
Lecture 25. 
Relativity of lightwaves and Lorentz-Minkowski coordinates IV.

(Ch. 0-3 of Unit 2   4.02.12)

5. That “old-time” relativity (Circa 600BCE- 1905CE) 
(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga
Light-conic-sections make invariants   

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts  

(Includes Lecture 24 review)

Lecture 24 ended (about) here 

Lecture 25 ended here 
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Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Happening 1: Ship gets hit by
first blink from Main Lighthouse.
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Comparing Ship and Lighthouse views: Happening tables 
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Object 1: 
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Gun Shoppe.

(US surveyor )       x = 0
                              y = 0
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              y =  1.0 

(French surveyor) x′ = 0
                             y′ = 0
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              x′=  -0.45
              y′=  0.89  

A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor.
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e ′y
=

′y

y

x

e
′x = ′x
e ′x = ′x = cosθ x − sinθ y
e ′y = ′y = sinθ x + cosθ y
      or the inverse relation:
ex = x = cosθ ′x + sinθ ′y
ey = y = −sinθ ′x + cosθ ′yInstead, use Dirac unit vectors          and x , y ′x , ′y

Forget this!! It’s too clumsy to 
generalize to 3D, 4D,...
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Instead, use Dirac unit vectors          and x , y ′x , ′y

Forget this!! It’s too clumsy to 
generalize to 3D, 4D,...
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Vx = x V = x 1V = x ′x ′x V + x ′y ′y V
Vy = y V = y 1V = y ′x ′x V + y ′y ′y V

 in matrix form:

Vx
Vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  =
x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 
V ′x

V ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

Instead, use Dirac unit vectors          and x , y ′x , ′y

Forget this!! It’s too clumsy to 
generalize to 3D, 4D,...
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PLEASE!
Do NOT ever write 
this:

like this:

e ′x = ′x = cosθ x − sinθ y
e ′y = ′y = sinθ x + cosθ y

e ′x

e ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x

′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟
x

y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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PLEASE!
Do NOT ever write 
this:

like this:

e ′x = ′x = cosθ x − sinθ y
e ′y = ′y = sinθ x + cosθ y

e ′x

e ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x

′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟
x

y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

This is GARBAGE!
(This is an abstract definition.)
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PLEASE!
Do NOT ever write 
this:

like this:

e ′x = ′x = cosθ x − sinθ y ≡ R x
e ′y = ′y = sinθ x + cosθ y ≡ R y

e ′x

e ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

′x

′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟
x

y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(This is an abstract definition.)
(This is GARBAGE!)

Here is a matrix representation of abstract definitions:

 
Vx
Vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
x ′x x ′y

y ′x y ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 

V ′x

V ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
x R x x R y

y R x y R y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 

V ′x

V ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
′x R ′x ′x R ′y

′y R ′x ′y R ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 

V ′x

V ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

′x ≡R x ,  ′y ≡R y
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′x =
x

1− v
2

c2

+

v
c
ct

1− v
2

c2

= x coshρ + ysinhρ

c ′t =

v
c
x

1− v
2

c2

+
ct

1− v
2

c2

= x sinhρ + ycoshρ

  

′x = xcosθ − ysinθ = x

1+ b2

c2

+
− b / c( ) y

1+ b2

c2

′y = xsinθ + ycosθ =
b / c( )x

1+ b2

c2

+ y

1+ b2

c2
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5. That “old-time” relativity (Circa 600BCE- 1905CE) 
(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga    
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They’re area!) 

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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The straight scoop on “angle” and “rapidity” (They’re area!)

x=cosh θ
y=sinh θ

y/x=tanh θ = v/c

Area
2

= 1
2
base ⋅altitude− area under curve = 1

2
xy − y dx∫

The “Area” being calculated is the
total Gray Area between hyperbola
pairs, X axis, and sloping u-line

u-line

Area
2

Area
2

Area
2

ρ
ρ
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The straight scoop on “angle” and “rapidity” (They’re area!)

x=cosh θ
y=sinh θ

y/x=tanh θ = v/c

Area
2

= 1
2
base ⋅altitude− area under curve = 1

2
xy − y dx∫

Area
2

= 1
2

sinhρ coshρ − sinhρ d coshρ( )∫

sinh2 ρ = eρ − e−ρ

2
⎛

⎝⎜
⎞

⎠⎟

2

= 1
4
e2ρ + e−2ρ − 2( ) = cosh2ρ −1

2

sinhρ coshρ= eρ − e−ρ

2
⎛

⎝⎜
⎞

⎠⎟
eρ + e−ρ

2
⎛

⎝⎜
⎞

⎠⎟
= 1
4
e2ρ − e−2ρ( )=12 sinh2ρ

The “Area” being calculated is the
total Gray Area between hyperbola
pairs, X axis, and sloping u-line

u-line

Area
2

Area
2

Area
2

ρ
ρ

Useful hyperbolic identities
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The straight scoop on “angle” and “rapidity” (They’re area!)

