - / 1P
I// , / // lD
@p2?/ D 10 @p3p)/
ﬁp’ — N
“ "\ 3S
\ 11 %
N3P \ 3p
_— )
12 ‘\ D

Figure 7.1.2 Atomic ***!L multiplet levels for two (I = 1) p electrons. (a) Two
equivalent electrons. Pauli exclusion principle allows only 1S, 1D, and D levels for
two p-electrons with the same radial quantum number. (b) Two inequivalent elec-
trons. All combinations of spin and orbit states are allowed.

L = 1 and L = 0 states. The electrostatic interaction causes a splitting of the

nine

,,111 >| ,,12>levels and it results in L = 2, 1, and 0 levels. These are labeled

by D, P, and S, respectively, in Figure 7.1.2(a), which shows the observed
energies for carbon.

Now we should also consider the spins of each 2p electron. The correct
total spin states have the same form as those derived in Egs. (7.1,10) and

(7.1.11) or Figure 7.1.1. There is a triplet set
>) /‘/—2—,

s=1\ |7 = =1\ _
Mg=1)7 |1 1) |Mg=0)~
s=1 \_
Mg=—1]=]|_

and a singlet state

)|

[T ST
[ ST ST

D= D=

= N
0= 0=

>, (7.1.20a)

>)/\/§ (7.1.20b)

N N[
|
B= =
————
|
|
[STEE ST
[SIEE STES
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The model atomic states are a product of an 1]f4> orbital state with a triplet
spin state to give a triplet atomic term state

L
M,

and a product of ‘ ]f4> with a singlet spin state to give a singlet term state

*LM, My ) =

s=1
M, > (7.121a)

|'La,0) = |§4L>‘g = 0>. (7.1.21b)

However, it is necessary to consider a rule called the PAULI EXCLUSION
PRINCIPLE, which plays an important role. Here it prevents some of these
states from existing.

This mysterious principle allows only states which are antisymmetric to

permutation of electrons. Note that the orbital states 1 fl> and ‘8 > in the table
. . 1 1 1 1
of (7.1.19) are symmetric to the interchange l’"l my ) = |my m1> of the

orbital states of the electrons. Therefore they can be matched only with the
antisymmetric § = 0 singlet spin state. Hence, the term states 'L =2) or
(!D) and |'L = 0) or (S) obey the Pauli principle, and occur in Figure

7.1.2(a). Similarly, the antisymmetric orbital states JLwL: 1> must be matched

with the symmetric triplet spin states to give the ’P term shown in Figure
7.1.2(a). This accounts for all the terms in the ground (2p)? configuration. In
excited configurations like (2 pX3p) other terms can exist, as shown in Figure
7.1.2(b).

Now it is possible to estimate the ordering of
orbital wave function

L=1
<x1x2 M, (2p)2> = — <X2X1

must go to zero as x, — X, because of the antisymmetry of ‘11% . Therefore,

25417 terms. Note that the

| (2,,)2>

the two electrons in this triplet spin state are never at the same point, and
seldom near each other. Therefore, electrostatic repulsion should be less for
triplet states than singlets. Indeed 3P is the ground state of carbon.

Now a classical argument can be made to tell which 25+1, for a given S

should be lowest. One may imagine that to make the greatest L the electrons
must orbit in more or less the same direction. Thus they have less chance of
colliding and raising the electrostatic energy. Indeed, D is lower than 'S.
These arguments give what are known as HUND’S RULES: The ground
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state has the highest possible spin and orbital momentum allowed by the
Pauli principle.

C. Spin-Orbital Coupling

The outer product is used to describe states corresponding to two properties
of a single electron, such as spin and orbit. The states of a single electron in

hydrogen can be written
P\ \_|l 2
1m,> ms> N ‘m, m |’ (7.1.22)

and the same coupling formalism can be used to give states

. 1
J 1y ) _ I
‘m (l® 2)>— Y lems,{l m, ms> (7.1.23)
my,mg
of definite total angular momentum j.
Before discussing the spin-orbit interaction, one may predict the form of
the splitting of an [ level. Several levels of hydrogen are plotted in Figure

7.1.3. They are seen to conform to the reduction
gigliegie =9 ea'":  (I>0). (7.1.24)

The splittings are quite small compared to the (1s5) energy of —13.6 eV.
The shifts and splittings of the excited levels are less than the shift of the

e T . a——

S p 3 3d
P 3d3/
3s1n 3P ‘ 33
r 2s 2p
-13.6 (eV) T2p3p

o T— e
=

1s

L -18x104 (eV)

181/2

Figure 7.1.3 Fine-structure levels for atomic hydrogen. Hyperfine splittings are not
shown.
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ground (1s) level which is 1.8 X 10~ * eV. The spectral structure which arises
from transitions between these levels is called FINE STRUCTURE. Note
that splittings are large compared to the hyperfine splittings given by
Eq. (7.1.15) in Section 7.1.A. Indeed, each of the fine-electron spin-orbit
levels is slightly split into electron spin-nuclear spin or hyperfine levels.
Hyperfine splitting is extremely small for p levels, however, since p electrons
spend less time near the nucleus.

The spin-orbit Hamiltonian is

H,=a,,(S-1), (7.1.25a)
where the interaction constant is the following:

Z%a?

2031+ (L + )

(7.1.25b)

$.0.

Za? 3
a =T<1/r >=

where a = e?/hc ~ 137 is the fine-structure constant. (Atomic units & =
e’/a, = me*/h* ~ 2721 eV are used here.) The expectation values for the
spin-orbit energies are

H,

S.0.

<,;1 (le1) rﬁ (1®§)>

=a, [i(i+ 1) -+ -3 (i

I+1), (7.1.26)

where the total angular momentum j =/ + s has been used in the same
manner as in the preceding section.

The spin-orbit effects, like most spin interactions, are derived most ele-
gantly using the Dirac equation. This includes all relativistic effects and leads
to a very simple expression for energy eigenvalues:

YA A 1 3
T m (7.1.27)
2

The Dirac formula predicts that a degeneracy remains between pairs of fine
levels such as (25, ,, — 2p, ,,) and (3p; , — 3d; ,,). This degeneracy is lifted
by a small quantum electrodynamic perturbation and the splitting is called
the Lamb shift. The degeneracy between nl; and nl} states can also be
understood in terms of a relativistic generalization of the eccentricity symme-
try discussed in Section 5.8.

Fine structure is more easily observed in multielectron configurations. In
fact, it dominates the electrostatic energies in some larger atoms since the
spin-orbit term in Eq. (7.1.25) varies as Z*. Model states such as those for
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(a) (2p)2 LS to jj Correlation (b) (2p)? or (2p3p) LS and jj Coupling

'S g o 2p3p) 1S
TR0 1= CpP ——— Cores, .~ 5o
// N 312172 \ Ip
5 = | B
/ \X/ . 0819283 “ ~. 1p1
/ / N\ J= 1,®1,)®(s;® \
1 =0 (1;®1)®(51®s,)
{ ID D2 // 1=72 1 ,2 \ 1D __1D2
[ = LS Coupling -
2
()" | / (1®)®(12817) s 38,
) . N
L Y =
\ oV (1812)®(19172) 3p,
— 128372 - :
\3p /P, S/ jj Coupling 3p H 3p,
et (1,®5)®(1,8s,) —
\3P i iy \ 31)
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Figure 7.1.4 Fine-structure levels for configurations involving two p electrons. (a)
(2p)? configuration in LS coupling case. (b) Comparison between jj- and LS-cou-
pling cases. In the LS case L and § are good approximate quantum labels and the
splitting between levels of different J and the same (L, ) is relative small. In the jj
case j and j' are good approximate quantum labels.

carbon can be coupled as follows

L
")
This gives, finally, states of definite total electronic angular momentum J. In
general, a given 28+11 term will split into 28 + 1 J-states for each S < L.
For example, the triplet levels of carbon split into three, as shown in Figure
7.1.4(a) on the lower right-hand side.

Note that there are four angular-momentum factors 1®i91®3)

associated with two p electrons, and one may couple them in different
orders. The ordering

Q1e)e(3e3)=(20100) (100
=(®L)®(@S)___(@Je)

B M)= L Coin A§s> (7.1.28)
My, M

corresponds to what is called LS coupling, and the resulting levels are drawn
on the right-hand sides of Figures 7.1.4(a) and 7.1.4(b). [The grayed lines in
Figure 7.1.4(b) indicate levels that are present in an (npn'p) configuration but
are ruled out of an (np)? configuration by the Pauli principle.] If spin-orbit
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splittings are small compared to the electrostatic splittings between 25+
terms, then L and S are still useful quantum labels.

On the other hand, a strong spin-orbit perturbation may make the follow-
ing coupling ordering more appropriate:
(tehe(el)=(3ehe (ol

=(®])®(®]' =(@J@)
This corresponds to what is called ji coupling, and the resulting levels are
indicated on the left-hand side of Figure 7.1.4(b). For each J term that
comes out of the ji combination, there must be a corresponding term with

the same J in the LS combination. This is indicated by correlation lines
between Figures 7.1.4(a) and 7.1.4(b).

D. Geometrical Interpretation of Angular-Momentum Coupling

In general it is possible to couple two separate angular momenta J, and j, to
make a total momentum equal to j, = j, tiniitia—1,..., or |j; —j,l.

=it %,

Ja=lin —jal 24,
J3

Figure 7.1.5 Vector-addition picture of angular-momentum coupling.
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The level diagram corresponding to these coupling possibilities is shown in
Figure 7.1.5. Beside each level is sketched a vector triangle composed of sides
Ji» jp» and j,. The inequality j, + j, 2 js = lj; — j,| is called the TRIANGU-
LAR CONDITION and it must hold in order to have a nonzero coupling
coeflicient.

It is interesting to look at the vector addition model in terms of the
angular-momentum cones which we discussed in Sections 5.4 and 5.5.B. (See

Figures 5.4.4 and 5.5.3.) We may imagine that the C; 2 /> is the amplitude

mymyms
for the angular-momentum cone and vector arrangement pictured in Figure
7.1.6.

Figure 7.1.6 Angular-momentum cone picture of coupling.
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Since z-component conservation requires that m, + m, = m; we may plot
C /1 7275 a5 a function of a single variable m; = m for fixed j;, j,, j; and ms.

mynmanig
This is done in Figure 7.1.7 for j; = j, = 9 and select values of j; and m;.
The plots are quite similar to the ones of 2/ (080), which were shown in
Figure 5.5.5. Once again we note that the projection of an angular-momen-
tum cone base on the m or z axis defines the “classical” limits, or external
inflection points of a “discrete wave.” The number of “nodes” of this wave is
j1 +1J, — j;- We also note that the discrete quantum number m; plays the
role of the continuous angle B in Figure 5.5.5. Regge and Schulten and
Gordon have derived Schridinger-like differential equations which give solu-

Figure 7.1.7 Plots of coupling coefficients C? ° 7 for J = 18,17,16,... and
k=0,-5-10,....
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tions that pass near or through those points. (See Additional Reading lists at
the end of this chapter and Chapter 5.)

7.2 MATHEMATICAL RELATIONS OF COUPLING
AND WIGNER 3j COEFFICIENTS

Before treating more applications of the coupling coefficients we should
review the mathematical properties of them. First, the angular-momentum
products will be related to common products in vector analysis. Then the
fundamental relations between the C coefficients and the D irreps will be
derived and used to define symmetry relations. This will lead naturally to the
definition of the Wigner 3j coefficients.

A. Scalars, Vectors, and Tensors

Consider two ordinary three-dimensional vectors

K4 k74

A- |¥,| and B- |%,]. (7.2.1)
MZ (@Z

From the theory of vector analysis there are three different types of products
between them. There is a SCALAR, DOT, or INNER PRODUCT

A B=o B, +H4,B,+I,%,, (7.2.2a)

a VECTOR, or CROSS-PRODUCT

S, B, — 4, B,
AXB > (4,8, - 9,3, |, (7.2.2b)
<. B, - 4,F,

and a TENSOR, DYADIC, or OUTER PRODUCT

A B, AB, A,B,
AB > |, B, %,B, ¥,%.|. (7.2.2¢)
S, B, AB, A,B,

It is instructive to note that these three products correspond directly with the
three reductions of products between [ = 1( p) states which give total L = 0,
1, and 2 states, respectively.
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The only complication in making this correspondence comes from using
two different types of coordinates, namely, CARTESIAN or PLANE-
POLARIZATION components (%, ,, ,) on one hand, and R, symme-
try-defined or circular-polarization components (], 3, ! ) on the other.
Let us define the following relations between these sets:

wt= = (st +id,) V2, oL = (o, - in,)/V2,

o= (VL -2, =i+ I NV2, o=, (123)

so that they conform to those between (x,y,z) and the harmonics or
multipole functions (Y}, rYy, rY!)) given in Appendix F or Eq. (5.6.19).
Then it follows using the table of (7.1.15) that the symmetry-defined product

[%'xZ'l= ¥ CLLw} B (7.2.42)

mym,0
my, my

is proportional to the scalar product in Eq. (7.2.2a):
[ X B |0 = 1/ 30}, — 1/ V3B + 134 | B]
13 (-4, —ist,) (B, — iB,)/2 — 1/V34,,
+1/V3 (%, — i) (—B, — iB,)/2
= (A, B, +4,B,+5,B,)/V3 = —A-B/V3. (71.2.4b)

The R, symmetry-defined product with L = 1 and M = 0,

(o' xB'o= ¥ CLLiwk: B, (7.2.52)

mymy0
my,m;

1

0) or z component of the vector product in

is proportional to the (
Eq. (7.2.2b):

[o! X By = 1/V20 B, — 1 /20 |\ B}
=i(—, B, +#,8,)/V2 = i(AXB),/V2. (7.2.5b)

Finally, the L = 2 products are made of second-rank tensor components:

(' xB' = ¥ Cll2 @l (7.2.6a)

iy mymym
[! X B, = (4, B, — A, B, + i, B, +i4,8,)/2, (71.2.6b)

(&' X B = —(H, B, + S, B, + i, B, +id,8,)/2,

[ X B = (~, B, — A, B, + 25,8,) /6 .
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All these products are summarized in the following matrix:

[5 1% [% R, [P 1M [ % [, ]

N

g B

x
«
[S3 S Y I

o

[SYIE=Y
(]

-

7<xy211,;> = y v | -

Wl -
ey

~
N
|
N
o~

N
=
|

NI IS

W =N N~
ST
[SRRCNN ST

N
<
|

2 ) 1
z e
(72.7)

This matrix represents a unitary transformation between Cartesian compo-
nents J;,; = &,%; and symmetry-defined components 7 = [« X B of a
second-rank tensor:

T=Ya,t%= LIl (7:2.8)
i k,g

Note that if the two vectors A and B are the radius vector (i.e., A = B =r)in
Eqgs. (7.2.4)-(7.2.7), then one obtains the elementary multipole functions such
as the following:

[rlrl]i = (x?—y> +2ixy) /2, [rir']; = —(x — ) z,... etc.
- /X2 = V2 x? (72.9)
These polynomial relations were discussed in Section 5.6.C.
Tensor or polynomial algebra can easily be continued up to arbitrary rank
or order k, by attaching more vector factors. If we just want the new tensor
or polynomial at each stage, i.e., the one which has the highest L = k, the

necessary coupling formulas are quite simple. For example, to make the
kth-order product,

“[w1 xa@Pxct- ] x.ﬁzﬂ]k = CAIUIL - 157

g—1lqg
q

+ Ck—llk[[[ k—lz,(}

q 0Oq q

— k—1
+ C§+i—11§[[[ e ]q+1‘%£17

(7.2.10)
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from the (k — 1)th products one requires the following coupling coeflicients:

3 2 _ 52 2
k- 11k _ (k+a-1)(k+aq) Ck-11k _ k" —q
a-1a 2k - D)(2k) |’ « 0~ \k2k-1) )"
(k—a)(k-q-1))*
k—11k _
Ck 1k ( TIETEY : (7.2.11)

These are derived from Eq. (7.1.17).

B. The General R, Scalar Coupling

If there is any type of coupling coefficients which should be memorized, it is
the ones which make the scalar (/ = 0) irrep:

C’illx'izzg = 6i1yj26m1, *mz( - l)jl_rnl/v zjj +1. (7212)

The product of any two bases belonging to the same j can be made combined
in the form

|8> -x % J >l g > (7.2.13)

so the result has zero total J and belongs to the scalar irrep 2% R) = 1. The
derivation of this coupling is a little more complicated than it was for real
irreps in Section 6.2.A, since the phase is variable.

The derivation is made by using the relation between an irrep &7, which
serves to transform ket vectors:

R(apy)|] )= Tohnlatr)| ] ) (72.14

m

and its complex conjugate &7", which does the transformation of bra vectors:

. T . .
J =[] {pt — i* J
(R(aBy)'m >) <m IR (aBy) g@m,m(aﬁy)<m, . (7.2.15)
Note that the ket-bra product completeness relation
— I\ :
1 §Im><m‘ (7.2.16)

is clearly a scalar. One needs to find which combinations of bras < ’il '

transform like a given ket ril > This will yield the coefficients that make

scalars out of ket-ket products.
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To this end let us examine the transpose conjugate,
P (aBy) =27 (aBy) =D/(—v, —B, —a), (7.2.17)
¥ 27 and use the fact that it is unitary. By making the substitutions

t—> —y, y— —a, m—> —m', m' > —m in Eq (5.4.45) one finds the
ollowing:

o, (aBy) =27, _.(—7,B, —a). (7.2.18)
Also, by substituting 8 — — 3 one obtains

—m+m

Dym(e = By) = (=1) DrmlaBY). (7.2.19)

Combining the last three equations in turn gives

grgm'(aﬂ'}') =9r£tm’(—'y - B - a)’
DI (aBy) =D (@ = BY) =D _p(aBy)(—1) """ (7.2.200)

This is substituted into Eq. (7.2.15):
(3R (ar) = £ ontatrr -],
(-0 _ 1 |Ri(a8y) = Epuntapn (-0 { ]| (72200
m
The resulting equation proves that the bra bases
-n"(_;

transform exactly like the ket bases I

or(—l)j_'"<_n£l

r{; > The extra overall phase factor (— 1)/
does not affect the transformation. It is conventional to choose (— 1)/7™ as
the phase factor since it is real even when j is half-integral. This completes

the proof of Eq. (7.2.12) for scalar coupling.

C. Fundamental Coupling Definitions and Symmetry Relations:
The Wigner 3j Coefficient

The R, coupling coefficients are defined to be components of orthogénal
transformation matrices:

J1 J2
z Z C’fxfzj3cf1f2f5 =8..8

my=—jy my=—j,

(7.2.21)

mymymsy~ mymam’y J3J5 " mam's*
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They therefore satisfy completeness relations, too:

Iith J3
s hjaJs —
E Z Cm1mzm3cm'1m'zm3 5mlm’]‘smzm’z- (7222)

J3=li —jal ma= —J3

We shall use these relations with the fundamental irrep orthogonality rela-
tion (5.5.28):

*
’

fd(aBy)@,{:,n(aBy)@,{m(aBy) = 8,8 O/ 2J + 1.
Also, we need the reduction equation for @/t ® @2

Z Z Cr{:llrizzrilsggr{tllm’, ( aB’Y) 9;{'22”’,2( aB')’ ) Crizl’ltilz'zrili = 6j3j'3‘9r{133m’3( aBY) .

mym, m'\ym',

(7.2.23)

[Recall Eq. (7.1.6c) for an example of this.] The inverse reduction equation,

J1+i2 Js
Dhmi(@BY) DR mfaBy) = X X Chriop.(apy)Clin,
Ja=li =il m3=—Js

(7.2.24)

follows from Eq. (7.2.22). Finally, by applying the irrep orthogonality relation
one obtains

[d(aBY) D3 @BY) D2, (@BY) Dt @By) = Co b Col 0 /2)5 + 1.
(7.2.25)

This is an extremely useful result. It is sometimes called the FACTORIZA-
TION LEMMA.
Our first use of this equation will be to suggest a more symmetric form of
coupling coefficient. We shall need the conjugation relation,
91’3‘

— {1\ msmiatmy s — ( _ 1\ Satma—iztmi oy
m3m’3_( 1) 9 m’3_( 1) “

—m3— —m3—mSy’

. (7.2.26)

from Eq. (7.2.20a). We also need to become familiar with some of the tricks
of phase arithmetic. For example, one can often use the fact that the factor

(~1)7m = (1) (7.2.27)
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is positive or negative unity even if j; is half-integral. The point is that if j, is
half-integral then so is m3, and this means that j, + m, is an integer. Also,
we will use the fact that for any {j,/,/;} in C/*/2/s one must have

1= (_1)2f1+2f2+2f3 — (_ 1)2f1+2f2—21'3 - (_1)2f1—2f2+2f3, etc. (7228)

This follows since there cannot be an odd number of half-integral j’s in
C’12)3, Finally, we obtain

Jd(aBY) D33 @BY) Dt i (aBY) D2l @BY)

(_1)—13—'"3cj1 i s (_1) _j3_m’3C!'1, Ja Js

mym,—ms mymy —
V2is + 1 V2is + 1

_ Y Thema g gy s _ N e gy s
( 1) lelmzz—m3 ( 1) Cm'lm’z—m'

- > 1. (7.2.29
V2is + 1 V2is + 1 ( )

The last line includes a factor (—1)>1722%25 which is always unity. This
leads to the conventional WIGNER 3j COEFFICIENT:

jl jz j3 _ f1—jr—m i\ s s .
(ml m, m3) B (_1)]1 " 3C’:’l'ilz—jms/v 2]3 +1, (72303)
which satisfies
fd(aBV)9,{.‘1,"'1(&[37)9,1;22m/2(a[3y)9,§‘;3m,3(a/3y)
= jl jZ j3 j] jz j3
B (ml nm, m3)(m’1 m', m’3)‘ (7230b)

The idea of this definition is to make a coupling coefficient that has
convenient symmetry relations with respect to permutations of the j,, j,, and
j; parts. From Eq. (7.2.30) a number of symmetry relations follow. For
example, we have

. . .2 . . . A\2 . . Loy 2
N Jo I3 _ |2 h J3 _ |7 Jo
my m, m;y m, m; m; m; m, mg|’*
T PR P ORI PR YR F I O PSR PR PR N PO P
my m, my{{0 0 0 m;, m, myj{0 0 0
ik i \(h i
T imy m, my {0 0 0}
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However, the phase relations for the individual coefficients are not so
obvious, since they depend on the detailed definition of C,J! /2 ,13 for different
products. Wigner’s definition is made so the following permutation properties
hold:

J1 Ja J3 _ (_1)j1+fz+f3 J2 I J3
m, m, M, m, m; m;
Js 2 h

_ (_ 1\ tiat)s
= (=D ms; m, m,

_( __1\J1Hi2t)s jl j3 j2
= (=D my ms; M,

_ j3 j1 jz _ j2 j3 jl
N (m3 my mz) h (m2 ms ml)' (7.2.31)
Also, we have from Egs. (7.2.30) and (7.2.20b),

j1 jz j3 _ ([ _1\J1ti2ti3 j1 fz j3
(m1 m, m3)_( 1) (_m1 Cm, _m3). (7.2.32)

The 3 —j coeflicients have easily remembered properties, and one may
quickly find various permutation relations for the C,j; ;,2 ,jf For example,
transposing the first two factors gives the following:

—_ J2—j1+m Ji+ia+i ]1 jz j3
( 1) 271 3 /2]3 ( 1) 1+J2 3( m _m3)

= (—1)"ThCh b2 s (7.2.33)

mymayms”

o h s
m, my —m;

For j, = j, = j this gives an important special case of this relation:

CJ i _( 1)21 J3C] jis (7.2.34)

mzmlm; mymymsy*®

This is very useful to have when applying the Pauli principle. Note that when
two integral momenta j, = j, = n are coupled, the even total j, states are
symmetric, while the odd j, states are antisymmetric. For half-integral j, =

j, = n/2 the reverse is true.
A permutation of the second two factors gives the following relation:

o s 2j,+1 o
Chhhn— ()t (22 ch i2is, 723
mymsm; ( ) 2]3 +1 —mymyms ( 5)
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D. Clebsch-Gordon and Wigner Coefficient Formulas

In Section 5.4.C the connection between two-dimensional oscillator operators
(SU,) and three-dimensional rotation operators (R;) was introduced. [Recall
Eqgs. (5.4.37).] The creation operator algebra of Schwinger and Jordan was
used to derive the irrep formula (5.4.45). Now the same methods can be
extended to derive coupling coeflicient formulas. The methods described
here are due to the combined works of many researchers who are developing
similar formulas for higher unitary groups Us, Uj, ... . [The principal pio-
neers in this field include Baird, Biedenharn, Bincer, Gelfand, Louck, and
Moshinsky. See Additional Reading list at the end of the Chapter.)

