Complex Variables, Series, and Field Coordinates II.

(Ch. 10 of Unit 1)

From Part I;

1. Review of source-free (analytic) fields
Easy 2D source-free field theory
Easy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions

1. Complex numbers provide "automatic trigonometry"

2. Complex numbers add like vectors.

3. Complex exponentials Ae™ track position and velocity using Phasor Clock.

4. Complex products provide 2D rotation operations.

5. Complex products provide 2D “dot’() and “cross”(x) products.

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field
7. Invent source-free 2D vector fields [V+F=0 and VxF=0]

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA) potentials

End of Part 1. Lecture 19 Thur. 3.08.2012

3. 2D source-field-potential-coordinate analysis
Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis

9. Complex integrals [ f(z)dz count 2D “circulation”( [F+dr) and “flux”([Fxdr)

10. Complex integrals define 2D monopole fields and potentials

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
12. Complex derivatives give 2D dipole fields

13. More derivatives give 2D 2N-pole fields...

14. ...and 2N-pole multipole expansions of fields and potentials...

15. ...and Laurent Series... 13-16 Not covered 1n class
16. ...and non-analytic source analysis. on3.12.12
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From Part I:

1. Review of source-free (analytic) fields

- /15 2D source-free field theory
Easy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative g]; and “star” z*-derivative. ﬁg*

g 9 Y _L _idf
dz~ 0dzox dzdy ~ 20x 20y

df _odx of dy of _1df | idf
dz*  dz*dx ~ dz*dy = 20x 29y

Z =x+1y

7 =xX—1y

Derivative chain-ruie shows real part’of gf has 2D divergence Vef and imaginary part has curl V< f.
; CIstne =

of.  Ifv i Of, O\ 1 ‘
5)/} +ayy)+§(axy —éfyfx) =5 Vef +§IV><fIZl(x,y)

I=d (i) =38+ =

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f(z), conjugate it (change all i’s to —i) to give /" (z*) for which gf — ()
<

For example: if f{z)=a'z then f*(z*)=a-z*=a(x-iy) is not function of z so it has zero z-derivative.
F=(Fx,Fy)=(f3)=(ax,-a'y) has zero divergence: VeF=0 and has zero curl: IVxFI=0.

_ oF -
VeoF — oF. +8Fy _ d(ax) _I_BF( ay) _ 0 VF y OF, _d(-ay) JF(ax) _

dx dy  ox dy DT 9% 9y ox dy
A DFL field ¥ (Divergence-Free-Laminar)

0
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From Part I:

1. Review of source-free (analytic) fields

Easy 2D source-free field theory
- sy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions

Monday, March 12, 2012



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a vector potential field A.
F=VO F= VXA

A complex potential O(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢ (z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d 0*/dz* giving DF'L field F.

Now if you have a field f(z) you integrate to get the potential ¢(z) field: ¢(z) = 1] f(z) dz
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO F=Vx
A complex potential §(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢ (z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d 0*/dz* giving DF'L field F.

To find ¢p=D+iA integrate f(z)=az to get ¢ and isolate real (Redp=>P) and imaginary (Imop=A) parts.
¢= o i :jf‘dZZJaZ‘dZZ%azz=%a(x+iy)2

A
~

" 2 2
=5 a(x”—y7) +i

T T_l 1 ]|
ik

1T

ILh

3
2

Field:

I (z¥)=z%=x-iy
Fey)=(x,-y)

Potential:
0(z)=2’
:X2-y2+i
= O +i

Lh

T

]
iLh

TrrrroIrrrTrr
»
~—
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But, if you have a potential ¢(z) you differentiate to get the field f(z) = d%(b(z)
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.
oD dA

Derivative ¢ 3 - has 2D gradient v = [3’; ]of scalar @ and curl vx A_{ )

dy dy

of vector A (and they re equall)