x=cosh θ
y=sinh θ

y/x=tanh θ = v/c

Area
2

= 1
2
base ⋅altitude− area under curve = 1

2
xy − y dx∫

Area
2

= 1
2

sinhρ coshρ − sinhρ d coshρ( )∫

sinh2ρ= eρ − e−ρ

2
⎛

⎝⎜
⎞

⎠⎟

2

= 1
4
e2ρ+e−2ρ −2( )= cosh2ρ −1

2

sinhθ coshθ = eθ−e−θ

2
⎛

⎝⎜
⎞

⎠⎟
eθ+e−θ

2
⎛

⎝⎜
⎞

⎠⎟
= 1
4
e2θ−e−2θ( )=12 sinh2θ

Area
2

= 1
2
sinhρ coshρ − sinh2 ρ dρ∫ = 1

4
sinh2ρ − cosh2ρ −1

2
dρ∫

coshaρ dρ = 1
a∫ sinhaρ

The “Area” being calculated is the
total Gray Area between hyperbola
pairs, X axis, and sloping u-line

u-line

Area
2

Area
2

Area
2

ρ
ρ

Useful hyperbolic identities
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The straight scoop on “angle” and “rapidity” (They’re area!)

x=cosh θ
y=sinh θ

y/x=tanh θ = v/c

Area
2

= 1
2
base ⋅altitude− area under curve = 1

2
xy − y dx∫

Area
2

= 1
2

sinhρ coshρ − sinhρ d coshρ( )∫

sinh2 ρ= eρ − e−ρ

2
⎛

⎝⎜
⎞

⎠⎟

2

= 1
4
e2ρ+e−2ρ−2( )= cosh2ρ −1

2

sinhρ coshρ= eρ −e−ρ

2
⎛

⎝⎜
⎞

⎠⎟
eρ+e−ρ

2
⎛

⎝⎜
⎞

⎠⎟
= 1
4
e2ρ−e−2ρ( )=12 sinh2ρ

Area
2

= 1
2

sinhρ coshρ − sinh2 ρ dρ∫ = 1
4

sinh2ρ − cosh2ρ −1
2

dρ∫

                       = 1
4

sinh2ρ − 1
4

sinh2ρ + 1
2
dρ∫        

                       = ρ
2

coshaθ dθ =
1
a∫ sinhaθ

Amazing result:  Area  =   ρ   is rapidity

The “Area” being calculated is the
total Gray Area between hyperbola
pairs, X axis, and sloping u-line

u-line

Area
2

Area
2

Area
2

ρ
ρ

Useful hyperbolic identities
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5. That “old-time” relativity (Circa 600BCE- 1905CE) 
(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga    
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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Easy to combine frame velocities using rapidity addition: ρu+v = ρu + ρv

Galilean velocity addition becomes rapidity addition

Evenson axiom requires geometric Doppler transform: eρAB ⋅eρBC = eρAC = eρAB+ρBC
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

ρAB + ρBC = ρAC = −ρCA
0.69 −1.38 = −0.69
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tanh(x + y) = tanh x + tanh y
1+ tanh x tanh y

′u
c
= tanh(ρu + ρv ) = tanhρu + tanhρv

1+ tanhρu tanhρv
=

u
c
+ v
c

1+ u
c
v
c

or:    ′u = u + v

1+ u ⋅v
c2

Easy to combine frame velocities using rapidity addition: ρu+v = ρu + ρv

Galilean velocity addition becomes rapidity addition

Evenson axiom requires geometric Doppler transform: eρAB ⋅eρBC = eρAC = eρAB+ρBC
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
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tanh(x + y) = tanh x + tanh y
1+ tanh x tanh y

′u
c
= tanh(ρu + ρv ) = tanhρu + tanhρv

1+ tanhρu tanhρv
=

u
c
+ v
c

1+ u
c
v
c

or:    ′u = u + v

1+ u ⋅v
c2

Easy to combine frame velocities using rapidity addition: ρu+v = ρu + ρv

Galilean velocity addition becomes rapidity addition

No longer does (1/2+1/2)c equal (1)c…

Relativistic result is:    

1
2
+ 1
2

1+ 1
2
1
2

c = 1

1+ 1
4

c = 15
4

c = 4
5
c

Evenson axiom requires geometric Doppler transform: eρAB ⋅eρBC = eρAC = eρAB+ρBC
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
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tanh(x + y) = tanh x + tanh y
1+ tanh x tanh y

′u
c
= tanh(ρu + ρv ) = tanhρu + tanhρv

1+ tanhρu tanhρv
=

u
c
+ v
c

1+ u
c
v
c

or:    ′u = u + v

1+ u ⋅v
c2

Easy to combine frame velocities using rapidity addition: ρu+v = ρu + ρv

Galilean velocity addition becomes rapidity addition

No longer does (1/2+1/2)c equal (1)c…

Relativistic result is:    

1
2
+ 1
2

1+ 1
2
1
2

c = 1

1+ 1
4

c = 15
4

c = 4
5
c

Evenson axiom requires geometric Doppler transform: eρAB ⋅eρBC = eρAC = eρAB+ρBC
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

...but, (1/2+1)c does equal (1)c…
1
2
+1

1+ 1
2
1
c = c
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5. That “old-time” relativity (Circa 600BCE- 1905CE) 
(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga    
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They’re area!)