J2
Almy

Let us begin by representing the product state l ,Q
of oscillator operators. One pair {a = czl,cf'l = az} includes the creation
operators for momentum j; of partlcle A while the second pair {bT = a?,
bT = a2} includes the creation operators for momentum j, of particle B.
Note the change in notation in which creation operators a! are indicated
without the dagger (1). Destruction operators are denoted by (a)' =al in
this notation. The product state consists of generalization of Eq. (5.4.38) in
which the oscillator analogy is used once for the angular-momentum j, statc

of particle A and then again for the j, state of particle B:

TR G LR B
M M [(jl +my)!1(J, —ml)!(j2+m2)!(j2—m2)!]§

= [jy + myjy —my, o+ myj, — my).

>B using two pairs

The empty ket | ) = |00,00) denotes the vacuum state in which each
particle has zero angular momentum.

The problem is to construct the states which are eigenvectors of definite
total angular momentum. This may be done by appealing to a generalization
of the Z-matrix derivation by creation operators. Let us begin with a
generalization of Eq. (5.4.41):

af =upa{ +upat  (j=1,20rA4,B). (7.2.37)

Here, u;; are components of a general unitary (' =« ~") unimodular (det « =
D two-by -two matrix. That is, « is an element of SU,. This transformation of
creation operators may be substituted in Eq. (5.4.42) and the entire analysis
of the resulting expansion carried out as it was in Section 5.4. The result is an
expression for the general irrep 2/(«) of SU,:

j(wn wu)=2 [+ m)( =)+ m)(j —m)1]

mn
Uy Wy

T (J—k+m)l(k—m+n)k!(j—n —k)!
X ( “11)j_k+m( “21)k_m+n( wlz)k( “22)]'_”‘]{- (7.2.38)
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Since producps of re;presentations must be a representation of products we
must have 2/(u)2(v) =2'(uv) =2'(w), or

Zggm(“u “12)-@'{1(“11 ‘*12) =9'{”(w11 ""12), (7.2.39)

Wy Uy Wy Wy

where

2
W = 3wt (7.2.39b)

Now a useful operator results if each w;; component is replaced by a
creation operator a;. Let us define a boson polynomial

L GG = mG A+ m)G - m) i)Y
B'""(“)‘% (j—k+m)l(k—m+n)k!(j—n—k)!

X(a%)j—k+m(a£)k—m+n(af)k(a§)j—n—~k, (7240)

which is the same as @/ (a) with (a) replacing (u) except for an extra
normalization factor (2j)!. We will explain the normalization factor shortly.
In any case the result is a polynomial that has the correct transformation
properties of a total angular-momentum state. To see this consider the same
polynomial made of transformed (a') operators given by Eq. (7.2.37). Rewrit-
ing this equation as a matrix product, one has

a=u-a, (7.2.41)
where

Gy =u. (7.2.42)

J Jt

Then the representation equation 2/(za) = 2/(2)2'(a) becomes

Bj(4a) = L.}, Bly,(a) (7.2.43a)

or

Bh(d) = LZ),(0)Bjp(a), -+ (72.430)

where the unitarity (27/(u") = 2/(w)") and conjugation (27(u*) = D(w)*)
properties of @7/ have been used to write 2/ (&) as 2/ (u). The result
shows that the polynomial has correct &/-transformation properties when
the 1 (spin 1) and 2 (spin |) components of the two types of bosons are
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mixed simultaneously according to Eq. (7.2.37). The transformation corre-
sponds to the rigid rotations of the coupled A4 and B particles.

The same polynomial also transforms irreducibly under all transformations
which mix “A-ness” and “B-ness” of the two different particles. Consider a
transformation
al = vya] +oyal,

"

a? =uv,a! +vyal (i=1,20r1,1]), (7.2.44a)

which can be written in matrix notation as follows:
a'=a-uv. (7.2.44b)

The representation multiplication rules (7.2.39) lead to the following trans-
formation properties:

B}.(a") = B},,(a ~v) = L Zp.(v) Bpn(a). (7.2.45)

This is another example which has two commuting groups of transforma-
tions for one system. The right- and left-transformation laws (7.2.43) and
(7.2.45) are analogous to “laboratory” and “body” transformations (5.5.31)
and (5.5.40). Here we have a transformation group SU,={---u -} of
states which commutes with a transformation group SU, ={---¢ ---} of
particles. The combination is often labeled SU, X SU, or SU, *SUj,. [The
modified cross-product (*) notation is used to indicate that the two groups
share a common irrep 2’.]

A normalized state results if the boson creation operator (7.2.40) is
applied to the vacuum:

J > — BJ. ()|00,00)

mn

(J'+m)!(j—'n)!r
(2))!

(j+n)! (j—n)!

(n1)!(n2)! (ni)!(n3)

Here the occupation numbers are

XY

'] |niny, n?nd). (7.2.46a)
k : :

nl=j+m—k, nk=n-m+k, ni=k, and nj=j-n-k.
(7.2.46b)
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The usual oscillator creation rules
(a})" (@) (a2)" (a2)"4 00,005 = y/(nl)1(nd)!(n3)!(n3)! |min}, n2n3)

have been used. [Recall Eqgs. (4.4.62).] To check the normalization one may
evaluate the scalar product

J
mn

j ). Grmimm:
mn 2!

3 (j+n)! (j—n)!
L Am k) (n—mr k) K —n-k)’

where the orthonormality relations
(a'b,cd'|lab,cb) = 8,,8,,8.:8 44

for oscillator eigenstates are assumed. Then the relation

B -0 o

m s —m §
m

for binomial coefficients ( fr’l = p!/m!(p — m)! may be used. This relation is
obtained by equating terms of binomial expansions:

(x +y)"" E(p ;r q)xsxﬁq-s = (x+9)"(x + )"

s

The desired normalization is then proven.

J
mn

j (J+m)i(i —m)!
J Y=
) ¥

j+n j—n
j+m—k k

mn (2))!
_GEmlG-mt o2 )
(2))! jAm)

The boson state (7.2.46) is composed of exactly (2j) bosons. This is the
minimum number of bosons needed to make a state of total angular momen-
tum j.

Another boson polynomial of interest is the determinantal combination

det(a) = D(a) = ala? — a}al. (7.2.48)

This combination is invariant to all SU, X SU, transformations because of
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the unimodularity conditions (det « = 1 = det #). The invariance then fol-
lows from the elementary properties of determinants:

det( zav) = det( w)det( v)det(a)
= det(a). (7.2.49)

A totally scalar (j = 0) state of (N = 2d) bosons has the form
i=0 N=2d)=[(2d)!(2d + 1)!] "*(a2a2 — ala?)*100,00)
— [d)!}(2d + 1)1]*
x T (24) (ata2)’(—atat)™* 100,00
— [2d)1(2d + 1)1]
XY (=-D)1rr, 2d-r 2d-r)

—@2d+ 1) 8=, 2d—r 2d-r).
, (7.2.50)

The sum over r contains exactly (2d + 1) terms, so the normalization of the
scalar state is seen to be correctly chosen so that {j = 0|j = 0) = 1.
The Clebsch-Gordon coefficient is the scalar product

lefzf — jl j2 J
mn

mymym ml rn2

between the uncoupled state (7.2.36) and a coupled state similar to the one in
Eq. (7.2.46). However, the scalar product of boson states will vanish unless
three criteria are met. First, the eigenvalues of m components of momentum
determined by

J(m) = I + P = n/2(alal — @hal + @la} — aZal) (7.2.51a)
must be equal; i.e.,
m, +m,=m. (7.2.51b)

Second, the eigenvalues of

J(n) = h/2(@la} + alal — ata? — aZal) (7.2.52a)
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for the other commuting SU, generator must be equal, i.e.,

J1—J,=n. (7.2.52b)
Finally, the total number

N =2(j, +j,) (7.2.53)

of bosons must be the same for the states ;11 2} and ‘ J > The last
1 My mn
requirement generally means that some number (N — 2j) of bosons in scalar

determinantal combinations must be added to ”fn> to give the following

general coupled state:

i N
mn

(27 + D)(j + m)!(j — m)!
(N/2 = DUN/2+j+ 1)

(j+n)t (j—n)! 12 _ g N2 o
AT (n%)!(nz)!}( ek — k) i, i)

(7.2.54)

Here the occupation numbers nj from Eq. (7.2.46b) are used. The normaliza-
tion factors for this state are difficult to prove, and we refer to the work by A.
Bincer for their derivation. Expansion of determinantal expression gives

(N/2 = j)! ’ ’
P(N/2—j—r)! (ata3) ™" (aat)"

N/2—j
(alad — ata?)"” " = L (-1
r
Insertion of this into the coupled state gives
/N
mn

@i+ DG+ m)(j - m)!
(N2 = HUN/2Z A+ + 1)

[+ 2 = o) ()]
F(N/2 — 7 = () (m) (nd)i(m2)r /270!

X2 (-1
k,r

X |mimi, mim3), (7.2.55a)

where the new occupation numbers are as follows, according to Egs.
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(7.2.51)-(7.2.53):

m%=n{+3_1_r=]1+12+m—k—r (:j1+ml)’
my=ny+r=j—j,—m+k+r (=i —my),
mi=ni+r=k+r (=72 +my),

2 2 N 1 ] ]

m2=nz+? —j—r=2j,—-r—k (=72 =m;). (7.2.55b)

The equalities written in parentheses on the right must hold when this state
is matched with (7.2.36) to derive the coupling coefficient. The r sum is
eliminated then, since

r=p—k+m-m =j,+m,—k. (7.2.56)

The resulting coupling coefficient formula has m; = m, + m,, n =j, — j,,
and N = 2j, + 2j,.

J
o )

(2j5 + D)1 +iz2 = ja)W(s + i1 = 2)1a + s — i) ]2
(i +ip+j3+ D!

chii _ [t )2
mymams m; my

=(_ 1)fz+mz[

LG+ M)Wy = m)Iz + M)y = ma) (s + ma)i(js — ma)t]?
¥ (G
v Gzt my— kY = j3 — my + kNG5 + my = k(g — o — ma + kKI5 — jy +Jy — k)1
(7.2.57)

The standard formula for the Wigner coefficient

( J1 Ja J3 ) _ (_1)11—f2“mscf1 j2 s /(2]'3 + 1)%

m; m, my mymy s

follows and is given in Appendix F.

7.3 ROTATIONAL TENSOR OPERATORS
AND THE WIGNER-ECKART THEOREM

The theory and application of R, tensor operators will be introduced in this
section. The development will be similar to that of Section 6.4, where the
tensor operators of finite symmetry were introduced. First, the construction
of tensor operators from bra and ket bases will be shown using simple
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examples. Then the Wigner-Eckart theorem will be discussed and applied to
atomic crystal field problems which were first encountered in Section 5.6.
Racah coefficients will be introduced in a treatment of a two-electron crystal
field splitting.

A. Construction of R, Tensor Operators

DM

>} of 2j + 1 ket vectors
there is an equal number of bra vectors

S S S S i

which belong to the same irrep @7. (Recall Section 7.2.B.) By combining
them using coupling coeflicients one may construct the IRREDUCIBLE
TENSORIAL OPERATORS,

For each set of irrep bases

J
=

,...,(~1)2"<§

1(s= T eI ey s
m,m

which transform according to irrep 2% (2j = k > 0) as follows:

R(apy)T(jj)qR"(aBy) = Ze@q’fq(aﬂv)T(jj)’;. ’(7.3.1b)

This is similar to the construction which was introduced in Section 6.4.A for
finite-group irreps. The only difference is that now we must account for the
different transformation behavior of the bra vectors.

1 i1 Ja iz
j1>,...,’ml>,...},{}.2>,..., m2>,...},... of angu-

lar-momentum states need to be considered, then one may make combina-
tions

J1 J2

my [\ —m,

If two or more sets {

T(f1f2):= ) C,f,‘l,ffzs (—l)jz_m27 (73.2)

my, my

where

All combinations are needed to make a complete set of irreducible tensor
operators acting on the bases. The first few examples treated in the following
will be based on a single set {If,,)} of angular-momentum states, and so there
will only be one combination Tq"( Jji) = Tq" for each k =0,1,...,2j, and gq.
(k>q=>= —k).
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(a) Tensor Operators for Spin —L States From the spin-1 states

(-

[STIRNTS
SN

>} one may construct the tensor operators

’Zl >< _fnz}(—l)%_’"?, (7.3.3)

using 1 ® 1 coupling coefficients (7.1.7). The results are given in the follow-
ing with their representations in the spin- 3 basis:

k — P ik
Tq Z(:m[mzq

my

me(8) meg( ) = (5 o
o BRI R
w--ls
S RS

The first three operators form a vector set. Consider the following Cartesian
combinations:

T = TL, - T| T = TL + T T = 71
x ‘/5 y l ‘/5 z 0
=i(o 1) =L(0 —i) =i(1 0)
AR 2l oo 2\ -1
1 1 1
Eﬁﬂ'x E‘/—E-O'y Eﬁﬂ'z
=27, =27, =y2J,. (7.3.4)

Except for an overall minus phase, these relations correspond to Eq. (7.2.3).
The resulting Cartesian tensors are proportional to the Pauli spinor opera-

tors:
0 1 0 —i 1 0
UX—>(1 0), O'y—>(l. 6), a'z—*(o _1), (7.3.5)

or the spin- 3 angular-momentum operators [recall the original definitions in

Eq. (5.5.3)}
I,=0/2 1 =072 J =0/2 (7.3.6)

An explicit example of the transformation behavior required by Eq. (7.3.1b)
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is represented in the following:

R(080) T RT(0B80) _ T
ik BB
cos 'E —Sm ) ( _ 1/‘/2— 0 ) COos ) s ) o -l— ( cos ﬁ sin B )
sin = cos - 0 1/V2 —sins cos 2 \sinB  —cosB
=21,(080) T{ + D508 T + 21 (0O T,

| | l

_ —sinﬁ(o 1) +cosp -1/¥2 0 +sinB( 0 0)
v2 \0 0 0 1n2) V2 \-1 o)

(7.3.7)

The Cartesian form of this equation is simpler. Multiplying the angular-
momentum form by —1/ V2 and using Eq. (7.3.4) yields

J,(rotated) = R(0B0)J,RT(0B0) = sin BJ, + cos BJ,. (7.3.8)

It should be clear now that products of spinor bases form operator
quantities that behave like ordinary vectors in 3-space. In this sense spinors
are “square roots” of vectors. In order to appreciate the physical meaning of
Eq. (7.3.8) one may take its expectation value in an arbitrary state ¢ ):

(T, (rotated)|yp) = sin B |T ) + cos BT, 1y, (7.3.9)

Figure 7.3.1 shows how the average or expectation value of the component of
J on the (z-rotated) axis is given by Eq. (7.3.9). However, one should
remember that the actual values for the component in a Stern-Gerlach spin- 3
analyzer will be #/2 for some fraction for events and -4/2 for the rest.
(Recall discussions at the beginning of Chapter 1 and in Section 5.5.B.) By
expanding the expectation matrix, one obtains the result in terms of the

2
Mo
>2

(as usual, let 4 = 1):

TR ><
Sk

>2

fractions or probabilities ’(([:]R

(¢|R(aBy)J, R (aBy)|¥) R'[¢)

S N

1KwIR|

KR (7.3.10a)

[ ST ST

B= 0=

Each quantum amplitude { /|R

2 > depends upon the initial unrotated ampli-
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Figure 7.3.1 Geometry of expectation vector {J). Component on rotated z axis is
determined by ordinary vector geometry. This picture collaborates the tensor equa-
tion (7.3.9).

tudes ¢, = <¢1\ 3

> and the rotation matrices:

3

(¢|R(aBy)

_l_ 1
m> = T Pl aBY). (7:3.10b)

5 states have passed the analyzer. The “expectation
vector” for |¢) states has components

The well-known classical behavior of the angular-momentum vector
emerges after many spin- 1
) =<Plled, )y =<l g, ) = W@l lg), (73.11)
as indicated in Figure 7.3.1. This vector provides a useful picture of the
properties of particles in a given pure spin-

1 state. The vector picture will be
studied in detail in Section 7.4.
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(b) Tensor Operators for Higher Spin States (j=1,3,2,...,4) The
1 ® 1 coupling coefficients (7.1.19) may be used to construct a complete set
of nine tensor operators for the j = 1 basis. The tensor operators and their
representations are given in the following, using Eq. (7.3.1a):

)

+

)Gl W DGR
o/\1]7|-1/\o -1 1/\oj "o /\ -1
12,- 1><1| 12, - 13- . T2- :
-1/\1 ¥ N3 5
o o o 0 o 0 /6 o 0 0 145 o
~lo 0 o N RV s 0o -—2/46 0 -lo o 1
100 0 -1/ 0
/ 0 0 1/V6 0 0 0

>< BUOVYAINL 1
~1 s /N o/ -1
17 /2_ ’

o 0 1 0 0 0 12 6 o 0 ~12 e
—»(o 0 o) Y SV I -1 o o 0 -1 0 1

000 0 12 0 0 0 -1/y2 o o o

13 o 0
-1 o 13 o |
0 0 173

R WG] | 2] RG]

Oc

(7.3.12)

The lower four operators are the scalar (k = 0) and vector (k = 1)
operators. T{ is proportional to the identity (1), and T!,, T}, and T} are
proportional to the angular-momentum operators J_, J,, and J,, respec-
tively. This follows from a comparison with the original @/=! representations
given by Egs. (5.4.21)—(5.4.25):

T, =J_/2 T =1,/V2 T}
= (I, —il,)/2

—J+/2’
—(J, +iJ,)/2. (7.3.13)

The three tensor operators (Tt |, T4, T}) or (J,, Iy J, ) have the same tranfor-
mation properties as the corresponding vector operators constructed in the
spin- % basis. Of course, the scalar operator Ty is invariant.

Beyond the scalar and vector operators in Eq. (7.3.12) there are five more
(k = 2) operators {T2,,T?,,T¢, T, T} known as unit quadrupole opera-
tors. These are the “tensor” operators which deserve this old-fashioned
name. To label a (j = 1) state completely one needs a set of quadrupole
tensor expectation values (qu) as well as the (qu) or {(J,) vector expectation
values. The significance of these values will be discussed when we introduce
irreducible density matrices.
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Similarly, the quantum mechanics of higher j-states will require in general

a complete set of (2j + 1) tensor operators. Let us define new tensor
operators which differ by an overall phase factor (— 1)%;

;1><nf1‘ = (-DYTF.  (73.14a) F'

. . F—am’
vi= T CLA-)"
m,m’

The 3 —j definition (7.2.30a) and symmetry relations (7.2.31) and (7.2.32)
yield the following alternative form: |

vk = 2,(—1)""”¢§m(" J _ni)‘,ilxrfll (7.3.14b)

g m

The phase eliminates the annoying minus sign that occurs in 7% for half-
integral j. [Recall Egs. (7.3.3),.] The v,f representations are recorded in
Tables 7.1-3 in a condensed form. To understand the condensed form,
compare the (j = 1) tensor derived in Eq. (7.3.12) with the j = [ = 1 tables
in Table 7.2(p). Note that each qu has nonzero entries only in particular
super- or subdiagonals of the matrix. Each superdiagonal is labeled by a

number g = 1,..., k in the tables. The main or center diagonal belongs to
g = 0 and the subdiagonals belong to g = —1, —2,..., —k. At the end of
each superdiagonal is a normalization denominator.

Note that each gth superdiagonal in a set of v, ug“, ... matrices gives a

set of orthonormal vectors. For example, with j = 2 the g = 2 superdiago-
nals of Table 7.2(d) are

3 1 V2
vie ' 2 Vi
ks 0 ]
Vid ’ ’ V7
V3 1 V2
iz 2 Y
(for k = 4) " (for k = 3) (for k = 2).

Because of orthonormality of coupling coefficients these diagonals are or-
thonormal vectors. This makes it easy to express any (2j + 1) by 2j + 1)
matrix in terms of the v;‘. For example, using the second numbers from the
g = 2 superdiagonals we easily find the following elementary matrix or

operator:
0O 0 0 0 O
0O 0 0 1 O NG ) , V3 ,
0O 0 0 0 0|]—->——uv,+00;+ —v5=E,,. (7.3.15
0 0 0 0 0 ‘/ﬁ 2 2 ‘/,7 2 24 ( )
0O 0 0 0 O
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TABLE 7.1 (j) Subshell Tensors

@j=1 ®)j=32 (c)j=7

S
qg=20 1 2 3 4 5

AN
g=0 1 2 3 5_\‘/5— NN N
q=0 1 NV L V5 3 -8
Lo A . B2 - vg=| - B 1-3 -
Ya= g —1‘/_v$= . 2—17\6‘/_ . S R N
) 10
. \E -3 . . Jg— _3,«5_\/5
V2o . . S s -5|y70
s -5 5 - . .
1 -1 1 . B5o—-1 -2 3 - . |
1 -1 0 1‘/2- 2=l\5 V2 -4 0o 3 .
p2={1 0 -1 1‘/2— . 3 0-4 2 5|yVB
1 -1 1{ . 32 -1 s
4
SRS S Ny
S0 f s
1o-1 1 -1 10 -7 1 1 -8 -
1-343 1) g Y5 -1 -4 8 Z1 o5 |8
03=173371‘/5— =5 1 -y 4 o5 V2
1 -1 1 -1 < VB -1 -1 7 —yi0|yA0
o sl
1 -2 3 -1 1 .
V2 -3 5 -5 0 1|V
=l 35 2 0-5 1)y
1-y5 0 2-5 3y
1055 -3 2 Vie
1 -1 3~\/2_ 1‘/2>8
1 -1 1-y2 1 -1fn
1 -5 10 =5 5 -1]y2
Wi=| 1 =10 10 =20 5 -2 |V
VZ =5 Y20 -10 yio  -1|y12
1-y5 5 —yio 5 -1/
1 -1 2 -1 1 -1 ey

Linear relations between the irreducible tensor operators U; and the
elementary unitary operators E, , , o, Will be used in later chapters. A simple
example of such a relation involves the g = 0 operators for (j = 1). From Eq.
(7.3.12) [or the diagonals of Table 7.2(p)] one may write

vy = (E, = 2Ey + E3) /V6,
U(l) =(E; - E33)/‘/§,
v =(E; + Eyp+Es)/V3. (7.3.16)




TABLE 7.2 (1) Subshell Tensors
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[Here the row-column indices of the elementary operators are simply num-
bers (1, 2, and 3) rather than angular-momentum quanta (m = 1, 0, and
—1).] These operators are proportional to the diagonal U; operators intro-
duced in Eq. (5.8.41).

The (2j + 1)* tensor operators v} (jj) are a complete set of generators of
the group U,;, ;, and so are the elementary operators E, . Every operator
that acts on a (2j + 1)-dimensional angular-momentum basis {ph,

_1) , |27} is a linear combination of elementary operators E,, ,, and
hence, also a combination of v)f’s

(c) Mixed Angular-Momentum Bases Two or more sets

of angular-momentum bases are connected by generalized tensor operators
of the following form:

U(jll'z)z =(-D" X Ch e m, ><’]"22 (-1)"™ (7.3.17a)
mym,
j\—m k j o\l A\
— _ J1 1 2 1 1 2
_Enz( D2k + 1 q m —ml) m, N\, |
- (73.17b)

This differs only by a phase (—1)%! from the T operator given in Eq. (7.3.2).
For j, = j, it reduces to the definition of Eq. (7.3.14). For nonzero “shift” A,
where

A=j, —j, (7.3.18)
the matrix representations of the operators are rectangular. Some examples
are shown in Table 7.4 for integral j,, j, = 1 — 3. Two explicit examples are
the following:

1 .
VIOV (pd) = V3
V6
= Eg + ‘/?7E74 + ‘/EESS
Viov! (dp) = |1

V3
a3

= E3 + V3Eg + V6 Esg.
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Mixed Subshell Tensonrs

TABLE 7.4
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A > 0, and the transpose is found using the symmetry relation

(L) =(- 1)I+q

(7.3.19)
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B. Wigner-Eckart Theorem for R,

The Wigner-Eckart theorem for finite groups was proved in Section 6.4.B,
and the same proof works for R, representations, too. It is only necessary to
replace the sum over group elements (1/°GX,) by the R; integral ([ d(aBy))
and apply the R,-factorization lemma (Eq. 7.2.25) instead of Eq. (6.2.15). In
fact, the R, problem is simpler, since there is no repetition of any irrep 2/
in the reduction of a product @7 ® @’2. We now restate the theorem as it
applies to R;.

