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CHAPTER 2

BASIC THEORY AND APPLICATIONS
OF SYMMETRY REPRESENTATIONS
(ABELIAN SYMMETRY GROUPS)

In the preceding review of matrices the ideas of projection operators and
spectral decompositions were introduced. In this chapter we shall see how
frequency spectra of physical systems are analyzed in terms of mathematical
spectral decompositions. Mathematical concepts will be introduced in this
and following chapters by analyzing the simplest physical models which
exhibit them. In this way the mathematical and physical ideas can be closely
related. It is hoped that this particular pedagogical approach to the theory of
spectra will be easy to understand.

Symmetry is a key mathematical and physical concept in the classical and
quantum theory of spectra. Symmetry analysis and group theory were first
applied by Eugene Wigner and Herman Weyl shortly after the invention of
quantum mechanics. Since then applications of symmetry analysis have been
made to virtually all types of spectroscopy. Spectra, ranging in energy from
radio frequency (~ 10° Hz) to x ray (~ 10'® Hz), have given information
about atoms, molecules, and solids. Higher-frequency y radiation (> 10%°
Hz) has been used to study nuclear spectra. A most widely publicized
application of symmetry principles concerns very high energy ‘“elementary
particle” spectra where researchers are thinking about energies in excess of
102 eV or 10% Hz. (1 eV is equivalent to 2.42 X 10 Hz.)

Meanwhile the application of laser devices has reopened atomic and
molecular spectroscopy. Instead of obtaining higher and higher frequency,
laser spectroscopists are obtaining ever-increasing frequency resolution. This
means finer spectral details are seen and more detailed models of atomic and
molecular processes are needed. This has stimulated the development of new
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60 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

symmetry analysis techniques, some of which are discussed in later chapters
of this book.

However, the fundamental ideas of symmetry analysis are simple and basic
to all present theories. The beginnings of most symmetry mathematics
involves several mutually commuting operators. We have seen in the preced-
ing chapter that the eigenvalue spectrum of one of several commuting
operators may help to solve the others. This is the main mathematical idea
which will be developed in this chapter.

2.1 SYMMETRY GROUPS

First we shall explain how a physicist can say “‘symmetry” precisely. Consider
a simple fan blade such as you might see on the ceilings of bar and hotel
rooms in the tropical areas. This is shown in Figure 2.1.1. Everybody would
probably agree that this blade has some symmetry, but the question is: How
much?

To answer this we ask, “In how many positions could the fan blade be put
so that it would still look the same in a drawing like Figure 2.1.17” We list
these below and draw them in Figure 2.1.2. (In the latter figure some
markings “left” and “right” have been added. They spoil the symmetry but
allow you to distinguish the different positions.)

1 : THE ORIGINAL POSITION Don’t touch the fan blade.

R.: THE HALF-TURN POSITION Rotate it by 180° around its axle
or the z axis.

R_: THE OVERTURNED POSITION Overturn it 180° around the y axis.
: THE FLIPPED POSITION Flip it 180° around the x axis.

Figure 2.1.1 Fan blade. This is an example of an object which has an Abelian
symmetry D,.
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62 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

The first two possibilities are obvious enough; however, the third (R,) and
the fourth (R,) might be a little surprising at first. Note that a fan blade like
this one works just as well when it is installed “backwards.”

Now we see there are basically two ways to keep track of this symmetry.
According to one we can tally up the allowed positions or position states |1),
R, IR,), and [R,) that look the same. According to the other, we tally up
the operations (turn, flip, etc.) or OPERATORS {1, R, R, R.} that change
one allowed position state to another. These operations have a number of
mathematical properties which we shall study shortly. Most important is the
idea of combination or GROUP MULTIPLICATION.

For example, if we do an R, (overturn) followed by a R, (half turn), all
with respect to fixed spatial axes x, y, and z, then what do we get?
Examination of Figure 2.1.2 shows that the same position state shows up
which would have been obtained by just doing R, (flip) by itself. Let us
express these observations by the following operator and position state
equation:

R,R,1) =R,IR,)) = [R,) = R,I1). (2.1.1)

Now Eq. (2.1.1) is true no matter whether you start with |1) or the other
states, and so we may write it abstractly as Eq. (2.1.2):

R.R,=R,. (2.1.2)

In this way we make a multiplication table or GROUP TABLE such as is
shown below. Here all possible products are accounted for:

1 R, R, R,
1|1 R, R, R,
R,|R, 1 R, R, | (2.1.3)
R,|R, R, 1 R,
R,|R, R, R, 1

This is ultimately how symmetry is coded, through abstract mathematical
properties of symmetry operators. Now we shall see how this type of
mathematics enters a physical problem.

2.2 REPRESENTING SYMMETRY AND SYMMETRY GROUPS

We start by analyzing in detail one of the simplest examples of a physical
system having one of the simplest symmetries. Consider the two identical and
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1
Basestate|1)->(o) BasesmtelZ)—»(?)

1 unit 1 unit

Figure 2.2.1 Coupled pendulums. This is an example of a mechanical system having
one of the simplest Abelian symmetries C, = {1, R}. The base states are related by
the symmetry operation R of reversal or reflection according to |2) = R|1).

coupled torsion pendulums in Figure 2.2.1. Their motion will be described by
the classical matrix equations if the coordinates (x, = (1lx), x, = {2]x)) are
not too great, as was explained in Chapter 1. The unit position base states
1> and |2) are indicated on the right-hand side of Figure 2.2.1. Newton’s
equation of motion is given abstractly by

|%(t)) = —alx(1)). (2.2.1a)

It is represented in the {|1), |2)} basis by the following matrix equation of
motion:

2lal1y  (2lal2) ]\ {2|x(1))

((1lf(t)>)
(2 x(r))

_(<1|a|1> (1|a|2>)(<1|x(t)>

) (2.2.1b)
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Xi| _ _
X2
where a = 2k/ml?, and b = g/I.

The constants are gravity (g), coupling spring constant (k), pendulum

length (/), and mass (m). The classical position state vector |x) is repre-
sented in the {|1), |2)} basis by the ket

x> = 1)) x) + 12)(2] %)
=|Dx:  + 12Xz,

or
a+b —a
—a a+b

X1

. (2.2.1c)
X2

or by the two-component column vector in Eq. (2.2.1). This classical applica-
tion of Dirac notation for vectors and operators ({i|a|j)}) was introduced in
Section 1.4.A.

The symmetry of this device is fairly obvious. The pendulums are identical,
and if someone switches them in the middle of the night no one should be
able to tell the difference. The problem is to formulate this fact in a
mathematical description.

This may be done by defining a symmetry operator R that reflects or
switches the pendulum states according to the following equations (see also
Figure 2.2.1):

RI1) = [2),
RI2) = |1). (2.2.2a)

This allows R to be represented in the {|1),]2)} basis by the following
matrix:

(<1|R|1> <1|R|2>)

_ [0 1
(2IRI1)  (2IRI2) ‘(1 0)- (2.2.2b)

Then for every state |x) of the system, there is a reflected state R|x) which is

represented as follows:
(1]x) =(0 1 x,)z()@
(2|x) 1 0)ixs X1

Now the mathematical statement of the physical symmetry is: THE
EQUATION FOR A REFLECTED STATE R|x) IS THE SAME AS IT
WAS FOR THE ORIGINAL STATE |x). This is written as follows:

(LIRI1)  (1IRI2)

R <\ iRty IrI2)

. (223)

RI%) = —a - Rlx), (2.2.42) ,
%) [Qald a2 (x |
)21) - _(<2|a|1> 2lal2) || x, (2.2.4b) - :
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Note that Eq. (2.2.4b) does not agree with Eq. (2.2.1b) for arbitrary choice
of {ilalj), but that it does agree for the constants we have chosen. In fact we
can now deduce the constraints that operator {a) must satisfy when reflec-
tion symmetry is present.

First, Eq. (2.2.5) below follows directly from the equation of motion

[#> = —alx) no matter whether R symmetry is present or not:
R|X) = —R - alx), (2.2.5a)
0 1)\(x, X2\ [0 1}{<1lall) (Ual2)}[x,
1 0flx, X1 1 0/}<2lall) <(2]|al2) ]} x,
(2lal1) <(2lal2)
- - A (2.2.5b)
(1lal1) <(1}al2) |\ x,

But the presence of R symmetry gives Eq. (2.2.4), which together with Eq.
(2.2.5) gives the following:

a‘R=R"a, (2.2.6a)

(1lal1) <1|a12>)(0 1)2(0 1)((1|a|1> (1lal2)
(2lall) <2lal2)J\1 0 1 0/1<2lall) <(2lal2)

), (2.2.6b)

(1la]2) (1lal1)} _ Q2lal1)  (2]al2)
(<2|a|2> <2|a[1>)—(<1|a|1> <1Ia|2>)' (2.2.6¢)

The last equation shows that R symmetry of a requires that {1l]all) =
(2|al2) and (1|al|2) = (2]lall). However, the first equation (2.2.6a) is a
general abstract definition of a physical symmetry.

Definition 1 A symmetry operator commutes with any operator that is
part of an equation of motion for a physical system having that

symmetry.

In quantum mechanics, all symmetry operators commute with the Hamilto-
nian according to this definition.

A second definition of symmetry operators involves the state vectors or
basis of a physical system. We shall require that the inner product {x|y) of




66 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

any two vectors |x) and |y) shall be equal to that of the transformed vectors
Rlx) and Rly) as given in Eq. (2.2.7):

(x]y) = (xIR'Rly). (2.2.7)

We demand this for quantum and classical descriptions, alike. As explained
in Chapter 1 [see, for example, Eqgs. (1.1.8)], these last requirements imply
that a linear symmetry operator R and its representations %;; = (ilr|j) will
be unitary.

Definition 2 Symmetry operators and their representations are unitary.
RRT =1 =R'R, (2.2.8a)

(#) =®F = (Z)™ (2.2.8b)

In fact, the matrices {i|R|j) = {il;’) will be seen to have the properties of
the transformation matrix defined in Chapter 1.

Combining Eq. (2.2.8a) with Eq. (2.2.6b) gives the most commonly written
expression for symmetry:

a=R-a R (2.2.9)

In other words, the operator a which has R symmetry is invariant or
unchanged when transformed by R. [Recall the form of matrix operator
transformations in Eq. (1.1.23c).] The set of all symmetry operators R
satisfying Eq. (2.2.9) for a given a is called a GROUP by mathematicians or
the SYMMETRY GROUP of a by physicists. The mathematical axioms for a
group, which are shown on the left of Table 2.2.1, were introduced abstractly
by a mathematician named Galois long before matrix applications like
quantum mechanics came along. One may see by examining the right side of
Table 2.2.1 that the mathematical axioms are closely related to the physical
axioms 1-4 for transformation matrices given in Chapter 1.

A lot of mathematical work has involved the determination of all possible
abstract groups with a given order or number of elements. It is not so easy to
come up with a multiplication table which satisfies all four group definitions.
For example, Eq. (2.2.10) is a multiplication table of a group of order 6, but
Eq. (2.2.11) is a multiplication table of something that is not a group
(possibly, this set should be called a “heap” instead), since (ab)c = a #
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TABLE 2.2.1 Demonstrating that the Set of All Symmetry Transformation
Operators Is a Group

Group Definitions

1. If Q and R are in a group then
so is their product P = QR
(called CLOSURE rule).

2. If Q, R, and § are in a group,
then Q(RS) = (QR)S (called

Testing the Symmetry Operators

. If Ra=aR and Qa = aQ then

RQa = aRQ, so RQ is a symmetry
operator, too. (Recall Axiom 4.)

. The operators we discuss satisfy

associativity since they are

ASSOCIATIVITY rule). defined by matrices.
3. There exists an IDENTITY element 3. The unit operator commutes with
1 such that R1 = R = 1R for all any operator, including a, so it
R in the group. is a symmetry operator. (Recall
Axiom 3.)
4. For each R in the group there is 4. If Ra = aR, then RT = R~ which

an INVERSE R~ ! such that
RR"'=R'R=1.

exists by Axioms 24, is a symmetry
operation, too, because
R'RaR" = R'aRRY oraR" = Rfa.

a(bc) = ¢ breaks rule 2. Associativity is a very restrictive property which one
tends to take for granted.

Group (2.2.10)

MU OW N =

MO OW N |-
AR N N
A= a W w
Wwa - O0
AN~ T|T
T Ow N = |y

[}

Not a group (2.2.11)

Q O = Qo
AUV PSS OO0

S e T I
H@&Qﬁ\\

a
a
1
d
b
f
c

R T T NS
~S A0 O R -

However, the determination of all possible groups will not concern us at
first, since the elementary symmetry groups such as C, = {1, R} for the
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SOLVING A PROBLEM WITH SYMMETRY ANALYSIS (C,) 69

pendulums will be given by multiplication tables [viz., Eq. (2.2.12)] or by some
other definition. (C, means “cyclic group of order 2.” Actually the symmetry
group we are using for the pendulums is called C, or C,, as will be explained
in Section 2.11.)

1 R
11 R Pendulum symmetry (2.2.12)
R|R 1| groupC,.

Nevertheless, it is instructive to see the plot in Figure 2.2.2 of the number of
different groups that exist for order less than 65. Physicists have only applied
a fraction of these finite groups so far. Nobody knows yet what all the rest
can mean.

The following introduction to the uses of group theory begins with the
application of some ABELIAN GROUPS including C,. Abelian simply
means commutative; that is, ab = ba for all a, b in the Abelian group. (The
name itself is in memory of the mathematician Abel.) Following this, the next
three chapters contain theory and applications of the more general non-
Abelian finite groups. This is followed by theory and applications of continu-
ous symmetry groups of infinite order. However, the basic structure which we
are about to derive in this chapter for some simple examples is basic to all
symmetry theory.

2.3 SOLVING A PROBLEM WITH SYMMETRY ANALYSIS (C,)

In order to use symmetry to simplify any physical problem, it is necessary to
express the symmetry information, i.e., the group of symmetry operators, in a
more digestible form. Let us now introduce the mechanics of this form using
our simple example of two pendulums, Figure 2.2.1, which has the symmetry
group C, = {1, R}.

First we observe that the operator R and any representation thereof must
satisfy an equation of the form R? = 1, which can be rewritten as

R*—1=0. (2.3.1)

This has two roots: r,= 1 and r_= —1.

Now, whenever you see an operator or matrix satisfying an nth-degree
polynomial equation, you should remember what to do. Following Chapter 1,
you use the roots r;r, --- r, to construct a set of idempotent projection
operators using the following equation, which comes from Eq. (1.2.15);

Pi=TI(R-r)[TT(r;,—1). (23.2)

rEr; r,#rj
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For this example we have r.= 1 and r_= —1, whence Eq. (2.3.2) gives the
following:

P*=(1+R)/2, P=(1-R)/2. (2.3.2),

Such operators must be orthogonal idempotents for the same reasons that
their matrix counterparts were orthogonal in Chapter 1 [recall Eq. (1.2.17)]:

PUiP™ =3, P, (23.3)

This is easily verified for the example being treated:
P*P*= pP*, P*P~=0 =P P*, P~P~=P~. (23.3),
Now the representation {i|P"|j) of P" in the basis {|1), |2>} will help us

reduce the equation of motion. From Eq. (2.2.2) the following representa-
tions result:

479

By taking the first column of each of these matrices one obtains representa-
tions of the eigenkets |e ) = P*|1)V2, and le_) = P7|1)V2:

<1|e+> 1/V2 <1|e_> 12
(<2|e+>)=(1/ﬁ)’ (<2|e_>) = _1/\5). (2.3.4)

Here the normalization coefficient is the inverse square root of the diagonal
component [((1]P*|1))7/2 = y2] in each case. The vectors |e ) are or-
thonormal eigenvectors of the symmetry operator:

apriyy Ptz
@lptin  21P712)

Nl= N
[N SIS

APTIy  11P712)
QP71 2IPT12)

Nl= =

Rle,) = le.>, Rle_) = —le_).

They are also the eigenvectors of the acceleration matrix {ay in Eq. (2.2.1):

a+b —a 172 _b 12

—a a+bl\1n2 12 )
a+b —a V2 142
—a a+b —1/ﬁ)_(2a+b) —in2t
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This may be written abstractly as
ale,) =a,le., ale_) =a_le_),
where the eigenvalues are

a,=b, a_=2a+b,

=g/l, =2k/ml* + g/I.

The eigenvalues may change if the parameters k, m, or [ vary, but the
eigenvectors are fixed by the symmetry.

