
 Complex Variables, Series, and Field Coordinates II.
(Ch. 10 of Unit 1)

1. Review of source-free (analytic) fields
           Easy 2D source-free field theory
           Easy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions

3. 2D source-field-potential-coordinate analysis
      Easy 2D circulation and flux integrals
       Easy 2D curvilinear coordinate discovery
        Easy 2D monopole, dipole, and 2n-pole analysis

 

1. Complex numbers provide "automatic  trigonometry"

2. Complex numbers add like vectors.

3. Complex exponentials Ae-iωt track position and velocity using Phasor Clock.
4. Complex products provide 2D rotation operations.
5. Complex products provide 2D “dot”(•) and “cross”(x) products.

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials

9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr) 
10. Complex integrals define 2D monopole fields and potentials
11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
12. Complex derivatives give 2D dipole fields
13. More derivatives give 2D 2N-pole fields…
14. ...and 2N-pole multipole expansions of fields and potentials...
15. ...and Laurent Series...
16. ...and non-analytic source analysis.

Lecture  20 
Mon. 3.12.2012

End of  Part I. Lecture  19 Thur. 3.08.2012

From Part I:

13-16 Not covered in class
on 3.12.12
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1. Review of source-free (analytic) fields
           Easy 2D source-free field theory
           Easy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions

From Part I:
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We can invent source-free 2D vector fields that are both zero-divergence and zero-curl. 
Take any function f(z), conjugate it (change all i’s to –i) to give f*(z*) for which            . 

Derivative chain-rule shows real part of       has 2D divergence ∇•f and imaginary part has curl ∇× f.

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

dz
df

dz
df =dz

d ( fx+ i fy ) =2
1 (∂x

∂f −i∂y
∂f )( fx+ i fy ) =2

1 (∂x
∂fx + ∂y

∂fy )+2
i (∂x

∂fy − ∂y
∂fx ) =2

1∇•f +2
i |∇×f |Z⊥(x,y)

dz
df * = 0

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

For example: if f(z)=a·z then f*(z*)=a·z*=a(x-iy) is not function of z so it has zero z-derivative.
 F=(Fx,Fy)=(f*x,f*y)=(a·x,-a·y) has zero divergence:  ∇•F=0 and has zero curl: |∇×F|=0.  

∇•F =
∂Fx
∂x

+
∂Fy
∂y

=
∂(ax)
∂x

+
∂F(−ay)

∂y
= 0 |∇×F|Z⊥ (x,y)=

∂Fy
∂x

−
∂Fx
∂y

=
∂(−ay)
∂x

−
∂F(ax)
∂y

= 0

A DFL field F (Divergence-Free-Laminar) 
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1. Review of source-free (analytic) fields
           Easy 2D source-free field theory
           Easy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions

From Part I:
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What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	

	

 	

 	

 F= ∇×A 	

 	

 	

 	

 	



A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

Now if you have a field f(z) you integrate to get the potential φ(z) field:  φ(z) =∫ f(z) dz
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z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	

	

 	

 	

 F= ∇×A 	

 	

 	

 	

 	



f (z) = dz
dφ

A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2 =2

1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Reφ=Φ) and imaginary (Imφ=A) parts.

Unit 1
Fig. 10.7 
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But, if you have a potential φ(z) you differentiate to get the field  f(z) = d
dz

φ(z)
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A = ∂y
∂A

−∂y
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

The half-nʼ-half result
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A = ∂y
∂A

−∂y
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

Scalar static potential lines Φ=const. and vector flux potential lines A=const. define DFL field-net.

