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Unit 2. Relativity and Quantum Theory

Chapter 0. Introducing phasor arrays and wave functions

 In Unit 1 we reviewed classical foundations that set the stage for modern physics of spacetime 

relativity and quantum wave mechanics to be introduced here. We will use a wave based geometric 

approach in order to better understand special relativity (SR) and quantum mechanics (QM). In fact we 

will show that these two pillars of modern physics really belong to the same subject!

 SR and QM have been treated in separate texts as different and even inimical subjects. (SR is most 

often found in E&M texts.) Advanced quantum field theory treatments do force an SR-QM unity but in a 

mathematical way lacking lucidity or physical intuition. The present development seeks to improve the 

situation at a fundamental level using detailed geometry and algebra of optical wave interference. 

Plan of attack: Relativity of pairs

 Our plan of attack in Unit 2 for relativity and quantum theory has similar philosophy to that of 

Unit 1 for classical Newtonian mechanics and Unit 3 for resonance. The idea is to develop the axioms, 

rules, or laws of physics using relativity of elementary pairs. (It’s an Occam-razor approach!)

 Unit 1 derives rules of classical mechanics using pairs of cars, super-balls, and phasors. Unit 3 

uses phasor pairs again to derive rules of coupled pendulum resonance. Here in Unit 2 we use pairs of 

interfering light waves to derive SR-QM rules. Geometry is particularly important to lightwave-pairs 

since their wave phase is so extremely sensitive to relative position and velocity. 

 Geometry of complex ψ-clock phasor plots of oscillator functions was introduced in Fig. 1.10.5. A 

row of ψ-clock phasors will be used to represent a plane lightwave function ψk,ω(x,t).

   ψ k ,ω (x,t) = Ae
i k ·x−ω ·t( ) = Acos k·x −ω ·t( ) + iAsin k·x −ω ·t( )    (0.1)

A row of ψ-clock phasors with (k=-2) resembles a line of 12-hr clocks of world time zones in Fig. 0.1(a). 

A row of ψ-clock phasors with (k=-1) resembles a line of 24-hr clocks of world time zones in Fig. 0.1(b). 

A “Midnight wave” sweeps East-to-West around the world each day marking where clock hour-hands 

pass their highest point of 12:00 for 12-hr clocks or 24:00 for 24-hour clocks. 12-hour clocks reach high 

points twice a day, at 12:00AM (Midnight crest) and again at 12:00PM (Noon crest) as their two-crested 

wave moves East-to-West in Fig. 0.1(a).  A wave crest has zero-phase (k·x-ω·t=0) so its space-time path is 

a line (x=(ω/k)·t) with slope or phase velocity (c=ω/k). The 12-hr clock angular frequency is given as 

ω12=4π/24hr=π/6 per hr while 24-hr clocks are half that. (ω24=2π/24hr=π/12 per hr) The 12-hr clock 

wavevector is given as k12=-2 rotations per Earth circumference (k12=-2·2π/2πR⊕=-2/R⊕) while 24-hr 

clocks are half this. (k24=-1·2π/2πR⊕=-1/R⊕) Phase velocity (ω24/k24=-2πR⊕/24 =ω12/k12) is the same for 

both 12hr and 24hr clocks, namely, one clockwise(-) Earth circumference 2πR⊕ every 24 hours.  
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(wavevector k=-2 in units of 1/REarth)

(-2)-kink wave (wavevector k=-2 )

(a) 12-hr clocks

ψ-clock wave function
ψ= ei(k·x-ω·t)= cos(k·x-ω·t)+i sin(k·x-ω·t)
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ldesh
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Vietnam

Fig. 0.1 World clocks. For animation see website: www.uark.edu/ua/pirelli/php/clocks_desc.php
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Equatorial clock phase velocity is pretty fast; about 25,000 miles per day, 1,042mi/hr, or 0.3 mi/sec. 

However, lightwave speed cγ=186,000mi/sec. or 7 Earth round trips per sec. surely beats that. Still it’s a 

useful analogy where 12hr and 24hr clock phase velocity ω/k, like lightspeed cγ, doesn’t vary with ω or k.

Some tricks for wave analysis
 The world-clock analogy provides a familiar context for wave phasors. Still the concept of waves 

whiffling through fixed rows of clocks can be confusing particularly for two or more waves. Some clever 

bookkeeping tricks help us study complex waves and dynamics of their (k·x-ω·t)-phases.  Trick-1 lets 

waves make their own space-time (x,ct)-coordinates with their real zeros or “roots.” Trick-2 projects these 

root-coordinates into per-space-time (ck,ω)-coordinates of frequency vs. wavevector that are reciprocal 

lattices of wave-period vs. wavelength lattices in space-time. Trick-3 factors complex sums of interfering 

waves to locate zeros or “root” lines. Trick-3 makes Trick-1 and Trick-2 practical so we start with it.

Trick-3: Factoring a wave pair
A sum or difference of complex waves eia=cosa+isina and eib=cosb+isinb are factored as shown below.

  

ψ + = eia + eib

      = e
i a+b

2 e
i a−b

2 + e
−i a−b

2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       = 2e
i a+b

2 cos
a − b

2

 (0.2a)   

  

ψ− = eia − eib

      = e
i a+b

2 e
i a−b

2 − e
−i a−b

2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       = 2ie
i a+b

2 sin a − b
2

 (0.2a) 

These hold for all phase arguments a=(kax-ωat) or b=(kbx-ωbt) and constituent frequency-time ωa,bt and 

wavevector-space ka,bx terms. The real cosine or sine factor in (0.2) is the wave’s modulus or group 

envelope shown by the outside envelope or “skin” in the Fig. 0.2 below. The complex exponential factor 

is the wave’s argument or phase carrier whose amplitude is modulated by the group factor. 
      

|Ψ|=2cos(a-b)
2

Envelope or
Modulus ReΨ= |Ψ|cos(a+b)

2

Real Part or
“Is”

ImΨ= |Ψ|sin(a+b)
2

Imaginary Part or
“Gonna’Be”

OUTSIDES

+|Ψ|

−|Ψ|

INSIDES
Anatomy of a 2-State Wavefunction
Ψ=eia +eib =ei(a+b)/2 2cos(a-b)

2

Fig. 0.2 Snapshot of sum of two waves showing group (MOD) factor enveloping phase (ARG) factor. 
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The group (MOD) factor survives in product ψ*ψ for intensity but the phase (ARG) part ei(a+b)/2 of ψ cancels 

the e-i(a+b)/2 of ψ*. Intensity |ψ|2 or MOD are “real survivor” functions of phase half-difference (a-b)/2 only. 

 

  

MOD ψ ±( ) = ψ ± = ψ ±
*ψ ± =

cos
a − b

2
⎛
⎝⎜

⎞
⎠⎟

= cos
ka−kb

2
x −

ωa−ωb
2

t
⎛

⎝⎜
⎞

⎠⎟
 for  ψ +  

sin
a − b

2
⎛
⎝⎜

⎞
⎠⎟

= sin
ka−kb

2
x −

ωa−ωb
2

t
⎛

⎝⎜
⎞

⎠⎟
  for  ψ−  

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (0.3a)

Group wave speed Vgroup is the ratio ωgroup/kgroup of group frequency ωgroup and group wavevector kgroup.

 
  
ωgroup =

ωa−ωb
2

   (0.3b) 
  
kgroup =

ka−kb
2

   (0.3b)  
 
Vgroup =

ωgroup

kgroup
=
ωa−ω
ka−kb

   (0.3c)

The phase (ARG) wave factor ei(a+b)/2 is a function only of phase average (a+b)/2 or overall phase. 

 

  

ARG ψ ±( ) = ATN
Imψ ±
Reψ ±

=

a + b
2

⎛
⎝⎜

⎞
⎠⎟
= a + b

2
x −

ωa+ωb
2

t
⎛

⎝⎜
⎞

⎠⎟
 for  ψ +  

a + b
2

+ π
2

⎛
⎝⎜

⎞
⎠⎟

= 
a + b

2
x −

ωa+ωb
2

t
⎛

⎝⎜
⎞

⎠⎟
 for  ψ−  

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (0.4a)

Phase wave speed Vphase is the ratio ωphase/kphase of phase frequency ωphase and phase wavevector kphase.

 
  
ω phase =

ωa+ωb
2

   (0.4b) 
  
kphase =

ka+kb
2

   (0.4b)  
 
Vphase =

ω phase

kphase
=
ωa+ωb
ka+kb

   (0.4c)

These both govern real (Re ψ) and imaginary (Im ψ) “carrier” parts that are internal “wave guts” shown in 
Fig. 0.2. (One might imagine a boa constrictor having swallowed its prey live.) Internal phase “guts” may 
oscillate extremely rapidly and be difficult or impossible to measure directly.
 Amplitude-Modulation (AM) radio waves use group waves to send a signal riding on (or “in”) the 
phase carrier wave whose frequency is assigned by the Federal Communications Commission (FCC) in 
the 100kHz to MHz range while group signal frequency is in the audible range of 50Hz to 1kHz. Group 
and phase velocities would be the same speed of light value c~3.0·108m/s. in a vacuum. However, both 
may vary considerably in the ionosphere, and thus it is possible for AM waves to reflect therefrom and be 
detected the world around. 100MHz FM is too fast to reflect and must rely on line-of-sight transmission.
Trick-1 Wave-zero space-time coordinate lattices
Any pair of waves whose speeds are different can be made to trace a coordinate grid or lattice in space-
time using its wave function’s real zeros or “roots.” If the amplitudes of the pair are equal, as is the case 
for wave pair in (0.2a) or (0.2b), the resulting real zeros trace a pair of overlapping rows of equally spaced 
parallel lines that solve the following wave-zero equation based on (0.2a), (0.3a), and (0.4a).

  

0 = Reψ + = Ree
i
a+b
2 cos a − b

2
= cos a + b

2
cos a − b

2

= cos ka+kb
2

x −
ωa+ωb

2
t⎛

⎝⎜
⎞
⎠⎟
cos ka−kb

2
x −

ωa−ωb

2
t⎛

⎝⎜
⎞
⎠⎟

= cos kphasex −ω phaset( )cos kgroupx −ω groupt( )

  (0.5a)

Intersections of these lines form a lattice of space-time (xm,n , tm,n)-points solving the following.
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kphasex −ω phaset = m(π / 2) m = ±1,±3,...
kgroupx −ω groupt = n(π / 2) n = ±1,±3,...

   (0.5b)

The following matrix form (0.5c) of equations (0.5b) have solutions (0.5d) for vector Xm,n =(xm,n ,tm,n).

 
kphase −ω phase

kgroup −ω group

⎛
⎝⎜

⎞
⎠⎟
x
t

⎛
⎝⎜

⎞
⎠⎟
=

m
n

⎛
⎝⎜

⎞
⎠⎟
π
2

  (0.5c) 
xm,n
tm,n

⎛
⎝⎜

⎞
⎠⎟
=

ω group −ω phase

kgroup −kphase

⎛
⎝⎜

⎞
⎠⎟

ω groupkphase −ω phasekgroup

m
n

⎛
⎝⎜

⎞
⎠⎟
π
2

   (0.5d)

Space-time vector notation provides a convenient way to display results in (0.5e) and figures below.

  
xm,n

tm,n

⎛
⎝⎜

⎞
⎠⎟
= Xm,n = mKgroup − nK phase⎡⎣ ⎤⎦ sgp  where:  sgp=

π
2 Kgroup ×K phase

     (0.5e)

Base vectors of Xm,n space-time lattice are X1,0=Kgroup and X0,−1=K phase below with scale factor sgp.  

 Kgroup=
ω group

kgroup

⎛
⎝⎜

⎞
⎠⎟
=

ωa−ωb

2
ka−kb
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=Ka−Kb

2
(0.5f)  K phase=

ω phase

kphase
⎛
⎝⎜

⎞
⎠⎟
=

ωa+ωb

2
ka+kb
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=Ka+Kb

2
(0.5g)

These relate to source vectors Ka and Kb of frequency-wavevector (ωa,ka) and (ωb,kb) of waves eia and eib.

 
Ka=

ωa

ka

⎛
⎝⎜

⎞
⎠⎟
= Kgroup+K phase  

labels: eia=ei(ka x−ωat )

  (0.5h)  
Kb=

ωb

kb

⎛
⎝⎜

⎞
⎠⎟
= Kgroup−K phase

labels: eib=ei(kb x−ωbt )

  (0.5i)

Trick-2 Per-space-time coordinate lattices:”The keyboard of the gods”
The concept of frequency is innate to life. It begins with piscean, amphibian, avian, or mammalian mating 
calls that preceded the music that humans now so enjoy.  It is wonderful to make a note, say mid-A, by 
just pressing a keyboard button and not have to actually wiggle something at 440Hz. That is the idea of 
the per-space-time coordinates (ωm,n , km,n) that K-vectors (0.5f-i) occupy.
 However, we are asking for a 2-dimensional “keyboard of the gods” that lets you choose the 
frequency ω and the wavevector k or wavelength λ=2π/k with a single (ω,k)-key in per-space-time. You 
can then pick frequency and wave velocity ω/k. Pretty tall order, but then that’s what we have gods for!  
 The (ω,k)-per-space-time keyboard is like a control panel for wave motion in (x ,t)-space-time and 
serves as an introduction to Fourier space. For example, let two “mythical” source waves shown in the 
lower right of Fig. 0.3 be labeled by the following primitive Ka and Kb-vectors.

 
K4 =

ω 4

k4

⎛
⎝⎜

⎞
⎠⎟
=

4
4

⎛
⎝⎜

⎞
⎠⎟

labels: eia=ei(4·x−4·t )

  (0.5h)example  
K2 =

ω2

k2

⎛
⎝⎜

⎞
⎠⎟
=

1
2

⎛
⎝⎜

⎞
⎠⎟

labels: eib=ei(2·x−1·t )

  (0.5i) example

This gives the following group and phase vectors using (0.5f-g).

Kgroup=
ω group

kgroup

⎛
⎝⎜

⎞
⎠⎟
=
(4−1)/2=1.5
(4−2)/2=1.0

⎛
⎝⎜

⎞
⎠⎟
=K4−K2

2
  K phase=

ω phase

kphase
⎛
⎝⎜

⎞
⎠⎟
=
(4+1)/2=2.5
(4+2)/2=3.0

⎛
⎝⎜

⎞
⎠⎟
=K4+K2

2
(0.5g)

     (0.5f)example      (0.5g) example

HarterSoft –LearnIt Unit 2 Relativity and Quantum Theory © 2012 W. G. Harter      9



 

K4

K2

Wave group vectors

Frequency ω

Wave phase
zero-paths

Kphase=(2.5, 3.0)

Kphase

Kgroup=(1.5, 1.0)

K4
K2Kgroup

Space x

Kgroup
=(K4-K2)/2

Wavevector k
Time t

(b)Per-spacetime (ω,k)

Wave
group
node-
paths

Wave phase vectors
(a) Spacetime (x,t)

Kphase
=(K4+K2)/2

PW
lattice

CW
lattice

source 2

source 4

K2=(ω2,k2)
=(1, 2)

K4=(ω4,k4)
=(4, 4)

Fig. 0.3 “Mythical” sources and their wave coordinate lattices in (a) Spacetime and (b) Per-spacetime.

CW lattices of phase-zero and group-node paths intermesh with PW lattices of pulse, packet, or “particle” paths.

A simulation in Fig. 0.3a of the wave sum shows a grid of white lines traced by wave zeros accented at 
the top by blue arrows for six phase zeros and three green arrows at the zeros or nodes of the two group 
envelopes. All move to the right at speeds Vphase=2.5/3.0=0.83 and Vgroup=1.5/1.0, respectively, along the 
vectors Kphase=(2.5,3.0) and Kgroup=(1.5,1.0) that frame zero-line parallelogram cells in Fig. 0.3a.
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 Space-time (Fig. 0.3a) and per-space-time (Fig. 0.3b) match by scale factor sgp =π/4=0.785 so 
Kphase and Kgroup  define space-time wave-zero paths. Note that origin is shifted by -π/4 so the grid spacing 
is π/2. Scale sgp is inversely proportional to zero-line parallelogram cell area |Kphase xKgroup|. 

  sgp=
π

2 Kgroup ×K phase

= π
2ω groupkphase −ω phasekgroup

= π
2 1.5·3.0 − 2.5·1.0

= π
4

  (0.6a)

Fig. 0.4a-b relates wave length λ=2π/k and period τ=2π/ω to per-space-time k=2π/λ and ω=2π/τ. 
    (λphase=2π/3.0=2.09,τphase=2π/2.5=2.51 )   (0.6b)   ( λgroup=2π/1.0=6.28, τgroup=2π/1.5=4.18)  (0.6c)
Fig. 0.4c-d relates space-time (λ4,τ4) or (λ2,τ2) of input sources to reciprocal values (k4,ω4) or (k2,ω2).
 (λ4 =2π/4=1.57,   τ4 =2π/4=1.57 ) (0.6d)      ( λ2 =2π/2=3.14 , τ2 =2π/1=6.28 ) (0.6e)
The scale factor s42 for the source (4±2)-wave sum is half the sgp for their (group·phase)-products.

   s42=
π

2 K4 ×K2

= π
2ω 4k2 −ω 2k4

= π
2 4·2 −1·4

= π
8

    (06.f)

The primitive source cell area |K4xK2| is twice that of the cell area |Kgroup xKphase| for product waves. This 
reflects a profound distinction between behavior of waves that are the result of interference effects and 
that of the primitive wave components before they get together.

Newton’s corpuscles vs. wave interference: PW vs CW
One may take a classical view of K2 and K4 paths in Fig. 0.3 or Fig. 0.4c-d as tracks of pulse 

waves (PW) or wave packets (WP) that are more like particles than waves. Newton took a hard-line view 
of nature and ascribed reality to “corpuscles” but viewed waves as “illusory.” He misunderstood optical 
interference phenomena and complained that it showed particles or “corpuscles” having “fits.” 

 Newtons corpuscular views are parodied here by imagining that frequency υ2=ω2 /2π  (or

υ4=ω4 /2π ) is the rate at which source-2 (or 4) emits “corpuscles” of velocity c2=ω2/k2(or c4=ω4/k4).  It 

will be shown that PW peaks are a full wavelengthλ2=2π /k2 (orλ4=2π /k4 ) apart while continuous wave 

(CW) crests and troughs have half-wavelengthλ2 /2=π /k2 (orλ4 /2=π /k4 ) spacing as indicated at the 

bottom of Fig. 0.4. One can imagine PW “corpuscle paths” on alternating K2 (or K4) lines in Fig. 0.4c-d 
separated by a full wavelength λ2 (or λ4 ) in Fig. 0.4c-d.  

The K2 and K4 paths are diagonals of the Kgroup(Kphase) wave-zero lattice in time vs space (t,x) in 
Fig. 0.4b that is identical, except for scale, with the per-space-time wavevector vs frequency space (k,ω) in 
Fig. 0.4a. As seen in Fig. 0.3a and Fig. 0.4a-b, the Kgroup(or Kphase) wave-zero paths are separated by half 
wavelengths λgroup/2=π/1.0=3.14 (or λphase/2=π/3.0=1.05). Unlike PW or “corpuscle” paths, the CW 
zero-paths are phase interference effects of wave “zig-zag” that appear at phase 0 and π-modulo 2π.
 In order that space-time (x,t)-plots can be superimposed on frequency-wavevector (ω,k)-plots, it is 
necessary to switch axes for one of them. The space-time t(x)-plots in Fig. 0.3a follow the Minkowski 
convention for a vertical time ordinate (t-axis) and horizontal space abscissa (x-axis). That’s opposite to 
Newtonian calculus texts that plot x(t). However, the frequency-wavevector k(ω)-plots in Fig. 0.3a switch 
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axes with standard ω(k) convention so that t(x) slope due to space-time velocity x/t or Δx/Δt (meter/second) 
in Fig. 0.4b equals per-time-per-space wave velocity ω/k (per-second/per-meter) in Fig. 0.4a. 

K4

Frequency ω

(c)Per-spacetime (ω,k)

Frequency ω

Wavevector k

(a) Per-spacetime (ω,k)

Kgroup =(K4-K2)/2

(K4+K2)/2=Kphase

(Kgroup, Kphase) lattice (K4, K2) lattice

(ω4=4,k4=4)

(ω2=1,k2=2)

(ωp=2.5,kp=3)

1 2 3 41 2 3 4(ω2=1.5,k2=1)

1

2

3

4

5

1

2

3

4

5
Wavevector k

K4

Space x

(d)Spacetime (x,t)

Space x

Time t

(b) Spacetime (x,t)

Kgroup =(K4-K2)/2

(K4+K2)/2=Kphase

(Kgroup, Kphase) lattice (K4, K2) lattice

(ω4=4,k4=4)

(ω2=1,k2=2)

π/4 π/2 3π/4 ππ/2 π 3π/2 2π
(ωg=1.5,kg=1)

π/4

π/2

3π/4

π

5π/4
Time t

π/2

π

3π/2

2π

5π/2

(ωp=2.5,kp=3)

π/4=λ4 /2=π/k4 π/2=λ2/2=π/k2

τ4/2
=π/ω4
=π/4

π=
τ2 /2
=π /ω2

τgroup /2
=π/ωgroup
=2π/3

π/3=λphase/2=π/kphase π=λgroup /2=π/kgroup

τphase /2
=π/ωphase
=2π/5

Fig. 0.4 Comparing phase-group Continuous Wave (CW) lattice motion described in (a) Per-Spacetime and (b) Spacetime with 
the corresponding primitive Pulse Wave (PW) lattice motion described in (a) Per-Spacetime and (b) Spacetime.
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This development shows wave-particle, wave-pulse, and CW-PW duality in the cells of each CW-

PW wave lattice. Each (K2 , K4)-cell of a PW lattice has a CW vector 2P=2Kphase or 2G=2Kgroup on each 

diagonal, and each (P,G)-cell of the CW lattice has a PW vector K2 or K4 on each diagonal. This is due to 

sum and difference relations (0.5f-i) between (P,G)=(Kphase, Kgroup) and (K2, K4).

Superimposing t(x)-plots onto k(ω)-plots also requires that the latter be rescaled by the scale factor 

sgp derived in (0.5e), but rescaling fails if cell-area determinant factor D is zero.

   D =ω pkg −ωgkp = K phase ×Kgroup     (0.7)

Co-propagating light beams K2 = (ω2,k2)=(2c,2) and K4 = (ω4,k4)=(4c,4) in Fig. 0.5b have D=0 since all K-

vectors including Kphase=(ωp,kp)=(3c,3) and Kgroup= (ωg,kg)=(c,1) lie on one c-baseline of speed c that has 

unit slope (ω/ck=1) if we rescale (ω,k)-plots to (ω,ck) and (x,t)-plots to (x,ct).

 In summary, co-propagating light waves absolutely fail to make coordinate grids! However, 

counter-propagating (right-left) light waves are another “matter” altogether. In Ch. 2 counter-propagating 

(right-left) light wave vectors (R,L)= (K2,-K4) are used to make CW bases (P= Kphase, G= Kgroup) with a 

non-zero value for area D =|GxP |. Opposing PW base vectors are sum and difference (R,L)=(P +G, P-G) of 

CW bases so a PW cell area |RxL| is twice that of CW cell |GxP |. 

   |RxL|= |(P+G) x (P-G)|=2|GxP |    (0.8)

Wave cell areas due to colliding CW are key geometric invariants for relativity and quantum mechanics as 

will be shown. 
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Fig. 0.5 Co-propagating laser beams produce a collapsed wave lattice since all parts have same speed c.
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-- The Purest Light and a Resonance Hero – Ken Evenson (1932-2002) --
 When travelers punch up their GPS coordinates they owe a debt of gratitude to an under sung hero 
who, alongside his colleagues and students, often toiled 18 hour days deep inside a laser laboratory lit 
only by the purest light in the universe.
 Ken was an “Indiana Jones” of modern physics. While he may never have been called “Montana 
Ken,” such a name would describe a real life hero from Bozeman, Montana, whose extraordinary 
accomplishments in many ways surpass the fictional characters in cinematic thrillers like Raiders of the 
Lost Arc. 

Indeed, there were some exciting real life moments shared by his wife Vera, one together with Ken 
in a canoe literally inches from the hundred-foot drop-off of Brazil’s largest waterfall. But, such outdoor 
exploits, of which Ken had many, pale in the light of an in-the-lab brilliance and courage that profoundly 
enriched the world. 

Ken is one of few researchers and perhaps the only physicist to be twice listed in the Guinness 
Book of Records. The listings are not for jungle exploits but for his lab’s highest frequency measurement 
and for a speed of light determination that made c many times more precise due to his lab’s pioneering 
work with John Hall in laser resonance and metrology†. 

The meter-kilogram-second (mks) system of units underwent a redefinition largely because of 
these efforts. Thereafter, the speed of light c was set to 299,792,458ms-1. The meter was defined in terms 
of c, instead of the other way around since his time precision had so far trumped that for distance. Without 
such resonance precision, the Global Positioning System (GPS), the first large-scale wave space-time 
coordinate system, would not be possible.

Ken’s courage and persistence at the Time and Frequency Division of the Boulder Laboratories in 
the National Bureau of Standards (now the National Institute of Standards and Technology or NIST) are 
legendary as are his railings against boneheaded administrators who seemed bent on thwarting his best 
efforts. Undaunted, Ken’s lab painstakingly exploited the resonance properties of metal-insulator diodes, 
and succeeded in literally counting the waves of near-infrared radiation and eventually visible light itself.

Those who knew Ken miss him terribly. But, his indelible legacy resonates today as ultra-precise 
atomic and molecular wave and pulse quantum optics continue to advance and provide heretofore 
unimaginable capability. Our quality of life depends on their metrology through the Quality and Finesse 
of the resonant oscillators that are the heartbeats of our technology. 

Before being taken by Lou Gehrig’s disease, Ken began ultra-precise laser spectroscopy of 
unusual molecules such as HO2, the radical cousin of the more common H2O. Like Ken, such radical 
molecules affect us as much or more than better known ones. But also like Ken, they toil in obscurity, 
illuminated only by the purest light in the universe.

In 2005 the Nobel Prize in physics was awarded to Glauber, Hall, and Hensch†† for laser optics 
and metrology. 
† K. M. Evenson, J.S. Wells, F.R. Peterson, B.L. Danielson, G.W. Day, R.L. Barger and J.L. Hall, 
Phys. Rev. Letters 29, 1346(1972).
†† The Nobel Prize in Physics, 2005. http://nobelprize.org/
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Kenneth M. Evenson – 1932-2002
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Chapter 1 Continuous Wave (CW) vs. Pulse Wave (PW) functions

 The standard units of time t and space x are seconds and meters. Pure waves are labeled by inverse 

units that count waves per-time or frequency ν, which is per-second or Hertz (1Hz=1 s-1) and waves per-

meter that is called wavenumber κ  whose old units were Kaiser (1 K=1 cm-1=100 m-1). Inverting back 

gives the period τ=1/ν  or time for one wave and wavelength λ=1/κ  or the space occupied by one wave.

Physicists like angular or radian quantities of radian-per-second or angular frequency ω=2πν and 

radian-per-meter or wavevector k=2πκ in plane continuous wave (CW) functions ψ. 

  
k,ω x,t =ψ k ,ω x, t( ) = ei(kx−ω t) = cos kx −ω t( ) + i sin kx −ω t( ) .   (1.1a)

Sine or cosine are circular functions of wave phase (kx-ω t) given in radians and defined here.

  

� 

τ =
2π
ω

=
1
ν

  (1.1b)    

� 

λ =
2π
k

=
1
κ

   (1.1c) 

They relate time τ and space λ parameters to per-time ω or ν and per-space k or κ wave parameters.

Phase velocity for 1-CW
 Spacetime plots of the real field 

� 

Reψ k,ω x, t( )  for one CW laser light are shown in Fig. 1.1. The left-

to-right moving wave 

� 

ei(kx−ω t)  in Fig. 1.1(a) has a positive wavevector k while k is negative for right-to-

left moving wave 

� 

ei(− k x −ω t)  in Fig. 1.1(b). Light and dark lines mark time paths of crests, zeros, and 

troughs of 

� 

Reψ k,ω x, t( ) . A zero-phase line (where kx-ω t is zero) or crest line has slope c=Vphase.

    

� 

k x −ω t = 0 ,       or:     
x
t

= Vphase =
ω
k

=νλ    (1.1d)

Each white line in Fig. 1.1 has a phase is an odd multiple (N=1,3,…) of π/2 and marks a λ/2-interval.

   

� 

k x −ω t = ±N
π
2

 ,       or:     x =Vphaset ± N
π
2k

=Vphase t ± N
λ
4

   

 Slope or phase velocity Vphase of all lightwave phase line is a universal constant c=299,792,548m/s. 

(Note tribute to Ken Evenson’s c-measurement in Unit 4.) Velocity is a ratio of space to time (x/t) or a 

ratio of per-time to per-space (ν/κ) or (ω /k), or a product of per-time and space (νλ)=1/(τκ).

 The standard wave quantities of (1.1) are labeled for a long wavelength example (infrared light) in 

the lower part of Fig. 1.1. Note that the 

� 

Imψ k,ω x,t( )  wave precedes the 

� 

Reψ k,ω x, t( )  wave. A simple 

mnemonic is helpful, “Imagination precedes reality by one quarter.” and applies to combined waves, too.
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Axioms for light: 2-CW vs. 2-PW
Beginning relativity courses paraphrase Einstein’s light speed axiom as in Fig. 1.2a, “Speed of a 

lightning flash is c according to passengers of any train,” or simply, “Pulse wave (PW) speed c is invariant.” For 

critically thinking students, that is a show-stopper. It boggles the mind that something of finite speed 

cannot ever be caught up to, indeed, cannot even begin to be caught.i

Fig. 1.1 Phasor and spacetime plots of moving CW laser waves. (a,c) Left-to-right. (b) Right-to-left.
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Occam’s razor can dissect the c-axiom into a less mind-boggling form. As Evenson viewed a frequency 

chain of multiple “colors” of continuous wave (CW) laser beams, he assumed that, “All colors have speed 

c.”  Had Einstein imagined trains viewing a 600THz (green) laser as in Fig. 1.2b, his c-axiom might be, 

“CW speed is c according to passengers of any train while frequency and wavelength vary by a Doppler 

effect that depends on velocity of the train,” or more simply, “All colors go c.” 

A CW spectral component of a PW has a color variation with observer speed that a “white” PW 

does not. A colored wave (CW) will blue-shift if you approach its source or a red-shift if you run away 

from it. Doppler’s theory of acoustical wave frequency shift existed 200 years before radar, masers, and 

lasers showed the ultra-precise 1st-order Doppler sensitivity of a coherent optical CW. 

Also an optical Doppler shift depends on one relative velocity of source and observer while 

acoustical Doppler depends on three absolute (or three relative) velocities involving source, observer, and 

a “wind.”  This single-velocity simplicity of en vacuo optical Doppler shifts is crucial for relativity. 

Consider a 600THz green wave from a 600THz source. One may ask, “Is it distinguishable from 

another 600THz green wave sent by a 599THz source approaching or a 601THz source departing at just the 

right speed? Or, could 600THz light, seen as we approach a fixed 599THz source, ever differ in speed from 

600THz light seen as we depart a fixed 601THz source? In short, “How many kinds of 600THz light exist?” 

Evenson’s axiom follows if one answers, “There is only one kind of each frequency (color) and 

only one speed independent of source or observer velocity.” An undesirable alternative is to have many 

different kinds of each color, corresponding to many ways to make each color by tuning source up (or 

down) while moving out (or in). (In fact, one color illuminating a gas, liquid, or solid may involve two or 

many varieties of mode dispersion with wave speeds ranging above or below c.) Evenson’s axiom 

demands that light in a vacuum be one speed for all frequency. In short, light is dispersion-free.  

If so, a PW must move rigidly at the speed c shared by its component CW colors. In this way one 

derives Einstein’s PW law as a theorem arising from Evenson’s CW axiom. Occam wins here!  

