Lecture 26.

Introduction to Relativistic Classical and Quantum Mechanics
(Ch. 2-5of Unit 2 4.03.12)

Group vs. phase velocity and tangent contacts (Includes Lecture 25 review)

Reviewing “Sin-Tan Rosetta™ geometry
How optical CW group and phase properties give relativistic mechanics

Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass)

What's the matter with light?
Bohr-Schrodinger (BS) approximation throws out Mc?

Deriving relativistic quantum Lagrangian-Hamiltonian relations

Feynman s flying clock and phase minimization

Geometry of relativistic mechanics
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o
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b) Hyperbolic Functions
spacetime geometry)

Fig. C.2-3
and
Fig. 5.4
in Unit 2

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php
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Group vs. phase velocity and tangent contacts

Group velocity u and phase velocity c*/u

are hyperbolic tangent slopes

c Ak

P hyperbolas

ck

-2 -1 0 1

Rare but important case where

do _ Ao
dk Ak
with LARGE Ak

(not infinitesimal)

Relativistic
group wave

speed u=c tanh p
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¢ line

(From Fig. 2.3.4)

G W _C
hyperbolas Ck o u "
© u  Group velocity
dw u Ck
ot dk-c- o
/ ®w=B cosh p
k:% isinh p "

c Ak

Newtonian speed u~cp

Low speed approximation

| Rapidity p approaches u/c

Lecture 25 ended here
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?
%

CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1B 9 These follow from

W= BCOShpﬁ B+—?H ‘_‘ \ CW axioms / k=—8111hp——21»¢‘_‘
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?

C
CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
m=Bcoshsz+5§2uzl NCE R lar

1
E= constant + EMIIZ P = Mu <~—

(Newton's energy) (Galileo s momentum)

So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?

C
CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
m=Bcoshsz+5§2uzl N et

1
E= constant + EMIIZ P = MH -

(Newton's energy) (Galileo s momentum)
So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,

implies Planck's E=s- scaling with|factors: s=h=s equal to DeBroglie’s p=s-k.

—_ — I B - —_ :_B 1 ,-.,_B -+
E=sw=sB cosh p= sB +-52u? ) | p=sk=<; Smhp=igﬂ

c .
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?

C
CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
0= cosh p= B+5§2uzl N et

1
E= constant + EMHZ P = MH -

(Newton's energy) (Galileo s momentum)
So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,

implies Planck's E=s- scaling with|factors: s=h=s equal to DeBroglie’s p=s-k.

— SBginh o= 3B -
~—sinh p= 2 U

E=sm=sB cosh p= sB +%%u2 pum—— p=sk

giving|a (famous) rest eneray constant. : | sB=Me?

Both relations imply: ‘M Z%

E

This then gives the famous Ei

nstein|energy| £ and also the Einstein momentum p
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CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
m=Bcoshsz+5§2uzl N et

1
E= constant + EMIIZ P = MH -

(Newton's energy) (Galileo s momentum)
So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,

implies Planck's E=s- scaling with|factors: s=h=s equal to DeBroglie’s p=s-k.

— SBginh o= 3B -
~—sinh p= 2 U

E=sm=sB cosh p= sB +%%u2 pum—— p=sk

giving|a (famous) rest eneray constant. : | sB=Me?

Both relations imply: ‘M Z%

E

This then gives the famous Einstein energy| E and also the Einstein momentun p

1 — ol — - —_
E=sw=Mc?cosh p= Mc? +5 Mu? «<— | p=sk=Mecsinhp= Mu «—
2
_ _Mc . | Mu
= Scale factors determined by experiment =
/\/1- u’/c? Planck's constant '\/1— u’/c?

