Lecture 34.
Serial Compton scattering and accelerating frames I.
(Ch. 7-8 of Unit 2 4.23.12)

Review of fundamental 1-and 2-photon processes and their Feynman diagrams
Space-time view of light scattering

Serial Compton scattering and acceleration plot
Geometric construction
Compton wavelength and formulae
Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser

Lecture 34 ended here
Elementary Compton process:

IN: Photon absorption

Particle encounters photon

Particle excited and boosted

Particle emits photon

Particle de-excited and boosted again

OUT: Photo-emission

and μ_0-particle of rapidity ρ_2
Elementary Compton process:

\[\omega_1 : \text{Photon in} \rightarrow \text{Particle out} \]

\[\rho_0 = 0 \]

\[K_{(\omega_1)} \text{initial} \]

\[\mu_0 - \text{hyperbola} \]

IN: Photo-absorption

OUT: Photo-emission

\[\rho_1 \]

\[\rho_2 \]

\[\omega_2 \]

\[\rho_0' = 0 \]

\[\mu_0' \]

\[\mu_2 \]

\[\omega_1' \]

\[\omega_2' \]

\[\rho_1' \]

\[\rho_2' \]
Elementary Compton process:

Initial rapidity $\rho_0 = 0$

μ_0-hyperbola

$K_{\leftarrow(\mu_0)}_{\text{initial}}$

$K_{\rightarrow(\mu_0)}_{\text{initial}}$

ω_1

$\rho_0 = 0$

ρ_1

ρ_2

IN: Photon-absorption

OUT: Photo-emission

IN: Photons

OUT: Compton photons

ω_2

μ_0

μ_1

μ_2
Elementary Compton process:

\[\begin{align*}
\text{IN:} & \quad \text{Photon absorption} \\
\text{OUT:} & \quad \text{Photo-emission}
\end{align*} \]

\[\mu_0 \rightarrow K_{(\omega_1)_{\text{initial}}} \]

\[\mu_0 \rightarrow \mu_0 \cdot \text{hyperbola} \]

\[\mu_0 = \mu_0 \cdot \text{inhp} \]

\[\rho_0 = 0 \]

\[\omega_1 \]

\[\omega_2 \]

\[\rho_1 \]

\[\rho_2 \]

Tuesday, April 24, 2012
Two consecutive Compton processes

\[e^{3\rho_1} \mu_0 = \mu_3 = e^{\rho_3} \mu_0 \]

\[e^{2\rho_1} \mu_0 = \mu_2 = e^{\rho_2} \mu_0 \]

\[e^{\rho_1} \mu_0 = \mu_1 \]
Serial Compton scattering and acceleration plot

- Geometric construction
- Compton wavelength and formulae
- Some numerology: Which is bigger...H-atom or an electron?
- Bouncing pulse wave (PW) vs (CW) shrinking laser
Serial Compton scattering and acceleration plot
Geometric construction
Compton wavelength and formulae
Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser
\[\omega_4 \sinh \rho_2 = e^{\rho_2} \omega_2 \sinh \rho_2 = 3/2 \]

Compton IN

\[\omega_2 = \sqrt{2} \]

\[\sinh \rho_2 = 3/4 \]

\[e^{\rho_2} = 2 \]

\[\tanh \rho_2 = 3/5 \]

\[\omega_4 \sinh \rho_2 = 3 \]

\[e^{\rho_2} = \sqrt{2} \]

\[\tanh \rho_2 = 1/3 \]

\[\rho_2 = 7/9 \]

\[\rho_2 = 15/17 \]

Compton FIN

\[\omega_2 = 2 \]

\[\omega_2 = e^{\rho_2} \omega_2 \sinh \rho_2 = 3/8 \]

\[\omega_2 = 1 \]

\[\omega_4 = \sqrt{2} \]

\[\tanh \rho_1 = 2 \]

\[e^{\rho_1} = 1/2 \]

\[\omega_4 \sinh \rho_1 = 3 \]

\[e^{\rho_1} = 4 \]

\[\delta = 0 \]