R3 Wigner-Eckart Theorem If an operator T" belongs to a set {T*

o
T"} which transforms according to R, rotatlon matrices as follows:

J1
R(aBy)T}R (aBy) = Y. Tf2},(aBy),

L=
my=—J

then matrix elements of qu in angular-momentum basis are of the form

jl k jz k . VIRE
<m1 T m2> C o ST 1), (7.3.20a)
where the C:;f ,Ql are coupling coefficients, and the constants
GyITH by = ¥y ¥ T mm< |/ >
1 2 213—}—1 Tk ym —iy = =y q'mom| m2

(7.3.20b)

are independent of g, m,, or m,.

The theorem implies that the representations of different tensor operators
which transform according to a given irrep 2% must be proportional to each
other. The proportionality constants (j,| |T*| |j,) are called REDUCED
MATRIX ELEMENTS.

In particular, a representation of any tensor operator Tq" must be propor-
tional to the unit tensor v;‘ defined by Eq. (7.3.17):

J1 is
my [\m,

k j, il)

vy = (-D7ECH L A(-D"T

Il

()R T

q m, —m

Ji\[ ]2
my [\m,|

Indeed, the 3;j definitions (7.2.30a) and symmetry relations (7.2.31) and
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(7.3.32) yield the following:
Ji
my

This has the Wigner-Eckart form (7.3.20a) with the following reduced matrix
element:

I/qk

2\ (\2iipd i kg qyiatm
m2> - ( 1) ernlfjmzq( 1) :

= CkR i (1) 2k + 1) /24, + 1) . (7.3.21)

qmamy

Gyl o iy = (=D 75k + 1) /25, + 1) . (7.3.22)

Therefore, we may replace matrix representations of general tensor opera-
tors T} with the (]o4]) (recall tables 7.1-7.4) multiplied by a constant:

<11 . jz> <j1 . ,~2><fl||Tk1 17,
T = v A
my m, my

- —. 7.3.23
e \my [ Gyl okl iy ( )

Each representation of qu in angular-momentum bases |j,> and |j,)
equals a v;‘ matrix multiplied by the following factor:

2j, + 1 )
2k+1)°
(7.3.24)

Gyl 1T 1) /Gl o4 liy) = <l 1T |j2>(—1)"+f1"'2(

This factor is proportional to the reduced matrix element of T*. We now see
some applications of the Wigner-Eckart theorem.

C. Evaluation of Crystal Field Splitting

Let us consider an elementary octahedral potential having the form
V@ —D[x* +y* + 24 — 2r*] = D[2(X§ + X4,)/VT0 + 2X(]. (73.29)

This form was derived first in Eq. (5.6.28) using the multipole expansion. It
also follows from the form of the elementary multipole functions (5.6.17) of
fourth degree which are tabulated in Appendix F. The V¥ is the fourth-rank
octahedral scalar (A4,,) function. [See Eq. (5.6.18).]

Let us consider the effect of this potential on a d orbital, i.e., orbitals
belonging to total angular momentum j = 2. Setting j, =j, = 2 in Egs.
(7.3.23) and (7.3.24) gives

(V@) ;o = D(2(v} + v*,)/VT0 + 208 (V5 /3)€21 IX*] 12). (7.3.26)
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From the (j = 2) tables [Tables 7.2(d)] the following representation of the
potential is derived:

V= (DVO) - - 2 - (5 /3)l X 12).

(7.3.27)
The eigenvectors and eigenvalues of this matrix are easy to find. In fact we
T12>, T22> 73’2>} and {‘f> |’;‘>} in Egs. (5.6.12)
and (5.6.13) by symmetry projection even before introducing the potential.
If> The triply
degenerate T, ecigenvalue is
T, A _f{ 2 |- 2lpef]2) | 2
3 3 21\ -2 -2 2 -2

—8DQ 1X4] 12)/(15V1%), (7.3.28a)

derived the eigenvectors {

Now the eigenvalues follow by multiplying { V') by ‘?> or

4%

and the doubly degenerate E eigenvalue is

2= Gl (DB )

12D2] 1X*] 12) /(15V14). (7.3.28b)

Ely@®
<2|V

Note the (—2:3) ratio of the eigenvalues. This preserves the “center of
gravity” of the energy levels, since T, has three levels while E has only two.
(This splitting was shown in Figure 5.6.3 in the Chapter 5.) In fact, the scalar
(V'©® = p)) tensor operator is the only one with nonzero trace. No other
tensor operator can shift the center of gravity.

Hence, the j = 2 example is a little too simple. The Wigner-Eckart results
(7.3.28) do not predict anything interesting for the two levels E and T, unless
one knows the value of the reduced matrix element (2||X*|2). Before we
discuss formulas for the reduced matrix elements let us treat examples of
crystal field splitting of j = 3 levels.
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Setting j, = j, = 3 in Egs. (7.3.23) and (7.3.24) gives the following repre-
sentation of V® after using Table 7.2(f):

(V@Y;_5 = DQ2(vd + v%,) V0 + (2/5)vid (VT /3)BIIXAB) (7.3.29a)

3 . . - Y15
; -7 . . . 5 .
_pl . ) .6 - ) - [(2V7 /15V154)BlX4B).
‘/E . . . 1 . .
. 5 . -7
V15 3

(7.3.29b)

The eigenvectors of this (V) matrix can be found by symmetry projection
as in Section 5.6, by direct solution of the matrix eigenvalue problem, or by
inspection of multipole functions. We will use the third method now, since it
has not been discussed.

From the O, D O, correlation table of (5.6.5b) it is found that (j = 3)
splits into (4,, ® T;, ® T,,). From the O, and O, multipole function tables
in Appendix F one easily obtains relations between polynomials of O, and
O,. For A,, one has

XA = xyz = —i(X3, - X3)/V30. (7.3.30)
For the third component of 7, one has
XJw=(x2—y2)z=i(X} + X%,)/V2. (7.3.31)
Finally, for the third component of T,, one has
XJm = (x*+y*)z = -X;/10. (7.3.32)

From this we easily deduce three normalized eigenvectors

=B 130 [3)-(B) ] 20

T32> - ‘8> (73.33)
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(a) T® Splitting (b) T® Splitting

lu 9 5©
-2 04
T
\—2_ 5 56
A2u
-12 6@ -12 3

Figure 7.3.2 Octahedral tensor splitting of f-orbital levels. (a) Fourth-rank tensor
splitting. (b) Sixth-rank tensor splitting.

Putting these with the V® matrix gives the following eigenvalues:

<A2u V(4)lA2u> = —1286@, <7;u @ T1u> = —25@,
and <T32 4% T2u> =659, (7.3.34a)
respectively, where the reduced factor is
8@ = D(2/15V22 )¢3)| X 4|3). (7.3.34b)

From this we predict a (12 — 2):(6 + 2) = 5:4 splitting ratio with 4,, and
T,, levels sandwiching T,. This is indicated in Figure 7.3.2(a). One should
note that this does not imply that all octahedral crystal fields will split all
(j = 3) levels into the order (A,, T, T,) with a 5:4 ratio. Angular-momen-
tum levels with j = 3 and higher may be effected by a sixth-rank tensor
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operator:
VO = E[(V8 /8)X§ — (2V7 /8)(X$ + X°,)]. (7.3.35)

This is the form of the next term in the octahedral multipole expansion
(5.6.28). Its representation for (j = 3) follows from Table 7.2(f).

. . 15 . . . _7]/E
YOy =E| - : S - | x @) /(4va62).
-15 . . . 15 . .
(7.3.36)

This gives a different set of eigenvalues

<A2u|V(6)‘A2u> = —1260, <7;u 14Q) 7;u> = 95©)
and { Lelpo|Ta) o _ss0, (7.3.37a)
3 3
where
8® = EGIIX®I3)/(4/462 ). (7.3.37b)

A pure V® makes the T,, level move into the high position as shown in
Figure 7.3.2(b). A 1:2 splitting ratio results for the three levels (A,, T, T)).

An eighth-rank V'® octahedral scalar operator exists but cannot have any
effect on a (j = 3) level. (Its matrix must be zero, since C; 53, = 0.) However,
another scalar operator is not needed. The fourth- and sixth-rank octahedral
operators V® and V'© are sufficient in combination to cause any ordering or
splitting of the A4,, T,, and T, sublevels of the j = 3 manifold. In fact there
are three O, scalar operators V®, V'@ and VO, but the VV'® only shifts the
center of gravity. This is one more example of the parameter theorem in
Section 6.4. The number (6.4.11) of independent scalar operators is exactly
the number needed to determine all eigenvalues and eigenvectors subject to
the constraints of symmetry.

At this point it may be instructive to review the counting of multipole
functions and operators which was introduced in Section 5.6.C. Also the
treatment of j =4, 5, and 6 octahedral levels should be examined. The
analyses for j = 5 and 6 are complicated by the fact that octahedral species
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T, or T, are repeated. Then the T, or T, eigenvectors are not determined
totally by symmetry constraints.

For high j the number of repeated species can be large. For [ =j = 50
one predicts from Egs. (5.6.5b) and (5.6.6) that 12 T, levels and 13 T, levels
will appear. Since high values of angular quanta are common in molecular
spectra it is important to learn how to deal with them. In Section 7.4 we will
discuss some efficient methods for analyzing high-j states. The methods are
based upon the theory of level clusters and induced representation bases
which was introduced in Section 4.3.

Related problems involve very high crystal potentials which cause split-
tings which are comparable to or greater than the spacing between j levels.
A large enough crystal potential could mix states of different angular momen-
tum () strongly enough to make j a useless quantum number. This happens
in the theory of ions tunneling in solids. The theory of level clusters can be
useful then, too.

D. Evaluation of Reduced Matrix Elements

It is possible to use the Wigner-Eckart theorem while treating the reduced
matrix elements as undetermined constants. One may derive some informa-
tion without knowing the values of these constants. Also, the constants can
be fitted using experimental results, and then the tensor analysis can be used
to predict further results. These approaches require the we know only the
basic symmetry properties of the system being studied.

However, in order to compute the numerical value of a reduced matrix
element one must define the involved operators and states in more detail. So
far we have not assumed much about agything except symmetry properties. It
did not matter whether the (j = 2) states treated in Egs. (7.3.28) were d
orbitals of one electron in hydrogen or D orbitals made of over 100 electrons
in mendelevium. For the Wigner-Eckart theorem it was only important that
the states belonged to symmetry irrep 2% while the operators belonged to
irreps 24 and @15 of O, and O,. We now compare the splitting of (j = 2)
orbitals for one electron with those for two electrons.

(a) Single-Electron Orbitals in Potential Fields Let us assume a
single-electron orbital state with a wave function of the form

(o9}, ) = R(Vi(08),

where R,(r) is the radial wave function and Y,. are spherical harmonics. Let
us compute the matrix elements for the general potential field multipole
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expansion:

(mMm) = S| i)

= ZAkqquSdesinB
kq

" 4
X [ 12 dr RV (69)r 3 YE(O8)RA(1Yi(04).

This integral can be written in terms of angular and radial integrals:

X

J 4'7T . -
<,’n1V!n’1>= CAGY 551 [ do [ dosin oY, (00)Y(06)Y(6),
(7.3.38a)
where the radial integral is denoted by
(rk) = fwrzdr IR,(r)[*rE. (7.3.38b)
0

In the angular integral it_ is convenient to replace the spherical harmonics Y/
by irrep components &, using Eq. (5.5.65):

47
2k + 1

yer+1np@i+1)
- 4

[ dé [sin 6 d8Y,;(66) Y, (64)Y,(64)

[ d¢ [sin 6 d62,,,($60) 27 ($00) 2, $60).
(7.3.39)

It is useful to get the integral into the form of Eq. (7.2.25) by including the
third Euler-angle integral (1/27) fdy. This can be added without any
change when all the body quantum numbers are zero. Then the following
results for the potential matrix:

/\' 2+ 1
YA, ‘/ - ck”’<rk>). (7.3.40a)
e AV 2r+1 T

I L\ _ putr
(e V1 ) = Clns
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This in turn gives the reduced matrix elements of the multipole functions.

(riIx i =

T ~ ,
S AT

(7.3.400)

For the crystal splitting example in Eq. (7.3.28) we would need the
reduced matrix element

2
2lx*2) = \/ = (. (7.3.40¢c)
For hydrogen the radial integral can be shown to be {see K. Bockaster, Phys.
Rev. A9, 1087 (1974)]
nt
(r*y = (a0)4§{63n4 - n?[70[(1 + 1) — 103]
+15(1 = DI(L+ D1 +2) —201(1 + 1) + 12}

,63n*
= (ay) 3 (n+1)(n—1(n+2)(n-2) (for I = 2).

The hydrogen values are often used for approximate theories of other atoms.

(b) Two-Electron Orbitals in Potential Fields We shall now compare
the splitting due to a cubic crystal field of a two-electron L = 2 level (d2'D)
with that of the one-electron orbital (d!*D). This amounts to a comparison
of two separate applications of the Wigner-Eckart theorem and two different
reduced matrix elements. For the two-electron case we need energy matrix
elements such as

total total
([d*)ar] X2 |[d210) = C22.2([d212) X* |[[@2]2),  (7.3.41a)

where the perturbation

total electron 1 electron 2

X=X + x: (74.3.41b)

is a sum of individual electron operators. For one electron we have

2
1
<d M

d! 1\24> = C*22.020 x4 12), (7.3.42)

Xz
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which is the same as Eq. (7.3.41a) except for the reduced matrix element. So
we must compare the reduced matrix elements.

For the sake of generality let us evaluate the matrix element of a general
multipole operator X* between general mixed configuration [[1,I,1L) states

q
instead of pure |I?L) configuration states.

. total 1 L electron 1 o
(LYl X5 (0BT = ([hLly] XE [[n515)
electron 2

HILL1y XE nnls) . (7.3.43)
Treating the first term by the Wigner-Eckart theorem gives

electron 1 electron 1

(L1 xE |[5515) = CEEEILLILY X% ||[HB]L). (7.3.44)

However, we can use the fact that each two-electron state is a coupling of the

form
h
m'

of single-electron states. Inserting these on the left of Eq. (7.3.44) gives

1, l’ A
1|\ m’,

electron 1

= Chind [LLIL|| X* |[[n5]L). (7.3.46)

[hnl) = X Chbk

’
mym,

)
m,2> (7.3.45)

electron 1

q

Z Z Cll L LAl L L ll
mym,M mlsz’ m

mym, mym',

electron 1

Now x% only acts upon the state vectors of electron (1). Hence one may
apply the Wigner-Eckart theorem again just for it:

ll 12 electrgnl l’l l/ ll clectronl l' 12 112
my |\ m, a \m [|m), my ‘1 my [\m,im,
electron 1
= CEIACHI| XE |08 (73.47)

By substituting this last result into Eq. (7.3.46) and using orthonormality [Eq.
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(7.2.2D)] to bring C¥ 7.1 to the left-hand side, we obtain

electron 1
kL Lk Ll 1 L k | ’
Z E Z Cqm’lmlcmlszCqM’Mle’lsz' <11|| X |ll>
mym, mim’y gM’
electron 1

=([LLIL] X* [[[h5]L). (7.3.48)

The combination of coupling coefficients in the parentheses appears many
times in angular-momentum calculations. Up to a factor and a phase it is
equal to the RACAH 6 coefficient (see Appendix F)

N
Z C'illl '1122'111122 C’gf 2'11331"1 C'i'] 1 ’ilzzasM C’ilzz'ilss'if;s
ny,my,my

Myg, Mos

_ (_1)j1+j2+j3+1

><‘/(2j12+1)(2j23+1){].12 /i ’Jz} (7.3.49)
Jiz I3

The two-particle calculation requires the numerical values of the 6 coefli-
cient. By combining Eqgs. (7.3.48) and (7.3.49) one obtains

electron 1

([hLIL) X% |liss1e)

k+1+1,+L 7 ll k lll eleazon ’
- (-1) VELFDERED ), Kl x* (1.
(7.3.50a)
By a similar analysis for electron (2) we find
electron 2
([LLILl x  ||[55]L)
, l k [ lectron 2
=(”1)k+12+11+L\/(212+1)(2L’+1){Lz, i Z}uzum)‘é’“ L.
(7.3.50b)

Summing these two with the values of momenta for our example gives

2¢—5-5{§ 4 §}<2l X4 12)

421 1X4] 12) = 0.57¢2] 1X*] 12). (7.3.50),

(22121 1x*1 1122

This shows that the crystal field effect on a two-d-particle L = 2 level is 57%
that of a single-electron state with the same radial and angular numbers.
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7.4 ROTATIONAL LEVEL SPLITTING FOR HIGH J: SEMICLASSICAL
ANGULAR MOMENTUM MECHANICS

Rotational or orbital mechanics of atomic electrons in anisotropic potentials
is analogous to the quantum mechanics of molecular rotation, and it was first
studied in early days of quantum theory. Bethe described the splitting of
orbital levels by anisotropic crystalline fields having point symmetries ranging
from octahedral (O) to orthorhombic (D,).

In modern formalism the crystal field orbital eigensolutions are found by
first expressing the Hamiltonian H in terms of irreducible (Racah-Wigner)
tensors 7, and then diagonalizing a representation of H in an orbital basis
{---In,L,N)--- |0, L, M) ---}. The Wigner-Eckart theorem gives
the representation of each tensor component as a product of coupling or
Clebsch-Gordan coefficients and reduced radial matrix elements:

(W', L,M'\Tf|n, L, M) = CKLELwL(IT¥|InL). (74.1)

The remainder of the problem (and most of the numerical labor) involves -
truncating the basis, summing the operators, and matrix diagonalization.

Molecular rotations in a vacuum may be described analogously using
anisotropic Hamiltonians. In the simplest cases the rotational Hamiltonians
are conveniently expressed as polynomials of angular momentum operators
J,» J,, and J, defined with respect to the molecular frame. Pure rotational
Hamiltonians conserve J and cannot couple rotational states |J, K) and
[J', K') having different J values. This makes the rotational analysis simpler
than the external crystal field problem since numerical diagonalization is
limited to treating individual (2J + 1) dimensional block matrices. Even so,
heavy molecules tend to have high J. For example, SF; spectra with J = 150
and higher can be resolved, and so the numerical problem still may be quite
formidable.

However, for high-J states it is possible to make approximations. It turns
out that for high symmetry the diagonal (K = K’) contributions to the tensor
matrix elements are dominant, and for high J and K they can be approxi-
mated by an asymptotic expression for the Clebsch-Gordan coefficients in
terms of a Wigner rotation matrix or a Legendre polynomial. (Here we take
the reduced matrix factor to be unity.)

(J,KITEW, K ) = Citk = D§ (0,0,4,0) = P (cos ). (7.4.2a)

The polar angle 0, is that of the angular-momentum cones introduced in
Chapter 5. (Recall Figures 5.4.4, 5.5.3, and 5.5.4.)

cos @ =K/[J(J+1D]V?,  K=J1,7-1,]-2,.... (142b)

The approximation (7.4.2a) is valid in the limit that J and K are both large
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compared to the tensorial rank (K > k). The angle O, is the apex half-
angle of a cone with a slant height of /[J(J + 1)] and altitude of K. The
cone is the locus of the quantum angular-momentum vector J subject to the
constraints {J - J) = [J(J + D] and {J,) = K imposed by the state |J, K).
The cone angle 0, is a measure of the quantum uncertainty (AJ,) or (AJ,)
of transverse components for that state.

The possible motion of a classical angular-momentum J vector can be
displayed using a rotational energy (RE) surface. RE surfaces are radial plots
of rotational energy as a function of the direction of the J vector in the body
frame for a constant magnitude [J| = y/[J(J + 1)] of angular-momentum.
The classical J vector, while fixed in the laboratory frame, follows a trajec-
tory in the body-frame which conserves both energy E and magnitude |J|
of J.

Each classically allowed J trajectory is a topography line on an RE
surface, that is the intersection of an RE surface for a given |J| with an
energy sphere for a given E. Examples of RE surfaces for D, and O
symmetric molecules are shown in the following sections. Furthermore, we
shall see the quantum eigenvalues can be related to special “quantizing” J
trajectories and that these can be approximated by the intersection of the
angular momentum cones with the RE surface.

A. Rigid Rotors (D, > D, symmetry)

(a) Rotational Energy Surfaces The Hamiltonian for a rigid rotor or
top is

H=AJ?+ B2+ CI2. (7.4.3)

[Recall Eq. (5.5.53).] The rotational energy (RE) surface of this Hamiltonian
follows if we substitute classical body-frame angular-momentum components

J, = —{(J)sin Bcos vy, J, = (J)sin Bsinvy, J, = {J)cos B,
(7.4.4a)

where the J magnitude is constant:
Y=yI(J+1) =J+ 1. : (7.4.4b)
The resulting energy expression

E =J(J+ 1)[Asin® Bcos’y + Bsin® Bsin?y + Ccos’y] (7.4.5)

is plotted radially in Figure 7.4.1 as a function of body-frame polar coordi-
nates of azimuth (¢ = —vy) and polar angle (8 = B) for the J vector. These
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(a) (b) (c)

(d)

Figure 7.4.1 Rotational energy (RE) surfaces for rigid rotors. (a) Prolate symmetric
top (A = 0.2, B = 0.2, C = 0.6). (b) Rigid asymmetric top (A4 = 0.2, B = 0.4, C =
0.6). (¢) Oblate symmetric top (4 = 0.2, B = 0.6, C = 0.6). (d) Prolate symmetric top
with J = 10 quantum energy levels.

angles are two of the three Euler angles (a, B8,y) as explained in Section
5E(b).

Three examples of rigid top RE surfaces are shown in Figure 7.4.1 for the
cases of (a) a prolate symmetric top (4 = B < C), (b) an asymmetric top
(A < B < C), and (c) an oblate symmetric top (4 < B = C). Each surface
contains 21 contour lines corresponding to the same number of quantum
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energy levels belonging to J = 10 (27 + 1 = 21). These are labeled in Figure
7.4.1(d) which is an expanded view of Figure 7.4.1(a). They are quantizing
J-phase paths in the sense that the following Bohr quantization condition is
satisfied:

f]zdy=hK, K=J1,]-1,7-2,.... (7.4.6)

Some J paths may be hidden behind a surface. However, time reversal
symmetry requires that for each J on a K path there must be an equivalent
path containing —J or — K.

(b) Tensor Operator Mechanics To understand the quantum mechanics
better it helps to rewrite the Hamiltonian in terms of tensor operators or as
an operator multipole expansion. The multipole functions,

4
TF = D§,(0,B,v)" = V 2]: . (Y (v, B) (7.4.7)

are analogous to the spatial multipole functions defined in Eq. (5.6.17).
Examples of quadrupole tensor functions are

T =3 3=V =(I2+1}+72), (7.4.82)

T¢

3I¥(3cos? B — 1) = 5(2J2 —J2 —J?), (7.4.8b)

i

6 6
(T3 + T2,) (J>21/§: sin® B cos 2y = g(sz —J7).  (74.8c)

From this one can construct the tensor operator expression for the rigid rotor
Hamiltonian:

A+B+C o 2-A4-B_, A-B 5 5
= 3 T, + 3 Ty + 7 (T3 + T2;) (7.4.9)

Only the first term survives for a spherical top (A = B = C). The symmetric
tops (A = B # C) have the first two terms. i

The asymmetric tops (A4 # B # C) have all three. The resulting energy
expression obtained from Eq. (7.4.8) and (7.4.9) is

A+B+C 2C-A-B

E=J(J+1 +
(J+1) 3 ;

(3cos’ B — 1)

A—-B

+ sin? Bcos2y|. (7.4.10)

2
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The preceding multipole expansion is equal to the polynomial expression
(7.4.5) but has some quantum mechanical advantages over the first one.
Tensor multipole operator expressions like (7.4.9) provide matrix elements
immediately via the Wigner-Eckart theorem (7.3.20a) in terms of Clebsch-
Gordan coefficients and reduced matrix elements. Only one reduced matrix
(JIT?IIJ) is a problem here, the scalar element of (7.4.8a) is elementary,

NTONTY = J(J + 1).

The tensor element is found by evaluating the easiest component <L|T 02&) by
elementary means which gives

<§|T02I§> = <§|%(3Jz2 - ‘]xz - Jyz - Jzz) §>
=3BIP-J(J+ 1)) =3(2J*-1T). (7.4.11)

Then the Wigner-Eckart theorem and CG formulas give

2272 -1T)
V(27 +3)(2J + 2)27(2J - 1)

. (74.12)

T2y = CHIINTAT Y =

~

Solving gives the desired reduced matrix element:

UITHTY = (2T + 3)(27 + 2)20(27 — 1) /4. (7.4.13)

Still one might wonder why we deal with tensor operators when J
polynomials seem simpler. The reasons for using tensor operators become
clearer when comparing the work involved with higher-degree polynomials
and corresponding high-rank tensors. Manipulating and computing matrix
elements for fourth- or sixth-degree polynomials can be extremely laborious
while fourth- or sixth-rank tensors use the same Wigner-Eckart analysis as
the T2 example above.