This shows one of the main ideas of symmetry analysis. Easily reducible
symmetry operators will help reduce more complicated operators which
commute with the symmetry operators. One starts with base states

11> =111),  [2) =RID)

defined by the action of C, group operators 1 and R on the first state |1).
This basis is convenient for deriving the equation of motion (J¥) = —alx)).
Then the idempotents [P*= (1 + R)/2] and [P~= (1 — R) /2] are applied to
the first state to give new base states

le,) =PH1I)W2 = (L+RIDN2, le_) =P [1)W2 = (1 -R)I1DN2
= (D + 12)/V2 = (1) — 2O N2,

This basis is convenient for solving the equation of motion because off-diag-
onal components vanish:

(e,lale_) = (1|PTaP~|1)
= (1laP*P~|1) = 0. (2.3.5)

Here the first definition of symmetry is used (Ra = aR implies P*a = aP™")
along with orthogonality (P*P~= 0). Hence |le,) and |e_) must be eigen-
vectors of a as indeed they are according to the representation in Eqgs. (2.3.5).
This is the main idea behind the applications of group theory.

However, one should note that this whole theory beginning with Eq.
(2.3.1) is really outside of the area known by mathematicians as group theory.
As soon as linear combinations of group operators, viz., (51 — %R), 17R, or 0
are considered one obtains a group ALGEBRA or RING. Elements of a
group algebra satisfy the rules for a vector space (see Appendix A) whose
dimension is the order of the group.
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To complete the problem one writes the equations of motion in the
{le, ), le_)} basis. The (e, | component of the motion is determined by

(e ]%) = —{e,lalx)
—<e+|a|e+><e+‘x> - (e+|a|e_><e,|x>,
—a (e |x). (2.3.6)

<e+|jé>

This is an equation for an amplitude oscillating with angular frequency
.= y/a, . The solution is

{e.|x(t)) =A, cos(w,t+B,), (2.3.7a)

where the constants 4, and B, depend on initial conditions. Similarly, the
{e_| amplitude oscillates according to

(e_|x(t)) =A_cos(w_t +B_), (2.3.7b)

with generally higher frequency @ _= y/a_ . The general solution is a combi-
nation of these obtained by using completeness:

[#(0)) = [e-Xe.|x(0) + e Ye |x().
x:(1) _ 1/\/5 1/\/5
(Xz(l‘)) = (1/\/5 A, cos(w,t+B,)+ A A_cos(w_t + B_).

(2.3.8)

The two terms le,) and |e_) denote the familiar ELEMENTARY
RESONANCES or NORMAL MODES of the system pictured in Figure
2.3.1. The figure also shows elementary examples of SPECTRA with two
“lines.” Two peaks or lines appear in plots of the response of the system to a
harmonic driving force of frequency w for three different values of the
coupling constant k. A particular resonance Iej> will be excited whenever w?
comes close to its eigenvalue a;. (See Problem 2.3.1.)

These double pendulums have been sold in novelty shops from time to
time. They are capable of performing a “beat trading” motion that can be
quite slow for low values of k. By setting initial conditions ¥,0) =0 =
%,(0) = x,(0) and x,(0) = 1 (i.e., by selecting equal amounts of modes le )
and le_); A*=1/Yy2=A" and B*=0=B"), we get the alternating
suppression or “beats” of activity for one pendulum and then the other, as
depicted in Figure 2.3.2(a). The pendulums trade beats at a frequency equal
to the difference between the eigenfrequencies [w(beat) = \/Z - \/Z 1

A perfect beating is only possible if C, symmetry is present. The last point
we would like to make here is that plain physical appearance does not always
indicate the physical symmetry. For example, the Wilberforce pendulum in
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(a) With C, Symmetry (b) Without C, Symmetry

Xy Xy

Lt Lt
e

il
VUV

Figure 2.3.2 Beating results when two eigenmodes are excited simultaneously. Per-
fect transfer of motion between coordinates x; and x, occurs only if C, symmetry is
present. Transfer occurs with a beat frequency equal to the difference of the
eigenfrequencies.

vz

Figure 2.3.3 Wilberforce pendulum. A sys- ﬁ) LIBRATION (X32)
tem can have a C, physical symmetry even if

its geometrical form is asymmetrical. 1 TRANSLATION (X))

60063

Figure 2.3.3 certainly does not “look” C, symmetric, but it will execute its
perfect trade of beats only if its parameters are adjusted so that it has C,
physical symmetry.

Having used symmetry projection to help solve coupled oscillator prob-
lems, one should compare other methods for studying such problems.
Throughout this book we will try to show the advantages of using a variety of
approaches to help one gain a solid physical picture of the systems being
studied. Also, since the coupled oscillator is such an important paradigm for
many physical systems, we should pause here to consider some alternative
views of it.

(a) The Configuration Space View: Lissajous Figures One may recast
the problem of two equivalent one-dimensional oscillators into the identical
problem of a single two-dimensional oscillator. If one plots one oscillator
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coordinate versus the other (i.e., x, versus x,) the resulting two-dimensional
space is called configuration space. However, x; and x, could just as well be
coordinates x and y, respectively, of a single oscillating mass in ordinary
space.

As explained in Section 1.4.B forces are obtained from the derivatives of
the potential function of the form

V(xy, %) = 3(Fuxi + 29 px,x, + Fpxd). (2.3.9)

The curves V{(x,, x,) = constant are tipped ellipses, and some examples are
drawn next to the potential surface in Figure 2.3.4. They are the equipoten-
tial or level lines for the two-dimensional valley. One can imagine that they
are the topography lines for the “Bare Valley” ski resort which has the most
gentle beginner slope running NE to SW along the long axes of the ellipses,
and the steepest path running NW to SE along the short axes. If the
potential has C, symmetry then these axes are exactly at +45° and —45°,
respectively, to the x, axis.

Using the potential map one can see that a particle starting out on one or
the other of the elliptical axes will oscillate back and forth on that axis
forever. This motion is indicated in the right-hand and left-hand parts of
Figure 2.3.5. The major and minor axes correspond to the symmetric low-
frequency (+) mode and the antisymmetric high-frequency (—) mode, re-
spectively, in Figure 2.3.1. If a particle starts out in between these eigenaxes,
say on the x, axis as shown in the central figure, then its trajectory will be a
curve which is called a Lissajous figure. Some examples of Lissajous curves
are given in Figure 2.3.6. Let us consider first the case in Figure 2.3.6a for
which the equipotential lines would be nearly circular, and the coupling
constant (@) in Eq. (2.2.1c) or force &, in (2.3.9) is very small. This will

X2
NE

Bare Valiey PE axis NE
ski resort

(Beginners

SW

(Advanced slope)

(South)

Topography map of
Bare Valley

Figure 2.3.4 Topography plot of two-dimensional oscillator potential with C, sym-
metry.
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(+) mode

(Advanced (+) and (-) __.W — (Beginners
slope motion) _ mixture 7NN slope motion)
AN /)N ) \_/\
Py (Intermediate
~ slope motion)
Figure 2.3.5 Motions corresponding to pure and mixed models.
/
1THS
C 4 N
2N N
G
%
(a) Weak coupling (b) Intermediate coupling (c) Strong coupling

Figure 2.3.6 Lissajous plots of mixed mode motions.

provide an example of the very important phenomenon of resonance, whereby
the effects of small forces can be greatly amplified.

A particle which starts at rest on the x, axis is deflected slightly upward
toward the positive x, axis by the gradient as it falls from the right to the left.
It subsequently follows a counterclockwise path which resembles an ellipse

whose x, amplitude or minor axis increases slightly each period. Meanwhile,

the major axis or x, amplitude decreases until the two are about the same
and the trajectory encloses a maximum area which is nearly circular. From
the equation of motion it follows that the x, oscillation is experiencing a
coupling force which equals ax,. One may consider the quantities x, and x,
as distance and applied force, respectively, for the x, oscillator, and vice
versa for x,. Hence, the area enclosed by the Lissajous curve is a direct
measure of the work done on the x, coordinate by the x, motion, where the
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work is

sz(by 1) dx, = ajx1 dx,. (2.3.10)

The rate of energy transfer is greatest when the Lissajous curve is most
nearly a circle and the phase of the driven oscillator is nearly 90° behind the
driver. This is a resonance condition, and is discussed at length in Section
6.5.

Eventually x, becomes exhausted while x, reaches its maximum ampli-
tude. At this point x; falls behind x, in phase by nearly 90°, so that X,
becomes the driver and x, the driven. The Lissajous curve now is orbiting
around in a clockwise or negative sense until x, becomes exhausted and the
curve passes near its starting point on the x, axis. This marks the end of one
beat period in Figure 2.3.2(a).

Beat periods become shorter for stronger coupling, and the difference
between eigenfrequencies becomes greater. An example of larger coupling is
shown in Figure 2.3.6(b), and a more extreme example is shown in Figure
2.3.6(c) (for which w,= 27 and w_= #) and there a complete beating takes
place in exactly two seconds. In each of the latter two examples the ratio of
the two eigenfrequencies is exactly a ratio of two integers. When the ratio of
eigenfrequencies is a rational number, i.e., a ratio of relatively prime inte-
gers,

w,/w_=n_/n_, (2.3.11)

then the Lissajous trajectory will be closed and must repeat perfectly after a
period of time

ty=2mn /o, =2mn_Jow_
=n.t, =n_t_. (2.3.12)
Since the beat period is given by

tgear = 1/((1/t)) — (1/t))
t+t7/(l‘_-—- t+)’

it then follows that the Lissajous period is

by = (n+_n—)[BEAT- (2313)

If the frequency ratio is irrational then ¢, ; is infinite. For the example in
Figure 2.3.6(b) the ratio is (n,/n_= 1), and so a complete Lissajous cycle
takes three beats. The arrows in the figure represent direction of the path for
the first 1(3) beats. You should trace the motion from the extreme right-hand

AR




78 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

point on the x, axis to the top of the x, axis. After this the trajectory simply
retraces its way back to the starting point. For the “most rational” example
in Figure 2.3.6 the two kinds of periods are equal. In nonlinear or anhar-
monic vibrational problems the idea of proximity to rationality is an impor-
tant one. (See Problem 2.3.3.)

(b) The Phase Space View: Phasors One may think of a harmonic
oscillator as a clock and let its sweep second hand be a complex vector which
represents the oscillator phase. If the complex number

% = Ce ™" = Ccos(wt) — iC sin( wt)

is used to represent an oscillator, then the real and imaginary parts cor-
respond to the position and the frequency-scaled velocity (Im & =
—Csin(wt) = v/w) of the oscillator. A vector whose abscissa and ordinate
are the real and imaginary part, respectively, of # is called a PHASOR. As
time advances the phasor rotates clockwise like a second hand, and traces a
circular trajectory in a rescaled phase space of the oscillator.

To use the phasor picture for the two coupled pendulums we let each
coordinate x, and x, be represented by a separate phasor clock. This is one
way to represent the four-dimensional phase space of the two coupled
oscillators. However, one first needs to find ways to set the clocks so that they
run like clocks and maintain constant frequency and amplitude. The normal
modes le, ) and |e_) each correspond to such a setting. If the clocks are set
with equal phase and amplitude this corresponds to the |e, ) mode in which
the clocks run synchronously at frequency w,/(21). For the |e_) mode the
clocks are set with opposite (4 180°) phase and they both run at frequency
w_/Qm).

An arbitrary clock setting corresponds to a combination of the |e, ) and
le _> modes. The first frame on the left-hand side of Figure 2.3.7 shows a sum
of equal amounts of le_ ) and |e_) settings at ¢+ = 0. As time advances the
(+) and (—) components each turn synchronously at their respective rates,
which are taken to be 0.5 and 1.0 Hz, respectively. The phasor vector sums of
the (+) and (—) clocks are shown at -second intervals at the bottom of each
frame. One can see that the x; phasor is roughly 90° ahead of the x, phasor
until the former vanishes at ¢ = 1 sec, and this corresponds to resonant
transfer of energy from x; to x,. By ¢t = 2 sec the x; coordinate will have
recovered all the energy it had at the beginning of the beat period as shown
in the Lissajous plot of this example, which is Figure 2.3.6(c).

The example just treated is one of very strong coupling. The energy
transfer is accomplished in one or two oscillations of the coordinates. The
process is more like a series of jarring collisions than a gentle but persistent
persuasion of resonance. Nevertheless, in the harmonic limit for which the
equations of motion are linear the description of strong coupling is the same
as that of weak coupling for which the beats take a long time.
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Figure 2.3.7 Phasor diagram of strongly coupled oscillation.

We shall use phasors to describe resonance and wave phenomena
throughout this book. They are convenient for displaying the motions of
three or more oscillators while the configuration space view can be rather
limiting as the number of dimensions goes up. When discussing any pair of
directly coupled phasors one should always remember that the one which is
behind in phase by some amount between 0° and 180° is receiving energy on
the average from the one which is ahead.

2.4 IRREDUCIBLE REPRESENTATIONS

The orthonormality of P* and P~ has just been used to solve an equation of
motion. Now we study some of the mathematics associated with the com-
pleteness relation [Eq. (2.4.1)] and spectral decomposition [Eq. (2.4.2)], which
will later help us to do more complicated problems:

1=P"+ P, (2.4.1)
R=P*— P, (2.4.2)

g AN A
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TABLE 2.4.1
g = 1 R
1=D"()P*+ D (1)P~ D*(g)=11 1
R=D"(R)P*+ D (R)P~ D (g)y=|1 -1

These equations are analogous to the matrix equations (1.2.18) and (1.2.21),
respectively, which were derived in the preceding review chapter. The coef-
ficients or eigenvalues in these equations are called IRREDUCIBLE REP-
RESENTATIONS or CHARACTERS of the Abelian group C, = {1, R}.
Table 2.4.1 is called a CHARACTER TABLE. Equations (2.4.1) and (2.4.2)
have been rewritten just to show the notation.

In Chapter 3 we shall distinguish between irreducible representations and
characters. In general the latter are the traces of the former, but for 1 X 1
matrices the trace of the matrix is the same as the matrix itself. Since all the
elements of an Abelian group are mutually commuting unitary operators it
will always be possible to simultaneously reduce the entire group to combina-
tions of projectors multiplied by eigenvalues using the procedure in Section
1.2.B(d). (see Appendix C). So each element g of Abelian group G =
{1, g, g',...} can therefore be spectrally decomposed into a sum of products
of eigenvalues D*(g) and idempotents P“ as follows:

1=D*(1)P*+D“(1)P* + -+ =P*+P* + -,
g =D%(g)P* + D¥(g)P* + - -+,
g =D(g)P*+ DY(g)P¥ + ---. (2.4.3)

As shown in Section 1.2.B(b) the P* are orthonormal (P*P% = §%“P%) and
complete (1 = P* + P* + ---). The coefficients of such decompositions
must obey the following rule: The product D*(g)D*(g’) of an irreducible
representation « of group elements must equal the same irreducible repre-
sentation D%(gg’) of the product gg’. We see that this follows from the
properties of the idempotents as follows:

g’ = (LD(e)P*)( ZD¥(2)P¥) = LD()D*(8)P",
by using the definition
gg' = L. D%(gg')P*,

whence

D*(g)D*(g') = D*(gg'). (2.4.4)

LM
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In other words, the sets of irreducible representations will “imitate” an
Abelian group with just (1 X 1) matrices, i.e., the numbers in a character
table.