The half-n’-half result

/- A

i 0" = e (P—iA)= =1 +za ND—iA) 2(ax+aayq’)+2(a —id=tvao+lvxa

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD JdA
Derivative 4% has 2D gradient v = [g’; ]of scalar @ and curl VxA_[ ” of vector A (and they re equal!)
” A 2 The half-n*- result
d @\, 1/0A .0A _1 I
L (b (CI) IA)= =5 (8 +’a ND—iA)= =5 (ax +1 ay )+2( —135, ) =5 VO +5 VXA
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO
Given ¢: || ¢ = 0] +i A The half-n*-half result
find: =5 a(x” —y%) +i axy :
JD da, 2 2 oA 0
X x_(x -y ) l = = axy
Vo= 8= 2T :(ax]:F vxa=| ¥ |2 :(“XJZF
w) G- - ) (Ba) -
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
The half-n’-half results
are called

Riemann-Cauchy
Derivative Relations

Field: i 05 “"“' Qq) —_ QA 1O aRef(Z) lef(z)
S @) =z=x-iy ox ~— dy 1811 9 dy

F (x,y)f(x;'y) =—

py— & 0P _ 9A ._||dRef(z)_  dlmf(z)
Xy BE dy — ox 1S. dy T ox

= @ +i E i
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From Part I:

1. Review of source-free (analytic) fields
Easy 2D source-free field theory
Easy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions
What's analytic? (...and what'’s not?)
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Review (z,z*) to (x,y) transformation relations

_ , 1 df  ox Bf dy of _
= X +i =1 (7 +z=
< Y x=; (2 +2%) dz 9z Ox az Jy
% . 1
Z =x—1y y=5, (2 —z%) df _0x9df dyof _
dz* 97" ox Bz dy

laf 1df 1 a_ia !
2 0x 218y_2 ox dy
1df laf:l aﬂ,a !
“209x 2idy 2lox 9y

Criteria for a field function f = fx(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:

First, f(z) must not be a function of z*=x-iy,

This implies f(z) satisfies diﬁ‘erential equations known as the @iemann-Cauchy conditions)
J (0 J J
d—f=0=l 8 (f.+ f)— Bf /, +i fy+afx implies : af"z ), and : iz—afx
dz * 2 ax dy ox dy ] 2\ odx 9y o0x  dy ox dy
df 1[0 .9 o Afof, O i(9 o) o, .9 d o 9 . ... 9 . .
iz Z(E)x ayj(fxﬂfy)_ [8x T e B R Mt A et A 2
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Review (z,z*) to (x,y) transformation relations

. : 1 df  ox Bf dy 9f _ laf lof 1( o0 .0
=x+1 —= * S
¢ Y A 2(Z %) dz 9z Ox az dy 28x 2i dy 2(8x lay]f
% . 1
7 =x—1Iy y=5, (2 —z%) df _0xof dyodf _19of 10f_1({a .0 ;
d7" 97" ox Bz dy 20dx 2idy 2\dx 9y

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:
First, f(z) must not be a function of z*=x-i /

This implies f(z) satisfies differential equations known as the @iemann-Cauchy conditions)

d—f=0=l(a j(f f)— [af afyj+ (af afjlmplles afx:afy and : %:—afx
dz * 2\ dx dy ox dy ox dy o0x  dy ox By y

da _1{d _.9d _L(of O i o _of 9 U o _ O _ 9
dz _2(836 8)(f+f) [ax-l_ay)-l_z(ax ay)_ax_i_lax_ay ay x(f if,) (f+zf)

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z*) of z*=x-iy:
First, f(z*) must not be a function of z=x+1iy, that iS.'Z—i=0

This implies f(z*) satisfies differential equations we call Anti -(Riemann-Cauchy conditions

& _gLf9_;9 _Y(of Y i on_. o | 9 99,
dz =0= (E)x lyj(f i) (8x+8y)+2£8x ayj—zmplzes. ox  dy and: ax_ay)
df 1(9 . o (of. IR i o) 9 O _ 9 o _ 9 __ 9
dz*_z(ax“ayj(ﬁ‘ﬂm_z(ax ay]+2\8x+ayj_ax+lax_ oy oy T ax I (f+‘f)
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What s analytic? (...and what's not?)

Example: Is f(x,y) = 2x + iy an analytic function of z=z+i)?