(c) Symmetric Top Energy Levels (J =10 Example) The trajectories
on the RE surface for 4 = B = 0.2 andC = 0.6 [see Figures 7.4.1(a) and
7.4.1(d)] are precisely the ones that correspond to exact quantum energy
levels for J = 10. If the cone-angle cosine formula (7.4.2b) is substituted into
the tensor RE surface energy expression (7.4.10) for A = B one obtains

TS PN Ll K 1 74.14

=J(J + + - 4.
CRS) 3 (P10 + 1 » (74.14)

E=BI(J+1)+ (C - B)K>. (7.4.15)

This is the exact symmetric top quantum energy level equation. [Recall Eq.
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(5.5.52).] This is an example in which the cone-angle tensor matrix element
approximation (7.4.2) gives an exact result. The angular-momentum cones
exactly define the quantizing J trajectories shown in Figure 7.4.1a. The same
applies to the oblate symmetric top surface shown in Fig. 7.4.1c.

We consider now the asymmetric top for which the J trajectories are more
or less distorted from the circular shapes they enjoy in the symmetric case.

(d) Asymmetric Top Energy Levels (J = 10 Example) This J-inversion
symmetry and the D, rotational symmetry of top Hamiltonian (7.4.3) or
(7.4.9) combine to give (at least) a D,, symmetry to the RE surface regard-
less of the symmetry of the rotor which it models. The simplest rigid
molecule having the surface shown in Figure 7.4.1(b) would be a bent XY,
structure like the water molecule.

It is evident that every path on the asymmetric surface in Figure 7.4.1b
belongs to a mirror image pair of trajectories with the exception of one path.
The exceptional path is the x-shaped separatrix curve which crosses the
saddle points on the +y axes. The separatrix divides the surface into regions
containing two different kinds of trajectory pairs. One kind of trajectory pair
encircles the high-energy regions centered on the +z axes or C axis. These
paths are distorted versions of the paths for the prolate top shown in Figure
7.4.1a. The other pairs encircle the low-energy valley regions around the +x
axes or A axis, and they are distorted versions of the oblate symmetric top
paths in Figure 7.4.1(c).

The separation of regions is manifested in the quantum level spectrum
which is shown in the lower center portion of Figure 7.4.2. Here the lower
energy quasioblate pairs of trajectories are each identified with quasidegener-
ate or “clustered’ pairs of energy levels below the separatrix level at 44 cm 1.
Similarly, the quasiprolate pairs are indicated in the high-energy region on
the right-hand side of Figure 7.4.2. The levels belonging to each pair are
indicated inside magnifying circles which give D, symmetry labels for each
level and the magnitude of the splitting between each pair.

The fine structure splitting is the intercluster frequency splitting such as
the 150 GHz splitting between the lowest two pairs. This is approximately the
frequency of classical precession or the wobbling frequency for the J vector
to go once around the lowest energy path. The intracluster splitting such as
the 26 kHz splitting of the A, B, pair in the lowest circle is called superfine
structure. This corresponds to the frequency of a purely quantum mechanical
tunneling process between equivalent pairs of semiclassical paths. If the
molecule was set initially into a localized nonstationary state with J wobbling
around the lowest (K = 10) path near the +x axis, then it would gradually
evolve into a similar motion around the equivalent (K = —10) path near the
—x axis after which it would return and (more or less) repeat the whole
process at rate of 26 kHz.

The cluster doublets are the angular momentum analogs of inversion
doublet levels of a two-well oscillator potential discussed in Chapter 2.
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Figure 7.4.2 J = 10 asymmetric top energy levels and related RE surface paths
(A =0.2, B= 04, C=0.6). Clustered pairs of levels are indicated in magnifying
circles which show superfine splittings. )

(Recall Figure 2.12.7.) The stationary A, or B, eigenstates are, respectively,
symmetric or antisymmetric combinations of two separate but equivalent
wave functions localized on separate but equivalent paths. The degree of
separation or localization is given by the superfine level splitting or tunneling
rate. This rate varies exponentially with the magnitude of a path integral
between the points of closest approach of the separate semiclassical paths.
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For the highest K trajectories which have the greatest separation the
precessional motion is more than a million times faster than the tunneling
motion. However, near the separatrix the tunneling rate or superfine splitting
increases enormously while the classical precession rate or fine structure
splitting actually decreases. In this region wave functions cannot remain
localized very long, and the distinction between classical and purely quantum
motion is blurred.

A classical rotor is always located at just one point on a single phase
trajectory at each instant. The quantum rotor, on the other hand, can have
nonzero probability spread over many different paths at once. In fact its wave
function must be spread out in order to belong to a single irreducible
representation such as A, or B; of the global symmetry group D,. In order
to make a wave function localized on just one trajectory one must add (or
subtract) 4, and B, waves. A combination of the two K = +10 waves will
still have a well defined 0-mod 2 (labeled 0,) symmetry with respect to the
local symmetry subgroup C,(x) which contains only x-axis rotation. This
because K = 10 and K = —10 are even numbers. The combination states
form a space belonging to the induced representation 0,(of C,(x))1 D, of
the global D, symmetry induced by the even representation 0, of the local
symmetry C,(x). The even induced representation is indicated by the first
column of the D, O C,(x) correlation table in the left-hand side of Figure
7.4.3. The table gives the D, species in the even and odd induced representa-

Flgure 7.4.3 Correla?ibns between the asymmé?r?c top symmetryi 7D2 andi three
dynamical subgroups C,(x), C,(y), and C,(2). : -
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tions according to the Frobenius reciprocity theorem:

0,(of C5(x))1 D=4, ® B,, (7.4.16a)
1,(of C,(x))1 D, = A, ® B,. (7.4.16b)

The even (odd) induced representation labels the even-K (0odd-K) clusters
which lie below the separatrix in Figure 7.4.2. The clusters above the
separatrix have a local symmetry C,(z), and the clusters corresponding to
this region are labeled according to the columns of the D, O C,(z) correla-
tion table shown in the right-hand part of Figure 7.4.3.

Sketches of the classical motion correspond to the locally C, symmetric
trajectories. The C,(x) motion corresponds to an XY, rotating on its side
like a boomerang, while C,(z) motion is like a spinning crankshaft. The
C,(y) motion is around the classically unstable saddle point, and hence no
C,(y) level clusters appear in the spectrum. One should note that the phase
portraits describe the precession or “rotation of rotation” rather than rota-
tion itself. Precessionless rotation of a rigid body would occur only if the J
vector were precisely localized on one of the principle axes; however, this is
not possible for a quantum rotor.

Quantum uncertainty prohibits pure rotation without precession because
the transverse components cannot be exactly zero. The transverse compo-
nents are minimum for the K = J states which have the least cone angle 0.
This corresponds to minimum angular-momentum uncertainty or angular
zero-point motion. States with lower z-component quanta K=J — 1,
J — 2,... have higher uncertainty angles ®;, according to Eq. (7.4.2b). The
states |J, K) are eigenstates of the symmetric top (4 = B) Hamiltonian, and
each angular-momentum cone exactly intersects the corresponding semiclas-
sical path on the symmetric top RE surface in Figure 7.4.1(a).

For the asymmetric top in Figure 7.4.1(b) the ©;, cones only approximate
their corresponding semiclassical trajectories. Asymmetric top trajectories
are distorted or “squeezed” so that the projection of J on the local axis of
quantization oscillates around the K value which labels each path. The
classical precession becomes more and more nonuniform as K decreases and
the separatrix is approached. This corresponds to the mixing of more of the
states |J, K + 2), |7, K + 4), and so on into the dominant |J, K) component
of the asymmetric top eigenstate. The global and local symmetries for the
symmetric top are continuous groups O, or D,, D R, while the asymmetric
top has only a discrete set of symmetries D, > C,. Hence, one cannot expect
the K value to be strictly conserved or the +K degeneracy to be perfectly
maintained in the latter.

However, the extent of breakdown of R, symmetry or K conservation is
not necessarily related to the splitting of the cluster doublets. K conservation
and cluster splitting are separate phenomena associated with different re-
gions of the RE phase space; the former depends upon the shape of the
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phase paths, and the latter depends upon the height of the pass or saddle
region between the equivalent paths. Furthermore, the symmetry properties
of the clusters should be associated with a C, induced representation and not
an R, irreducible representation. This point will be amplified by examples
involving the higher octahedral symmetry in the following section.

Another point which arises in the study of higher symmetries concerns the
ordering of clusters and the symmetry species inside them. The species
ordering in Figure 7.4.2 consists of a repetition of the sequence A,B,A,B,
through the entire spectrum. This remarkably uniform ordering can be
related to the number of wave function nodes occurring along and between
the semiclassical paths. This sort of ordering was introduced in Chapter 2.

(e) Level Correlation Between C,(x) and C,(z) Symmetry The coef-
ficients 4, B, and C determine the symmetry of the rotor Hamiltonian (7.4.3)
and its RE surface. The surface represents a rotor that is prolate-symmetric
(A =B < C) in (a) of Figure 7.4.1, asymmetric (4 < B < C) in (b), and
oblate-symmetric (4 < B = C) in (c). The two extreme symmetric rotor cases
have levels labeled by different R; O R, subgroup chains. The prolate case is
labeled by R,(z) and the oblate case by R,(x). The intermediate asymmetric
case is labeled using finite subgroup chains R, > D, > C,. Furthermore
different subgroups are appropriate for different levels; the levels below the
separatrix belong to C,(x) and those above belong to C,(z).

In Figure 7.4.4 the J = 10 and J = 20 levels are plotted as a function of
parameter B which ranges between the prolate (B = 0.2 ¢cm~!) and oblate
(B =0.6 cm™!) cases. Coefficients 4 = 0.2 cm™! and C = 0.6 cm~! are
fixed. One can see that most J = 10 symmetric top doublets tend to stick
together for most values of B and even more so for J = 20. The J = 10 levels
in Figure 7.4.2 lie above the point B = 0.4 in the J = 10 plot of Figure 7.4.4.

ASYMMETRIC TOP - J=10 ASYMMETRIC TOP J=20
65 - K°=1°| ’ l 240 [ ke=20 : f ! : Z
T TA 200 =
§ 50 § ;
> > 160
o o
Z e
Ll
35 z
E’ w120
Z
20 | ] | _Ky=10 80 i | | _Ka=20
0.20 0.30 0.40 0.50 0.60 0.20 0.30 0.40 0.50 0.60
B (cm™") B (em™")

Figure 7.44 Rigid rotor energy levels correlations for angular momentum J = 10
and J = 20.
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The separatrix region of the levels in the center of Figure 7.4.2 is the
transition region where doublets split and trade levels in Figure 7.4.4. The
separatrix or transition region appears to be a small fraction of the J = 10
spectrum and even smaller part for J = 20.

The doublets in the upper left-hand part of Figure 7.4.4 above the
transition region belong to C,(z)? D, induced representations while those in
the lower right-hand part belong to C,(x)1 D, labeled doublets.

This correlation plot should be compared to the lattice level correlation
diagrams in Figure 2.12.5. The latter involves a correlation between bands of
doublets of levels belonging to C,(z)1 D, induced representations and
n-fold degenerate clusters or bands of levels belonging to C,(x)1 D, repre-
sentations. For n = 2 the plot in Figure 2.12.5 is more closely analogous to
the one in Figure 7.4.4. Then the A4,, 4,, B, and B, levels (which are the
band boundaries plotted in Figure 2.12.5) are the only levels allowed; the
E-type levels do not exist for n = 2. The transition region occurs at the top of
the potential barriers.

By analogy the asymmetric top spectral transition region occurs at the top
(or bottom) of the saddles on the RE surface. The saddle points are on the
+y axes and rise linearly with the coefficient B of ]yz_ Certain of the
transition levels are seen to rise rapidly and quasilinearly in Figure 7.4.4
while their doublet partners seen to sail right through the transition region.
Wave symmetry determines which of the D, species are most sensitive to the
y-axis saddle. The correlation table in Figure 7.4.3 for the C,(y) symmetry
shows that only 4, and A4, are symmetric (0,). Therefore only they have
wave antinodes and substantial amplitudes on the saddles, and it is therefore
A, and A, levels that “divorce” their partners in the transition region.

Outside the transition region the pairs of levels mostly stick together to
form quasidegenerate tunneling doublets. One exception is the K = +1
doublet near the lower left-hand side of Figure 7.4.4. It splits immediately,
that is, to first order. This is analogous to the first order splitting observed in
Figure 2.12.5. Symmetry allows nonzero matrix elements between this pair of
states. In this case it is matrix element (K = 1|T#|K = —1) and its conju-
gate that cause the K = +1 doublet to split.

B. Semirigid Spherical Tops [Octahedral (O) Symmetry]

We now consider the high-J eigenvalues of octahedrally symmetric tensor
Hamiltonians. The fourth-rank tensor Hamiltonian,

H = BT + 4t,,, (7.4.17)

5
Ti+ o (T + T2)
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has the same form as the one introduced in Eq. (7.3.25). Its polynomial form

H = BJ? + 1060, (J2 + 7 + 72 = 23’ (7.4.18)

was introduced in Eqs. (5.6.28) and (5.6.30). It is known as the Hecht
Hamiltonian after K. T. Hecht who first applied it to the analysis of methane
(CH,) spectra taken by E. Plyler in 1960. The Hamiltonian describes rota-
tion-vibrational distortion of molecules having tetrahedral (T,) as well as
octahedral (0,) symmetry. Changing the sense of rotation (J — —J) should
give a rotor state with the same energy so all rotors must have only pure
rotational energy operators of even rank. The third-rank tetrahedral invari-
ant J,J,J, is forbidden to appear alone.

(a) Rotational Energy Surfaces We now express the Hecht Hamiltonian
(7.4.17) in terms of body polar angles as was done in the precedlng section
for the asymmetric rotor. The polynomial

E—B<J>+t <J>3SCOS B—3OCOS B+3+551n BCOS4V/2
044

has the form of the harmonic polynomial functions in Eq. (5.6.29). The
resulting RE surface is shown in Figure 7.4.5a for positive centrifugal
distortion constant ¢,,,. This constant is around 5 Hz for SFy and is positive
for most octahedral XY, molecules. It is greatly exaggerated for the figure so
that the hill and valleys are clearly visible.

In an octahedral XY, molecule rotation about the four-fold XY radial
bond axes generally has the highest energy for a given J value since these

(a) (b}
Figure 7.4.5 Semirigid rotor RE surfaces with O,, symmetry. (a) £44 > 0. (b) 1044 < 0.
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bonds are stretched relatively little by a longitudinal centrifugal force. How-
ever, transverse forces which arise during rotation about the three-fold
symmetric axes in between the bonds can bend the molecule relatively easily.
Hence, the three-fold symmetry axes lie in RE surface valleys in Figure 7.4.5a
while the four-fold (x, y, z) axes are on peaks. For tetrahedral XY, or cubic
molecules the sign of ¢, is negative as it is for the surface in Figure 7.4.5(b).

(b) Spherical Top Energy Levels (J =30 Example) The RE topogra-
phy lines correspond to quantizing J trajectories and to level clusters in the

VISUALIZING THE J=30
LEVELS OF A 3
SPHERICAL TOP
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Figure 7.4.6 J = 30 octahedral rotor levels and related RE surface paths.
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Figure 7.4.7 Different choices of rotation axes for octahedral rotor corresponding to
local symmetry C;, C,, and C,. Tables correlate global octahedral symmetry species
with the local ones.

energy spectrum as shown by the diagram of the J = 30 levels of SF; in
Figure 7.4.6. This spectrum contains clusters of six and eight rotational levels
which are analogous to the rigid rotor doublet clusters in Figure 7.4.2. Above
the separatrix region there are repeating sextets (7,7,), (4,7, E), (T,T,), or
(A,T,E) composed of clustered singlet (4, or A,), doublet (E), or triplet (T
or T,) octahedral symmetry species. Below the separatrix there are two octets
(A,T\T, A,) and (T,ET,). Each set of six or eight clustered levels can be
related to the same number of semiclassical J trajectories on the RE surface
in Figure 7.4.5 or 7.4.6.

Each set of six rotational levels belongs to one of the C, induced
representations 0, 1 0, 1,1 0, 2,1 O, or 3, 1 O depending upon whether the
effective K value is 0, 1, 2, or 3 modulo 4 for the corresponding set of
fourfold symmetric semiclassical trajectories. The correlation tables in the
lower right-hand part of Figure 7.4.7 tell which O species belong to each K,
cluster and to each set of trajectories. For example, the minimum uncertainty
trajectory has J = K = 30 and corresponds to the highest energy 2,1 O or
(A,T, E) cluster in Figure 7.4.5.

The highest energy semiclassical trajectories are very close to the intersec-
tion of the RE surface with the K = 30 angular momentum cone which has
half-angle @543, = cos~'(30/ /(30)(31) = 10.3°. A series of J = 30 angular
momentum cones are drawn for K = 30 down to K = 24 in Figure 7.4.8. The
next highest 1, 1 O or (T',T,) cluster corresponds to six trajectories which are




622 THEORY AND APPLICATION OF SYMMETRY REPRESENTATION PRODUCTS
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Figure 7.4.8 Quantum angles momentum cone cross sections for J = 30 and K =
30,29,...,24.

localized to within about @,,,, = 18° of their respective four-fold symmetry
axes. This sequence of clusters ends when @,  approaches the angle 35.3°
between the separatrix and the four-fold axes. The J = 30 cutoff value is
K, = y/(30)(31) cos35.3° = 24.9 or about 25 as shown in Figure 7.4.8. This
corresponds to a weak (7,T,) cluster just above the separatrix in Figure 7.4.6.

Since the eight three-fold symmetric valley regions of the RE surface are
smaller there are fewer clusters associated with the C; induced representa-
tions. There is only a 19.5° angle between the separatrix and the three-fold
axes. Hence, the J = 30 cut-off value is K; = y/(30)(31) cos19.5° = 28.7 or
about 29 as indicated in Figure 7.4.8. This allows just two J = 30 clusters on
the three-fold symmetry side of Figure 7.4.6 corresponding to the induced
representations 0; 1 O = (A4,T,T,A4,) for K = 30 and 2,1 O = (T, ET)) for
K =29

Two C; clusters and five or six C, clusters are visible in the infrared
spectra of tetrafluorosilane (SiF,) and cubane (CgHg) which is shown in
Figure 7.4.9. The spectra are actually due to transitions between level
clusters on lower and upper RE surfaces corresponding to ground and
vibrationally excited states, respectively. However, the spectra are simply
scaled copies of the pure rotational level patterns since the upper and lower
RE surfaces have almost the same shape apart from a scale factor. Note that
fine structure spectra outside of the separatrix region is relatively insensitive
to the J value in that P(30), P(31), and P(32) are quite similar. Note the
similarity of J = 30 fine structure patterns for quite different molecules
having tetrahedral, cubic, and octahedral shapes.

With higher resolution the superfine and even the hyperfine spectral
structure can be studied. The hyperfine patterns are very sensitive to the J
and K values as well as the detailed structure of the molecule. The number
of Pauli-allowed nuclear spin states depends upon the type of arrangement of
nuclei, and this affects the relative peak heights for the clusters.
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Figure 7.4.9 Infrared spectra showing fine structure clusters. Tetrafluorosilane (SiF,)
spectrum from a »; R(30) transition (J = 30 — 29). [After C. W. Patterson, R. S.
McDowell, N. G. Nereson, B. J. Krohn, J. S. Wells,'and F. R. Peterson, J. Mol.
Spectrosc. 91, 416 (1982).] Cubane (CgH,) spectrum from v,; P(30), P(31), and P(32),
transitions; cubane (CyHjg) spectrum from v,, R(36), transition. [After A. S. Pine,
A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, and Th Urbanek, J. Am.
Chem. Soc., 106, 891 (1984).]

However, the superfine structure of intracluster splitting depends only on
the shape of the RE surface in the neighborhood of the saddle points. A
tunneling factor S can be approximated by an exponential of a phase integral
across the saddle region. (Note the rapid decrease of the superfine splitting
from about one Megahertz down to just 4.8 Hz as K, goes from 25 up to 30
in Figure 7.4.6.) While the magnitude of the splitting may vary by many
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orders, the splitting patterns have the following invariant form. The first of
these was derived before Eq. (4.3.28),

0,10: 1,0r3,10: 2,10:

AE(A;) =4S, AE(T,) = 28, AE(E) = 28,

AE(T) =0, AE(T,) = 28, AE(T,) =0, (7.4.20)
AE(E) = —-28, AE(A,) = —45S.

The patterns for C; clusters can be derived using similar arguments,

0,10: 1;0r2,70:

AE(A,) = 38, AE(T)) = 28,

AE(T,) =S, AE(E) =0, (7.4.21)
AE(T) = -8, AE(T,) = —28.

AE(A,) = -38.

The splitting ratios and ordering hold if tunneling occurs only between
nearest neighboring trajectories. The patterns (7.4.20) and (7.4.21) are seen
magnified in Figure 7.4.6.

In addition there is an overall ordering that is maintained throughout the
fine structure spectrum of Figure 7.4.6 as there was in the case of the
asymmetric top. From Figure 7.4.6 one observes the following repeated
sequence (recall Figure 5.6.9)

0,10 = (AT,T,A,T,ET,T,ET,). (7.4.22)

Taken together this would be the largest possible cubic cluster. It contains
just the O regular representation. Giant clusters like (7.4.22) or the C,
clusters half this size are possible if stable semiclassical orbits are localized
around low symmetry points. This occurs for octahedral tensor combination
of sixth, eighth, and higher ranks.

(c) Level Correlation between C, and C, Symmetry So far we have
considered only the lowest order rotational tensors which exhibit the symme-
tries D, of the rigid rotor and O, of the semirigid cubic or octahedral rotor.
We consider now the effect of the sixth-rank normalized octahedral tensor
operator introduced in Eq. (7.3.35),

T = (1/V8)[T§ - (VT /VZ)(T$ + TS,)]. (7.4.23)
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This will be added in varying amounts to the normalized fourth-rank tensor,
TW = (VT V12)[T§ — (5 V18 )(TF + T2,)],  (7.4.24)

introduced in Eqgs. (7.3.25) and (7.4.17). A sixth-rank centrifugal distortion
may be necessary in the presence of anharmonic and other higher order
effects. The magnitude of the T!¢ contribution would vary according to a
higher power of J than that of 7™ and might be significant at higher J
values. Here the magnitudes of their respective contributions are varied
artificially through an angle parameter v in a combination which maintains
the overall normalization.

T*%(v) = TM cos v + T sin v. (7.4.25)

The exact quantum (J = 30)-eigenvalues for this mixed [4, 6]-rank tensor
operator are plotted as a function of the mixing angle » in Figure 7.4.10. The
plot begins on the left-hand side (v = 0) with a scaled copy of the T¥ level
spectrum in Figure 7.4.6 and ends on the right-hand side (v = ) with the
same spectrum inverted. Between these limits the level clusters become
completely reorganized.

Certain values of the v parameter in Figure 7.4.10 are marked (b), (¢), (d),
and (e). At these values the RE surface of the combination tensor (7.4.25) is

07

4-Fold Clusters

-0.1 0.1 0.3 05

30 Eigenvalues of T*cosv+T8sinv
-03

J

-05

(b) (© @ (@

~
¢ 00 1.0 2.0 3.0 40
v in units of n/6

T
5.0 6.0

Figure 7.4.10 J = 30 cigenvalues of varying mixtures of fourth- and. sixth-rank
tensors. (v = 0) corresponds to levels in Figure 7.4.6.

e —
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drawn in Figure 7.4.11. The RE surface function used for T is as follows.
(Recall (7.4.19)]

EY(B,v)

= (7/12)%(9/4m)"/*(35 cos* B — 30cos® B + 3 + 5sin* Bcos4y)/8
(7.4.26)

For T the RE function is as follows,

E®Y(B,vy) = (1/8)/*(13/4m)"/*(231cos® B — 315cos* B + 105cos’> B — 5
—21sin* B(11cos? B — 1)cos4y)/16. (7.4.27)

The tensors T} and RE functions E!"! have a spherical harmonic normaliza-
tion factor ([2r + 1]/47)'/? that was not included in the previous definition
(7.4.19). This factor is used here to slightly enhance the effect of the
sixth-rank tensor for this particular example. Also, the |J|" factors are
deleted in (7.4.26) and (7.4.27) so that the higher rank tensor effects are not J
dependent.