But it is more important, probably, to observe that the irreducible repre-
sentations of any group are a complete set of “building blocks” for any
representation of that group. Every representation has to be “made” from
them and only them. Suppose somebody brings to you a representation of
group C, without telling you where it came from. For example, let us be
given a representation of C, by matrices €(1) and €(R) defined by

1 00 00 1
{@'(1) =0 1 ole(R)={0 1 0)}. (2.4.5)
0 0 1 1 0 0

Now we check to make sure that it is a representation of our group, i.e., that
@(ab) = @(a)@(b) for all a and b in the group. (Here it is enough to check
that @(R?) = @(R)@(R) = (1).) This guarantees that the completeness and
orthonormality relations for the representations @(P*) of the idempotents
must hold as well. The £(P*) matrices follow from Egs. (2.3.2), and (2.4.5):

19 2 19 -1
2 2 2 2
e(P*)y={0 1 0 P )=| 0 0 0| (246)
7 0 3 -3 0 3
| 1 1
PR 0 _—
V2 V2
g=10 1 0 (2.4.7)
L 1
V2 V2

This implies that the transformation matrix made from orthonormal columns

of @(P%) as just shown will diagonalize the representation as seen in Eq.
(2.4.8):

1 0 0 D* (1) 0
gleg={0 1 o= 0o DY) 0 |
00 1 0 0 D (1)
1 0 0 D*(R) 0 0
Fe(R)yT =10 1 0l=] 0  D*R) 0 |. (24.8)
00 -1 0 0 D (R)

This is because each nonzero column of a representation of P* must be an
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eigenvector of the representation of all symmetry operators R in an Abelian
group, each with eigenvalue D*(R):

R-P* = D*(R)P* & @(R)@(P*) = D*(R)@(P*). (24.9)

The completeness relation guarantees that one has accounted for all possibil-
ities. So every representation @(g) of any Abelian group operator g must be
reducible to a string of (1 X 1) irreducible representations D=(g) on the
diagonal. The notation for the reduction given in Eq. (2.4.8) is given in the
following using the DIRECT SUM sign &:

Tle(g)T =D*(g)®D"(g) ® D (8). (2.4.10)

2.5 PARTIALLY SOLVING A PROBLEM WITH SYMMETRY
ANALYSIS (C,)

It is probably a good idea now to sce an “imperfect” application of symmetry
analysis in order to see some of the limitations of this theory from the start.
The pendulum system drawn in Figure 2.5.1 has the same symmetry C, =
{1, R} which we have been discussing. Operator R is defined in terms of the
base kets by R|1) = |3), RI2) = 12), and R|3) = I1). That is, we may

Base states:

|1> [2>=R|2> [3>=R|1>
} !

" 1
NP D6 | b &
u ~
( \
~ \1_7
Sl 1=

Figure 2.5.1 Coupled pendulums. This is a more complicated example of C, symme-
try. Only two of the three bases are connected by the C, symmetry operator.
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switch the two outside pendulums, but the middle one has to be left alone
because it is different in mass and location.
The equation of motion is written out in three different forms:

[%(2)) = —alx(1)), (2.5.12)
(1] 2(2)) (1lal1l)  <1lal2)  (1lal3) ) [(1]x(2))
(2x(1))y | = = | lally (2lal2) (2lal3) || {2|x(2)) |, (2.5.1b)
(3|%(1)) (3lal1)  (3lal2)  (Blal3) [ \(3]x(¢))
X a+b —a 0 X,
i, l=— -4 24+b —-A ||x,]. (2.5.1¢)
X4 0 —-a a+bl\x,

The constants in the acceleration matrix are a = k/ml*, b =g/I, and
A = k/MI*

The representation of the C, symmetry operator R in the {[1),[2), 3)}
basis is (see Figure 2.5.1)

1|RI1Y <{1|R]2) <{1IRI3) 0 0 1
2IR11Y <(2IRI2) <(2IRI3>|=1{0 1 0,
GIRI1Y  (3IRI2) (3|RI3) 1 0 0

which is precisely the & representation treated in the preceding section. .

[Compare Eq. (2.4.5) with the preceding one.] There we found that a change
of basis from {|1), [2), 13)} to {le, ), l¢’. ), le_),}, represented as

(1le.) 142 (1]e) 0
le,> — <2Ie+> = 0 1 le',> — <2|e,+> =11},
Gley | |12 Gley| o
(e )| 142
le_> = |(2]e) o |, (25.2)
Ble) [\ —142

caused the & representation to assume a reduced or diagonalized form.
[Recall Eq. (2.4.8).] Applying the same change of basis to the acceleration
matrix in Eq. (2.5.1) we see that a partial, but not total, reduction of it occurs:

a+b —V2a 0
TeT = _y24 A+b 0o |- (2.5.3)
0 0 a+b
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Symmetry analysis guarantees that components like (e_lale_), or
(e_lale ), etc, are zero, but it cannot guarantee that a coupling like
(e, |ale ) will go away. In fact, it does not—it equals ~ V24 in Eq. (2.5.3).

So for this problem the (—) eigenvector is fixed, but the (+) eigenvectors
still remain to be solved, and the results will depend upon the values of the
constants g, k, 1, m, and M. Symmetry analysis with the group C, can do no
more than separate the (+) type modes from the (—) types.

In a general symmetry analysis you will determine the REPETITION
FREQUENCY f¢ or the number of times each irreducible representation
D appears in the reduction of the physical group representation. This tells
you how much work is left after the symmetry analysis is completed: Each
[ X f% matrix may need to be reduced. The final reduction is completed
using standard techniques reviewed in Chapter 1, or may be accomplished
numerically on a computer. (Or, perhaps, you may find a higher symmetry!)

2.6 AN EXAMPLE WITH SLIGHTLY HIGHER SYMMETRY (C,)

If the three pendulums are coupled in a more symmetric way, as in Figure
2.6.1, it will be possible once again to deduce the complete solutions to the
equation of motion

X 2a +b —a —a X,
X, = - —a 2a +b —a X, (2.6.1)
X, —a —a 2a + b x,

using symmetry analysis techniques. The constants in the equation are
b =g/l and a = s/ml?, where s is the coupling spring constant and g, [, and
m are gravity, length, and mass constants, respectively. The basic coordinates
Xy, X,, and x, are defined by Figure 2.6.1. Symmetry operators include the
cyclic exchange or 120° rotation operator labeled r which transforms base
states as follows:

rl1y =12y,  rl2) =13), rl3) =D,
the double exchange operator r? which does the transformations,
rA1y =13), A2y =11, 33 =2),

and the identity 1, which changes nothing. (1)i) = |i)). There are some other
symmetry operators such as “reflections” o,, ¢,;, and o5,, where, for
example,

opll) =12),  opl2) =11,  o,l3) = 13).

However, let us put off discussing these until Chapter 3.
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symmetry
rotation
Base States:
) O
7 N ) ] QY
- S,
O

Figure 2.6.1 C; symmetric coupled pendulums.

The three operators {1, r, r%} form a group called C;. The multiplication
table is

1 r r?

1 r 2
A R (2.6.2)
22| 2

Now one can use the minimal equations (+>=1, or r> —1=10) to
produce the idempotents associated with the group elements. The minimal
equation for r is factored into the three roots of unity:

0= (r’—1)=(r—el)(r —e1)(r — gl),
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where

e =1, £, = e2m/3, £y = e 2mi/3,
Using Eq. (2.3.2) we obtain three idempotents P%:

_ (r —e;,)(r — &51)
(&1 —&2)(e — £3)

- (r — e )(r — &) 1 5

P?= (oo e)(eae) 5(1+33r+82r )s

3 _ (r —&1)(r — &,1)

- (63— &1)(e3 — &;)

Pl

1
= §(1+r+r2),

1
= 5(1 + ey + £577). (2.6.3)

The inverses of Eq. (2.6.3) are the completeness and spectral decomposition
relations in the following. These follow from the theory given in Sections
1.2.B(b) and (c).

1=P' + P2+ P>=DY(1)P' + D*(1)P? + D3(1) P,
r=P' +¢&,P? +¢;P? = D' (r)P' + D*(r)P? + D¥(r)P?,

r?=P' +&,P” + £,P? = D'(r*)P! + D*(r?) P2 + D3(r?)P3. (2.6.4)

The eigenvalues D*(g) in the decompositions above are the irreducible
representations (we abbreviate this “irrep,” henceforward) of C;. There are

three kinds of irreps as tabulated in the following using Eq. (2.6.4). Two )
other standard notations for the irreps of C; are shown on the left-hand side /
of the character table (see a “phasor” version of this table at the top of

Figure 2.6.2):

g = 1 r r2 |
D%(g)=D"4(g) =D'(g) = | 1 1 U] s |
D's(g) = D*(g) =D*(g)= 1 e2mi/3  gm2mi/3 [ 0. :
Dza(g) = DE*(g) = DS(g) = 1 e_z”Ti/:” eZ‘n’i/3

The C; example shows many of the properties of general cyclic C, groups
{1,r,7%,...,r""1}. In general there will be n distinct roots to the minimal
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equation r” = 1 of C,. These n roots will be labeled as in (2.6.5) by
fpoq = €2/m = Dn(r)y  (k=0,1,2,...,n —1). (2.6.6a)

It is easy to show that each root yields an idempotent projection operator of
the form (2.6.3) or in general

/

n—1
Z e—i2‘rrkm/"rm’ (2.6.6b)
m=0

| =

1 *
P = — Y. DM (g)g =
R 4

where the index k, will be read as k-modulo-n in Section 2.7. One quickly
verifies that (2.6.3) and (2.6.6b) satisfy the eigenequation rP*» = D*»(r)P*~,
The spectral decomposition (2.6.3) has the general form

n—1

g= Y, D*(g)Pkn, (2.6.6¢)
k=0

where the sum is over the (n) irreps D*+(g) of C,,.

The application of the C,; idempotents proceeds in the same manner as
was done before in Sections 2.3 and 2.5. We first construct a representation
(#(1), #(r), #(r?)} in the following of the symmetry operators {1,r,r?}
from the definition of basic coordinates shown in Figure 2.6.1:

X1 10 0)/x, X1
Z(V)|x, 1 =[0 1 O0){xz2|=[xz}>
X3 0 0 1 X3 X3
X1 0 0 1)(x; X3
Z(r)x2] =11 0 Oflx2|=|x1]>
X3 0 1 0flxs X2
X1 01 0)(x: X2
() x| =10 0 1|{xz|={xs] (2.6.7)
X3 1 0 0)\x; X1

Then we construct and use the representations #Z(P*) of the idempotents:

1 1 1 1 &, e,
9?(1)1)=§(1 1 1), #Z(PY)=1les 1 &),
11 1 g, &5 1
1 &5 &
R(P?) =3les 1 ). (2.6.8)

g5 &, 1
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From select columns and rows of (P%), namely, the first of each in this case,
we construct a matrix transformation 77 that does the following: (a) 7
reduces all #(g) to a direct sum of irreps. For example, 7 "%#(r)7 is given
by

‘/_ \/_ ‘/_ 0 1 |31> |62> |€3>
1/‘/3— 1(23:‘/3 ‘/— lfzii/s ‘/— 1 ; 1/‘/5 1/‘/5 1/\/5 v
13 e /Y3 e /V3 00 1/‘/5 e—211-i/3/‘/§ e+27ri/3/\/§ [2)

—27i /3 +2mi /3
1/‘/3_ e /‘/3_ € /‘/§ 010 1/\/3_ e+2‘n-i/3/‘/§ e—21.-i/3/‘/3_ |3>

10 0 Dl(ry © 0
= (0 e?™/3 0 ) =10 D*(ry 0 . (2.6.9)
00 e M/ 0 0 D¥(r)

That is, #(g) is reduced or diagonalized to a direct sum (&)
T'%(g)7 = D'(g) ® D*(g) @ D*(g)

of three different irreps. [Compare the foregoing with Egs. (2.4.8) and
(2.4.10).] The 7 matrix gives the change of basis between “old”
{115, 12, 13>} and “new” {le,), le,), le;>} bases. Note that the representation
of the latter in terms of the former are given by the columns of 7. They are
indicated in the upper right-hand side of Eq. (2.6.9).

(b) 9t diagonalizes the acceleration matrix appearing in Eq. (2.6.1):

2a +b —a —a b 0 0
g —a 2a + b —a |9=10 3a+b 0 .
—a —a 2a+b 0 0 3a+b

In other words, the kets |e,;), le,), and le;) represented by the columns of
the .9~ matrix are eigenvectors of the acceleration operator as well.

This is as it should be if the acceleration operator (a) commutes with C;
symmetry operators. The three projected Kets,

ley = PYIV3,  le;) = PAIW3,  les) = PPI1)V3,
belong to three different irreps as do their companion bras,
(e, = AIPWVA,  {eyl =C1IPW3,  {esl = (1IP¥3.

[Here self conjugacy (P¢" = P*) of idempotents obtained from a unitary
operator is used (see Appendix C).] Since the idempotents are orthogonal the

IR
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matrix (ealale,;) must be diagonal:

(e,laleg) = <1|P=aP?|1)
= (1laP°PB|1) =0, ifa +#B.

No new concepts outside of those given in Sections 2.3-2.5 are involved
here, except that you might be surprised that two of the eigenvalues (for
modes 2 and 3) are identical. This degeneracy is a direct consequence of that
reflection symmetry, which we ignored. We will discuss this at length in
Chapter 3, but for now let us examine the form of the eigenvector solutions.

One may take the liberty of combining the complex |e,) and |e,) eigen-
vectors into their real and imaginary parts since they are degenerate:

lez) + les) 1 —21771‘/3 N 231’/3
o) = 2152 e N
V2 V6 elmi/3 + e wi/3
1 2 1 2
= —|2cos(2m/3) | = —| —1],
V6 6|
2cos(2m/3) 1
. 1 - 1
|eIm> = M . ;l e 2mi/3 _ el™i/3
l‘/z \/6 e2‘n’i/3 e—2‘n'i/3
1 0 1|0
= — | —2sin(27w/3) | = —| —
2sin(27/3) V2 1

Because of the frequency degeneracy between modes le,) and |e;) the
resulting real combinations are eigenvectors, too, both having eigenfrequency
v3a + b . Real eigenvectors are easier to picture, as shown in Figure 2.6.2.
For eigenvectors with real components, the only relative phases possible are
+ (in phase) and — (out of phase). Therefore real vectors correspond to
so-called STANDING WAVES or modes. Complex vectors allow for arbi-
trary phases, so the disturbance can appear to be marching from mass to
mass. Therefore, complex vectors correspond to MOVING WAVES. One
way to visualize moving waves is to draw phasor clocks for each oscillator (see
Figure 2.6.2) and image successive time steps. To algebraically determine
time behavior of mode |e,) one needs the quantity Re[e "“*|e,)], where

|
|




90 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

031 1 1 @ @ @
131 eniBe2nn | M)G)(W
25 |1 e2mif3 2mif3 QIS
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Figure 2.6.2 Normal modes or eigenwaves and spectrum of the C; symmetric
coupled pendulums.

w, = w3 = V3a + b is the eigenfrequency. This is represented by the follow-

ing:
COS w5t 2 . 0
1 (=273 ) COS w,t 1 SIn w, ¢ 1
—|cos(—27/3 —w = ——| - -
3 : 23 2
cos(2m/3 — w,t) -1 1

This may be written as

Re[e™"|e,)] = (cos w,tleg,) + sin w,tle ) /V2 .
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This represents a clockwise rotation of the vibrational wave with angular
eigenfrequency w, = v3a + b. Similarly the motion of the |e;» mode is
given by

Re[e‘i“3’|e3>] = (cos wstlep,> — sin wytle;,))/V2,

which is a counterclockwise moving wave of the same frequency.
The low-frequency (w; = Vb ) modes le;? has its time behavior repre-
sented by Re[e ™*“*le; )] or

e—iwlt 1

COos w,t
Re| ¢ —ient \/g = 1
e—iwlt ﬁ 1

This is a standing wave like |eg.» and le;,, . In standing waves no energy is
being transferred from one pendulum to the other, and there is no net
circulation of energy or momentum around the ring. However, the combina-
tion of two standing waves will cause very obvious interpendulum motion. For
example, the combination of le;) and V2 lege? moves according to
Re[e ™“tle;) + e~"2"/2 |eg. )], which is represented by

el 4 Qeiwat COS @1 + 2¢0s w,t
Re| e~/ — 71wzt V3 = | cos @t — cos w,t V3.
e it — gTieat COS @t — COS w,t

Here the time behavior is characterized by a motion or “beating” which goes
back and forth with a frequency equal to the difference between w, and w,.
It will be analogous to the beat trading shown in Figure 2.3.2.

2.7 MORE EXAMPLES WITH C,, SYMMETRY:
ONE-DIMENSIONAL LATTICES

The graph in Figure 2.2.2 shows that there is always at least one Abelian
group of any order n. This “fundamental” symmetry group is the cyclic group
C,={1,r,r% r%...,r" 1}, Let us now use symmetry analysis to treat exam-
ples of C, symmetry for arbitrary .
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d a ag aa

Figure 2.7.1 C, symmetric coupled <riiixs o ) x4,
pendulums. x> erixy <r§Ix> <r3|x><r O

The first example shown in Figure 2.7.1 is a ring of n identical pendulums
coupled end to end. Suppose its equation of motion is

1)
(rlE)
—| <FFHE
<r”‘-1lié>
(1lal|1) (1lalry -~ (1lalr"~1) (1lx>
(rlall) (rlalr) : (rix)
= (r*all) (r*lalr?) - ' (r*lx)
(r"‘£|a|1> . - L Halem ) (r”‘.1|x>
2a +b —a 0 e 0 —a (1lx>
—a 2a + b —a . 0 {rix)
= 0 —a 2a+b 0 (rilxy |,
—.a 0 0 2a + b\ xd

(2.7.1)

where the constants ¢ and b in the acceleration matrix are defined as they
were for the preceding C, example. Also the base states {|1), |r), [r2),...}
and coordinates {{1|x), {rlx),{r%|x),...} are labeled by C, operators (|r)
= r|1), etc.), as indicated in the figure.