φ =          Φ        + i  A

  =2
1 a(x2 − y2 ) + i  axy

Given φ: The half-nʼ-half result

find: or find:

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A    is:  ∂x
∂Re f(z)= ∂y

∂Im f(z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)

The half-nʼ-half result
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1. Review of source-free (analytic) fields
           Easy 2D source-free field theory
           Easy 2D vector field-potential theory

2. Review of basic Riemann-Cauchy conditions
          What’s analytic? (...and what’s not?)

From Part I:
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z = x + iy

z* = x − iy

x =2
1 (z + z∗)

y =2i
1 (z − z∗)

Criteria for a field function f = fx(x,y) +i fy(x,y) to be an analytic function f(z) of  z=x+iy:
First, f(z) must not be a function of z*=x-iy, that is:              

     This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

df
dz *

= 0

df
dz

= ∂x
∂z

∂ f
∂x

+ ∂y
∂z

∂ f
∂y

= 1
2
∂ f
∂x

+ 1
2i

∂ f
∂y

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f

df
dz∗

= ∂x
∂z∗

∂ f
∂x

+ ∂y
∂z∗

∂ f
∂y

= 1
2
∂ f
∂x

− 1
2i

∂ f
∂y

= 1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f

Review (z,z*) to (x,y) transformation relations

df
dz *

= 0 =
1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

−
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

+
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟

 implies :  ∂fx
∂x

=
∂fy
∂y

     and :   
∂fy
∂x

= −
∂fx
∂y

df
dz

=
1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

+
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

−
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
=
∂fx
∂x

+ i
∂fy
∂x

=
∂fy
∂y

− i ∂fx
∂y

=
∂
∂x

( fx+ i fy ) =
∂
∂iy

( fx+ i fy )
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z = x + iy

z* = x − iy

x =2
1 (z + z∗)

y =2i
1 (z − z∗)

Criteria for a field function f = fx(x,y) +i fy(x,y) to be an analytic function f(z) of  z=x+iy:
First, f(z) must not be a function of z*=x-iy, that is:              

     This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

df
dz *

= 0

df
dz

= ∂x
∂z

∂ f
∂x

+ ∂y
∂z

∂ f
∂y

= 1
2
∂ f
∂x

+ 1
2i

∂ f
∂y

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f

df
dz∗

= ∂x
∂z∗

∂ f
∂x

+ ∂y
∂z∗

∂ f
∂y

= 1
2
∂ f
∂x

− 1
2i

∂ f
∂y

= 1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f

Review (z,z*) to (x,y) transformation relations

df
dz *

= 0 =
1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

−
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

+
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟

 implies :  ∂fx
∂x

=
∂fy
∂y

     and :   
∂fy
∂x

= −
∂fx
∂y

df
dz

=
1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

+
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

−
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
=
∂fx
∂x

+ i
∂fy
∂x

=
∂fy
∂y

− i ∂fx
∂y

=
∂
∂x

( fx+ i fy ) =
∂
∂iy

( fx+ i fy )

Criteria for a field function f = fx(x,y) +i fy(x,y) to be an analytic function f(z*) of  z*=x-iy:
First, f(z*) must not be a function of z=x+iy, that is:              

     This implies f(z*) satisfies differential equations we call Anti-Riemann-Cauchy conditions

df
dz

= 0

 df
dz

= 0 =
1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

+
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

−
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
= implies :  ∂fx

∂x
= −

∂fy
∂y

     and :   
∂fy
∂x

=
∂fx
∂y

df
dz *

=
1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+i fy ) =
1
2

∂fx
∂x

−
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

+
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
=
∂fx
∂x

+i
∂fy
∂x

= −
∂fy
∂y

+i ∂fx
∂y

=
∂
∂x

( fx+i fy ) = −
∂
∂iy

( fx+i fy )
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What’s analytic? (...and what’s not?)

Example: Is f(x,y) = 2x + iy an analytic function of z=z+iy?
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2         and:      y =-i(z-z*)/2
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2         and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2         and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                              

16Monday, March 12, 2012



What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2         and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2         and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       

A:    NO!   It’s a function of z and z* so not analytic for either.
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2         and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       

A:    NO!   It’s a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x2 + y2 an analytic function of z=z+iy?

A:    NO!   r(xy)=z*z is a function of z and z* so not analytic for either.
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2         and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       

A:    NO!   It’s a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x2 + y2 an analytic function of z=z+iy?