The eigenlevels marked by (b) in Figure 7.4.10 correspond to the RE
surface drawn in Figure 7.4.11(b). The latter shows that the separatrix has
taken over the regions that formerly held C; symmetric trajectories, and only
C, trajectories remain. (Note that these are equally spaced contours and are
not quantized paths.) The result is the destruction of C; clusters in the
spectrum which is composed almost entirely of C, clusters above the
(b) point in Figure 7.4.10.

Beyond this point a remarkable new type of cluster is formed. Just above
the points marked (c) and (d) in Figure 7.4.10 lie two clusters which contain
twelve levels each. These correspond to trajectories which encircle 12 equiva-
lent valleys which lie on the C, symmetry axes in Figures 7.4.11(c) and
7.4.11(d). The symmetry species within each of these clusters are exactly the
ones contained in the C, correlation table in the center of Figure 7.4.7. The
lowest cluster in Figure 7.4.10 would correspond to K = 30 and hence to the
even local symmetry or 0, column of the C, table which contains species
A,E, Ty, and 2T,. The next cluster has K = 29 and contains the five species
A,, E, 2T, and T, listed in the odd column 1,. The superfine splittings
between these five levels are actually visible in the scale of Figures 7.4.10. As
v changes the levels as seem to change order within this cluster. This is the
result of competition between tunneling mechanisms.

Between the (b) and (d) points in Figure 7.4.10 there is another phe-
nomenon which occurs in the upper energy levels. There are a number of
crossings or Fermi-like resonances between accidentally coinciding C; and
C, clusters. This is because there are two kinds of mountains on the RE
surfaces in Figures 7.4.11(c) and 7.4.11(d): the C, mountains which are
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shrinking and C; mountains which are growing with v. For certain values of
v, quantizing paths on one type of mountain are bound to be in resonance
with different kinds of paths on the other. The result is an extraordinary kind
of tunneling in which eigenfunctions are delocalized over both kinds of paths
at once and a peculiar sort of hybrid superfine structure occurs in the
eigenlevels.

The spectral region containing the unusual fine structure is bounded on
the right-hand side by the (e) point in Figure 7.4.10 which corresponds to the
RE surface in Figure 7.4.11(e). At this point the eight C, mountains domi-
nate the surface geometry entirely and the eigenlevels are composed entirely
of very strong C; clusters of eight levels each. The final 7.4.11(f) shows the
situation at v = 5.0(7r/6) where the C, trajectories begin to return. Now they
are occupying the valleys.

7.5 ROTATING SPINOR SYSTEMS AND TWO-DIMENSIONAL
OSCILLATOR ANALOGIES

We consider now some physical applications of rotation group theory, spinor -
algebra, and U(2) operators. Various analogies which use rotational coordi-
nates lead to insight into rotational and vibrational dynamics.

So far we have introduced two physical examples of two-state systems.
These were spin- 5 states (Sections 1.1.A and 5.5.A) and the NH inversion
states (Section 2.12.B). A third and much older example involves optical
polarization or the two-dimensional oscillator, and this will be introduced in
this section. The three physical examples are each represented in two
different ways by Figures 7.5.1(a) and 7.5.1(b), and the polarization example
is shown in the central figure.

We shall discuss two ways to describe two-state systems such as a spin- 1
electron. The first way, as shown in Figure 7.5.1(al) uses a complex two-
dimensional (spin-up and spin-down) space which is a basis of the fundamen-
tal representation of the unitary group U(2). A second way, shown in Figure
7.5.1(b1), uses a real three-dimensional (§,, S, S,) space which is a basis for
the vector representation of the rotation group R(3). The spinor space may
be less familiar than the vector space, since the latter is more like the one in
which we live, and it is easier to visualize a real vector S. This spin vector S is
a nearly complete description of the spin state; however, it turns out to be
double valued in the following sense. A 180° three-space rotation of a
spin-up vector to spin-down (R(180°)S = —S8) corresponds to only a 90°
rotation in the spinor 2-space. A “full” 360° rotation in the 3-space is only a
180° rotation in the 2-space, i.e., |spin-up) goes into minus |spin-up).

Spinor spaces therefore provide a more complete, though possibly less
intuitive description of the two-state system. As explained in Section 5.5.A,
the spinor algebra and geometry lead to simpler and more powerful compu-
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* (a) Two Dimensional (b) Three Dimensional
Complex SPINOR Space Real VECTOR Space
spin R
down Sﬁ;,n
J 4 SPIN
VECTOR S
l sﬁ': X >
- m— spin
Electron Spinz Polarization | down

States

y polarization

NS

polarization

ey Optical Polarization @
States

Ammonia  (NH3)
Inversion States

Figure 7.5.1 Two descriptions of three famous examples of two-state systems. (a)
The spinor description involves complex vectors in a two-dimensional space. (b) The
vector description involves real vectors in a three-dimensional space.

tational aids. To improve the intuitive value of the spinor description it helps
to consider the optical polarization formalism developed by Poincaré and
Stokes in the last century. In this theory the spinor bases correspond to
oscillating x and y components of an electric vector. One can also picture
various orbits of a two-dimensional coupled oscillator in the spinor space,
and this helps greatly to understand its structure. It also helps to have a
corresponding 3-space which is now labeled (ABC) instead of (xyz) in Figure
7.5.1(b2).
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A key to making any of these pictures useful is to have a convenient
system of coordinates for the 2-space and 3-space. Standard rotational
coordinates such as Euler angles and axis angles described in Section 5.3 will
be used as described below.

A. Euler-Angle Definition of Spinor States

Spinor or spin- % states span the basis for the fundamental representation of
SU(2), and for every pair of spinor states |¢) and |¢’) there exists a unitary
operator R which maps one state into the other (}¢) = R|¢')). A one-to-one
mapping between the states and operators can be established by fixing one of
the states, say, [¢') = |1), and labeling all states by the mapping operator
(IR) = R|1)). If the operators are labeled by Euler angles (R = R(a, 8, v)),
then so are the states

[¥(a,B,v)) = R(a,B,7)I1).

The standard Euler coordinate definition of rotation operators involves an
ordered product of rotations by «, B8, and y around the x, y, and z axes,
respectively, as explained in Sections 5.3 and 5.5.E:

R(a,B,y) = R(a- )R(:B)R(-" 7). (7.5.1)

This leads to the following explicit representation of a general spinor as a

mapping of the spin-up state |1) = ((1) :

¥ =(e'i“/2 0 ) cos(B/2) —sin(B/2) (e‘iw:Z 0 )(1)
¥, 0 e@/2 )\ sin(B/2)  cos(B/2) 0 e7/2 110

) (e—ta/Z cos(B/2) )e—ivﬂ_

eia/Z SID(B/Z) (752)

A 3-space mechanical model of the expected spin vector of this state is
shown in Figure 7.5.2. The figure displays the expectation values in the state
l¢(a, B,v)) of the Pauli spin angular-momentum operators

J,=0./2 J,=0,/2 J,=0,/2

[0 3 B ( 0 —i /2) B
10 i/2 0
From the figure it is seen that the first Euler angle («) is the relative phase

between components ¢; and ¢,, and it is represented by the azimuthal angle
of the {J) vector. The second Euler angle (B) is the arc-cosine of the relative

S W=

3

1
L] a53)
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Figure 7.5.2 Detailed relation between spinor state and spin vector. The relation is
based upon the fact that all spinor states are rotations of the spin-up state. Euler
angles and the mechanical goniometer in Figure 5.3.1 provide a complete description
of the pure spinor state.

population (Izpll2 — Idlez), and it is represented by the polar angle of the
{J) vector. The third Euler angle (y) is (—2) times the overall phase or
gauge of the state |¢(a, B, 7)), and it corresponds to the twist of the rigid
body whose axis defines the direction of the {J) vector in Figure 7.5.2. In the
quantum theory of spin this third coordinate is often superfluous. However,
for classical applications this angle will help to define the phase of an orbit
and should not be ignored. The vy angle is indicated by a dial or gauge in
Figures 7.5.2 and 5.3.1.

B. Axis-Angle Definition of Spinor Operators

The general U(2) group operator may be expressed in terms of a single
exponential

U= U(wo,wx,wy,wz) =e "

involving a combination of Pauli operators o = 2J

W, wy W,
h=w)l +od, +ol,+el =0+ 50+ 0+ 0,
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which has the matrix form
hy by 10 w, (0 1
= w, 4+ =
hy hy 0 1 211 O

0 —i\ w1 0

An important example of this is the time evolution operator

et

U(t) = e™iHt (7.5.5)

for the autonomous (H,; = constant) Schrédinger equation ily) = H|¢), or
ad H H
2 ¥y _ 1 || ¥ (7.5.5b)
at \ ¥, Hy  Hy )\,

for a two-level system such as a spin-% moment in a magnetic field. The
expansion (7.5.4) reduces the solution

lw(2)) = U()|¢(0)) (7.5.5¢)
to an exponential expression

I l//( t)> — e—iwote—i(wx.lx+a)y]y+wzlz)t

$(0))
= e @il (0)), (7.5.5d)

which involves an overall phase which evolves at the angular rate
wy=(Hy +H)/2 (7.5.5¢)

and an SU(2) rotation with angular velocity o whose three Cartesian compo-
nents are

w, = 2Re H,, o, =2Im H,, w,=Hy; —Hy

= wcos ¢ sin 9, = wsin ¢sin b, wcos . (7.5.51)

In the second line of (7.4.5f) the polar coordinates of the rotational
“crank” axis are defined according to Figure 7.5.3(a). The azimuthal angle
(@), polar angle (9), and total rotational angle (w¢) are valid parameters of
SU(2) operations R[¢, 8, wt], and as such they are an alternative to the Euler
angle labeling R(a, B, y). (We use brackets to denote axis-angle parameters,
and parentheses to denote Euler angles.)
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Figure 7.5.3 Mechanical crank analog for Hamiltonian matrix. (a) Components of
Hamiltonian determine the direction (¢, 8) and rate of turn (w) of the crank.
(b) Effect of Hamiltonian is represented by mechanical analog rotation around crank
axis, to within an overall phase.

Generally, it is physically more convenient to label states or rotational
position with Euler angles, while Hamiltonians and other opérators are more
intuitively labeled by axis angles. In any case it is easy to convert one labeling
into the other, as explained in Section 5.5.A. Then the time evolution (7.5.5d)
is reduced to a product of the Hamiltonian rotation R[¢, 8, wt], the overall
phase factor, and the rotation operator in the initial state definition,

[4(0)) = R(a(0), B(0),¥(0))I1). (7.5.6)
The final-state Euler angles are defined by the first line in the following:
(1)) = R(a(t), B(1),y(1))I1

= R[$.0, wt]R(a(0), B(0),¥(0))I1ye "
= R[¢ 0, wtIR(a(0), B(0),¥(0) + 2wy2)I1),  (7.5.7)

and they would follow from the group product in the last line.
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The mechanical 3-space representation of the rotation is indicated in
Figure 7.5.3(b). The resulting precessional motion corresponds to the well-
known Rabbi-Ramsey-Schwinger or Feynman-Vernon-Hellwarth picture of
two-state evolution. The complexity of this dynamics is shown in Figure 5.3.5.

C. Rotational Angle Parameters for a Two-Dimensional
Harmonic Oscillator

The spinor components of an autonomous two-state Schrodinger equation
(7.5.5b) of the form

d (4 A B —iC\ [y,
I P I(] (758)

may be replaced by separate equations for the real parts (x;=Re ¥;) and
imaginary parts ( p;=1Im l/Ij) of the spinor components;

¥y =x, +ip, by =X, +ipy
= VIe @*M/2cos B /2 =VIe =9 2sin /2. (7.5.9)

(An arbitrary but constant normalization factor VI has been included for this
discussion.) The resulting equations,

o aHC
X, =Ap, + Bp, — Cx, = Pe
] dH.
X, =Bp, +Dp, + Cx, = a0, ,
dH,
—py=Ax; + Bx, + Cp, = 7, ,
o0H,
—p,=Bx, +Dx, — Cp, = ox,’ (7.5.102)

are identical to those of a two-dimensional classical coupled Coriolis har-
monic oscillator with the Hamiltonian

A D
H, = 5(pf +x12) + ?(pg +x§) + B(pp, + x,x,) + C(x,py — x,p,).
(7.5.10b)

By exploiting the Euler and axis-angle relations one may label in an
intuitive way all possible harmonic Hamiltonians H, as well as all their
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possible initial conditions and resulting phase-space trajectories. The phase-
space motion can be related though the Euler angles to a precessing rigid top
(Figure 7.5.2), and the Hamiltonian can be related through axis angles to a
crank [Figure 7.5.3(a)} which rotates the top.

Expansion of (7.5.9) gives the Euler coordinates for each point in phase

space,
x1=ﬁcos(a;y)cos(§), D= —ﬁsin(azy)cos(g),
x2=\/fcos(y;a)sin(§), D, = —\/Tsin(y;a)sin(g).

(7.5.11a)
These expressions include the normalization or amplitude factor

) = (s +95u,)'" (75.11b)

VI = (x7 +pi +x3 +p3

The quantity I is the total intensity or probability in the two-level quantum

system and is therefore a constant of motion for the classical system, as well.

A combination of (7.5.5f) and (7.5.8) leads to an axis-angle parametriza-
tion of the oscillator Hamiltonian.

®, = w Cos ¢ sin ®, = w sin ¢ sin § w, = cos
=2B =2C =A-D
wo = (Hy, + Hyy)/2
=(A+D)/2. (7.5.12)

This relates the angular velocity vector w with its axis angle (&, ), angular
rate of turn w, and overall phase rate w, to the four Hamiltonian constants
A, B, C, and D. The oscillator Hamiltonian can also be related to a rotor
Hamiltonian using angular-momentum variables obtained from the expected
J values displayed in Figure 7.5.2:
Fe =W 1Y) = Re iy, = x1x, + p p, = (1/2)cos asin B,
&y =Yl ) = Im ¢, = x;p, — x,p; = (I/2)sin asin B,
Fo = W) = ($Fdy + 459,) /2 = (xf — x5 + p} - p3)/2
= (1/2)cos B,
250 = PllyY) = ¢fg + S =x{ + x5 +pi +p3 =1 (75.13)

The resulting classical variables _#, are combinations of density matrix
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components ¢; of the two-level quantum problem. The classical Hamilto-
nian in these variables is the following:

A-D A+ D

Ho =Bf+CA+ — 7 + 5o (7.5.14a)
w, w, W,

=55t EX{ ~ 72 T @l (7.5.14b)

= Qxfx + Qyjy + szz + wofo- (7514C)

These are the action-angle forms (H = Y6J,) for the classical oscillator
and rotor. It should be noted that the angular velocities Q, of the classical
oscillator are each half of the corresponding components w, for the rotor
analogy. A factor of 2 is a common feature of spin-vector mappings and will
be discussed further in the following.

The rotor Hamiltonian (7.5.14a) describes a rigid spin-moment body with
no mass subject to torques applied by a magnetic field. A rigid massive body
will have additional quadratic terms J2, etc.,, and this is analogous to an
anharmonic oscillator in rotor-oscillator mapping. This will be discussed
later. Nonrigid rotors have still higher-order terms in the angular momentum.

The coordinates conjugate to the momenta S, la=x, y, or z) are
nonholonomic, i.., the differentials df, = w, dr are not exact. Since the
Euler angles are manifestly holonomic coordinates, it is better for many
purposes to use the momenta {7, Fas jy} conjugate to these coordinates.
Relations between the Euler momenta and the Cartesian quantities are given
in Section 5.5.E [Eq. (5.5.83)].

D. Polarization Ellipsometry Coordinates

The classical description of pure states of optical polarization is equivalent to
that of a two-dimensional oscillator. The relevant physical quantities in
ellipsometry are the x and y electric field strengths defined by

E,=Re{x|¥), - E, = Re(y|¥), (7.5.152)
which are the linear polarization amplitudes for a two-component state
vector

W) = [x)(x¥) + |y){y|¥). (7.5.15b)

The two real quantities E, and E, are analogous to the oscillator coordi-
nates x; and x,, respectively, in (7.5.9).

An equivalent description of the same state involves circular polarization
amplitudes and bases; i.e.,

W) = [r)rl¥) + [P, (7.5.16a)
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Figure 7.5.4 Circular polarization base states. States |/} and |r) are characterized
by right-handed and left-handed time evolution of the E vector.

where

Iy = (Ix) +ily)) V2, Iy = (Ix) —ily))/V2  (75.16b)

represent unit states of right-handed and left-handed circular polarization,
respectively. One can visualize these states by noting that the state ly) =
e®kz=e0 |y for example, describes a right-hand or counterclockwise circular
time evolution of the electric vector, as shown in the right-hand portion of
Figure 7.5.4. Linear and circular polarization bases each give rise to different
but equivalent sets of ellipsometry parameters which are conveniently related
to Euler angles.

In terms of linear polarization bases the general state may be written as
follows:

W) = (Xe Px) + Ye?[y))e ™. (7.5.17)

According to (7.5.15) the resulting electric vector components are

E(8,v,08) = Xcos(9 + 8), (7.5.18a)
E/(¥,v,0) = Ycos(d — 6), (7.5.18b)
where we define
X = VI cosv, (7.5.18¢)
Y =VIsinv. (7.5.18d)

This represents an ellipse trapped in a horizontal box of dimensions 2X by
2Y, as shown in Figure 7.5.5. The angle between the box diagonal and the x
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Figure 7.5.5 Examples of E (#,v, #)-vector paths for various ¥ values. [Angle
v = tan~'(Y/X) is fixed.] Overall phase angle 6 determines position on the elliptical
orbit.

axis is v [see also Figure 7.5.1(b2)], and the angle ¥ determines the orienta-
tion and aspect ratio of the ellipse inside the box. Overall phase 6 determines
the position of the electric vector on the elliptical orbit.

In terms of circular polarization bases a polarization state may be written
as follows:

|¥) = (Re™*Ir) + Le*|l))e™™® (7.5.19)
According to (7.5.15) and (7.5.16b) the electric vector components are

E.(¢,¥,®) = (acos D)cos ¢ — (bsin D)sin ¢, (7.5.20a)
E (¢,¢,P) = (acos P)sin ¢ + (bsin P)cos ¢, (7.5.20b)

where we define

a=(R+L)/V2 =Icosy, (7.5.20c)
b=(R-L)/V2 =TIsiny. (7.5.20d)

This represents an ellipse trapped inside a tipped box of dimension 2a by 25
where a and b are the semimajor and minor axes of the ellipse, as shown in
Figure 7.5.6. The angle between the box diagonal and the major axis is ¢ [see
also Figure 7.5.1(b2)]. The angle ¢ determines the orientation of the box and
its ellipse with respect to the x axis. Overall phase ® determines the position
of the electric vector on the ellipse.

The expectation values of the Pauli momentum operators define a three-
dimensional vector which is called the POINCARE-STOKES vector. We
shall use the letters (A4, B, C) to label its Cartesian components since (x, y)
are already being used to label the spinor 2-space. Also, the axis of quantiza-
tion, which is usually labeled by z, will be the C axis for the description based
upon circular polarization and the A4 axis for the description based upon
linear polarization. Still other axes will be used in descriptions of “local
modes” in later discussions.

By relating right and left circular polarization with spin-up and spin-down,
respectively, in the polarization-spin- 3 analogy one is lead to the usual
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Figure 7.5.6 Examples of E (o, ¢, ®)-vector paths for various ¢ values. [Angle
¢ = tan~1(b/a) is fixed.] Overall phase angle ® determines position on the elliptical
orbit.

ordering (x > A,y — B, z — C) for the three Cartesian components. The
three Pauli operators may be represented in the usual way in the {|r), |[}}
basis as follows:

(rlaglry  Lrlogyll) _(0 1)
(agry oy ] 1 0)

C("A)=(
C(UB)=((; ‘6) C(o-c)=((1) _(1’) (7.5.21)

This then implies a different representation for the same operators in the
linear {|x), |y)} basis using transformation (7.5.16b):

3 (xlogx)y (xlayly) _11 1 1 —i
HoD = (il <y|oA|y>)”2(i —i)c("A)(l )

1 0
“lo 1)

0 1 0 —i
Lios) = |4 0)’ L(“C)=(i 0l

(7.5.22)

The diagonal form of o, indicates a choice of A-axis quantization with the
permuted ordering (x — B,y — C, z — A) in the assignment of Pauli opera-
tors.

Points in the (A4, B, C) space are identified easily by the expectation values
{Ylaly) in the desired representation. This leads to relations between
elliptical shape angles (o, ¢), (1%, v), and the respective Euler angles. In the
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circular representation one derives -
¥ —ip
(V]| W) = Re L (0 1)(Re

= — (a2 — p2
1 0 Lei“’) 2RL cos2¢ = (a° — b*)cos 2¢,

—X — —i .
(W|og| W) = Re~*¢Le™® ((3 6)(12? i:) =2RLsin2¢ = (a® — b?)sin? ¢,
—_— e
/._\.* —i
(¥log|¥) = Re~*Le ((1) (1’)(126 l.:) — R?— L =2ab. (7.5.23)
—_— e

These values are equal to the corresponding linear representation values:

—_— ~i0
<‘I’|0A|‘I’>=Xe\_”’1@ ((1) _?)(X;em ) =X?-Y?
o (0 1)[Xe
(¥lopl¥) = Xe "Ye' (1 0)( ;m ) = 2XY cos 29,
€
—F _; —i
(Wlogl ¥y = Xe Ye'? ((I’ 6)();"1,0 ) = 2XYsin? 9. (7.5.24)
—_— [4

Combination of these results with the box-angle definitions (7.5.18) and
(7.5.20) yields the following ellipsometry relations:

(Circular) (Linear)
(Ploy|¥) =1cos2¢ cos2e = I cos2v,
(¥logl¥) = Icos2ysin2¢ = Isin2v cos 24,
(Wlo|¥) = I'sin2y = I'sin2vsin 24,
(VW) = =a®+ b — X+ Y2 (7.5.25)

Each of the angles in these relations is indicated on the (ABC) vector
diagram in Figure 7.5.1(b) as well as in the spinor diagram. For each angle in
the spinor diagram there is a corresponding double angle in the vector
diagram. For example, linear polarization states on the AB equator of the
vector diagram (¢ = 0 = v) are characterized by an azimuthal angle 2¢
where ¢ is the inclination angle for the major axis of polarization in a spinor
diagram. A complete vector revolution 2¢ — 2¢ + 27 corresponds to only a
half-revolution of the spinor picture. This is due to the fact that such a
revolution maps a polarization state into one that is 7 out of phase. That
spinor states require 47 rotations around any axis in the vector 3-space in
order to have no change is seen more easily in the optical polarization
analogy. The idea that a vector is a square of spinors (in the outer product
sense) is relevant. The amplitude scale for spinors is VI, while for vectors it is
I in Figure 7.5.1.
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By choosing the C axis to be the “z direction” of quantization one picks
the following angles:

ks
a=2p, B=5 -2, y=29, (7.5.26)

to be the Euler azimuthal, polar, and overall phase angles, respectively. This
choice favors circular polarization and is convenient if there is a strong
Coriolis component or Zeeman field in a vibrational model. If instead one
chooses the A axis, then the angles

a =249, B =2v, v =20 (7.5.27)

are the Euler angles. This choice favors linear x and y polarizations and is
convenient if there are well-defined normal-mode states |x) and |y) in the
vibrational model.

E. Generalized Lissajous Trajectories and Related Dynamics

(a) Examples of Rotation and Oscillation Dynamics The vectorial or
three-space description complements the spinorial or two-space picture.
While the latter displays more detail the former may be more efficient. Each
elliptical trajectory in the 2-space corresponds to a single direction or
quasispin vector (S = J) in the 3-space. This vector only moves if the ellipse
changes in size, shape, or orientation.