Astronomical view of CW axiom
It also relates to appearance of distant nebulae and the night sky. If any colors were even a fraction 

of a percent slower than other frequencies, they would show up thousands or millions of years later with 

less evolved images than neighboring colors. We might then enjoy a sky full of blurry colorful streaks but 

would lose the clarity of Hubble astronomical images of colliding galaxies billions of light years away.
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Spectroscopic view of CW axiom
Astronomy is just one dependent of Evenson’s CW axiom. Spectroscopy is another. Laser atomic 

spectra are listed by frequency υ (s-1) or period τ=1/υ (s) while early tables list atomic lines from gratings 

by wavenumber κ (m-1) or wavelength λ=1/κ (m). The equivalence of time and space listings is a tacit

assumption in Evenson’s axiom. The axiom may be stated by the following summary of (1.1a-d).

  c = υ ·λ  = λ/τ  = υ/κ   = 1/(κ ·τ) = c =299,792,548m/s  (1.1)summary

Fig. 1.2 Comparison of wave archetypes and axioms. (a) Pulse Wave (PW) peaks locate where a wave is. Their speed 

is c for all observers. (b) Continuous Wave (CW) zeros locate where it is not. Their speed is c for all colors (or observers.)
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An atomic resonance is temporal and demands a precise frequency. Sub-nanometer atomic radii 

are thousands of times smaller than micron-sized wavelengths of optical transitions. Optical wavelength is 

not a key variable in atomic dipole approximations that ignore spatial dependence of light. 

However, optical grating diffraction demands precise spatial fit of micron-sized wavelength to 

micron grating slits. Optical frequency is not a key variable for time independent Bragg or Fraunhofer 

laws. Spatial geometry of a spectrometer grating, cavity, or lattice directly measures wavelength λ, and 

then frequency υ  is determined indirectly from λ by axiom (1.1). That is valid if the light speed c = υ ·λ is 

invariant throughout the spectrum (and throughout the universe.) 

A spectroscopist expects an atomic laser cavity resonating at a certain atomic spectral line in one 

rest frame to do so in all rest frames. Each λ or υ  value is a proper quantity to be stamped on the device 

and officially tabulated for its atoms. Passersby may see output υ  Doppler red shifted to rυ  or blue 

shifted to bυ. Nevertheless, all can agree that the device and its atoms are actually lit up and working!

Moreover, Evenson’s CW axiom demands that υ and λ must Doppler shift inversely one to the 

other so that the product υ ·λ is always a constant c=299,792,458 m·s-1. The same applies to τ and κ for 

which κ ·τ=1/c. Also, there is an inverse relation that exists between Doppler blue and red shifts seen 

before and after passing a source. This is our second CW axiom. It involves time reversal symmetry. 

Time reversal axiom
Atoms behave like tiny radio transmitters, or just as well, like receivers. Unlike macroscopic 

radios, atoms are time-reversible in detail since they have no resistors or similarly irreversible parts. 

Suppose an atom A broadcasting frequency υA resonates an approaching atom B tuned to receive a blue 

shifted frequency υB = bυA. If time runs backwards all velocity values change sign. Atom B becomes a 

transmitter of its tuned frequency υB = bυA that is departing from atom A who is a receiver tuned to its 

frequency υA =  (1/b)υB. Atom A sees υA red-shifted from B’s frequency υB by an inverse factor r=1/b.

      b=1/r      (1.2)

Phase invariance axioms viewed in a classical way
Optical CW axioms may be based on deeper phase invariance principles. Elementary CW function 

Ψ=A exp i(k·x-ω·t) or its real part Re Ψ=A cos(k·x-ω·t) has a phase angle Φ=(k·x-ω·t) that is regarded as 

an invariant or proper quantity. Our rationale is that each space-time point of the wave has a phase clock 

or phasor (Re Ψ, Im Ψ) turning at angular frequency ω=2π·υ. Each phasor reading Φ could be stamped or 
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“officially” tabulated. All observers should agree on Φ even if Doppler shifts change frequency ω=2π·υ 

and wavevector k = 2πκ to new values (ω′,k′) or if space x and time t also transform to x′,t′ . 

    k·x-ω ·t = Φ = k′·x′-ω′·t′- - - - (1.3)

(Lorentz-Einstein transformations for both space-time x,t to x′,t′  and inverse space-time (ω,k) to (ω′,k′) are 

derived in Ch. 2 using CW axioms (1.1) and (1.2) with a few algebraic or ruler-and-compass steps.) 

Historically, invariance (1.3) relates to classical Legendre contact transforms of Lagrangian L to 

energy E or Hamiltonian H. Differential Ldt is Poincare’s action invariant dS or phase dΦ with an  factor.

  L = p ⋅ x − H   (1.4a)      dΦ = dS = Ldt = p ⋅ dx − Hdt  (1.4b)

Connecting (1.3) to (1.4b) requires quantum scaling relations p=k of DeBroglie and E=ω of Planck. 

Ch. 3 shows how such relations arise from CW axioms (1.1-2). Exact relativistic quantum and classical 

mechanical relations are found in a few algebraicii or ruler-and-compass steps. Elegant wave-geometriciii 

interpretations of momentum, mass, energy, and Poincare’s invariant are exposed in Ch. 4 and Ch. 5.iv

We surmised that Einstein might have liked geometric derivations since a compass first caught his 

theoretical attention at an age of five.v Perhaps, it might also appeal to Poincare who also discovered 

relativity around the time of Einstein’s 1905 annus mirabilis. Poincare phase invariance (1.3) underlies 

both CW lightspeed axiom (1.1) and time reversal axiom (1.2). Consider the Φ=0 point.

    k·x-ω ·t = 0 -     (1.5a)

Solving gives phase velocity x/t (meters-per-second) equal by (1.1) to υ/κ (per second)-per-(per meter).

 
x
t
= ω

k
= υ
κ
= c     (1.5b)

Doppler shift (ω → bω  and  k→ bk) leaves phase velocity invariant. Phase Φ=(k·x-ω·t) itself is invariant to 

time reversal ((ω → −ω )  and (t→−t) ) and that supports (1.2), the inverse-Doppler relation b=1/r.

 We find relativistic and quantum derivations based on classical mechanical laws to be clumsy at 

best and wrong-way-to at worst. Simple wave interference with axioms (1.1-2) can unite relativity and 

quantum theory. At the wave-phasor or “gauge” level, Nature may be seen as a big wave trick!

Comparing pulsed and continuous wave trains

 It is instructive to contrast two opposite wave archetypes, the Pulse Wave (PW) train sketched in 

Fig. 1.2a and the Continuous Wave (CW) train sketched in Fig. 1.2b. A CW is the more elementary 
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theoretical entity, indeed the most elementary entity in classical optics since it has just one value of 

angular frequency ω=2π·υ, one value of wavevector k = 2πκ, and one amplitude A.

   
  
CW Ψk ,ω x,t( ) = Aei(kx−ωt) = k,ω x,t      (1.6)

The real part is the cosine wave Acos(kx −ωt) shown in Fig. 1.2(b). Acronym CW fits cosine wave, as 

well. If frequency υ is in the visible 400-750THz range, then CW could also stand for colored wave. 

In contrast, the PW is a less elementary wave function and contains N harmonic terms of CW 

functions where bandwidth N is as large as possible. Fig. 1.3 shows an example with N=12.

   
PW ΨN (k ,ω )(x,t) = A(1+ ei(kx−ωt) + ei2(kx−ωt) + ei3(kx−ωt)+ eiN (kx−ωt) )   (1.7)

An infinite-N PW is a train of Dirac δ(x-a)-functions each separated by fundamental wavelength λ=2π/k. 

The δ -spikes march in lockstep at light speed c=ω/k because of Evenson’s CW axiom (1.1). 

  
PW ΨN (k ,ω )(x,t)

N→∞
⎯ →⎯⎯⎯ A δ (x − ct − nλ)

n=−∞

∞
∑      

Delta functions have infinite frequency bandwidth and are thus impractical. Realistic PW trains apply 

cutoff or tapering amplitudes an to the harmonic so as to restrict frequency to a finite bandwidth Δ. 

   

PW ΨΔ x,t( ) = anein(kx−ωt)

n=0

∞
∑ = G x − ct − nλ( )

n=−∞

∞
∑    where:  an 1 for n > Δ  (1.8)

One choice is the Gaussian taper an = e
− n /Δ( )2 that gives Gaussian PW functions G(θ) = e− θ⋅Δ( )2 .

 PW functions (1.8) involve an unlimited number of amplitude parameters an in addition to 

fundamental frequency ω, while a CW function has a single amplitude parameter A. Thus, theory based 

on CW properties is closer to an Occam ideal for axiomatic simplicity than one based on PW. 

CW squares vs. PW diamonds in space-time plots
However, with regard to counter-propagating or colliding beams the PW appear in Fig. 1.4a to 

have simpler properties than CW in Fig. 1.4b. PW have a simple classical Boolean OFF (0) over most of 

space-time with an occasional ON (1) at a sharp pulse. On the other hand CW range gradually between +1 

and –1 over most of space-time, but have sharp zeros (0) in between crest and trough. (A PW is designed 

to make precise peaks that show where it is. A CW naturally has precise zeros that show where it is not.)
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Interference between two colliding CW makes a square (P, G)-zero-grid that is subtler and sharper 

than the left-right moving (L,R)-peak-diamond grid made by two colliding PW. One should understand 

how this wave interference works to make these two archetypical types of wave space-time geometry.

Interference of colliding PW in Fig. 1.4a or Fig. 1.5b is wysiwye (What you see is what you 

expect.). The pattern of interference for the sum of colliding CW in Fig. 1.4b and Fig. 1.5a is subtler. PW 

paths in space-time (x,ct) resemble baseline diamonds in Fig. 1.5b like paths in the American baseball 

sport. Meanwhile, CW zeros form Cartesian space-time squares in Fig. 1.5a with horizontal x-axial fixed 

time-lines (ct=…1,2…) and vertical temporal ct-axial lines of fixed location (x=…1,2…). 

PW peak diamonds seem simple but hide intricate networks of zeros near each peak. CW squares 

make truly simple and precise lattices of standing wave zeros of given by (1.9), which is just a factored 

sum of two equal-but-opposite colliding CW. Note that the group envelope factor cos(kx)( ) is zero on lines 

(kx/π+1/2=…0,1,2…) parallel to the ct-axis. The phase factor (e−iωt ) has a zero real part on lines of 

simultaneous time (ct/π+1/2=…0,1,2…) parallel to the x-axis. (At lattice corners, both factors are zero.)

CWΨk ,ω +CW Ψ−k ,ω = A ei(kx−ωt) + ei(−kx−ωt)( ) = 2Ae−iωt cos(kx)( )    (1.9)

CW wave-zeros vs. PW pulse paths
 Phase and group wave zeros of 2-CW interference define a space-time wave-zero (P,G)-coordinate 

grid for light waves in Fig. 1.5 and more general waves in Fig. 1.6. Vector P points along a phase zero 

path and vector G points along a group zero path. They complement PW pulse peak or peak-path (L,R)-

grid based on vector L that points along a left moving peak path and a vector R that points along a right 

moving peak path. The half-sum-and-difference relation of (P,G) to (L,R) is as follows.

     P = 2
1 (L + R)     (1.10a)

     G = 2
1 (L - R)     (1.10b)

The peak-path vectors {L,R) are then given by sum-and-difference of wave zero vectors {P,G).

     L = (P + G)     (1.10c)

     R = (P − G)     (1.10d)

Sum-and-differences are due to phase sum-and-differences. (Recall discussion of (4.8.21) in Unit 4.)
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Comparing wave-like vs particle-like behavior
Relations (1.10) highlight wave-particle duality. First, Newton saw light as particle-like. Then 

Young and Maxwell showed its wave-like nature. Finally, Planck, Einstein, and Compton found particle-

like behavior of “photon” quanta. The label “photon” is reserved for quantum field eigenstates having 

decidedly more complicated behavior than is shown in semi-classical wave plots in Fig. 1.6 or colliding 

light waves in Fig. 1.5. Still the diamond left-and-right moving PW (L,R)-peak paths in Fig. 1.5b might be 

thought of as paths of fictitious particles or “photon bunches” that are well localized in space-time as they 

move at ±c in either direction. (Suppose a PW laser “spits” pulses (patooey! patooey!…) at 600Thz.)

Optical pulse peaks do move like particles in between the points where “collisions” occur. (There 

we have very complicated wave interference.) But, these “particles” seem to pass through each other (or 

else recoil elastically). Newton described optical interference behavior as crazed “light having fits.” 
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 Square 2-CW (P,G) zero-paths in Fig. 1.5a are due to counter-propagating 600Thz CW waves 

interfering wherever they exist in space-time. The wave between the zeros is delocalized in space-time 

compared to the PW peaks but the square white zero-lines are extremely sharp as are vectors L=( ck, ω) 

and R=(-ck, ω) that determine motion of left and right CW component laser beams while vectors P=(0,ω) 

and G=(ω,0) determine the real wave-zero lattice of their 2-CW interfering sum.

It is important to note that these vectors, appropriately scaled, describe both time-vs-space (x,t)-

plots and Fourier inverse per-time-space or reciprocal space-time plots of frequency-vs-wavevector (ω,k). 

A general example of this is derived and shown in a following Fig. 1.6 where the two kinds of plots may 

be superimposed. We will see that a (ω,ck)  (ck,ω) switch or else an (x,ct)  (ct,x) switch to the 

Newtonian format is needed in order to make a CW lattice and reciprocal PW lattice coincide and that 

entails a (P,G)  (P,G) switch. This is indicated in Fig. 1.5a to the right of the square space-time lattice.

PW (L,R)-peak paths are “particle-like” and stand out in space-time for N-CW wave trains. Then 

interference “fits” between pulses die off (to make Newton comfortable again.) But, CW (P,G)-zero paths, 

in contrast, are “wave-like” with very sharp lines in space-time for maximally interfering 2-CW beats.

Fig. 1.5 Space-time grids (a) 2-CW standing-wave-zero squares. (b) 2-PW diamond pulse peak paths.
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Chapter 2 When Light Waves Collide: Relativity of waves in spacetime

 Let us represent counter-propagating frequency-ω laser beams by a baseball diamond in Fig. 2.1a 

spanned by CW vectors for waves moving left-to-right (R on 1st base) and right-to-left (L on 3rd base). 

  R=K1=(ck1,ω1)= ω(1,1)    (2.1a)  L=K3=(ck3,ω3)= ω(-1,1)   (2.1b)

Fig. 2.1 uses conventional (ck,ω)-plots for per-space-time and (x,ct)-plots for space-time. Both beams have 

frequency υ=ω/2π=600THz(green), the unit scale for ω and ck axes. For the L-beam, ck equals -ω.

Phase vector P=Kphase and group vector G=Kgroup are also plotted in (ω,ck)-space in Fig. 2.1b.

 
K phase =

K1 +K3
2

= 1
2

ck1 + ck3
ω1 +ω3

⎛
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⎟
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⎜
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⎟
⎟
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 (2.2a)  
Kgroup =

K1 −K3
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= 1
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⎟
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⎜
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⎟
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⎠⎟
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(2.2b)

Phase and group velocities of counter-propagating light waves may vary from c. These surely do!

Vphase
c

=
ω1 +ω3
ck1 + ck3

=
2
0
= ∞  (2.3a)   

Vgroup
c

=
ω1 −ω3
ck1 − ck3

=
0
2c

= 0  (2.3b) 

The extreme speeds account for the square (Cartesian) wave-zero (WZ) coordinates plotted in Fig. 2.1c. 

As noted for Fig. 1.5, the group zeros or wave nodes are stationary and parallel to the time ct-axes, while 

the real-zeros of the phase wave are parallel to the space x-axes. The latter instantly appear and disappear 

periodically with infinite speed (2.3a) while standing wave nodes have zero speed (2.3b).

 Fig. 2.1d shows 2-way pulse wave (2-PW) trains for comparison with the 2-CW WZ grid in Fig. 

2.1c. As noted for Fig. 1.3, a PW function is an N-CW combination that suppresses its amplitude through 

destructive interference between pulse peaks that owe their enhancement to constructive interference. 

Colliding PW’s show no mutual interference in destroyed regions. Generally one PW is alone on 

its diamond path going +c parallel to 1st baseline R=K1 or going –c parallel to 3rd baseline L=K3. 

V1
c
=
ω1

ck1
=
1
1
= 1  (2.4a)     

V3
c
=
ω3

ck3
=
1
−1

= −1  (2.4b) 

But wherever two PW peaks collide, each of the CW pairs will be seen trying to form a square 

coordinate grid that 2-CW zeros would make by themselves. This begins to explain the tiny square 

“bases” seen at the corners of the space-time “baseball diamonds” in Fig. 2.1d simulation. 
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CW-Doppler derivation of relativity
Evenson’s CW razor-cut of Einstein’s PW axiom improves relativity development. However, 

quantifying Einstein’s popular (and still common) derivation is difficult as is a step-by-step count for the 

CW derivation that follows. Let us just say that several steps are reduced to fewer and clearer steps. Most 

important is the wave-natural insight that is gained and the wave mechanics that follows. 

Fig. 2.1. Laser lab view of 600Thz CW and PW light waves in per-space-time (a-b) and space-time (c-d). 
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In fact, we could claim that a CW derivation takes zero steps. It is already done by a 2-CW wave 

pattern in Fig. 2.2c that automatically produces an Einstein-Lorentz-Minkowskivi grid of space-time 

coordinates. Still we need logical steps drawn in Fig. 2.2a-b that redo the Cartesian grid in Fig. 2.1 just by  

Doppler shifting each baseline one octave according to c-axiom (1.1) (“Stay on baselines!”) and t-reversal 

axiom (1.2) (“If 1st base increases by one octave, 3rd base decreases by the same.”) 

So Fig. 2.2 is just Fig. 2.1 seen by atoms going right-to-left fast enough to double both frequency 

υ=ω/2π and wavevector ck of the vector R on 1st base (while halving vector L on 3rd base to obey (1.2).) 

  R=K1=( ck′1,ω′1)= ω(2,2)    (2.5a)  L=K3=( ck′3,ω′3 )= ω(-1/2, 1/2)   (2.5b)

The atom sees head-on R-beam blue-shift to frequency υ1′=2υ=ω1′/2π=1200THz(UV) by doubling green 

υ1=ω/2π=υ3=600THz. It also sees the tail-on L-beam red-shift by half to υ3′=υ/2=ω3′/2π=300THz(IR).

The phase vector Kphase and group vector Kgroup are plotted in (ck′,ω′)-space in Fig. 2.2b.
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Kgroup =
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 (2.6b)

Phase velocity is the inverse of group velocity in units of c, and V′group is minus the atoms’ velocity!

′Vphase
c

=
′ω1 + ′ω3

c ′k1 + c ′k3
=
2 +1 / 2
2 −1 / 2

=
5
3

 (2.7a)     
′Vgroup
c

=
′ω1 − ′ω3

c ′k1 − c ′k3
=
2 −1 / 2
2 +1 / 2

=
3
5

 (2.7b) 

Velocity u=V′group =3c/5 is the atoms’ view for a lab speed of zero had by laser standing nodes. It is the 

speed of the lasers’ group nodes (and its supporting lab bench!) relative to the atoms. Phase velocity V′phase 

=5c/3 is the atoms’ view for a lab speed of infinity had by lasers’ real wave zeros. The x-zero lines are 

simultaneous in the laser lab but not so in the atom-frame. x-lines tip toward ct-lines in Fig. 2.2c.

 Eqs. (2.5-7) use a Doppler blue-shift factor b=2. If each “2” is replaced by “b” then Eq. (2.7b) 

yields a relation for the laser velocity u=V′group relative to atoms in terms of their blue-shift b.

    
′Vgroup
c

=
u
c
=
b −1 / b
b +1 / b

=
b2 −1
b2 +1

     (2.8a)

Inverting this gives the standard relativistic Doppler b vs. u/c relations. 

 b2 = 1+ u / c( ) / 1− u / c( )     or:    b = 1+ u / c( ) / 1− u / c( ) = 1+ u / c( ) / 1− u2 / c2  (2.8b)
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First things first
! It is remarkable that most treatments of relativity first derive second order effects, time dilation 

and length contraction. Doppler and asimultaneity shifts are first order in u but treated second. Setting 2=b 

in (2.6) using (2.8) gives vectors ′G =Kg = (a
d ) and ′P =K p = (d

a )  with dilation factor d = 1 / 1− u2 / c2  and 

asimultaneity factor a=u·d/c. (So a and d may be derived first here, too, but in a wavelike way.)

K phase =
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(2.9b)

K-vector components d and a (in ω units) are Lorentz-Einstein (LE) matrix coefficients relating atom- 

values (ck′,ω′) or x′,t′  to lab-values (ck,ω) or x,t based on lab unit vectors Ĝ = 0
1( )  and P̂ = 1

0( )  in (2.2). 

 The new K-vectors define the new coordinate grid of white-line wave-zero paths in space-time of 

Fig. 2.2c and, perhaps more importantly, the new (ck′,ω′) coordinates in per-space time of Fig. 2.2b. 

 Einstein’s PW axiom “PW speed c is invariant,” might give the impression that pulses themselves are 

invariant, but finite-Δ pulses in Fig. 2.2d clearly deform. Pulse speed is invariant but each CW square in 

Fig. 2.3a deforms into a Minkowski-like rhombus in Fig. 2.3b simply due to Doppler detuning beats.

Lorentz-Einstein transformations
The Lorentzvii-Einsteinviii per-spacetime and spacetime transformations follow from K-vectors (2.9).   
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 (2.10b)

Wave K-vectors are bases for space-time and per-space-time. One symmetric LE matrix, invariant to axis-
switch (ω,ck)  (ck,ω), applies to both. Conventional ω−ordinate vs. ck-abscissa per-space-time and ct-

ordinate vs. x-abscissa space-time plots are used in Fig. 2.2 where  ω =P=Kphase and  ck =G=Kgroup vectors 

serve as x-space and ct-time bases, respectively, and then also serve as ω−and-ck-bases.
 The left and right pulse wave (PW) vectors L and R in per-space-time Fig. 2.2a also define left and 
right PW paths in space-time Fig. 2.2d. This holds in either convention because L and R lie on 45° 

reflection planes that are eigenvectors of an axis-switch (ω,ck)  (ck,ω) with eigenvalues +1 and –1 while 

half-sum-and-difference vectors P = (L +R) / 2 andG = (L −R) / 2  simply switch (P  G).
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Fig. 2.2 Atom view of 600Thz CW and PW light waves in per-spacetime (a-b) and space-time (c-d) boosted to u=3c/5.
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Geometry of Lorentz-Einstein contraction-dilation
 Fig. 2.3 compares wave path space-time coordinate lines for the laser lab in top figure (a) and for 

the atom going right-to-left at speed u=3c/5 in bottom figure (b). 

The fast wave-phase zeros define the space-x axis and gridlines in either view where they go at a 

speed of 5c/3 in the atom view and at infinite speed ∞ in the lab view. 

The slow wave-group zeros define the time-ct axis and gridlines in either view where they go at a 

speed of 3c/5 in the atom view and at zero speed 0 in the lab view.

The spatial separation of the slow wave-group zeros in Fig. 2.2c is 4/5 of the original 1/4µm shown 

separating the stationary wave zeros in Fig. 2.1c or Fig. 1.5a. That is the Lorentz contraction factor 

1 / d = 1− u2 / c2 .     (2.11)

 The inverse time dilation factor d=5/4 is the vertical height of the new “pitcher’s mound” P in Fig. 

2.2a that was originally of unit height in Fig. 2.1a. In space-time diamond of Fig. 1.5b the pitcher’s 

mound is 5/6 fs from origin or “home plate” and that dilates by factor d=5/4 to 25/24 fs in Fig. 2.2c.

! So, objects seen by moving observers tend to appear shortened (Lorentz contraction) and have 

lengthend time periods (Einstein time dialation). These effects seem quite mysterious. Standard treatments 

of relativity begin (and often end) with these 2nd order effects and their algebraic formulas that one 

memorizes for GRE testing. (See blue formulas in Fig. 2.4.) However, it is far less mysterious 1st order 

Doppler effects that underlie relativity of the zig-zag waves of Fig. 2.2 and Fig. 2.3. Fig. 2.4 shows how 

the 2nd order effects arise from wave-zero coordinate intersections with time and space axes. More 

detailed geometry of relativistic geometry is given in later discussion and figures. (See ahead to Figures 

3.3, 3.4, 5.1, 5.4, and 5.5.) The invariant hyperbolas that determine space-time scaling in Fig. 2.4 are 

among the most important topics in the following chapter.
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Fig. 2.3 Lasers make Cartesian (x,ct)-wave frame for themselves and Minkowski (x′,ct′)-frame for atom.

 So, must relativity always be taught by imagining monstrous frames, mirrors, and smoke to trace 

bouncing “photon bunches” timed by cuckoo clocks synchronized by Swiss gnomes? Not! Perhaps, that 

100-year old way serves as a humorous historical aside but current GPS systems and ultra high precision 

pioneered by Evenson, Hall, and coworkers begs our attention and critical thought. Now as his students 

are achieving better than 18-figure time and frequency measurements, it is time for theoretical pedagogy 

to sharpen Occam’s razor accordingly. And, if there is history to review, it is first of Galileo and Euclid.
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Fig. 2.4 Space-time grid intersections mark Lorentz contraction and Einstein time dilation.
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Appendix 2.A  New/Old Approaches to Relativistic Space-time Coordinates
! This is a new/old approach to special relativity that we used before discovering the more powerful 
wave-based approach. It is a PW (pulse wave) approach that takes a constant light speed as Gospel and 
derives space-time relativity. In this sense it is like the standard smoke-and-mirror-bouncing-photon 
approach copied for over 100 years from Einstein’s famous railroad epic entitled Meaning of Relativity. 
His old trains are replaced here by spaceships and the smokey mirrored beams by spherical PW 
wavefronts in the vacuum of space-time.

Views from the lighthouses
! Space-time coordinate transformation is described thru a fictional spaceship going half the speed 
of light past two lighthouses. In Fig. 2.A.1 the ship is just passing a Main Lighthouse as it blinks in 
response to a signal from its North lighthouse companion located at one light second above it in the 
figure. It’s about 186,000 miles or EXACTLY 299,792,458 meters according to NIST’s Ken Evenson et. al. 
(Recall tribute to Ken at the end of introductory Ch. 0 for Unit 2.) 

!

  

Ship v/c(rel.to lthse.)=-0.50
Ship  v/c(rel.to obs.)=-0.50

Ship
1.0-1.0

 Main Lighthouse

Lighthouse t= 0.00

North Lighthouse

(t=-1 blink wave from Main)

(t=-1 blink wave from North)

! Fig. 2.A.1 Ship passing Main Lighthouse as it blinks at t=0.

! This arrangement is a simplified model for a 1Hz laser resonator. The two lighthouses use each 
other to maintain a strict one-second time period between blinks. And, strict it must be to do relativistic 
timing. (Even stricter than NIST is the universal agency BIGANN or Bureau of Intergalactic Aids to 
Navigation at Night.) The simulations shown here are done using RelativIt. See website: www.uark.edu/ua/

pirelli/php/lighthouse_scenarios.php   Some of the RelativIt animations are available there. 
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Ship v/c(rel.to lthse.)=-0.50

Ship
1.0-1.0

 Main Lighthouse

Lighthouse t= 1.00

North Lighthouse

! Fig. 2.A.2 Main and North Lighthouses blink each other at precisely  t=1.

! At precisely t=1 sec. the two lighthouses blink again because that is how long it takes their 
respective t=0 blink waves to reach each other. This is shown in Fig. 2.A.2. The ship, meanwhile, has 
only traveled half this far since its speed is c/2. Its velocity is -c/2, that is, negative, since it is going right 
to left. 
! Next, at precisely t=2 sec. the two lighthouses blink again. Also, the first (t=1) blink catches up to 
the ship and hits it, that is, the ship sees the first blink. This is shown in Fig. 2.A.3. Much of the discussion 
will center on two happenings or events labeled Happening-1 and Happening-2. ("Event" is accepted 
physics terminology. "Happening" is oh-so-60's.)
! The coordinates of Happening-1 are, according to the Lighthouses, (x1=-1, ct1=2) while for 
Happening-2 they are, according to the Lighthouses, (x2=0, ct2=2). Next, we will see how the ship views 
all this, that is what are ship coordinates (x′1, ct′1) and (x′2, ct′2) for the events. From that we deduce the 
essential transformation matrix for all events in special relativity. The ship has a very different 
transcription of these events as shown in the following figures beginning with Fig. 2.A.4.
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Ship v/c(rel.to lthse.)=-0.50

Ship
1.0-1.0

 Main Lighthouse

Lighthouse t= 2.00

North Lighthouse

1st blink wave
(From Main)

0 th blink wave
(From Main)

1st blink wave
(From North)

0 th blink wave
(From North)

Happening 2
(2nd blink happens
at Main Lighthouse)

Happening 1
(1st blink wave
from Main hits ship)

! Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Ship v/c(rel.to lthse.)=-0.50

1.0-1.0 Ship

 Main Lighthouse

Ship time t' =  0.00

North Lighthouse

! Fig. 2.A.4 Beginning (t′=0) snapshot for ship's view.

Views from the Ship
! Now in Fig. 2.A.4, the ship is stationary and that means that the lighthouses are going in the 
opposite direction with a positive velocity of v=+c/2. Fig. 2.A.4 looks the same as Fig. 2.A.1 except the 
previous (t=-1) blink wave appears to have been "left behind" by the speeding lighthouses. Therein lies a 
secret of relativity. Snapshots of light pulses always appear to be circles expanding around the points 
where they were emitted. This is true no matter how fast you are going, or, more importantly, no matter 
how fast the emitter. You cannot speed up or slow down light by jerking your laser back and forth! 
! So Fig. 2.A.4 and several subsequent figures show previous blink waves expanding around points 
where the lighthouses were when that light was emitted and all expansions take place at a uniform speed 
of c. It's the law! And, it's one we can live with. Consequences of this law are quite remarkable. We 
explore consequences shortly including the fact that the ship sees the North blink-wave tipped by a so-
called stellar aberration angle φ=60° relative to a vertical North-to-South wave ray track seen by the 
Main Lighthouse. 
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! !
! ! Fig. 2.A.5 Early (t′=0.5) snapshot from ship's view.

! The (t′ =0.5) view by ship shows the (t′ =0) blink waves expanded to exactly half the distance 
between their emission points. Also, the lighthouses have moved half this distance, that is, a quarter of a 
light-second, and so Main will not be anywhere near the ship at (t′ =1.0) when the (t′ =0) blink wave 
from the North comes down to trigger Main to do its first or (t=1) blink. In fact it’s (t′ =1.15) before the 
blink at (t′ =0) from the North finally catches the speeding Main Light to make it blink as shown in the 
next Fig. 2.A.6.
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! Fig. 2.A.6 Later (t′ =1.15) snapshot from ship's view finally registers the first lighthouse blinks.
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! Fig. 2.A.7 Later (t′ =1.75) snapshot from ship's first registers Happening-1.

! This shows Einstein time dilation. The ship perceives that the lighthouse is running about 15% late 
at this speed of v=c/2. The next Figs. 2.A.7 and 2.A.8 show something even more surprising to a 
Newtonian worldview, the relativity of simultaneity where, unlike Fig. 2.A.3, Happening-1 is not 
simultaneous with Happening-2.  Happening-1 (ship hit by 1st blink) happens early at (t′ =1.75) and 
before Happening-2 (2nd blink) that occurs at (t′ =2.30). (Recall Main cannot blink until a blink from the 
North hits it so Happening-2 doesn't happen until (t′ =2.30), or twice the time (t′ =1.15) for the first blink 
as shown in Fig.  2.A.8.)
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! Fig. 2.A.8 Much later (t′ =2.30) snapshot from ship's finally registers Happening-2 .
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Einstein time dilation
! The time Δ observed between unit-time blinks by a moving ship is called the Einstein dilation 
factor Δ. Its derivation follows from a simple right triangle whose altitude is c or one light second as 
shown in Fig. 2.A.9. The triangle base vΔ is the distance traveled by the lighthouse before the North blink 
wave finally hits it after traveling a distance cΔ along the hypotenuse as seen by ship as given here.

! ! !

  

c2Δ2 = c2 + v2Δ2       or:  Δ2 c2 − v2( ) = c2      or:  Δ = 1

1− v2

c2

! ! (2.A.1)

Note that the ship or any co-moving ship sees the cΔ hypotenuse ray tipped in the direction of travel by 
the Stellar aberration angle φ whose sine is sin φ = v/c. This is φ=60° for v/c=1/2 in Fig. 2.A.9 or Fig. 
2.A.4. 