Rest enerey(i= 0): hB=Mc” s=N=1.054572-10Joule's
o h=6.626069-10-34Js=2rh
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Summary of geometry W-vs-cK or E-vs-cp relations with velocity u or rapidity p

Lxact y , ’
Relativistic ® — / = tanh p = p+...
/! C
group wave C / Newtonian
speed u=c tanh p / speed u~cp
\“\\ approximates /// Low {ﬁééd@ﬁpfOXlMdflOﬂ
N \Vow speed /’ rest Newtonian
| N\
_ Lxact energy  energy
'Newton’s 1
parsials only a E=hw=Mc’cosh p= Mc? +5 Mu?

little better than circl

A1- u2/c?
Relativistic
Planck energy
E=h w ck
Relativistic p= hk = Mc sinh p‘g Mu Newtonian momentum
DeBroglie momentum — Mu Where: h B_ =M |is rest mass
p=h k A/1- u2/c2 ¢’
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What’s the Matter With Light? 7nree definitions of optical mass

1. Rest mass .-H_E.—hux...-"c‘? based on Planck’s law E=hu_,i-:Nhu |

Tuesday, April 3, 2012

Rest mass: M ~E/c*~h I)_\‘-.--""CE

(Is invariant)

18



What’s the Matter With Light? 7nree definitions of optical mass

.
%

< u
[

l. Rest mass M, ~hv,/c° based on Planck’s law E=hv, =Nhv,
Rest mass: .-"I.-fJ,LJ”_E/CZ —hu_x...-’cg (Is invariant)

2. Momentum mass is defined by Galileo’s old formula p=Mu with newer forms
for momentum p=M  _w-cosh p=M | u/(1 -u?/c?)"? and group velocity u = daw/dk.

[t is the ratio p/u of momentum to velocity.

=p/u =M _ coshp (Not invariant)
=M J(1-u’/c?)"?

Momentum mass.: Mmﬂmeﬂ o

Tuesday, April 3, 2012 19



What’s the Matter With Light? rhree definitions ﬂfﬂprmﬂ! mass

l. Rest mass M, ~hv,/c° based on Planck’s law E=hv, =Nhv,
Rest mass: .-"I.-fJ,LJ”_E/CZ —hu_x...-’cg (Is invariant)

2. Momentum mass is defined by Galileo’s old formula p=Mu with newer forms

for momentum p=M  _w-cosh p=M | u/(1 -u?/c?)"? and group velocity u = daw/dk.

[t is the ratio p/u of momentum to velocity.

Momentum mass: M S omentum

=p/u =M coshp (Not invariant)
=M /(1-u’/c?)!?

3. Effective mass is defined by Newton’s old formula F=Ma with newer forms
for F=dp/dt=hdk/dt and a=du/dt= to give F/a=(hdk/dt)(dt/du)=hdk/du=nh/(du/dk).

[t is the ratio F/a of change of momentum to the change of velocity,

=1/(du/dk)=h/(d" &/dk’) (Not invariant)
=M, _cosh3p=M _/(1-u*/c?)3?

Effective mass: Mﬁmw
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(1)Einstein rest mass

MreSt: hwproper

2
C

Tuesday, April 3, 2012

Three kinds of mass for photon Yy in CW relativistic theory
What's the matter with light?

(2) Galilean momentum mass (3) Newtonian inertial mass
Mipom=p/u=1% Mipom=F/a=—"
mom — do mom Lo
dk dk’
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(1)Einstein rest mass

Mresl‘: M

2
C

M, rest(Y) =()
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Three kinds of mass for photon Yy in CW relativistic theory
What's the matter with light?

(2) Galilean mon%intum mass (3) Newtonian inel;ltial mass
Mmom:p/M:@ Meﬁf:F/a: o
dk dk’
Mmom(Y) :p/C:hk/C:h(D/CZ Meﬁ(’Y) =00

Equations (4.11) in Unit 2

23



Three kinds of mass for photon Yy in CW relativistic theory
What s the matter with light?

(1)Einstein rest mass (2) Galilean mon;zlintum mass (3) Newtonian inel;_ltial mass
— hw roper — __ g —
Miyest= cp—2 Miom p/M do Meff Fra Lo
dk dk’
Mrest(Y) =() Mmom(Y) :p/C:hk/C:hO)/CZ Meﬁ(”Y) =00

Equations (4.11) in Unit 2

A 2-CW 600THz cavity has zero total momentum p, but each photon adds a tiny mass M, to it.
M~=ho/c=m (1.2:10°Nkg-s= 4.5-103%g (for: ®=2m-600THz )

Tuesday, April 3, 2012

24



Three kinds of mass for photon Yy in CW relativistic theory
What s the matter with light?

