Lecture 2)5.
Relativity of lightwaves and Lorentz-Minkowski coordinates IV,

(Ch. 0-3 of Unit 2 4.02.12)

5. That “old-time” relativity (Circa 600BCE- 1905CE) (Includes Lecture 24 review)
(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga Lecture 24 ended (abou) here
Light-conic-sections make invariants <

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle o vs. rapidity p

How Mi . » - -
ow Minkowski's space time graphs help visualize relativity ecture 25 ended here
Group vs. phase velocity and tangent contacts <
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The ship and lighthouse saga Lighthouse t= w/

0 th\blink wave
(Frqm North)

Ship v/c(rel.to Ithse.)=-0.50

i 1st blink Wave
/ N (From Noith)

Happening 1 Happening 2

(1st blink wayve -\ /(2nd blink happens;

from Main hits ship)[” J\at Main Lighthousé)
\

Lighthouse t= 1.00
Ship v/c(rel.to Ithse )=-0.50

1st blink wave
- (From,Main)

- E 0 th blink wave
Comparing Ship and Lighthouse views.: Happening table (From,Main)
Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  [first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA
(Ship time) =0 = 1.75 = 2A =2.30

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga
Main Lite

_Happening 0.5:

blinks first time.

A

A o
e

»

Lighthouse t= 1.00
Ship v/c(rel.to Ithse )=-0.50

thp:

..///
Lighthouse: x =0 yd
Lighthouse: ¢ =1.00 //
4
Ship: x' =0 4 //M

%/;lnp time t' =

§ Ship v
%

.15

fc(rel to Ithse )=-0.50

Sth Tlme t’—A 77

AN

"V-:-.-\._A_

kY
Y

\hlp vic(rel to obs.)= 000

N
\

N
\\\
: N

Comparing Ship and Lighthouse views: Happening tables\ \
Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA
(Ship time) =0 = 1.75 = 2A =2.30

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga |Happening 0.5:

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Main Lite
blinks first time.

Ship Time t'= A =?77?

Lighthouse: x =0
Lighthouse: ¢ =1.00

Ship: x' =0
Ship: ' =A=2??

A

€ cA=V(c*HV2A?)

Lo

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Monday, April 2, 2012




The ship and lighthouse saga |Happening 0.5:

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Main Lite
blinks first time.

Ship Time t'= A =?77?

AA? =t +V°A°

Lighthouse: x =0
Lighthouse: ¢ =1.00

(Cz_vz)Az — 2

Ship: x' =0
Ship: ' =A=2??

A

€ cA=V(c*HV2A?)

Lo

Comparing Ship and Lighthouse views.: Happening tables
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(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga |Happening 0.5:

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Main Lite
blinks first time.

A =+ 17N

Lighthouse: x =0
Lighthouse: ¢ =1.00

(Cz_vz)Az — 2

Ship Time /= A =1N(1-v?/c?) = cosh p

Ship: x' =0
Ship: ' =A=2??

A

€ cA=V(c*HV2A?)

Lo

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga | Happening 0.5: Ship Time t'= A =1~ (1-v?/c?) = cosh p = 1.15
Main Lite A2 = % +12A2

blinks first time. (= v?)a? =¢
Lighthouse: x =0 , 2 1
Lighthouse: ¢ =1.00 A= (Cz —v2) ( _ 22

Shig: X =0 l\
Ship: {=A=113 ¢ . A=(c2+v2A2)

Lighthouse t= 1.064~ TN

Ship v/c(rel.to Ithse )=-0.50

Foru/c=1/2
Comparing Ship and Lighthouse views.: Happening tables A =1/ \/(] -1/ 4) =2/ \/3 =1.15..
Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA
(Ship time) =0 = 1.75 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Lighthouse t= w/

0 th\blink wave
(Frqm North)

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)

N

- i VA\
Happening 1 Happening 2
(1st blink wave (2nd blink happens

from Main hits ship)[”

€ cA=V(c*HV2A?)