!

   

1.0-1.0 Ship

 Main Lighthouse

North Lighthouse

cΔc

cΔ=√(c2+v2Δ2)

vΔ

c

vΔ

vΔ

! ! Fig. 2.A.9 Derivation of Einstein time dilation factor Δ or time between blinks .

! For the above the lighthouse velocity relative to the ship is v=c/2. (2.A.1) gives a time dilation 
factor of Δ=1/√0.75 = 1.1547 very close to the 15% "lateness" in the Fig. 2.A.6 simulation. This lateness 
grows rapidly and without limit as v approaches c. For v=4c/5, (2.A.1) gives Δ=5/3 = 1.67 that is a 67% 
lateness or dilation.
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! From this we construct an event table to summarize discrepancies or disagreements between space 
and time coordinates used by the lighthouses and those used by the ship. This is shown below.
Comparing Ship and Lighthouse views: Happening tables 

Happening 0:
Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space)       x = 0
(Lighthouse time)         t  = 0

              x = - 1.00 c
              t  =   2.00 

              x =  0
              t  =   2.00 

(Ship space)                 x′= 0
(Ship time)                   t′= 0

              x′=   0
              t′=  1.75

              x′=  c Δ
              t′=   2Δ  = 2.30

! One of the most important things to remember about the space coordinate x is that each observer 
frame carries its own origin (x=0) with it wherever it goes. If a 'Happening' happens to the Lighthouse 
then it happens at x=0, but if it happens to the ship then it happens at x′ =0 no matter what the time is. 
Remembering this saves lots of confusion!  Note also: the table above is for a positive lighthouse velocity: 
v=c/2 relative to the ship. You must always give velocity as one thing relative to another. Absolute 
velocity seems meaningless here.
! We need a table like the one above for the case of a general velocity v of the lighthouse relative to 
the ship. (Note that if we base ourselves in the frame in which the ship is stationary then the lighthouse 
moves with a positive velocity v=c/2.) The zero entries stay the same for any value of v. The times for the 
second blink are t=2 and t′  = 2Δ by definition. Ship's reading for the position of the second blink has to 
be velocity times travel time or v times 2Δ. (x′  = 2vΔ). This becomes x′  = cΔ for v=c/2 as entered above.
! The coordinates of Happening 1 (1st blink hits ship) are found. To hit the ship in the lighthouse 
frame the 1st blink travels a negative distance -c times (t-1) since it doesn't start from x=0 until t=1. It hits 
the ship that has gone that distance starting at t=0 from the lighthouse. That distance is -v times t.  
! ! ! ! x = -c (t - 1) = -v t ,! or ! t = c/(c-v). ! ! ! (2.A.2)
The resulting x and t are entered in the first row under 'Happening 1' in the table below. At this time the 
ship is located at x=-vt=-vc/(c-v) and that is entered in the table, too.
! The lighthouse time for Happening 1 is based on Fig. 2.A.7. This shows that the 1st blink travels 
the base of a right triangle that is vΔ long. It starts at time t′ =Δ and goes at rate c for (t′-Δ) seconds or
! ! ! ! vΔ = c(t′-Δ). ! ! ! ! ! ! ! (2.A.3)
Solving for t′ gives the last entry t′ = (v+c)Δ/c=(1+v/c)/Δ in the Happening 1-column of the table.
! ! ! ! ! ! ! ! ! ! ! ! (2.A.4)

Happening 0:
Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space)       x = 0
(Lighthouse time)         t  = 0

              x = -vc/(c-v)
              t  =   c/(c-v)

              x =  0
              t  =   2.00 

(Ship space)                 x′  = 0
(Ship time)                   t′  = 0

              x′ =   0
              t′ = (v+c)Δ/c=(1+v/c)/Δ

              x′  =  2vΔ
              t′  =   2Δ  
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The last entry t′ = (v+c)Δ/c=(1+v/c)/Δ in the  Happening 1-column is the time interval or period between 
hits recorded by the ship as it goes off into the night; the period in this case is longer than the BIGANN 
required blink period of 1 second. On the other hand, before the ship passed the lighthouse it was getting 
hit in the nose by a fast blink-blink-blink with a shorter period than 1 second. The formula for this period 
found by reversing light velocity c to -c is t′ = (v-c)Δ/(-c)=(1-v/c)/Δ .
Doppler shifts
! One failing of standard approaches to relativity involves treatment of 1st order effects such as 
Doppler shifts as 2nd class citizens. The CW approach in Ch. 2 does first things first, but here Doppler is 
an afterthought. 
! Fig. 2.A.10 shows that the ship gets hit by blinks a lot more frequently before the lighthouse 
passes at t=0 than after it passes because blink waves are more densely packed in front of the lighthouse 
than behind it. This frequency down-shift is analogous to what you hear as a car goes by: 
"..EEEEEEEeooooow..", and is called a Doppler Shift. According to blink counters on the ship, the 
lighthouse period of τ0 = 1 second LHT (or blink rate of ν0 = 1 Hz) is increased in period by a factor 
equal to the ship time t' = (v+c)Δ/c=(1+v/c)/Δ for Happening-1, that is, the time the ship sees between 
blink hits after t'=0. The inverse of this is a frequency υ′ that is perceived to suffer a down-shift or a red-
shift from the Lighthouse assigned frequency υ0=1/τ0.

Ship Time
between hits
(outbound)

= ′t =τ0 (v +c)Δ / c =τ0

1+ v
c

1- v2

c2

=τ0

1+ v
c

1- v
c

,!
Outbound
Observed
Frequency

 = ′υ  = 1 / ′τ =υ0

1− v
c

1+ v
c

  (2.A.5a)

 An inbound ship sees an Inverse Doppler or blue-shift an up-shift or increase in frequency to υ′. 

Ship Time
between hits
(inbound)

= ′t =τ0 (c − v)Δ / c =τ0

1− v
c

1- v2

c2

=τ0

1− v
c

1+ v
c

,!
Outbound
Observed
Frequency

 = ′υ  = 1 / ′τ =υ0

1+ v
c

1− v
c

   (2.A.5b)

! Again, the difference between "inbound" and "outbound" cases is a matter of sign difference ±c of 
velocity of the light perceived by the ship. The two shifts are inverses of each other as required by a time-
reversal symmetry that underlies relativity and electromagnetism.
! The difference is quite extreme as seen in Fig. 2.A.10(b)  that shows the Doppler blink-wave 
pileup for a relative velocity of u/c=4/5. In astronomy and high energy physics the relative velocity has 
near-c values such as u/c=0.999 999 999. For these extremes the velocity parameter is replaced by the 
rapidity parameter ρ that is the logarithm ρ=lnb of the Doppler blue-shift b=e ρ. At low speeds rapidity is 
nearly equal to the velocity u in c units.

 ρ ~u/c   (for u<<c)! ! ! (2.A.6)
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Blue-shift
factor b=√3

Red-shift
factor 1/b=1/√3

Blue-shift
factor b=3

Red-shift
factor 1/b=1/3

(a) Ship view for u/c=1/2
time dilation Δ=2/√3

(b) Ship view for u/c=4/5
time dilation Δ=5/3

Fig. 4.A.10 Comparison of time dilation, Doppler shifts, and Lorentz contraction. (a) u/c=1/2. (b) u/c=4/5.

Lorentz contraction Δ=√3/2

Lorentz contraction Δ=3/5
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Appendix 2.B Lorentz Transformations and Minkowski Space 
 The disagreeable surveyors
The disagreements seen in Table (2.A.4) are analogous to the ones seen in coordinate rotation. Given a 
rotated grid such as shown in Fig. 2.B.1 one may relate the "disagreements" between a standard US 
surveyor and a "tipsy" one that headed straight for the saloon. They only agree on the point (0,0) of origin.

X'

Y'

X

Y

Object 1
(Saloon)

Object 2
(Gun Shoppe)

            
Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Object 0:
Town Square.

Object 1: 
Saloon.

Object 2: 
Gun Shoppe.

(US surveyor )       x = 0
                              y = 0

              x =   0.5
              y =  1.0

              x =   0
              y =  1.0 

(2nd surveyor)      x′ = 0
                             y′ = 0

              x′=   0
              y′=  1.1

              x′=  -0.45
              y′=  0.89  

! Before the US surveyor heads for the gun shoppe (so he can shoot the "non-standard" surveyor) 
one needs to defuse a potential argument and write a simple coordinate transformation such as derived in 
Fig. 2.B.2.
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Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

! In the notation given above the transformation has a form that is very much like the one we will 
derive for spacetime. Note that the inverse transform is had by setting angle θ to -θ or slope (b/c) to -(b/c).

         !       

  

′x = xcosθ − ysinθ = x

1+ b2

c2

+
− b / c( ) y

1+ b2

c2

′y = xsinθ + ycosθ =
b / c( )x

1+ b2

c2

+ y

1+ b2

c2

  ! !

  

x = ′x cosθ + ′y sinθ = ′x

1+ b2

c2

+
b / c( ) ′y

1+ b2

c2

y = − ′x sinθ + ′y cosθ =
− b / c( ) ′x

1+ b2

c2

+ ′y

1+ b2

c2

!  (2.B.1)

Remember that a coordinate diagram like Fig. 2.B.2 is a crummy and confusing way to derive this. See 
Chapter 1 for the better derivations starting from base vectors.
! Now we will suppose that the spacetime relations are also a linear transformation. 
! ! ! ! ! x′  = A x  +  B ct! ! ! ! ! (2.B.2a)
! ! ! ! ! ct′ = C x  +  D ct! ! ! ! ! (2.B.2a)
We solve for the unknown linear coefficients A, B, C, and D using the following table from App. 2.A.
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Happening 0:
Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space)       x = 0
(Lighthouse time)         t  = 0

              x = -vc/(c-v)
              t  =   c/(c-v)

              x =  0
              t  =   2.00 

(Ship space)                 x′ = 0
(Ship time)                   t′ = 0

              x′ =   0
              t′ = (v+c)Δ/c

              x′ =  2vΔ
              t′ =   2Δ  

! ! ! ! ! ! ! ! ! ! ! ! (2.A.4)repeated
To do this we stick in the values of (x',ct') and (x,ct) from the Happening Table. For Happening 1 we have

! A x  +  B ct = x′ ,! or! A(-vc/(c-v))  + Bc(c/(c-v)) = 0   , or  A = Bc/v ! (2.B.3a)
! C x  +  D ct = ct′  ,! or ! C(-vc/(c-v))  + Dc(c/(c-v)) = cΔ(v+c)/c  , ! ! (2.B.3b)

and for Happening 2 we have

! A x  +  B ct = x′  ,! or ! A(0)  + Bc(2) = 2vΔ  ,!! ! ! ! (2.B.4a)
! C x  +  D ct= ct′  ,! or ! C(0)  + Dc(2) = 2cΔ  . ! ! ! ! (2.B.4b)

The last two equations immediately give B=vΔ/c and D =Δ where you should recall from (2.A.1) that the 
quantity Δ=1/√(1-v2/c2) is the blink time interval according to the ship. Put these values of B and D back 
into (2.B.3a-b) to derive A = Δ and C= vΔ/c. This gives a general formula for converting lighthouse 
coordinates (x,ct) into ship coordinates (x′,ct′) or vice-versa. It is the Lorentz Transformation for speed v 
and rapidity ρ.

     

′x =
x

1− v
2

c2

+

v
c
ct

1− v
2

c2

= x coshρ + ysinhρ

c ′t =

v
c
x

1− v
2

c2

+
ct

1− v
2

c2

= x sinhρ + ycoshρ

!(2.B.5a) 

x =
′x

1− v
2

c2

−

v
c
c ′t

1− v
2

c2

= ′x coshρ − c ′t sinhρ

ct =
− v
c

′x

1− v
2

c2

+
c ′t

1− v
2

c2

= − ′x sinhρ + c ′t coshρ

(2.B.5b)

To go 'backwards' like (2.B.5b) you only have to switch the sign of velocity v. The use of hyperbolic 
functions of rapidity ρ=lnb will be explained shortly. For now note that cosh2ρ - sinh2ρ = 1 is satisfied by 
the  A, B, C, and D, that is, A2-B2 = 1 and D2-C2 = 1 for all relative speeds v =c tanh ρ. 
! In order to visualize and understand relativity it helps a great deal to plot these transformation 
equations as coordinate grids. The results are called Minkowski coordinates after a Polish mathematicians 
who happened also to be one of Einstein's math teachers. (It is interesting to note that Einstein himself 
resisted using these graphs, indeed his papers have precious few figures of any kind.) As seen in Fig. 2.B.
3 the Minkowski grids are actually quite striking but not quite as easy to grasp as those of a real rotation. 
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! ! !

x

ct

1.0-1.0

1.0

-1.0

x  =1.3357

ct =-1.7948

! Fig. 2.B.3 Minkowski coordinates (x', ct') for ship going v=-c/2 relative to Lighthouse (x, ct) .

! Note that the positive time or future, is down in these graphs. This is the classic Newtonian 
convention in which one plots an x-ordinate versus a t-abscissa. Note that the (x′, ct′) graph gets squeezed 
relative to the stationary (x, ct) graph. The resulting slope of the ct' axis is equal to the velocity in c-units, 
that is v/c. In this case that slope is v/c =-1/2. 
! This Newtonian slope-to-velocity relation happens because the ct′ axis is the track of the origin (x
′=0) of the ship, that is, its space-time trajectory or world line. As we will see, this slope v/c is equal to 
the hyperbolic tangent tanh ρ. However, ρ is called rapidity and is not an angle, but an area as will be 
shown. 
! A geometric interpretation of Lorentz transformations uses invariants of the transformations, 
functions whose numerical values are unchanged by it so the two protagonists agree on them. In Fig. 2.B.
4 we compare the circular invariants of the rotated surveyors with hyperbolic ones of the ship and 
lighthouse.
! The surveyors agree on the distance from town center or origin, that is, the sum of squares of 
coordinates (x2+y2 = x′2+y′2). The ship and light houses agree on difference of squares of coordinates 
(x2-ct2 = x′2-ct′2) that is, the speed of light c. Expanding circles of blink waves trace out cones in space-
time as in Fig. 2.B.5. Their (x,ct) cross-section are hyperbolic conic sections called light-cone sections.
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Fig. 2.B.4 Comparison of invariants (a) Rotation invariants are circles. (b) Lorentz invariants are 
hyperbolas.
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! Fig. 2.B.5 below is a plot of the North Lighthouse blink waves in {x, y, ct} coordinates. Blinks 
emitted at t= -1/2, t=0, and t=+1/2 seconds trace three concentric light cones around the track or world 
line of the North Lighthouse. All observers will see the same cones. They are invariant to one's space-time 
viewpoint.

.

ct

t= -1.0

t= 0

t= 1.0

t= -1.0

t=1.0

t=-0.5

t=0.5

t=1.5

t=1.5

North Lighthouse

Main Lighthouse

Ship

Fig. 2.B.5 Space-Space-Time plot of world lines for Lighthouses.  North Lighthouse blink waves trace light cones.
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Hyperbolic trigonometry
!  We are used to circular invariants and circular functions like sine and cosine that go with 
Cartesian rotation and elementary geometry and trigonometry. Relativistic Lorentz rotations have the 
transformation equations (2.B.5) in terms of hyperbolic functions sinhρ and coshρ. Invert these relations 
to get the 'angle' θ=ρ in terms of velocity where rapidity ρ is the logarithm of Doppler blue-shift factor in 
(2.A.5b).

coshρ + sinhρ = eρ =
1+ v

c

1− v
2

c2

=
1+ v

c

1− v
c

, or: ρ=ln
1+ v

c

1− v
c

! (2.B.6)

It turns out that the quantity θ=ρ is not an angle at all but an area. It is the gray area in Fig. 2.B.6 enclosed 
by the unit hyperbolic invariant x2 - (ct)2 = 1 and the two x and x′ axes. To calculate this area we form a 
triangle of base x=cosh θ and altitude y=sinh θ which contains the area as shown below.

x=cosh θ
y=sinh θ

y/x=tanh θ = v/c

Fig. 2.B.6 Hyperbolic angle-area θ=ρ  for unit hyperbola x2-(ct)2=1=cosh2θ - sinh2θ.

Note that the length of the tangent line between axes is the hyperbolic tangent tanh θ =sinh θ/cosh θ. 
! The desired area is found by subtracting the area under the hyperbola from that of the triangle. 
This will give us one-half of the gray area shown in the figure. Then d(coshθ) = sinhθ  dθ is used. 

Area
2

=
1
2
base ⋅altitude − area under curve =

1
2
xy − y dx∫

Area
2

=
1
2

sinhθ coshθ − sinhθ d coshθ( )∫
!! ! (2.B.7)

! ! sinh2θ =
eθ − e−θ

2

⎛

⎝
⎜

⎞

⎠
⎟

2

=
1
4
e2θ + e−2θ − 2( ) = cosh2θ −1

2
!    ! ! ! (2.B.8)!

! ! ! sinhθ coshθ =
eθ − e−θ

2

⎛

⎝
⎜

⎞

⎠
⎟
eθ + e−θ

2

⎛

⎝
⎜

⎞

⎠
⎟ =

1
4
e2θ − e−2θ( ) = 12 sinh2θ ! (2.B.9)

This gives the gray area between hyperbolas subtended by radii.
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! ! ! Area
2

=
1
2
sinhθ coshθ − sinh2θ dθ∫ =

1
4
sinh2θ −

cosh2θ −1
2

dθ∫ !

Using coshaθ dθ =
1
a∫ sinhaθ  we derive that the total gray area in Fig. 2.B.6 is equal to θ=ρ.

! ! ! ! ! Area = θ  =ρ! ! ! ! ! ! ! (2.B.10)
Note that the relativistic slope or velocity parameter β=v/c is the hyperbolic tangent of this area.

β =
v
c
=
sinhρ
coshρ

= tanhρ !! ! ! ! ! (2.B.11)

Adding relativistic velocities and angles
! Suppose, as before, that the ship has a velocity relative to the lighthouse that is half that of light, 
that is v'=c/2. Now suppose there is an observer that sees the lighthouse going at a velocity of c/2. What 
will that observer see for the velocity of the ship? Simply added the two velocities gives 0.5c + 0.5c = c. 
! However, it does not work that way. As with the space-space tipping transformations we need to 
add angles not slopes. Consider the plot shown in Fig. 2.B.6 below. The figure shows angle-areas being 
added to give the correct total area of θ + θ′= 0.5493 + 0.5493 = 1.0986. The θ=ρ are obtained from the 
hyperbolic tangent relation (2.B.11). θ = tanh-1(v/c) = tanh-1(0.5) = 0.5493. The hyperbolic tangent of 
the sum is correct: tanh(1.0986) = 0.8. The observer sees the ship going at 0.8c or 4/5 of lightspeed.
! A quick way to do relativistic velocity addition is to use the angle addition identity for the 
hyperbolic tangent. It is similar to the identity for the circular tangent.

tanh(x + y) = tanh x + tanh y
1+ tanh x tanh y

! ! ! ! (2.B.12)

Since the relative velocity ratio u/c is the hyperbolic tangent of the relative angle θu the identity gives:

′u
c
= tanh(θu +θv ) =

tanhθu + tanhθv
1+ tanhθu tanhθv

=

u
c
+ v
c

1+ u
c
v
c

!! ! (2.B.13)

This is the standard relativistic velocity addition formula.

′u =
u + v

1+ uv
c2

! ! ! ! ! ! (2.B.14)

This is the same result as our previous calculation which added u=c/2 and v=c/2 to get 0.8c. 

! ! ! ! ! ! ′u =

c
2
+ c
2

1+ 1
4

=
c
5
4

=
4c
5
! ! ! ! (2.B.14)example

The rapidity addition formula and its related Doppler multiplication formula are simpler to use.

! ρ( ′u ) = ρ(u)+ ρ(v) ! (2.B.15a)! ! eρ( ′u ) = b( ′u ) = b(u) ⋅b(v) = eρ(u)+ρ(v) ! (2.B.15b)
Relativity and quantum theory are fundamentally geometric or multiplicative scaling processes.
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Fig. 2.B.7  Coordinate axis X' tipped by θ′ =0.549  relative to X-axis which in turn is tipped by θ =0.549 relative to O-axis.

! As you add more and more hyperbolic angle area you approach the speed of light. But there is an 
infinite amount of angle-area under the hyperbola. No matter how much more speed you add you will 
never get any closer to the speed c of light. It is like a horizon. You can approach it but never cross it.
Minkowski graphs of relativistic effects
! Spacetime graphs such as Fig. 2.B.8 show Doppler effects and more. The blink wave paths are the 
±45° lines intersecting at blink times of t= ...-1.0, 0.0, 1.0, 2.0,...sec. In the upper portion of Fig. 2.B.8 the 
blink waves from the main lighthouse are seen crossing the ship path, that is the ct′-axis or x′=0, every 
half second or so before the ship passes the lighthouse at t=0=t′. To be precise, the crossing time is √0.5/
√1.5=0.577 sec. according to Doppler blue-shift formula (2.A.5). But, after passage it's not until t′ = 1.73 
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that the ship encounters another blink hit. This is the red-shift crossing time of t′= √1.5/√0.5=√3=1.732 
sec. The lighthouse claims the first hit (Happening 1) occurs at t=2 according its clocks, the same time as 
its second blink (Happening 2). This lighthouse moment of t=2 has a past (t<2 indicated by gray area) 
and a future (t>2 is the white area below the t=2 line.) The t=2 line is the space-time location of the 
lighthouse x-axis or "now-line" at this moment. The ship and lighthouse icons are a little misleading. A 3-
dimensional object cannot be really drawn on one spatial dimension. Also, note that the North lighthouse 
lies above (or below, depending on convention) the page containing the Main lighthouse in Fig. 2.B.8. 
This was sketched in Fig. 2.B.5.

!

1.0
litesec.

-1.0
litesec.

2.0
litesec.

-2.0
litesec.

-1.0 sec.

1.0 sec.

2.0 sec.

Ship  Main Lighthouse

Happening 1 Happening 2

x axis

 Fig. 2.B.8  Spacetime graph of ship passing lighthouse. (Lighthouse moment t=2 indicated.)

! The ship draws its moments differently as seen in Fig. 2.B.9. Here the moment of Happening 1 is 
indicated by the ship x′-axis at the moment t′ = 1.732 sec. This ship moment of t′ = √3 has a past (t′ <√3 
indicated by gray area) and a future (t′ >√3 is the white area below the t′ =√3 line.) Note that the ship's 
past overlaps with the lighthouse future in the leftward direction to which it is traveling, while behind the 
ship, the lighthouse has regions of its past that correspond to the ship's future. Very strange!
! These graphs show why the ship does not regard Happening 1 and Happening 2 to be 
simultaneous in the way that the lighthouse does. As far as the ship is concerned, points behind it belong 
to a lighthouse past, and so a 2nd blink (Happening 2) will come later, in fact not until t′  = 2.3 sec. 
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!

1.0
litesec.

-1.0
litesec.

2.0
litesec.

-2.0
litesec.

-1.0 sec.

1.0 sec.

2.0 sec.
Ship

 Main Lighthouse

ct axis

x axis

Happening 1
t' = 1.73

or
t = 2.00

Happening 2
does not happen

 until
t' =2.30

or
t= 2.00

! Fig. 2.B.9  Spacetime graph of ship passing lighthouse. (Ship moment t'=1.73 indicated.)

! A ship or any observer moving with positive velocity relative to the lighthouse (that is, left to 
right) will record an opposite time order for Happening 1 and 2. For such a reference frame, Happening 2 
will come before Happening 1 since its x-axis will tip down to the right in Fig. 2.B.9. This event reversal 
could present a serious philosophical conundrum if, for example, Happening 1 caused Happening 2. 
Generally, we prefer causes to precede effects, and this is known as the causality principle. Violations of 
causality are regarded with the same suspicion reserved for violation of energy conservation or the 2nd 
Law of Thermodynamics. Such violations are tolerated in microscopic quantum fluctuations but not in 
macroscopic classical averages.
! For Happening 1 to actually cause Happening 2, it must send some kind of message, particle, or 
"force" at a speed greater than light. If a "cause" or particle goes from 1 to 2 it must cut across the light 
cone!
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! After Fig. 2.B.7 we noted that hyperbolic asymptotes or light cones were like horizons that one 
could approach indefinitely but should not expect to cross. This light barrier is considerably more serious 
than the so-called "sound-barrier." It cannot be broken by ordinary matter by simply having the "right-
stuff." Anything that crosses the barrier however briefly pays a great price; it will be seen by many 
observers to be located at three or more places at one time! Doing this involves (possibly painful) 
annihilations and recreations as shown below.
! Consider a case where Happening 1 comes just a little earlier than Happening 2 as shown in Fig. 
2.B.10 so that faster-than-light travel is required to connect or "cause" the second Happening. Then the 
Ship's view of this is pretty strange as seen in Fig. 2.B.11 where Happening 2 occurs before Happening 1. 
Any "cause" connecting the two has to go "backwards-in-time." The lighthouse sees the causative particle 
shown in Fig. 2.B.10 ride down to Happening 1 then leap faster-than-light to Happening-2 but the ship 
finds it at three places during the time between Happening 2 and Happening 1 in Fig. 2.B.11. It is as 
though a particle-anti-particle pair is created at Happening 2 and the anti-particle is annihilated at 
Happening 1!

!

Brief faster-than-
light travel

Happening 1

Happening 2
Before

x-axis

ct-axis

Fig. 2.B.10 Lighthouse plot of Happenings

Happening 1

Happening 2
Before

x'-axis

ct'-axis

(annihilation)

(creation)

Brief  travel
back-in-time

Fig. 2.B.11 Ship plot of two Happenings
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Appendix 2.C Measures of velocity: Relativistic speedometers
 Physical and geometric indicators of relative velocity mentioned in Sec. 2.A include Doppler shift 
b, slope u/c in space-time, rapidity ρ, and stellar aberration angle φ. Some of these are indicated in Fig. 
2.C.1. The angle  ρ°=tan-1(u/c) of slope u/c that we will call “rho-oh” is totally non-standard, however, the 
hyperbolic quantity ρ=tanh-1(u/c) known as rapidity is quite important as is the stellar aberration angle 
φ=sin-1(u/c).
 ρ=tanh-1(u/c)  (2.C.1)  ρ°=tan-1(u/c)  (2.C.2)  φ=sin-1(u/c)  (2.C.3)
These might be called, respectively, the Minkowski angle ρ, the Einstein angle ρ°, and the Epstein angle 
φ, the latter named after the inventor of the cosmic speedometer, Lewis Carroll Epstein, author of a 
uniquely interesting approach to relativity entitled Relativity Revisited (Insight Press, San Francisco 
1978). The Epstein angle is the angle one must tip a moving telescope to catch vertically falling starlight 
in the star-fixed inertial frame. Known as the stellar aberration angle long before Epstein came along, it is 
one of the first-order effects of velocity in the theory of special relativity. For Newtonian speeds (u<<c) 
these angles nearly equal and tiny. 
     ρ ~ ρ°~ φ  ~ u/c  for (u<<c)    (2.C.4)
 Their behavior at higher speeds is quite different as shown in Fig. 2.C.1(a)  where the 2nd order 
effects such as Einstein time dilation (Fig. 2.C.1(b)) and Lorentz contraction (Fig. 2.C.1(c)) become 
significant. As shown in Fig. 2.C.1 (a) the Epstein angle φ is found by dropping a vertical perpendicular 
from the (u/c)-point on the line defining the Einstein angle  ρ° or Minkowski world line  of rapidity ρ on 
the unit horizon tangent to the unit circle. The lower line has an angle φ that is greater than ρ° and is that 
of a starlight path.
 Extending that starlight path back to the unit horizon begins the construction of the quantity coshρ 
that is the Einstein dilation factor coshρ in Fig. 2.C.1 (b) found where a vertical from the horizon 
intersection of the star-path φ-line hits the original ρ°-line.  A lower horizon where the vertical 
perpendicular from the (u/c)-point hits the unit circle is the inverse Lorentz contraction factor sechρ 
shown in Fig. 2.C.1(c).
 Each of these is a 2nd order effect, that is, they first vary as the square of rapidity or velocity.

   coshρ = 1+
ρ2

2
+ ...  (2.C.5a) sechρ =

1
coshρ

= 1−
ρ2

2
+ ...  (2.C.5b)

The functions sinhρ and tanhρ are linear at first and are thus called 1st order variant.

   sinhρ = ρ + ...   (2.C.6a)  u
c
= tanhρ = ρ + ...  (2.C.6b)

The 1st order functions of primary importance are the Doppler shift exponentials.

  Blue shift: eρ = 1+ ρ + ...  (2.C.7a) Red shift: e−ρ = 1− ρ + ... (2.C.7b)

The Doppler values are constructed in Fig. 2.C.1(d) along with the Minkowski grids and the hyperbolic 
invariant curves. This construction is based upon the geometry of both the circle and the hyperbola 
together. This all-important geometry is discussed using a following Fig. 2.C.2 and Fig. 2.C.3.
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Fig. 2.C.1 Geometry of relativistic parameters and functions of velocity.
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Relations between circular and hyperbolic functions
 The geometry and trigonometry of circular functions sinφ, cosφ, and tanφ, as well as their inverse 
functions cscφ, secφ, and cotφ, is well known in the form displayed in Fig. 2.C.2(a). The source of the word 
“tangent” is the tangent line segment leaning at angle φ in Fig. 2.C.2(a). The word “sine” is perhaps 
derived from “slope-incline” that is the altitude rise fraction of distance traveled on the inclined road 
(hypotenuse). The cosine is the distance traveled horizontally.  The secant is a cut through the circle from 
the tangent intersection point outside and is the inverse of the cosine.

Less widely known is the geometry and trigonometry of hyperbolic functions sinhρ, coshρ, and 
tanhρ, as well as their inverse functions cschρ, sechρ, and cothρ shown in a similar form displayed in Fig. 
2.C.2(b). They also measure altitudes, tangents and base segments but with respect to the unit hyperbola.
 The combination of these functions is the heart of modern relativity and quantum physics. 
Particularly important is the dependency between the stellar aberration angle φ and the hyperbolic “angle” 
ρ. In the figure the value φ =0.8934 (or 51.19°) is chosen. This means rapidity is ρ =0.8934 (or u/c= tanhρ 
=0.7792) as follows. 
  sinφ = tanhρ =0.7792  (2.C.8a)  tanφ = sinhρ =1.2433  (2.C.
8b) 
  cosφ = sechρ =0.6267  (2.C.9b)  secφ = coshρ =1.5955  (2.C.
9b) 
  cscφ = cothρ =1.2833  (2.C.10a)  cotφ = cschρ =0.8043  (2.C.
10b)
Note that cscφ = cothρ =1.2833 and tanφ = sinhρ =1.2433 are close but not equal, so near-coincidences 
might appear in the figures to give misleading results. 
 Both angle φ and “angle” ρ should be viewed as area φ and the hyperbolic area ρ as is done in the 
figure. The circular area is bounded by π but the hyperbolic area is unbounded and infinite in extent. For 
each segment on the unit-circle there is a corresponding equal-length segment on the unit-hyperbola. The 
circular tangent tanφ is the same as the hyperbolic altitude sinhρ and the hyperbolic tangent tanhρ 
(relativistic velocity) is the altitude sinφ of the circle at the aberration angle φ. 
 It is also interesting that the tangent line to the hyperbola is determined by base and altitude 
segments sechρ and cschρ on the main axes and by the intersection of φ–tipped segment tanφ=sinhρ and 
vertical segment  tanhρ=sinφ.
 It is quite a bizarre set of relations that exist between the circle and its “country-cousin” the 
hyperbola, and it has a lot to teach us about relativistic and quantum physics. The next figure fills in some 
of the geometric details that are relevant for the physics.
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Fig. 2.C.2 Trigonometry (a) Circular functions of aberration angle φ (b) Hyperbolic functions of rapidity 
ρ.
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Geometry of circular and hyperbolic functions
 The geometry and trigonometry of trigonometric ratios is further developed in Fig. 2.C.3 to show 
the rationale of the line segments in Fig. 2.C.1.  It also shows the fundamental exponential functions e-ρ 
and e+ρ that are the Doppler blue and red shift ratios and whose half-sum and half-differences give the 
hyperbolic cosine coshρ and the hyperbolic sine sinhρ ratios. Fig. 2.C.1 shows the half-sum and half-
difference s.

   coshρ =
e+ρ + e−ρ

2
   sinhρ =

e+ρ − e−ρ

2
Fig. 2.C.3 is quite a collection of ratios, indeed, it might be called a ratio-riot! However, it contains 

some fundamental and simple but powerful results and it is worth the time it takes to understand it.
 The intersection of segment tanφ=sinhρ, the segment sinφ = tanhρ, and the actual tangent line to the 
hyperbola is joined also by a horizontal line at vertical distance cotφ = cschρ =0.8043  below the highest 
point at cscφ = cothρ =1.2833 on the vertical (space) axis. (This high point on the vertical x-axis is not to 
be confused with the 2nd highest point at tanφ = sinhρ =1.2433.) 
 The actual tangent line to the hyperbola also goes through the intersection of the hyperbolic-
cosine-circle of radius r=coshρ=secφ=1.5955 around point (x=sinhρ=tanφ=1.2433, ct=0) and the hyperbolic-
sine-circle of radius r=sinhρ=tanφ=1.2433 around point (x=0, ct=coshρ=secφ=1.5955). The actual tangent 
line slope is the inverse cothρ=1.2833=cscφ to the slope tanhρ=0.7792=sinφ of the hyperbolic radius vector 
that makes contact with the tangent at the point (x=sinhρ=tanφ=1.2433, ct=coshρ=secφ=1.5955).
 To see the correspondence with the constructions in Fig. 2.C.1(c) it is necessary to view Fig. 2.C.3
(b) at right angles so the ct-axis  (or frequency axis) points vertically as it would in Fig. 2.C.1(c). The 
hyperbolic-cosine-circle is the circle that takes the geometric mean of the Doppler ratios e-ρ and e+ρ to 
arrive at the unit invariant value ct=1 (or ϖ = 1 ) on the time axis (or frequency axis).
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Fig. 2.C.3 Relativistic ratio geometry connecting (a)Circular φ-functions and (b)Hyperbolic ρ-functions.
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Chapter 3. Invariance and Relative Phase: Galileoʼs revenge

 Einstein relativity shows Galilean relativity, based on simple velocity sums and differences, to be a 

400 year-old approximation that fails utterly at high speeds. Einstein also dethrones infinite velocity that 

is the one invariant velocity shared by Galilean observers regardless of their (finite) velocity. In its place 

reigns a finite velocity limit c=299,792,458ms-1 that is now the Einstein-Maxwell-Evenson invariant speed. 