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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Introducing the “Sin-Tan Rosetta Stone”

Fig. C.2-3
and

Fig. 5.4
in Unit 2

www.uark.edu/ua/pirelli/php/complex_phasors_1.php

NOTE: Angle φ is now called stellar aberration angle σ
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Introducing the “Sin-Tan Rosetta Stone”

Fig. C.2-3
and

Fig. 5.4
in Unit 2

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php

NOTE: Angle φ is now called stellar aberration angle σ
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Introducing the “Sin-Tan Rosetta Stone”

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php

NOTE: Angle φ is now called stellar aberration angle σ
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More about the
“Sin-Tan Rosetta”

39Monday, April 2, 2012



More about the
“Sin-Tan Rosetta”
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More about the
“Sin-Tan Rosetta”

Note identities
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More about the
“Sin-Tan Rosetta”

Note identities
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More about the
“Sin-Tan Rosetta”

Note identities
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u=c sin σ

c
δδ

S S′
(a) Fixed Observer (b) Moving Observer

σ

k(↓↓) k′′(↓↓)

c√1-u2/c2=c/cosh υ

ω0

c

z

x

Fig. 5.6 Epstein’s cosmic speedometer with aberration angle σ and transverse Doppler shift coshυZ.

Introducing the stellar aberration angle σ vs. rapidity ρ 
Together, rapidity ρ=ln b and stellar aberration angle σ are parameters of relative velocity

The rapidity ρ=ln b is based on                             The stellar aberration angle σ is based on the    
longitudinal wave Doppler shift b=eρ                   transverse wave rotation R=eiσ 
defined by u/c=tanh(ρ).                                          defined by u/c=sin(σ).
At low speed:  u/c~ρ.                                              At low speed:  u/c~ σ.
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www.uark.edu/ua/pirelli/php/lighthouse_scenarios.php

How Minkowski’s space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

Happening 1: Ship 1 is hit by Blink 1
Happening 2: Lighthouse emits Blink 2

Happening 2
Happening 1
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www.uark.edu/ua/pirelli/php/lighthouse_scenarios.php

How Minkowski’s space-time graphs help visualize relativity (Here:r=atanh(1/2)=0.549,

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.
           ...but, in Ship frame Happening 1 is at t′=1.74 and Happening 2 is at t′=2.30sec.

Happening 1: Ship 1 is hit by Blink 1
Happening 2: Lighthouse emits Blink 2

Happening 2 
won’t happen
‘til t=2.00

Happening 1

(Here:     ρ=Atanh(1/2)=0.55, 
and:       σ=Asin(1/2)=0.52 or 30°)

σ=30°

σ=30°
stellar ab-angle
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www.uark.edu/ua/pirelli/php/lighthouse_scenarios.php

How Minkowski’s space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.
           ...but, in Ship frame Happening 1 is at t′=1.74 and Happening 2 is at t′=2.30sec.

Happening 2 
won’t happen
‘til t=2.00

Happening 1

That is t′=2.30 ship time

Happening 1: Ship 1 is hit by Blink 1
Happening 2: Lighthouse emits Blink 2

(Here:     ρ=Atanh(1/2)=0.55, 
and:       σ=Asin(1/2)=0.52 or 30°)

σ=30°
stellar ab-angle
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Group vs. phase velocity and tangent contacts

(From Fig. 2.3.4)

GGrroouupp vveelloocciittyy u aanndd pphhaassee vveelloocciittyy c2/u
aarree hhyyppeerrbboolliicc ttaannggeenntt ssllooppeess

Newtonian speed u~cρ
Relativistic
group wave
speed u=c tanh ρ

LLooww ssppeeeedd aapppprrooxxiimmaattiioonn

33−

== BB==22ϖ

433221100--11

4

--22

BB ccoosshh ρ

BB ssiinnhh ρ
BB ee--ρ

ck

ω

== 22BB==442ϖ

Δω

c Δk

PP
GG

BB ee++ρ

G
hyperbolas

P hyperbolas
c line

cc

ω

ck

u

c
u

c dω =dcckk
cckk
ω=

Group velocity

k=BB ssiinnhh ρ
ω=BB ccoosshh ρ

ω =cckk
cc
uu

Phase velocity

== BBϖ

Rare but important case where

with LARGE Δk
(not infinitesimal)

dω
dk =

Δω
Δk

PP
Δω

c Δk

cc
uu

BB ssiinnhh ρ

BB ccoosshh ρ

Rapidity ρ approaches u/c

Lecture 25 ended here 
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PP
Δω

c Δk

BB ssiinnhh ρ

BB ccoosshh ρ

Group vs. phase velocity and tangent contacts
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PP
Δω

c Δk

BB ssiinnhh ρ

BB ccoosshh ρ
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