Ship Time = A =1N(1-v¥/c?) = cosh p = 1.15

i 1st blink wave
- (From,Main)

0 th blink wave

(From,Main) ~Comparing Ship and Lighthouse views: / Happening tables

For u/c=1/2
A =IN(1-1/4)=2N3=1.15..

»

Happening O:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 = 1.75 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Lighthouse t=

blink wave
m North)

0 th
(Frd

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)

] 3
Happening 1 Happening 2
(1st blink wave (2nd blink happens

from Main hits ship)[”

1st blink wave
(From,Main)

0 th blink wave

(From,Main) ~Comparing Ship and Lighthouse views:

Ship Time = A =1N(1-v¥/c?) = cosh p = 1.15

N

€ cA=V(c*HV2A?)

Happening tables

For u/c=1/2
A =IN(1-1/4)=2N3=1.15..

»

Happening O:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space) x =10 x = -vc/(c-v) x=10
(Lighthouse time) t =0 t = c/(c-v) t = 2.00
(Ship space) x'=0 xX'= 0 x = 2vA
(Ship time) =10 { = (vtc)Ac = 2A

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Y
Y'

Object 2 _f/ ™ : Object 1
(Gun Shoppe) ~“‘-- i (Saloon)

Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(French surveyor) x’ = 0 x'= xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rvotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Y ——— -
v = X' cos ' sl -
Y X=x'cos0+y'sind -ty sin O—-—x' cos O

: | =-x'sin 0 + y' cos 6
Object 2 - - y =R Uy o8
jec ~ ; Object 1 ~

(Gun Shoppe) ~“" i (Saloon)

Monday, April 2, 2012

_ cos 0 = =
; X' I + =
% sin @ = —B/¢
: 1 + b
CZ
—|\b/c
Object O: Object 1: Object 2: x’=xcosO— ysinf = X - + ( )2)/
Town Square. Saloon. Gun Shoppe. - b 14 b
(US surveyor)  x=10 x= 05 x= 0 c? ¢’
y=20 y= 1.0 y= 1.0 (b/c)x
(2nd surveyor) — x'=0 x'= x'= -0.45 Y =xsin@+ ycosO = =+ 4 -
y'=0 y'= 11 y'= 0.89 1+b_2 /1+b_2
c c
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Y

Object 2 .,ﬁ '
(Gun Shoppe) ~‘Q' i
A

Y'

Object 1 -
(Saloon)

‘ Reminder: Component-based derivation is clumsy!

X=x'cosO+y'sing -~

y=-x'sin® +y' cos 0

BC
b
. N B

1 S
‘_ 0 cos 0 = -
: 1 + b~
' X' c2
"Q?. sing=_br/¢
: | +b
C2
Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(2nd surveyor) x'=10 xX'= 0 xX'= -0.45
V' =0 y'= 1.1 y'=0.89

Monday, April 2, 2012
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

‘ Reminder: Component-based derivation is clumsy!

Y —_—_

_ Y' X=x'cosO+y'sin0 -
. , =-x'sin O + y' cos 6
Object 2 ~ ; Object 1 Y d . Forget this!!'It’s too clumsy to

(Gun Shoppe) ~"" 1 (Saloon) generalize to 3D, 4D....

$LLT

or the inverse relation:

e =|x)=cosO|x")+sin6|y")

| Instead, use Dirac unit vectors |x)|y)and|x’) |y’ “le. =|y) = —sin6] ) +cos]y")
y

Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(2nd surveyor) x'=10 xX'= 0 xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y
_ Y' X=Xx'cosO+y'sinO -
. , =-x'sin O + y' cos 6
Object 2 ~ . Object 1 g d ‘-~ Forget this!! Its too clumsy to

(Gun Shoppe) ~"" 1 (Saloon) \ generalize to 3D, 4D....