 So it is remarkable that frequency sums and differences (1.10) simplify relativity by using 

Galilean-like rules for angular velocities  ω A = φA  of light phases φA . Frequency sums or differences 

ω A ±ωB  from interference terms like ψ Aψ B* = ABe
−i(ω A −ωB )t between wave pairs ψ A = Ae−iω At and 

ψ B = Be−iωBt  are relative frequencies (beat notes, overtones, etc.) subject only to simple addition and 

subtraction rules that are like Galileo’s rules for linear velocity. Simple angular phase principles deeply 

underlie modern physics, and so far there appears to be no c-like speed limit for an angular velocity ω. 

 Phase principles have electromagnetic origins. Writing oscillatory wave functions using real and 

imaginary parts is used to study AC phenomena or harmonic oscillators in Unit 4. Real part q of oscillator 

amplitude q+ip=Ae− iω t  is its position q=Acosωt. Imaginary part p=Asinωt is oscillator velocity v =-Aω sinωt 

in units of angular frequency ω. Positive ω gives a clockwise rotation like that of classical phase space or 

analog clocks, so a minus sign in a conventionalAe− iω t phasor serves to remind us that wave frequency ω 

defines our clocks and wavevector k=ω/c defines our meter sticks. (Recall Fig. 1.10.5 and Fig. 4.2.1.)

 A plane wave of wavevector k in Fig. 3.1 is drawn as a phasor array, one A =|A|eikx  for each 

location x. A plane wave advances in time according to |A|ei(kx−ω t )  at phase velocity V=ω/k. Similar 

convention and notation are used for light waves and for quantum matter waves, but only light waves 

have physical units, vector potential A and electric E-field, defining their real and imaginary parts. While 

classical laser wave phase is observable, only relative phase of a quantum wave ψ appears to be so.

 The concept of relative phase (and frequency) arises in classical or quantum interference where a 

sum of two waves ψ A = AeiφA andψ B = BeiφBt  may be represented at each position x by a vector sum of a 

phasor-A with a phasor-B as in Fig. 3.1a. (Fig. 3.1 has a sum of 12 phasors, one for each each x-point.)  

The result is a clockwise race around a track between the faster one, say A-phase φA = kAx −ω At  of 

angular speed -ωA, and the slower B-phase φB = kBx −ωBt  of angular speed -ωB as sketched in Fig. 3.1b. 
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 Galilean relativity of phase angular velocity holds if the phase wave is governed by linear 

equations of motion such as Maxwell’s equations. Very precise measurements of en vacuo light have 

verified this so far and Einstein relativity is a consequence. You might say this is Galieo’s revenge! 

Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

(c) In phasor-relative views either A or else B is fixed. An evolving sum-and-difference rectangle is inscribed in the (dashed) 
circle of the phasor moving relative to the fixed one. 
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Geometry of relative phase

When A passes B the sum is a maximum or beat that then subsides to a minimum or node when A 

is on the opposite side of the track from B. If amplitude magnitudes |A| and |B| are equal as they are in 

Fig. 3.1, then the wave node is a wave zero that defines one of the group G-lines in WZ coordinates of 

Fig. 1.4 through Fig. 2.2. The relative angular velocity Δ =ω A −ωB  (beat angular frequency) is the angular 

rate at which A passes B. A-B passings occur δ times (per sec.) where δ is Δ divided by track length 2π. 

δbeat = Δ / 2π = υA −υB     (3.1)

 If one could ride in an angular Galilean frame of phasor-B, then A would be seen passing at 

angular speed Δ with frequency δ. Suppose instead, one could ride at their average angular speed Ω .

     Ω =2
1 (ω A +ωB )      (3.2)

Then Galilean arithmetic (which lasers given no reason to doubt in these matters) implies that phasor A or 

B would each appear with a relative speed of plus-or-minus half their relative velocity.

     ±2
1Δ = ±2

1 (ω A −ωB )      (3.3)

A point of view relative to phasor B is shown by the first of Fig. 3.1c. A dashed circle represents 

moving phasor A with ψ A on one diagonal of an inscribed rectangle whose sides are the resultant sum 

ψ A +ψ B  and difference ψ A −ψ B . The other diagonal ψ B appears fixed. A companion figure has ψ A  

appear fixed instead. Resultants in either figure begin and end on a dashed circle traced by the phasor that 

is moving relative to the other. A rectangle-in-circle is a key Euclidian element of wave physics and is a 

key feature of a later figure (Fig. 3.3) that shows the essence of wave interference geometry. 

The half-sum and half-difference angles in Fig. 3.1b and frequencies (3.2) and (3.3) appear in the 

interference formulas (1.10) that lead to relativistic Lorentz-Einstein coordinate relations (2.10) and their 

WZ grid plots of Minkowski coordinates in Fig. 2.2c. One key is the arithimetic mean  (α + β) / 2  of phases 

that gives the geometric mean   (ψ Aψ B )1/ 2 = Aei(α +β ) / 2 of wave phasor amplitudes.  The other key is the 

difference mean  (α − β) / 2  and that is the phase angle of a cross mean  (ψ Aψ B*)1/ 2 = Aei(α−β ) / 2 .

Euclidian means and rectangle-in-circle constructions underlie relativistic wave geometry as is 

shown below.  This geometry also leads to the geometry of contact transformations in classical mechanics 

that exposes relations between classical and quantum mechanics in Ch. 5.  
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Geometry of Doppler factors
Any number N of transmitter-receivers (“observers” or “atoms” previously introduced) may each 

be assigned a positive number b11, b21, b31, …that is its Doppler shift of a standard frequency ω1 broadcast 

by atom-1 and then received as frequency ωm1= bm1 ω1 by an atom-m. By definition a transmitter’s own 

shift is unity. (1= b11) Also, coefficient bm1 is independent of frequency since such geometric relations 

work as well on 1THz or 1Hz waves as both waves march in lockstep to the receiver by Evenson’s CW 

axiom (1.1). The production times of a single wavelength of the 1Hz-wave and 1012 wavelengths of the 

1THz wave must be the same (1sec.), and so must be reception time for the two waves since they arrive in 

lock step, even if τ is shortened geometrically by 1/ bm1. Doppler is a geometric and multiplicative effect.

Fig. 3.2 Doppler shift b-matrix for a linear array of variously moving receiver-sources.

If atoms travel at constant speeds on a straight superhighway, then bm1 in (2.8a) tells what is the 

relative velocity um1 of the mth atomic receiver relative to the number-1 transmitter. 

    um1 /c = (bm1
2 −1) / (bm1

2 +1)      (3.4)

The velocity um1 is positive if the mth atom goes toward transmitter-1 and sees a blue (bm1>1) shift, but if 

it moves away um1 is negative so it sees a red (bm1<1) shift. Transmitter-1 has no velocity relative to itself. 

(u11=0) Infinite blue (or red) shift bm1=∞ (or bm1=0) gives um1=c (or um1=-c) and this defines the range of 
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parameters. The bm1 are constant until atom-m passes atom-1 so relative velocity flips sign (u1m →−u1m ). 

Doppler shift then inverts (b1m →1 / b1m ) as is consistent with axiom (1.2).

 Suppose now b12, b22, b32, …are Doppler shifts of frequency ω2 transmitted by the second atom 

and received by the mth atom as frequency ωm2= bm2 ω2. (Any atom (say the nth) may transmit, too.)

       ωmn= bmn ωn     (3.5a)

Recipients don’t notice if atom-n just passes on whatever frequency ωnm came from atom-m. If frequency 

ωn in (3.5a) is ωn1= bn1 ω1 that atom-n got from atom-1 then atom-m will not distinguish a direct ωm1 from 

a perfect frequency copy bmn bn1 ω1 made by atom-n from atom-1 and then passed on to atom-m. 

    ωm1 = bm1 ω1= bmn bn1 ω1   (3.5b)

A multiplication rule results for Doppler factors and applies to light from atom-1 or any atom-p.

    ωmp/ωp= bmp = bmn bnp    (3.5c)

An inverse relation results from atom-p comparing its own light to that copied by atom-n.

    1= bpp = bpn bnp  or:  bpn =1/bnp   (3.5d)

(Amplitude amplification is discussed later in Ch. 6 and has similar rules.)

 Notice that copying or passing light means just that and does not include reflection or changing +k 

to –k or any other direction. This presents a problem for a receiver not in its transmitter’s (+k)-beam and 

certainly for atom-p receiving its own beam. The relations (3.5) depend only on relative velocities and not 

positions (apart from the problem that a receiver might be on the wrong side of a transmitter).

An obvious solution is to let the receiver overtake its transmitter or failing that delegate a slave 

transmitter or receiver on its right side. Fig. 3.2 shows N=5 receivers of a ω3=600THz source whose 

various speeds produce a matrix of N(N-1)=20 Doppler shifted frequencies ωmn and factors bmn.

Doppler rapidity and Euclid means business
 Composition rules (3.5c) suggest defining Doppler factors b=eρ in terms of rapidity ρ=ln b.

   bmp = bmn bnp implies: ρmp = ρmn +ρnp where: bab = e
ρab  (3.6)

Rapidity parameters ρmn mimic Galilean addition rules as do phase angles φ of wavefunctionss ei φ. Both ρ 

and φ are the parameters that underlie relativity and quantum theory. In fact, by (3.4) rapidity ρmn 

approaches the relative velocity parameter umn /c between atom-m and atom-n for speeds much less than c. 

Rapidity is also convenient for astronomically large Doppler ratios bab since then the numerical value of 

ρab =ln bab is much less than bab while umn /c approaches 1 in a way that is numerically inconvenient.
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 At intermediate relativistic speeds the geometric aspects of Doppler factors provide a simple and 

revealing picture of the nature of wave-based mechanics. Pairs of counter moving continuous waves 

(CW) have mean values between a K-vector R=K1=(ck1,ω1) going left-to-right and an L=K3=(ck3,ω3) 

going right-to-left. A key quantity is the geometric mean ϖ of left and right frequencies.

      ϖ = ω1ω3      (3.7)

In Fig. 3.2a frequency ω1=1 or ω3=4 is a blue (b=e+ρ=2) or red (r=e−ρ=1/2) shift of mean ϖ = 1 ⋅4 = 2 .

  ω1 = bϖ = eρϖ    (3.8a)   ω3 = rϖ = e−ρϖ  (3.8b)

In units of 2π ·300THz, frequency values ω3=1 and ω1=4 were used in Fig. 2.2. Their half-sum 5/2 is their 

arithmetic mean. That is the radius of the circle in Fig. 3.2b located a half-difference (3/2) from origin.

ω1 +ω3
2

=ϖ e+ρ + e−ρ

2
=ϖ coshρ =ϖ 5

2
  (3.9a)  

ω1 −ω3
2

=ϖ e+ρ − e−ρ

2
=ϖ sinhρ =ϖ 3

2
  (3.9b)

By (2.8) the difference-to-sum ratio is the group or mean frame velocity-to-c ratio u/c=3/5 for b=2. 

 
ω1 −ω3
ω1 +ω3

=
sinhρ
coshρ

= tanhρ =
u
c

 (3.9c)     4 −1
4 +1

=
u
c
=
3
5

   (3.9d)

The geometric mean (ϖ = 1 ⋅4 = 2 ) in units of 2π ·300THz is the initial 600THz green laser lab frequency 

used in Fig. 2.1. Diamond grid sections from Fig. 2.2b are redrawn in Fig. 3.3b to connect with the 

geometry of the Euclidian rectangle-in-circle elements of interfering-phasor addition in Fig. 3.1c.

Various observers see single CW frequencies ω1 or ω3 shifted to ω′1=e+ρω1 and ω′3=e−ρω3, that is, to 

values between zero and infinity. But, because factor e−ρ cancels e+ρ, all will agree on the 2-CW mean 

value ϖ =[ω1ω3]1/2=[ω′1ω′3]1/2. A 2-CW function has an invariant ϖ of its rest frame (Recall Fig. 2.2c) seen 

at velocity u=c(ω1-ω3)/( ω1+ω3). A single CW has no rest frame or frequency since all observers see it 

going c as in Fig. 1.1. To make a home frame, a single CW must marry another one!
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Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units). 
Fig. 3.3b Geometry for the CW wave coordinate axes in Fig. 2.2.
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Invariance of proper time (age) and frequency (rate of aging) 
 Space, time, and frequency may seem to have an out-of-control fluidity in a wavy world of 

relativism, so it is all the more important to focus on relativistic invariants. Such quantities make ethereal 

light billions of times more precise than any rusty old meter bar or clanking cuckoo clock.

 It is because of the time-reversal (1.2) and Evenson axiom (1.1) that product ω1ω3=ϖ2 is invariant 

to inverse blue-and-red Doppler shifts b=e+ρ and r=e−ρ. It means the blue-red shifted diamond in Fig. 3.3b 

or Fig. 2.2 has the same area R′xL′ as the original green “home field” baseball diamond area RxL drawn 

below it and in Fig. 2.1. Constant products ω1ω3=const. give families of hyperbolas. 

   |RxL|=2|GxP|=2|KgroupxKphase|=2|ϖ2cosh2ρ  -ϖ2sinh2ρ|=2ϖ2

One hyperbola in Fig. 3.4a intersects bottom point B=ϖ (“pitchers’mound”). The other hits 2B (2nd base). 

Each horizontal P -hyperbola is defined by the phase vector P=Kphase or some multiple of P. 

 K phase =
ϖ
2

eρ − e−ρ

eρ + e−ρ
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=ϖ

sinh ρ
cosh ρ

⎛
⎝⎜

⎞
⎠⎟
=

ckp
ω p

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

     on P-hyperbola:    ω p( )2 − ckp( )2 =ϖ 2  (3.10a)

Each vertical G -hyperbola is defined by the wave group vector G=Kgroup or some multiple of G.

 Kgroup =
ϖ
2

eρ + e−ρ

eρ − e−ρ
⎛

⎝
⎜

⎞

⎠
⎟ =ϖ

coshρ
sinhρ

⎛
⎝⎜

⎞
⎠⎟
=

ckg
ωg

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

     on G-hyperbola:    ckg( )2 − ωg( )2 =ϖ 2  (3.10b)

The G-vectors serve as tangents to P-hyperbolas and vice-versa. The tangent slope dk
dω to any ω(k) 

curve is a well known definition of group velocity. Fig. 3.4b shows how dk
dω of a P-hyperbola is equal to 

secant slope Δk
Δω in Fig. 3.4a as defined in the u=Vgroup equation (2.7b) based on CW axioms. 

Phase velocity k
ω =Vphase and its P-vector is an axis-switch (ω,ck)  (ck,ω) of Δk

Δω and its G-vector. In 

conventional c-units Vgroup/c<1 and 1<Vphase/c are inverses according to (2.7). (Vphase·Vgroup=c2) 
Features on per-space-time (ck,ω) plots of Fig. 3.3-Fig. 3.4 reappear on space-time (x,ct) plots as 

noted in Fig. 2.1 and Fig. 2.2. A space-time invariant analogous to (3.10) is called proper-time τ.

   ct( )2 − x( )2 = cτ( )2 = c ′t( )2 − ′x( )2      (3.11)

It conventional to locate oneself at (0,ct) or presume one’s origin x=0 is located on oneself. Then 

(3.11) reduces to time axis ct=cτ. A colloquial definition of proper time is age, a digital readout of one’s 

computer clock that all observers may note.
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Fig. 3.4 (a) Horizontal G-hyperbolas for proper frequency B=ϖ and 2B and vertical P-hyperbolas for proper wavevector k. (b) 

Tangents for G-curves are loci for P-curves, and vice-versa. Note: secant Δω/Δk and tangent dω/dk are always exactly equal.
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By analogy, ϖ is proper-frequency, a rate of aging or a digital readout on each of the spectrometers 

in Fig. 3.2. Each reading is available to all observers.

   ω( )2 − ck( )2 = ϖ( )2 = ′ω( )2 − c ′k( )2      (3.12)

The same hyperbolas (3.12) mark tics on the laser lab (ω,ck), the atom frame (ω′,ck′), or any other frame.

 The proper frequency of a wave is that frequency observed after one Doppler shifts the wave’s 

kinks away, that is, the special frequency ϖ seen in the frame in which its wavevector is zero (ck=0) in 

(3.12). Hence a single CW has a proper frequency that is identically zero (ϖ =0) by Evenson’s axiom 

(ω=ck), so single CW light cannot age. If we could go c to catch up to light’s home frame then its phasor 

clocks would appear to stop. Someone moving along a line of phasor clocks in Fig. 1.1c would always see 

the same reading, but that would be an infinite Doppler shift that one can only approach.

To produce a nonzero proper frequency ϖ ≠0 requires interference of at least two CW entities 

moving in different directions and this produces a standing wave frame like Fig. 2.1c moving at a speed 

less than c as shown in Fig. 2.2c. Matched CW-pairs of L and R baselines frame a “baseball diamond” for 

which the phase wavevector kp in (2.2a) is zero. Then frame velocity u=Vgroup in (2.3b) is zero, too. 

Fig. 3.5 shows the plots of per-spacetime “baseball diamond” coordinates for comparison of lab 

and atom frame views. While Fig. 3.5a is a “blimp’s-eye view” of the lab-frame diamond in Fig. 2.1, the 

atom frame view in Fig. 3.5b looks like the baseball field seen by a spectator sitting in the grandstands 

above the dugout. Nevertheless, identical hyperbolas are used to mark grids in either view.

Each point on the lower hyperbola is a bottom point ω′=B=2 (600THZ) for the frame whose 

relative velocity u′ makes it a ω′-axis (k′=0)-point, and every (k′=0)-point on the upper hyperbola is its 

bottom point ω′=2B=4 (1200THZ), and so on for hyperbolas of any given proper frequency value ϖ.  The 

same applies to space-time plots for which time ct′ takes the place of per-time ω′ and space x′ takes the 

place of per-space ck′. Then bottom points are called proper time or τ-values from (3.11). 

For single CW light the proper time must be constant since a single CW cannot age. It is a 

convention to make the baselines or light cone intersect at the origin in both time and space. This sets the 

baseline proper time constant τ to zero. Then invariants (3.11) reduce to baseline equations x=±ct or x′=±ct

′ for all frames. The space-time light cone relations are in direct correspondence with the per-space-time 

light cone relations ω=±ck or ω′=±ck′ for zero proper frequency in all frames and are concise restatements 

of the Evenson CW axiom (1.1). 
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Fig. 3.5 Dispersion hyperbolas for 2-CW interference (a) Laser lab view. (b)Atom frame view.
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Chapter 4. Mechanics based on CW axioms

 Each of the 2-CW structures or properties discussed so far are due to relative interference effects 

between pairs of 1-CW entities that, by themselves, lack key 2-CW properties such as a proper invariant 

frequency ϖ, a rest frame, or any speed below the mortally unattainable velocity of c. To acquire “mortal” 

properties requires an interference encounter or pairing of 1-CW with another. 

 Now we see how 2-CW interference endows other “mortal” properties such as classical mass and 

relativistic mechanics of energy-momentum that characterize a quantum matter wave. Such endowment 

lies in P-hyperbola phase relations (3.10a) that in turn are due to CW axioms (1.1) and (1.2).

 
 

ω p = B coshρ

 ≈ B +2
1 Bρ2  (for u c)

(4.1a) 
 

ckp = Bsinhρ

      ≈ Bρ (for u c)
(4.1b)   

 

u
c
= tanhρ

   ≈ ρ   (for u c)
(4.1c)

Hyperbola in Fig. 3.4 has bottom B=ϖ and P-vector components (ωp,ckp) with tangent slope u/c at P. At 

low group velocity (uc) the rapidity ρ approaches u/c. Then ωp and kp are simple functions of u.

 
 
ω p ≈ B +2

1[B/c2]u2    (4.2a)      
 
kp ≈ [B/c

2]u       (4.2b)

The ωp and kp fit Newtonian-energy E and Galilean-momentum p. Is that a coincidence? Indeed, not!

 E = const.+2
1Mu2    (4.3a)      p ≈ Mu        (4.3b)

Wave ω and k results (4.2), scaled by a single factor s=Mc2/B, match classical E and p definitions (4.3).

    
 
E = sω p ≈ sB +2

1 [sB/c2]u2  (4.4a)       
 
p = skp ≈ [sB/c

2]u       (4.4b)

In Newton’s mechanics, only energy difference ΔE counts, so he might ignore the term E=const. 

(4.3a). But, in (4.4a) that const.=sB is the proper phase carrier-frequency value B=ϖ at hyperbola bottom B 

in Fig. 3.4b. That is scaled by s=Mc2/B to sB=sϖ in Fig. 4.1. It is Einstein rest energy and not ignorable! 

const.= sB = Mc2 = sϖ       (4.4c)

 ϖ-mass-energy equivalence is a huge idea due to Einstein (1905) and Planck (1900). k-vector-

momentum equivalence by DeBroglie came later (1921). CW results (4.1) give both directly and exactly.

   E = sω p = Mc
2 coshρ =

Mc2

1− u2 / c2
 (4.5a)        p = skp = Mcsinhρ =

Mu

1− u2 / c2
 (4.5b)

 Scale factor s in Planckix E=sω or DeBrogliex p=sk laws is found experimentally. The lowest 

observed s-value is Planck angular constant =1.05·10-34J·s. That is Planck’s axiom E=ωn=Nhυ for N=1. 

Integer N is Planck’s optical quantum number later called photon-number. At first, Planck regretted his 
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1900 axiom E=Nhυ. It seems inconsistent with  ω 2-dependence of classical oscillator energy E=A2ω2. In 

1905, Einstein resolved this. A key idea is quantized amplitude AN=√(hN/υ). (Even amplitude is wavy!)

cp'=hck'
cctt

cctt''

Energy
E=hω

Momentum
cp=hck

Mc2

ωm=49ω1

76543210-1-2-3-4-4-6
m

36

25
16
9
4

(a) Einstein-Planck Dispersion

(b) DeBroglie-Bohr Dispersion

E'=hω'
E2 - c2p2 =(Mc2)2

photon: M=0
E = c p

E = p2/2M

E = B m2

tachyon:

Fig. 4.1 Energy vs. momentum dispersion functions including mass M, photon, and tachyon.
(a) Relativistic (Einstein-Planck-deBroglie) case: (Mc2)2=E2-(cp)2 = 1 or  µ2=ω2-(ck)2 = 1/2.
(b) Non-relativistic (Bohr-Schrodinger-deBroglie) case: Ε =-(1/2M)p2  or ω =k2/2M

Quantized cavity modes and “fuzzy” hyperbolas
Cavity boundary conditions “1st-quantize” classical wave mode variables (ωn,kn) so as to have discrete 

numbers n=1,2,3,… of half-wave anti-nodes that fit in a cavity of length- as shown at the top of Fig. 4.2.

  kn=π/λn= n·π/   (4.6a)   ωn=c kn = c n·π/ (4.6b)
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Planck’s axiom “2nd-quantizes” each fundamental mode frequencyωn to have discrete quantum numbers 

Nn=0,1,2,3,… of photons. Each level EN(n)=Nnωn labels a hyperbola in Fig. 4.2 whose number n of anti-

nodes and N of photons is invariant. This lends object-permanence to cavity “light particles” or photons.

 As discussed in Ch. 6, laser waves are coherent state combinations of N-photon states that have 

semi-classical properties that include well-defined wave phase. One “fuzzy” hyperbola of uncertain N and 

mass-energy replaces the ladders in Fig. 4.2. This is a kind of 2nd Occam-razor cut after the 1st cut of PW 

into CW. As discussed in Ch. 6, it resolves CW into coherent combinations of “2nd-quantized” photons.

Fig. 4.2 Optical cavity energy hyperbolas for mode number n=1-3 and photon number N=0, 1, 2,....
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Alternative definitions of wave mass
 If mass or rest energy is due to proper phase frequency ϖ, then a quantum matter wave has mass 

without invoking hidden Newtonian “stuff.” With Occam logical economy, 2-CW light led to exact mass-

energy-momentum (ω,k) relations (4.5) and not just low-speed classical ones (4.3). Now we see how 2-

CW results expose some salient definitions of mass or matter that a classical theory might overlook.

 First, the Einstein-Planck wave frequency-energy-mass equivalence relation (4.4c) ascribes rest 

mass Mrest to a scaled proper carrier frequency sϖ /c2. The scale factor s is Planck’s s=N for N quanta.

      Mrest = E / c
2 = Nϖ / c2     (4.7)

For rest electron mass me =9.1·10-31kg or Mp =1.67·10-27kg of a proton, the proper frequency times N=2 is 

called zwitterbevegun (“trembling motion”) and is as mysterious as it is huge. (Electron rest frequency ϖe 

= me c2/ =7.76·10+20(rad)s-1 is the Dirac (e+e−)-pair productionxi threshold as discussed in Ch. 8.)

 Second, we define momentum-mass Mmom by ratio p/u of momentum (4.5b) to velocity u. (Galileo’s 

p=Mmomu) Now Mmom varies as coshρ→ eρ / 2  at high rapidity ρ but approaches invariant Mrest as ρ→ 0 .

   

 

p
u
≡ Mmom =

Mrestc
u

sinhρ = Mrest coshρ u→c⎯ →⎯⎯ Mreste
ρ / 2

                   = Mrest 1− u2 / c2
uc⎯ →⎯⎯ Mrest

  (4.8)

Frame velocity u is wave group velocity and the Euclid mean construction of Fig. 3.3a shows u is the 
slope of the tangent to dispersion function ω(k). A derivative of energy (4.5a) verifies this once again.

     Vgroup =
dω
dk

=
dE
dp

=
c2p
E

= u     (4.9)

 Third, we define effective-mass Meff as ratio p / u =F/a=dp/du of momentum-change to acceleration. 

(Newton’s F=Meffa) Meff varies as cosh3 ρ→ e3ρ / 2  at high rapidity ρ but also approaches Mrest asρ→ 0 .

   

 

F
a
≡ Meff ≡

dp
du

=
dk

dVgroup
=  d

dk
dω
dk

=  d 2ω
dk 2

                = Mrest 1− u2 / c2( )3/2

uc⎯ →⎯⎯ Mrest

   (4.10)

 Effective mass is  divided by the curvature of dispersion function ω(k), a general quantum wave 
mechanical result. Geometry of a dispersion hyperbola ω=Bcoshρ is such that its bottom (u=0) radius of 
curvature (RoC) is the rest frequency B=Mrestc2/, and this grows exponentially toward ∞ as velocity u 
approaches c. The 1-CW dispersion (ω=±ck) is flat so its RoC is infinite everywhere and so is photon 
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effective mass Meff(γ)=∞. This is consistent with the (All colors go c)-axiom (1.1). The other extreme is 
photon rest mass Mrest(γ)=0. Between these extremes, photon momentum-mass depends on CW color ω.
 Mrest(γ)=0 (4.11a)  Mmom(γ)=p/c=k/c=ω/c2   (4.11b) Meff(γ)=∞ (4.11c)
For Newton this would confirm light’s “fits” to be crazy to the point of uncontrollable schizophrenia. 

 A 2-CW 600THz cavity has zero total momentum p, but each photon adds a tiny mass Mγ to it.

  Mγ=ω/c2=ω  (1.2·10-51)kg·s=  4.5·10-36kg     (for: ω = 2π·600THz ) 

 In contrast, a 1-CW state has no rest mass, but 1-photon momentum (4.5b) is a non-zero value pγ=Mγ c.

  pγ=k=ω/c=ω  (4.5·10-43)kg·m=1.7·10-27kg·m·s-1  (for: ω = 2π·600THz )

This p=Mc resembles Galilean relation p=Mu in (4.3b) and is perhaps another case of Galileo’s revenge! 

Absolute vs. relative phases: Method in madness
 Probably Newton would find a CW theory to be quite mad. Claiming that heavy hard matter owes 
its properties to rapid hidden “carrier” phase oscillations would not elicit a Newtonian invitation to the 
Royal Society but rather to a lunatic asylum. Even though CW results (4.2) give Newtonian axioms (4.3) 
at low speeds, the result would seem to fail at high speeds where exact results (4.5) sag below Newton’s. 
Also, having an enormous constant Mc2 be part of energy would, in 1670, seem insanely meaningless. 
 But, in 1905xii Einstein relations appear with both Mc2 and energy sag. Now Einstein’s classical 
training left him leery of hidden quantum wave phases with dicey interpretations of intensity Ψ∗Ψ as 
probability. Also, he may have asked why observable results depend on a square Ψ∗Ψ=|Ψ|2 that kills that 
overall phase frequency, seemingly losing the one quantity that represents (or is) the total mass-energy.
 Square |Ψ|2 of a 2-CW Ψ=eia+eib loses phase factor ei(a+b)/2 leaving group functions cos2 (  2

a−b )  of 

differences ω1 −ω 3 or k1 − k3  of 1st or 3rd base frequencies or k-vectors. Group beat frequency Δω = ω1 −ω 3  

is zero in the rest frame of Fig. 2.1c where it is a stationary wave. In Fig. 2.2c or any other frame, |Ψ|2 is 
not stationary but is observed to have velocity Vgroup≠0. Fourier sums of m=3 or more terms 
Ψ = a1e

i(k1x−ω1t ) + a2e
i(k2x−ω2t ) + a3e

i(k3x−ω3t ) + ...  may have multiple beats in Ψ *Ψ  as in Fig. 2.2d.

   P =|Ψ |2= Ψ*Ψ = ai∑ *aje
i(Δkij x−Δω ij t)    (4.12)

 With m(m −1) / 2  observable differenceΔω ij = ω1 −ω j  or beat notes, P cannot rest in any frame. 