Consider, for example, the solution to an isotropic oscillator equation
(7.5.10) with constants 4 = D and B = 0 for which a Coriolis force (C # 0)
is present. The Coriolis term,

C(x,p, —x,py) =Cl, (7.5.28)

in Eq. (7.5.10) describes the effect of adding a magnetic field to a charged
oscillating mass or a Foucault pendulum in a rotating frame. The S vector
will precess around the w vector (w,, w,, w,) = (0,2C,0) according to Eq.
(7.5.12). If we use linear polarization bases |x;) = |[x) and |x,) = |y) for
which the z axis of quantization is the A4 axis then the following coordinate
identification is appropriate,

(w4, wp,00) = (0,,0,,0,)=(A-D,2B,2C)
=(0,0,2C) forA=Dand B=0. (7.5.29)

An example of the resulting motion is displayed in Figure 7.5.7(a). This
involves precession of an ellipse with constant shape angle  but variable
orientation angle ¢. The rotation around the C axis proscribed by (7.5.29) is
called Faraday rotation of polarization. The states |r) or |I) of pure circular
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(a) Faraday Rotation

'8 ’l,’ll.n

o
1

Asiny ——

-—Y
>

Figure 7.5.7 Analog computer plots of two famous examples of optical activity.
(a) Faraday rotation or circular dichroism corresponds to constant ¢ = tan~ (b /a).
(b) Birefringence corresponds to constant » = tan~'(Y/X). Note that a small amount
of birefringence is present in Figure 7.11(a); i.e., ¢ oscillates slightly. Pure Faraday
rotation is difficult to achieve on an analog computer.

polarization (¢ = +m/4) correspond to S vectors parallel or antiparallel to
o = 2C&, and so they represent fixed points in the ABC-vector space for
the pure Coriolis Hamiltonian. All other states experience a precession of
their principal directions of polarization by angle ¢ [recall Figure (7.5.6)]
while their S vectors maintain a constant angle (/2 — 2¢) with the C axis
and rotate by 2¢ around it.

A very different type of motion is that of nondegenerate |x) and |y)
modes (A4 # D) which are uncoupled (B = 0) and Coriolis free (C = 0).
Then the crank vector lies along the A axis:

(w4, wg,0c) = (A —D,0,0). (7.5.30)

An example of the resulting motion is displayed in Fig. 7.5.7(b). The ellipse
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deforms and vibrates continuously but remains inside a box of constant
diagonal angle »v. (Recall Figure 7.5.5.) The S vector maintains a constant
angle 2v with the A4 axis while rotating by 29 around it. The states
x> = |x;) and |y) = |x,) of pure horizontal or vertical polarization repre-
sent fixed points in cach case since the S vector lies along the +A4 or —A axis
(v = 0 or m/2). Motion of mixed |x) and |y) states such as is shown in
Figure 7.5.8(b) is known as a birefringence in polarization optics.

S vectors on the +B axis Q¢ = +7/2) correspond to ¢ = +45° polar-
ization states or equal-mixture states (|x) + |y))/ V2. If |x) = |x,> and
ly> = |x,) correspond to two-particle normal mode states of A4, and A,
symmetry, respectively, then the (¢ = +45°) mixtures correspond to local
mode states in which one particle is oscillating while the other is at rest. The
Hamiltonian described by the A vector (7.5.30) will rotate an S vector from
the + B axis along the BC plane to the —B axis and back to + B. During this
time the oscillating particle gives all its energy to the one that was stationary
and just as quickly takes it all back but suffers a phase shift of . This is
called a “half-beat” in a resonant energy transfer process. (Recall that S has
to go around fwice to return the state exactly.) Maximum power transfer
occurs each time the S vector passes the +C axis. Then the phase of the
driving particle is /2 ahead of the driven particle which has the same
amplitude. This corresponds to a circular trajectory in the (x,, x,) space if §
were to remain fixed on C. (Recall Figure 7.5.4.)]

The oscillator half-beat frequency is given by the magnitude of the
vector (7.5.30).

_ _ .2 2 21172 _
WDhalf-beat — loo| = [“’A + wp + wc] = 2O

= [(4 - D)* + 482 + 4c?]”

—A-D forB=0=C. (7.5.31)

This corresponds to the quantum frequency difference between the two-level
eigenfrequencies. It is the Rabi frequency in rotating wave version of the
two-level problem. The average value of the eigenfrequencies is given by Eq.
(7.5.12):

wy = (A + D) /2. (7.5.32)

This corresponds to the classical oscillator orbit or carrier frequency, that is,
the angular rate at which one elliptical trajectory is orbited if the ellipse is
constant. In quantum theory this overall frequency rate is unimportant for an
isolated system.

(b) Oscillator Tori and Lissajous Trajectories Trajectories for oscilla-
tor Hamiltonians for arbitrary {w,, wg, w-} generally appear to form on
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Figure 7.5.8 Evolution of states for various mixtures of 4 and C components.

toroidal surfaces. Three examples of trajectories with various amounts of

birefringent (w, # 0) and Coriolis (w, # 0) or Faraday motion are shown in
Figure 7.5.8. More detailed views of the oscillator tori are exhibited in
Figures 7.5.9 and 7.5.10 using stereo drawings of their phase space, and these
will be discussed shortly. We consider first the connection between the

oscillator tori and the rotor vectors S and .

—>

Figure 7.5.9 Stercograms of oscillator phase 4-space trajectories for one mixture of
w, and w,- components. The 3-space quasispin vector picture of each trajectory is
sketched in the upper right-hand corner of each figure. Ratio of high and low
eigenfrequencies is Ny:N, = 2:1. (a) Spin vector is about 40° from H end of
w-crank vector. (b) Spin vector is perpendicular to @ vector. (c) Spin vector is about
60° from L end of w-crank vector. (d) Spin vector is about 40° from L end of

w-crank vector.
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A family of toroidal surfaces exists for each direction w jwg:wc: of the
w-crank vector. Individual tori in each family are distinguished by the
direction relative to « of the initial pseudospin vector S = J. Its magnitude
|Jl =1/2 =1J, [recall Egs. (7.5.11b) and (7.5.13)] determines the amplitude
scale and plays no essential role for harmonic motion. The slope of a given
trajectory on a particular torus depends upon the ratio of the magnitudes
lw] = @y, Of the crank vector and the overall phase rate w,. [Recall Egs.
(7.5.31) and (7.5.32).] Finally, translation of a given trajectory on a torus is
achieved by varying the initial value of the third Euler angle y.

For trajectories in Figures 7.5.7 and 7.5.8 the ratio between elliptical

i shape evolution rate (Jw|) and orbital rate (w,) is equal to a small and

essentially irrational number. The trajectories are quasiperiodic and could

i densely cover their tori. On the other hand, trajectories in Figures 7.5.9 and
7.5.10 have comparable values for w and w,. In addition the ratios w/w, are
chosen to be rational so that each trajectory is absolutely periodic. The
resulting closed orbits are generalized or Coriolis-Lissajous figures corre-
sponding to a single closed curve on cach torus. Standard Lissajous figures
correspond to closed curves in the absence of Coriolis effects (w, = 0).
Lissajous trajectories only approximate ellipses briefly (i.e., for one orbit
period) if the orbital rate is much greater than the shape evolution rate. This
is not the case in Figures 7.5.9 and 7.5.10.

The Lissajous figures are plotted in stereo pairs in these figures using a
three-dimensional subspace {x, y, p,} of the four-dimensional phase space.
They should be viewed with a standard stereopticon or-by allowing one’s eyes
to relax so the left and right eye views the left-hand and right-hand image,
respectively. The trajectories are bold line traces which can be seen (in
stereo) to reside on surfaces which are similar to the ones which would be
traced quasiperiodically by the trajectories in Figure 7.5.8. Each surface is
known as an invariant torus, and from the invariance of I in Eq. (7.5.13) it is
seen that these examples of tori are four-dimensional spheres. Tori are
sketched as doughnut shaped objects in many works, however, the stereo
views of them reveal a somewhat different geometry but the same topology.

The coordinate lines on the tori in Figure 7.5.9 are constant angle lines for
a choice (8, 6;) of action-angle coordinates corresponding to the high and
low frequency vibrational modes of the classical oscillator. The high and low
eigenfrequencies w, and w; of the two-level quantum Hamiltonian corre-
spond to high and low frequency modes for the classical coupled oscillators.

— i

Figure 7.5.10 Stereograms of oscillator phase space trajectories for various mixtures
of w,, wg, and w and various Ny and N;.(a) Ny =1, N, = 6.(b) Ny =6, N, = 1.
O Ny=2,N=1WAN;=2, N, =1
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Suppose that these frequencies are commensurate, that is,

8, oy Ny
- ( ) (7.5.33)

OL wL

for integers Ny and N,. Then the quantum transition frequency or classical
half-beat frequency will be

lo| =0 = 0y — o,

w,(Ny — N,)/N,. (7.5.34a)

1

The classical orbit frequency will be

_lonte) N”+NL(“2’). (7.5.34b)

@o = 2 Ny - N,

For a mode frequency ratio of Ny/N, = 2/1 the ratio orbit and beat
frequencies is w,/Q = 3/1. .

The orbits in Figures 7.5.9(a)-7.5.9(d) all have (N, N,) = (2,1). A per-
fect recurrence to the initial conditions at ¢ = 0 occurs at ¢t = T when
(6y4,0,) = (0T, 0, T) = (47, 27). During the recurrence period T the spin
vector precesses through an angle T = 27 according to (7.5.34a), while the
overall phase or orbit angle moves through w,T = 37 according to (7.5.34b).
That is, an oscillator achieves half of a beat and three halves of an orbit per
recurrence with (Ny, N;) = (2,1). This recurrence involves two turns along
the H direction of the torus and one turn along the L direction. One can
clearly see the double winding of the trajectory around the H direction in the
upper figure [Figure 7.5.9(a)] and the single winding around the L direction
in the lower figure [Figure 7.5.9(d)]. However, the winding topology is the
same for all four cases. In Figures 7.5.9(a) or 7.5.9(d) the S vector is closer to
the H or L ends, respectively, of the m-vector. These ends correspond to
ellipses with major axes oriented horizontally or vertically, respectively, The
extremal ellipses correspond to fixed points or collapsed tori.

It should be noted that the tori for nonzero Coriolis effect (w. # 0)
exhibit curved external caustics as well as internal caustics or holes. Often the
holes are clearly evident as in Figures 7.5.9(a) or 7.5.9(d) and Figure 7.5.10(a).
Stereo views show that the tori actually have two orthogonal holes which are
consistent with their four-dimensional spherical topology. One hole is normal
to the H direction and the other is normal to the L direction. Generally, only
one hole appears unobstructed in each three-dimensional projection of the
four-dimensional spheres. However, Figure 7.5.10(d) shows two osculating
holes most clearly.

The trajectory rosette patterns Figures 7.5.9 and 7.5.10 are predictable
from the value of w, in (5.8). For (N, N,) = (1, —6) in Figure 7.5.10(a) the
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orbit angle moves through w,T = — 57 while for (N, N;) = (6,1) in Figure
7.5.10(b) it moves through w,T = 77 during each recurrence period T.
There result five curlate and seven prolate rosettes, respectively. For our
original example with (Ny, N,) = (2,1) one has «,T /7 = 3 and the same
number of rosettes as shown in Figures 7.5.10(b) and 7.5.10(c).

F. Rotational Energy (RE) Surface Description
of Anharmonic Vibrations

The dynamics and spectral fine structure of quantum rotors was described
using the geometry of RE surface trajectories in Section 7.4 (rotational level
splitting for high J). An RE surface is a radial plot of a rotor Hamiltonian
H(J,,J,,J,)in the space {J,J,J.} of its angular momentum for a fixed value

of the magnitude,
J=13= (2 +02+12)"

The classically allowed motions for each J then correspond to radial level
curves or topography lines formed by the intersection of the RE surface with
a sphere whose radius equals the total energy E = (H ) of the motion.
Here we consider the qualitative features associated with the vibrational
analogy of the RE surface dynamics. The analogy is constructed by replacing
angular-momentum vector J of the rotor by the quasispin vector defined by
Eq. (7.5.13). The quantum expressions for the quasispin vector result if each
phasor ¢; = x; + ip; in Eq. (7.5.9) is replaced by the oscillator boson annihi-
lation operator a;, and ¢ is replaced with creation operator a} forj=1,2.

J, =Ty = (aba, + alay)/2,

J,=Jc=i(ala, - dla,)/2,

J, =1, = (ala, — ala,)/2. (7.5.35a)
Here, the permuted Pauli ordering consistent with Eq. (7.5.29) is used. The

momentum conjugate to the overall phase is the total quantum number
operator:

Jy =dla, + dla,. (7.5.35b)

The advantage of the RE surface approach is that qualitative features of
the eigenvalue and eigenvector spectra can be visualized relatively easily by
plotting H(J) and the classical RE surface trajectories. This will be shown
using harmonic and anharmonic examples of vibrational Hamiltonians.

(a) Harmonic RE Surfaces The harmonic oscillator Hamiltonian
(7.5.10b) is a linear combination (7.5.14) of the momenta or action variables
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Figure 7.5.11 Quasispin RE surfaces and trajectories for harmonic coupled oscilla-
tors. (a) Coriolis free case (C=10). 4 =4.0, D =2.0, B=0. (b) Coriolis case
(C=10). 4=40,D=20,B=0.

J,,- The polar equation for the RE surface is given by substituting the Euler
expressions for the momenta (7.5.13) into (7.5.14c¢):

H=(1/2)(Q,cosasinp + Q sinasinB + Q, cos B) + Jyw,, (7.5.36a)
A-D

H=(1/2) BcosasinB+Csinasin,B+( + Jywg.

)cos B
(7.5.36b)

The (ABC) parameters are used in the second expression. The A-axis polar
coordinates in (ABC) space are azimuth o = 29 and polar angle g = 2v»
according to (7.5.25):

H= (I/4)(wgcos29sin2v + wcsin29 sin2v + w4 cos2v) + Jyw,.
(7.5.37)

The RE surface topography lines for harmonic examples with
(w,, wg, wo) =(1,0,0) and (1,0,1) are shown in Figures 7.5.11(a) and
7.5.11(b), respectively. The trajectories are families of parallel circles in each
case. The circles are perpendicular to the axis of the w-crank vector. The
form of the RE surface is a limacon or cardioid of revolution. For large
values of the constant Jywy(> wl) the surface is almost the same as a
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sphere displaced in the w direction. This is the simplest type of RE surface,
and the topography lines correspond to simple uniform precession around a
single direction as shown in the (ABC) parts of Figures 7.5.7 to 7.5.10.

One should note that all the RE surfaces discussed so far represent
Hamiltonians which had only even powers of J and were therefore invariant
to J inversion (J — —J) or time reversal of the rotor. This meant that each
trajectory with a clockwise direction of precession around a particular axis
(+4d) would execute the same precession around the opposite (—4) axis. In
contrast, the trajectories shown in Figure 7.5.11 precess oppositely around
— w to the way they go around + w, that is, the vector fields of flow are all in
the same direction around . There is no separatrix or line of fixed points on
these simple RE surfaces to separate one flow field from another.

One should note also that the high-fixed points of the RE surfaces in this
work are surrounded by counter-clockwise motion. (In Figure 7.5.11 » and
—w are high and low points, respectively.) This is the opposite of the
convention used in discussing rotors because the surfaces were drawn in the
body frame in that discussion.

(b) Anharmonic RE Surfaces A simple model for vibrational anhar-
monicity includes the following perturbation operator to the harmonic oscil-
lator:

ax‘]xz = ax(xlxz +P1P2)2 = ax(12/4)coszasin23

= a,(a}a, + a{a2)2/4. (7.5.38)

Anharmonic perturbations can greatly alter the classical dynamics and quan-
tum eigensolutions.

The energy surfaces in Figure 7.5.12 show how the anharmonic perturba-
tion (7.5.38) alters Coriolis-free harmonic normal mode dynamics described
by the surface in Figure 7.5.11(a). Figures 7.5.12(a), 7.5.12(b), and 7.5.12(c)
show the topography paths for increasing anharmonicity a, = 1.0, 2.0, and
3.0, respectively, for harmonic values A =4.0, B=0=C, D = 2.0, and
I = 1. The polar equation for the surfaces in Figure 7.5.12 is

I\w I?
H=Jyw, + (5)5 cos B + a, T cos*asin’ B,  (7.5.39a)
where
-2 _4°P 7.5.39b
S22 (7:5.3%)

is the true harmonic beat frequency or one-half the classical w,,, frequency
in Eq. (7.5.31).
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Figure 7.5.12 Quasispin RE surfaces and trajectories for anharmonic Coriolis-free
coupled oscillators. (a) a, = 1.0, (b) a, = 2.0, (¢c) a, = 3.0.

In Figure 7.5.12(a) one can see the first effect of the anharmonicity. The
topography paths are no longer circular except in the immediate neighbor-
hood of the normal mode fixed points. In Figures 7.5.12(b) and 7.5.12(c) one
sees a more striking effect of the anharmonicity. One of the normal mode
fixed points becomes an unstable saddle point at the center of a figure eight
separatrix. The separatrix loops surround a pair of equivalent fixed points
which move down the AB meridian away from the A4 point and toward the
+B axes as a, increases. These new fixed points correspond to “local
modes” and the ellipsometry of the (4ABC) space immediately characterizes
their trajectories. The elliptical azimuthal Euler angle is (@ = 2% = 0) and
the polar angle (8 = 2v) is given by solutions to

dH—O— Im' B 122' B cos B 7.5.40
—_— = — — — + —_— . .
B 7@ sin a,—2sin g cos ( a)
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The resulting solutions are
B =0,m,cos ' (Q/a,l). (7.5.400)

For (Q/a,I) > 1 the only allowed solutions are B = (0, 7) which correspond
to normal modes 4, and A,. For a,I > {) one mode becomes unstable and
two new solutions split off. The quasispin fixed points approach the +B axes
as a,l increases. The quasispin orbits near the +B axes correspond to
oscillations in which the excitation is more or less localized on one or the
other of the particles in the two-particle oscillator. This model provides a
simple example of an RE surface whose form changes radically when one
varies a parameter or a quantum number. The parameter of interest here is
the ratio in Eq. (7.5.40) of the half-beat frequency (Q2 = w/2) to the product
of the total quantum number (1) and the anharmonicity strength (a,).

There are two properties of the RE surface trajectories in Figure 7.5.12
which are different from the ones discussed in connection with rotor motion.
First, trajectories in Figure 7.5.12 have lower symmetry. Besides lacking the
(J - —J) inversion symmetry mentioned previously, the double families of
trajectories do not possess rotational symmetry axes at their fixed points,
indeed, the fixed points are relocated by changes of the parameters. Second,
the two movable stable fixed points appear suddenly, and the +A4 axes are
antipodal stable fixed points until 4,7 > €. Then as a,I increases, the +4
axis becomes an unstable fixed point while the —A axis, which represents the
antisymmetric mode (A,) remains stable for all positive a,l. However, the
surrounding domain of stable quasi-antisymmetric trajectories becomes in-
creasingly narrow.

The surface geometry and classical trajectories can be used to determine
approximate quantum eigenvalues and wavefunctions as in the analogous
rotor RE surfaces. Some qualitative observations can be made immediately.
An important new feature is the emergence of equivalent pairs of localized
trajectories for a,/ > (). This signals the onset of a doubling or clustering in
the eigenvalue spectrum, and it corresponds to pairs of local mode eigenfunc-
tions. The doublet splitting can be related to tunneling. The quasispin
ellipsometry provides a convenient visualization and computational aid for
semiclassical analysis.

An advantage of the RE surface description is that it provides a more
complete picture of the phase space and each point corresponds to a well
defined ellipsometry or trajectory shape. Also, there exist Hamiltonians for
which a simple potential curve would be an impossible or misleading descrip-
tion. For example, the fourth degree RE surface which has a six-maxima and
eight-minima cannot be described by a simple potential curve since the
minima and maxima do not belong to a single curve of section. The precise
location of maxima, minima, and saddle points is essential for determining
spectral properties such as clustering and tunneling.

R
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Figure 7.5.13 Quasispin RE surfaces and trajectories for Coriolis anharmonic cou-
pled oscillators.

Finally, the RE surface picture clearly shows the effect of Coriolis terms in
the anharmonic Hamiltonian. As seen in Figure 7.5.13 the addition of a
nonzero C term tends to bring the local mode fixed points closer to the C
axis and to each other. If the harmonic constants are varied so that (C? + 42)
remains constant, then the harmonic Coriolis effect is equivalent to a rotation
around the B axis. If the local mode points are close to the B axis (strong
local mode effect), then the Coriolis effect is small. On the other hand, a
large Coriolis effect could coalesce the fixed point pair near the C axis and
destroy the local mode effect.

7.6 MOLECULAR ELECTRONIC STRUCTURE

We give now a brief introduction to the electronic eigenvalue problem for
molecules. This is a very large and computationally intensive subject, most of
which is beyond the scope of this text. Techniques and software for comput-
ing electronic structure are developing as rapidly as the computer hardware,
and this is likely to continue indefinitely.

In spite of the complexity of this difficult subject there are simply concepts
and guiding principles which can be shown using elementary models. We will
introduce electronic structure models for the diatomic H} ion and H,
molecule, both of which have C, internal point symmetry. We will also
introduce some aspects of electronic structure of other symmetric molecules
such as water (H,0), ammonia (NH ), methane (CH ,), benzene (C4H), and
sulfur hexafluoride (SFy), which have C,,, Cs,, T;, D4, and O, symmetry,
respectively. Symmetry analysis can help greatly to understand and calculate
electronic structure.

A. Electronic Models for Diatomic Molecules

The standard electronic structure models begin with an electronic Hamilto-
nian in which the nuclei are point charges artificially held at fixed locations.
Consider a diatomic ion with a single-electron orbiting nucleus A and




MOLECULAR ELECTRONIC STRUCTURE 655

nucleus B which have charges Z le| and Zglel, respectively. This would
involve the following electronic Hamiltonian:

H(Rap) = 5 ==~ —. (7.6.1)

Here the electron-nuclear Coulomb potential constants are

1Z €% |Zpe?|
k= ——, ky= 2 (7.6.2)

B
4dre, dmreg

The electronic radii r,, and r,, and momentum p, are indicated in Figure
7.6.1(a) and m is the electronic mass. For a pair of hydrogen nuclei one has
Z,=2Zz=1.

To account for two electrons orbiting the same nuclei we add the kinetic
energy and Coulomb interaction of the second electron with each nucleus
and an electron-electron interaction energy with constant k,, = (e?/4me,).
(For the H, molecule all k’s are equal.)

2 2

p P k k k k k

Hez(RAB)=—1+—2——A——B——A——B+—12. (7.6.3)
2m 2m Tia i T4 Tap Tz

The radii for the two-electron diatomic problem are shown in Figure 7.6.1(b).

Each of these electronic Hamiltonians treat the internuclear separation
R, as a fixed parameter. The nuclear motion is found later using the
following approximate nuclear Hamiltonian:

P? P? Z,Zye>
H = + + + E(R . 7.6.4
nuclear ZMA 2MB 47780RAB ( AB) ( )

The effect of the electrons is modeled by an expectation value of electronic
energy in some electronic state |¥):

E(RAB) = <\I/u_lelectron( RAB)|\I,>

This is called the Born-Oppenheimer approximation. The electronic energy
combined with the internuclear Coulomb potential gives a molecular bonding
potential:

Z,Zge?
Vbond(RAB) = E(RAB) + (7-6'5)

dmregR ’

This approximation is valid only if the nuclear R, motion does not apprecia-




656 THEORY AND APPLICATION OF SYMMETRY REPRESENTATION PRODUCTS

(3
la rlb
(a) H, Ion
: 12 .
T.
2a rla Iy Iip
b)H 2 Molecule
Figure 7.6.1 Coordinates for (a) hydrogen ion and (b) hydrogen molecule.
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bly excite the electronic eigenstate |'W) into a combination of two or more
eigenstates. In the language of Section 2.12.B the state |'¥) must adiabati-
cally follow the change in R ;.

We consider now several models for electronic energy eigensolutions
around a fixed pair of protons or H nuclei. With one electron we will model
the bonding of an H} ion and for two electrons we will model H, molecular
bonding.

(a) H;: Atomic 1s Orbital Bonding Model The first approximation
takes wavefunctions a(x) and B(x) to be the lowest (1s) eigenwaves centered
around position x4 or else x, of nucleus A or B, respectively,

a(x) = (xla) = ¥ (x — x,) B(x) = (xIb) = ¥, (x — xp)

z3 Z3
_ e~ Zara/ %0 =1/ —= e 28"/ (7.6.6)
wa; Tay

We shall use parenthetical brackets |a) and |b) to denote these base states to
remind us that they are not orthonormal. The overlap matrix {S) is defined
by

Sa = (alb) = [dxa*(x)B(x) = [dx(alx)(xIb).  (7.6.7)

Wave-function overlap plays an important role in bonding theory and usually
S, is not 8,,. For the 1s states we still have normality ((ala) = 1 = (b|b))
but not orthogonality ((a]b) = (b|a) # 0). :

The H; bonding model reduces to a C, symmetric two-state system. The
first state |a) has the electron on nucleus A4, while nucleus B is bare and vice
versa for state |b). A matrix representation of Hamiltonian H, given by
(7.6.1) is

(alH,la) (alH,Ib) (ks
(bIHeIa) (bIHe'b)) - (S h)’ (7688.)
where
a*(x) a(x) k
h:gls—kfde=e1s—(aZ ) (7.6.8b)
s =e,8, — k[ dx M) _ £1,S,, — ( — b), (7.6.8¢)
F1b b

and g, is the atomic hydrogen ground state energy value.
However, the representation basis (]a), |b)) does not satisfy the axioms of
orthonormality and completeness given in Chapter 1. Therefore, the energy
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eigenstates
|E) = y,la) + 4,|b), (7.6.9a)
which satisfy
H,E) = E|E) (7.6.9b)

are not found by directly diagonalizing (7.6.8a). Instead we must convert
(7.6.9) to the following generalized eigenvalue equations:

(alH,|E) = (alH,la)¢, + (alH,Ib)y, = E[(ala)y, + (alb)y,],
(bIH,IE) = (blH,la), + (bIH,Ib)y, = E[(bla)y, + (blb)y,].
(7.6.10a)

In matrix form this becomes
aIHe|a alHelb a Saa Su a
( ) ( (%] - E o) [ Vel (7.6.10b)
(b|H,la) (blH,Ib) [\ ¥y AL
The eigenvalues are roots E of a generalized secular equation
det|{(H) — E{S)| = 0. (7.6.11)

For small equations like this one it is easy to invert the overlap matrix and
recover a standard eigenvalue problem. The inverse of this overlap matrix is
quite simple. (Let S, =S = §,,.)