Monday, March 12, 2012
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

Monday, March 12, 2012
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)

Monday, March 12, 2012
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)

Monday, March 12, 2012
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

Monday, March 12, 2012
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Monday, March 12, 2012
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x> + y° an analytic function of z=z+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Monday, March 12, 2012
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x> + y° an analytic function of z=z+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is s(x,y) = x*-y? + 2ixy an analytic function of z=z+iy?
P Y Y 34 y

A: YES! s(xy)=(x+iy)? =z is analytic function of z. yy

Monday, March 12, 2012
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3. 2D source-field-potential-coordinate analysis
- ['15Y 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis

Monday, March 12, 2012
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z; is potential difference Ad=b(z2)- O(z1)

Ag = ¢(Zz) (P(Z )= Jf(Z)dZ_q)(xzayz) CI)(xl,yl)+z[A(x2,y2) A(xpyl)]
21 — — ee———
AQ = AD +1 AA

In DFL field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.

Monday, March 12, 2012
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z; is potential difference Ad=b(z2)- O(z1)

AQ = ¢(ZZ) ¢(Zl)—ff(2)d2—q)(x2,y2) CI)(xl,yl)+z[A(x2,y2) A(xpyl)]

Zl — i
—

AQ = AD +1 AA

In DFL field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = j(f*(z*)) (dx+idy)= j(f; " ify*) (dx+idy)= j(f; _ if;‘)(dx+ i dy)

= [(fydx+ [, dy)+i [(f, dy = [, dx)
= [Fedr +i[F X dree
= [Fedr +i[Fedrxe,

= [Fedr +i[FedS where:  dS=drxe,

VA

Monday, March 12, 2012
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z> 1s potential difference Ap=0(z2)- d(z1)

Ag = ¢(ZZ) ¢(Z )= jf(Z)dZ_q)(xzayz) (I)(xl,yl)+z[A(x2,y2) A(xpyl)]

Zl — i
—

AQ = AD +1 AA

In DFL field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = j(f*(z*)) (dx+idy)= j(f: " ify*) (dx+idy)= j(f; _ if;‘)(dx+ i dy)

= [(fydx+ [, dy)+i [(f, dy = [, dx)
= [Fedr +i[F X dree

Z
= [Fedr +i[Fedrxe,
ds
- o +1|[ FedS here: dS=drxe
[ Fedr i|| Fed where:  dS=drxe, e
F dr f-BlgF «dS \

! / Big;.dr \ part J12 FedS = AA
Real part fl Fedr = AD sums F projection across path dr
sums F projections along path that 1s, thru surface
dr that 1s, circulation on path clements dS=drxez normal to dr

to get AD . to get AA.
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3. 2D source-field-potential-coordinate analysis

Easy 2D circulation and flux integrals
w15 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis

Monday, March 12, 2012
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Here the scalar potential ®=(x*-y?)/2 is stereo-plotted vs. (x,y)
The ®=(x*-y?)/2=const. curves are topography lines

The curves are streamlines normal to topography lines

Monday, March 12, 2012
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What Good Are Complex Exponentials? (contd.)
11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:
q1= d Z(xZ—yZ)/Z — const.

q2= — (xy) — const.
. f(z%)=z*=x-iy
*Actually it’s OCC. Ficy ()
o(z)=2’
=x-y°+i
=@ +i
dg' dq' ob Jb ox  dx ox  Ox
BV B _ @ 3 9 -

Kajobian = ox = ox Oy = S A Jacobian = 9 e J®  d :iz(x yj
0 9g" | |94 941 \y x)<E 9O 9y | |9 | -y X
ox  dy ox dy dq' 9q’ 8(%) aT RN

E, E E, E
E ’E E OE 2 O @
Metrictensor = Boe Bou |_[ To™te ® =" , | where: rr=x"+y’
80 &8 E 'Ecp E ‘E 0 r
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What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q1= () Z(xZ—yZ)/Z — const.