Differences or derivatives are observable while absolute Ψ-frequency stays hidden until two quantum 
objects interfere. Then new beats arise from differences between the two absolute frequencies and others. 
A new absolute phase (not in |Ψ|2) is the sum of all. But, we can only observe beats of relative frequency! 
That may be a quantum version of Einstein’s popularized saw, “It’s all relative.” Phase velocity escapes 
with its Galilean arithmetic intact in Fig. 3.1, but here it finally surrenders its absolutes to relativism.
 Total phase gives total energy E or momentum p, but differentials are what one feels due to work 
ΔE or impulse Δp. Invariant quantities like ϖ and Mrest depend on total phase but intensity (4.12) has only 
differentials Δkij or relative beats Δωij. Among frame-dependent relative quantities are group velocity u 
(4.9), Mmom (4.8), and Meff (4.10), but rest mass Mrest (4.4c) is a frame-invariant absolute quantity. Also note 
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that Mmom and Meff approach Mrest at zero velocity. Now |Ψ|2 may register an ϖ beat with a DC (static ω0=0) 
wave, but lack of resonance confines (ω0=0)-carrier waves to beat only locally.

 Phase frequency ωp in a quantum wave eip cos g = e−i(kpx−ω pt) cos(kgx − ω gt)  is fast and silent like a 

carrier frequency of radio wave. Group frequency ωg is like the audible signal, much slower and heard in 
resonant beats ωa −ωb involving carrier and receiver. Atomic “carrier” frequencies ωp=Mpc2/ due to rest 
mass are enormous as are those of atomic measuring devices that play the role of “receivers” in quantum 
experiments. Measurement involves resonant contact of an atom and devices that horse-trade beats at 
truly huge frequencies.

One way to avoid huge Mc2/-related phase frequencies is to ignore them and approximate the 

relativistic equation E=Mc2coshρ of (4.5a) by the Newtonian approximation (4.4a) that deletes the big rest-

energy constant sB=Mc2. The exact energy (4.5a) that obeys CW axioms (1.1) is rewritten in terms of 

momentum (4.5b) below to give a Bohr-Schrodinger (BS) approximation (4.14) with Mc2 deleted.  

 E =
Mc2

1− u2 / c2
= Mc2 coshρ = Mc2 1+ sinh2 ρ = Mc2( )2 + cp( )2   (4.13)

 E = Mc2( )2 + cp( )2⎡

⎣
⎢

⎤

⎦
⎥
1/2

≈ Mc2 +
1
2M

p2 BS−approx⎯ →⎯⎯⎯⎯
1
2M

p2    (4.14)

If only frequency difference affect observation based on |Ψ|2 (4.12), the BS claim is that energy origin 

may be shifted from (E=Mc2, cp=0) to (E=0, cp=0). (Frequency is relative!) Hyperbola (4.13) in Fig. 4.1a, 

for u way less then c, approaches the BS parabola (4.14) in Fig. 4.1b. That is the only E(p) Newton knew.

Group velocity u=Vgroup=dk
dω  of (4.9) is a relative or differential quantity so origin shifting does not 

affect it. However, phase velocity k
ω =Vphase is greatly reduced by deleting Mc2 from E=ω. It slows from 

Vphase=c2/u that is always faster than light to a sedate sub-luminal speed of Vgroup/2. Having Vphase go slower 

than Vgroup is an unusual situation but one that has achieved tacit approval for BS matter waves.xiii The 

example used in Fig. 1.6 of Ch. 1 is a 2-CW BS matter wave exhibiting this low Vphase.

Standard Schrodinger quantum mechanics, so named in spite of Schrodinger‘s protestsxiv, uses 

Newtonian kinetic energy (4.14) or (4.3) with potential ϕ (as the const.-term) to give a BS Hamiltonian.

H=p2/2M + ϕ  or:  ω= 2k2/2M + 〈ϕ〉k    (4.15)

The CW approach to relativity and quantum exposes some problems with such approximations.
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First, a non-constant potential ϕ must have a vector potential A so that (ϕ,cA) transform like (ω,ck) 

in (2.10a) or (ct,x) in (2.10b) or as (E,cp) with scaling laws p=k and E=ω. Transformation demands 

equal powers for frequency (energy) and wavevector (momentum) such as the following.

(E- ϕ)2=(p-cA)2/2M+Mc2  or:  (ω-〈ϕ〉k)2= (k-cA)2/2M+Mc2   (4.16)

Also, varying potentials perturb the vacuum so single-CW’s may no longer obey axioms (1.1-2).

 Diracs’s elegant solution obtains ±pairs of hyperbolas (4.13) or (4.16) from avoided-crossing 

eigenvalues of 4x4 Hamiltonian matrix equations with negative frequency hyperbolas. The negative-ω 

hyperbolas in Fig. 4.1 are (conveniently) hidden by the BS approximate dispersion parabola. 

Dirac’s ideas require three-dimensional wavevectors and momenta. But first, fundamental 

Lagrangian-Hamiltonian geometric relations of quantum phase and frequency relate relativistic classical 

and quantum mechanics in the following Ch. 5. These relations expose more of the logic of phase-based 

Evenson axiom (1.1), Doppler T-symmetry axiom (1.2), and Euclid frequency means in Fig. 3.3.
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Chapter 5. Classical vs. quantum mechanics

 The CW-spectral view of relativity and quantum theory demonstrates that wave phase and in 

particular, optical phase, is an essential part of quantum theory. If so, classical derivation of quantum 

mechanics might seem about as viable as Aristotelian derivation of Newtonian mechanics.

 However, the 19th century mechanics of Hamilton, Jacobi, and Poincare developed the concept of 

action S defined variously by area  pdq∫ in phase-space or a Lagrangian time integral Ldt∫ . The latter 

action definition begins with the Legendre transformation of Lagrangian L and Hamiltonian H functions. 

       L = p ⋅ x − H        (5.1a)

L is an explicit function of x and velocity   u = x  while the H is explicit only in x and momentum p.

 0 = ∂L
∂p

   (5.1b)  
 
p =

∂L
∂x

   (5.1c)  
 
 0 =

∂H
∂x

   (5.1d) 
 
x =

∂H
∂p

    (5.1e)

Multiplying by dt gives the differential Poincare invariant dS and its action integral S = Ldt∫ .

   dS = L dt = p ⋅ dx − H dt  (5.2a)    S = L dt∫ = p ⋅ dx∫ − H dt∫  (5.2b)

Planck-DeBroglie scaling laws p=k and E=ω (4.5) identify action S as scaled quantum phase Φ.

    dΦ = L dt = k ⋅ dx − ω dt  (5.3a)           Φ = k ⋅ dx∫ − ω dt∫   (5.3b)

 If action dS or phase dΦ is integrable, then Hamilton-Jacobi equations or (k,ω) equivalents hold.

    ∂S
∂x

= p    (5.4a) ∂S
∂t

= −H    (5.4b)  ∂Φ
∂x

= k    (5.4c) ∂Φ
∂t

= −ω     (5.4d)

Phase-based relations (5.4c-d) define angular frequency ω and wave number k. The definition (3.8) of 
wave group velocity is a wave version of Hamilton’s velocity equation (5.1e).

    
 
x = ∂H

∂ p
    equivalent to: u = Vgroup =

∂ω
∂k

 

The coordinate Hamilton derivative equation relates to wave diffraction by dispersion 

anisotropy.   
 
p = − ∂H

∂x
 equivalent to:     

 
k = − ∂ω

∂x

Classical HJ-action theory was intended to analyze families of trajectories (PW or particle paths), 

but Dirac and Feynman showed its relevance to matter-wave mechanics (CW phase paths) by proposing 

an approximate semi-clasical wavefunction based on the Lagrangian action as phase.

       Ψ ≈ eiΦ = eiS / = ei L dt /∫      (5.5)
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The approximation symbol (≈ ) indicates that only phase but not amplitude is assumed to vary here. An x-

derivative (5.4a) of semi-classical wave (5.5) has the p-operator form in standard BS quantum theory.

 
 

∂
∂x

Ψ ≈ i

∂S
∂x

eiS / = i

pΨ    (5.6a)     

 


i
∂
∂x

Ψ = pΨ   (5.6b)

The time derivative is similarly related to the Hamiltonian operator. The HJ-equation (5.4b) makes this 
appear to be a BS Hamiltonian time equation.

 
 

∂
∂t

Ψ ≈ i

∂S
∂t

eiS / = − i

HΨ  (5.7a)     

 
i ∂

∂t
Ψ = HΨ  (5.7b)

However, these approximations like the BS approximations of (4.14) ignore relativity and lack economy 

of logic shed by light waves. The Poincare phase invariant of a matter-wave needs re-examination. 

Contact transformation geometry of a relativistic Lagrangian
 A matter-wave has a rest frame where x′=0=k′ and its phase Φ = kx-ω t reduces to −µτ, a product of 
its proper frequency µ =Nϖ (or Mc2/) with proper time t ′=τ. Invariant differential dΦ is reduced, as well, 
using the Einstein-Planck rest-mass energy-frequency equivalence relation (4.4c) to rewrite it.
     dΦ = kdx−ω dt=−µ  dτ = -(Mc2/) dτ.    (5.8) 

τ-Invariance (2.21) or time dilation in (2.10b) gives proper dτ in terms of velocity 

� 

u =
dx
dt

 and lab dt.

    dτ = dt √(1-u2/c2) )=dt sech ρ      (5.9)
Combining definitions for action dS=Ldt (5.2) and phase dS = dΦ  (5.3) gives the Lagrangian L.
    L =−µτ  = -Mc2√(1-u2/c2)= -Mc2sech ρ     (5.10)
Fig. 5.1 plots this free-matter Lagranian L next to its Hamiltonian H using units for which c=1=M.

(a) Hamiltonian

Momentum p

P
P′

P′′

-L
-L′
-L′′

L(q,q)
Velocity u=q

Q
Q′
Q′′

-H

-H′

-H′′

H
H′

H′′
L
L′
L′′

H

H′

H′′

slope:

slope:
∂H
∂p

= q
= u

∂L
∂q

= p

(b) LagrangianH(q,p)

radius = Mc2

O

O

Light cone u=1=c
has infiniteH

and zero L

Fig. 5.1. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian

 Relativistic matter Lagrangian (5.10) is a circle (Fig. 5.1b). L-values L, ′L ,  and ′′L in Fig. 5.1 are 

contact Legendre transforms of H-values H , ′H ,  and ′′H of Hamiltonian hyperbola in Fig. 5.1a. Abscissa p 
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and ordinate H of a point P in plot (a) gives negative intercept -H and slope p of tangent HQ contacting the 
transform point Q in plot (b) and vice-versa. (Contact geometry is really wave-action-energy mechanics.)
 If p = Mu , Lagrange kinetic energy L =2

1 Mu2  is Hamilton H = p2 / 2M . Then circle L and hyperbola 

H both approximate a Newtonian parabola at low speed u<<c. But, as u→c the L-circle rises above the 

parabola and the H-hyperbola sags below it and instead approaches contacting c-asymptote in Fig. 5.1.
 Action integral S=∫Ldt is to be minimized. Feynman’s interpretation of S minimization is depicted 
in Fig. 5.2. A mass flies so that its “clock” τ is maximized. (Proper frequency µ = Mc2 /   is constant for 

fixed rest mass, and so minimizing −µτ means maximizing +τ.) An interference of Huygen wavelets 
favors stationary and extreme phase. This favors the fastest possible clock as is sketched in Fig. 5.3.
 Feynman described families of classical paths or rays fanning out from each space-time point on a 
wavefront of constant phase Φ or action S. Then, according to an application of Huygen's principle to 
matter wave, new wavefronts are continuously built in Fig. 5.3 through interference from “the best” of all 
the wavelets emanating from a multitude of source points on each preceding wavefront. Thus classical 
momentum p=∇S by (5.4a) for the “best” ray ends up normal to each wavefront.
 The “best” are so-called stationary-phase rays that are extremes in phase and thereby satisfy 
Hamilton's Least-Action Principle requiring that ∫Ldt is minimum for “true” classical trajectories. This in 
turn enforces Poincare' invariance by eliminating, by de-phasing, any “false” or non-classical paths 
because they do not have an invariant (and thereby stationary) phase. “Bad rays” cancel each other in a 
cacophonous mish-mash of mismatched phases. Each Huygen wavelet is tangent to the next wavefront 
being produced. That contact point is precisely on the ray or true classical trajectory path of minimum 
action and on the resulting “best” wavefront. Time evolution from any wavefront to another is thus a 
contact transformation between the two wavefronts described by the geometry of Huygens Principle.
 Thus a Newtonian clockwork-world appears to be the perennial cosmic gambling-house winner in 
a kind of wave dynamical lottery on an underlying wave fabric. Einstein’s God may not play dice, but 
some persistently wavelike entities seem to be gaming at enormous Mc2/-rates down in the cellar!  
 It is ironic that Evenson and other metrologists have made the greatest advances of precision in 
human history, not with metal bars or ironclad classical mechanics, but by using the most ethereal and 
dicey stuff in the universe, light waves. This motivates a view of classical matter or particle mechanics 
that is more simply and elegantly done by its relation to light and its built-in relativity, resonance, and 
quantization that occurs when waves are subject to boundary conditions or otherwise confined. While 
Newton was complaining about “fits” of light, that crazy stuff was just trying to tell him something!
 Derivation of quantum phenomena using a classical particle paradigm seems silly now. If particles 
are made by waves, optical or otherwise, rather than vice versa as Newton believed, the case is closed. 
Also, CW trumps PW as CW symmetry axioms (1.1-2) derive classical results (4.4) while giving exact 
relations (4.5) for relativity and quantum theory tossed into the bargain. Such Occam economy is found 
lacking on a PW path from Newton to Einstein and Planck. 
 Thus basic CW sum-and-difference phase relations seem to underlie the physics of Poincare 
contact geometry. This in turn is based on circular and hyperbolic geometry described next.
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Fig. 5.2 “True” paths carry extreme phase and fastest clocks. Light-cone has only stopped clocks.

Fig. 5.3 Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.
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Geometry of circular and hyperbolic functions
 Geometry of half-sum and half-difference phase P=(R+L)/2 and group G=(R-L)/2 vectors is based 
on trigonometric exponential identities that are crown jewels of 18th century mathematics and have 
Euclidian geometric origins shown in Fig. 5.4. Phase angle-φ identities apply to Fig. 5.4a.

 e+iφ = cosφ + i sinφ

e−iφ = cosφ − i sinφ
 (5.11a)   cosφ = (e+iφ + e−iφ ) / 2

i sinφ = (e+iφ − e−iφ ) / 2
 (5.11b)

 Circular function tanφ is named for a tangent to a unit circle shown in Fig. 5.4(a). Its incline (sine) 
elevation is sinφ. The complimentary tangent or cotangent cotφ completes the tangent distance between 
axes where φ is circle arc-length-φ or subtended area-φ. Hyperbolic functions use area ρ for “angle.”

 e+ρ = coshρ + sinhρ

e−ρ = coshρ − sinhρ
 (5.12c)   coshρ = (e+ρ + e−ρ ) / 2

sinhρ = (e+ρ − e−ρ ) / 2
 (5.12d)

Fig. 5.4b shows how hyperbolic functions relate to circular ones in Fig. 5.4a. The circular sine equals the 
hyperbolic tangent (sinφ =tanhρ) and vice versa (tanφ =sinhρ). Each circular function has a segment that 
matches one for a hyperbolic function, for example (cosφ =sechρ) matches (secφ =coshρ). These relations 
recap the CW view of the Legendre contact transformation in Fig. 5.1 that underlies classical and 
quantum theory that is in the algebra and geometry for every bit of light-and-matter in and around us!  
 In Fig. 5.4, circular area φ and hyperbolic area ρ have been chosen so that tanφ =1.15=sinhρ and 
sinφ =0.75=tanhρ, that is for u=3c/4. The tangent to the circle in Fig. 5.4a-b is like the one that contacts the 
Lagrangian circle in Fig. 5.1b to contact-transform it to the Hamiltonian hyperbola in Fig. 5.1a, and vice 
versa the hyperbolic tangent in Fig. 5.4b is like the one that transforms the Hamiltonian hyperbola in Fig. 
5.1a to the Lagrangian circle in Fig. 5.1b.
 The hyperbolic tangent u/c=tanhρ of (2.19) corresponds to frame rapidity ρ and group velocity 

u=Vgroup=dk
dω  in (2.8), (4.9) and in Fig. 3.3a-b. The circular tangent angle φ or inclination sinφ belongs to 

Lagrangian velocity function (5.10) in Fig. 5.1b. (The horizontal axis of the latter in the vertical axis of 
Fig.11. This geometry is symmetric to axis-switching.) As u and ρ approach c and ∞, respectively, the 
circular angle φ approaches π/2. 
 This angle φ is the stellar velocity aberration angle, that is, the polar angle that vertical starlight is 
seen by a horizontally moving astronomer to tip into her direction of motion. Aberration angle φ, like 
rapidity ρ, is 1st-order in velocity u and both ρ and φ equal u/c at low speeds. (See the discussion of Fig. 
5.6 near the end of this chapter. This deepens the development to include 4-vector space-time.)
 Many of the twelve circular-hyperbolic trigonometric ratios in Fig. 5.1 belong to one or more 
physical or geometric effects shown before beginning with Euclid’s rectangle-in-circle mean construction 
of Fig. 3.3. These are overlapped in a kind of global ratio riot Fig. 5.1. This riot is collected and labeled in 
Fig. 5.5b-d. This is the basis of the discussion below of the role of tangent-contact geometry in CW 
analysis of Poincare contact transformation and relativistic quantum waves.
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Fig. 5.4 Trigonometric geometry (a) Unit circular area φ=σ =0.8934 (b) Unit hyperbolic area ρ=1.0434.
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Hyper-circular contacts
 Beginning with the Euclidian mean diagram of Fig. 3.3, three mean frequencies arise from an 
interfering pair of left-moving “red” and right-moving “blue” beams of frequency ωL and ωR. First is a 
half-sum phase frequency ωp=(ωR+ωL)/2 (arithmetic mean) that defines the circle radius in Fig. 3.3. 
Second is a half-difference group beat frequency ωg=(ωR-ωL)/2 (difference mean) that is radial distance of 
circle center to origin. Third is a root-product proper frequency ϖ =( ωR·ωL)1/2 (geometric mean) that is the 
base radius or bottom of a ω(k) hyperbola of rest energy B= ϖ =Mc2 above origin in Fig. 3.3.
 Phase and group frequencies are defined as ratios or shifts of the geometric mean frequency ϖ, and 
this begins with the Doppler shift definition of the red ωL=e−ρϖ and blue ωR=e+ρϖ CW components. Ratio 
values ωp=ϖcoshρ and ωg=ϖsinhρ define each point on a ϖ-hyperbola dispersion curve in Fig. 5.5. 
Fig. 5.5 is based on circles with three different radii, one for each mean frequency. The base circle-b 
drawn centered at origin has radius B= ϖ =Mc2 of the Lagrangian circle in Fig. 5.1b. A smaller circle-g 
has group radius ωg=Bsinhρ. A larger circle-p has phase radius ωp=Bcoshρ of the Euclidean circle in Fig. 
3.3 and is drawn with dashed lines in Fig. 5.5. (Base value B is scaled for energy here.) 
Circle-p of larger radius ωp=Bcoshρ is centered at cp=ωg=Bsinhρ, a horizontal distance equal to the 
radius of the smaller circle-g, while the latter is centered at E=ωp=Bcoshρ, a vertical distance equal to the 
radius of the larger circle-p. Tangents that contact circles or hyperbolas define many of the physical 
quantities labeled in the zoom-in view of Fig. 5.5b. Intersections and chords shared by two of the circles 
also provide the key quantities as seen in Fig. 5.5a.
 So far the CW development has emphasized the Doppler ratio as a starting point beginning with 
Fig. 2.2 and culminating with the Euclidean means of Fig. 3.3. However, most developments of relativity 
start with velocity u, and that geometric approach is excerpted in a simplified construction of Fig. 5.5c 
where u/c=45/53 and Fig. 5.5d where u/c=3/5. (Fig. 5.5a-b and most other figures use u/c=3/5.)  Once the 
velocity u/c line intersects the basic b-circle and its horizontal tangent of unit-energy (B=1=Mc2), it only 
takes three more lines to derive Lagrangian -L=Bsechρ, then momentum cp=Bsinhρ, and finally the 
Hamiltonian H=Bcoshρ. Then a compass is used to check accuracy with the phase p-circle by making sure 
it goes from (cp,H) to the (0,B)-point on top of the b-circle. The p-circle goes on to intersect the negative 
cp-axis at the Doppler red shift rB=Be+ρ. Finally, the group g-circle in Fig. 5.5a-b has a chord intersection 
with the p-circle that is the hyperbolic contact tangent, and it grazes the φ-angle normal to the Lagrangian 
circle tangent in Fig. 5.5b. This helps to clarify geometry of H-L contact transformations of Fig. 5.1 for 
reciprocal space-time (ω,ck) and (Φ,u/c). The constructions also apply to space-time.

 If Fig. 5.5 is in space-time, the segment -L=Bsechρ is Lorentz contraction   = B 1− u2 / c2 . The 

H=Bcoshρ and cp=Bsinhρ segments are, respectively Einstien time dilation d = B / 1− u2 / c2  and 
asimultaneity a=ud/c coefficients. Node-to-node or peak-to-peak gaps contract by =4/5 in Fig. 2.2d-e. 
 As speed reduces in Fig. 5.5c-d from u/c=45/53 to u/c=3/5 or to lower values, the Lagrangian 
velocity angle φ and Hamiltonian rapidity ρ approach the velocity ratio u/c. Galilean velocity addition 
rules resume. In the opposite ultra-relativistic regime, φ approaches π/2, ρ approaches ∞, and u/c nears unit  
slope or 45° in Fig. 5.5c. But, Galilean-like rules (3.6) apply to rapidity ρ at all speeds (so far).
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Fig. 5.5 Relativistic wave mechanics geometry. (a) Overview. (b-d) Details of contacting tangents.
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Transverse vs. longitudinal Doppler: Stellar aberration
 A novel description of relativity by L. C. Epsteinxv in Relativity Visualized introduces a "cosmic 
speedometer" consisting of a telescope tube tipped to catch falling light pulses from a distant overhead 
star. A stationary telescope points straight up the x-axis at the apparent position S of the star. (Fig. 5.6a) 
But, with velocity u=uzez across to the star beam x-axis, the telescope has to tip to catch the starlight, so 
the apparent position S' tips toward u. (Fig. 5.6b). 
The telescope tips by a stellar aberration angle σ(φ in (5.11a) or Fig. 5.4a.). The sine of angle σ is velocity 
ratio β= uz /c which is the hyper-tangent of relativistic rapidity υz (ρ in (5.12a) or Fig. 5.4b.)
      β= uz /c =sin σ = tanh υz      (5.13)
 Proper time τ and frequency ϖ  invariance (3.10) forces 4-vector components normal to velocity u 

of a boost to be unchanged. That is, a boost along z of (ct,z) to (ct',z') (or (ω,ckz) to (ω',ckz') ) must 
preserve both (x,y)=(x',y') and (ckx,cky)=(ckx',cky') just as a rotation in the xy-plane of (x,y) to (x',y') leaves 
unaffected the components (ct,z)=(ct',z') and (ω,ckz)=(ω',ckz') transverse to the rotation. 

u=c sin σ

c
δδ

S S′
(a) Fixed Observer (b) Moving Observer

σ

k(↓↓) k′′(↓↓)

c√1-u2/c2=c/cosh υ

ω0

c

z

x

Fig. 5.6 Epstein’s cosmic speedometer with aberration angle σ and transverse Doppler shift coshυZ.

 Invariant (3.10) demands light-speed conservation as sketched in Fig. 5.6b. Starlight speed down 
the σ-tipped telescope is c, so the x-component of starlight velocity reduces from c to
     cx'=c cos σ=c√(1- uz2/c2) = c/cosh υz .    (5.14)
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Fig. 5.7 CW version of cosmic speedometer showing transverse and longitudinal k-vectors.

Transformation (5.17a) below assures that x-or-y-components of k↓ are unchanged by uz-boost.
      (ckx,cky)=(ckx',cky')        (5.15)
So the length of k↓ increases by a factor cosh υ as shown in Fig. 5.7 as does the frequency ω'↓.
     c|k′↓| = c|k↓| coshυz = ω0 cosh υz =ω0/√(1-u2/c2)  (5.16)
 If the observer crosses a star ray at very large velocity, that is, lets uz approach c, then the star 
angle σ approaches 90° and the frequency increases until the observer sees an X-ray or γ-ray star coming 
almost head on! The coshυz factor is a transverse Doppler shift. For large υz, it approaches eυz, which is 
the ordinary longitudinal Doppler shift upon which the CW relativity derivations of Ch. 2 are based. 
Relations (5.13-16) are summarized in a 4-vector transformation: ω0 has a transverse Doppler shift to 
ω0coshυz, so ckz=0 becomes ckz' = -ω0 sinhυz , but the x-component is unchanged: ckx' = ω0 = ckx.
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            (5.17a)
If starlight had been k← or k→ waves going along u and z-axis, the usual longitudinal Doppler blue shifts 
e+υz or red shifts e−υz would appear on both the k-vector and the frequency, as stated by the following.
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  (5.17b)
 The Epstein speedometer tracks light pulses and particles in space and time. Instead of space-x and 

time-ct coordinates of a Minkowski graph, he plots space coordinate-x against proper time-cτ. This view 
has all things, light γ and particle P included, moving at the speed of light as shown in Fig. 5.8. Light 
never ages, so its “speedometer” is tipped to the maximum along x-axis. 

HarterSoft –LearnIt © 2012 W. G. Harter                   Chapter 5. Classical vs. quantum mechanics    Unit 2  94



σ

Proper time
cτ=√(ct)2-x2

Coordinate time
ct=√(cτ)2+x2

Coordinate
x=(u/c) ct

cτ

xLight (never ages)
x=ct

ο

(Age)

(Distance)

PP

γ

Particle going u in (x,ct)
is going speed c in (x, cτ)

Fig. 5.8 Space-proper-time plot makes all objects move at speed c along their cosmic speedometer.

 One cute feature of the Epstein space-proper-time view is its take of the Lorentz-Fitzgerald 
contraction of a proper length L to L′=L√1-u2/c2. (Recall discussion around (2.11).) As shown in Fig. 5.9 
below, L′ is simply the projection onto the x-axis of a length L tipped by σ. 

σ

Proper time
cτ=√(ct)2-x2

Coordinate
x=(u/c) ct

cτ

xο

PP
Particle P going u in (x,ct)
is going speed c in (x, cτ)

PP′′

ctσ
Proper length L

Contracted length
L′=L√1-u2/c2

L

ct
Comoving particle P′

Fig. 5.9 Space-proper-time plot of Lorentz contraction as geometric projection of rotated line L.

 The problem with the (x,cτ) view is that a space-time event is not plotted as a single point for all 
observers. Since the time parameter τ is an invariant, the (x,cτ) graph it is not a metric space.

 Graphical wave 4-vector transformation
 Geometric constructions combining Fig. 5.6 and Fig. 5.7 help to quantitatively visualize 4-
wavevector transformations. One is shown in Fig. 5.10. The c-dial of the “speedometer” is first set to the 
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desired u-speed which determines angle σ. The top of the c-dial (which may also represent a transverse 
ck↑-vector in units of Lab frequency ω0) is projected parallel to the velocity axis until it intersects the c-
dial vertical axis. A transformed ck'↑-vector of length ω'↑=ω0 cosh υ results, similar to ck'↓ in (5.17a). 
Both ck'↑ and ck'↓ have a projection on the velocity axis of ω0sinh υ while maintaining their transverse 
components ω0 and -ω0 , respectively, in order to stay on the light cone. 
 A dashed circle of radius cosh υ in Fig. 5.10 is drawn concentric to the c-dial and determines the 
longitudinal vectors ck'→ and ck'← of Doppler shifted length and frequency ω0e-υ and ω0eυ, 
respectively, as required by transformation (5.17b). This construction is part of Fig. 5.4 and Fig. 5.5.

sinh υ

sinh υ

cosh υ
cosh υ

sin σ

e-υ

eυ=sinh υ+cosh υ

u/c

σ

k′′(↑↑) k(↑↑)

δc=1
k(→→)k(←←)

k′′(→→) k′′(←←)
k′′(↓↓)

kz

kx

Fig. 5.10 CW cosmic speedometer. Geometry of Lorentz boost of counter-propagating waves.

Symmetry and conservation principles
 In Newtonian theory the first law or axiom is momentum conservation. Physical axioms, by 
definition, have only experimental proof. Logical proof is impossible unless a theory like Newton’s 
becomes sub-summed by a more general theory with finer axioms. Proof of an axiom then undermines it 
so it becomes a theorem or result of more basic axioms. (Or else an axiom might be disproved or reduced 
to an approximate result subject to certain conditions.)
 The logic of axioms yielding results or theorems in mathematical science probably goes back two 
thousand years to the time of Euclid’s Elements. Also, axiomatic approaches to philosophy and natural 
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science show up in writings as early as that of Occam or even Aristotle, but it is not until the European 
Renaissance that experiments began to be precise enough to support mathematical models. By the 
European Enlightenment period, mathematical logic of physical science had become more effective and 
productive than any preceding philosophy due in no small part to increasingly precise evidence.
 As stated by introduction, current time and frequency measurements have achieved almost 
unimaginable precision. In celebration of this, two continuous wave (CW) axioms (1.1-2) have been used 
to undermine Newtonian axioms for mass, energy, and momentum. They then became approximate results 
(4.4) and give rise to exact equivalents of Newtonian concepts in Einstein and Planck relativity and 
quantum theory in (4.5). It is a non-trivial example of undermining axioms by Occam razor-cutting.
 The undermining of Newton’s first axiom (momentum conservation) by the shaved CW axioms is 
a good example to expose the logic involved. CW logic leads to the DeBroglie scaling law (4.5b) that 
equates momentum p to wavevector k scaled in  units. A rough statement of how CW axioms undermine 
or “prove” p-conservation axioms is that k-conservation is required by wave coherence and so p=k must 
be conserved, as well. However, that oversimplifies a deeper nature of what is really symmetry logic.
 A strength (and also, weakness) of CW axioms (1.1-2) is that they are symmetry principles due to 
the Lorentz-Poincare isotropy of space-time that invokes invariance to translation T(δ ,τ )  in the vacuum. 
Operator T has plane wave eigenfunctions ψ k ,ω = Aei(kx−ω t)  with roots-of-unity eigenvalues ei(k⋅δ −ω⋅τ ) .

 T ψ k ,ω = ei(k ⋅δ −ω ⋅τ ) ψ k ,ω   (5.18a)   ψ k ,ω T† = ψ k ,ω e−i(k ⋅δ −ω ⋅τ )  (5.18b)

This also applies to 2-part or “2-particle” states ΨK ,Ω =ψ k1,ω1
ψ k2 ,ω2

 where exponents add (k,ω)-values of each 

constituent to K=k1+k2 and Ω=ω1+ω2, and T(δ ,τ ) -eigenvalues also have the form ei(K ⋅δ −Ω⋅τ ) of (5.1). Matrix 

′Ψ ′K , ′Ω U ΨK ,Ω  of T-symmetric evolution U is zero unless ′K = ′k1 + ′k2 = K  and ′Ω = ′ω1 + ′ω2 = Ω . 

  
′Ψ ′K , ′Ω U ΨK ,Ω = ′Ψ ′K , ′Ω T† (δ ,τ )UT(δ ,τ ) ΨK ,Ω        (if UT = TU for all δ  and τ )

                      = e− i( ′K ⋅δ − ′Ω ⋅τ )ei(K ⋅δ −Ω⋅τ ) ′Ψ ′K , ′Ω U ΨK ,Ω = 0  unless: ′K = K  and: ′Ω = Ω
 (5.19)

T-symmetry requires total energy  E = Ω  and total momentum  P = K be conserved for archetypical CW 
states, but laboratory CW have momentum uncertainty Δk=1/Δx due to finite beam sizeΔx and energy 
uncertainty due to time limits. So, Newton’s 1st law or axiom is verified but only as an ideal limit.
 Symmetry is to physics what religion is to politics. Both are deep and grand in principle but 
roundly flaunted in practice. Both gain power quickly by overlooking details. In Ch.4 relativistic and 
quantum kinetic properties of a massive “thing” arise from those of an optical 2-CW function in one space 
dimension. This means that mass shares symmetry with 2-CW light, not that mass is 2-CW light. Massive 
“things” do not vanish if a laser turns off, but our tiny optical mass Nω/c2 is quickly gone! 
 Puzzling questions remain. Why do simple wave optics lead directly to general properties (4.5) of 
relativity and quantum mechanics of a massive particle? How does a cavity of counter-propagating green 
light waves act like it holds particles of mass M=ω/c2?
 A short answer to one question is that particles are waves, too, and so forced by Lorentz symmetry 
to use available hyperbolic invariants  ω

2 − (ck)2 = (Mc2 / )2  for dispersion. To answer the second question 
entails further loss of classical innocence. In Ch. 6 Occam’s razor is again applied to cut semi-classical 
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CW laser fields down to single field quanta  ϖ or photons. So the second short answer is that waves are 
particles, too, even for optical dispersion (ω 2 − (ck)2 = 0) .
 By many accounts, quantum theory begins with Planck axiom E=Nω. This is distinguished from 
the scaling law E=sω derived in (4.5a) since its scale factor s=N is not an obvious consequence of CW 
phase axioms (1.1-2) that lead to (4.5). CW logic involves additional axioms for Maxwell electromagnetic 
energy E and field amplitude quantization to render Planck’s axiom. This is discussed shortly. 