Compton Wavelength formula

\[\lambda_{\text{IN}} - \lambda_{\text{FIN}} = \lambda_{2, e^{-\ell}} - \lambda_{4, e^{-\ell}} = 2\pi c \left(\frac{1}{\omega_{2, e^{-\ell}}} - \frac{1}{\omega_{4, e^{-\ell}}} \right) \]

\[= 2\pi c \left(\frac{1}{e^{\rho_2} \omega_2 \sinh \rho_2} - \frac{1}{e^{\rho_2} \omega_4 \sinh \rho_2} \right) \]

\[= 2\pi c \left(\frac{1}{e^{\rho_2} - 1} \right) \frac{1}{\omega_2 \sinh \rho_2} \]

\[= \frac{2\pi c}{\omega_2} \frac{1}{\frac{1}{\omega_2} \left(\frac{e^{\rho_2} - 1}{\omega_2} \right) \frac{1}{\sinh \rho_2}} \]

\[= \frac{2\pi c}{\omega_2} \frac{1}{\frac{e^{\rho_2} - 1}{\omega_2} \frac{1}{\sinh \rho_2}} \]

\[= \frac{2\pi c}{\omega_2} \frac{1}{\frac{e^{\rho_2} - 1}{M_\omega c} \frac{1}{\sinh \rho_2}} \]

\[= \frac{2\pi c}{\omega_2} \frac{1}{\frac{2\pi e h}{M_\omega c} \frac{1}{\sinh \rho_2}} \]

\[= \frac{2\pi c}{\omega_2} \frac{1}{\frac{2\pi h}{M_\omega c} \frac{1}{\sinh \rho_2}} \]

\[= \frac{h}{M_\omega c} \]

\[= 2\text{-Compton wavelength} = \frac{h}{M_\omega c} \]
Serial Compton scattering and acceleration plot
Geometric construction
Compton wavelength and formulae

Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser
Bohr model has electron orbiting at radius \(r \) so centrifugal force balances Coulomb attraction to the opposite charged proton.

\[
\frac{mv^2}{r} = \frac{e^2}{4\pi \varepsilon_0 r^2}
\]

Bohr hypothesis: orbital momentum \(\ell \) is a multiple \(N \) of \(\hbar \) or

\[
\ell = m \nu r = N \hbar \quad (N = 1, 2, \ldots).
\]

This gives the atomic Bohr radius \(a_0 \)

\[
r = \frac{4\pi \varepsilon_0 \hbar^2}{me^2} N^2 \left(= r_{\text{Bohr}} = 5.28 E - 11 \text{ m}. = 0.528 \text{ Å} \text{ for } N=1\right)
\]

It also implies rear-relativistic electron speed \(\nu \) given as follows.

\[
\frac{\nu}{c} = \frac{\ell}{mrc} = \frac{1}{N} \frac{e^2}{4\pi \varepsilon_0 \hbar c} \quad \left(= 7.31 \text{E-3} = \frac{1}{137}. \text{ for } N=1\right)
\]

The ratio \(\alpha = \frac{e^2}{(4\pi \varepsilon_0 \hbar c)} = 1/137.036 \) is called the fine-structure constant \(\alpha \).

Now, do some numerology and so-called Dirac’s radius involving \(\omega_{\text{zwitterbegung}} \) where \(\omega_{\text{zwitterbegung}} = \frac{2mc^2}{\hbar} = 1.56E21 \text{ (radian)}Hz \)

\[
\omega_{\text{zwitterbegung}} r = c \quad \text{or} \quad r_{\text{Dirac}} = c / \omega_{\text{zwitterbegung}} = \hbar / 2mc = 1.93 \text{E-13 m} \text{ relates to the Compton wavelength}
\]
Serial Compton scattering and acceleration plot
Geometric construction
Compton wavelength and formulae
Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser
Fig. 7.8 Space-time nets (a) PW zigzag paths bounce. (b) CW nodes squeeze like an accordion.