All symmetry operators are products of the rotation r by (27 /n) radians.
This operator satisfies a minimal equation (r" = 1) or (+" — 1 = 0). The
eigenvalues or roots of this equation are the n roots of unity (e’*n), where
(k, = 2mk/n). These complex numbers are therefore the irreps of C,;:

D*~(r) =e'*  (k,=2wk/n, k=0,1,2,...,n—1). (2.7.2)
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One may visualize these numbers by drawing them as vectors in the complex
plane. This is done for n = 1-6 in Figure 2.7.2. Note that the D* and
D %n = (D*n)* are usually complex-conjugate pairs. Only k = 0 and k =
n/2, for even n, give real D*». An irrep or character table is drawn using
phasors to represent each D*+(r?) irrep of C,C,,..., and C, in Figure
2.7.2.

For each irrep D% there is an eigenvector lk,> of the acceleration

operator a which we may derive by using projection operator P*» [recall
(2.6.6b)]:

k> = Pk|1)vn

g=1,r,...

exp( ik,)
= Y DM(g)g)/ v — exp2(—tk) /‘/' (2.7.3)

exp(n — 1)( —ik,)

By substituting this representation of |k,) into the equation (2.7.1) of
motion, one obtains the eigenvalue of operator {a):

alk,) = [2a(1 = cos k,) + blk,) = &?(k,)lk,).  (2.7.4)

This is the square [w?(k,)] of the resonant frequency. Note that the eigen-
value for |k,) is the same for its complex conjugate partner | — k).
Therefore different but equally valid eigenvectors can be made by combining
each complex pair to form real cosine and sine standing-wave states |c,’,‘> and

sk

1
B+ k) cos k,
k,)+ lk_,
ey = g | stk o (275)
cos(n — 1)k,
0
k> + Ik_,) o
k) + |k :
Ky o o/ T W ons sin 2k, 2/n . 2.7.5b
) 7 - : /n. (2.75)
sin(n — 1)k,

The real cosine or sine states may be ecasier to picture. We see in Figure
2.7.3 that the |cX)(|s¥}) state is obtained if a cosine wave (sine wave) with
exactly k crests is drawn to fit in the interval occupied by »n connecting
springs. The sine or cosine wave amplitudes oscillate with frequency w(k,,),

but the crests and nodes are fixed in standing-wave solutions. To envision the -




“ZJ

n=3
e?-m/3 21!1/3_(e21u/3
1
e2ﬂi/5 e-27!l/5 =(621U/5 )4
(e2ﬂi/5 )2 (eZTCi/S )3
0
C, r
0,

C, !
0,(DOO
LW
AOUNNG

Cs et
0D
15(DQWE
FONIC DS
NowclaNg
45 DD/

N

=

n=2 t
n=4
(24 _ @ o 2l 23
_(e21t1/4)2
o 26263
/62 (2moy
_(621[1/3 )3

2,OQOQ
3. 0DWY

o .1t .2 .3 .4 _5
Ce 1 T "1 1O

0,(OOOOOU

e
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COMPLEX IRREPS w? SPECTRUM

COSINE SINE

pKm =g \w2=2d(1—COSkm) . WAVES WAVES
=21
" . k‘l— 3_ - 1 W /N/

n=3 3

n=5

Figure 2.7.3 Standing eigenwaves and frequency spectra for C;, C,, Cs symmetric
coupled pendulums.

moving-wave state |k, imagine the amplitude of the cosine wave is fixed
while it moves rigidly around the ring with velocity w(k,)/k,. (Compare
Figure 2.7.3 for n = 3 with the C; solution in the preceding section.)

There is also an easy way to picture the w?(k,) eigenvalue spectrum. The
term (cos k,) in Eq. (2.74) is the projection of kth vertex of a regular
n-polygon as shown in Figure 2.7.3. (The constant term b is set equal to zero
in the figure.)

As n becomes larger, the allowed points in the function wz(kn) become
closer together, as seen in the » = 24 example in Figure 2.7.4. As n — o, the
continuous band spectrum of the one-dimensional lattice is approached.
Setting b = 0, one obtains the standard formula for angular frequency w in
terms of wave number k,. This formula is called a lattice DISPERSION
RELATION:

w(k,)=y2a(1 —cosk,) = 2Va sin(%)

va (k,)’
z‘/;kn_ ” + ..

For small k, this formula gives the phase velocity ¢ = w/k, = Va for long

(2.7.6)
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Figure 2.7.4 @? spectrum of C,, symmetric coupled pendulums.

acoustical waves. (Here the unit of distance is the interval occupied by one
connecting spring.)

Now consider waves with large k, that lie outside the range k| <n/2.
For example, | — 35) or |7;) are wave states which lie outside this range for
n = 5. However, from Figure 2.7.5 we see that | — 35) and |7;) waves are
indistinguishable from the |25) wave as far as the five oscillating pendulums
are concerned. They arc also indistinguishable as far as C, irreps are
concerned. The n integers k in the range —n/2 <k <n/2[-(n —1)/2 <
k < (n — 1)/2] for n even (n odd) correspond in a one-to-one fashion with
the n irreps of C,. (The corresponding range of k, is called the FIRST
BRILLOUIN ZONE in the theory of lattice waves.) Any of the
(k + n),,(k + 2n),, ... outside this range will just duplicate a C, irrep for a
k, which is inside:

DU Nmy, — 2wk £ Nm)/n — p2im(k /nxN) = e%k/n = etkn = Dkn. (2.7.7)

222 52T, 220
K+7 25 +55 +75
=2 2T
K2-25

Figure 2.7.5 Higher wave-number solutions for Cs symmetric coupled pendulums.

The waves shown have all give the same motion of the pendulums.

e
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A C, system is like an n-nary computer register: It can only count to
n — 1 and then start over with zero. The register takes a number m = k + Nn
and reads out only m-modulo-n = k. A wave state |m,) will have m
wavelengths in the 27 interval of the full circle, but the n-pendulum system
cannot distinguish this state from the state |k,) with only k wavelengths
where k = m-modulo-n = k-mod-n.

A. Symmetry Breaking

A physical system could tell the difference between a k,, wave and a (k + n),
wave if it has some kind of “detector” such as another mass between each
lattice point. As an example consider the system in Figure 2.7.6. This is a
copy of the one in Figure 2.7.1, except every even spring is weakened (a < a)
and every odd spring is made stiffer (@ > a). Also let there be n = 24
pendulums. The acceleration matrix {a) now takes the following form:

(1lalt) (llalry (llalr?)  --- (1]a|r®)
(rlall) (rialr)y  (rlalr?)y oo (rlalr®)
da+a+b —a 0 e —a
= —a a+a+b -a - 0[] (278

Changing the springs “breaks” the symmetry from C,, down to C;,. Now
only the operations {1, 72, r%,...} = C,, will commute with a if @ # a. The
operators {r, r>,...} are no longer symmetry operations. As explained in the
preceding section (recall Figure 2.7.1) the irreps of C;, are labeled by 12
wave numbers 6,,,5,,,45,..., =442, —5,,, which lie in the first Brillouin
zone. However, now some waves outside this zone are physically very differ-
ent. For example, | — 7,,) is very different from |5,,) even though they both

.‘o\ ) = . "*
" 2 a a/g
(r23 1) &

(3 Ix)

(11X
(21X
(rix)»

Figure 2.7.6 C,, symmetry breaking of C,, symmetric coupled pendulums.
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belong to irrep D> The same goes for | — 8,,) and |4,,), which belong to
D*2 and so on. Most irreps of C,, appear twice in the representation of the
basis. So once again (recall Section 2.5) we encounter a situation where
symmetry theory does not give the complete solution immediately. We still
must diagonalize a 2 X 2 matrix for the pairs of states which share a common
irrep D*2. The resulting complete solution indicates a splitting of the C,,
band into two separated bands as shown in Figure 2.7.7. We derive this now.

We first obtain the two independent states produced by the projector P*»
of C,, acting first on |1) then on [r).

lk,y = Pk 1)/12 = (11) + e *n|r2) + e 2kn|rdy + -+ ) /12,

k.Y = P52 = (Ir) + e *nlr3) + e 2ka|pSy + - ) /Y12
Then the representation of a in the {|k,), |k,)} basis is found, using
Hermiticity (P** = P*»), symmetry (P*»a = aP*»), idempotency (P*"P*» =
P*») of P*» and the acceleration matrix in (2.7.8):

(k,lalk,) = (1|P*¥aP*:|1) - 12 = (1]aP*|1) - 12

(1]all) + e *=(1]a|r?) + ---
=a+a+0+---.

The other components are found in the same way:

(kilalk,y = (rlall) + e *(rlalr?) + - -
= —a —e g,
(k,lalk,) = —a — e"*rq,

(kplalk,) =a +a.
The resulting (2 X 2) matrix for a given k,, is

a+a — (e + a)\ lk,»

—(@e™"* + a) i+a lk,”"

(a)n = (2.7.9)

From this the eigenvalues are easily found by a secular equation solution:

_ — — 1/2
w?=a+a+ (@ +2aacosk, +a*)"".

(2.7.10)

These eigenvalues are plotted as black dots in Figure 2.7.7(a) for @ = 3a/2
and a =a/2 and are connected with dotted lines to the circles which
represent the C,, symmetry case where a = a = . When comparing the
n = 24 case (Figure 2.7.2) with the n = 12 case, it must be remembered that
we define k, = k(2w /n).

The most striking effect of the breaking of symmetry down to C,, is the
splitting of {|6), | — 6)} degeneracy in Figure 2.7.7(b). With C,, symmetry
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still in effect these two wave states were degenerate. However, they belong to
the same irrep D®2 of C,,. An acceleration matrix having only C;, may mix
them. Indeed, equal combinations of them are needed to diagonalize the
matrix

+

Q N

(2.7.11a)

(a) = (

IR I8
QY [
+
IR I8
~———
=Y
= Y]
= ~
~

The correct combinations are the sine and cosine standing-wave states:

lc$) = (1610 + 1 — 6120)/V2 (eigenvalue = 23),
s8> = —i(16,,) — | — 6,,))/V2  (eigenvalue = 2g). (2.7.11b)

So if @ > a then (k = 6) eigenstates must be standing waves. This is because
the standing wave which tends to twist each stiff (@) spring [see Figure
(2.7.7(c)] necessarily has a higher frequency than the one which tends to twist
each soft (@) spring. So the frequency of these modes depends on the
position of the wave nodes. Note that the other states which were moving
waves under C,, symmetry remain so under C,, (see Problem 2.7.3). Their
frequencies are shifted in Figure 2.7.7(b) but the degeneracies are not split.
The frequency of these modes does not depend on the positions of wave
nodes.

B. Galloping Waves

Elementary accounts of wave mechanics are often devoted almost exclusively
to either pure moving waves or else pure standing waves. In fact, there exists
a doubly infinite continuum of different types of monochromatic waves which
lie between these two extreme types. The general monochromatic (single-
frequency) wave function has the form

W(x,t) = (Ie’** + Re **)e~', (2.7.12)

where the (generally complex) amplitudes for the incident (from the left) and
the reflected (from the right) are I and R, respectively. If one of the
amplitudes is zero, then x represents a purely moving wave, and if their
magnitudes are equal (|I] = |R]) then it is a pure standing wave.

The waves which result for arbitrary / and R will be called GALLOPING
waves here because of a peculiar motion which they exhibit. A quantity
known as the STANDING-WAVE RATIO given by the definition

SWR = A = (I -R)/(I+R). (2.7.13)

serves as a measure of properties of the general galloping wave.
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Two examples of the galloping-wave motion are shown in Figures 2.7.8(a)
and 2.7.8(b) for SWR = 1 and SWR = ;. The upper portion of each figure
contains superimposed ‘plots or snapshots of the real part of the wave
function at 10 equally spaced instants during one period. The lower portion
of each figure shows over 20 instants for the same wave plotted in a
space-time (x, ct) frame. The latter should be viewed as three-dimensional
perspective plots with the third dimension representing wave amplitude
emerging obliquely from the page.

You should notice in the upper portion of each figure that the waves all
are constrained to slide through a fixed envelope given by the magnitude of

~ T~ 1L — [~
]

T
\/\/\/_\/

._/_\/\_/\/_\

@1=12R=16

Figure 2.7.8 Space-time trajectories of the zero points of a galloping wave for two
values of the standing wave ratio: (a) SWR = A = 1, (b) SWR = A = ;. Wave forms
for equal space-time intervals are superimposed at the top of each figure.
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i=1R=.9
Figure 2.7.8 (Continued).

the wave function (2.7.12), which is

lp(x)| = [ ]2 = 17 + IRI? + 2111 R cos(2kx)] %, (2.7.14)

where I and R are here chosen to be real. The SWR is a ratio of the 1
maximum value of Isf(x)l to its minimum value.
It is interesting to see what the wave does when it shrinks from its
maximum value and slides through the minima in the [§(x)| envelope. It
appears to speed up through the minima then slow down as though it were
catching its breath while it has maximum amplitude. You can see oscillation
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of the phase velocity defined by the space-time trajectories of the zeros in the
main figures, and this provides a measure of the galloping. As the SWR
deviates more from unity the galloping becomes more extreme. This is seen
by comparing the zero-point motion in Figure 2.7.8(a) with those in Figure
2.7.8(b). If the latter represented a light wave then the phase velocity ranges
from ¢ /19 to 19¢ and back again twice in one period! You should show that,
in general, the phase velocity ranges between ¢(SWR) and ¢ /(SWR) (Prob-
lem 2.7.2).

A set of zero trajectory plots are drawn for a range of SWR values
between 1 and —1 in Figure 2.7.9. Below four of the drawings are shown
representative wave plots and phasor diagrams. If you are interested in
working with the dynamics of waves in optics, quantum theory, or other areas
of physics it probably would not hurt to familiarize yourself with these
elementary pictures. Also, they provide some interesting relativistic effects if
one considers the effects of Doppler shifting the R wave up and the [-wave
component down in frequency.

C. Comparison with Fourier Analysis

The analysis of any system in terms of waves of varying frequency and
wavelength is generally called FOURIER ANALYSIS. We have seen that
representation theory of C, is essentially Fourier analysis. A complete set of
waves which one associates with irreps of C,, is used to describe a multitude
of oscillator properties.

Later we shall be interested in waves of many different types traveling
through more complicated spaces and topologies. It will be possible to
describe these with irreps of more complicated symmetries than C,,. Ordinary
Fourier analysis will not be as much help then, but it is still useful to think of
representation theory of any symmetry as a generalized Fourier analysis.

2.8 OTHER TYPES OF ABELIAN SYMMETRY

Consider the example in Figure 2.8.1 of a mechanical system. Let the
classical equation of motion be given by the following:

{1]%) A a b c | {1lx>
QEyl _[a A4 ¢ b2k
Gl e ¢ 4 al|lG (2.8.12)
{4]%) c b a Al\4lx)

The components in the acceleration matrix depend upon the spring constants
{k,, k,, k) and geometry according to the theory outlined in Chapter 1
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y axis

Figure 2.8.1 D, symmetric coupled oscillators.

(Section 1.4.B):

A = —(k,cos’(a,b) + k, + k_cos*(b,c))/m,

a= —k,cos*(a,b)/m,

b= —k,/m,

¢ = —k.cos’(b,c)/m. (2.8.1b)

For small vibrations these components may be assumed constant.

The physical symmetry of this contraption turns out to be the same as that
of the fan blade shown in Figure 2.1.1. This symmetry is called D, in a
notation of crystallographers, which stands for “dihedral of two intersecting
planes.” The group D, is composed of 180° rotations around each of three
orthogonal axes x, y, and z. The D, multiplication table is given by Eq.
(2.1.3).

There can be no mistaking the group D, for the other group of order 4
(the chart in Figure 2.2.2 indicates two groups of order 4 exist), which is the
cyclic group C,. All the squares (R?) of D, clements R are equal to the
identity, while C, has elements corresponding to 90° rotations and for which
the squares are not the identity.