1st and 2nd Quantization: phase vs. amplitude
 Waves resonate at discrete wave numbers km = m L

2π = mk1  in a ring or cavity of length L. Then 

relations (4.5b) between k and momentum p force p-quantization  pm = km = mp1  so momentum quantum 

numbersxvi m=0, ±1, ±2,… count waves on ring L as in Bohr electron orbitals or for cavity modes in (4.6a).
Then Planck dispersion  Em = ω (km ) (4.5a) gives electron energy levels Em = m2E1 for the BS approximation 

E1 = p1
2 / 2M  or for cavity fundamental frequency levels (4.6b). Wave-fitting in x-space is called 1st 

quantization. Related fitting in wave amplitude space is called 2nd quantization.
 Heisenbergxvii  showed quanta pm or Em  arise from eigenvalues (literally “own-values”) of matrix 

operators  p or  H  whose eigenvectors (“own-vectors”) pm or Em  may be superimposed.

    Ψ =ψ 1 E1 +ψ 2 E2 +ψ 3 E3 + …   (5.20)

(Dirac’s bra-ketxviii notation came later.) Allowing things to be at (or in) m places (or states) allows mean 
values  E = Ψ H Ψ  to range continuously from lowest quantum levels E1  to the highest Em . 

    E = Ψ H Ψ = ψ 1
2 E1 + ψ 2

2 E2 + ψ 2
2 E2 + …   (5.21)

For classicists, the notion that each multiple-personality-k has a probability ψ k
2 seems, if not crazy, then at 

least dicey in the sense of Einstein’s skeptical quote, “God does not play dice…” xix

 But, superposition is an idea borrowed from classical waves. Resulting interference makes them 

ultra-sensitive to relative position and velocity, a first order sensitivity that leads elegantly to relativity 

transformation (2.10) and kinematic relations (4.5) by geometry of optical phase kx-ωt of ψ=Aei(kx-ωt). 

Amplitude “A” of wave (1.6) or (1.9) is set arbitrarily since only real wave zeros were needed. It is 

ignored in (5.5). Without Maxwell and Planck rules, CW amplitude or wave quantity is undefined and un-

quantized while wave quality (frequency and phase) may be well defined and quantized. Amplitudes need 

a similar treatment that is begun in Ch. 6.
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Chapter 6. Variation and quantization of optical amplitudes

What is deduced from wave phase alone? Wave amplitude has so far been skirted for Occam economy: 
“Pluralitas non est ponenda sine neccesitate” (Assume no plurality without necessity.) CW phase axioms (1.1-2) 
give Lorentz-Doppler and Planck-DeBroglie symmetry relations yet 2-CW amplitudes (1.10) are not 
defined beyond assuming their 1-CW amplitudes match. Standing wave grid reference frames in Fig. 2.1 
and Fig. 2.2 are just points where amplitude is zero, that is, loci of real wave function roots.

Discussion of non-zero amplitude variation begins with counter-propagating 2-CW dynamics 
involving two 1-CW amplitudes A→  and A←  that we now allow to be unmatched. (A→ ≠ A←)  

  A→e
i(k→x−ω→t) + A←e

i(k←x−ω←t) = ei(kΣ x−ωΣ t)[A→e
i(kΔ x−ωΔt) + A←e

−i(kΔ x−ωΔt) ]  (6.1a)

Half-sum mean phase rates (kΣ ,ωΣ ) and half-difference means (kΔ ,ωΔ ) appear here as in (1.10).

  
kΣ =  (k→ +  k←) / 2
ωΣ = (ω→ +ω←) / 2

 (6.1b)    
kΔ =  (k→ −  k←) / 2
ωΔ = (ω→ −ω←) / 2

 (6.1c) 

Also important is amplitude mean AΣ =  (A→ +  A←) / 2  and half-differenceAΔ =  (A→ −  A←) / 2 . Wave 

motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.

  SWR =
(A→ −  A←)
(A→ +  A←)

 (6.2a)    SWQ =
(A→ +  A←)
(A→ −  A←)

 (6.2a) 

Recall mean frequency ratios for group velocity (2.3b) or its inverse that is phase velocity (2.3a). 

 Vgroup =
ωΔ
kΔ

= c
(ω→ −ω←)
(ω→ +  ω←)

 (6.3a)     Vphase =
ωΣ
kΣ

= c
(ω→ +ω←)
(ω→ −  ω←)

 (6.3b) 

A 2-state amplitude continuum is bounded by a pure right-moving 1-CW (A→ = 1, A← = 0)  of SWR=1 and a 

pure left-moving 1-CW (A→ = 0, A← = 1) of SWR=-1. A 2-CW standing-wave (A→ =
2

  1 = A← )  has SWR=0.

 Wave paths for various SWR values are drawn in Fig. 6.1 for 600THz 2-CW pairs and in Fig. 6.2 for 
Doppler shifted 300THz and 1200THz 2-CW pairs at the same SWR values. The SWQ is the ratio of the 
envelope peak (interference maximum) to the envelope valley (interference minimum), and vice versa for 
SWR=1/SWQ. Single frequency 2-CW paths of nonzero-SWR in Fig. 6.1 do a galloping motion. Each wave 
speeds up to peak speed c/SWR=c·SWQ as it first shrinks to squeeze through its envelope minima and then 
slows to resting speed c·SWR as it expands to its maximum amplitude. Only at zero-SWR do 2-CW zero-
paths appear to travel at a constant group speed (6.3a) and phase speed (6.3b) as in Fig. 6.1c or 6.2c. (For 
1-CW paths or unit SWR=±1 there is just one speed ±c by axiom (1.1).) 
 The real and imaginary parts take turns. One gallops while the other rests and vice versa and this 
occurs twice each optical period. If frequency ratio (6.3) and amplitude ratio (6.2) have opposite signs as 
in Fig. 6.1c (±0 or ±∞) and in Fig. 6.2e (±3/5 or ±5/3), wave zero paths will follow a right angle staircase. 
1-frequency staircase (Vgroup=0=SWR) in Fig. 6.1c is a Cartesian grid like Fig. 2.1c. 2-frequency waves 
(Vgroup≠0) have Minkowski grids like Fig. 2.2c for SWR=0 or quasi-Cartesian stair steps like Fig. 6.2e for 
Vgroup=-cSWR. To broadcast Cartesian grids to a u-frame one tunes both Vgroup and cSWR to u. 
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Galloping is a fundamental interference property that may be clarified by analogy with elliptic 
orbits of isotropic 2D-harmonic oscillators and in particular with elliptic polarization of optical wave 
amplitudes. Fig. 6.3 relates polarization states and wave states of Fig. 6.1 beginning with left (right)-
circular polarization that is analogous to a left (right)-moving wave in Fig. 6.3g (Fig. 6.3a). As sketched in 
Fig. 6.3(b-e), galloping waves are general cases analogous to general states of elliptic polarization or 
general 2DHO orbits obeying a Keplerian geometry shown in Fig. 6.3h. Standing waves correspond to 
plane-polarization. Polarization in the x-plane of Fig. 6.3d corresponds to a standing cosine wave and y-
plane polarization (not shown) would correspond to a standing sine wave.
  Isotropic oscillator orbits obey Kepler’s law of constant orbital momentum. Orbit angular velocity 
slows down by a factor b/a at major axes or aphelions ±a and then speeds up by a factor a/b at minor axes 
or perihelions ±b just as a galloping wave, twice in each period, slows down to SWR·c and speeds up to 
SWQ·c. The galloping or eccentric motion of the eccentric anomaly angle φ(t) in Fig. 6.3h is a projection 
of a uniformly rotating mean anomaly (phase angle ω·t) of the isotropic oscillator, and this gives a 
Keplarian relation of the two angles seen in the figure.

     tanφ(t) = b
a
tanω ⋅ t       (6.4a)

The eccentric anomaly time derivative of φ (angular velocity) gallops between ω ·b/a and ω ·a/b. 

 

φ =
dφ
dt

=ω ⋅
b
a

sec2ω t
sec2 φ

=
ω ⋅b / a

cos2ω t + (b / a)2 ⋅sin2ω t
=

ω ⋅b / a  for: ω t = 0,  π,  2π...
ω ⋅a / b   ω t = π / 2,  3π / 2,...
⎧
⎨
⎩

 (6.4b)

The product of angular moment r2 and  φ is orbital momentum, a constant proportional to ellipse area. 

   r2
dφ
dt

= constant = (a2 cos2ω t + b2 ⋅sin2ω t)
dφ
dt

=ω ⋅ab

Consider galloping wave zeros of a monochromatic wave (6.1a) having SWQ (6.2b). 

  

0 = ReΨ x,t( ) = Re A→e
i k0x−ω0t( ) + A←e

i −k0x−ω0t( )⎡
⎣⎢

⎤
⎦⎥

  where: ω→ =ω0 =ω← = ck0 = −ck←

0 = A→ cos k0x cosω0t + sin k0x sinω0t⎡⎣ ⎤⎦ + A← cos k0x cosω0t − sin k0x sinω0t⎡⎣ ⎤⎦
A→ + A←( ) cos k0x cosω0t⎡⎣ ⎤⎦ = − A→ − A←( ) sin k0x sinω0t⎡⎣ ⎤⎦

Space k0x varies with time ω0t in the same way that eccentric anomaly varies in (6.4a).
  tan k0x = −SWQ ⋅cotω0t = SWQ ⋅ tanω0 t   where: ω0 t =ω0t −π / 2    (6.5a)

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c. 

  dx
dt

= c ⋅SWQ
sec2ω0 t

sec2 k0x
=

c ⋅SWQ

cos2ω0 t + SWQ
2 ⋅sin2ω0 t

=
c ⋅SWQ  for: t = 0,  π,  2π...
c ⋅SWR   t = π / 2,  3π / 2,...
⎧
⎨
⎩

 (6.5b)

Single frequency 2-CW paths in Fig. 6.1 have a constant product of instantaneous wave velocity and wave 
amplitude analogous to the constant product of orbital velocity and radius. So vacuum optical amplitude 
and phase motion obey a funny version of Kepler and Galileo’s rules. The extent to which 14th century 
geometric relations underlie basic wave physics has not been fully appreciated. 
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Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.
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Maxwell amplitudes and energy 

Classical Maxwell field amplitudes E = − A  andB = ∇× A  are derivatives of vector potential A. Maxwell 
energy U per volume V or total energy U·V is a sum of amplitude squares E•E and c2B•B.

   U ⋅V =
ε0
2
E •E +

1
2µ0

B •B ⋅V  µ0ε0 =
1

c2
  (6.7)

Fourier analysis of A into amplitudes ak and ak* leads to a harmonic oscillator sum over each plane CW 

mode frequency ω k = ±c | km | , km-vector allowed by a large-cavity, and polarization α=x,y normal to km. 

    U ⋅V = 2ε0V ωk
2ak
*ak∑     (6.8)

Harmonic oscillator frequency is independent of amplitude. This is consistent with CW phase axiom (1.1) 
and dispersion relations (3.5) derived from 2-CW superposition, but such a simple axiom seems unable to 
derive the Maxwell vector amplitude structure of 2-dimensional polarization normal to km of each wave 
mode or even to establish that its wave variables A, B, E, or km are, in fact, 3D vectors. 
 The CW axiom (1.1) gives what is effectively a 2-dimensional harmonic oscillator (2DHO) with 
two complex amplitudes (aL, aR) for the two longitudinal propagation directions, but each comes with two 
transverse polarization amplitudes (ax, ay) that describe the second 2DHO in Maxwell light, namely 
polarization ellipsometry used in Fig. 6.3 as an analogy for propagation left-and-right along z.

Quantized optical fields
Mode amplitudeak or ak*  in classical electromagnetic energy ωk

2ak
*ak∑ are replaced by oscillator operators 

 ak or  ak
† for a field Hamiltonian with explicit linear frequency dependence of Planck. 

 
 
H = Σ ωk (ak

†ak )⇒ H = Σ ωkNk     (6.9)

The H-eigenstates  N1N2Nk for exactly quantized photon numbers  ak
†ak = Nk  fix a definite energy value 

 ω kNk for each mode-km but has quite uncertain field phase. Average energy of one mode is

    
 
Uk ⋅V = 2ε0V Ek • Ek = ωkNk     (6.10a)

where a 1-CW-1-photon E-field and vector potential A-amplitude is as follows.

  
 

Ek
Nk =1

=
ωk
2ε0V

 (6.10b)   
 

Ak
Nk =1

=


2ε0ωkV
 (6.10c)

 Field quantization is called 2nd-quantization to distinguish 1st-quantization km mode numbers m, 
used for classical light, from “purely quantum” photon numbers n = Nkm

for wave amplitude. This may be a 

prejudice that waves (particles) are usual (unusual) for light but unusual (usual) for matter.
 Amplitudes involve relations (6.7) to (6.10) that are more complex than axioms (1.1-2) for wave 
phase. While Maxwell-Planck relations lack the simplicity of the latter, they do derive the linear 
dispersion (1.1) by Fourier transform of the Maxwell wave equations, and they show optical wave 
amplitude has an internal symmetry analogous to that of wave frequency. The following discussion of this 
analogy involves a Doppler shift of wave amplitude with invariance or covariance of photon number Nk 
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and standing wave ratio (SWR) (6.5). Also, one begins to see how Born quantum probability formulas 

n =ψ *ψ  arise and are consistent with Dirac amplitude covariance.

Relativistic 1-CW covariance of Poynting flux
Maxwell-Planck energy density U(Joule/m3) in (6.10a) leads to a related Poynting flux S[Joule/(m2·s)].

 
 


S =

E ×

B = Uk ck̂ = 2ε0c Ek • Ek k̂ = ωknk k̂    where: nk = cNk /V m−2s−1⎡

⎣⎢
⎤
⎦⎥

 (6.11)

Flux S contains two frequency factors, the fundamental laser frequency ωk and the photon count rate nk 
per[ (m2·s)]. Frequency ωk is quantum quality of a laser beam and rate nk is its quantum quantity. The 
product ωk·nk is Poynting flux. Rate nk and frequency ωk both Doppler shift by an exponential e±ρ of 
rapidity ρ in (2.16). So do 1-CW fields E±k as may be shown by Lorentz transforming them directly.

  ′E+k = e+ρE+k  (6.12a)     ′E−k = e−ρE−k   (6.12b) 

 Thus both electric field polarization E-amplitudes Ex an Ey of a 1-CW field undergo the same e±ρ 

Doppler shift that the frequency ωk or wavevector k experience. Scaling E in (6.11) by 1-photon factor 
(6.10) gives probability wave ψ below whose square ψ∗ψ is a volume photon count N/(m3).

 ψk=
 

2ε0V
ωk

Ek ⇒  ψk* ψk = Nk = Nk = nk
V
c

    (6.13a)

Or,  flux probability wave ψ (italicized) is scaled so its square ψ∗ψ  is expected flux photon count n/(m2·s).

  
 
ψ k =

2ε0c
ωk

Ek ⇒ ψ k *ψ k = nk = nk =
c
V
Nk     (6.13b)

Due to the 1 / ωk scaling of (6.13) the Doppler factor of ψ ±k drops an e±ρ/2 factor from Ek in (6.12).

   Lz (ρ) ψ =
′ψ+k

′ψ−k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

e+ρ /2 0

0 e−ρ /2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ψ+k

ψ−k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= eσ zρ /2 ψ    (6.14)

This is a starting point for the spinor form of Lorentz transformation for Dirac amplitudes.

 Relativistic 2-CW invariance of cavity quanta
Mean photon numberNk of a 2-CW cavity mode, unlike a 1-CW flux quantum nk, is invariant to cavity 

speed. By analogy, 2-CW modes have variant group-phase velocity (Vgroup, Vphase), energy-momentum 

(ck,ω), but invariant mean velocity c = VgroupVphase and frequencyϖ = ω+kω−k = ω2 − c2k2 .

   
Vgroup
c

= ω+k −ω−k
ω+k +ω−k

  (6.15a)   
Vphase
c

= ω+k +ω−k
ω+k −ω−k

 (6.15b)

Linear dispersion ω±k=±ck and (1.11) or (2.7) are used. Note the analogy to SWR relations (6.2).

   SWR =
E+k − E−k
E+k + E−k

 (6.15c)   SWQ =
E+k + E−k
E+k − E−k

 (6.15d)

Each ratio (6.15) is a wave velocity that Doppler-transforms like relativistic (non-Galilean) velocity.
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   SW ′R =
SWR + u / c
1+ SWR ⋅u / c

 (6.16a)   
′Vm
c

=
Vm / c + u / c

1+ (Vm / c) ⋅ (u / c)
(6.16b)

Velocity uAB/c=tanhρAB is a hyperbolic sum since rapidity is a simple sum ρAB= ρA+ ρB by (3.6).

  
uAB
c

= tanhρAB = tanh(ρA + ρB ) =
tanhρA + tanhρB
1+ tanhρA tanhρB

=
uA / c + uB / c

1+ uAuB / c
2

  (6.17)

The energy and momentum flux values are found for counter-k 2-CW beam functions 
 
Ψ . 

    
 
Ψk =ψ→ei(k→x−ω→t) +ψ←ei(k←x−ω←t)     

Lab 1-CW flux number expectation values |ψ k |
2= nk  give 2-CW flux expectations in lab.  

   

 

E = ω = ω→ n→   + ω← n← = ω→ ψ→
2 + ω← ψ←

2

cp = ck = ck→ n→ + ck← n← = ω→ ψ→
2 − ω← ψ←

2

The relation (6.13b) of quantum field ψ k  and classical Maxwell Ek -field expectation is used.

   
 

E = ω→ ψ→
2 + ω← ψ←

2 = 2ε0c E→
2
+ E←

2⎛

⎝
⎜

⎞

⎠
⎟        (6.18a)

   
 

cp = ω→ ψ→
2 − ω← ψ←

2 = 2ε0c E→
2
− E←

2⎛

⎝
⎜

⎞

⎠
⎟   (6.18b)

Values cp and E  lie on an invariant hyperbola of constant geometric means ϖN or |E | 2.

  E 2 − cp 2 = 2cε0( )2 E→
2
+ E←

2⎛

⎝
⎜

⎞

⎠
⎟

2
− E→

2
− E←

2⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 2cε0( )2 4 E→

2 E←
2⎡

⎣⎢
⎤
⎦⎥

  
 
E 2 − cp 2 = 4 2cε0 E→

2⎛
⎝⎜

⎞
⎠⎟

2cε0 E←
2⎛

⎝⎜
⎞
⎠⎟
= 4 ω→ n→( )  ω← n←( )  (6.19)

  
 

E 2 − cp 2  =                  2cε0 2E 2               =      ω( ) 2n( )   (6.20a)

The geometric mean frequency ϖ , mean quantum number n , and mean field |E |  are defined.

   ϖ = ω→ω←   (6.20b)  n = n→n← (6.20c)  |E |= E→E←  (6.20d)

 Doppler relations imply Lorentz invariance for the mean number n  and for the mean frequency ϖ  

as well as their geometric mean nϖ that is 2cε0 times the mean field |E | and applies to a general 2-CW 

beam function Ψ. A factor 2 on | 2E |  or 2n  in (6.20a) is consistent with 1-photon 2-CW states having 

equal average number n→ = n = n← =2
1 and total1-photon Planck energy expectation E=ω. 

 Ideal cavities balance field E→ = E = E← , frequency ω→ =ϖ =ω← , and number. But, a general 

beam with ω→ ≠ω← , n→ ≠ n← , and E→ ≠ E←  has a center-of-momentum CoM-frame of zero flux where 
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E→
CoM = E←

CoM  by (6.18b), an isochromatic IsoC-frame with ω→
IsoC =ω←

IsoC , and an IsoN-frame with 

balanced photon countN→
IsoN = N←

IsoN . Frame speeds uα may be distinct as sketched in Fig. 6.4.  

 uCoM

c
=
E→ − E←
E→ + E←

(6.21a) uIsoC

c
=
ω→ −ω←
ω→ +ω←

=
VGroup

c
(6.21b) uIsoN

c
=
n→ − n←
n→ + n←

(6.21c)

Flux invariant |E |  is maximized by balanced amplitude E→ = E← but is zero if E→  or E←  is zero.

Thus optical rest mass (6.20a) decreases continuously as a 2-CW beam is unbalanced toward 1-CW.           

ω←-ω→
ω←+ω→

(c) Isochromatic
(IsoC) frame [ω′

→
=ω =ω′

←
]

     speed is uIsoC=cE→-E←

E→+E←

 (a) Invariants 〈E〉 2-c2〈p〉2

=4ε0|E→|2ε0|E←|2

=h2ω→ω←4N
→

N
←

=(hω N)2=(2ε0 E2)2
hck

uCoMuIsoN
hω  N

      As E→ and E←
    become unequal
  the hyberbola drops
toward 1-CW limit

ω  =    ω→ω←

Mean color

E =    E
→
E
←

Mean amplitude

Unequal amplitudes
and

Unequal frequencies

(b) Center-of-Momentum
(CoM) frame [ E′

→
= E =E′

←
]

      speed is   uCoM=c

Equal amplitudes
but

Unequal frequencies

Unequal amplitudes
but

Equal frequencies

N =    4N→N←

Mean count

uIsoC

(light cone asymptote)

Fig. 6.4. Cavity 2-CW modes. (a) Invariant “mass” hyperbolas. (b) COM frame. (c) ISOC frame.
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It is argued in Ch. 4 that mass is a coherent 2-CW interference effect that is not possible for a 1-CW 
beam. If we replace Planck energy relation ε = Nhυ  by a Maslov form ε = (N +α)hυ it has a tiny zero-

point energy minimumαhυ . Does a tiny massαhυ / c2  exist for 1-CW and even 0-CW beams in all frames 
in spite of the incoherence of such zero-point fluctuations? Such a presence in (6.20) may be ruled out if 
the speed-of-light axiom (1.1) is exact. There may still be much to learn about zero-point effects in QED 
and cosmology but this seems to indicate that their directly observable effects do not exist.

N-Photon vs Coherent-α-states 

Optical fields A or E have quantum expectation values of field operators based on mode amplitudes ak or 

ak
*  in classical energy ωk

2ak
*ak∑ . Eachak or ak*  is replaced by oscillator boson operator  ak or  ak

† in a 

quantum field Hamiltonian   H = Σ ω k (ak
†ak +α ) whose eigenstates  N1N2Nk have exact quantized photon 

numbers ak
†ak = Nk  for each mode-km. 

 Each mode phase quanta m and amplitude quanta Nm are invariant constants that define another 
hyperbola with Einstein-Planck proper frequency

 
ϖN ,m = Nmωm  as sketched in Fig. 6.4a and Fig. 4.2. The 

problem is that absolute certainty of photon number Nm implies totally uncertain field phase just as 
absolutely certain km of 1-CW symmetry implies totally uncertain position in space and time.
 Space-time position coordinates were defined by taking 1-CW combinations to make 2-CW 
coordinates of Fig. 2.1c or Fig. 2.2c. Ultimately an n-CW pulse-wave (PW) of Fig. 2.1d or Fig. 2.2d was 
localized with as low a space-time uncertainty Δτ as desired but it acquires per-space uncertainty or 
bandwidth Δυ according to Fourier-Heisenberg relation Δυ · Δτ >1.
 So also must photon-number states be combined if amplitude and phase uncertainty are to be 
reduced to the point where wave space-time coordinates can emerge. Such combinations are known as 
coherent states or α-states of harmonic oscillation. Sharper wave zeros require fuzzier hyperbolas.

Fuzzy hyperbolas vs. fuzzy coordinates
 Model micro-laser states are coherent states α = ΣNψ N N made of single-mode eigenstates 

 N = (a1
† )N 0 with amplitudes ψ N = α Ne−α

2 /2 / N ! . Variable α = x + ip = α eiΦ  is average mode phase, and 

(x = Reα, p = Imα ) , rescaled by a quantum field factor f, are field averages 
 
A , A = − E( ) .

   
 
α A α = A = α +α *( ) f = α +α *( ) 

2ε0ωV
   (6.22)

Amplitude factor f makes Planck’s  E = ωN  equal Maxwell field energy E =U ⋅V .

   
 
U V = 2ε0ω

2V A2 = ω α
2
= ωN     (6.23)

 A fundamental laser mode in a 0.25µm cubic cavity (See E-wave sketched in a strip of Fig. 2.2c.) 

has green light with  ϖ = 4 ⋅10−19 Joule  or 2.5eV per photon. The average photon number N = α
2
= 1010  

models a laser with mean energy  E =U ⋅V = ϖN = 4.0 nanoJ  in a volume V = (4
1 µm)3 . Photon number 

uncertainty ΔN = α = 105varies inversely to phase uncertainty. 
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   ΔΦ ⋅ ΔN = π  (6.24a)    ΔΦ = π /α  3 ⋅10−5  (6.24b) 
 Amplitude expectation value N A N  is zero for N states due to incoherence of phase, but 

number value  N ak
†ak N = N  is exact as is proper frequency ϖN  due to the phase factor (e− iϖt )N of  (a1

† )N .

 A volume V with (N = 1010 ) -photons has energy E = ωN  or mass-equivalent M=E / c2=10−25 kg  on a 

hyperbola 1010 quanta above the N=1 hyperbola. A coherent-state α = 105 has a mass M = 10−25 kg  with 

uncertainty ΔM=10−30 kg  so its phase uncertainty 3 ⋅10−5  is low enough to make an (x,ct)- grid (Fig. 6.6a) but 

a low-α state (Fig. 6.6c) has too few photon counts-per-grid to plot sharply. Photon-number eigenstate N  

in Fig. 6.6d is a total wash even for high-N sinceΔN = 0  implies maximal phase uncertainty (ΔΦ=∞>>2π).
        

(a) |α=105〉 (b) |α=103〉 (c) |α=101〉 (d) |n=1010〉

Quantum field coherent α-states Photon number n-states

Fig. 6.6 Simulated spacetime photon counts for coherent (a-c) and photon-number states (d).

Deeper symmetry aspects of pair creation
 Discussion of relativity and quantum theory of wave amplitude requires further details. This 
includes Dirac’s extraordinary theory that 2-CW light of certain frequencies in a vacuum may create 
“real” matter that does not vanish when the light is turned off. For example, we know that two 0.51MeV γ-
ray photons of frequency ωe=mec2/ may create an electron and positron “hole” that form positronium 
e + e  pairs. Also, 0.94GeV γ-rays with ωp=mpc2/ may create proton-anti-proton p + p  pairs, and so on. 

 Dirac creation processes raise questions, “What “cavity” traps 0.51MeV γ-pairs into stable e + e  
pairs?” The discussion so far has only begun to define 2-CW symmetry properties by phase rates in per-
spacetime (K,Ω)-quantum variables. Conservation (5.2) of these kinetic (K,Ω)-values implies that e + e  or
p + p pairs have the same (K,Ω)-values as the 2-CW light that “creates” them.

 However, space-time symmetry arguments by themselves seem unable to derive internal lepton or 
baryon structure that might show how light becomes “trapped.” That question still lies beyond the scope 
of this discussion, and indeed, still largely beyond what is presently known. In fact, the current standard 
Weinberg-Salam model of high energy electroweak and strong quantum-chromo-dynamics (QCD) has 
abandoned the Dirac picture almost entirely. Pauli’s apparent dislike for Dirac may have had an effect.
 In its place have there has arisen a large and controversial area known as super-symmetric-string-
theory or “superstrings” that has generated over 10,000 publications in about 40 years and promised a 
“theory of everything” that would include quantum gravity. However, as discussed in the introduction,  
this flurry of mathematical activity is yet to yield new experimental insight or provide a better way to 
develop existing areas of classical mechanics, relativity or quantum theory.
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Appendix 6.A. Laser Wave 4-Vector Coordinate Frames 
Chapter 4 introduced the idea of a two-dimensional space-time (x,ct) coordinate system generated by a 
pair of continuous wave (CW) lasers. (Fig. 2.1c) They generated Lorentz-Einstein-Minkowski coordinates 
shown in Fig. 2.2c and labeled in Fig. 2.3 or Fig. 2.4. Now we discuss 3-dimensional problems involving 
the full 4-dimensional space-time xµ= (r, ct) coordinate systems made by counter-propagating CW lasers 
generating waves of 4-dimensional wavevector-frequency kµ= (ck, ω ). 

Counter propagating waves in space-time
 The general 1D wavefunction (6.1) generalizes to the following Ψ{µ}(r,t) made of waves with wavefront 
planes of constant phase sketched in Fig. 6A.0.
   ΨA→ ,ω→ ,k→;A← ,ω← ,k←(r,t) = A→ei(k→ •r - ω→t) + A←ei(k← •r - ω←t)     (6A.1)

Single-k-vector waves Ψk(r,t) with zero SWR have simple phase properties and transformation rules.
    Ψk(r,t) = ( ei(k→ •r - ω→t) + ei(k← •r - ω←t) )/2      (6A.2)
An expo-cosine identity generalizing (4.3.1) defines 3-D phase and group-envelope waves.

  

   

Ψ r, t( ) = Ψk r, t( ) = 1
2

ei k→ •r−ω→t( ) + 1
2

ei k← •r−ω←t( )

          = e
i

k→ +k←( )•r− ω→ +ω←( )t
2 cos

k→ − k←( ) • r − ω→ − ω←( ) t

2

   (6A.3a)

  
   
         = ei K•r−Ωt( ) cos k • r −ω t( )   where:     (6A.3b)

  

  

K =
k→ + k←( )

2
 , 

Ω =
ω→ +ω←( )

2
 , 

     

  

k =
k→ − k←( )

2
,

ω =
ω→ − ω←( )

2
.

   (6A.3c)

The Lab Frame has stationary phase planes normal to a beam axis-z between the two lasers of frequency 
ω0 with opposing wavevectors. Phase-0 plane spacing is laser proper wavelength λ0=2πc/ω0.

    
   
Ψk0

r, t( ) = e−i ω0t( ) cos k0 • r( )      (6A.4a)

   where:    k = k→ = −k← = k0   ,  and  Ω = ω→ = ω← = ω0    (6A.4b)

The group planes of zero ReΨ are fixed normal to k0. 
       k0 • r = ±π/2, ±3π/2, ...     (6A.4c)
The phase zeros periodically go infinitely fast in the k0-direction at certain times.
    ...ω0 t = ±π/2, ±3π/2, ...     (6A.4d)
This is the same lab frame described before in Fig. 2.2. A frame boosted along the beam z-axis appeared 
in Fig. 2.3.  There was no 3-dimensional boosting or rotation.
 However, three dimensions presents a much more complicated range of possible symmetry 
transformations involving the six Lorentz group parameters for x, y, and z boosts and rotations or, 
including translations, nine parameters of the Poincare' group. Nevertheless, by appealing to continuous-
wave optical thought experiments it is possible to simplify the derivation and visualization of this 
enormous symmetry of locally flat space-time for both classical and quantum theory. Of course real lab 
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experiments would be dicey at best. Squared-off laser waves would have difficulty achieving planarity 
over more than a few microns unless a great distance separated them as is imagined for CW star-pairs in 
Fig. 5.7 and Fig. 5.10.              

Fig. 6A.0 Sketch of a plane wavefunction Ψk(r,t) = Aexpi(k•r – ω t) with wavevector k.