(iba i:i)_lz(;‘ f)_lz(_; —f)/(l—Sz). (7.6.12)

Multiplying it by the H matrix gives a standard eigenvalue equation:

11 S\(h sifv,) 1 (h=8s s=Sh\[y,\ [y,
1-82\8 1)ls [\, 1-S%|s—Sh h—Ss)\y, -k by |

(7.6.13)
The desired energy eigenvalues are the following:
protts g b 7.6.14
T 1+s T 1-s (7.6.192)
These correspond to symmetric and antisymmetric eigenstates:
By = 1D ) £y = 9 D) (7.6.14b)
2(1+8)’ V21 =8) o

Note that C, symmetry projection will give the eigenvalues directly from the
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generalized eigenvalue equation (7.6.10b). Projection must diagonalize the
overlap matrix as well as the H matrix. Note also that the eigenvectors are
orthonormal even though the base states |a) and |b) are not.

The Born-Oppenheimer potentials (7.6.5) are a sum of the eigenvalues
(7.6.14a) and the nuclear Coulomb potential k/R. Using (7.6.8), we have

T s
VE(R) - hts ke~ k(all/rla) +e,,S F k{all/r,lb) Lk

1+S R 1+S R’
k k(all/r,la) k(all/r,|b)
*(R)y=¢, + — — - 6.
ViR) =en 3 1+ 1+8 (7.6-15a)
k k(all/r,la) k(all/r,|b)
- - 4+ — — + . 6.
Vi(R) =&+ & TS TS (7.6.15b)

For small § the V" (R) function must lie below V' ~(R) because the last term
is subtracted rather than added.

To evaluate the energy eigenvalues (7.6.14a) we use confocal elliptic
hyperbolic coordinates. These are also known as spheroidal coordinates.
These are a generalization of the cylindrical or spherical coordinates used for
one nuclear center. They are natural coordinates for a diatomic molecule
which has two singularities.

Spheroidal coordinates may be defined a number of ways. The formal
Cartesian transformation is

x = fsinh usinv cos ¢,
y = f sinh u sin v sin ¢,
z = fcoshucosv, (7.6.16a)

where R,p = 2f is the distance between focal points at the nuclei, and

p=1yx*+y? =fsinhusinv (7.6.16b)

is the radius for cylindrical coordinates (p, ¢, z). Constant coordinates u and
v define, respectively, confocal ellipses or hyperbolas of revolution around
the z axis (recall Figure 7.6.1):

22 p? 52 p?

(fcoshu)2+(fsinhu)2=1’ (fcosv)z_(fsinv)zz1
(7.6.17)

The semimajor axes a, and a, of the ellipse or hyperbola are, respectively,
half the sum and differences of the electronic radii from nuclei 4 and B:

ri, tr Fy,—r
ae=1—1b=fcoshu ah=—1-a—-—12=fcosv
2 2
R R
= 28 coshu, = 22 cosu. (7.6.18)

2 2
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Let the ellipsoidal coordinates w and » be major axes in units of nuclear
separation R :

2a 2a,

p=—>=coshu, v=—"=cosw. (7.6.19)
Ryp

Then the electronic radii are given in terms of x and v as follows:

(u +v) (n —v)
Me=—FRip, = ———Rup. (7.6.20)

The Jacobian volume element is found using (7.6.15) and (7.6.19)

B d(xyz) _ (xyz) (uvd)
dedydz = v d) dudvdd = (wd) Hpavd) wdvdd
R? R?
= ?(coshzu —cos’v)du dvde = ?(p,2 —v3)dudvdé.

(7.6.21a)

If the overlap integral is converted to ellipsoidal coordinates it is simplified as
follows,

AT ® .,  R?
- % - 2 _ 2\,~ZRp/ay
) /dxdydza (x) B(x) mgfo d¢j1 du f_ldv o (W = v?)e 2R

Z’R* ZR
= ( e ZR/a, (7.6.21b)

Note that the overlap falls off exponentially as atomic number (Z, = Z = Zy)
and internuclear radius R, 5 = R increase.

The other terms in the eigenvalue and Hamiltonian formulas (7.6.15) are
evaluated similarly. Consider Coulomb attraction between electronic charge
on nucleus A and nuclear charge B (or vice versa). The potential appears in
the third term of (7.6.15):

_k(a

L) - a0

r, b

kZ® .5 © | AR(u? - v?)e W +MZR 2
= [Tde [ du [ dvi—ry
map -0 1 -1 sR(p —v)
k k kZ
= -z |5 e PR 7.6.22
R R a, ¢ ( )
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The main contribution is —k /R, which lowers the atomic energy &,,. (g,
is due to the interaction of electronic charge on nucleus 4 and nuclear
charge A.)

The crucial bonding energy is the final term in (7.6.15). It appears to be an
interaction between nucleus B and the electronic “overlap charge”

a*(x)B(x):

1 a*(x)B(x
k(a _ b) = —kfdxM
Ty Tip
kz3 2 o 1 1R3(M2 _ VZ)e-uZR/aO
— ——3f d¢f d/.Lf dV il 1
may o 1 -1 2R(p —v)
kZ ZR
= —-—|1+ —]e_ZR/“O. (7.6.23)
ay ay

This term is the main difference between V* and V™ in (7.6.15). It repre-
sents a fundamentally quantum-mechanical effect, and quite an important
one to anyone who wants their molecules to hang together! Like most
quantum tunneling or resonance effects it dies off quasiexponentially with
separation.

The resulting H; molecular potentials *(R) and V"(R) reduce to the
following functions of R expressed in atomic units (a, = 5.3 X 107! m):

VR 1 (1+R)e R+ (1- %Rz)e_R 7 694
T = + — . V.
(R) = et R Iz QR+ R+ 1) ? (7.6.24)

The atomic energy unit (k/a, = 436 X 10718 J = 27.21 eV) is used, as well.
A plot of ¥ *(R) is shown in Figure 7.6.2.
The symmetrized (g) orbital state

lo,) = o) +1b)_ (7.6.25a)

V2(1 + 5)

is called a bonding orbital since its potential ¥*(R) has a stable minimum at
about 2.5 a.u. The antisymmetrized state

o) = o 71b)_ (7.6.25b)

V2(1=5)

is called an antibonding orbital since its potential ¥ (R) is repulsive and
would cause the Hj ion to explode. The bonding orbital concentrates
electronic charge between the two nuclei, while the antibonding orbital has a
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i

0.25¢

Cu
S\
1 s (anti-bonding) \\ l S
—

A : /
\\ Og y;

(bonding)

0.2+

V(R)

0.15

Antisymmetric State Gu
0.17

0.05+

’ : 1

Symmetric State og

-MS M

-0.14

Figure 7.6.2 Antibonding and bonding states of H3 with the corresponding poten-
tial curves.

node and tends to exclude charge. Both orbitals are symmetric around the z
axis as their o labels indicate. (Recall D,, labels in Section 5.)

This bonding model based upon 1so is qualitatively right but not the
whole story. The correct value of the bonding minimum is 25% less, about 2.0
a.u., and the energy is much less, about —0.10 a.u. instead of —0.065
predicated by (7.5.24). What is missing is another quantum effect involving
the uncertainty relation (Ax Ap < #). An electron that is less confined
(greater Ax) has less kinetic energy (less A p). The Hj electron can “stretch
out” over two nuclei and this reduces its energy. As a result it ends up getting
closer to the H nuclei and reducing the average potential energy. By using
only 1s orbitals, this model has prevented this reduction. Exact numerical
wave functions of the spheroidal coordinates (7.6.19) show this nuclear
electronic concentration.

There is another important piece of physics which is left out of the rigid
(1s) wave-function model of HJ: The wave on each atom cannot be polar-
ized. To make an electronic dipole moment on one of the atoms it needs to
be able to mix in some p-wave such as in a 2s2p superposition. This is
important for modeling H* to H scattering potential which has a 1 /R*
dependence at large R. Polarization of electronic orbitals plays a role in
molecular bonding, as we will see later.

(b) H,: Heitler-London Valence-Bond Model Suppose two electrons
can occupy either of the two atomic 1s states |a) or |b), discussed in Section
(a). This would yield a basis of four orbital states l@)la), 1a)|b), |b)|a), and
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Ib)|b). The Heitler-London model chooses to consider only the “covalent”
bonding states |a)|b) and |b)|a) in which electrons 1 and 2 are on different
nuclei. This model ignores the contribution of “ionic” bonding states |a)|a)
or |b)|b) in which both electrons are crowded onto nucleus a or nucleus b,
respectively. More complicated models show that the probability for H, ionic
states is only a few percent.

The H, Hamiltonian is (7.6.3) with all k values equal. Its representation
in the Heitler-London basis {|a)|b), |b)|a)} has the following diagonal compo-
nents h, = h,:

2 2
J7) k
h,=lab| 22— Zlan) + ab—z———ab)—(ab—ab)
2m g 2m r1p Taa
k
— | abj— ab) + (ab — ab)
Ty T2
k k k
=g, te,— |bl—|b| —laj—|a| + |ab]|—ab
Fa Ty Fiz
k
=2¢gy,, — 2laj—ja| + D, (7.6.26a)
Ty

where the last term D is called the direct Coulomb repulsion integral:

D

( k
ab

T2

1
ab) = fdxlfdxz a*(xl)B*(XZ)(r_u)a(xl)B(XZ)'
(7.6.26b)

The other terms were discussed previously. Similarly, the off-diagonal compo-
nent is as follows

2 2
p P k k
h, = |ab|— — —|ba| + ab—z———ba) —(ab—ba)
m T1a p T2a
k k
—\{abl—!ba| + |ab|—|ba
T Fiz
k
= ¢, (alb)(bla) + &,(alb)(bla) — (alb)|b - a
k
—(a — b)(bla) + ab|— ba)
1p SV
=2g,,8% — 2(a —Ib|S + E, (7.6.27a)
Ty
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where the last term E is called the exchange Coulomb repulsion integral

E=(ab

The nonorthogonal Heitler-London representation is

T

1
ba) = fdm/dxz a*(Xl)B*(Xz)(r—lz)B(X1)a(x2)-
(7.6.27b)

ry

a b

r,

26, — Z(a S+E

+D  2¢,5%— 2(

<He2 HL —
b

Ty

+D

Ty

2515S2—2(a a

S+E 25“—2([4

ha hub
ol P ) (7.6.28)

To convert this matrix to an orthogonal representation we still need to
multiply it by an inverse overlap matrix similar to (7.6.12). Only now each § is
replaced by S2. The orthogonal Heitler-London representation is

[ fz)(ha hab)

<He2 OHL = 1 - s° h, &,

ha - Szhab hab - S2ha
= ) ) (1-5%. (7.6.29)
ho —S8S°h, h,— S°h,,

From C, symmetry projection (or direct diagonalization) we obtain a sym-
metric (g) eigenstate

I's;) lab) +1ba) (7.6.30a)
= .6.30a
14201 + 82)
with eigenvalue
h,+h, —2(alk/r,la) + D — 2(alk/r,|b)S + E
E(12)= D e+ (alk/ryla) 2( /rplb) ’
& 1+ 1+S8
(7.6.30b)
and an antisymmetric (u) eigenstate
lab) —|ab
) ) (7.6.31a)

|EI>=W,
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with eigenvalue

h,—h, —2(alk/ryla) + D + 2(alk/r |b)S — E
E(S,) = ——3 =26, + (alk/nyla) (alk/r1b) .

1-§2 1-§2
(7.6.31b)

The notation for singlet (*3) and triplet C3) refers to the Pauli-allowed
spin states with spin § = 0 and S = 1, respectively. (Recall Section 7.1.B.)
The uppercase symbols X and 2} label the overall D,, symmetry of each
electronic orbital.

The energy values (7.6.30b) and (7.6.31b) determine the ordering of singlet
(lEg) and triplet (32g) according to the relative magnitudes of exchange
integral E and overlap factors 2(alk /r,|b)S. The former tends to make the
singlet higher than the triplet (as in the 152s configuration for the He atom),
while the latter tends to do the opposite. In H, it is the latter which is larger.
The Coulomb factor (al|k/r,|b) plays a decisive role in bonding the molecule
H, as well as the ion Hj. It also guarantees that the ground-state H >
electronic spin is zero.

The calculation of the two-electron integrals is very complicated even for
the simple (1s5)* model. We quote the results tabulated by Atkins:

D b k b i 1 1 IR R R 2R 7.6.32
= — =—|1-|1+—+—+ — e 6.
Pl B 8 4 "3 (7.6.32a)
6k
E = |abj—ba| = —|(v + In R)S* — T?E,(4R) + 2STE,(2R)
ris 5R
25R 23R* R* R* R 7 6.39b
-+ +— + —|e” 6.
ERE YRR N T A )
where
RZ o e ¥
T=|5 -R+1e?,  E(x) fo du —
and y = 0.577... is the Euler constant. The resulting potential energy has a
minimum of about AE; = ~0.115 a.u. at R, = 1.6 a.u. This is above the
experimental value of AES® = —0.165 a.u. and R$® = 1.4 a.u. The discrep-

ancy is comparable to that of the HJ ion model and perhaps even a little
less.

(c) H,: Improved Valence-Bond Model By including the ionic states
laa) and |bb) one may obtain a more realistic electronic structure model.
These states will be particularly important for molecules composed of dissim-
ilar nuclei. The price for improvement is the need to calculate a 4 X 4 matrix
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and its eigensolutions in terms of the basis {|aa), |bb), |ab), |ba)}. This time
we will use a biorthogonal bra basis {(AA4|,(BB|,(AB|,(BA|} which already
contains the inverse overlap matrix. The single particle bras are defined using
(7.6.12):

(Al = (al$~! = %b—l, (7.6.33a)
(B] = (bl$~! = %:i—(zal (7.6.33b)

These satisfy biorthonormality: (A|a) = 1 = (B|b), and (A|b) = 0 = (B|a).
From this we get a complete set of biorthonormal two-particle bra states
which satisfy (XY1x'y") = 8,8y,

(AA4] = ((aal + S*(bb| — S(ab| ~ S(bal)/(1 — $?),

(BB| = (8*(aal + (bb| — S(ab| — S(bal)/(1 — §2)?,

(AB| = (—S(aal — S(bb| + (ab| + S*(bal)/(1 — §2)°,

(BA| = (—S(aal — S(bb| + S*(ab| + (bal)/(1 — $2)°. (7.6.34)

D,, projection gives us two ionic and two covalent basis states of definite
parity, permutational symmetry, and corresponding Pauli-allowed and spin
multiplicity. The Young tableau notation on the right in the following
denotes permutational symmetry by horizontal arrays of boxes and antisym-
metry by vertical arrays.

|aa) +|bb) ala|+ | blb

|'s; ion) T - 5 , (7.6.352)
b) +1b
'3 cov) = 'a)—ﬁlﬂ = lalb|, (7.6.35b)
_ bb alja | — b b
|'s,+ ion) = 'aa)ﬁl ) _ 7 , (7.6.35¢)
b) —Ib
'St cov) = lab) “1ba) _|a| (7.6.35d)

2]
The symmetry-defined kets are written the same way using the uppercase-
labeled bra (AA|,...,(BA| in place of kets |aa), ..., |ba), respectively.

Use of ionic states means more integrals. Still the C, symmetry (a < b) of
the nuclei and the S, permutational symmetry (1 < 2) of the electronic wave
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functions reduces the number of different matrix elements to the following
five which are derived in the same way as (7.6.26) and (7.6.27):

(aalHlaa) = (bb|H|bb) = 2¢e,, — 2A + C,

(aalH|ab) = (aa|H|ba) = (bb|Hl|ab) = (bb|H|ba) = 25¢,, — SA — B + F,
(aa|H|bb) = (bb|Hl|aa) = 2S%,, — 2SB + G,

(ablHlab) = (balH|ba) = 2¢,, — 2A + D,

(ab|H|ba) = (bal|H|ab) = 28%,, — 2SB + E. (7.6.36)

A set of seven H,(1s0)? integrals is listed:

k k k k
A=lal— )=(b—b), B=(a—b)=(a—b),
rb ra rb ra
k k k k
D=\|ab ab| = | ba|— |ba], E =lab|—|ba) = | ba|—|ab],
S) T T'p 8V}
k k
C=\|aa,—|aal, F=1\aa|—ab|,
T2 T2
k
G = laa|—|bb}|. (7.6.37)
8T

The H, Hamiltonian has nonzero matrix elements only between states
(7.6.35) which have the same permutational symmetry or spin multiplicity
(25 + 1 =1 or 3) and parity (u or g). This leaves a 2 X 2 matrix involving
the first two IEg states (7.6.35a) and (7.6.35b) and diagonal elements for '3,
and 32u states. A real symmetric H, Hamiltonian has only five independent
matrix elements.

Unfortunately, the biorthogonal basis used here does not give a symmetric
Hamiltonian. Instead it uses lopsided matrix elements such as the following:

(*s,, cov|H[’s, cov) = [(AB|Hlab) — (ABI|H|ba) — (BAIH\ab)
+(BA|H|ba)] /2
— (AB|H|ab) — ( AB|H|ba)
—-2A+4+25B+D—E

=26, +
F1s 1- 52

(7.6.38)

When these matrix elements are expanded using (7.6.34) as in the following:
(AB|Hlab) = [ —S(aa|H|ab) — S(bb|Hl|ab) + (ab|H|ab)
+S2(balHlab)] /(1 — §2)%, (7.6.39)

a non-Hermitian representation results:




(ov'9L)
NVA -1 +
T~q+84ST+ V- 0 0
hﬂmwN
N% -1 +
0 D-D+8gST+VT- 0 0
hﬁQN
As-1 51
+ +
0 0 asv - (@+a)s+1) (O +2)sT—-d(;8+ 1)
+ AN% - ﬁv + EQN ANM - ﬁv
s+ vVi— VST + 47—
NANM -1 NAW -1)
+ +
0 0 (@+a)st-4(;s+1) Ast ~ (9 + 2)(s + 1)
AN% - ﬁv ANM, - ﬁv + hﬂmN
yST+ 97— gsT + vi—
(poo "% | (uor "z | A>ou uwﬁ_ Aco_ wwﬁ_
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You might expect the second diagonal matrix element in (7.6.40) to
correspond to the Heitler-London eigenvalue (7.6.30b) just as the fourth
diagonal element in (7.6.40) equals (7.6.31b). However, the matrix element
(12g cov|H ]12g cov) in (7.6.40) contains ionic contributions due to the
nonorthogonality of our basis. These are not present in (7.6.30b) and so there
is no simple correspondence.

(d) H,: Molecular Orbital Model If the preceding discussion makes you
uneasy about the use of nonorthogonal valence-bond orbital bases, you may
welcome a discussion of molecular orbital bases which are generally or-
thonormal. The simplest examples of molecular orbital (MQ) states are the
approximate HJ (7.6.25), which we relabel below.

la) +1b) la) —1b)

e O

As long as normalized states |a) and |b) are related by some C,-like
operation i,

(7.6.41)

Ib) =ila), la) =ilb), (7.6.42)

then the MO states will be orthonormal for all values of overlap S with
|S| < 1. This is guaranteed by the C,-projection orthogonality (P“P# = 0) as
discussed in Chapter 2.

Thus one may choose a variety of trial MO states by redefining |a) or |b).
Wave (x|a) = a(x) may be a polarized mixture of 1s, 2s, and 2 p orbitals, for
example, to increase the electronic charge in the overlap region. Or one can
simply vary the nuclear charge number Z to fatten a(x) until energy is
minimized.

Molecular orbitals are used for heteronuclear diatomic molecules such as
LiH or HCI and for polyatomic molecules. XY-diatomic molecular orbitals
may have the orthogonal broken-symmetry form

la) +Alb) _ Ala) —Ib)
o 62y = 2 (7.6.43)

/N

where amplitude A depends on the relative attraction of nucleus X versus
that of Y.

Given the MO states (7.5.41) we assume the H problem is solved and
consider H,. There are four two-electron MO product states:

lol) =

(0,)%) = lola), [(0.)%) = le)la,), lo,0,) = la)la,),
logo,) = loydlay,). (7.6.44)
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These are expanded below using (7.6.43) and labeled using standard spectro-

scopic notation. Permutation symmetrization and antisymmetrization of the
latter two are needed to give Pauli-allowed states:

‘1zg(0g)2> = lolo,) = [laa) +lab) +|ba) +Ibb)] [2(1 + S), (7.6.45a)
'5,(0,)°) = lo,)lo,) = [laa) —lab) —|ba) +1bb)] /2(1 — S), (7.6.43b)

'S 0,0,) = [lo)la,) + lo)1e,)] V2 = [laa) ~1bb)] [y/2(1 = 52,

(7.6.45¢)
*s,0.0,) = [l0)10,) = lodla,)] V2 = {lab) ~Iba)] [y2(1T — 57 .
(7.6.45d)

They may also be labeled using Young tableau notation to compare with
(7.6.35):

‘128(g-u)2>= glg =([aa + b’b ]/ﬁ+ alb )/(1+S)\/§,

‘128("“)2>= uiu =([aa + | blb ]/\/5— alb )/(1—5)\/5,
)Egug> ulg =(aa - bb)/\/z(TST),

’S,0,0,) = %/v(l—sz)- (7.6.46)

A first approximation to MO eigenstates might involve the first (o-g)2 's, <
configuration with two electrons in the lowest o, orbital. However, an
inspection of (7.6.45a) shows that this state is 50-50 mixture of ionic and
covalent base states. This is a well-known weakness of the MO bases. They
generally fail to account for electronic correlations, i.e., electrons’ tendency
to avoid each other. [The Heitler-London approximation erred in the oppo-
site direction by completely ignoring the ionic states |aa) and Ibb)]

A better MO approximation is obtained by mixing the (o, 2! E configu-
ration with others. The H, symmetry allows it to mix with (o- 2 1s ¢ but not
with any of the other configurations listed in (7.6.45). This is a simple
example of molecular configuration interaction (CI) and involves the eigenso-
Iutions of the following Hamiltonian matrix:
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To compare the H representation (7.6.47) in the molecular orbital (MO)
basis with (7.5.40) in the valence-bond (VB) basis we consider extreme cases.
Suppose the ionic Coulomb repulsion integrals C and G of (7.5.37) were so
large that all other terms could be neglected. Then we diagonalize the MO
submatrix

C+G C+G
. Ja+s? 1-s?
H% o =% c+c  c+c (C and G large) (7.6.48a)

1-8*  (1-98)

to get the following eigenvalues and eigenvectors (not normalized):

mo, = 0; Imo,) = (1 + 8)|(,)") = (1 = H)|(e)”) = [lab) +Iba)],
(C+G)(1+ 5%

T (1+8Y)

— [laa) +Ibb)] (7.6.48b)

 Imo,) = (1 = $)|()%) + (1 + $)|(a)*)

mo,

The VB covalent state |12g cov) and ionic state |'3 gion) show up as
eigenvectors. It is reassuring to get the same eigenvalues by diagonalizing the
VB submatrix from (7.6.40):

(1+S*)(C+G)
. B (1+ 52)°
<H( 23)>VB B —28(C + G)

(1- 5%’

(C and G large), (7.6.49a)

which gives the following eigensolutions:

lab) +lab
vh, = 0; lvb,> = IIEg cov> = %—),

1 2 G
4 +(f )(Si; ). lvb,) = (1 + $?)|'S, ion) — 28|'3,, cov).