Strictly speaking, the only way to be sure that D, is a physical symmetry of
the model in Figure 2.8.1 is to test its representation in the assumed basis.
Equations (2.8.2a) and (2.8.2b) define this representation, and you can check
that it does indeed commute with the acceleration matrix. The abstract
definitions obtained by inspecting Figure 2.8.1 are as follows:

11 = 1), R,I1)=12), R,I1)=13), R,1)=[4),
112) = 12), R,12) =11), R,|2) =[4), R,[2)=13),
113) = I3), R,I3) =14), R,I3)=11), R,3)=12),
114) = |4), R, 14)=13), R,4>=12), R,4)=[1). (2.8.2a)
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The resulting matrix representation in the {{1)(2)]3)]4)} basis is then given
by

#(1) = A(R,) =

1 -p

Z(R,) = A(R,) = . (2.8.2b)

Now it is possible to decompose this symmetry group into sums of
idempotents as was done before with the C, groups. The minimal equations
of R, (R?=1)and R, (R? = 1) give two idempotents each:

P**=(1+R,)/2, P’*=(1+R))/2,
P*~=(1-R,)/2, P’ =(1-R))/2. (2.8.3)
Each pair satisfies a completeness relation by itself:
1=P* 4 P*, (2.8.4a)
1=P*"+ P’ (2.8.4b)

However, D, has four linearly independent operators, and so clearly neither
pair is enough by itself to spectrally decompose the whole group. The trick is
to use the two together by simply multiplying Eq. (2.8.4a) with Eq. (2.8.4b):

1-1=(P**+ P )(P""+P7)
1=P*P* + P**PY "+ P*"PY"+ P*"P". (2.8.52)
This gives a completeness relation involving four new idempotents:
Pl=P""P'"=(1+R,+R, + R.)/4,
P =P P’*=(1-R, +R, - R.)/4,
P}=pP**P’"=(1+R, - R, - R.)/4,
P*=pP* P =(1-R,-R, + R.)/4. (2.8.5b)

The resulting four idempotents must be orthogonal as well as complete, since
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their commuting factors are orthogonal. For example, the product
P'P? = (P**PY*)(P*"P’Y)
= px+px-py+py+
=0
is nullified by the (x) factors. Furthermore, the four idempotents are simulta-

neously eigenoperators of R, R,, as well as R, = R, R,. For example, we
have

R.P>=R.P*"P’~, R,P’=RP*™P*", RP>=RP*P’~
=p? = P**R, P’ =R, R P**P’~
= _p? =R,P*"R P’
= P2,

Hence, all four D, operators may be simultaneously spectrally decomposed:

1=P' +P>+P*+P*
R, =P' = P2+ P> - p4,
R,=P'+P?—p3-p*

R,=P'—P?-pP3+p* (2.8.6)

z

The coefficients in this expansion or within the parentheses of Eq. (2.8.5b)
are the irreps D*(g) of the group D,. These are summarized by the
equations and table that follow. The conventional (A, B) notation for the
irreps is given also:

Conventional notation g = 1 R R R
P =H{Z07(0)g)  DM(e) = D'(e) -
) D®(g) = D*(g) =

4

g= ) D%(g)P* D%(g) =D(g) =
D™ (g) = D*(g) =

a=1

e
|
p—
[a—y
|
[—y
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The eigenvector solutions to the equation (2.8.1) of motion are found
using the irrep idempotents as follows:

ledy = |e'y = PHIWE = (I1) + 12) + [3) + 14)) /2,
leB2) = |2y = P14 = (1) - 12) + 13) — 14))/2,
leB1) = [e3) = P34 = (11) + 12) — 13) = 14)) /2,
le2) = le*)y = PA1OVA = (I1) — 12) — [3) + [4)) /2,

EIGENVECTORS EIGENFREQUENCIES
1 1,
1/ (A+atbro)”
1
1
1
—: /2 (A—atb—c) %2
-1
1 1,
1172 (A+a—!:'—c)/2
-1 1
-1 l
!
1
-1/ (A—a—h+c)

o=

Figure 2.8.2 Normal modes, cigenvectors, and eigenfrequencies of D, symmetric
coupled system.

jwwy
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where the original state definitions [1) = 1]1), [2) = R |1), |3) = R, |1),
and [4) = R,|1) of Eq. (2.8.2a) are used. These states are pictured in Figure
2.8.2, and their eigenfrequencies from Eq. (2.8.1) are written next to each
drawing.

2.9 THEORY OF COMMUTING IDEMPOTENTS

We can easily see that the trick which gave the D, irreps, must also work for
any Abelian finite group. Suppose one element g of the Abelian group
satisfies a minimal equation g” = 1. From the theory of Section 2.6 this
equation yields a set {p'!, p% ..., p"} of n orthogonal idempotents. Let
another element & yield another set of {g¢', g2 ...,q™}. The p’ and g*
idempotents give eigenoperator expansions of g and h, respectively,

g= 2Ygp, h= Y hg", (2.9.1)
j=1 k=1

while either set of idempotents satisfy the completeness relation:

™=

pl=1= Y g* (29.2)
1 k=1

J

Multiplying Eq. (2.9.2) by p’ may result in the “splitting” of p/ into a sum
of operators p’g*:

p’=p’q" +p'a® + .-+ +piq™
= - +P 4+ P 4+ +PT (r<m). (2.9.3)

The nonzero terms {P', P2,..., P’} in these sums must satisfy orthonor-
mality and completeness relations, too. This follows from Egs. (2.9.1) and
(2.9.2), since the p™ and ¢* commute with each other (p”g* = ¢*p™) since
they are polynomials of the commuting elements g and h. Furthermore, the
resulting set provides a spectral decomposition of g and h simultaneously
[recall Section 1.2.B(d), where matrices were treated in this wayl:

gP*=Dg)P*;  g=D'g)P'+D*(g)P>+ --- +D"(g)P’,
hP® =D%(h)P%;  h=D'(h)P'+ D*(h)P*+ --- +D"(h)P". (2.9.4)

This splitting process can be repeated, using idempotent expansions gener-
ated by other group operators {k, /,...} which are not products of powers of
g and k. Finally, this process must yield exactly as many nonzero idempotents
as group eclements because of linear independence. These final IRRE-
DUCIBLE idempotents cannot split anymore because if one of them did,
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there would be one more linearly independent operator than there are group
elements. But this is impossible, since any operator in the group algebra is a
linear combination of group operators. The number of group operators is °G,
the order of the group.

Furthermore, these irreducible or “unsplittable” idempotents are unique.
Suppose two sets [Eq. (2.9.5)] have been found by using different group
elements:

1=P' +P*+ - +PC=pP' + P + - + PO, (2.9.5)

Multiplying both sides by P/ gives
P/ =P/P' + PIP? + --- +PIPC, (2.9.6)
which can have only one nonzero term, since P’ is unsplittable. Let us say
that term is P/ = P/P’. Then multiplying Eq. (2.9.5) by P* gives Eq. (2.9.7),

which proves each idempotent set is unique no matter how you get it:

P' = pip' = pi. (2.9.7)

2.10 GENERAL THEORY OF ABELIAN GROUPS

There is an easy way to express the group D, and many others that arise in
physics. D, is nothing but C, X C,. Let us now define what is meant by this
“multiplication” (X) of groups.

Definition A group G is said to be an OUTER PRODUCT H X K of
subgroups H = {1, h,, h,,...} and K = {1, k, k,,...} if the following
holds:

(1) Every element g in G is written uniquely as a product g = hk; of
one element from H and one element from K.
(2) Each k; in H commutes with each k; in K --- hk; = k;h,.

In D,={1,R,,R,, R} we find subgroups H = {LR}=C, and K=
{1, R} = C,. Tt is easy to verify that the criteria (1) and (2) apply so that
D,={1,R} x{1,R,} = C, X C,. Of course, (2) applies automatically in
Abelian groups, but the definition applies even if H and K are not Abelian.

This can be very convenient if you know the irreps of factors H and K of
G = H X K. Then the irreps of G can be obtained immediately, as shown for
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D, = C, X C, in the following:

1 R,
1 R, 1 R,
11 1 1
1 1| 1 R, R, R, =RR,
1 -1 1 -1
1 1 1 1
=1 -1 1 -1
1 R, 1 R, L1 -1 -1
11 1 1 1 -1 -1 1
1 -1
1 -1 1 -1

Furthermore, there is a famous theorem about Abelian finite groups which
follows from the idempotent analysis in the preceding section. The theorem
says: (1) Every finite Abelian group can be expressed as outer products of
cyclic groups, and (2) C, X C, and C,, are the same group if and only if
integers p and g are relatively prime. This theorem allows one to name all
the Abelian groups of an arbitrary finite order. For example, there is only
one Abelian group of order 6, C; X C,, which is just the same as Cq. (We
have already mentioned that C, X C, is not the same as C,.) For another
example, all the groups below are different, and completely account for all
Abelian groups of order 72 = 2332 (check Figure 2.2.2):

C, X Cy X Cy X Cy3X Cy CyX Cy X Cy X Cy
C, X C, X Cy % C, C, X C, X C,
Cg X Cs X C, Cg X Cy ~ Cap.

2,11 SOME ABELIAN POINT SYMMETRIES

A POINT SYMMETRY GROUP is a group of geometrical operations that
keep at least one point fixed. These may include ROTATIONS around an
axis through this point, or less familiar operations like REFLECTION or
INVERSION. A CRYSTAL point symmetry group is a possible site symme-
try at each lattice point in some infinite crystal lattice. Only onefold, two-fold
(180°), threefold (120°), fourfold (90°), and sixfold (60°) axial symmetry can
exist in a crystal. Hence the number of crystal point groups is restricted. It
turns out there are just the 32 crystal point groups. These are named in
Figure 2.11.1. Surprisingly, exactly half of them are Abelian. These 16
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Sy —

Cop~Cy X C
Ci~Cy sh (2nv2
Dop~ Co X €9 X Cy

<B“ A

Th

T

Q] " Cg~C3 X Cy
Y Cgp ~C3 X Cy X Cy

Y (en

/A

D3 Cov
Cay
D3q
Can ~C3 X Cp

a

S A N R N B

4 6 8 12 16

=y
N
w

ORDER OF GROUPS

Dgn

Op

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are
Abelian and are illustrated by models drawn in circles.
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Abelian crystal point symmetries are indicated by drawings showing objects
having the symmetry. (The 16 non-Abelian symmetries are drawn in Figure
3.1.1 at the beginning of Chapter 3.)

In Figure 2.11.1 the simplest objects having reflection symmetry are shown
next to the symbols C, or C,. An h or v refers to a horizontal (xy) or
vertical ((yz) or (xz)) mirror reflection plane which you can imagine bisecting
the object. If you were to somehow map each point of the object into its
mirror image point it would still look the same. The reflection operation is
not as easily demonstrated as the rotation operation, but it is just as valid as a
symmetry operator. For example, the horizontal reflection o,, through the
(xy) plane changes a 3-vector (x,y,z) to (x,y, —z). Similarly, vertical
reflections o,, and o,, would change the same vector to (x, -y, z) and
(—x,y, z), respectively. The representations of these reflections in the
{x, y, z} Cartesian vector basis are as follows:

1 0 0 1 0 0
W(O-xy) =10 1 01, %(o’xz) =10 -1 0},
0 0 -1 0 0 1
-1 0 O
7(o,)=| 0 1 0] (2.11.1)
0 0 1

Note that the symmetries Cg,, Cy4p, D5y, Csp, Cypy, and C,, all have horizontal
reflection symmetry. The symmetries C,, and C, have vertical reflection
symmetry. The confusion between groups C, and C, comes about since no
rotation axis serves to uniquely define “vertical.” (Similarly, one could
relabel D,, to be D,, just as well.)

The simplest object having inversion symmetry is shown by the symbol C;
in Figure 2.11.1. If each point of the object at (r) is mapped through the
origin at the centroid of the object, to the position (—r), it will still look the
same. This is another operation that we can only “do” mathematically. The
inversion operator is usually labeled by I. The representation of [ is

-1 0 0
()= 0 -1 0 (2.11.2)
0o 0 -1

in the {x, y, z} basis. Other symmetries that include inversion are the groups
C,p, Cs Cuy,y Dy, and Cg,,, which are connected by lines leading away from
C,. Any symmetry group 4 connected by a line in Figure 2.11.1 to a larger
symmetry group B is contained in B. A4 is said to be a SUBGROUP of B
(A c B). You may read (C) as “is less than” or, better, “is contained in.”

The three symmetry groups C;, C,, and C, are exactly the same as far as
their mathematical properties are concerned. Their character tables or irreps
look exactly the same. However, there are many conventional notations
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which give different names to the same irreps depending on which symmetry
is being labeled. Some examples are shown by the following:

C, 1 1 (inversion)
C, 1 R  (180° rotation)
1 (reflection)
0,4, (+) | 4 1
or or
1, | 4, (=) |42
(2.11.3)

When different symmetry groups G and G’ can be shown to share the
same mathematical properties, they are said to be ISOMORPHIC symmetry
groups. This is denoted by G ~ G’ in Figure 2.11.1. In the last example one
has C; ~ C, ~ C,. There are many different symmetries, but only a fraction
of these are really different groups. For example, all the Abelian symmetries
of order 6, namely, C;;, C¢, and C,,,, are isomorphic to C; X C,, as explained
in the preceding section. However, to define these symmetries more precisely
one can write C;; = C; X C;, Cg = C; X Cy, and C3, = C3 X C.

Similarly, the symmetries D, = C, X C,, C,, = C, X C;,and C,, = C, X
(C, ~ C,) are all isomorphic to C, X C,. To understand these groups a little
better note that a product of inversion and a horizontal reflection is

-1 0 o)1 0 0 -1 0 0
%(1)%(%)=( 0 -1 0)(0 1 0)=( 0 -1 0)
o o -1/lo0 o -1 0 o0 1
= 7(R,(180°), (2.11.4)

which is a 180° rotation around the vertical z axis. Therefore, the elements
{1,R,,I,0,} make up C,,. On the other hand, we have C,, =
{1,R,,0,,,0,,}, since

o, 0,=R,. (2.11.5)

Finally, note that C,; is isomorphic to C,. The former contains a 90°
ROTATION-INVERSION operation in place of the simple 90° rotation
operation of the latter. In other words, if the C,, model is inverted before or
after a 90° rotation, it will retain its original appearance. C,; is often labeled
C,,.

In conclusion, one notes that the essential mathematical properties of all
16 Abelian crystal point groups are derived from those of three simple cyclic
groups C,, C5, and C,.
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2,12 SYMMETRY ANALYSIS FOR QUANTUM MECHANICS

The mathematics of symmetry analysis for quantum mechanics is mostly the
same as it was for the classical problems which were used to introduce it.
This is especially true here, since we have made a point of using Dirac
notation for classical problems. However, it is important to seec how the
physical interpretations of the similar mathematical solutions can be very
different. We study below some of the simplest examples of quantum prob-
lems involving symmetry.

A. Bohr Levels and Bloch Waves: C,, Clocktane Orbitals

In this section we will consider an electron confined to orbit in a circular ring.
The effects of 12 equivalent potential wells set around the ring at the 1
o’clock, 2 o’clock, ..., 11 o’clock, and 12 o’clock positions will be discussed
using C,, symmetry analysis. Three cases will be treated, including (a) the
Bohr-orbital case where no potential wells exist, (b) the nearly free electron
case where very shallow or weak potential wells exist, and (c) the tight-bind-
ing or very hindered rotation case in which the potential wells are very deep.
The potentials for cases (a), (b), and (c) are drawn at the top of Figures
2.12.1(a), 2.12.1(b), and 2.12.1(c), respectively.

This is a highly simplified model of the molecular orbitals of a 12-fold
“clocktane” molecule. It will be the basis of quite a number of concepts
developed in this book.