CW positioning system
 Here we imagine orthogonal pairs of CW lasers that form a positioning grid similar to what is used 
for coherent laser cooling. The wave dynamics associated with each pair automatically broadcasts a set of 
relativistic k-vectors and coordinate planes for any observer. (Laser waves already "know" relativity!) In 
principle, an observer can ascertain orientation and velocity relative to the Lab grid, and by coordinate 
plane integration, translation position, as well. The key axiom is phase invariance (1.3) restated here.
   Φ =− µ τ = k•r - ω  t = k•r - (ω /c)(ct) = k'• r' - (ω'/c)(ct').   (1.3)restated

 First is individual laser phase invariance. Pairs (ct0,r0) and (ω0,ck0) are in Lab frame.
      Φ→ = ′k→ • ′r − ′ω→ ′t = k→ • r −ω→t =   k0 • r0 −ω0t0    (6A.5a)

      Φ← = ′k← • ′r − ′ω← ′t = k← • r −ω←t = −k0 • r0 −ω0t0    (6A.5b)

Individual laser 4-vectors are, by definition, located on the light cone or null-invariant.

      c
2 ′k→ • ′k→ − ′ω→

2 = c2k→ •k→ −ω→
2 =  c2k0

2 −ω0
2 = 0    (6A.6a)

      c
2 ′k← • ′k← − ′ω←

2 = c2k← •k← −ω←
2 =  c2k0

2 −ω0
2 = 0    (6A.6b)

If any pair of 4-vectors (α,a) and (β,b) are Lorentz covariant, then so is any linear combination of them.
     (γ,c)=A(α,a) + B(β,b) = (Aα+Bβ,Aa+ Bb)   
In other words, invariance of α2-a•a = α'2-a'•a' and β2-b•b = β'2-b'•b' implies invariance for the 
combination γ2-c•c = γ'2-c'•c' , as well. So, phase invariance (1.3) applies to sum 

  
K = k→+ k←( )/2  and 
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difference 
  
k = k→− k←( )/2  wavevectors attached to corresponding sum 

 
Ω = ω→+ω←( )/2  and difference 

 
ω = ω→−ω←( )/2  frequencies. However, the new invariants have different values. 

       ′K • ′r − ′Ω ′t = K • r − Ωt =   0 −ω0t0     (6A.7a)

       ′k • ′r − ′ω ′t = k • r −ωt =   k0 • r0 − 0     (6A.7b)

In fact, sum and difference vectors are not on the light cone like their laser components (6A.6).

      ′Ω 2 − c2 ′K • ′K = Ω2 − c2K •K =   ω0
2 − 0         =c2k0

2    (6A.8a)

      ′ω 2 − c2 ′k • ′k   = ω 2 − c2k •k   =  0- c2k0 •k0  = −c2k0
2    (6A.8b)

The sum vector 
   
Ω,cK( )  in (6A.8a) has a proper frequency µ=ω0=ck0 and behaves like a massive particle. 

Because of this, uniform wave guide modes have the dispersion of a massive particle which is a mass-
shell M-hyperboloid (6A.8a) first plotted in Fig. 3.4a. This will be used later.
 The difference vector 

   
ω ,ck( )  has an imaginary proper frequency µ=ick0. Such an object is called a 

Feinberg τ-Tachyon, and is quite unlike ordinary matter. A real mass starts out at zero wavevector (k=0) 
with real (proper) frequency µ=ω0, zero group velocity dω/dk , and infinite phase velocity ω/k. In contrast, 
tachyons start out at zero frequency (ω=0) with a real wavevector k0 , zero phase velocity (ω/k.=0) and 
infinite group velocity (dω/dk=∞). A tachyon dispersion curve is a vertical τ-hyperbola given by (6A.8b) 
and drawn below the photon asymptote in Fig. 4.1a. Such a τ-wave is also known as an "instanton" since 
it everywhere at the instant it has infinite group velocity. Our name for the τ-wave is less poetic: it is 
simply the group cosine envelope which is static in the Lab CPS frame. (It defines Lab-frame's coordinate 
planes.) 
 As the observer's rest frame changes velocity u, the sum vector 

   
Ω,cK( )  follows an M-hyperbola 

(6A.8a) while difference vector 
   
ω ,ck( )  follows a tachyon hyperbola (6A.8b). Meanwhile, pairs of laser 4-

wavevectors (ω→,ck→) or (ω←,ck←) (for light moving along the x-axis) and (ω↑,ck↑) and (ω↓,ck↓) (for 
light moving along the vertical z-axis) each follow null light-cone-invariants (6A.6). The details of how 
(ω→,ck→), (ω←,ck←), (ω↑,ck↑), and (ω↓,ck↓) transform is sketched in Fig. 5.10.

Wavevector defined coordinate planes
 Examples of the effects of x-boosts, z-boosts and combinations of them on Lab wavevector pairs 
are plotted in Fig. 6A.1 where the relative velocity is 3c/5. Fig. 6A.1b is identical to the pair of 
wavevectors shown in the preceding Fig. 5.10, and Fig. 6A.1c is the same thing rotated by 90°. 
 Also shown are the CPS coordinate grid planes as seen in the observer’s frame at a particular 
instant of the observer's time. These are planes that are the group phase=0 mod π planes in the CPS frame 
and fixed to it  so they are moving rigidly in any boosted observer's frame opposite to the boost. They are 
obtained from the wavevector differences such as (k→ - k← ) by solving (6A.7b) as repeated below.
       k • r −ωt =  k0 • r0 = 0,±π,±2π,...     (6A.9)

At the observer instant t=0 one simply obtains a plane through origin and normal to (k→ - k← )/2. 
 This wave based solution is simpler than trying to use a Lorentz coordinate transformation to find 
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observer coordinates (ct, x, y, z) in terms of CPS coordinates (ct0, x0, y0, z0). The latter would be easy if 
one desired observer values of CPS planes at a fixed CPS time t0, but it is quite inconvenient if, as is the 
case, we desire their location as the observer sees them at his instant t.
 The effect of doing ux/c=3/5 and uz/c=3/5 boosts singly and in sequence of different orders is 
shown in Fig. 6A.1. A single boost induces an 80% Lorentz contraction (1/cosh υ =0.8) in the direction of 
the boost. Two Lorentz boosts induce a rotation in rotation group R(3) a subgroup of the Lorentz group. In 
the study of spin-orbit effects this rotation is called Thomas precession, a topic intended for later Units.

          

X

Z
k(←) k(→)

k(↑)

k(↓)

k(↑)

k(→)

X

Z
k(←) k(→)

k(↑)

k(↓)

k(↑)=(k(↑)−k(↓))/2

k(→)=(k(→)−k(←))/2

(b) After z-Boost

X

Z
k(←) k(→)

k(↑)

k(↓)

(a) Initial Frame

X

Z

k(←) k(→)

k(↑)

k(↓)

k(→)

k(↑) X

Z

k(←)

k(→)

k(↑)

k(↓)

k(→)
k(↑)

(e) x-and then z-Boost

(c) After x-Boost  (d) z-and then x-Boost

Fig. 6A.1 Examples of sequential relativistic transformations of a tetrad of light wavevectors.  
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Appendix 6.B. Wave Guide Dispersion and Cavity Eigenfrequencies
 A wave guide confines 3-dimensional (ck, ω ) light waves to propagate in one dimension. The result is a 
hyperbolic dispersion function of the form (3.12) in Fig. 3.4 or of quantum matter waves in Fig. 4.1.
      ω 2=µ 2-(ck)2       (6B.1)
Putting end plates on a guide further confines the wave to a cavity mode and restricts its frequency 
dispersion to discrete or “quantized” frequency eigenvalues ω m. This is discussed below.

2-Dimensional wave mechanics: guided waves and dispersion 
 A two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis 
obliquely. It happens for plane waves. The phase velocities along coordinate axes are given by 
   vx = ω   /kx ,                        vy = ω  /ky ,                        vz = ω  /kz .  (6B.2)
Each of the components (kx , ky , kz ) must be less than or equal to magnitude k. Thus, all the component 
phase velocities equal or exceed the phase velocity ω  /k which is c for light! In fact, water waves can 
exceed c ; if a wave breaks parallel to shore the 'break-line" moves infinitely fast since kx is zero.
 This has application to the basic wave mechanics of a wave guide consisting of a 'Hall of Mirrors" 
along the x-axis shown in Fig. 6B.1. Let two parallel mirrors on either side of the x-axis be separated by a 
distance y=W. The South wall will be at y=-W/2 and the North wall at y=W/2. (z-axis or "up" is into the 
page of Fig. 6B.1.) The Hall should have a floor and ceiling at z=±H/2, but its position doesn't matter as 
long as we consider only waves moving in the xy-plane direction. The effect of H is discussed later.

   

      

x

y= W/2

y= -W/2

k(+) γ

k(-) −γ
 Fig. 6B.1 A "hall of mirrors" model for an optical wave guide of width W.
 Now consider what would happen if you shine a laser or maser down this hall. (In quantum jargon, 
"we propagate a photon beam.") Let the beam be at an angle γ to the x-axis in the plane of the Fig. 6B.1. 
Two waves will result as shown in Fig. 6B.1. One you send in with its k-vector k(+) pointing at angle +γ .
    k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 
Then its y-reflected mirror image will have its k-vector k(-) pointing at angle -γ.
    k(-) = (k(-)x, k(-)y, 0) = (k cos γ , -k sin γ, 0 ). 
 By adding the two waves with k(+) and k(-) you can make a wave function inside the Hall of 
Mirrors that vanishes at the mirror surface boundaries located at y=±W/2.
   Ψ(r,t)  = exp i( k(+)•r  - ω t) + exp i( k(-)•r  - ω t)  
        = exp i(k x cos γ  + k y sin γ - ω t) + exp i(k x cos γ  - k y sin γ - ω t)
       = exp i(k x cos γ   - ω t) [ exp i( k y sin γ ) + exp i( - k y sin γ )]
       = e i(k x cos γ   - ω t) [ 2 cos( k y sin γ ) ]     (6B.3)
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The wave function must vanish at mirror surfaces (y=±W/2) so that E-wave Ψ does not enter them in what 
is called a transverse electric (TE) mode. TE boundary conditions relate to angle γ as follows.
 0=2 cos( k (W/2) sin γ ) ,  or: k (W/2) sin γ  = π / 2 , or: sin γ = π / ( k W)    (6B.4a)
The wavevector magnitude is related to angular frequency by the usual k =ω/c. Stated another way we fix 
the y-component of the k(+) or k(-) vectors to just fit a half-wave in the width W of the Hall of Mirrors.
     k(+)y= k sin γ  = π  /W      (6B.4b)
These conditions lead to what is called a dispersion function ω (kx ) or ω  vs. kx relation.
  ω =kc = c(kx2 + ky2 + kz2 )1/2= c(kx2 + π 2/ W2)1/2    (6B.5a)
   ω = √(c2kx2 + ωcut2)  where:  ωcut = πc/W.   (6B.5b)
A minimum or cut-off frequency ωcut = πc/W is defined. Solving for kx gives
   kx = (ω 2/c2 - π2/W2 )1/2.      (6B.5c)
This is the equation for a hyperbola in (ω ,ckx ) space is plotted below in Fig. 6B.2 and Fig. 6B.8.
   ω 2 - c2kx2 = π 2c2/W2 = ωcut2     (6B.5d)

ck(+) vectorckcut-off(+)

stellar ab.
angle σ Simple step:1.Drop

perpendicular

2.Find:
tan σ~0.9

Note: k-angle σ=π/2−γ

Fig. 6B.2  Dispersion function for a fundamental TE wave guide mode

 The hyperbolic asymptotes are lines of slope equal to the speed of light c. (6B.5d) is a standard 
relativistic invariant function. All observers, no matter what their relative x-velocity, agree on how the 
light travels through space-time in a Hall of Mirrors. This holds only if the mirrors are ‘ideal’ in that their 
performance does not depend on their x-velocity. You can't tell if an ‘ideal' mirror is sliding past you! But, 
real mirror atomic response varies with velocity. If photon frequency is blue shifted up to X-ray values, a 
real dispersion function loses relativistic invariance. Polarization waves of real material cannot be totally 
Lorentz invariant since its very presence breaks the symmetry of the vacuum.
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 The dispersion relation ω (kx ) is used to calculate the Hall wave velocities. From the dispersion 
relation ω (kx ) in (6B.6 a) we obtain the phase velocity from (4.4.7) and group velocity from (4.4.6b) for 
a mono-chromatic wave propagating down the Hall. (However, a group wave cannot be monochromatic!)
  vx (phase) = ω /kx                                           vx (group) = dω /dkx  =  ckx/√(kx 2 + π 2/W2 )  
       =  cω  /(ω 2 - π 2c2/W2 )1/2     (6B.7 a)            = c (ω 2 - π 2c2/W2 )1/2 /ω   (6B.7 b)
Using (4.34b) we get the speeds in terms of angle γ  and vacuum light speed c.
  vx (phase) = c/cos γ                     (6B.7 c)                vx (group) = c cos γ     (6B.7 d)  
As the wavelength is reduced (higher k and ω ) vx (phase) and vx (group) approach c which is what light 
would do anyway if the Hall width W was huge. However, as wavelength grows (lower k and ω ) the 
tipping angle γ  grows from zero toward 90° in order to match a half wave perfectly to the Hall width W. 
Then vx (phase) approaches infinity while vx (group) slows to a crawl as the frequency approaches a 
minimum cut-off value ωcut = πc/W. This is the proper frequency µ of a guided photon, the smallest red-
shifted frequency a moving observer could see if kx is Doppler shifted to zero. The next figures, done by 
the program GuideIt show how waves behave going down a hall at various frequencies.

Rays and wavefronts: Phase and group velocity
 Fig. 6B.3 begins with light entering the Hall of Mirrors at γ=±45° to the x-axis. The rays of the 
+45° wave are being traced as they appear to reflect off the North wall into the -45° wave. Note that the 
wave amplitude (represented by wavy lines ) is maximum in the center of the hallway (y=0) as required 
by the amplitude factor [ 2 cos( k y sin γ ) ] in (6B.3). The same factor makes the wave identically zero at 
the North and South walls (y=± W/2) according to (6B.4a), the TE boundary conditions. 
 The TE wave speed is vx (phase) = c√2 according to (6B.7 c). But, the velocity vx (group) =c/√2 
is exactly half as fast. This is the velocity of the rays. Their progress down the x-axis of the hallway is 
slower than their actual speed c because they are ricocheting back and forth off the walls as seen in the 
figures below. This "off-the-wall" explanation of group velocity makes it clear why the group velocity is c 
times the cosine of the angle γ. It is the x-component of a tipped wave velocity vector. The rays are 
attached to wave fronts of constant phase. On the way up the wave front phase is 2nπ (multiple of 2π) 
indicated by a thin solid line. The phase changes by π when a ray bounces off a wall, so downward rays 
are attached to a wave front having a phase of (2n-1)π, indicated by a thin dotted line. Where solid (2nπ) 
fronts meet is a wave crest. Where dotted (nπ) fronts meet is a wave trough. A node is where fronts of 
opposite phase meet. This happens along walls that have a line of nodes according to TE boundary 
conditions. 
 A more detailed sketch of a wave mode similar to Fig. 6B.3 is shown in Fig. 6B.8. The E-field 
vectors are drawn as dot-circles (  ) for up-out-of-plane +E cresting waves and cross-circles (⊗ ) for 
down-into-plane -E troughs. (Think of E-arrows with sharp points on (+) end and feathers on (-) end!) 
This shows how the E-field is indeed transverse the direction of motion and the waveguide floor and 
ceiling, but parallel and approaching zero close to the walls. It also shows that the phase wave appears to 
drag (-) charge at (  )-crests and (+) charge at (⊗ )-troughs along ceiling and floor. Pretty spooky Hall!
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! Fig. 6B.3 Right moving guide wave with γ = 45°, Vphase=√2c, Vgroup=c/√2.

 The x-phase velocity vx (phase) is speed of the intersection of wave fronts with walls (at nodes) or 
x-axis (at crests and troughs). In frame sequences below, note how much faster crests and troughs move 
than rays. The wave fronts go at velocity c along rays, that is, perpendicular to the fronts while rigid 
diamond-shaped wave patterns go at vx (phase)=1.41c down the x-axis as shown in Fig. 6B.4.
  Attached to the diamonds are nodal rectangles (actually squares in this example) whose borders lie 
along the top and bottom walls (as required by the y-boundary conditions (6B.4a)) and whose vertical 
sides lie half-way between the crests and troughs. Unlike the diamonds, the nodal squares are observable 
borders of the interference minima and maxima. The phase diamonds represent unobservable "artistic 
license."
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! Fig. 6B.4 Right moving guide wave with γ = 45°. Rays are half as fast as wave crests.
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 Higher frequency means a lower γ with two velocities approaching c as shown in Fig. 6B.5a where 
γ =30°. As a Hall of mirrors gets much wider than the ~0.5 µm optical wavelength you can simply look 
down it with no detectable dispersion. In this limit Vphase and vx (group) both converge on c. 

Fig. 6B.5 Guide waves. (a)Higher frequency case: γ = 30°, vx (phase)=c√3/2c, vx (group)=c2/√3.
 - - -      (b)Lower frequency case:   γ = 60°, vx (phase)= 2c,       vx (group)= c/2.
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 Suppose the light frequency is reduced so the wavelength increases and the angle γ increases to 
60°. Then vx (phase) grows to 2c while the ray or group velocity reduces to vx (group) = c cos 60°=c/2. 
That is one-half the speed of light and one-fourth vx (phase) =2c as shown in Fig. 6B.5b.

    Group waves and "messages":(How do I send one?)
 Group waves can carry "messages" as discussed in introductory Ch. 0 or Ch. 6, but this requires at 
least two different frequency components. The guide waves pictured so far are mono-chromatic and carry 
no information except a steady "hum" if they are classical waves, or a steady and uniform rain of random 
counts if we are describing a quantum wave. There is a |cos( k y sin γ )|2 distribution of intensity, but 
otherwise it's smooth, featureless and motionless. (Quantum mechanics can be really dead, sometimes!)
 To send "messages" or "wave-packets" it is necessary to have more than one frequency going. If 
the frequencies are close by then AM "lumps" (like Fig. 0.2 or Fig. 6.6) of increased photon counts will be 
observed moving down the hall at the velocity vx (group) given by (6B.7d). As usual, you need many 
counts to make out even one "lump." (Low-quantum phenomena are elusive, to say the least!)

Evanescent waves
 There is an important lower limit to frequency below which waves will not propagate. This 
happens just when the wave is too big in wavelength to fit even half of it in the wave guide. The limit is 
indicated in the Fig. 6B.2 at the bottom of the hyperbolic dispersion function (6B.5).  
 Consider angular frequency below the so-called cut-off value ωcut from (6B.5b).
    ω cut = π c/W        (6B.8)
Then the wave vector kx in (6B.5c) will go thru zero to becomes imaginary.
    kx = (ω 2 - π 2c2 / W2 )1/2 

This affects the the usual propagating wave rather severely.
    Ψ =  exp i(kx x  - ω t)        (6B.9)
Instead of propagating nicely, we get a so-called evanescent wave.
    Ψ =  exp(- µx x)exp i(- ω t)       (6B.10a)
It decays exponentially with the distance x along the wave guide with the following decay rate constant.
    µx = (π 2c2/W2 - ω 2)1/2= ikx  ,     (6B.10b)
The decay increases as the frequency ω  falls further below ω cut. It is huge for ω =0. (Entry verboten!)

 The cutoff ω cut in (6B.8) is the bottom of a band of allowed frequencies, and it is the bottom of 
the lowest of a series of bands labeled by a number ny >1 of half waves that fit across the hall. We may 
generalize (6B.4b) to describe ny half waves as follows.
     k(+)y= k sin γ  = ny π  /W (ny  = 1, 2,...)    (6B.11a)
This leads to multiple overlapping bands of dispersion function ω ny(kx ).
   ω ny(kx ) =kc = c(kx2 + ky2 + kz2  )1/2= c(kx2 + ny2 π 2/ W2 )1/2  (6B.11b)
The lowest three of these overlapping hyperbolas (for ny = 1, 2, and 3) are plotted in Fig. 6B.6.
 After all this classical discussion, please note that each hyperbola is the bottom of a quantum stack 
of hyperbolas discussed around Fig. 4.2. The same applies to discrete mode frequency bands discussed in 
the following section.
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Trapped waves and cavity modes: Discrete frequencies
 When a wave is completely trapped in all the directions it can move, then its spectrum ceases to be 
continuous and becomes discrete or "quantized." This is what happens to the wave guide modes if the 
Hall of Mirrors is capped by a pair of doors at, say, x=0 and x=L, so it becomes a wave cavity of length L.
 The doors demand the wave electric field be zero at x-boundaries as well as along the walls. The 
new boundary condition to go with (6B.11a) is the following.
     kx= k cos γ  = nx π  /L (nx  = 1, 2,...)     (6B.12a)
Now the frequency bands become broken into discrete "quantized" values ω nx ny , one for each pair of 
integers or "quantum numbers" nx  and ny .
    ω nx ny  =kc = c(kx2 + ky2 + kz2  )1/2= c(nx2π 2/ L2 + ny2π 2/ W2 )1/2 (6B.12b)
The frequency values fall where the ny -hyperbola intersects the nx -value of kx in (6B.12a) as shown in 
Fig. 6B.6. These correspond to cavity modes. Note: no zero or negative nx or ny  are allowed.
    

ω

κ=ck

ny=3

ny=2

ny=1

nx=1 2 3 4 5

Quantum level
spectral bands

Fig. 6B.6 Cavity mode dispersion diagram showing overlapping and discrete ω and k values.

 Three of the lowest cavity modes for the fundamental (ny=1) dispersion curve corresponding to 
the x-quantum numbers nx= 1, 2, and 3 are plotted in Fig. 6B.7 below. These are 2D standing waves. They 
can be thought of as interference patterns of four moving wave fronts, two oppositely moving pairs for 
each of the two wavefront lines intersecting at an antinode in each of the figures.
 It should be noted that the Hall of Mirrors used in the preceding section is a tall hall indeed. It has 
no floor and no ceiling! Clearly, this is an impractical wave guide with infinite wavelength in the out-of-
the-page direction z. The hall needs a floor and a ceiling separated by height H with boundary conditions.
     kz= nz π  /H (nz = 1, 2,...)     (6B.13a)
This gives new frequency bands corresponding to "quantized" values ω nx ny nz .
  ω nx ny nz  =kc = c(kx2 + ky2 + kz2)1/2= c(nx2π 2/ L2 + ny2π 2/ W2+ nz2π 2/ H2)1/2 (6B.13b)
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Also, z-confinement has the effect of up-shifting the spectrum in (6B.11) due to the addition of the extra 
term nz2π 2/ H2 in (6B.13b). Since the lowest possible quantum number is nz =1, we cannot ever ignore it. 
However, for a tall hall (H>>W or H>>L) the resulting shift is small.
 The preceding formulae and figures are classical wave mechanics that provide the fundamental 
basis for a quantum electrodynamic (QED) field theory. Each classical “level” supports a quantum 
oscillator ladder of levels as mentioned before in Ch. 4. These will be developed in Unit 4 and beyond.

  

nx=1

nx=2

nx=3

! Fig. 6B.7 Cavity modes for three lowest quantum numbers

 The Thales stellar aberration angle geometry of a typical cavity mode shown in Fig. 6B.2 is 
developed in greater detail below in Fig. 6B.8. Many of the contacting tangents and intercepts that occupy  
Fig. 3.4, Fig. 5.1, Fig. 5.4, and Fig. 5.5 appear in Fig. 6B.8. This provides yet another view of beautiful 
relativistic relations between phase velocity and group velocity as they apply to waveguide and cavity 
modes. That this geometry ultimately applies to all matter in the universe, only makes each such 
representation and classical analogy all the more intriguing.
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ck(+) vector
ckcut-off(+)

stellar ab.
angle σ

ck(+)

Group velocity
=tanhρ=sinσ

Phase velocity
c/u=cothρ=cscσ

Doppler
blue-shift b=e+ρ

Doppler
red-shift r=e−ρ

Wavevector ckx
=sinhρ=tanσ

Frequency ω
=ωcutoffcoshρ
=ωcutoffsecσ

wavelength
λx=cschρ=cotσ

Fig. 6B.8 Thales geometry of cavity mode in Fig. 6B.8.
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Chapter 7. Compton Effects and Optical Transitions

 In Ch. 4-5 we found that space-time symmetry of a particle of mass M is like that of a 2-CW 
optical cavity wave of frequency ω=Mc2/. Here we relate 2-CW(k,ω) “baseball diamond” Doppler shifts 
from Ch. 2-3 to light-matter collisions and scattering by molecules, atoms or nuclei. Doppler shifts are 
related to recoil shifts in 1-photon emission, 1-photon absorption, and 2-photon Compton scattering.

1-photon kinematics for emission and absorption of light
 Photo-emission and photo-absorption allow you to see. In order to read this page, dye molecules in 
your eye absorb light emitted by atoms in a computer screen or lamp or other source such as the sun if 
you’re using daylight or moonlight. Without these processes we would all be blind.
 There are several ways to describe and diagram emission and absorption by quantum levels. The 
first are Grotian level diagrams shown in Fig. 7.1a for a “quantum jump” between a molecular, atomic, or 
nuclear energy level-Em and a lower level-E. Each “jump” involves light at transition frequency ωm that 
is the beat frequency Δωm=ωm−ω between Planck frequency ωm of level Em and ω of level E.
  Em = ωm  (7.1a)     E = ω    (7.1b)
Planck relation (4.5a) applies. We can only see beats or relative differences Δωm as noted vis-à-vis (4.12).
     Em =  Δωm = ωm−ω) = Em−E    (7.1c)
Beat-frequency light is indicated by a wave emerging from a line connecting the energy level Em to E in 
Fig. 7.1a. A wavy single arrow going out (or in) indicates output emission (or input absorption).
The kicker: Recoil shifts
 Optical transitions have, quite literally, a “kicker.” Due to Axiom-1 (ω=±ck), each 1-CW causing a 
frequency shift Δωm=ωm−ω must come with a “kick” due to k-vector shift Δkm=(ωm−ω)/c. The kick or 
recoil by visible light is usually ignorable since 1/c is so tiny, but it is important for high-resolution spectra 
and for high-energy light such as γ-rays. Grotian diagrams in Fig. 7.1a tend to obscure or ignore recoil.
 Feynman diagrams in Fig. 7.1b show atomic K-vectors K=(ω,ck) being kicked into K′=(ω′,ck′) as 
atoms emit (or absorb) photons with vector ωK´K=ωK´K(±1,1). Baseball geometry in Fig. 7.2a fits vectors 
ωK´K to connect low-level (ω) and mid-level (ωm) hyperbolas and conserve total K-vector consistent with 
translation symmetry conservation rules of (5.19). Fig. 7.2b shows head-to-tail vector sum triangles.

 K′= K− ωK´K [emission]    K′= K+ ωK´K [absorption] 
Vector M´=(ω,ck)=ωm(coshρ, sinhρ) on ωm-hyperbola in Fig. 7.2a has recoil rapidity ρ and invariant ωm and 
rest energy Em =ωm=Mmc2. Vector L´ on lower ω-hyperbola below M´ has the same ρ but lower E=ω. 
K-vector baseball diagram geometry follows directly from earlier Fig. 2.2 and Fig. 3.3. 
This is not rocket science! (Or is it?)
 Some quantum texts call photons “light bullets” since they have a “kick.” Doppler redshift relation 
ω =e−ρωm (top of Fig. 7.2a) shows atoms are like light-rockets. Consider invariant rest-mass ratio Mm/M.
  Mm/M =ωm/ω=e+ρ (7.2a)   c· ρ =c·ln(Mm/M)~u (7.2b)
At low recoil (ρ ~u/c<<1) this is rocket equation (8.8b Unit 1) if “exhaust velocity” is light-speed c. Given 
uncertainty relation Δυ·Δt~1, we know high quality emission (low Δυ) implies long time Δt to “exhaust” 
the light.
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Fig. 7.1 Quantum optical transitions represented by (a) Grotian  and (b) Feynman diagrams.
______________________________________________________________________
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−ρ ω2 2=
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ωmcoshρ=ωm(e
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Fig. 7.2 Optical transitions displayed on (a) “Baseball diamond” and (b) Vector conservation sums.
 A typical atomic transition (such as we use to read by) has a huge spectral quality (q) factor.
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q=ω0/2Γ=(angular resonant frequency)/(transition decay rate)= ω0·Δt =ω0/ Δυ 
Atomic q factors, discussed after (10.49) in Ch. 10 of Unit 1, range from 106 to over 108. The q qualifies a 
resonance by giving its amplification factor (over DC), its spectral purity, and its lifetime Δt in numbers of 
atomic beat periods or “heartbeats” it takes to complete a transition with 96% certainty. (Recall: e−π~4%.)
 High quality means a long “burn” to reduce an atomic mass energy from Em=Mmc2 to E=Mc2, so 
maybe a rocket formula u~c·ln(Mm/M) makes sense. (Exact formula (7.2a) is ρ =ln(Mm/M).) Just saying 
quantum transitions are “jumps” misses a lot of physics. Getting there is (at least) half the fun!

2-photon processes: Rayleigh-Thompson-Compton scattering
 Atomic 1-photon absorption shown in Fig. 7.1 is like an inelastic (“ka-runch”) SUV-VW collision in 
Fig. 1.1b or Fig. 2.1 of Unit 1. An atom (SUV) absorbs a photon (VW) to become more massive as it 
“jumps” from low level M to a higher mass Mm. While we just write off lost energy in SUV-VW crashes, 
the energy of atom plus light is conserved and time reversible. An SUV-VW cannot “uncrash” but atoms 
may emit light as well as absorb it. Atomic emission equation (7.2) is analogous to rocket propulsion.
 An atomic 2-photon process of Compton scattering is sketched in Fig. 7.3a. It is like an elastic (“ka-

bong”) SUV-VW collision in Fig. 2.2 of Unit 1. Atom-M (SUV) briefly absorbs the ωK´K-photon (VW) but 
then just as quickly bounces it back as the atom recoils and returns to its initial M-level after emitting the 
photon. Fig. 2.2 of Unit 1 is in Center-of-Momentum COM frame as are the process diagrams in Fig. 7.3 
where Δk-component of total-ΔK is zero. So, non-resonant Compton processes are a quick 1-2-punch.

Car 54 where are you?
 An atomic 2-photon absorption process sketched in Fig. 7.3a is somewhat analogous to a 3-car pile-
up. (See car crash in Fig. 8.5 of Unit 1.) However, wave time-energy uncertainty fuzzes auto-analogies. 
Pure (ω,ck)-per-space-time pictures imply delocalization in classical space-time. CW (ω,ck) represented in 
Fig. 7.1 thru Fig. 7.4 make CW space-time grids everywhere and forever. Nevertheless, scaled CW (ω,ck) 
vectors overlap PW (x,ct)-paths as shown in Fig. 1.5 or Fig. 1.6 of Unit 1. Then Feynman (ω,ck)-diagrams 
mimic (x,ct)-diagrams and K-arrows can represent PW (x,ct)-collision paths resembling car crashes.
 However, with low-Δt PW paths comes fuzzy K-conservation. Time interval Δt and space Δx is 
large for initial and final vectors in Fig. 7.3a but not so for mid lines M or K. Thus intermediate (ω,ck) 
values must be fuzzy and include combinations of non-resonant values known as virtual state sums.

Suspended 2-photon diamonds
 Photon lines in Fig. 7.3a arise from diamonds in Fig. 7.4 that resemble a ±45° baseball diamond 
used in Fig. 2.1 to develop relativity. However, the general diamond example in Fig. 7.4b differs in that 1st 
and 3rd bases are not on the light-cone baselines but suspended by vectors L and L´ like chopsticks pinch a 
piece of tofu. A new home plate lies at K(ωk) above origin and 2nd base is at M(ωm) above that. Pitcher’s-
mound lies at L(ω) just below diamond center (as it does in regulation baseball). Half-sum-and-difference 
of invariant [ωk, ω, ωm] define a diamond with “rocket ratios” ωm/ω=ω/ωk=eρ and geo-mean ω=√(ωm·ωk).

 Diamond center:  2
1 ( ωm+ωk) = ω coshρ  (7.3a)   Diamond radius:  2

1 ( ωm-ωk) = ω sinhρ  (7.3b)

One exponential eρ ratio defines a whole geometric series of hyperbola levels with equal recoil rapidity ρ.
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 We now look at recoil effects in frames other than COM. We imagine we can “cut-and-paste” or 
create-and-destroy photon frequencies in the 2-CW cavity baseball diamond model of mass kinetics.