A:    NO!   r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is s(x,y) = x2-y2 + 2ixy an analytic function of z=z+iy?

A:    YES!   s(xy)=(x+iy)2 =z2 is analytic function of z. (Yay!) 
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3. 2D source-field-potential-coordinate analysis
      Easy 2D circulation and flux integrals
       Easy 2D curvilinear coordinate discovery
        Easy 2D monopole, dipole, and 2n-pole analysis
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9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr)  

What Good Are Complex Exponentials? (contd.)

Integral of f(z)  between point z1 and point z2 is potential difference Δφ=φ(z2)- φ(z1)

In DFL field F, Δφ is independent of the integration path z(t) connecting z1 and z2.
   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA
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9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr)  

What Good Are Complex Exponentials? (contd.)

Integral of f(z)  between point z1 and point z2 is potential difference Δφ=φ(z2)- φ(z1)

In DFL field F, Δφ is independent of the integration path z(t) connecting z1 and z2.
   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA

    

f (z)dz∫ = f ∗(z∗)( )∗ dz∫ = f ∗(z∗)( )∗ dx + i dy( )∫ = fx
∗ + i f y

∗( )∗ dx + i dy( )∫ = fx
∗ − i f y

∗( ) dx + i dy( )∫

             = ( fx
∗dx + f y

∗dy) +∫ i ( fx
∗dy − f y

∗dx)∫

             =         Fidr       ∫ + i F × driêZ∫

             =         Fidr       ∫ + i Fidr × êZ∫

             =         Fidr       ∫ + i FidS∫                  where:      dS = dr × êZ

23Monday, March 12, 2012



9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr)  

What Good Are Complex Exponentials? (contd.)

Integral of f(z)  between point z1 and point z2 is potential difference Δφ=φ(z2)- φ(z1)

In DFL field F, Δφ is independent of the integration path z(t) connecting z1 and z2.
   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA

    

f (z)dz∫ = f ∗(z∗)( )∗ dz∫ = f ∗(z∗)( )∗ dx + i dy( )∫ = fx
∗ + i f y

∗( )∗ dx + i dy( )∫ = fx
∗ − i f y

∗( ) dx + i dy( )∫

             = ( fx
∗dx + f y

∗dy) +∫ i ( fx
∗dy − f y

∗dx)∫

             =         Fidr       ∫ + i F × driêZ∫

             =         Fidr       ∫ + i Fidr × êZ∫

             =         Fidr       ∫ + i FidS∫                  where:      dS = dr × êZ

Real part            
sums F projections along path 
dr that is, circulation on path
to get ΔΦ .           

Imaginary part            
sums F projection across path dr 
that is, flux thru surface 
elements dS=dr×eZ normal to dr 
to get ΔA.

    Fidr1
2∫ = ΔΦ     FidS1

2∫ = ΔA

  drF   dr F

Big F•dr 

Big F•dS 

  dS
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3. 2D source-field-potential-coordinate analysis
      Easy 2D circulation and flux integrals
       Easy 2D curvilinear coordinate discovery
        Easy 2D monopole, dipole, and 2n-pole analysis
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z2

z1 z1

z2

Here the scalar potential Φ=(x2-y2)/2 is stereo-plotted vs. (x,y)
The Φ=(x2-y2)/2=const. curves are topography lines
The A=(xy)=const. curves are streamlines normal to topography lines
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Jacobian =

∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂x
∂Φ

∂x
∂A

∂y
∂Φ

∂y
∂A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
1
r2

x y
−y x

⎛
⎝⎜

⎞
⎠⎟Kajobian =

∂q1

∂x
∂q1

∂y
∂q2

∂x
∂q2

∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂Φ
∂x

∂Φ
∂y

∂A
∂x

∂A
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
x −y
y x

⎛
⎝⎜

⎞
⎠⎟
← EΦ

← EA

What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

↑ ↑
EΦ EA

↑ ↑
EΦ EA

 
Metrictensor =

gΦΦ gΦA
gAΦ gAA

⎛
⎝⎜

⎞
⎠⎟
=
EΦ iEΦ EΦ iEA

EA iEΦ EA iEA

⎛
⎝⎜

⎞
⎠⎟
=

r2 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

 where: r2=x2+y2
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⎛
⎝⎜

⎞
⎠⎟
← EΦ

← EA

What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

↑ ↑
EΦ EA

↑ ↑
EΦ EA

 
Metrictensor =

gΦΦ gΦA
gAΦ gAA

⎛
⎝⎜

⎞
⎠⎟
=
EΦ iEΦ EΦ iEA

EA iEΦ EA iEA

⎛
⎝⎜

⎞
⎠⎟
=

r2 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

 where: r2=x2+y2

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜
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∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

The half-nʼ-half results assure

Riemann-Cauchy Derivative Relations make coordinates orthogonal

 

EΦ iEA =
∂Φ
∂x

∂A
∂x

+
∂Φ
∂y

∂A
∂y

= −
∂Φ
∂x

∂Φ
∂y

+
∂Φ
∂y

∂Φ
∂x

= 0
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=
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← EΦ
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What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

↑ ↑
EΦ EA

↑ ↑
EΦ EA

 
Metrictensor =

gΦΦ gΦA
gAΦ gAA

⎛
⎝⎜

⎞
⎠⎟
=
EΦ iEΦ EΦ iEA

EA iEΦ EA iEA

⎛
⎝⎜

⎞
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=

r2 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

 where: r2=x2+y2

Zero divergence requirement:                                                     potential Φ obeys Laplace equation      0 = ∂fx
∂x

+
∂fy
∂y

=
∂
∂x

∂Φ
∂x

+
∂
∂y

∂Φ
∂y

=
∂2Φ
∂x2

+
∂2Φ
∂y2

= 0

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

The half-nʼ-half results assure

Riemann-Cauchy Derivative Relations make coordinates orthogonal

 

EΦ iEA =
∂Φ
∂x

∂A
∂x

+
∂Φ
∂y

∂A
∂y

= −
∂Φ
∂x

∂Φ
∂y

+
∂Φ
∂y

∂Φ
∂x

= 0

or Riemann-Cauchy and so does A
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3. 2D source-field-potential-coordinate analysis
      Easy 2D circulation and flux integrals
       Easy 2D curvilinear coordinate discovery
        Easy 2D monopole, dipole, and 2n-pole analysis
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). 

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

10. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). 

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z)

10. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ

10. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ

10. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1

Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z(a) Unit Z-line-flux field f(z)=1/z
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ

10. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1

Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z(a) Unit Z-line-flux field f(z)=1/z
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ

10. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1

 
Δφ = f (z)dz∫ = a dz

z∫
= a d(Reiθ )

Reiθθ=0

θ=2πN
∫ = a idθ

θ=0

θ=2πN
∫ = aiθ 0

2πN = 2aπiN

A monopole field is the only power-law field whose integral (potential) depends on path of integration. 

path that goes N times
around  origin (r=0) at
constant r = R.

z = Reiθ
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Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

(a) Unit Z-line-flux field f(z)=1/z

Φ(x,y) Φ(x,y)
1-pole(flux) 1-pole(flux)

A(x,y) A(x,y)1-pole(flux) 1-pole(flux)

Each turn around origin
adds 2πi to vector potential iA 

2π

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(reiθ )

= ln(r) + iθ
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Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

(a) Unit Z-line-flux field f(z)=1/z

Φ(x,y) Φ(x,y)
1-pole(flux) 1-pole(flux)

A(x,y) A(x,y)1-pole(flux) 1-pole(flux)

Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z

Φ(x,y) Φ(x,y)
1-pole(vortex) 1-pole(vortex)

A(x,y) A(x,y)1-pole(vortex) 1-pole(vortex)
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φ = Φ+ i |A |

Φ = A ln(r)− Bθ[ ] = const.