(a) Bohr Orbitals and Free Rotation If an electron orbits freely around
a circular ring the time-dependent Schrédinger equation is

oY 3P I
i = Ho = —(W*/2u) 7 = —(#*/2ur? prel (2.12.1)

where the independent variable may be azimuthal angle ¢ or else circumfer-
ential distance

x=ro (2.12.2)

around a ring of radius r. The solutions to the Schrédinger eigenvalue
equation

Hylm) = ¢,,|m) (2.12.3)

are represented by the one-dimensional plane-wave functions,

imd eikx

(pIm) = e {xlk>, (2.12.4)
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having energy eigenvalues

h? h?
£, = 2m2 = —k?, (2.12.5)
2ur 21
where m =0, + 1, + 2,..., + is quantized by the circular boundary condi-

tions {¢p|m) = (¢ + 2m|m). Eigenstates may be labeled using either the
angular-momentum quantum number m or else the plane-wave number

k=m/r. (2.12.6)

The energy eigenvalues ¢, from Eq. (2.12.5) are plotted in Figure 2.12.1.
Note that all energy levels except m = 0 are doubly degenerate. Moving-wave
states [m) and | — m) move around the ring in opposite directions, since by
Egs. (2.12.1)-(2.12.4)

ei(im¢—5mt/h)
V2 ’

however, the energy ¢, is the same for (+m) and (—m). Therefore, one may
construct sine and cosine standing-wave states

(p,tl +t m) = (2.12.7)

(plc,,) = {plm) +‘/;¢| —m = (7)) " cosme, (2.12.8a)
(Bls,) = (blm) ;‘/;d)l —m (m) *sinmg, (2.12.8b)

which have the same energy ¢,, but stationary nodes and crests:
($,tlc, ) = (m) e ient/? cos mep, (2.12.92)
($,tls,) = (m) " 2e i/ sin mép. (2.12.9b)

The position of the nodes makes no difference in the energy if the potential
is constant.

(b) Weak C,, Potential and Nearly Free Rotations Consider the effect
of a C,, symmetric perturbation V;, added to the Hamiltonian:

H=H,+ V. (2.12.10)

Let the perturbation consist of (n = 12) identical potential wells separated by
angle (A¢ = 27/n = 7 /6) or by circumferential distance d, where

d =2mwr/n = wr/6, (2.12.11)
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as shown in the upper portion of Figure 2.12.1(b). The matrix elements
{m'|H|m) of this new Hamiltonian must be zero unless states |m) and |m’)
belong to the same irrep D*» of C, = C,,. Using Eq. (2.12.4) one finds the
matrix element to be

(m'|Hlm) = {m'|Hylm) + {m'|V,lm)

1 —im'd imd
=8,/ mEm T Efdd)e Ve

1 .
= 5,,,,mE + ﬁjm emimm-mey L (2.12.12)

where E = #2/2ur? A portion of the H-matrix is displayed in Table 2.12.1
on p. 121 for E = 1. Note that all off-diagonal (s’ + m) components are zero
unless

lm' — m| =n,2n,3n,...
=12,24,36,..., (2.12.13)

or
m' = (m) modulo (n).

Consider two ways to see this. First, the only nonzero Fourier components
which a C,;, symmetric potential ¥}, could have would be a 12th (e *%/¢),
24th (e *%%%) etc. Note that the second term in Eq. (2.12.12) equals the
(m' — m)th Fourier component

1 -
G(m' —m) = E/d(b g im =mys (2.12.14)

of V,,. Hence, Eq. (2.12.13) follows. For a second proof note that m and m’
belong to the same irrep D*» of C, if Eq. (2.7.7) holds. This implies Eq.
(2.12.13). Note that the definition of wavevector k, in Eq. (2.12.6) is

k,=m/r= 2mwm/nd) (2.12.15)

when Eq. (2.12.11) is used. This agrees with the original definition in Eq.
(2.7.2) if the unit of distance is the lattice interval (d = 1).

The introduction of potential ¥}, may change the eigenstate |m) of H,
into a new eigenstate |e(m)) of (H, + V,), which is a combination:

le(m)) =, \lm) + ¢, _plm —12) + ¢, _olm —24) + - -
t YoM+ 12) + Yippglm +24) + -0 (2.12.16)

of all the states |m — Nn) labeled by the same irrep D2 of C,,. Finding the
perturbed eigensolutions ¢; and the eigenvalues can be difficult in general.
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However, if V7, is weak enough one may ignore all but two terms in Eq.
(2.12.16), and consider only pairs of states with nearly equal unperturbed
energies ¢,, ~ ¢, = m>E. For example, |5) and | — 7) only differ by (7% —
52)E = 24E, while the next possible contender in Eq. (2.12.16) is |17}, which
differs by E(17% — 5%) = 264E. As long as V,, < 264E we can ignore [17).
The same is true for the pair {|7), | — 5)}. Approximate eigensolutions made
from just these pairs are found by diagonalizing (2 X 2) H-submatrices
derived from Equation (2.12.12) or extracted from Table 2.12.1:

15) | =7 | —5) 17>
(H)s._;= [ 25E  G(-12)\, (H)_s,={ 25E  G(12)).
G(12)  49E G(-12) 49E

Note that the eigenvalues (¢) of these two matrices are identical:

172
)

e(£7) = 37E + (144E? + |G(12)/° 49E + |G(12)* /24

IR

In

1/2
)

e(+5) = 37E — (144E* + |G(12))? 25E — |G(12)I?/24E.

(2.12.17)

So for small |G(12)|” the perturbation ¥, shifts the | + 7) doublet level up
slightly, and the | + 5) doublet level down by the same amount. This is
shown between the (a) and (b) parts of Figure 2.12.1.

The splitting of the | + 6) doublet in the same part of Figure 2.12.1
deserves special attention. Now there is only one (2 X 2) matrix to diagonal-
ize, and it is found at the center of Table 2.12.1:

16) | —6)
(Hy.e= [ 36E  G(-12)].
G(12)  36E

Its eigenvectors and eigenvalues are the following:

6)+1-6)
lcg? = — 5 with eigenvalues g(c,) = 36E + G(12),
. 6)—1-6>
ilsg) = —a with eigenvalue £(s¢) = 36E — G(12). (2.12.18)

Here it is assumed that G(12) = G(—12) < 0. This corresponds to picking
origin (x = 0 = ¢) in the center of an attractive [V(0) < 0] symmetric [V(x)
= V(—x)] potential well. Once again (recall Figure 2.7.7) the (m = +6)
doublet level is split by a C), perturbation and standing-wave eigenstates
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become mandatory. The cosine wave stands so its crests and troughs fall in
the 12 attractive wells of the potential. The cosine wave is shown by the B,
wave in Figure 2.12.2(a). It is drawn below the (B,) sine wave of state |s,).
The sine wave has higher energy, since its crests fall in the high-potential
regions, while its nodes stand in the low-potential wells. The energy differ-
ence between [cg) and [sg) states is called the first BAND GAP. It equals
twice the 12th Fourier component of V,:

£(ce) — £(s¢) = 2G(12). (2.12.19)

When moving-wave orbitals are forced to combine to make standing-wave
eigenstates, one generally says that the orbital momentum has been
QUENCHED. The same thing happens to the (m = + 12) pair of states. The
cosine state |c,) is labeled A4, in Figure 2.12.2(a) and drawn above the sine
wave state |s;,), which is labeled A,. The splitting of this second band gap
depends on the 24th Fourier coeflicient of V,; that is,

e(cy) — e(s;,) = 2G(24), (2.12.20)

in the approximation which assumed V,, is weak. We have assumed G(24) is
positive in the figure, but it is easy to make a potential which gives the
opposite sign. However, the energy level structure is the same for either sign.
The m-levels within the bands where m is not divisible by (n/2 = 6) may
belong to moving-wave states. From these states one may construct waves
which move around the ring or else make standing waves which stand
anywhere on the ring. However, even moving waves with energies near a
band edge or m-values approaching n/2, n, 3n/2, etc., may exhibit very
sluggish motion. A measure of a wave state’s ability to move is derived from
the wave ENERGY DISPERSION RELATION &(k,,). This is determined
(approximately) by the eigenvalues of the Hamiltonian (sub)matrix

lm) lm — n)
m?E G(n)
G(n) (m—n)’E

<H>m,m—n =

for small potentials. A good measure of wave motion is found by computing
the wave GROUP VELOCITY

do h_lds(k,,)
= = ( dk.

n

v

(2.12.21)

It is important not to confuse v, with the PHASE VELOCITY v, = w/k; V,
is proportional to the slope of the energy eigenvalue function plotted versus
k,, or m as in Figure 2.12.1. Note how the slopes of the curves which would
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connect the dark circles in the figure tend toward zero near the band gaps or
Brillouin boundaries. As the number (n) of potential wells increases each
band becomes a quasicontinuum of energy levels. Then the wave states vary
continuously from moving waves to standing waves as the energy approaches
a band edge.

(c) Very Hindered Rotation: Bloch Waves and Tunneling For energy
eigenstates that lie deep in strong C, symmetric potentials, many higher
terms in Eq. (2.12.16) may be significant. In general the wave function for this
state assumes the form of a BLOCH wave:

(ple(m)) = L dpinldlm + Nn)

N=—x»

= ey (¢) = e *u (x), (2.12.22)

where u(¢) is a local or BLOCH FUNCTION:
U(P) = L Ynmenae™? =u (o + 2m/n), (2.12.23)
N=—c

which has the C, symmetry of the periodic potential. (This result is also
called FLOQUET’S THEOREM.)

For deeply bound eigenfunctions it is useful to make another approxima-
tion for the Bloch solution. With high barriers between each of the n
potential wells it makes sense to use the eigenfunctions of each individual
well as a basis. Let |1) be an eigenstate for the first well obtained by
assuming that it is the only well on the ring. (One can imagine filling in all
the other wells with a constant potential equal to the maximum of the
potential hills.) Then let the basis {|1), 12}, |3), ..., |n)>} of states be defined
each by a C,, group operation on the first one; i.e., [1) = 1|1), [2) = r|1)
(see Figure 2.12.3), |3) =r?[1),...,|n) = r*1|1). Finally, let the Schro-
dinger eigenvalue equation H|¢y) = ely) be represented in the
{11>,12),..., |n)} basis by

H -S 0 - =S\[dl Ly
-§ H -5 - 01| <2ly> Q2ly)
0 - H - 01 Bly) | =¢f Gl |, (2.12.23)
s 0 0 H| \<nlpy (nlg)

There is one such submatrix for each band as shown in Table 2.12.2.
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BASE STATES

|11> =
- 2> =r1>

. In> = >

Figure 2.12.3 C, symmetric ring potential and localized base state |2) = rl1).

where H is the single-well energy, and —S is the tunneling amplitude
between nearest neighboring wells in the n-well problem. Amplitude § is
proportional to the rate at which a particle originally in well () may ‘“sneak”
next door to well (j + 1) or (j — 1). Remember, |j) is an eigenstate only if
neighboring wells are unavailable to accept the electron; i.e., if § = 0.

Except for a change in notation, the matrix in Eq. (2.12.23) is identical to
the acceleration matrix in Eq. (2.7.1). The C, projectors P*» applied to |1)
give moving-wave eigenvectors:

k> = P*|1)Vn = (1) + e™*12) + e 2*4|3) + --+ ) /Vn, (2.12.24)
which have eigenvalues
eg,=H—2Scos k,, (2.12.25)

where the distance between potential wells is set equal to unity (d = 1). The
latter equation gives the well-known cosine dispersion function ¢,(k,) for
bands of tightly bound electrons. This result is indicated by the 12-fold
polygonal projections which are drawn next to the energy levels in Figure
2.12.1(c). The bandwidth (45) between the band edge states |k,) and |k) is
schematically exaggerated for the two bands in the figure. In the limit of
strong potentials the bandwidths should be a tiny fraction of the band gaps.
When propagation is reduced to a slow “oozing” or tunneling at rate .S and
this corresponds to a small group velocity and nearly zero slopes along (k).

eGSR
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As in the treatment of pendulum waves the sine (|s,>) and cosine (|c,))
wave states are easier to picture:

leky = (Ik,> + | — k,0)/V2 = (11) + cos k,12) + -+ }(2/n)"?,
Isky = —i(lk,) — | = k,))/V2 = (sin k,12) + -+ )(2/n)""°.

Examples for n = 3 and 4 are shown in Figure 2.12.4. These are the analog
of the pendulum standing waves depicted in Figure 2.7.3. Figure 2.12.4 is an
attempt to display simple molecular orbitals. However, the “blob” wave
functions drawn there cannot tell one much about the local potential well
wave functions {(x|1), {x]2),...,{x|n)}. The waves in the figure depict the
e’*»* (or cos k,x) part of the Bloch wave [Eq. (2.12.22)], not the local
[u(x) = {(x|1)] part. The former varies from state to state within a given
band, while the latter varies from band to band.

A more detailed picture of Bloch waves is shown in Figure 2.12.2(b). Note
that the local Bloch function [u(x) = {x|1)] has the same shape in all wells
for all states within a given band. It consists of zero, one, two,... rapid
oscillations within each well for the first, second, and third bands, respec-
tively. The local functions are modulated by a more or less slowly varying
envelope function (e’*»* or cos k,x) to give each Bloch wave.

The node structure of Bloch waves is an important consideration. Accord-
ing to an elementary theorem of quantum mechanics, a one-dimensional
wave with more nodes always has more total energy. (This was proved by

o ) (oggp 4l o @

H-2s L <|'
I

®)

Figure 2.12.4 Sketches of molecular orbital wave functions and tunneling spectra for
homocyclic potentials. (a) C; symmetry, (b) C, symmetry.
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Schridinger). Therefore the B; wave (m = n/2) in Figure 2.12.2(b), which
has n nodes, must be higher in energy than all the states with lesser
m =0,1,2,..., which have zero, two, four,... nodes, respectively. The A4,
wave (m = 0), which has no nodes, is lowest in energy. This is paradoxical,
since the A, wave has nonzero amplitudes in the centers of the high-poten-
tial regions where the B, wave is zero. (Schrodinger’s theorem is not a trivial
result.) Therefore the negative sign of (—S) in Eq. (2.12.25) is right for the
lowest band, since then the (k = 0) or A, wave is the lowest state.

In the second band, however, (S) changes sign as well as magnitude. The
B, wave belongs to the (m = n/ 2) irrep of C,, as does the B, wave on top of
the first band. (B can stand for Brillouin or band boundary.) Starting with the
B, wave, which has n nodes, one proceeds upward in energy with n + 2, n +
4,...,2n — 2, and finally 2n nodes while the m label decreases: m =n/2 —
1,n/2 —2,...,1, and finally m = 0 for the 4, wave on top of the second
band. Notice that adding one more node inside each potential well increases
the energy by roughly one whole band gap. Increasing the number of nodes
between wells may increase the energy by only one bandwidth at the most.

(d) Intermediate Potentials: Exact Solutions 1t is instructive to study
exact solutions to the Schrodinger eigenvalue equation,

dZ
dT:Z + (2ur*/m*)(e = V(4))¥ =0, (2.12.26)

for a mass p particle on a ring of radius r subject to a C, symmetric
potential V(¢) = V(¢ + 2m/n). Two cases that have been analyzed are the
cosine potential,

V(¢) = —Vcos(nd), (2.12.27)

and the n-square-well potential

V(¢) = U(né), (2.12.28)

where,

[0, -w/2<6<m/2,
u(e) = {U, w/2 <8 <3m/2.

These two cases represent two opposite extremes. The cosine potential
has only one nonzero Fourier coefficient, namely, G(n), since it is, after all,
just one cosine wave. The n-square well, on the other hand, has the most
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slowly converging Fourier series of any n-well potential of finite depth; i.e.,
GICN + Dn]l=(-DM7/CQN + 1) {N=0,1,2,...}.

For the cosine potential the Schrodinger equation (2.12.26) becomes
MATHIEU’S equation

d2

% +Ale + Veos(2t)]y = 0, (2.12.29)

where ¢ = ¢n/2 and
A =8ur?/n’h?,

Mathieu’s equation is treated in most standard texts on mathematical physics.
The eigenvalues ¢ of the A and B standing-wave solutions are plotted in
Figure 2.12.5 for a range of well depth V. Recall that the A levels belong to
m-values for which m = 0 modulo n; the B levels belong to m = n/2
modulo n. (No B levels exist for odd n.) 4 and B levels are the boundaries
between bands and gaps. Notice that the first, second, third, and Nth gaps
originate at ¢ = 1,4,9,... and N?, respectively, in the units [2m?4%/n?ur?]
of the figure axis for V' = 0. [This corresponds to our case (a)]. Notice that
only the first gap is open for small V' [case (b)]. This is because G(Nn) is zero
except for N = 1. Notice that the 4 and B levels run together and the
bandwidths shrink rapidly for levels E = ¢ that are much less than V. This
corresponds to our case (c), which was treated in the preceding section. Each
band between the A and B curves in Figure 2.12.5 contains (n/2 — D[(n /2
— 1/2)] doubly degenerate moving-wave levels for n even (odd). These are
not drawn, since they depend upon your choice for .