Feynman’s Father’s query
 Right after Richard Feynman graduated from MIT his father asked a question, “Where is a photon 
before an atom emits it?” The question caught the new graduate off guard and it appeared that maybe a 
pricey MIT education was not worth all the money that his father had paid.xx Let us give a quantitative 
answer for Feynman’s father’s query using 2-CW optical analog for an atom that emits some of its “inner 
light” following its baseball-diamond geometry in Fig. 7.2.
 To apply baseball diamonds of Fig. 7.2 to an atom, we say it has the symmetry of 2-CW cavity 
state represented by 2nd baseK2  in the lower half Fig. 7.5a. A 1st base K1=(ϖ ,ϖ )  and 3rd base K3= (−ϖ ,ϖ )  

sum to an atom’s 2nd base K2=(0, 2ϖ )  on a hyperbola of mass MQ at Q. 

     
 
MQ = 2ϖ / c2       

The pitcher’s mound P represents a 1-photon momentum-energy expectation value EP atK p = (1 / 2)K2

        EP = ϖ / c2       

Point Q in Fig. 7.5a represents a 2-photon state of energy MQ=2EP. 
 In Fig. 7.5a an emitted photon ωQ ′P  is imagined being “cut” from 3rd base so ω 3 =ϖ shrinks by 

what we will callxxi a father-Feynman factor ff as 3rd base alone loses the outgoing ωQ ′P photon energy.

      ′ω3 = ffϖ = ω3 −ωQ ′P   (ff=1/4 in Fig. 7.5a.)  

If 1st base stays at its old value ( ′ω1 =ϖ = ω1 )  the 2nd base moves from Q on its initial 2ϖ-hyperbola to ′P  on 

its final 2ϖ′ -hyperbola. Its new proper frequency ϖ′ is a geometric mean of 3rd and 1st as in Fig. 3.3. 
 2 ′ϖ = 2 ′ω 3 ′ω1 = 2 ffϖ    

 (7.4a)  
      ′ω3 = f ′ϖ = ffϖ      (7.4b) 

      ′ω1 = f −1 ′ϖ = f −1 fϖ = ω1      (7.4c)

 The new 3rd base is a Feynmanxxiiredshift f ≡ ff  of the new mean ϖ′ and a father-Feynman shift ff 

of the old bases values ω3 =ϖ = ′ω1 = ω1 . They are each an inverse-shift f -1 of the new mean ϖ′. The ff-shift 

is a product of two f-shifts ff=f 2. This tricky notation is due to the Doppler derived group multiplication 
rule (3.5c) for an f = b ′3 ′2 and an equal f = b ′2 1 to give composite ff = b ′3 1 = b ′3 ′2 b ′2 1 = f 2 .

 In Fig. 7.5a old 1st base and new 3rd base span a diamond of rapidity ρ  like Fig. 3.3b wheree−ρ = 2
1 . 

That redshift ′ϖ /ϖ = f = 2
1  in Fig. 7.5a-c is another example of “rocket” mass ratio introduced in (7.2). 

     e−ρ = f ≡ ff = ′ϖ /ϖ = MP / MQ    (7.5)

Photo-absorption and Compton effects

 The factor ff = 4
1 , chosen in Fig. 7.5a, cuts a fraction 1− ff = 4

3  off the 3rd base photonω3 =ϖ to emit 

ωQ ′P = 4
3ϖ and reduces mass M2 by factor f = ff = 2

1  to M1. Doppler factor f -1=2=eρ gives an atomic recoil 
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boost of u = 5
3c . (Recall Fig. 2.2 where b=2 gives frame velocity u = 5

3c .) Mass M1 gets that boost by 

absorbing ωP ′Q = 2
3ϖ to jump from P up to ′Q in Fig. 7.5b. Inverse ωQ ′P  cut falls from Q to ′P in Fig. 7.5a. 

Paste ωP ′Q = 2
3ϖ  onto 1st baseline in Fig. 7.5b ups M1 to M2 on ω′-axis ′P ′Q  in Fig. 7.5c.

 Final ω′-frame shift is b=eρ =2 of rapidity ρ = ln 2  for either process. Emissionω ′Q ′′P is the final 

“cut” in a Compton “paste-and-cut” P→ ′Q → ′′P  process with the Feynman diagram in Fig. 7.6c. Its 

segments form an OP ′Q ′′P O  “kite” in Fig. 7.5c that is bent from a symmetric kite O ′P Q ′P O  by the boost 

ρ = ln 2  of the main kite OQ-axis relative to either of its wings O ′P  or O ′P . Each kite is a suspended 

baseball diamond like Fig. 7.4b or a boosted ρ-warped version of one.
 Both “paste-and-cut”(P→ ′Q → ′′P )  and reverse “cut-and-paste” (P→ ′O → ′′P )  processes in Fig. 7.6 

entail total recoil boost 2ρ = ln 22  from the labϖ axis to an ′′ω axis of the Compton scattered atom in Fig. 

7.5c. The latter first “cuts” down to point O′ on a 2ϖ -hyperbola by emitting photonωP ′O =8
3 ϖ  before 

absorbing the ω ′O ′′P = 2
3ϖ =ωP ′Q  photon that comes first in the former sequence.

 An inverse Compton process (Q→ ′P → ′′Q ) emits photonωQ ′P =4
3 ϖ (as in Fig. 7.5a) then absorbs 

photon ω ′P ′′Q = 3ϖ that moves it from rapidity ρ on hyperbola-ϖ to rapidity 2ρ on hyperbola2ϖ at point 

′′Q (upper right of Fig. 7.5c). Here a fixed mass M2 = 2ϖ emits 4
3ϖ  to gain speed (cu = 5

3) by reducing its 

mass to M1 = ϖ  then recovers mass by absorbing 3ϖ  to end up at an even faster speed(cu = 1 7
15) .

 Photon K-vectors for any Compton process between 2:1-rest mass hyperbolas make a ρ-warped 
baseball diamond with ρ=ln2 according to (7.5) as shown in Fig. 7.5c and Fig. 7.6a. Like a 2:1-Doppler 
diamond in Fig. 3.3b, it has an aspect ratio that is twice its blue-shift b=eρ =2, that is 2eρ =4. 
 A 2:1-rest mass drop shows geometry more clearly than a realistic ratio 1010:1010-1 for an atomic 
transition that is about 10-10 of rest mass. Atomic rest-energy level ratios Em: Eh are close to unity and 
fortunately so for our health! Harmonic levels with integral m:h ratios used in Fig. 7.5 apply to optical-
cavity models but m and h are small integers only for special spectra like Rydberg or rotor transitions.

Compton-Doppler staircase
 In going from higher hyperbola hϖ  to middle mϖ the lab recoil shift is fhm = e−ρhm = h

m  by (7.5), 

and its emitted frequency ωhm  is the altitude of a kite triangle, like ′P Q ′P in Fig. 7.5c, given as follows.  

    ωhm = (1− fhm
2) hϖ
2

=
h2 −m2

2h
ϖ = mϖ sinhρhm   (7.6)

The example in Fig. 7.5a has ωQ ′P = 4
3ϖ =ω2,1 . Doppler shifts of ω2,1 by f2,1 = 2

1  form a geometric series 

 
(, 32

3 , 16
3 , 8

3, 4
3, 2
3, 3,6,12,)ϖ  of steps on a Compton staircaseP ′Q ′′P ′′Q ... between (2:1)-levels 2ϖ and1ϖ  in 

Fig. 7.5c. For any rational level ratioeρhm = m
h , each dilation factor γ hm , recoilβhm , or ratioωhm /ϖ  is a 

rational ratio, too, and the Pythagorean sum 1 = γ hm
−2 + βhm

2  belongs to a rational triangle, e.g.,1 =
52
32 +

52
42 .
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Fig. 7.5 Optical cavity model of (a) Emission, (b) Absorption, and (c) Compton scattering
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        βhm =
uhm
c

= tanhρhm =
h2 −m2

h2 +m2
  (7.7a) 

  γ hm = coshρhm =
h2 +m2

2mh
 (7.7b)     sinhρhm =

h2 −m2

2mh
 (7.7c)

 Recoil trims emittedωhm  below Δ=|h-m|ϖ by a factor (h+m)/2h while absorption ωmh  costs more 

than Δ by a factor (h+m)/2m. Newtonian recoilKEh ≅ Mhu
2 / 2  is a circle of radiusMhc

2  in Fig. 7.5, so even 

low-u recoil costs a little. Photons, like money-changing tourists, get nicked coming and going.
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 An absorption (m<h) frequencyωmh =ω
IN is greater than emissionωhm  by a factor fmh = m

h . A 

Compton ωOUT due to ω IN  is less thanωhm  by the inverse factor fmh
−1 = fhm = h

m . Hence a Compton output 

ωOUT  is less than its input ω IN by the Doppler ratio-square ff = fhm
2 = ( h

m )2  as shown before. 

 ω IN =ωmh = m
h ωhm  ,     ωOUT = h

mωhm = ( h
m )2ω IN   (7.8)

Compton processes in Fig. 7.6 start on middle ωm = mϖ  hyperbola to do a 2-photon bounce off a lower 

 ω  = ϖ  or a higher ωh = hϖ hyperbola. An intermediate “bouncer” is said to be a virtual level if its ω or 

ωh values are integration variables being summed. A process (m→ h→ m) or  (m→ → m) is said to be a 
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resonant Compton process if an h-state or -state exists. Whether numbers m, h , and  are integers in a 
cavity model or real values for an atomic model, the results (7.6), (7.7), and (7.8) apply in any case.

Compton wavelength sum rule
 Inverse frequencies  ω

−1 = (kc)−1 = λ(2πc)−1 ≡  / c  give the famous Compton wavelength sum rule. 

  (ωOUT )−1 = (ω IN )−1 + 2(mϖ )−1  , or:   
OUT =  IN + 2C  where: 

 
C = c

mϖ
= 
Mmc

. (7.9)

Compton radius C ≡ λC / 2π is a minimum cavity radius with a frequency equal to the “zwitterbevegun” of 

mass Mm. As input   IN  reflects from an Mm-cavity it picks up diameter 2C to become  OUT . Size  OUT  

depends on mass Mm of level-m, not on Mh or M of higher level-h or lower level- that bounces level-m.  
 Compton radius  C = /Mc  is a curious inverse measure of mass size. Larger mass M has a smaller 

 C size that recoils less and reflects photons more elastically. Elastic mirror reflection is what we expect in 

classical wave optics where light is assumed to be as “light” as anything can be.
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Fig. 7.7 Compton nets are congruent Compton staircases of transitions. (a) f=2:1 (b) f=  √ 2 :1

Geometric transition series
 A geometricϖ f p -series ϖ (… f −2 , f −1,1, f 1, f 2…) of levels also has a geometric series f p f 2 −1 2

ϖ  of 

transitions. This gives Compton “nets” such as the ( f = 2) -net in Fig. 7.7a or a finer ( f = 2) -net in Fig. 

7.7b. Finer fractions (f → 1) give smaller jumps and acceleration that is more continuous and constant.
 An acceleration of space-time frames by geometric or exponential frequency chirping is described 
in Chapter 8. Space-time grid in Fig. 8.2 has a geometric spacing like the Compton nets in Fig. 7.7 but 
with a (P,G)  (P,G) axis switch and is an optical version of Einstein’s famous thought experiment.

Optical PW bounce and accordian-like CW shifts
If the ω vs ck net plots in Fig. 7.7 were instead space-time ct vs x plots one could imagine each vertically 
sloping line is a path of an object moving at constant rapidity ρ away from the stationary (ρ=0) time ct-axis 
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of the lab frame. Each hyperbola in Fig. 7.7a crosses a path at proper times τ=… τ, 2τ, 4τ,… that are local 
times on each object’s ct′-axis given eρ=f=2. For general f=eρ, the times are τ=…τ, fτ, f2τ, f3τ, ….
 Imagine each ±45° photon line is part of a PW light path reflecting back and forth between the lab 
ct-axis and the object ct′-axis. Let the lab and moving frame have reflecting mirrors to receive light of a 
certain frequency (for CW) or a band of frequencies (for PW) and reflect it back and forth between them.
 If mirror-1 sends out wavelength λ0, mirror-2 sees it as a Doppler red-shifted wavelength λ1 = λ0eρ 
that it promptly returns to mirror-1 who sees another red-shift factor eρ tacked on to give λ2 = λ1eρ= λ0e2ρ. 
Locally observed refection times τk and reflected wavelengths λk both form geometric series …1, f, f2, f3,…
  τk =(…τ, τ1, τ2, τ3, …) =(…τ, fτ, f2τ, f3τ, …) =τ(…1, f, f2, f3, …)  (7.10a)
  λk =(…λ, λ1, λ2, λ3, …) =(…λ, fλ, f2λ, f3λ, …)=λ(…1, f, f2, f3, …)  (7.10b)
 Resulting space-time zigzag paths in Fig. 7.8a have even “zig” reflections (k=…0, 2, 4,…) off the 
stationary lab mirror-1 and odd “zag” reflections (k=…1, 3, 5,…) off mirror-2. Fig. 7.8b has added counter-
propagating odd-time “zag” and even-time “zig” reflections to frame rectangular diamond-k whose 1st and 
3rd bases lie at time τk for lab mirror-1 and mirror-2. Its 2nd and home base lie on a line of rapidity half that 
of mirror-2 with red-shift eρ/2=√f=21/2 in Fig. 7.8b. Diamond-k 2nd-base is home base for diamond-(k+1). 
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τ3=8τ0

1τ0

τ1=2τ0
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τ3=8τ0

ct=τk=2
kτ0

(a) PW bouncing ball (shift eρ=2)

zig0

zag1

zig2

zag3

lab x-axis lab x-axis

(b) CW accordian node squeeze:
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Fig. 7.8 Space-time nets (a) PW zigzag paths bounce. (b) CW nodes squeeze like an accordian.
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 The space-time analog of “rocket” relations (7.2) is τk+1/τk=e+ρ=τk/τk-1. Reflection path-nets also 
have half-sum-and-difference relations analogous to (7.3) and geometric mean relations τk=√( τk+1· τk-1). 
This is used to slice reflection time intervals into units of 21/2τ0 or 21/4 τ0 as is done in Fig. 7.8b, and this 
gives lines of rapidity ρ/4, 2ρ/4,3ρ/4, and ρ, with red-shifts 21/4, 22/4, 23/4, and 2, respectively.
 Ideal light bounces in Fig. 7.8 and mass bounces in Fig. 6.7 of Unit 1 share some key properties. 
While they change energy without limit, both conserve action perfectly. For a light cavity made of 
mirror-1 and mirror-2, action is an integral number n of 1/2-waves that is shown for n=4 in Fig. 7.8b where 
CW nodes move ρ/n faster than the one behind and ρ/n slower than one ahead. Adiabatic n invariance is 
the rule for quantum wave systems and applies to photon number N, too. But, rules are made to be 
broken! 
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Chapter 8. Wave Frame Acceleration

Here we turn the hyperbola geometry of space-time Fig. 7.8 on its side to expose an accelerating wave 
frame made by CW, PW, or intermediate wave fields. This provides a coherent interference view of the 
Einstein elevator gedankken (thought) experiment. Like many such experiments of imagination, there are 
quite a few practical details left out. So it may be some time before we can actually do them!

Chirping and Einstein elevators
 A spacetime version of Compton nets are curved coordinates for accelerated Einstein elevators and 
this helps to visualize equivalence principles for general relativity.xxiii Plots in Fig. 8.1 and Fig. 8.2 show 
waves from chirping tunable lasers forming colorful renderings of hyper-net coordinates.
 A previous Fig. 2.2c plotted an atom (x′,ct′)-view of it running head-on at rapidity ρ into a green ϖ -

beam that is blue (ϖ e+ρ) shifted while the receding laser appears red (ϖ e−ρ) shifted. The laser (x, ct)-grid 
then appears as a ρ-tipped Minkowski grid. If instead the lasers had been tuned to frequencies ϖ e−ρ and 
ϖ e+ρ, respectively, the (u=ctanh ρ)-moving atom would see beams of green ϖ −light waves interfering to 
make a square (ρ=0) Cartesian (x, ct)-grid like Fig. 2.1c. (Amplitude would also be tuned along with 
frequency if we wanted to squelch the wave galloping shown in Fig. 6.2 and Fig. 6.3.)
 Varying tuning parameter ρ of the lasers changes local grid rapidity ρ at the beams’ spacetime 
intersection as sketched in Fig. 8.1a-b. This produces a curved space-time coordinate system of paths with 
rapidity changing just so both beams end up always the same color on any given trajectory.
 Each trajectory plotted in Fig. 8.2 has its own constant proper acceleration g and local color ϖ . A 
mass M following such a x(t)-path has a K that follows its M-hyperbola in Fig. 7.7. The lasers each send 
waves that meet at each trajectory point x(t) and paint a local interference grid of varying rapidity ρ on a 
trajectory x(t) of varying velocity u(t) given by (6a) and sketched in Fig. 8.1a.

     

� 

u =
dx
dt

= ctanh ρ       (8.1)

Setting x′=0 and t′=τ in (2.21) relates proper time interval dτ to lab dt . This gives x(t) by τ-integrals.

 

� 

dt
dτ

= cosh ρ   (8.2a)    

� 

dx
dτ

=
dx
dt

dt
dτ

= c tanh ρ cosh ρ = c sinh ρ  (8.2b)

  

� 

ct = c cosh ρ  dτ  ∫   (8.2c)   

� 

x = c sinh ρ  dτ  ∫     (8.2d)
 Path x(t) depends on ρ(τ) variation in proper τ. Linear rate u~gτ or ρ=gτ/c gives a hyperbolic path in 
Fig. 8.1b of fixed proper acceleration g and a family of concentric paths of different g in Fig. 8.2.

 

� 

ct = c cosh
gτ
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟   dτ =

c2

g
sinh

gτ
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ∫  (8.3a)  

� 

x = c sinh
gτ
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟   dτ =

c 2

g
cosh

gτ
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ∫  (8.3b)

Paths closer to the left hand blue-chirping laser have a higher g than flatter ones nearer the red-chirping 
right hand source.  ρ-skewed baseball diamonds of PW and CW paths in lower Fig. 8.2 are spaced 
geometrically along the x-axis of a spaceship at a moment when its lab-relative rapidity is ρ=0.2.
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Fig. 8.1 Optical wave frames by red-and-blue-chirped lasers (a)Varying acceleration (b)Constant g.

 Geometric e±ρ-variation (8.3) of wave and coordinate spacing is due to a left-hand laser’s right-
moving wave of frequency ω→=ω0e+ρ on light cone x→=x-ct=x0e−ρ and a right-hand laser’s left-moving wave 
of frequency ω←=ω0e−ρ on light cone x←=x+ct=x0e+ρ. Wave interference does the rest.
 Initial (ρ=0) position of hyperbola ω0 is 0=x0=c2/g0. Each hyperbola has different but fixed location 
, color ω, and artificial gravity g that, by (8.3), are proper invariants of each path.
      x2-(ct)2 = 2 , where: =c2/g     (8.4)
 Frequency ω and acceleration g vary inversely with the path’s proper location  relative to origin.
     ω  =ω c2/g =ω0 c2/g0 = const.     (8.5)
Rapidity ρ=gτ/c in (8.3) has proper time be a product of hyperbolic radius  in (8.4) and “angle” ρ.
      cτ = ρ c2/g =   ρ          (8.6)
This is analogous to a familiar circular arc length formula s = r φ. Both have a singular center.
 The less familiar hyperbolic center (x,ct)=(0,0) here begins an elementary event horizon. The blue-
chirp laser would need infinite frequency ω0e+ρ at origin where ct=e−ρ goes to zero, so it gives up before 
t=0. After t=0, light from the laser to any path S or T given by (8.3) never arrives. Fig. 8.2 shows paths of 
a spaceship S and a “trailer” T trailing by invariant length ST=(S)-(T) on an x-axis of rapidity ρ through 
origin (x,ct)=(0,0). S and T always have the same velocity (8.1) relative to the lab, maintain proper interval

 ST , but trailer T feels greater g. Lower parts of a rigid rod accelerate more, and this gives the lab-

observed Lorentz length-contraction indicated at the top of Fig. 8.2. 
 In a Newtonian paradigm, asymmetric acceleration seems paradoxical, but if waves make a 
coordinate frame, asymmetry is a consequence of the DeBroglie relation (4.5b) between k-vector and 
momentum. Accelerating frames require shortening wavelength and this crowds waves. 

HarterSoft –LearnIt © 2012 W. G. Harter                        Chapter 8. Waveframe acceleration    Unit 2  136



 Wave properties also manifest the accelerated frames’ upstairs-downstairs disparity in proper time 
τ (“later” upstairs by (8.6)) and shift in frequency ω (lower or “red shifted” upstairs by (8.5)). Along nodal 
(white) lines that are the ship-trailer x-axis for a momentary rapidity ρ, wave phase is seen to be some 
constant k−ωτ=Νπ/2. The Einstein equivalence of gravity to an accelerated elevator is manifested by a 
gravitational red shift and an increase of clock rates in the upstairs regions of a field.
 A quantized version of Fig. 8.2 would be an atom with a transition at ωI, undergoing a sequential 
resonant Compton scattering of exponentially chirped photons ωI, e±ρωI, e±2ρωI, e±3ρωI,… between the same 
pair of hyperbolas in Fig. 8.2. The atom sees the same color and feels the same recoil rapidity at each step 
in the quantum version of constant acceleration. 

Fig. 8.2 Accelerated reference frames and their trajectories painted by chirped coherent light 
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Constant velocity gives constant acceleration
This leads one to ask if chirped light might be used for atomic or molecular acceleration. Logarithmic 
dependence ρ=ln b of rapidity on Doppler b favors ultra-precise low energy acceleration, more appropriate 
for nanotechnology than high-energy acceleration with its extreme bandwidth.
 The flip symmetry between two sides of a light cone suggests optical cavities with a geometric 
chirp. If you flip the diamond sequence in lower Fig. 8.2 across the light cone to the sides of Fig. 8.2 you 
get spacetime light paths bouncing between mirrors moving relative to each other as analyzed in Fig. 7.8.
 As mirrors close, trapped light blue-chirps exponentially as on the right side in Fig. 8.2. It red-
chirps if the two mirrors separate as they do on the left side of Fig. 8.2 and in Fig. 7.8. Together, a desired 
e±nρ spectrum could in principle be made by translating one etalon cavity at constant velocity relative to 
another stationary cavity that is enclosed by the translating one. In this way, light generated by mirrors of 
constant velocity provides the spectrum needed to make an interference net of constant acceleration. 
Coherent acceleration like Fig. 8.2 (but slower) might be done with precision needed for laser metrology.

Wave geometry vs. Newton
 Wave geometry ought to make us more skeptical of the coordinate boxes and manifolds that have 
been our paradigm for centuries. A common image is the Newton-Descartes empty-box at some absolute 
time existing whether or not it contains any “particles.” We first learn to picture spacetime coordinates as 
a giant metal frame of clocks like Fig. 9 in Taylor and Wheeler’sxxiv relativity text. That figure is more like 
a parody of common views of spacetime manifolds that remain with us to this day. Such a monstrosity of 
a framework is decidedly nonexistent and non-operational. Current metrology uses light waves.
  A wave frame like Fig. 2.1, Fig. 2.2, or Fig. 8.2 is physical metrological coordinate system whose 
geometry and logic arises from the light that makes it. The things being coordinated (waves) have their 
own coordinates and dynamics built in. Einstein general theory of relativity trumped Newton’s box by 
showing how it is affected (curved) by any energy or mass it holds. Quantum theory seems to go a step 
further by indicating that this box and its contents should be viewed as one and the same thing.

Pair creation and quantum frames.
 Dirac, before others, realized that per-spacetime has the symmetry of spacetime. Past and future 

(time-reversal) symmetry demands negative frequency as well as positive. In order to visualize Dirac’s 

pair-creation process we extend the playing field to back-to-back baseball-diamonds with four nets of 

invariant hyperbolas. Examples of pair-creation are sketched in Fig. 8.3 as seen from two different 

reference frames. Pair creation-destruction is then seen a strange sort of Compton process in which the 

“photon diamond” of Fig. 7.4 is centered at the light baseline intersection with 2nd base at +mc2 and home 

base at -mc2 and 1st and 3rd bases on ±G-hyperbolas.

 The Feynman graph of Compton scattering in Fig. 7.6c-d is turned on its side in Fig. 8.3 so it may 

start and end on different branches of the m-hyperbola corresponding to mass ±m. Two photons, whose 

energy sum equals the energy gap 2mc2, appear to bounce off intermediate hyperbolas in Fig. 8.3 that are 
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conjugate hyperbolas defining group wavevectors Kg in Fig. 2.1 or 2.2. Such dispersion is said to belong 

to instanton or tachyon waves of imaginary frequency ±i µ that entails a huge damping factor  e
−mc2τ /  that 

proscribes their direct observation. They are said to be in the virtual or intermediate realm.

Fig. 8.3 Dirac matter-antimatter dispersion relations and pair-creation-destruction processes.

 Dirac’s is the first quantum theory to fully incorporate relativity. It introduces dual anti-worlds, in 

which all three mass definitions (3.6), (3.7), and (3.9) have negative values, but leaves many questions 

about their physical meaning. Analogies between the (2γ → e + e )  process in Fig. 8.3 and exciton 

formation in the band theory of solids, shed some light on the physics. However, the exciton process is a 

straight-up 1-photon process whose momentum is tiny compared to the energy jump, and it lacks the 

world-anti-world symmetry of the Dirac exciton in which both the electron and an anti-electron have the 

same group velocity but opposite momentum. The Dirac model has duality of reversed energy 

(frequency), momentum (k-vector), space, and time that is quite extraordinary.

 A number of implications of Dirac’s theory have been mostly ignored. There is an unwillingness to 

abandon vestigial concepts associated with absolute classical frames, manifolds, or “boxes.” However, 

quantum frames are like all things quantum mechanical and have an intrinsic relativity associated with 

their wavelike interference. Quantum frames, as they are used in molecular and nuclear physics, are 

known to have internal or body-relative parts in addition to the more commonly known external or 

laboratory-relative parts. This inside-and-out duality is a deep quantum mechanical result arising first in 

the theory of quantum rotors by Casimir, but it also underlies Lorentz-Poincare symmetry that includes 

locally rotating frames as well as translating ones. 
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 Indeed, the quantum theory of angular momentum has a built-in duality that is as fundamental as 

the left-and-right or bra-and-ket duality of the conjugate parts of Dirac’s elegant quantum notation A B . 

The Wigner Dm,n
J –functions are quantum rotor wavefunctions Dm,n

J* (αβγ )  that have their external laboratory 

m-quantum numbers on the left and their internal or body n-quantum numbers on the right. Their J-

multiplicity is thus (2J+1)-squared and not simply the (2J+1) so familiar in elementary Schrodinger 

quantum theory of atomic angular momentum.

 It took many years for classical physics to fully accept Einstein’s translational relativity principles. 

Perhaps, if the wave nature of quantum physics had already been established, the relativistic axioms 

would have been seen as an immediate consequence of wave interference. Indeed, these two subjects are, 

perhaps, too closely related for that to have happened.

 Now quantum theory demands a more general kind of relativity involving rotation and other 

accelerations that is a step beyond the special relativity of constant velocity. This brings up a quite 

controversial area first explored by Ernst Mach, the originator of Mach’s Principle. Mach made the 

seemingly impossible proposal that centrifugal forces, the kind physicists assign the label ficticious force, 

are somehow due to their relativity to all matter in the universe. 

 Mach’s idea may sound silly, but a kind of quantum Mach’s Principle is needed to understand 

spectra and dynamics of quantum rotor Dm ,n
J waves even in the non-relativistic limit. We are unaware of 

any fully relativistic quantum treatment of such systems, and it is not clear what if anything would be the 

cosmological implication of such a grand relativistic quantum wave mechanics. Nevertheless, it seems 

that the dual 4-by-4 wave-anti-wave space of Dirac is one of the first to re-examine. 

 Physics is still at a stage where large-scale phenomena use Newton-Einstein particle-in-manifold 

theory while small-scale phenomena employ Planck-DeBroglie-Schrodinger wave field theory. However, 

both employ some form of space and time coordinates. In this they share an enigma whose existence is 

largely unquestioned. Supposed invariance to reference frame definition is taken to mean that underlying 

frames don’t matter. 

 That leaves our fundamental metrology in a dysfunctional dysphoria of an ignored spouse, 

indispensable, but having only marginal identity. If Evenson and Einstein have taught us anything, it is 

that this has to be a mistake. Frames do matter! The results of Dirac and many others have shown they 

make matter and indeed are our matter.
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Figure Captions
Fig. 1. Comparison of wave archetypes and related axioms of relativity.

(a) Pulse Wave (PW) peaks locate where a wave is. Their speed is c for all observers.

(b) Continuous Wave (CW) zeros locate where it is not. Their speed is c for all colors (or observers.)

Fig. 2. Pulse Wave (PW) as a sum of 12 Fourier CW’s (a) PW parts: real ReΨ, imaginary ImΨ, and magnitude |Ψ|. 

(b) CW phasor clocks plot real vs. imaginary parts of wave amplitudeΨ .

Fig. 3. Wave addition of counter propagating Fourier components. 

(a) 2-PW Sum has binary sum has 4 values (0,0), (0,1), (1,0), (1,1) and diamond grid of peak paths on a plane of zeros. 
(b) 2-CW Sum and interference has value continuum and square grid of zeros.

Fig. 4. “Ficticious” sources and their wave coordinate lattices in (a) Spacetime and (b) Per-spacetime.
CW lattices of phase-zero and group-node paths intermesh with PW lattices of “particle” or pulse wave paths.

Fig. 5. Co-propagating laser beams produce a collapsed wave lattice since all parts have same speed c.
Fig. 6. Laser lab view of 600Thz CW and PW light waves in per-space-time (a-b) and space-time (c-d).

Fig.7. Atom view of 600Thz CW and PW light waves in per-spacetime (a-b) and space-time (c-d) boosted to u=3c/5.
Fig. 8. Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

(c) In phasor-relative views either A or else B is fixed. An evolving sum-and-difference rectangle is 
inscribed in the (dashed) circle of the phasor moving relative to the fixed one.

Fig. 9. Doppler shift b-matrix for a linear array of variously moving receiver-sources.
Fig. 10. (a) Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units). 

Fig. 10. (b) Geometry for the CW wave coordinate axes in Fig. 7.
Fig. 11. (a) Horizontal G-hyperbolas for proper frequency B=v and 2B and vertical P-hyperbolas for proper wavevector k. 

(b) Tangents for G-curves are loci for P-curves, and vice-versa.
Fig. 12. Dispersion hyperbolas for 2-CW interference (a) Laser lab view. (b)Atom frame view.
Fig. 13. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian.
Fig. 14. “True” paths carry extreme phase and fastest phase clocks. Light-cone has only stopped clocks.
Fig. 15. Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.
Fig. 16. Trigonometric geometry (a) Unit circular area φ=0.86. (b) Unit hyperbolic area ρ=0.99.
Fig. 17. Relativistic wave mechanics geometry. (a) Overview. (b) Details of contact transform tangents.
Fig. 18. Monochromatic (1-frequency) 2-CW wave space-time patterns.

Fig. 19. Dichromatic (2-frequency) 2-CW wave space-time patterns.
Fig. 20. (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 18. (h-i) Kepler anomalies.

Fig. 21. Cavity 2-CW modes. (a) Invariant “mass” hyperbolas. (b) COM frame. (c) ISOC frame.
Fig. 22. Optical cavity energy hyperbolas for mode number n=1-3 and photon number Nn=0, 1, 2,....

Fig. 23. Simulated spacetime photon counts for coherent (a-c) and photon-number states (d).
Fig. 24. Optical cavity model of (a) Emission, (b) Absorption, and (c) Compton scattering

Fig. 25. Compton scattering. (a) Vector sums on mass hyperbolas of low ω , medium ωm , and high ωh. 

(b-c) Feynman graphs. (d) Center of Momentum (COM) vector sums. (e-f) COM Feynman graphs.
Fig. 26. Compton nets are congruent Compton staircases of transitions. (a) f=2:1 (b) f=√2 :1.