|A |= Aθ + B ln(r)[ ] = const. φ = f (z)dz∫ = (A + iB) / zdz∫ = (A + iB)ln(z) = (A + iB)(ln(r)+ iθ ) = A ln(r)− Bθ[ ]+ i Aθ + B ln(r)[ ]

 “Vortex”        “Hurricane”

What Good Are Complex Exponentials? (contd.)

f(z) =(0.5 +i0.5)/z=eiπ/4/z√2 f(z) =(0.75 +i0.25)/z=ei18°/z√n
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3. 2D source-field-potential-coordinate analysis
      Easy 2D circulation and flux integrals
       Easy 2D curvilinear coordinate discovery
        Easy 2D monopole, dipole, and 2n-pole analysis
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

What Good Are Complex Exponentials? (contd.)
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

f 2- pole = −a
z2

=
df 1- pole

dz
=
dφ2- pole

dz
φ2- pole = a

z
=
dφ1- pole

dz

If interval Δ is tiny and is divided out we get a point-dipole field f 2-pole that is the z-derivative of f 1-pole.

What Good Are Complex Exponentials? (contd.)
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

f 2- pole = −a
z2

=
df 1- pole

dz
=
dφ2- pole

dz
φ2- pole = a

z
=
dφ1- pole

dz

If interval Δ is tiny and is divided out we get a point-dipole field f 2-pole that is the z-derivative of f 1-pole.

What Good Are Complex Exponentials? (contd.)

Φ(x,y) Φ(x,y)
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

f 2- pole = −a
z2

=
df 1- pole

dz
=
dφ2- pole

dz
φ2- pole = a

z
=
dφ1- pole

dz

If interval Δ is tiny and is divided out we get a point-dipole field f 2-pole that is the z-derivative of f 1-pole.

A point-dipole potential φ2-pole (whose z-derivative is f 2-pole) is a z-derivative of φ1-pole. 

φ2- pole =
a
z
=

a
x + iy

=
a

x + iy
x − iy
x − iy

= ax
x2+y2

+ i −ay
x2+y2

=
a
r

cosθ − i a
r

sinθ

                                                     = Φ2- pole + i A2- pole

What Good Are Complex Exponentials? (contd.)
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Scalar potentials
Φ=(a/r)cos θ=const.

a/Φ
θ

Vector potentials
A=(a/r)sin θ=const.

a/A

r

r=(a/Φ)cos θ

r=(a/A)sin θ

r

Field:
f*(z*)=1/z2*=ei2θ/r2

F(x,y)=(cos2θ,sin2θ)/r2
Potential:
φ(z)=1/ z
=(cosθ)/r+i(sinθ)/r
= Φ +i A

A point-dipole potential φ2-pole (whose z-derivative is f2-pole) is a z-derivative of φ1-pole. 

φ2- pole =
a
z
=

a
x + iy

=
a

x + iy
x − iy
x − iy

= ax
x2+y2

+ i −ay
x2+y2

=
a
r

cosθ − i a
r

sinθ

                                                     = Φ2- pole + i A2- pole
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3. 2D source-field-potential-coordinate analysis
      Easy 2D circulation and flux integrals
       Easy 2D curvilinear coordinate discovery
        Easy 2D monopole, dipole, and 2n-pole analysis

46Monday, March 12, 2012



f 4- pole = a
z3

=
1
2
df 2- pole

dz
=
dφ4- pole

dz
φ4- pole = −

a
2z2

=
1
2
dφ2- pole

dz

What if we put a (-)copy of a 2-pole near its original? 

Well, the result is 4-pole or quadrupole field f 4-pole and potential φ4-pole. 

Each a z-derivative of f 2-pole and φ2-pole.

2n-pole analysis (quadrupole:22=4-pole, octapole:23=8-pole,…, pole dancer,
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f 4- pole = a
z3

=
1
2
df 2- pole

dz
=
dφ4- pole

dz
φ4- pole = −

a
2z2

=
1
2
dφ2- pole

dz

What if we put a (-)copy of a 2-pole near its original? 

