Lecture 29.
Relativity of interfering and galloping waves: SWR and SWQ I

(Ch. 4-6 of Unit 2 4.10.12)

Wave guide and cavity dynamics in space-time (x0,x1, X2, X3) and per-space-time (wo, cki, ck, ck3)
Above cut-off:Group vs. phase velocity
Below cut-off: Evanescent waves
Cavity eigenfunctions and eigenvalues

Galloping waves due to unmatched amplitudes
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ)
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Waveguide dispersion and geometry
2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors”

Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely.
It happens for plane waves. The phase velocities along coordinate axes are given by

Vx:(D/kx, Vy:(!)/ky, VZ:(D/kz.

Each of the components (kx , ky, kz ) must be less than or equal to magnitude & =\(kx?+ ky’+ kz?).

Thus, all the component phase velocities equal or exceed the phase velocity ® /k which is ¢ for light!
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with &y =0.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance y=W.
The South wall will be at y=-W/2 and the North wall at y=W/2. (z-axis or "up" is into the page here.)
The Hall should have a floor and ceiling at z=4+H/2 as discussed later. Here waves move in xy-plane only.

AS Sume Tran sverseElectric‘mO de .

- It always has E polarized
k( n ) \ parallel to xz plane
= -W/2 -
Y k(') T~ —~ _y Suppose input k-vector k(*) enters at angle +y.
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k(+) = (k(+)x, k(+)y, 0) = (kcos y, ksin, 0
Fig. 6B.1 A "hall of mirrors" model for an optical wave guide of width W. ( . % ) ﬂ( v ¥ )

Et) = expi(k(Her -mt) + exp i( K()er - @ 1) y-reflected mirror image has k-vector k(-) at angle -v.
= exp i(kx cos 'y tky sin Y- ot) + exp i(kx cos Y - ky sin Y- 0t) k(-) = (k(-)y, k(')y, 0) =(kcosy, -ksinv, 0).
=exp i(kx cos y-0t) [ exp i(ky siny) + exp i(-ky sin Y )]
= e i(kx cos Y -0) [2cos(ky siny)]
guide phase wave and group wave

TE boundary conditions make group be zero on metal walls y==17/2.
0=2 cos( k(W/2) siny ), or: k(W/2) siny =n/2, or: siny = 1/(kW)
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Assume TransverseElectric'mOde.
It always has E polarized

4 arallel to xz plane
— /‘\ Y \ ‘\p‘k\ip

y= -W/2 k(_) ~\\\

—

Waveguide dispersion and geometry

k(+)

_y Suppose input k-vector k(-) enters at angle +.
k() = (k(F)x, k(t)y, 0) = (k cos v, ksiny, 0)

\
Fig. 6B.1 A "hall of mirrors" model for an optical wave guide of width W.

E(rt) = expi(k(er -1  + exp i(KG)er - 1) y-reflected mirror image has k-vector k(-) at angle -y.
= exp i(kx cos Yy +ky siny- ot) + exp i(kx cos 'y - ky sin Y- 0t) k(-) = (k(-)y, k(')y, 0) =(kcosvy, -ksinvy, 0).
= exp i(kx cos Y-ot) [ exp i(ky siny) + exp i(-ky siny)]
= e i(kx cos Y-0) [2cos(ky siny)] TE boundary conditions make group be zero on metal walls y=+///2.
guide phase wave and group wave 0=2 cos( k(W/2) siny ), or: k(W/2) siny =n/2, or: siny = 1/(kW)

Condition k(")y=k sin y = 1/ gives dispersion function ® (kx) or ® vs. kx relation

o =kc =cN(k? + k2 + k2 )= (k2 +72/W2) =\ k? + 0wi?)  where:  ®ew = /W

Note: k-angle o=1/2;
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Waveguide dispersion and geometry
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Fig. 6B.8 Thales geometry of cavity or waveguide mode
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Waveguide dispersion and geometry
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Fig. 6B.8 Thales geometry of cavity or waveguide mode
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Waveguide dispersion and geometry
0 =kc = \/(CZ kx2 + (DcutZ)

Velocity=1. Phaise Velét;jfyzl.él Phase VelétEyzl.an
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Phase VeWW /\ Phase Veldtity:

Fig. 6B.3 Right moving guide wave with y = 45°, Vphase:\/Zc, Vgroup:c/\/Z.
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{ty=1\15@hase Velogfty=1\15Phase Vel
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Fig. 6B.5 Guide waves. (a)Higher frequency case: Yy = 30°, vy (phase):m/3/2c, vy (group):CZ/\/3.