(1)Einstein rest mass (2) Galilean mon;zlintum mass (3) Newtonian inel;ltial mass
— hwproper — __ g —
Miyest= —z Miom p/M do Mefj Fra Lo
dk dk’
Mesi(Y)=0 Mpom(Y)=p/c=hk/c=hw/c? Mp(y)=o0

Equations (4.11) in Unit 2

A 2-CW 600THz cavity has zero total momentum p, but each photon adds a tiny mass M, to it.
M~=ho/c=m (1.2:10°Nkg-s= 4.5-103%g (for: ®=2m-600THz )

A 1-CW state has no rest mass, but 1-photon momentum is a non-zero value py=My c. (Galilean revemge II.)

py=hk=ho/c=m (4.5-10)kg-m=1.7-10*"kg-m-s! (for: ®=2n-600THz )

Tuesday, April 3, 2012 25
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Bohr-Schrodinger (BS) approximation throws out Mc?

Mc? 2 2 ) \/ 2\? 2
E= = Mc* cosh p= Mc \/1+s1nh P =\Mc™ ) +|cp
\/1—u2/02 ( ) ( )
1/2
B 2\? 2 oo, 1 9 |
E—{(Mc ) +(cp) } ~ Mc +ﬁp [————
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Bohr-Schrodinger (BS) approximation throws out Mc?

Mc” 2 2 .2 \/ 2\? 2
E= = Mc* cosh p= Mc \/1+smh P =\Mc™ ) +|cp
\/1—1/12/02 ( ) ( )
1/2
B 2\? 2 oo, 1 9 L

The BS claim: may shift energy origin (E=Mc?, cp=0) to (E=0, cp=0). (Frequency is relative!)

Einstein - Planck Dispersion
_ E2 - 2p2 =(Mc2)2
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\ \ / photon: M=0
s\ ,/ E:Cp
NG [ ’
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AN NI N
Bohr - Schrodinger Dispersion

Wy, =497
36 E = p2
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Bohr-Schrodinger (BS) approximation throws out Mc?

E

M02

i \/1—1/12/02

(Mc2 )2 + (cp)2

1/2

2
= Mc? cosh p = Mc? \/1 + sinh? p= \/(Mcz) + (cp)2

1 5 L
M BS—approx /2Mp

The BS claim: may shift energy origin (E=Mc?, cp=0) to (E=0, cp=0). (Frequency is relative!)

Einstein - Planck Dispersion
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E2 . 62p2 :(Mc2)2 .
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E=cp
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NN N

Bohr - Schrodinger Dispersion
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36
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16
9
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Group velocity u=Vgoup =42 is a differential quantity unaffected by origin shift.

But, Phase velocity %) =Vphase 18 greatly reduced by deleting Mc? from E=Fh.

29



Bohr-Schrodinger (BS) approximation throws out Mc?

Mc? 2 2 ) \/ 2\? 2
E= = Mc* cosh p= Mc \/1+smh P =\Mc™ ) +|cp
\/1—1/12/02 ( ) ( )
1/2
B 2\? 2 oo, 1 9 L

The BS claim: may shift energy origin (E=Mc?, cp=0) to (E=0, cp=0). (Frequency is relative!)

Einstein - Planck Dispersion
E2 . C2p2 :(Mc2)2 .

X\\\\ Energy

N
~
.
.
.
.
.
.
~

tachyon:

\ / photon: M=0
L’ E=cp

\ Momentum
N\ cp=hck
| . . . . . ‘s : . . . .
A NN NN N . P . . N
Bohr - Schrodinger Dispersion Group velocity u=Vgroup =52 1s a differential quantity unaffected by origin shift.
WO =49W] But, Phase velocity %) =Vphase 18 greatly reduced by deleting Mc? from E=Fh.
36 B = p*2m \\&\\slows from Vynase=c?/u to a sedate sub-luminal speed of Veoup/2.
N N\ 2
25 k , @ 5 k
/ Wy (k)=—— gives: Vphase: =
16 = B2 oM kK 2M
9
/ 4 m and: group: dg)kB = 1]\;

-6-4-4-3-2-1 012345 6\7
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Deriving relativistic quantum Lagrangian-Hamiltonian relations
Start with phase @ and set k=0 to get product of proper frequency = Mc*/k and proper time T

d® = kdx —odt=— dt = -(Mc*/h) dr. dt = dt N(1-u?/c?)=dt sech p

Tuesday, April 3, 2012
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Deriving relativistic quantum Lagrangian-Hamiltonian relations
Start with phase ® and set k=0 to get product of proper frequency u=Mc*/k and proper time T
d® = kdx —odt=— dt = -(Mc*/h) dr. dt = dt N(1-u?/c?)=dt sech p