Well, the result is 4-pole or quadrupole field f 4-pole and potential φ4-pole. 

Each a z-derivative of f 2-pole and φ2-pole.

2n-pole analysis (quadrupole:22=4-pole, octapole:23=8-pole,…, pole dancer,

X X

Φ(x,y) Φ(x,y)
4-pole 4-pole

Field:
f*(z*)=1/z3*=ei3θ/r3

F(x,y)=(cos3θ,sin3θ)/r3
Potential:
-2φ(z)=1/z2

=(cos2θ)/r2+i(sin2θ)/r2

= Φ +i A
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Laurent series or multipole expansion of a given complex field function f(z) around z=0. 

All field terms am-1zm-1 except 1-pole      have potential term am-1zm/m of a 2m-pole. 

These are located at z=0 for m<0 and at z=∞  for m>0.
 z
a-1

 

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z    +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

          22-pole      21-pole       20 -pole      21-pole     22-pole     23-pole     24 -pole    25-pole    26-pole    
              at z=0        at z=0          at z=0        at z=∞     at z=∞      at z=∞      at z=∞     at z=∞     at z=∞   

φ(z) = ...
a−3
−2

z−2 +  
a−2
−1

z−1 +   a−1 ln z  +     a0z   +    
a1
2
z2   +  

a2
3
z3   +   

a3
4
z4   +  

a4
5
z5 +  

a5
6
z6  + ...

φ(z) = ...
a−3
−2

z−2  +
a−3
−2

z−2  +  
a−2
−1

z−1  +   a−1 ln z   +     a0z    +    
a1
2
z2    +  

a2
3
z3    + ...

φ(w) = ...
a−3
−2

w−2 +
a−3
−2

w−2 +  
a−2
−1

w−1 +   a−1 lnw +     a0w  +    
a1
2
w2   +  

a2
3
w3   + ...

        = ...
a2
3
z−2    +

a1
2
z−2     +     a0z

−1 −   a−1 ln z  +    
a−2
−1

z  +    
a−3
−2

z2  +  
a−3
−2

z3  + ...

(with z=w-1)

(with w=z-1)

2n-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)
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z=x+iy
=1/w

w=u+iv
=1/z

1

N

S

z-plane

w-plane

|w|=cot θ/2=|z|-1

|z|=tan θ/2=|w|-1

1
2

1
2

θ/2

θ/2

θ/2

cos θ/2

sin θ/2

θ

N

S

sin2 θ/2

cos2 θ/2

(+) monopole field
at North Pole

is (-) monopole field
near SouthPole

N

S

dipole field centered
at North Pole

is constant field
near SouthPole

N

S

(a) (b)

φ(z) = ...
a−3
−2

z−2  +
a−3
−2

z−2  +  
a−2
−1

z−1  +   a−1 ln z   +     a0z    +    
a1
2
z2    +  

a2
3
z3    + ...

φ(w) = ...
a−3
−2

w−2 +
a−3
−2

w−2 +  
a−2
−1

w−1 +   a−1 lnw +     a0w  +    
a1
2
w2   +  

a2
3
w3   + ...

        = ...
a2
3
z−2    +

a1
2
z−2     +     a0z

−1 −   a−1 ln z  +    
a−2
−1

z  +    
a−3
−2

z2  +  
a−3
−2

z3  + ...
(with z=w-1)

(with w=z-1)
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The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a. 

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2

dz∫  , d2 f (a)
da2

= 2
2π i

f (z)
(z − a)3

dz∫  ,  d3 f (a)
da3

= 3!
2π i

f (z)
(z − a)4

dz∫ , , d n f (a)
dan

= n!
2π i

f (z)
(z − a)n+1

dz∫

 

f (z) = an
n=−∞

∞
∑ (z − a)n           where :  an =

1
2πi

f (z)
(z − a)n+1

dz∫ =
1
n!

dn f (a)
dan

    for :  n ≥ 0
⎛

⎝
⎜

⎞

⎠
⎟
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End of this Lecture