V0,

(7.6.49b)

The presence of llEg cov) in the second eigenvector is an artifact of the
non-Hermitian VB representation.
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The opposite extreme would be to have the single-electron integrals A
and B of (7.6.37) large enough to ignore the others Then the MO submatrix
in (7.6.47) is diagonal:

ST
(H('%,) o = . (7.6.50)

0 26, — 2B
gls I_S

The eigenvalues are just twice the single-electron potential values (7.6.15a
and 7.6.15b) without the nuclear interaction term k /R. The VB submatrix in
(7.6.40) gives the same values after diagonalization.

A level correlation diagram between the two extremes is sketched in
Figure 7.6.3. The two lEg states which are changed by configuration interac-
tion have levels which are drawn as curves. The other two states 'S and ’3,
do not change and their lev=Is are indicated by straight lines. The diagram is
sketched to show the effects of increasing ionic Coulomb integrals C and G
on the left and single-electron integrals 4 and B on the right. The effect of
moderate direct and exchange Coulomb integrals D and E would be to push

1 . 1
| Eg ion ) oo | Zg G o)
\—_—_/

I'% fon) \_
12l - B8 = 5 1) 1
\ | Ego‘ucsg)

I32“6u0g>
&
3 -
3
| Zucov)
P 1
|'Z cov) IZ00)

[uTu]
Valence-Bond States Molecular Orbital States
(C>>A,B) (A,B>>C)

Figure 7.6.3 Sketch of level correlations between valence-bond and molecular or-
bital bases.
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triplet 32u below singlet 12u on the right. Note, however, that Figure 7.6.3 is
just a qualitative sketch and a template for the study of whichever parameters
one chooses to vary.

B. How to “Point” Electronic Orbitals

So far we have considered scalar s waves and only sigma (o or ) orbitals
which have cylindrical symmetry and no component of angular momentum
around the bond axis. To build up bonds for polyatomic molecules one needs
to combine p, d, and f waves to make 1, §, and ¢ bonds. While o bonds
are the basic glue for most polyatomic molecules, the 7 bonds and higher-
order waves can be important, as well.

We will explain the general method using an example of the octahedral
SF, molecule discussed in Chapter 4. We will show how to make six
equivalent orthogonal orbitals that point along the C, symmetric axes of an
octahedron. We will apply the subgroup correlation and induced representa-
tion theory of Sections 4.2 and 4.3 and the orbital level splitting or crystal
field theory of Sections 5.6 and 7.3C.

First we consider how some of the simplest s and p orbitals can make
polyatomic molecular bonds or ligands.

(a) Elementary s"p™ Bonds The simplest orbitals which “point” are the

p orbitals {p,, p,, p,}. They span the real vector representation R! of R(3)
[recall (5.6.19)]:

-Yl+y! 4 Yyl —-v! 4qr
(elpy = ——2n/ —,  relp)y =i——"try =,
x 2 3 y 2 3

=X, =Yy,
) 4
(rlp,) = Yyry —,
3
=z (7.6.51)

A combination wave function of the form
x(r) = aylrls) + alrlp,) +alrlp,) +alrlp,) (7.6.52)

is a wave with a “finger” or ligand which points at an atom with coordinates
(a,,a,,a,). The relative amount a4, of the scalar s wave (rls) = Y f(r)
determines the degree of polarization or pointing and can be used to adjust
normalization and orthogonality with other waves.

A famous example of a set of hybrid molecular orbitals based on (7.6.52) is
the set of methane (CH,) o bonds which point from carbon to the H atoms
located at tetrahedral points (1,1,1) (1, -1, -1), (=1,1, —1), and
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(-1, —1,1), respectively, which form T, symmetry (recall Figure 4.1.5):

ICyy = (Is) + Ip,)> + Ip,) + 1p.))/2,

Is) + |p,> = Ip,) — Ip.))/2
)/2,
)/2. (7.6.53)

=(s>—-Ilp> +1p>— Ip>

O

[

~

It
_—~ A AN~

=(Is> = lp,> = Ip,> + Ip,>

This is called the sp? hybrid set, since one part |s) and three parts |p) are
used to make each state. Carbon’s ground configuration is 2s%22p2. (Recall
Figure 7.1.2.) To make states (7.6.53), one 2s electron must be moved to a 2p
orbit. The 2s-2 p energy increase is made up by reduced electronic Coulomb
repulsion and localization in order for CH, to be stable.

The simplest planar bonding orbitals for H,O and other XY, molecules
have the following hybrid form:

IX,> = Als) + acos ¢lp,) + asindlp,),
|X,> = Als) + acos dlp,) —asindlp,),

|X3) = Xls) —d'lp,). (7.6.54)

This gives two bonds at angle +¢ with the x axis and a third pointing along
the —x axis. For the first two to be orthonormal we must have

M+a?=1, I +a’cos’d —a’sin?¢ = 0.
Solving gives
sin? ¢ 1 cos2¢
26inp= — = —, M=1—-qg>?=— . (76.55
a”sin” ¢ 1—cos2¢ 2 a4 cos2¢ — 1 ( )

The angle 2¢ between the first two bonds must be at least 90° in order for
the solutions to be useful. At 2¢ = 90° there are two orthogonal p waves
and no s-wave admixture (@ = 1, A = 0). The third wave must satisfy the
following to be orthogonal to the other two:

1+ cos2¢ —2co0s2¢
N=y —, = —y2A = —y/ ———— . (7.6.56
V 1= cos2o d¢=-V2 T = cos2g = (1636)

For a molecule with bond angle 2¢ = 90° we have only two vector ligands
and a separate orthogonalzsczalar wave. We indicate these states in the
following using notation (s*p“), where the exponents are the probabilities
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for each orbital:
1
'Xl(p )> |px> + ‘/Elpy>’

1 1
| Xo(p")) = HP = e,
| X3(s1)) = ls. (7.6.57)

The atomic configuration for these states is |x;p), |x,p), and |x;s). The
third wave is 100% s.

For a molecule with bond angle 2¢ = 120° we have three equivalently
polarized ligands which could form a C;, symmetric bonding. Each of these
is a balanced sp? atomic configuration:

1 1
| X(s%p??)) = FIS) + ‘\/?Ip,) + ﬁmy),
1 1
|X:(s207) = =I5y + —=lod = =1,
s1/3p2/3)) = i|s> - _%_| ). 7.6.58
|X3( p )> ‘/§ ‘/g Dy ( )

Finally, a T-shaped molecule with bond angle 2¢ = 180° could use the
following sp, sp, and p configurations.

1 1
]Xl(sl/zpl/z» = ﬁls> + ﬁ|py>,
| Xx(s'/2p'/2)) = sy — —=Ip,
2 \/E \/5 y /s
| X3(p") = —Ipo. (7.6.59)

Now the third wave is 100% p.

Let us see how an XY, molecule like H,O might be bonded. We will put
one clectron in each of the X, and X, states so each may form a o-pair
bond with an clectron from one of the Y atoms. We will put two electrons in
the X, state to make an mert 's pair since it will not be used for bonding.
This is called a “lone pair.” There is another lone pair composed of the third
p. orbital perpendicular to the xy plane which we have ignored. (It is used
for = bonding in molecules like ethylene and acetylene.) This soaks up a pair
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of electrons, too. So the atomic orbital configuration needed is the following:

2 2 2 2 12 2
xlxzxngZ — (s/\pa )(s/\pa )(SZ/\ p2a )p2
— s2/\2+2)\’2pZu2+2a'2+2. (7660)
We use (7.6.55) and (7.6.56) to give the exponents in terms of the bonding
angle 2¢:
x1x2x§p22 — SZ/(I—cos 24>)p(4—6 cos 2¢) /(1 —cos 2¢)
s2p*, for2¢ = 90°,

= 7.6.61
slp>, for2¢ = 180°. ( )

Atomic oxygen has a ground configuration of s%p*. If it stayed that way for
H,O the water bonding angle would be 90° instead of the observed 104°.
The observed value corresponds to a bonding configuration of s!1p43°,
Apparently, H,O gains more energy by increasing its bond angle than it loses

by raising 20% of the 2s population into a 2p orbital.

(b) w Bonds An example which appears to use the sp? model bond states
(7.6.58) is the ethylene molecule C,H, sketched in Figure 7.6.4(a). The angle
between adjacent H atoms is close to 120°. However, C,H, has additional
stability due to the overlap between carbon “lone-pair” p orbitals perpendic-
ular to each CH, plane. Their overlap is greatest when the CH,, triangles are
aligned. This gives a torsional stability to the complex which the o(sp,) bond
could never supply. The bond formed by an adjacent parallel p orbitals is
called a 7 bond.

In the linear molecule C,H, (acetylene) sketched in Figure 7.6.4(b) both
transverse p orbitals participate in 7 bonds. These together with the o(sp)
orbitals form what is called a triple bond.

The 120° sp? bonding combined with 7 bonds plays a role in quite a
number of hydrocarbons. First among these are the trans and cis structures
of butadiene C,H, shown in Figure 7.6.5(a) and 7.6.5(b) and the well-known
benzene molecule CcH, shown in Figure 7.6.5(c). The structural pictures are
generally drawn with the double bond localized between alternating pairs of
carbon atoms. In fact, the 7 bonds tend to be delocalized and spread out
over the carbon chains. This is called conjugation of 7 bonds and provides
additional stability to the hydrocarbons.

120° o-( =)o

Figure 7.6.4 Examples of sp? bonding
(a) CoHy (b)y CH, (a) Ethylene, (b) acetylene.
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(a) C4Hg (trans)
(b) C4Hg (cis)

(©) C¢H,

Figure 7.6.5 More examples of sp? bonding (a) trans-butadiene, (b) cis-butadiene,
and (c) Benzene.

The increase in stability can be estimated using the Hiickel model of
conjugated bonds. The Hiickel approximation uses a basis of n equivalent 7
orbitals; one on each of the n C atoms. The Hamiltonian is assumed to have
only diagonal matrix elements and off-diagonal matrix elements between
nearest-neighbor carbons only. The diagonal matrix elements are all equal to
H and off-diagonal matrix elements equal to —S. This is precisely the form of
the C,, symmetric tunneling problem discussed in Section 2.12 [recall (2.12.23)]
and again in Section 3.6 (recall Figure 3.6.5).

For C¢H the symmetry is Cy C Cy,, C Dg, and the energy levels are given
by (2.12.25), which is now repeated:

2wk
g, =H—2Scosk, |k, = T;k=0,il,..., <

NSRS

The 7 levels labeled A,, E|, E,, B, have energies

efh=H — 28,
efr=H-8§,
ef2=H+ S,
ed =H+ 28S.

Given one electron for each 7 bond the orbitals will take one spin (1 |) pair
in A, and two pairs in E, for a total energy of 2(H — 2S) + 4(H — §) =
H — 8S. If the bonds had been three localized double bonds (recall Figure
7.6.5) the energy would be 6 H — 65, so the conjugation gains 2.5 of stability.
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The butadiene 7 orbitals can be modeled in the same way using a trick
discussed in Problem 2.7.4. n-equivalent atoms in an open chain can be
imagined to occupy one side of a 2n + 2-member closed ring. [The n
standing sine wave solutions will be eigensolutions of the n-atom chain.] The
four butadiene 7 orbitals will use the middle four levels of a C;, symmetric
ring.

ef1= H — 28 cos(2m/10) = H — S(1 + V5) /2,
ef2 = H — 2§ cos(4m/10) = H — S(V5 — 1)/2,
g5 = H — 28 cos(6m/10) = H + S(V5 — 1)/2,
eFs = H — 2§ cos(8m/10) = H + S(1 + V5) /2.

One 1 | pair of electrons goes in each of the lowest two states E, and E,.
(Neither level is degenerate now since only sine waves are allowed.) This
yields an energy of 4H — 2V5 S. Two pairs of localized 7 bonds would have
had energy 4H — 45 so the conjugated bonds are (2V5 — NS = 0.0478
better.

(c) Octahedral Bonding The s and p waves can bond no more than four
atoms to a central one. Molecules like XY, need higher-order waves. We
discuss some general symmetry techniques for setting up complex bonding
configurations.

The local symmetry of each bond is the first thing to consider. If we desire
to place bonds along each tetragonal (C,) axis of octahedron then C, or C,,
is the relevant local symmetry group. If we desire o bonds then their local
symmetry belongs to the 0, irrep of C, or A" = A, irrep of C,,. Since o
bonds are axially symmetric they belong to the scalar irreps.

If we need to install a pair of 7, bonds on each C, axis then we would
use the 1, & 3, irreps of C, or the E irrep of C,, to locally label each wave
state. The 7 pair of p, and p, transform like x and y bases of the E irrep
of C,,.

Next we use the induced representation bases to label the set of equiva-
lent orthonormal bond states that we imagine exist on each C, axis. The o
bonds span a six-dimensional 0, 7 O representation induced to octahedral
group O or A 10,. The 7 bonds span a 12-dimensional (1, & 3010 or
E 1 O, representation.

According to the Frobenius reciprocity theorem described in Section 4.3C
the columns of the C, € O or C,, € O, correlation tables give the octahe-
dral irreps that belong to each induced representation. The first (0,) column
of the table of (4.2.42b) gives

0,10=4,06T,0E, (7.6.62a)
and this is corroborated by the first 4" column of (4.2.46¢):
A10,=4,,0T, ®E,. (7.6.62b)
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The latter includes the inversion-parity labels for the three O, symmetry
species that comprise an XY, o-bonding model.

A m-bonding model of XY, would involve the E 1 O, states in the last
column of (4.2.46¢):

E10,=T;®T,,®T, Ty, (7.6.63)

The O, parity labels are particularly important here to distinguish pairs of O
irreps.

The final step is the correlation of whichever O, species we just found
with angular-momentum states J? and the corresponding O(3) species. The
columns of (5.6.5b) provide an infinite set of all the atomic orbital states that
could possibly contribute to the bonding orbital in question:

(A, of 0)10(3) =070 470670 -~ =5,8g,0i, & ",
(T, of0,)10(3)=1"®37®2(57)® - =p,®f, ®2h, & ",
(E,0f 0,)10(3) =2*@4*0 670 -+ =d, 08,0, ® . (7.6.64)

As a first approximation we take only the first contributions for each species.
In this case we make the singlet 4,, using an s wave, the triplet T, using
three p, waves, and the doublet E, using two d, waves. That will be an
sp°d® atomic configuration of six octahedrally coordinated ligand orbitals.
Later you may find it desirable to “sharpen up” the p ligands with an f2 or
K3 configuration, or add some g, to the s, and d, states. If so, the
correlation table tells what will work.

The calculation of the states in the octahedral sp>d? configuration follows
the steps outlined. The induced representation is labeled and reduced
according to Sections 4.3.A and 4.3.B. The resulting A4, state (4.3.20), E
states (4.3.22), and (4.3.23), and T, states (4.3.27a)—(4.3.27c) are tabulated

backwards so as to give the desired six ligand states {|1),..., [6)}

1 1 1

1) = _\/6:|A1> + ﬁiE,D + —EIT“Z>,
1 1 1

[2) = ﬁ'Al) + flE’D - W‘TI,Z%
1 1 1 1

13) = Wlfh) - m—lE,l) + —2-|E,2> + ﬁm,x),
1 1 1 1

|4) = 7—6—|A1> - ﬁlE,D + EIE,2> - fElTl,x>,
1 1 1 1

15) = TE_IA1> - E\/_?‘E’D - E‘E’2> + “[“ZTITI,Y>,
1 1 1 1

16) = 7—6—|A1> - ?‘E—IEJ) - ElE,Z) - 75‘|T1,)’>- (7.6.65)
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ion levels ion levels

Figure 7.6.6 Octahedral crystal field splitting of 3d level of Ti** ion.

Finally, one approximates each A,, E, or T, state using combinations of
atomic orbitals allowed by correlations such as (7.6.64). For the simplest
sp3d? configuration we use combinations as derived in Section 5.6; see
(5.6.15d) and (5.6.15¢) for E states and the p-orbital relations (7.5.51):

l4,> = 10>,
|E, 1) = |d3) = (21d,2) — |d,2) — |d,2))/V6,
E,2) = (1d3) + 1d2,) V2 = (1d,2) = 1d,2))/V2,
1Ty, x)y = (—lpD + IPLD)/V2 = Ip),
Ty, ) = (ilp}) —ilp~ ) /V2 = Ip,),
ITy,y> = Ipe) = Ip,).

For an example of octahedral electronic structure theory we consider a
[Ti**(Ion~),] ionic complex. The Ti atom has a 3d?4s” valence configuration
so the ion Ti** has a single d electron. Suppose it is surrounded by an
octahedron of negatively charged ions as in Figure 7.6.6.

If the electrons on the negative ions do not overlap appreciably with the Ti
d electron we imagine that latter undergoes a crystal field splitting as
described in Section 5.6 (recall Figure 5.6.3). This would be a ground-state
spin doublet and orbital triple configuration of 2t2 ¢ as shown on the right-hand
side of Figure 7.6.6. The magnitude of this splitting was calculated in Section
7.3 [recall (7.3.28)}.

If there is electronic overlap, as indeed there must be if the complex is
bound, then a more sophisticated molecular orbital picture is needed. This is
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Figure 7.6.7 Bonding and antibonding molecular orbital levels for [TiF6]3+ complex

sketched in Figure 7.6.7. Here we imagine a coupling between certain
combinations of the six ¢ orbitals and the Ti atomic orbitals of the same
symmetry. The six o orbitals span the induced representation A’ 1 0, =4,
® T,, ® E, discussed in the preceding section. Each state from the latter
interacts w1th the nearest Ti level belonging to the same irrep to form a pair
of bonding and antibonding orbitals.

Six (1 |) pairs of electrons are needed to give the most stable o bonding
arrangement. If another electron is available it would go in the T,, nonbond-
ing level. From there it could be excited to the antibonding orbltals E,, A,
of T,, which lie above it. In this sense the picture in Figure 767 1s
qualitatively similar to the one in Figure 7.6.6, which neglects the bonding
altogether. Inclusion of the electronic bonding structure is necessary to
predict the optical and magnetic properties of these complexes.

ADDITIONAL READING

Most of the references given at the end of Chapter 5 treat angular momentum
Clebsch-Gordon coefficients and the Wigner-Eckart theorem. In addition there is a
well-known text which introduces the idea of the irreducible density operators

U. Fano and G. Racah, Irreducible Tensorial Sets (Academic, New York, 1959).

The derivation of raising and lowering operator matrix elements is the main

recurring problem in applied representation theory. The following are a few refer-
ences that involve O(n) and U(n).
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A. Bincer, J. Math. Phys., 19, 1173 (1978); 18, 1870 (1977).

Tables in Clebsch-Gordon coefficients in the Wigner 3j form and Racah coeffi-
cients in the 6 form are given in Rotenburg et al. from J, ® J, = 3 ® 1 upto 8 ® 8.

M. Rotenburg, R. Bivens, N. Metropolis, and J. K. Wooten, The 34 and G+
Symbols (Technology Press, MIT, 1959).

This book usually is out of print. It is probably better to have coefficients of this
sort directly available on your own computer. They can be found fairly easily in
numerical or algebraic form in various packages of the Mathematica program which is
now widely available. (See also W. J. Thompson, Computers in Physics 7, 144 (1993).)

S. Wolfram, Mathematica: A System for Doing Mathematics by Computer
(Addison-Wesley, Redwood City, CA, 1991).

The asymptotic behavior of Clebsch-Gordon coefficients is explained in the follow-
ing paper.
K. Schulten and R. G. Gordon, J. Math. Phys., 16, 1961 (1975).

The first application of Racah tensor analysis to fine spectral structure of methane
(CH,) was by K. T. Hecht and Moret-Bailly.

K. T. Hecht, J. Mol. Spetrosc., 5, 355 (1960).
J. Moret-Bailly, Cah. Phys., 15, 237 (1961); Cah. Phys., 178, 253 (1965).

The first observation of extraordinary tensor eigenvalue degeneracy or clustering
involved computer studies of fourth and sixth rank cubic crystal field operators

K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids, 23, 1381 (1962).

Computer studies of CH, eigenvalues and forbidden transitions to rotational
states lead to the next discovery of clustering and the first molecular examples.

A. J. Dorney and J. K. G. Watson, J. Mol. Spectrosc., 42, 1 (1972).

The most extensive numerical study of tensor eigenvalues and clustering phenom-
ena was published by Fox, Galbraith, Krohn, and Louck.

K. Fox, H. W. Galbraith, B. J. Krohn, and J. D. Louck, Phys. Rev. A, 15, 1363
1977).

This in turn lead to a semiclassical and quantum mechanical theory for clusters
and their superfine structure.

W. G. Harter and C. W. Patterson, Phys. Rev. Let., 38, 244 (1977).
W. G. Harter and C. W. Patterson, J. Chem. Phys., 66, 4872 (1977).
C. W. Patterson and W. G. Harter, J. Chem. Phys., 66, 4866 (1977).

The RE surface picture of the rotor dynamics and spectral structure was devel-
oped later. It was first applied to the levels of combined fourth- and sixth-rank tensors
of cubic symmetry.
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W. G. Harter and C. W. Patterson, J. Math. Phys., 20, 1453 (1979).

The semiclassical theory of RE surfaces is introduced in the following papers.
W. G. Harter, Phys. Rev. A, 24, 192 (1981).

W. G. Harter and C. W. Patterson, J. Chem. Phys., 80, 4241 (1984).

A more recent review of semiclassical rotor mechanics and RE surface applica-
tions is the following.

W. G. Harter, Computer Phys. Reps., 8, 319 (1988).

Experimental observations of molecular fine structure, superfine structure, and
hyperfine structure were done by developing unique spectroscopic instruments and
laser devices.

CH,:
A. S. Pine, J. Opt. Soc. Am., 66, 97 (1976).
CgHy:

A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, and Th.
Urbanek, J. Am. Chem. Soc., 106, 891 (1984).

SFg:

J. P. Aldridge, H. Filip, H. Flicker, R.f. Holland, R. S. McDowell, N. G. Nereson,
and K. Fox, J. Mol. Spectrosc., 58, 165 (1975).

R. S. McDowell, H. W. Galbraith, C. D. Cantrell, N. G. Nereson, and E. D.
Hinkley, J. Mol. Spectrosc., 68, 288 (1977).

K. C. Kim, W. P. Person, D. Seitz, and B. J. Krohn, J. Mol. Spectrosc., 76, 322
(1979).

J. Bordé and Ch. J. Bordé, Chem. Phys., 71, 417 (1982).

The following are recent references which treat the rotor-oscillator analogy and
related applications of R(3)-SU(2) coordinates.

W. G. Harter and N. dos Santos, Am. J. Phys., 46, 251 (1978).

M. E. Kellman, J. Chem. Phys., 76, 4528 (1982); J. Chem. Phys.; 83, 3843 (1985),
Chem. Phys. Lett., 113, 489 (1985).

K. K. Lehmann, J. Chem. Phys., 79, 1098 (1983).

W. G. Harter, J. Chem. Phys., 85, 5560 (1986).

Z. Li, L. Xiao, and M. E. Kellman, J. Chem. Phys., 92, 2251 (1990).

Two of the original papers on SU(2)-R(3) spin vector models are the following:
I. I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Phys, 26, 167 (1954).

R. P. Feynman, F. 1. Vernon Jr.,, and R. W. Hellwarth, J. Appl. Phys., 28, 49
(1957).

The following are original works on spinors, quaternions, and applications to
optics:

W. R. Hamilton, Lecture on Quaternions (Dublin, 1853).

G. Stokes, Proc. Soc. London, 11, 547 (1862).
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H. Poincaré, Theorie Mathematique de la Lumiere (Gauthiers Villars, Paris, 1892).

There is a computer program which demonstrates the U(2)-R(3) analysis of
oscillators and polarization states.

W. G. Harter, Color U(2): A Study of Classical and Quantum Resonance Phenom-
ena, Department of Physics, University of Arkansas, Fayettevile, AR 72701.

Development of U(2) vibrational analysis as part of the vibron model is described
in the following papers.

O. S. van Roosmalen, F. Iachello, I. Benjamin, R. D. Levine, and A. E. L.
Dieperinh, J. Chem. Phys., 79, 2515 (1983).

O. S. van Roosmalen, I. Benjamin and R. D. Levine, J. Chem. Phys., 81, 5986
(1984).

The following article reviews the applications of semiclassical geometry and RE
surfaces to other problems such as atomic diamagnetism.

T. Uzer, D. Farrelly, J. A. Milligan, P. E. Raines, and J. P. Skelton, Science, 253,
42 (1991).

One of the most readable introductions to molecular electronic orbital theory is by
Atkins. More advanced references are contained therein.

P. W. Atkins, Molecular Quantum Mechanics, 2nd edition (Oxford University
Press, Oxford and New York, 1983).
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