$LLT

. cos 0 = 1 b;
: X I + = / .
‘ XY= cos6|x)—sin6|y)
5 sin O = b/c ) | |
: |+ b2 sin@| x)+ cos 6| y)
c? or the inverse relation:
e =|x)= cosB|x)+sinb|y’)
| Instead, use Dirac unit vectors |x)|y)and|x’) |y’ “le. =|y) = —sin6] ) +cos]y")
y
Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. _ Saloon. _ Gun Shopp_e. Gy () cosO  sind
(US surveyor)  x =10 x= 05 x= 0 , N :
y=0 y= 1.0 y= 10 Ol o) —sinf  cosf
(2nd surveyor) x'=10 x'= x'= -0.45 or the inverse (Kajobian) transformation:
y'=0

=L Lo o (¥]x) () ( 038 —sind j
<y'|x> <y'|y> sin@ cos6
to any vector V=|V) = |x){x|V)+ |y){(y|V)
=) VY + V)

Monday, April 2, 2012 18



A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

‘ Reminder: Component-based derivation is clumsy!

Y —
_ Y' X=Xx'cosO+y'sinO -
. , =-x'sin O + y' cos 6
Object 2 ~ ‘ Object 1 Y d . Forget this!!'It’s too clumsy to

(Gun Shoppe) ~"'l i
D cos 0 = ll+ I;:?
: 5 b’
IQ!O sin9=_—Dblc¢
: 1 + %

| Instead, use Dirac unit vectors |x)|y)and|x’)

(Saloon) generalize to 3D, 4D,...

or the inverse relation:

cosO|x")+sin6|y’

~—

e =|x)=

1Y)

"le, =|y)=—sin6|x’)+cosb|y’)

Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. Saloon. Gun Shoppe. Gy () cosO  sind
(US surveyor)  x =10 x= 05 x= 0 , N :

y= y=10 y= 10 W) O —sin6  cosd
(2nd surveyor) x'=10 xX'= 0 x'= -0.45 or the inverse (Kajobian) transformation:

=0 '= 1.1 '= 0.89 , ,
2 . ? (Xx) (¥]y) | cos@ —sinf
(Jacobian) transformation{VV, } from {V,V,} : Ox) (] | <in® cosB

Vo= (V)= G1[V) = (V) + 1) V)
V, =01V =0lv) = Ol V) + ) v)

Monday, April 2, 2012

to any vector V=|V) = |x){x|V)+ |y){(y|V)
=) VY + V)
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y

Y' X=Xx'cosO+y'sinO -

. | , =-x'sin O + y' cos 6
Object 2 ~ Object 1 g d ‘-~ Forget this!! Its too clumsy to
(Gun Shoppe) )

-
~" N (Saloon) generalize to 3D, 4D,...
; c
/ ~
"‘«."ﬁ' | o o ‘
‘_ 0 cos 0 = -
X c2 _ E -
IQ! g _blc 1B X'y = c.059|x>—sm0| )
: |+ B2 1 sin@| x)+ cos 6| y)
: CZ -

or the inverse relation:

?x =|x)=cosO|x")+sin6|y’

~—

1Y)

| Instead, use Dirac unit vectors |x),|y)and|x’) "le, =|y)=—sinB|x")+cosb|y")
Y

Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. Saloon. Gun Shoppe. Gy () cosO  sind
(US surveyor)  x =10 x= 0.5 x= 0 ) N _

y= y=10 y= 10 W) O —sin6  cosd
(2nd surveyor) x'=10 xX'= 0 x'= -0.45 or the inverse (Kajobian) transformation:

=0 '= 1.1 "= 0.89 , ,
- > * (1) ) ][ coso —sine
(Jacobian) transformation{VV, } from {V,V,} : in matrix form: %) (] | sin® cosh

V, = (x|V)=(1]V) = (x| "W 2 [V)+ (] )| V) 4 ) () | [ v, o amv vector Vel = 1) (2l V) +
V,=0[V)=011V) =0 ) (V) + 0D V) [V Jz( Gy (] oamvesert |V>:|x|,>><i,||“;>>+|y|,§z§||“//>>

y
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PLEASE!