Differential action: dS = Ldt = p:dx— H-dt = hk-dx — ho-dt = hd D
is Planck scale 7 times differential phase: dS = hd®

Tuesday, April 3, 2012
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Deriving relativistic quantum Lagrangian-Hamiltonian relations
Start with phase ® and set k=0 to get product of proper frequency u=Mc*/k and proper time T

d® = kdx —wdt=—U dt = -(Mc’/h) d. dt = dt N(1-u?/c?)=dt sech p

Differential action: dS = Ldt = p:dx— H-dt = hk-dx — ho-dt = hd D
is Planck scale 7 times differential phase: dS = hd®

For constant u the Lagrangian is: L =—hput = -McN(1-u?/c?)= -Mc?sech p = -Mc?cos ©

Tuesday, April 3, 2012
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Deriving relativistic quantum Lagrangian-Hamiltonian relations
Start with phase ® and set k=0 to get product of proper frequency u=Mc*/k and proper time T

d® = kdx —odt=— dt = -(Mc*/h) dr. dt = dt N(1-u?/c?)=dt sech p

Differential action: dS = Ldt = p:dx— H-dt = hk-dx — ho-dt = hd D
is Planck scale 7 times differential phase: dS = hd®

For constant u the Lagrangian is: L =—hut = -Mc?N(1-u?/c?)= -Mc?sech p = -Mc?>cos ©

...with Poincare invariant: L=px—H=pu—H

(a) Hamiltonian |H(q,p) (b) Lagrangian L(q,q.) .
SlOp@.' H” " VQZOCilJ/ u=dqg
O e radius = Mc?

\p: u H L//

H ’
\___ = // H” L

///

w | H

,Light cone u=1=c ,

40T -H

7 has infinite H
Il and zero L

/ Momentum p -H”
Fig. 5.1. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian

Tuesday, April 3, 2012 35



Relativistic Classical and Quantum Mechanics

Group vs. phase velocity and tangent contacts

Reviewing “Sin-Tan Rosetta” geometry
How optical CW group and phase properties give relativistic mechanics

Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass)

What's the matter with light?
Bohr-Schrodinger (BS) approximation throws out Mc?

Deriving relativistic quantum Lagrangian-Hamiltonian relations

Feynman s flying clock and phase minimization

Geometry of relativistic mechanics

Tuesday, April 3, 2012

36



Feynman s flying clock and phase minimization

Clock on
light-cone path
15 stopped

% Clocks on

N Yalse” parhs
* are neilther

stowe st nor
fastest

Clock on natural
or “true” paih
rians the fastest

heither
slowest nor
fasiesi

O O oo

Fig. 5.2 “True” paths carry extreme phase and fastest clocks. Light-cone has only stopped clocks.

Stationary phase oy

L

gives a"True” path:
by constructive

“False” paths

Fig. 5.3 Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.
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(a) Geometry of relativistic transformation (b)ﬂ@;

and wave based mechanics

W/c 3/5)

Veloczty abermtlon

HFE angle 0!
\ (Momentum c\
R S" v _ H p B Slnh p }
3 B ////// \\\ N ////T
N N 7"/1 — ]
L /7
= 1
/
/ >C //\\ “Lagrangian
] ~
/T 1 / Enf,;s; -L =B sech p
| B =Mc?
| v |Zelocity-Mc
2 2 4 Mcu =B tanh
E . pop ol L MacBuhp,
Red Shiﬁ Blue Shzft Hamiltonian =H =B cosh p

(d) u/c=3/5

H=53/28
5/4
[ {/ u/c =3/5
/ u/c =1 g u/c =1
/ /
7 -L=4/5
/ //
// /
-L+28/45 )/
/ //
/ /
| [
[ /
[ [
| |
e P=0/7 / cp=4528| | eP=1n2 cp=3/4| I
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Fig. 5.5

Relativistic wave mechanics geometry.

(a) Overview.

(b-d) Details of contacting tangents.
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