6]2: — (xy) — const.
[ E)=zr=x-iy
*Actually it’s OCC. P =(x,3)
0(z)=2
=x-y°+i
=@ +i
dg' dq' ob Jb ox  dx ox  Ox
ax dy | | ox dy - ¢ d' 9 | | od oA
Kajobian = ox dy _ ox dy _(* v «—E Jacobian | %4 9 |_|o® 9 :%(x )’j
dg> o’ | |94 94| \y x)«E Oy 9y | |9y dy| ri-y x
ox E ox 9y dq' 9q’ 8(%) aT A
E, E E, E
E.,cE, E_ :E 0 ®
Metrictensor = Boe Bou |_[ To™te ® =" , | where: rr=x"+y’
8o 8 E E, E_-E 0 r
Riemann-Cauchy Derivative Relations make coordinates orthogonal
9P d a2 %) The half-n’-half results assure ) d
ox ox2 y ax dy dy ax
QCI) Q ag. 2 2 —ay E(D'E = + 0 0 —ay
dy 8y2(x =y7) ox dx dy dy ~ ~
0D 0D 9D 9D
=— + =0
ox dy dy dx
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What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q1= () Z(xZ—yZ)/Z — const.

6]2: — (xy) — const.
*Actually it’s OCC. Ficy ()
0(z)=2
=x-y°+i
= ® +i
dg' dq' ob JD ox  ox
N B Y _ 0} a 1 a 2
Kajobian = ox = ox _[ Y <E Jacobian = 9 4
9 9’| |94 94} |y x)<E 9y 9y
ox dy ox dy dq' 9q’

g0 8.) \EE, E-E ) (0 -

E,cE, E,:E 0
Metrictensor = (gm 8o ]:( e @ jz (r 2} where: r’=x"+y’

Riemann-Cauchy Derivative Relations make coordinates orthogonal
oL

9 J a X2 2) The half-n’- results assure
ox 8x2 -y ax
VO = = = =F 0D oA 9D 9

QCD g ( . 2) _ay E(D.E = +

dy 8y2 y ox dx dy dy
_ 0D acD oD oD 0o
 ox ay dy ox

or Riemann-Cauchy
_% G/ 0 9 9P _ 82613 0°®

Zero divergence, requirement: 0

/\ ) ox dy

T ox ox

Jx  ox
_|oD oA |_1([Xx ¥
9y dy| ril-y x
o> 9 T
E, E E, E
g)jA g y axy ax
VXA = = = =F
and so does

Yy al o =0 potential ®,0beys Laplace equation

N\
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3. 2D source-field-potential-coordinate analysis
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
- /15y 2D monopole, dipole, and 2"-pole analysis

Monday, March 12, 2012
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What Good Are Complex Exponentials? (contd.)

10. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nflznﬂ .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az”' Source-a monopole

It has a logarithmic potential O0(z)=a'In(z)=a'In(x+iy).

Monday, March 12, 2012
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What Good Are Complex Exponentials? (contd.)

10. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlznﬂ .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O0(z)=a'In(z)=a'In(x+iy).

d(2)= @ + iA=]f()dz=]7dz=aln(z)

Monday, March 12, 2012
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What Good Are Complex Exponentials? (contd.)

10. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nflznﬂ .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az”' Source-a monopole

It has a logarithmic potential O(z)=a-In(z)=a‘In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’®)=i6, and z=re".

0()= @+ iA=[f(2)dz=]¢dz=aln(z)=aln(re")
=aln(r) + iab
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What Good Are Complex Exponentials? (contd.)

10. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz” 1 1t is the case.
Unit monopole field: f (Z)Zi: z7} f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e”®)=i6, and z=re.
()= ® + iA=][f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z—line—ﬂx field f(z)=1/z

f(z%)=1/z=e"/r
Fan=(xy)/r

Potential:

0(z)=Inz
=Inr+i
=@ +{

34
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What Good Are Complex Exponentials? (contd.)

10. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz” 1 1t is the case.

1

Unit monopole field: f (z)=i: z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e”®)=i6, and z=re.
()= ® + iA=][f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z-line-flux field f(z)=1/z (b) Unit Z-line-vortex field f(z)=i/z

| AT TR

-15 05 2 S| S e g 9.5\ 1! 1.5
L e A li,"ll._ L L — T T ||||| | "I_.‘l_!i.!_l__t_.wil.'_i:I_.I‘I_I_L_II‘lllIIl

—
| &

Field:
(z*%)=-i/z*=-ie"/r
Fey=0,-x)/r
Potential:

Tn‘T‘.—rT‘r =

f(z%)=1/z=e"/r
Fan=(xy)/r

I
.