Do N OT ever write
thig: & 71x= cosblx)=sinly)

Y'Y= sinf|x)+cosb|y)

ey,

: . (e ) (1)) |
llke thlS ) ,> :( C?SQ —sin@ )

\ €y )\ V') , sin@ cos6
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PLEASE!

Do N OT ever write
thlS =[x"}=cos6|x)—sin6|y)

e, =|y)= sin6|x)+cosb|y)

Y

(This is an abstract definition.)
This is GARBAGE!
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PLEASE!

Do NOT ever write
Z_hlS e, =|x)= cosO|x)—sinb|y)=R|x)

e, =|y)= sinb|x)+cos6|y)=R]|y)
(This is an abstract definition.)

| . (e (Y his is GARBAGE/
like this: |\ |-| " rede]

Here is a matrix representation of abstract definitions: |x)=R|x), |y =R|y)

LG G (Ve [ IR IR Y[ Ve ) [ IR IR [V
Vo ) L O O JU Y ) L ORI OIR[y) JL Ve ) L IR R L Ve

Monday, April 2, 2012 23
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(a) Rotation Transformation y'
and Invariants

b/ c
x"=xcosf— ysinf =
’ , bZ
Beonboomndh A< 3 1 + Y
= 165 : (b/c)
,-: 085 2 ‘1 Yy =xsinf+ ycosf = - -
Yot pl = 343 : | /1+b_ /1+b_
x'= 1.00 :
4,./= -/ 50 . ) - )
- ra 2:::':?;&«11(}—:(:““* ] 3_— (()).52. 5
XY= yE = 543 élu:xk'-kcl-(); 05774 " @40= 0.5236
(b) Lorentz Transformatign )
and Invariants \:
. . | v
- B —ct
x' = + = = xcosh p+ ysinh p
i) 1- ﬁ 1- ﬁ
9 l A 2 o2
x =/34573 ‘ ;
cr=0.9819 ' N ~ xsinh p+ ycosh p

Wo-fetf = 142
x'=235/2

‘\t'
ct'=2.0260
9 9 viic X'Relag¥@io X = -05 0= -{.5493
L _sopt)E — 2 vic X Relative to O =0 0= 0
: /(/) / 4- viie X'Relativeto O =-05 0+0'= -0.5493
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5. That “old-time” relativity (Circa 600BCE- 1905CE)
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The Ship and Lighthouse saga
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh p
———X=cosh
@ = lbazse faititude — area under curve = Ly [ydx
2— 2 SR

Monday, April 2, 2012



The straight scoop on “angle” and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh P
———'=Xx=cosh P Useful hyperbolic identities
1 1 p_ep Y 1 h2p—1
_ 4 / . _ _ .2 | e —e _ L 2p 2p __COS p—
@ =3 basefaltitude — area under curve 5 xy—|ydx sinh” p —( 5 ] =2 (e +e 2) = 5
Area =lsinhpcoshp—jsinhp d(coshp) P —eP\eP+e ) 1/, ooy 1
2 sinh p cosh p= 5 5 :Z(e P—e p):a sinh2 p
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The straight scoop on “angle” and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/x*tanh 0 =vy/c | pairs, X axis, and sloping u-line
Area
10 0 | X
Area .
2 y=sinh P
———\=x=cosh 0 Useful hyperbolic identities
% = lbase faltitude — area under curve = lxy —[ydx sinh? p= f=e? 2=l(e2p+e_2p—2)= coshzp 1
2 — 2 2 4 2
Area 1
= —sinh pcosh p — [sinh p d(cosh 0_ 0
2 2 sinh pcosh p = [sinh p (COS p) sinh@ coshf = [e < ] 26 )=% sinh260
A 1 1 / h2 [coshap dp 1sinha/o
r : : : COS =—
Zea=Esmhpcoshp—jsmh2pdp:Zsm 20— 2’0 dp a
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh P
———=Xx=cosh P Useful hyperbolic identities
1 1 PP Y 1 h2p—-1
= — Altitude — — v .12 e —e 1 2p, 2p ,\_cosh2p—
— 2bcmefaltztude area under curve 2xy [y dx sinh p—( 5 ] —4(6 +e 2)— 5
Area 1
= —sinh pcosh p — | sinh p d(cosh p_,P
2 P p=sinhp d( ) sinh p coshp:[ € 2e e?P—e 2P ):—sinh 2p

