
Lecture 35. 
Serial Compton scattering and accelerating frames II 

(Ch. 7-8 of Unit 2   4.24.12)

Serial Compton scattering and acceleration plot
Geometric construction
Compton wavelength and formulae

Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser

Wave frames of varying acceleration
    Relativistic acceleration 

Optical “Einstein elevator” and flying-saucer-trailer
Biggest mystery of all: Pair production

  

Lecture 34 review
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Serial Compton scattering and acceleration plot
Geometric construction
Compton wavelength and formulae

Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser
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Bohr model has electron orbiting at radius r so centrifugal force balances Coulomb attraction to the opposite charged proton.

          

Bohr hypothesis: orbital momentum  is a multiple N of  or 
     = me v r = N  (N = 1, 2,...).    
This gives the atomic Bohr radius a0 =0.05nm
    . 

Bohr Radius
a0= 0.5 E-10 m

a0=α−1 

Dirac Radius
d0= 1.9 E-13 m
α−1rc==αa0

Classical e- Radius
rc= 2.8 E-15 m

rc=α 

Compton wavelength 
=2d0= 3.9 E-13 m

2α = 2.137
magnification

α /2= 137/2
magnification a0d0rc

Fig.8A.2  Various electron radii and their relative sizes related by fine-structure constant α = 1/137.
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Now, some numerology of Dirac’s electron radius involving zwitterbewegung where  ωzitterbewegung = 2mc2/=1.56·1021(radian)Hz 

ωzitterbewegung r =c  or      rDirac = c/ωzitterbewegung =/2mc = 1.93·10-13 m  relates to the Compton wavelength =/mc=3.8616·10-13 m 
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Serial Compton scattering and acceleration plot
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Compton wavelength and formulae

Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser
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Wave frames of varying acceleration
    Relativistic acceleration 

Optical “Einstein elevator” and flying-saucer-trailer
Biggest mystery of all: Pair production

www.uark.edu/ua/pirelli/php/einstein_elevator_1.php
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Fig. 8.1 Optical wave frames by red-and-blue-chirped lasers (a)Varying acceleration (b)Constant g
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Fig. 8.2 Accelerated reference frames and their trajectories painted by chirped coherent light 
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                                                                           (8.3a)                                                

Paths closer to the left hand blue-chirping laser have a higher g than flatter ones nearer the red-chirping one. 
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Each hyperbola has different but fixed location , color ω, and artificial gravity gthat, by (8.3), are proper invariants of each path.

      x2-(ct)2 = 2 ,          where: =c2/g     (8.4)
 

Frequency ω and acceleration g vary inversely with the path’s proper location  relative to origin.

     ω  =ω c2/g =ω0 c2/g0 = const.     (8.5)

Rapidity ρ=gτ/c in (8.3) has proper time be a product of hyperbolic radius  in (8.4) and “angle” ρ.

      cτ = ρ c2/g =   ρ          (8.6)

This is analogous to a familiar circular arc length formula s = r φ. Both have a singular center.

(8.3b)
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Wave frames of varying acceleration
    Relativistic acceleration 

Optical “Einstein elevator” and flying-saucer-trailer
Biggest mystery of all: Pair production
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Fig. 8.3 Dirac matter-antimatter dispersion relations and pair-creation-destruction processes.
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