Potential: i:

0(z)=Inz t-i 3 Oz)=ilnz
=In r+i =0 +i
=@ + L-’_’, =@ +|
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What Good Are Complex Exponentials? (contd.)

10. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlznﬂ .Itis the » = -/ case.

- f(z)=5= az™' Source-a monopole

Unit monopole field: f (z):i: z

It has a logarithmic potential O(z)=a-In(z)=a‘In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’®)=i6, and z=re".

0()= @+ iA=[f(2)dz=]¢dz=aln(z)=aln(re")
=aln(r) + iab

A monopole field is the only power-law field whose integral (potential) depends on path of integration.
path that goes N times

around origin (r=0) at

constant r = R.

dz 0=27N J( Re'® 6=2nN
A¢=5f>f(z)dz=a§f> =a j ° )=a | id@zai@‘(z)ﬂN=2a7riN
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(a) Unit Z-line-flux field f(z)=1/z

L

= In(r) + i

f(z*)=1/z%=e"/r
Fy)=(xy)/r

Potential:
O(z)=Inz
=In r+i
=D +i
1-pole(flux) 1-pole(flux)
X,y X,y

Each turn around origin

adds 27i to vector potential i

~
I-pole(flux) 1-pole(flux) e |
X,y Alxy
] A
~
27

(
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YT
!:—_l 5

(a) Unit Z-line-flux field f(z)=1/z

(b) Unit Z-line-vortex field f(z)=i/z

X

I
Lh

~ ¥ 1 o
= 'l P L L5 l = - ’) - .
—+ | I A |--;I-;l 2 !"l_u il I i__’l;_-l| L | = o B 5 1 h ‘,: F l.__l__
'F ca ot _L.r_ 8 1 :h;__l_.'_ il
=07 E_-U.L‘:
L . i : = Field:

F9=1/2=e - R T (2 =-i/z*=-ie"/r
F(x,;)f(X, Wi E P'_ / Fay=0, X)/r?
Poten_tzal: Fis N Potential:
d(z)=Inz | E 15 d(z)=ilnz

=In r+i F _2 N =0 +i

=@ +i [ F 2 ;

T~ = +i
I-pole(flux) 1-pole(flux)
X,y X,y 1-pole(vortex) 1-pole(vortex)
X,y XY
‘:1}' V.)
\ \
/ //
: . ‘\.\ |
LY Mk Y
k \ X XA
Y
1-pole(flux) 1-pole(flux)
X,y A X,y
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“Vortex” “Hurricane”

x=-3.6 y=3.
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3. 2D source-field-potential-coordinate analysis
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
- /15y 2D monopole, dipole, and 2"-pole analysis
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What Good Are Complex Exponentials? (contd.)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

] a d 1-pole )
f] pole (2)= Z _ (bdz ¢] pole (z)=alnz

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a ciipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln

Z—|—— —= 2 é _|_é

2 2 T2
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What Good Are Complex Exponentials? (contd.)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

1-pole
—a df]-pole B d¢2-p0le ¢2-pole 3 ﬁ _ d¢

f2- pole _
72 dz dz Z dz
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What Good Are Complex Exponentials? (contd.)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (2)= Z _ (bdz ¢] pole (z)=alnz

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

1-pole
—a df]-pole B d¢2-pole ¢2-pole B E _ d¢

f2-pole _

72 dz dz Z dz
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What Good Are Complex Exponentials? (contd.)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

i ] 1-pole
f2-pole -a df] pole ~ d¢2 pole ¢2-pole _ ﬁ _ d¢
2 dz dz Z dz
A point-dipole potential $>7°'¢ (whose z-derivative is f?7°¥) is a z-derivative of (/0%
_ a a a x-—I ax . —da a .a .
gl = Z = T =T .y: +i—2 =% 0sh—itsing
z x+iy x+iyx—iy x24y*  xP4y? 7 r

_ (D2-pole 4 A2—pole
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A point-dipole potential ¢>°'¢ (whose z-derivative is f>7°¥) is a z-derivative of ¢p/P0%,

¢2_p016 a a a x-—1Iy ax . —ay a a

= — = : . +1i =—cos@—i—sinf
z x+ily x+iyx—iy x24y?  xP4y? 7 r

_ (I)Z—pole 4 2-pole

Scalar potentials
o= (a/r)cos O=const.