*eeay

ET s > V. o 2

Figure 2.12.5 Energy versus V' plots for band-gap edges for sinusoidal potential
(Mathieu equation).
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The solutions for the n-square-well potential are the well-known
KRONIG-PENNEY bands. The A- and B-band boundary levels are plotted
in Figure 2.12.6 using Kronig-Penney equations which are given in many
quantum mechanics and solid state texts. The energy E is measured from the
bottom of the wells instead of from a point halfway up, as it was in the
preceding figure. In this way it is easy to see that the case (c) “tight bands”
approach asymptotes at E = 4,16,36,... . These correspond to the
infinite-square-well energies.

Aside from this, the main thing which distinguishes the square-well solu-
tions is the remarkable crossing of 4 and B levels on the case (b) or nearly
free side of the spectrum where E > U. This comes about whenever the
energy E and the potential U are adjusted so that an integral number #n,, of
half-waves fit into each well while another integral number 7, of half-waves

-8
o
S——
80 60 40 20
U ¢+ (E-Uy =0

X=0 X=w

Figure 2.12.6 Energy versus U plots for band-gap edges for square-well potential
(Kronig-Penney equation).
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fit on the plateau between wells. For example, with n,, = 3 and n, = 2 there
is a crossing at E = (2n,)* = 36 and U = (2n,)* — 2n,)* = 20 in Figure
2.12.6. The double degeneracy at this point corresponds to sine and cosine
waves with the same energy.

(e) Comparison: When Is Parameter Fitting Useless? The approxi-
mate modeling of subsection (c) treats each band subspace as though it was
all alone. It provides no information about where a given band is or how wide
it is. Location and width depend on the “unknown” parameters H and S,
respectively. Furthermore, the approximate theory fails to account for the
mixing of states in one band with those belonging to other bands. One effect
of this mixing would be the alteration of the cosine level spacing predicted by
Eq. (2.12.25).

However, an approximate modelist could say, “But, wait...I have some
other parameters besides H and S, namely, T, for next-nearest-neighbor
tunneling, and U for next-next....” Then he could give you a formula that
would “explain” the modified spacing (see Problem 2.12.3). Eventually you
can pull out as many parameters as there are level spaces; however, this is no
more useful than a 52-parameter theory for weekly rainfall averages of 1927.

The approximate tunneling models are quite valid when V/E is large or
when the energy gap between subspaces is large. The signal for impending
failure is the need for too many parameters to reproduce the correct energy
level spacing.

A more detailed formulation of the S parameter in the very hindered case
is given in Section 2.12.D using semiclassical WKBJ formulas.

B. C, Symmetry and the Two-Level System

The C,-like groups only have two irreps corresponding to even [A4 or (+)]
and odd [B or (—1)]. Hence all the energy levels £ ® in the four lowest
spectral bands of a two-well potential of depth (0 < I/ < 100) are given by
the curves in Figures 2.12.5 and 2.12.6 for cosine and square wells, respec-
tively. In either figure the lower-lying spectrum for large V' consists of pairs of
nearly degenerate levels. This corresponds to case (c) [recall Section 2.12.A(c)]
in which the two wells are nearly isolated from each other by large barriers of
height U or V.

In this limit let each pair of states be described by a Schrédinger equation:

F
i) = Hl), (2.12.30a)

represented by

Lo (lyyy [ H =S|l
’ha_t(<2|¢>)“(—s H)((2h/f>) (2.12.30b)
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in the basis |1) and |2) for which the particle is localized in wells 1 and 2,
respectively. The Schoifdinger eigenequation,

Hly) = ely), (2.12.31a)
H —S\([<1g)) _ [l
(_S H)(<2|¢>) - 8(<2|¢>) (2.12.31b)

is a special case of Eq. (2.12.23). The eigensolutions may be obtained using
C, projectors P*= P4 and P~ = P%:

|y = PHIV2 = (11) + 12))/V2,  eigenvalue ¢V = H - §,

gy = P12 = (11) — 12))/V2,  eigenvalue & = H + §.
(2.12.32)

The time behavior of eigenstate [¢() and |¢(7’) according to Eq.
(2.12.30) is simple harmonic phase oscillation at angular eigenfrequency
(H — S)/h and (H + S)/h, respectively,

lzﬁ‘”(t)) = e(H'S)t/ih|¢(+)(0)>’
|l//(_)(f)> = e(H+S)t/ih|(/,(—)(0)>_

This is analogous to the behavior of the (+) and () resonant modes of the
two-pendulum system described in Section 2.3.

One of the most well-known applications of these solutions involves the
ammonia (NH ;) inversion doublet levels. The base states are imagined to be
[1) = |up) and |2) = |dn) for which the N atom lies in a potential well
above and below the H, plane, respectively, as shown in Figure 2.12.7. If the
N atom can tunnel between |up) and |dn) there is an energy splitting
between eigenstates |(+)) and [(—)). The splitting is equal to 25, and the
tunneling frequency is the difference frequency w = 28/#. Tunneling is
analogous to “beat trading” between two pendulums in Figure 2.3.2.

Consider what happens to the ammonia doublet states when an electric
field is applied along the direction of (N)-atom motion. The field breaks the
C, symmetry (to be precise the reflection symmetry of NH; is called C.)
symmetry according to Section 2.11 and makes the up-field state lup)
energetically less favorable than the down-field state |dn). The Hamiltonian
matrix becomes'

(up|H|up) <up|H|dn>) _ (H pE s\ (2.12.33)
{(dn|H|up) <{dn|H!|dn) ) H + pE

where E is the field strength and p is the dipole moment of the N atom. The
effect of the E field on the energy eigenvalues is to make them go further
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| X up) X down)

(H)= S
-s
73
( ) 1 X up) | X down )
-1 —
J2 H+S ~_
-
I e
1 H-8
V2
Cy, Reflection Symmetry Broken Symmetry
ISI>0 8=0

Figure 2.12.7 Two-state model for ammonia (NH,) inversion. The case (S = 0)
corresponds to internal or “spontaneous” symmetry breaking.

apart, as shown in Figure 2.12.8. The figure shows a plot of the eigenvalues &:
2 2p2]1/?
e=H+ [$?+p2E?] " (2.12.34)
For small E field (pE < §) ¢ is given by
e=Hx+[S+pE2/(25)],

while for large E field (pE > S) ¢ is linear in E:
e =H + pE.

The large E field eigenstates are |up) and |dn), the original base states. This
is indicated by the drawings next to the energy trajectories in Figure 2.12.8.

The hyperbola in the figure is the simplest example of what spectroscopists
call an “avoided level crossing.” One can imagine that the straight-line
trajectory for |up) is crossing that of |dn). If § = 0 that is exactly what
would occur. However, with nonzero tunneling |up) and |dn) get mixed up
to make [¢*)) and [¢‘7’) at E =0. What starts out being the |dn)
trajectory curves around at (E = 0) and goes out on the |up) trajectory, and
vice versa. It can be shown that if you vary E slowly (E < §) from large
positive to large negative values then state |dn) does indeed turn into state
|lup) and vice versa. This is called ADIABATIC FOLLOWING. However, if
you make the same change suddenly (E > §) the initial state lup) or |dn)
will not have time to change. The effect will be to jump the curves and cross
over to the other branch of the hyperbola. In this way the field will change
the energy of the system. Two-state dynamics are discussed in Sections 7.5
and 8.5.
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IXup) IXdown)

H+pE -S IX u
= p)
\IXdown) (H) (—S H—pE ‘/

*Ei= 0
X up? P ]‘| | X down }
pE<O Ch pE>0
Broken Reflection Broken
Symmetry Symmetry Symmetry

Figure 2.12.8 Effect of axial electric field on ammonia two-state eigensolutions.
Cases with nonzero field (p - E # 0) correspond to external or applied symmetry
breaking.

C. C, Symmetry Analysis and Scattering Theory

Consider the scattering wave functions i, and ¢, for a single particle outside
of a square-well potential as indicated by Figure 2.12.9;

P(x) =Le™ ™ + 0™, (x< —a)

,(x) = Le ** + 0,e** (x> a). (2.12.35)

The outside or scattering waves must match the “inside” wave

¥, = Ae'™ + Be™"*  (—a <x <a), (2.12.36)
X, =I‘e""‘+ole'“"‘ Xp= Toe kX + 0 e ikx
CHANNEL O \*/ CHANNEL @
X=-a X=a

Figure 2.12.9 C, symmetric scattering potential.
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where their respective wave vectors are given by

I=\2mE/k, k= 2m(E - V)h. (2.12.37)

The match is made through boundary conditions:

$i(—a) =¢,(-a), ¥,(a) =dy(a),

N Yi(—a) =y, (—a), 4 (a) =¢i(a),
on either side of the well. Substituting these conditions and eliminating
constants A and B yields a linear “S-matrix” relation between the ingoing
amplitudes [, in channels j =1 and 2, and the corresponding outgoing
amplitudes O; as follows:

O,| _[(i/D)(I* - k*)sin2la 2lk/D I
0, 21k /D (i/DY(I2 — k¥)sin2la |\ I, |
(2.12.38a)
where

D = —e*™*(2lk cos2la — i(1* + k*)sin2la).  (2.12.38b)

In general the presence of any penetrable potential well would yield an

S-matrix relation
01 Sll S12 11
= , 2.12.39
( 0, ) ( Su Sn\ L ( )

where the components S;; are complicated functions of energy E and the
potential. As explained in Section 2.1.3A, the S matrix is unitary if the
particles are not destroyed or created by the well.

Without looking at the explicit form of the § matrix, we can tell from the
left-to-right (C,) symmetry analysis [following Section 2.3, Eq. (2.3.4)] that
the following vectors must be the eigenvectors of this matrix:

o (1/&)’ e ( 1/\/5)’

ol P s (2.12.40)

Furthermore, since the § matrix is unitary [re_call Eq. (1.3.4)] we know that
the eigenvalues will be of the form e'*+ and e'*-. Just this much information
by itself can simplify the visualization of the scattering process. Suppose the
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incoming amplitudes are proportional to the components of 27+ as follows:

I A/NV2
) —agr [47V2). (2.12.41)
I, A/V2
Then the following must be the resulting outgoing amplitudes:
0 a2
01 = et A;\/f ) (2.12.42)
2
The resulting waves in channels 1 and 2 are then given by
d’l Ileikx 4 Ole—ikx 4 eikx + e—i(k x—py)
(//2 Ize—ikx + Ozeikx \/i e—ikx + ei(kx+p.+)
cos(kx — #—+)
- \/—Z—A i +/2) 2
= el (2.12.43)

By
kx + —
COS( X 2 )

This represents the (+) or EVEN STANDING-WAVE scattering solution.
Similarly, the choice of the ingoing amplitudes given by

I, B
=B¥ =
12

yields the (—) or ODD STANDING-WAVE scattering solution:

B/V2
~B/V2

. _ ®_
¥, I e + 0,e %~ cos(kx - —)
_ — /2 Bei-/ 2

W, Le ** + 0,e** ——cos(kx + 7_

. (2.12.44)

Equations (2.12.43) and (2.12.44) give the form of the waves for what are
called EIGENCHANNEL SCATTERING STATES or PARTIAL WAVES
of even (+) and odd (—) symmetry, respectively.

In Figure 2.12.10 these waves are sketched to show how the two types
evolve with a steady increase of V. Note that the behavior of either type is
related to the behavior of its EIGENPHASE SHIFT 6, = u /2. Notice that
phase shift §,, for example, is fairly constant, while /' varies until one

e T T L
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Figure 2.12.10 Scattering eigensolutions for C, symmetric square-well potential.
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approaches a scattering RESONANCE of type (4). This occurs when an
integral number of wavelengths fit in the well. In passing the (+) resonance
the shift 8, quickly jumps by about 7 as another crest is more or less
abruptly swallowed by the well. The same applies to (—) resonances except
that they occur when a half-integral number of waves fit in the well.

Now ordinary transmission-reflection scattering can be expressed in terms
of the (+) and (—) standing waves since they are a complete basis set. The
most general scattering function can be represented by

T =AtFr+ A 2" (2.12.45)
using a combination of standing-wave solutions:
x =2" cos(kr+8,), x =2 cos(kr +8_)

(2 o2
= (1/ﬁ)cos(kr +48,), = (_1/ﬁ)cos(kr +45_) (2.12.46)

and complex coefficients 4 and A~. Note that the “radial factors”
cos(kr + 8,) are functions of r, where r =x for x >a and r= —x for
x < —a. .

The two components of the “angular factors” or vectors (2°) refer to
channel (1) (left) or (2) (right), respectively. For example, a scattering state
that had only outgoing particles in channel (2) would be represented by the
following wave function:

V=A"Z" cos(kr +8,.) + A2 cos(kr +5_)

A" cos(kr +8,) + A cos(kr +8_) L3 = (? = lpl)

A% cos(kr +6,) — A~ cos(kr +8_)

aetkr

(2.12.47)

The last equation gives the boundary condition, which yields a relation
between A* and A~

A+ei5+_A—ei6_ ) A+€_i§*—A_e_i5‘ ' .
2‘/5 elkr + 2\/5 e—tkr — aetkr’
At=A"e®+7%), (2.12.48)

Substituting Eq. (2.12.48) into the first component of Eq. (2.12.47) gives the
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following:
Y, =24 [cos(8,— 8_)e e+ eTire~i0-]. (2.12.49)

This shows that the reflected wave e’*" in channel (1) will vanish when
8,— 8_= nw/2. This corresponds to the perfect transmission that occurs at
a resonance and is called the RAMSAUER-TOWNSEND effect in the
theory of scattering.

D. Crossing Matrices and One-Dimensional Tunneling
The boundary conditions in piecewise constant potential provide relations
between the amplitudes of right-hand and left-hand moving-wave solutions.
If x,, is at the boundary between two different regions then continuity of the
wave function ¢ and its derivative ' = dip /dx gives
Rleg1x12 + Lle—gxxlz = Rzeglez + Lze‘gzxu’

ngleglxlz — ngle_glxlz = Rzgzegzxxz — ngze'glez’
where the exponential factors corresponding to the two sides are
1/2

2m 1/2 2m
81 [T(VI—E)} ’ 8§~ [_h_(VZ—E)]

These factors are real (for V; > E) or imaginary (for V; < E). These relations
may be solved to give the crossing-matrix relation

R, Cii Cp|[R:
= , 2.12.50a
(Ll) (cﬂ |\ L, ( )
where the C-matrix components are the following:

+ -
Cy= e_(ls’rgz)xl:z(————g1 gz)’ Cy, = e_(31+82)x12(_—g1 &2 )’

2g, 2g,
C, = e(g1+gz)xlz(£1_:g_2_)’ C,, = e(gl—gz)xlz(g_lig_%)_ (2.12.50b)
2g, &1

The crossing matrix for two or more boundaries is simply the matrix
product of the C matrices for each boundary in the order in which they
occur. For the square-well example in Figure 2.12.9 the crossing matrix

e RN T
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Il — Cll C12 02
01 C21 C22 12

relation is

where:
i2ka 12+ k* 12—k
C, =e [colea By sm21a], C,=—i X sin2/a
(IP-k*) . i2ka P+ kK
Cyu=i A sin2/a, Cy=c¢e [cos 2la + i X sin ZIa].
(2.12.51)

Note that the identification of amplitudes O, = R, and I, = L,, which is
consistent with Eq. (2.12.35).

For an arbitrary one-dimensional potential system the C matrix and S
matrix may be related by solving their respective relations (2.12.50) and

(2.12.39):
S Sz Cy/Cpp detC/Cy
= 2.12.52a
(Sz1 Sx 1/Cy —Cp/Cn ( )
C, Cp _| det $* /83 SH/85% . (2.12.52b)
Cy Cyp $11/8x —det S/,

Note that it is generally true that det C = 1, and the S matrix is unitary.
The crossing-matrix methods can be extended to treat WKBJ approximate
solutions of the form

¢ = (Re® + Le”?)/N'/?, (2.12.53a)
where the exponents
6= [k(x)dx (2.12.53b)
and normalization
2mh?
N = m k(x) (2.12.53¢)

depend on the potential through the wave vector

m 1/2
k(x) = [z—hz—(E - V(x))] , (2.12.53d)
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which may be real or imaginary. The WKBJ approximations are most
accurate when the potential varies slowly compared to wave function. The
crossing matrices are used to connect the amplitudes at neighboring classical
turning points where the wave function reaches an inflection point and the
WKBJ solution fails.

