Complex Variables, Series, and Field Coordinates I
(Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great $Interesty)
How good are those power series?

2. What good are complex exponentials?
Lasy trig
Easy 2D vector analysis
Easy oscillator phase analysis
Easy 2D vector derivatives
Easy 2D source-free field theory
Easy 2D vector field-potential theory

The half-n*-half results: (Riemann-Cauchy Derivative Relations)

1. Complex numbers provide "automatic trigonometry"

2. Complex numbers add like vectors.

3. Complex exponentials Ae™ track position and velocity using Phasor Clock.

4. Complex products provide 2D rotation operations.

5. Complex products provide 2D “dot’(*) and “cross”(x) products.

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field
7. Invent source-free 2D vector fields [V+-F=0 and VxF=0]

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA) potentials

End of Part I. Lecture 19 Thur. 3.08.2012

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis

9. Complex integrals [ f(z)dz count 2D “circulation”( [F+dr) and “lux”(Fxdr)
10. Complex integrals define 2D monopole fields and potentials

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
12. Complex derivatives give 2D dipole fields
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

P (O=(+rH)pE)=(1+r5y(1+r$)p(0)=331=3=225
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

P (O=(+rH)pE)=(1+r5y(1+r$)p(0)=331=3=225

Trimester compounded interest gives  p)=q+rbpoat the 1/3-period  Jor 1! trimester and
then use that to figure the 2™ trimester and so on. Now $1.00 at rate =1/ earns $

(1) = A+rHpRH=0+rd)yU+rHpE) =0+ A+ r5) A+ r5)p0)=3531=5=237
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

p*(O)=(+r5)p()= 1+ 1) (+rH)p0)=331=3=225

Trimester compounded interest gives  p)=q+rbpoat the 1/3-period  Jor 1! trimester and
then use that to figure the 2™ trimester and so on. Now $1.00 at rate 7=/ earns $2.37.

PP (O=1+r5H)p@5) =+ r5rA+r5)pG) = A+rd)-(1+rd)-(1+r5)p0) =t 441=5=23 ;

So if you compound interest more and more frequently, do you approach INFININTEREST? 0
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The Story of e (A Tale of Great $Interesty)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.
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The Story of e (A Tale of Great $Interesty)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

P (O=(+rH)pE)=(1+r5y(1+r$)p(0)=331=3=225

Trimester compounded interest gives  p)=q+rbpoat the 1/3-period  Jor 1! trimester and
then use that to figure the 2™ trimester and so on. Now $1.00 at rate 7=/ earns $2.37.

(1) = A+rHpRH=0+rd)yU+rHpE =0+ A+r5) A+ rHp0)=3531=5=23

So if you compound interest more and more frequently, do you approach INFININTEREST?

=(1)-
=(3)"
pi()=1+r5) p0)=(3]-
(5)"

pi(0)=1+r5)* p(0)=
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The Story of e (A Tale of Great $Interesty)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

P (O=(+rH)pE)=(1+r5y(1+r$)p(0)=331=3=225

Trimester compounded interest gives  p)=q+rbpoat the 1/3-period  Jor 1! trimester and
then use that to figure the 2™ trimester and so on. Now $1.00 at rate 7=/ earns $2.37.

(1) = A+rHpRH=0+rd)yU+rHpE =0+ A+r5) A+ rHp0)=3531=5=23

So if you compound interest more and more frequently, do you approach INFININTEREST?

NOT!!
2\ 2 1 £ \12 13 \12 ¢
p' (1) = (1+rH) p(0)= (1) 1=7=2.00 Monthly:  p2(t)=(1+r1) “ p(0)= (ﬁ) 1=2.613 =
, +25¢ “
p*(0)=(1+r5) p0)=(3) 1=3=225 Weekly:  p2()=(1+r4)" p0)=(3] 1=
+12¢
3 365
PP (0)=(1+r5)° p(0)= (%) 1=57=2.37 Daily:  p (1) = (1+r365)365p(0)=(§69) 1=2.7145 §
+7¢
4 8760
pi()=(+r5) p0)=(3) 1=532 =244 Hrly: po (1) = (1+r60)" p(0) = (18] 1=2.7181
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

p D)= (L)

1 \m-rt
Let: mrt=n (1+m)
or. I/m=rtn (1 _I_:_l-t )n

m-—>oo

m—>oo

AN
/7

n— oo

> e

.2.718281828459..

—e

ret
€

r

pm(1) = 27169239322
pn(l) =2.7181459268
pim(l) = 27182682372
pln() = 2.7182804693
pm(l) = 2.7182816925
pln(]) =2.7182818149
pim(]) = 27182818271

form = 1,000

form = 10,000

form = 100,000
form = 1,000,000

for m = 10,000,000
for m = 100,000,000
for m = 1,000,000,000
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

pim(l) =2.7169239322  form = 1,000
2.718281828459.. p""(1) = 2.7181459268 form = 10,000

p D)= (L)