1

Area 1 . [ coshab d6 = —sinh af

1

= Esmhpcoshp— jsinh2 pdp= 4sin{p J COShzﬁd,O/ a

1 1 .

= —sinh2p—Zsmh2p+j% dp

Amazing result: Area = p is rapidity
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Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Pec = plac — epAB+pBC

Evenson axiom requires geometric Doppler transform: ep AB L o

Easy to combine frame velocities using rapidity addition: Pysv = Py T Py

Receiver Source Reciever Source Receiver

' A

P s = In(2)=0.69 “p=In(1/4)=-138 PeaIn(2)=0.69

Pas T Pec = Pac = Pca
0.69—-1.38 =-0.69

Monday, April 2, 2012



Galilean velocity addition becomes rapidity addition
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: ep AB . e

Easy to combine frame velocities using rapidity addition:

’

L= tanh(p, + p, ) =
C

Pec = plac — epAB+pBC

Pu+v = Py T Py

u-v
1+

Monday, April 2, 2012

.
tanh p, +tanhp, _+;
I+tanhp, tanhp, ,_ UV

cc

tanh x + tanh y

tanh(x+ y) =

1+ tanh x tanh y
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Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

Evenson axiom requires geometric Doppler transform: ep AB -, é

Easy to combine frame velocities using rapidity addition:

u v
: —+—
u tanh p, + tanh p
— =tanh(p, + p,) = u y =€ qu
C I+tanhp, tanhp, ,_ UV
cc
,  u+v
or: u =
L
T
C

No longer does (1/2+1/2)c equal (I )c...
1 1

_ _|_ _
L .2 2 1 1
Relativistic result 1s: C= C=—C=
11 1 5
I+— 1+- =
22 4 4

Monday, April 2, 2012

Pu+y = Py T Py

tanh(x+ y) =

Pec = plac — epAB+pBC

tanh x + tanh y

1+ tanh x tanh y
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Galilean velocity addition becomes rapidity addition
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: ep AB . e

Easy to combine frame velocities using rapidity addition: Pysv = Py T Py
. v
u’ tanh p,, + tanh o
_:tanh(pu+pv): Pu Py =Lt C
C I+tanhp, tanhp, ,_ UV
CcC
, Uu-t+y
or. u =
1 u-v
T
C
No longer does (1/2+1/2)c equal (I )c...
1 1
. 2" 11 4
Relativistic result 1s: C = c=—FZCc=—cC
11 1 5 5
I+— 1+- =
22 4 4 1 o1
..but, (1/2+1)c does equal (I)c... 2 _.
1+11
2

Monday, April 2, 2012

tanh(x+ y) =

Pec = plac — epAB+pBC

tanh x + tanh y

1+ tanh x tanh y
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(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

(a) Circlular Functions /&j\
(plane geometry) =10 cow

www.uark.edu/ua/pirelli/php/complex_phasors_|.php

Circlular arc area
¢ =().895d=angle
sin @ =(.7792
cos @ =0.6267
tan ¢ =1.2433
csc @ =1.2833
sec @ =1.53955
cot ¢ =0.8043