.

o A3 TN

IIIIIIIII
— - — - s

a/D

|
=(a/)")sin ©

f(z*)=1/z>*=e'*%/y?
F(x,0)=(c0s26,5in20)/r*
Potential.:

O(z)=1/z
=(cos0)/r+i
= @ +i

— (Cl/?‘) sin O=const.

Monday, March 12, 2012

45



3. 2D source-field-potential-coordinate analysis
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
- /15y 2D monopole, dipole, and 2"-pole analysis
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2"-]?0[6 analySiS (quadrupole:2°=4-pole, octapole:2°=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field f4r° and potential ¢+,

Each a z-derivative of 27/ and ¢?»,

a _lde-pOIe B d¢4-p016 ¢4_p016 B i_ld¢2-p0k

f4-pole _
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L -pOl e analys 1S (quadrupole:2°=4-pole, octapole:23=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field f#rele and potential p#+o,

Each a z-derivative of /27 and ¢?»,

a 1 de-pole - d¢4-pole

f4-pole _ __“ “y

4-pole
X,V

?
———

Field:
(z%)=1/23*=¢3%/43
F(x.0)=(c0s38,5in30)/i
Potential:
20(z)=1/z°
=(c0s20)/r’+i

= O +i
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2"-]9016 cmalySiS.' Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.
f(z)= ...a_3z_3 + a_zz_z + a_lz_l + a, + az + a2z2 + a3z3 + a4z4 + a5Z5 + ...
22—pole 21—pole 2" -pole 21—pole 22—pole 23 -pole 24 -pole 2° -pole 20 -pole ---
at z=0 at z=0 at z=0 at z=oo atz=oo  atz=oo  atz=oco atz=oco atz=oo

a _ a , _ a a a a a
O()=..—277+ 27 + a Inz+ ayz + L% + 27 + 2+ 22+ 20 4.
—2 —1 2 3 4 5

All field terms am-1z"! except -pole ;—1 have potential term a,,-:z"/m of a 2"-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

a, _, a4, _ a., _ a a
P()=..—277 +—=77 + =277 + a Iz + a7 + 27 + 27 +..
-2 -2 -1 2 3
p ds3 _ a _ a a
dw)=..—w =+ 2yl 4 a nw + aw + L o+ 2y 4
—2 —2 - 2 3 N
(with z=w')
a, _ a, _ _ a_ a_ a_
=...?2z 2 +51z 4 ayz - a Inz + —12z + —23z2 + =37 4.

(with w=z"1)
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at North Pole

is (-) monopole field
near SouthPole

Kl
AN

—
.

N |Z|:tan6/2:|W|_]
N
Z_plane — /W 1 DY N 0/2
2
0
] cos/0/2 /
z 0/2 cosZ 0/2
0/2
S |W|:cot6/2:|Z|_]
w-plane W=UTLY
=1/z
a ., _ a ., _ a., _ a a
D)=z +—77 + =277 + a Inz + az + <% + 27 +.
-2 -2 -1 2 3
a 5 a4 a., _ a a
(/)(w)z...iw 2y By 22yl g a nw+ aw + Lyw? b 2y 4
—2 —2 B 2 3 (with z=w")
a a a a a
=277 42177 o+ g - a hnz+ 2+ S+ 2P+
3 2 _1 _2 - . |
(with w=z"")
whi
(a) > (b)
DN
(+) monopole field dipole field centered

at North Pole

is constant field
near SouthPole
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Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series of Laurent coefficient expressions.
ay =g 0@z ay =5 2 f@dz L a =5, § f(2)dz L ag =5, Cﬁf(Z) a4y =g f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

cﬁf (2) gﬁf (a)d f(a)gs ~dz = 27if () Fla)=— 95f @ 4

7— a 2w z—a

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

@ 1, /6 , df@_ 2, /6 , &f@_ 3 f@ o @ e (6

da 27’ (;—q)’ da® 2@ (7 a) L dd i (z—a) T dd" 27 (z— )™

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

f(2)= § an(z—a)” where : a_= ! ¢ /@) dz(z 1 d"f(a)

for : nZO]
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