For example, the crossing matrix which relates the amplitudes across a
potential barrier from points a to b in Figure 2.12.11 is approximately given
by

c [1+ 62 i0 (2.12.542)
barrier > ’ >
—i0 [1+ 02]1/2
where
§ = elalk(x))dx_ (2.12.54b)

There are discrepancies between various texts and papers concerning the
form of Cy,..,. However, these become unimportant for high barriers
(6 > 1). For crossing the valley in Figure 2.12.11 the C matrix is

Cualtey = (eoa e9ia), (2.12.552)
where
a= [k(x)dr. (2.12.55b)
b

Combinations of these matrices can be used to describe the entire C,
symmetric potential system in Figure 2.12.11. The product of the 27 C-matrix
factors must yield the identity matrix in order to satisfy C, symmetric
periodic boundary conditions. We have

[ Cbarrier Cvalley] " =1

Figure 2.12.11 General C, symmetric
potential function.
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or

[+ 62] e i6e =i 1 0
_ e | = . (2.12.56)
—ife™® [1+6%] e 0 1

This requires that the eigenvalues of C = CuarrierCraney be conjugate pairs of
the nth roots of the unity (e*2™"/" where m = 0,1,2,...,n — 1). This
leads to the following trace relation:

[1+62]" cosa = cos( (2.12.57)

2mm )
We know that if each valley existed by itself it would have a series of
energy levels (Ey, E, E,, ..., E;,...). For a single isolated potential valley

J
the jth energy level would satisfy a quantization condition of the form

a(E;) = f:k(x)dx =(+Hm  (i=0,12,...). (2.1258)

This amounts to a phase change across the valley of (j + 1/2)m correspond-
ing (j + 1) half-waves minus a fraction of a half-wave which would protrude
beyond the valley turning points if the wave could continue on either side. It
is remarkable that this protruding fraction is approximately one quarter of a
half-wave, that is, a w/4 phase decrement on either side. This WKBJ
approximation holds for a wide range of potential slopes. The square well, on
the other hand, has a protruding phase shift & that varies continuously with
the barrier height. (See Problem 2.12.2.) The /4 phase shift is found in the
standard WKBJ analysis and the resulting zero-point quantum term 1is
called a Maslov constant.

All this assumes the absence of tunneling. With n valleys there will be a
cluster of n levels around each single valley level E;. A Taylor expansion
around each level E; gives the phase as a function of nearby energy E:

Jda
a(E) = a(E;) + 5 (E ~ E)

1
(j+5)77'+

Here we used a relation between the action S and the phase shift « = §/27
and the classical angular frequency,

T
ho

classical

)(E ~ E)). (2.12.59)

as 27

oE w

classical
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A general proof of this relation is given in Section 8.1 [Eq. (8.1.31)]. An
elementary derivation is easily made, also. Substituting the approximation
(2.12.59) into the boundary condition (2.12.57) yields

e 5+ (o e 20)
(£~ 5)|

cos(2mm/n)

W=COSOI=COS

(i + 5 Jos
cos| jm + — |cos| —————
! 2 hw

classical

. ( . ’”) . ™ E-E
— Sin + —sin| ——— — L
m 2 ' hwclassical ( ])

—(—1)"hw—w—(E—Ej).

I

classical

This leads to an energy-level cluster splitting formula for the (m2)th level in
the (j)th cluster:

E=E - (-1)

@ lassical

_ 2mm
[1+62] "% cos km(km - ——) (2.12.60)
n

This corresponds to an approximate formula for the tunnelling or “sneak”
factor § in Eq. (2.12.25), where 2§ is the magnitude of the intracluster
splitting.

'hwcassica 1
§=(-1y g1 _ (_1yp,

(e @m /XY B2 dx
2 '

classica

Note that the § amplitude depends on two factors. The first is the classical
frequency v, Which is the number of times the particle “knocks at the
door” of the barrier each second. (The energy hv, ., is the intercluster
splitting.) The other factor is the exponential of the tunneling integral. The
tunneling factor decreases rapidly with the height (JV — E) of the barrier
above the energy level. The sign of the amplitude alternates from cluster to
cluster according to (—i)/. This is consistent with the observation that bands
in Figure 2.12.2 would have A-type waves on the lower boundary and B-type
waves on the upper boundary for even j and vice versa for odd .

ADDITIONAL READING

For a discussion of wave motion and Fourier analysis it is hard to beat two of the
original texts by Leon Brillouin

Leon Brillouin, Wave Propagation and Group Velocity (Academic, New York,
1960); Wave Propagation in Periodic Structures, 2nd ed. (Dover, New York, 1953).
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An excellent modern book on Fourier theory with lots of interesting mathematics,
examples of physical effects, and historical notes on engineering applications is by
Korner.

T. W. Kérner, Fourier Analysis (Cambridge University Press, Cambridge, 1988).

A good introduction to oscillation and wave mechanics is available from the
Berkeley Course volume by Frank S. Crawford.

F. S. Crawford, Waves, Berkeley Physics Course, Vol. 3, (McGraw-Hill, New York,
1968).

A wonderful application to boat wakes by the same author is in the American
Journal of Physics.

F. S. Crawford, “Elementary derivation of the wake pattern of a boat,” 4Am. J.
Phys., 52, 782 (1984).

An article on the two-Fourier-component waves and their galloping motion is the
following:

W. G. Harter, J. Evans, R. Vega, and S. Wilson, “Galloping waves and their
relativistic properties,” Am. J. Phys., 53, 671 (1985).

The problem of scattering and tunneling in potential wells has been treated
arduously if not clearly. The supposedly definitive work on WKB approximations is by
Froman and Froman.

N. Froman and P. O. Froman, JWKB Approximation, Contributions to the Theory
(North-Holland, Amsterdam, 1965).

Théy find a number of problems with tunneling amplitudes found in quantum
mechanics texts such as the text by Merzbacher.

E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970) p. 126.

Despite this the Merzbacher text has one of the clearer introductions to crossing
and scattering matrices.

The most widely used barrier tunneling factors come from an article by Miller and
Good, Phys. Rev., 91, 174 (1953).

The semiclassical description of barrier tunneling chemical physics is described
quite clearly by William H. Miller.

W. H. Miller, J. Phys. Chem., 83, 960 (1979).

This has been applied extensively. For a modern application see the following and
references contained therein.

1. M. Robbins, S. C. Creagh, and R. G. Littlejohn, Phys. Rev. A 39, 2838 (1989).

An earlier description of barrier tunneling and reflection is found in the following
reference:

M. S. Child, J. Mol. Spectrose, 53, 280 (1974).

This contains a graphical description of quantum mechanics of multiple potentials
with barriers and valleys connected with a variety of topologies. See also

M. S. Child, in Nonadiabatic Transitions, Atom-Molecule Collision Theory, R. B.
Bernstein (ed.), (Plenum, New York, 1979).

R. P. Bell, The Tunnel Effect in Chemistry (Chapman and Hall, London, 1980).
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PROBLEMS

Section 2.3

2.3.1 Use group postulates 1 to 4 to answer or prove: If ab = ¢ for a, b,
and ¢ in a group G, can ad = c, too, where d # b? How many times
can a group element appear in a given row or a given column of a
group table?

232 Ifaset 8 ={a,b,c,...,g,} of operators satisfying postulates 1 and 2
has a “left identity” 1, (such that 1, g =g) for all g, and a “left
inverse” g; ! for each g (such that gr g =1 1), can you prove that the
set is a group; i.e., rules 3 and 4 are satisfied?

2.3.3 Consider the oscillator Hamiltonian

A D |
H = 3(pf+qf) + 3(1)§+Q§) + B(q1q, + p1p,) + C(a,p, — 420,)- , :

(a) Write out Hamilton’s equations of motion which give time
derivatives of p,, p,, q,, and g, in terms of A4, B, C, D.

(b) For C = 0 determine the acceleration matrix {(a) in Newton’s
equations of motion.

(¢) What (if any) constraints on A4, B, and D are needed to yield a
C, symmetric system?

(d) Give a simple formula for the normal mode angular frequencies
w T and w | in the C, symmetric case.

Assume A = 1.0, B=03, C =0, D = 1.0 [units of (radian) H,] in
the following problems.

(¢) Compute the time period between beat maxima (in seconds!)
How many wiggles per beat?

() Compute the time period between perfect recurrences of all

variables
Poincaré period). How many beats per recurrence?

2.3.4 If the two-pendulum C, symmetric system is acted upon by a periodic
driving force, suppose the force on pendulum 1 is equal to f; cos(w?)
and the force on pendulum 2 is equal to f, cos(w?). Suppose also that
there are frictional forces. Let the operator equation of motion be

%) + dlx) + alx) = |f),
where [x} — (xl)’ > = (f1 COS(wt)),

X3 frcos(wt)

_|{d e _[a b
andd—(e d)’ a—(b a)'
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(a) Derive and plot the pendulum steady-state response amplitude
as a function of the stimulus frequency o for a = 3.0, b = 10,
d=01=e, f, = 10, and f, = 0.0.

(b) Do the same for a = 3.0, b=10, d = 01=e, f, =10, and
f, = 1.0,
(¢©0 Do the same for a = 3.0, b=10, d=01=e¢, f, = 1.0, and
£, = —10.
Section 2.6

2.6.1 Let {|1),12) = R|1)} be the basis in which the representation of a
general C, symmetric Hamiltonian is (Hy) = (‘c‘ Z). Let {|1),12) =
rl1), 13y = r2|1)} be the basis in which the representation of a gen-
eral C, symmetric Hamiltonian is

A B C
(Hy)=|D E F
G H I

(a) Derive equations relating a, b, ¢, and d.
(b) Derive equations relating 4, B, C,... and 1.

Can any of these quantities be complex if HY = H?

2.6.2 Could an unsymmetrical system such as is shown in the diagram ever
behave something like a C, symmetric system? (Suppose we’re al-
lowed to assign different scale factors to different coordinates.)

Suppose that m; = 10m,, k; = 20, and k,, = 1. What (if any) value
of k, mimics C, behavior?

Suppose, instead that m; = 10m,, k, =8, and kj, = 1. Is the C,
symmetry physically possible? What, if any, restrictions are there for
the constants?

=0 =0
L \ lellllll

‘|III|I|IIIIII|IIII IIIl!IIIIlII
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Consider C, symmetric coupled pendulum systems described by Eq.
(2.7.1). Give a detailed account of the eigensolutions for n = 4, 5, and
8, as follows.

(a) Label the coordinates with C, group operators.

(b) Write the C, character table and projection operators.

(¢) Sketch the moving-wave modes of vibration using phasors. (Label
them with C, group representation labels.)

(@) Sketch the standing-wave modes of vibration using phasors and
sine or cosine curves.

(e) Calculate the eigenfrequencies for a = 1.0 and b = 0.0.

(f) Discuss the effect of nonzero constant (b # Q) on the dispersion
function. How does the phase and group velocity change for low
wave number? Draw the dispersion function and indicate the
first Brillouin zone.

2.7.2

2.7.3

2.74

Derive the wave speed for a nondispersive wave given by Eq. (2.7.12)
in terms of its phase velocity ¢ = w /k, time ¢, the incident amplitude
I, and reflected amplitude R. Give maximum and minimum speed in
terms of the SWR quantity A = (I — R)/(I + R).

Consider the Cy symmetric coupled pendulum system (use results of

Problem 2.7.1) when the coupling strengths alternate between a > a

and a < a as described around Eq. (2.7.8).

(a) Derive the eigenfrequencies for @ = 1.2 and g = 0.8, and sketch
the modes of vibration. Pay particular attention to the frequency
doublet levels (or level) which split(s) when @ + a.

Use a “higher symmetry embedding” technique to find the normal
modes of the four-pendulum (m = 4) system shown in the top and
side views of the figure. What higher C,, (m > n) symmetry ring would
have the same motions for a subset of its pendulums with the walls in
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the figure corresponding to nodal pendulums? Use this system to give
formulas for the mode frequencies in terms of torsional spring con-
stants () and lengths (/) indicated in the figure. Generalize this for
5,6,..., m pendulums between walls.

Consider a set of oscillators that have C, symmetry but only C;
symmetry and no higher symmetry. Suppose there is some kind of
amplifier by which oscillator x; can perturb oscillator x,, and oscilla-
tor x, can perturb oscillator x;, and oscillator x; can perturb oscilla-
tor x, more than vice versa. In other words, let us suspend Newton’s
third law and make the action and reaction forces unequal. This
corresponds to the following equation of motion, in which the cou-
pling constants s and ¢ are unequal:

%4 a s t)[x
L=t a si|x,
P st o allx,

Discuss this system. Does it really have C; symmetry? What are its
mode solutions? Which are stable?
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Double Trouble

28.1

2.8.2

(a)

(b)

()

GV

(e

fixed
pulleys

Describe and label a symmetry group that would be appropriate
and adequate to help solve the equations of motion for the
four-freedom oscillator system shown. Label the base states
using group operators and derive a representation R of this
group. (Show that it obeys your group table.)

Write the Lagrangian and acceleration matrix in terms of x, x,,
Y1, ¥,, mass m, and spring constants j, k for small oscillations.
(Treat angle « as a constant.) Write the equations of motion.
Reduce the representation R and the acceleration matrix using
symmetry projectors of the group. Sketch and describe the nor-
mal modes and their frequencies for each type of projection or
irrep for the case j = 1.0, k = 2.0, and a = 45°.

Suppose each mass could move in three directions (x, ,, ¥y ,,
and z, ,) and the symmetry was bilateral in the z direction, as
well. What symmetry group or groups would be appropriate?
[Give the answer in terms of (C, X C, X ---, etc.) for some
D, q,....]

Give the character table of the largest group you found in answer
(d) and tell which irreps would be used to label normal modes of
the three-dimensional double-mass oscillator.

Calculate the number of nonisomorphic Abelian groups of order n
and express them in terms of outer products of cyclic groups of prime
order for the following values of n.

(a)
(b)
(c)
@
(e)

n = 8.
n=9.
n=12.
n = 16.
n =24,

Write out character tables for n = 8 Abelian groups.
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The Fourier series for an infinite one-dimensional square wave S(x)
has the form

S(x) = 4/m[cos(x) — 3 cos(3x) + Lcos(5x) — 4 cos(7x) + -+ |,

where S(s) = +1 if cos(x) > 0 and S(x) = —1 otherwise. (Derive
this series.) Consider a 12-mass ring of C,, symmetry subject to square
standing-wave initial conditions as shown in the diagram. Calculate
the coefficients of a finite series of Cy,-defined modes that would give
these initial conditions and compare them to the first few coefficients
just given.

2121

What is needed to make a square mouing wave?

The Kronig-Penney bands in Figure 2.12.6 exhibit “accidental” de-

generacies for three nonzero values of the potential barrier height V

with energy E < 50. [Bohr units = #2m2/2ula + b)?, where p is

mass, a is well width, and b is barrier width. here let a = bl

(a) What are these special values of V' and E in Bohr units? Sketch
the wave functions for each of the three accidental cases and
explain the degeneracies.

(b) List the other cases (if any) for a = b and E <75 Bohr units.
What degeneracies occur just above the top of Figure 2.12.67

(¢) Give a formula for finding these degeneracies for general a and
b values.

2.12.2 Prove the straight-line-sine (k, 8)-space geometric solution in the

diagram for the one-dimensional square well. The diagram uses
special values of the mass (m = 1), well width (x = 2), and Planck’s
constant (# = 1). Show how this construction gives information about
the eigenfunctions as well as the eigenvalues. Derive it for general
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width (x = 2a), particle mass (m), and Planck’s constant. Check it
against Figure 2.12.6 for V = 25. (Explain why you can check it
against Figure 2.12.6.)

32

YV sind
S T hi=1
¢ k
. m=1/2
sin(kx + 8) 22
Y \
P
- ] _\_¢ _ Y AN
4] 2 5 T IR2

2.12.3 Draw to scale the approximate (use Figure 2.12.6 again) E spectrum
(0 < E < 80) for the following potential wells. (Schrédinger equation
"+ (E = UGy = 0

(a) C, symmetric square wells. [See diagram (a).]

N N
O x=0 X=Rk/2

(a) Four equilvalent wells on (b) Four equivalent wells in a straight
a circle line

(b) Four equivalent square wells in a straight line. [See diagram (b)].

(¢) Give a detailed magnified view and approximate accounting of
the lowest two bands or “clusters” of fine structure levels and a
rough sketch of the eigenfunction in each case.

2.12.4 (Discussion). The spectrum of 1,2,3,... or n square potential wells
on an infinite one-dimensional line is usually thought to be a discrete
portion of energy below the top of the barriers, followed by a
continuum for energy above the wells. However, for n = it is well
known that the continuum breaks into bands and gaps above and
below the top of the wells. Do these gaps suddenly appear at n = o0?
Discuss and find a way to reconcile this apparent discrepancy in the
spectral properties.
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