T,
tang

Monday, April 2, 2012

Fig. C.2-3
and
Fig. 5.4
in Unit 2
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

Monday, April 2, 2012

(a) Circlular Functions
(plane geomeiry)

_—'-'_'_'_'_ o S

_ ~

coshp

x(space)

rﬁ% COtg

Circlular arc area
¢ =(.893d=nngle
sin @ =(.7792

cos ¢ =0.6267
tan ¢ =1.2433

cse o =1.2833

s ¢ =1.5955

col ¢ =), 80 3=

T,
tang

Hyperbolic arc area
p =104 3d=ramdity

sinh p=1.2433
cosh p =1.5955

tanh p =0.7792
csch p =0.8043 =
sech p =.6267

coth p=1.2833

time,

ew

1

b) Hyperbolic Functions
spacetime geometry)

Fig. C.2-3
and
Fig. 5.4
in Unit 2

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

(a) Circlular Functions [ﬁ\ Circlular arc aea
. ¢ =(LaY3d=angle
(plane geometry) =10 cow sin  =0.7792

- _ cos ¢ =0.6267

see @ =1.53955
col ¢ =) 8 3=
o

Liuig

o _ tan @ =1.2433
: cse ¢ =1.2833

coshp

x(space)

Hyperbolic arc area
p =104 3d=ramdity
sinh p =12433

cosh p =1.5955
tanh p =0.7792
csch p =Lsd ) =T
sech p =.6267
coth p=1.2833

time,

ev
b) Hyperbolic Functions
spacetime geometry)

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php
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Hyperbolic Function Valuep Morve gbout the
Arc Area=p=1.1758 {radiiA2} “SinAan Rosetta”

sinhp=1.4660
coshp=1.7746
tanhp=0.8261 —+
N cschp=0.6821
sechp=0.5635
cothp=1.2105

sinhp

Monday, April 2, 2012 | 39



" CircularFunctionValues
mZ(c)=0.9722 {radians}
Arclength(c)=0.9722 {radii}
SectionArea(c)=0.9722 {radiiA2}
T sinc=0.8261
c0sc=0.5635
|1 tanc=1.4660
csco=1.2105
seco=1.7746

Z?\ cotc=0.6821

Monday, April 2, 2012

More about the
“Sin-Tan Rosetta”
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an 2 li1ad
Hyperbolic Function Valuep NUCT More gbout the
Arc Area=p=1.1758 {radiiA2} m<£(0)=0.9722{radians} “Sin-1an Rosetta”

sinhp=1.4660 1 | Arclength(c)=0.9722 {radii}
coshp=1.7746 ote identities
tanhp=0.8261 <= — - sinc=0.8261

N cschp=0.6821 \ coso=0.5635
sechp=0.5635 A1 tanc=1.4660

cothp=1.2105 csco=1.2105

sinhp

exp(p)

Monday, April 2, 2012 41



JL‘_ |

Hyperbolic Function Valuep | HUCS More about the
ArcArea=p=1.1758 {radiiA2} m<£(0)=0.9722{radians} “Sin-an Rosetta”
sinhp=1.4660 | | Arclength(c)=0.9722 {radii}
coshp=1.7746 ote identities
tanhp=0.8261 < -» Sinc=0.8261

N cschp=0.6821
sechp=0.5635
cothp=1.2105 <€
(p)=3.2406
exp(-p)=Q.3086

\ c0s6=0.5635
tanc=1.4660

ettt et et

—» csco=1.2105

sinhp
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More about the
“Sin1an Rosetta”

-

V)

lyperbolic Function Value
ArcArea=p=1.1758 {radiiA2}
sinhp=1.4660
coshp=1.7746
tanhp=0.8261
N cschp=0.6821
sechp=0.5635
cothp=1.2105 <
(p)=3.2406
exp(-p)=Q.3086

Arclength(c)=0.9722 {radii}
ote identities

M

sinhp

\ / exp(p)
| o | ,-z | X

7 cashp v ! —
/
////
/
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The Ship and Lighthouse saga
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Introducing the stellar aberration angle o vs. rapidity p

logether, rapidity p=In b and stellar aberration angle o are parameters of relative velocity

The stellar aberration angle o is based on the

The rapidity p=In b is based on
longitudinal wave Doppler shift b=e” transverse wave rotation R=e'°
defined by u/c=tanh(p). defined by u/c=sin(o).
At low speed.: u/c~p. At low speed: u/c~ o.