(b)Lower frequency case: 7y = 60°, vx (phase)= 2c, vy (group)=

Phase Velocity:Z.ﬁOe

Group P --Phése
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ko = N(@2/c2 - n2/W2 )
§)) :kc — \/(CZ ka + (Dcutz)

VX (phase) =wkx = co /\/(0)2 - nZCZ/WZ)
= ¢/cos 'Y = c/sih 0 = cSC O

vy (group) = dw/dkx = ckx/N(kx 2 + 72/W2)
=c(®2-12c2/W2 )12 j®y = c cos Y= csin o




Below cut-off:Evanescent waves

Consider angular frequency below the so-called cut-off value wew from (6B.5b).
Wcut =T c/W

Then the wave vector kx will go thru zero to becomes imaginary.
ke = V(@7 - m2c2/w? )

This affects the the usual propagating wave Y = exp i(kx x - ®t) rather severely.

Instead of propagating nicely, we get a so-called evanescent wave ¥ = exp(- Ux x)exp i(- w t)

It decays exponentially with distance x inside wave guide with decay rate constant Ly = V(T 2022 - w? )= ikx
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Cavity eigenfunctions and eigenvalues

Hall of Mirrors capped by a pair of doors at x=0 and x=L becomes a wave cavity of length L.
The doors demand the wave electric field be zero at x-boundaries as well as along the walls. New boundary conditions:

kx=kcosy =nxm/L (nx =1, 2,...)

Frequency bands are broken into discrete "quantized" values ®ny ny , one for each pair of integers or "quantum numbers" nx and ny .

Onx ny =ke = Nfkx? + k2 + k22 )= cNinx?n 2/L2 + nyn 2/w? )

=
* ny=2 ///"#
uz{mtulm level h
pectraj bands
|

Fig. 6B.7 Cavity modes for three lowest quantum numbers

Fig. 6B.6 Cavity mode dispersion diagram showing overlapping and discrete ® and k values.
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Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A, and A _ that we now allow to be unmatched.

i(k_ x—w_t) i(k, x—w,_t) _ i(ks x—0s1) (k. x—m,t) —i(k,x—w,1)
Aﬁe +Aee =e  Z z [A%e AT A +Aee AT AT

Waves have half-sum mean-phase rates (ks .®s) and half-difference group rates (ka.®) .
ks = (k_,+ k_)/2 ky= (k_y— k_)/2
Oy =(w_,+w,_)/2 Oy =(_—-w,_)/2

Also important is amplitude mean Ay = (A, + A_)/2 and half-difference A, = (A, - A _)/2
Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWOQ.

(A, - A) (A + 4 )
SWR = — = <
(A, + A) WA T

These are analogous mean frequency ratios for group velocity and its inverse that is phase velocity.

_ﬂzc(we_we) wz_c(we"'we)

group — hase — 5
ky (0 + o ) b ks (0, — o)

(Lecture 29 ends here)
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(b)

1-frequency
cases

2-frequency
cases

E9:02 A - )
Fig. 6.1 Monochromatic (I-frequency) ~ Fig. 6.2 Dichromatic (2-frequency)

2-CW wave space-time patterns. ~ 2-CW wave space-time patterns. Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.
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Fig. 6.1 Monochromatic (I-frequency)
2-CW wave space-time patterns.
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~ Fig. 6.2 Dichromatic (2-frequency)
 2-CW wave space-time patterns.
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(1) Kepler anomaly relations

tan®(t) = SWR tan ot

Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.
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