(a) Fixed Observer (b) Moving Observer

X

Fig. 5.6 Epstein's cosmic speedometer with aberration angle 6 and transverse Doppler shift coshvz.

Monday, April 2, 2012
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5. That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle o vs. rapidity p

How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

Space-space Animation of Two Relativistic Ships Passing Two

Space-Time Movies in Lighthouse Rest Frame v
Showing ?qh thouse Now-Line (Black terminator-line)

...................... .................. , i& ST ol 53—

B0 N LY e WL ssssegfessense BVET¥ = SRS

Happenih o ISt 1 “ </
Ha%al ening PV

se¢. N4

/200

L .
Happehing 1: Ship 1 is hithy Blink 1
Happehing 2: Lighthouse émits Blink 2

- Shap v/e(rel.td\]lthse.)>0.50
- Ship v/e(rel.to dbs.)=-0.5

thse v/c(rel.to obs.)= 0.00

~&orth Lighthouse
SRR

e e st
23

Happening 1 \

| ‘l‘_—. | | | l.. 1 | | - i
1
- = 0 TSCIII. SONNN O VO . ~2nbla
DT

M\ ;
w3

< =

S

ighihouse

: &
0

|
~ &

0
%

Happening 2

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php
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How Minkowski's space-time graphs help visualize relativity (Here:r=atanh(1/2)=0.549,

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

...but, in Ship frame Happening 1 is at ' =1.74 and Happening 2 is at t'=2.30sec.

Space-Time Movies in Lighthouse Rest Frame
Showing the Sth/ Now-Lme (Black termi

f time't = 1.74Se, (7 PR
9 ouse Griileg
appemng ST L L TN L] N

5

%
Happening 2
won t happen
il t=2.00

Happening 1

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

Monday, April 2, 2012

»~

'Dpening 1: Ship
Happening 2: Ligh

o430

Space-space Animation of Two Relativistic Lighthouses Passing Two

—

1 is hit bf Blink~k
fhouse fmits Blink 2

-/ | 15e.)=-0.50
hp time t' =71.74 | (reLFbO= 0.00
Lthse v/c{rgl.toiobs.}=Q50
Tappening 1 _ | rth I1ght
stellar abkangle
OO
-IE! \1
0
0§ -

(Here . )
and o=Asin(1/2)=0.52 or 30°)
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How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

...but, in Ship frame Happening 1 is at ' =1.74 and Happening 2 is at t'=2.30sec.

Space-Time Movies in Lighthouse Rest Frame

Showing the Shm/ Now-Lme (Black termi _
f time't = 1. 745l Ve S ant o
? ouse G1iip-g
appemng ST L TN 4

Ha}bpening 2
won t happen
il t=2.00
That is '=2.30 ship time

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

Happening 1

Monday, April 2, 2012

/ Happening 1: ShipH is hit by Blink 1

Tappening 2. skellayZabtangle

o—30°

Space-space Animation of Two Relativistic Lighthouses Passing Two

fhouse emits Blink 2 i \

Happening 2: Ligh

[ Ship vic(rel.to Itfse.):-0.50
- Ship vle(rel.tfobs.)= 0.00
- Lthse v/c(rgl.to ob\):; S0

oy 1Borth |
7

an e

(Here:

and.:

b

o=Asin(1/2)=0.52 or 30°)
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The Ship and Lighthouse saga
Light-conic-sections make invariants
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Group vs. phase velocity and tangent contacts

Group velocity u and phase velocity c*/u
are hyperbolic tangent slopes

P h bol
C Ak S ¢ line

\ (D% / : b
hyperbolas o
2®[= 2B=4~—__4 Y ck 1 | u

(From Fig. 2.3.4)

. / / © I_ u  Group velocity
A® dw u Ck
GSB2/#7//\\ G-B 7 dek ~ o)
RN : \ / 0.)=B cosh p
e / 11 ) k:% sinh p ”

-1 0 1 2

Rare but important case where
do  Aw
dk Ak
with LARGE Ak |
(not infinitesimal) Aw | g

c Ak

Newtonian speed u~cp

Relativistic

group wave
speed u=c tanh p

Monday, April 2, 2012

Low speed approximation

| Rapidity p approaches u/c

Lecture 25 ended here
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Group vs. phase velocity and tangent contacts
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CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
m=Bcoshsz+5§2uzl N et

1
E= constant + EMIIZ P = MH -

(Newton's energy) (Galileo s momentum)
So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,

implies Planck's E=s- scaling with|factors: s=h=s equal to DeBroglie’s p=s-k.

— SBginh o= 3B -
~—sinh p= 2 U

E=sm=sB cosh p= sB +%%u2 pum—— p=sk

giving|a (famous) rest eneray constant. : | sB=Me?

Both relations imply: ‘M Z%

E

This then gives the famous Einstein energy| E and also the Einstein momentun p

1 — ol — - —_
E=sw=Mc?cosh p= Mc? +5 Mu? «<— | p=sk=Mecsinhp= Mu «—
2
_ _Mc . | Mu
= Scale factors determined by experiment =
/\/1- u’/c? Planck's constant '\/1— u’/c?

Rest enerey(i= 0): hB=Mc” s=N=1.054572-10Joule's
o h=6.626069-10-34Js=2rh
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Summary of geometry W-vs-cK or E-vs-cp relations with velocity u or rapidity p

Relativistic 0 — /- =tanhp/=p+..
group wave c Newtonian
speed u=c tanh p / speed u~cp
'\‘\\ approximates /’/ Low {peedqurOXI}ﬂaIIbﬂ
E\\ low s /)L’L’(/ ,’ rest Newtonian
AN ;s nergy
:Newton’;"""-b.._\___ ! wperbola Lxact e fnergy
osrsbals only 2™ only — — 2 ~ 2 2
little better than circl E=hw=Mc ;/?szh = Mc +E Mu

shp Relativistic
Planck energy
E=h w ok
Relativistic p= hk = Mc sinh plE Mu Newtonian momentum
DeBroglie momentum — Mu Where- | B — M |is rest mass
p=hk /\/1- u2/c? o2
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What’s the Matter With Light? rhree definitions ﬂfﬂprmﬂ! mass

l. Rest mass M, ~hv,/c° based on Planck’s law E=hv, =Nhv,
Rest mass: .-"I.-fJ,LJ”_E/CZ —hu_x...-’cg (Is invariant)

2. Momentum mass is defined by Galileo’s old formula p=Mu with newer forms

for momentum p=M  _w-cosh p=M | u/(1 -u?/c?)"? and group velocity u = daw/dk.

[t is the ratio p/u of momentum to velocity.

Momentum mass: M S omentum

=p/u =M coshp (Not invariant)
=M /(1-u’/c?)!?

3. Effective mass is defined by Newton’s old formula F=Ma with newer forms
for F=dp/dt=hdk/dt and a=du/dt= to give F/a=(hdk/dt)(dt/du)=hdk/du=nh/(du/dk).

[t is the ratio F/a of change of momentum to the change of velocity,

=1/(du/dk)=h/(d" &/dk’) (Not invariant)
=M, _cosh3p=M _/(1-u*/c?)3?

Effective mass: Mﬁmw
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