Mm—>co —=p plml) =2.7182682372 for m = 100,000
| 4L ymr C rt plm(l) =2.7182804693 for m = 1,000,000
Let: mrt=n (1+m) Moo € plml) =2.7182816925 for m = 10,000,000
or: I/m= rit/n 1 LIt % o rt ptm(l) =2.7182818149 for m = 100,000,000
n n—o € pim(l) =2.7182818271 for m = 1,000,000,000
Can improve efficiency using binomial theorem:
-1 ,_ -D(n-2) ,_ _
x+y)" =x"+n-x"y+ n(nz' )x” 2y + it 3)'(” )x” IV x4y
reto, r-t n(n—1) r.-t 2 nn—1)(n-2) rrt 3 Define: Factorials(!):
(l+7) =1+n-(7)+ ) ( . ) + Y ( " ) Tee0=1=1!,  21=12, 31=123,...
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

pim(l) =2.7169239322  form = 1,000
2.718281828459.. p""(1) = 2.7181459268 form = 10,000

p D)= (L)

Mm—>co —=p plml) =2.7182682372 for m = 100,000
| 4L ymr C rt plm(l) =2.7182804693 for m = 1,000,000
Let: mrt=n (1+m) Moo € plml) =2.7182816925 for m = 10,000,000
or: I/m= rit/n 1 LIt % o rt ptm(l) =2.7182818149 for m = 100,000,000
n n—o € pim(l) =2.7182818271 for m = 1,000,000,000
Can improve efficiency using binomial theorem:
_ -1 ,_ -D(n-2) ,_ _
x+y)" =x"+n-x"y+ n(nz' )x” 2y + it 3)'(” )x” IV x4y
.t .t —1 .t 2 “1Yn-=2 .t 3 Define: Factorials(!):
(1+r7)n :1+”’(r7)+n(nz! )(rn ) +n(n 3),(n )(rn ) T o=1=1, 21=12, 31=123, ..
p Asn — oolet :
0 -t
eM:1+r-t+i(r-t)2+i(r-t)3+...= ) 1) )
2! 3! p=0 P! nin—-1)—-n,

nin—-1)(n-2)—> n’ , erc.
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

pim(l) =2.7169239322  form = 1,000
2.718281828459.. p""(1) = 2.7181459268 form = 10,000

p D)= (L)

Mm—>co —=p plml) =2.7182682372 for m = 100,000
| 4L ymr C rt plm(l) =2.7182804693 for m = 1,000,000
Let: m-rt=n (1+m) Moo C plml) =2.7182816925 for m = 10,000,000
or: I/m= rit/n AR o rt ptm(l) =2.7182818149 for m = 100,000,000
(1477 n—e € plml) =2.7182818271 for m = 1,000,000,000
Can improve efficiency using binomial theorem:
_ -1 ,_ -D(n-2) ,_ _
x+y)" =x"+n-x"y+ n(nz' )x” 2y + it 3)'(11 )x” IV x4y
reto, r-t nn—=10(r-t 2 nn—-D)n-2)(r-t 3 Define: Factorials(!):
(l+7) = 1+n-(7)+ ) ( . ) + Y ( " ) Tee0=1=1!,  21=12, 31=123,...
p Asn — oolet :
0 -t
eM:1+r-t+i(r-t)2+i(r-t)3+...= ) 1) )
2! 3! p=0 P! nin—-1)—-n,
Precision order:  (0o=1)-e-series = 2.00000 =1+1 n(n—1)(n—2) = n’, e.

(0=2)-e-series = 2.50000 =1+1+1/2
(0=3)-e-series = 2.66667 =1+1+1/2+1/6
(0=4)-e-series = 2.70833 =1+1+1/2+1/6+1/24
(0=35)-e-series = 2.71667 =1+1+1/2+1/6+1/24+1/120
(0=6)-e-series = 2.71805 =1+1+1/2+1/6+1/24+1/120+1/720
(0=7)-e-series = 2.71825
(0=8)-e-series = 2.71828 About 12 summed quotients
for 6-figure precision (A lot better!)
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Power Series Good!

Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).

_ 2 3 4 5 n
xX(t)=cytet+c,t+et” +e b et +tc b+

Friday, March 9, 2012

13



Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc.
. 2 3 4 5 n
xX(t)=cytet+c,t+et” +e b et +tc b+

Rate of change of position x(?) 1s velocity v(t).

d 2 3 4
v(t)=Ex(t)=O+cl+2czt+3c3t +4dc t” +5¢st” + ...+ ne, t

Set =0 to get co = x(0).

Set =0 to get ¢; = v(0).

n—1

_|_
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+

Rate of change of position x(?) 1s velocity v(t). Set 1=0 to get c; = v(0).

n—1

d 2 3 4
v(t)zEx(t)=O+cl+202t+3c3t +4c t” +5¢st” + ...+ ne, b+

Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
d —
a(t) = —-v(1)=0+2c, + 233 + 3dc,t” +4-5ct” + ..t n(n—1lye 1" +
t
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + csts +..t+c "+

Rate of change of position x(?) 1s velocity v(t). Set 1=0 to get c; = v(0).

n—1

d 2 3 4
v(t)zzx(t)=0+cl+2czt+3c3t +4c t” +5¢st” + ...+ ne, b+

Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
a(t) = % v(t)=0+2c, +23c5t + 3de,t” +4-5ct” + .ot n(n— e, "% +
1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get c3 = 31 j(0).

d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3-4-5c5t2 +..+nn—-1)(n- 2)cnt”_3 +
Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get c4 =1, i(0).

d J—
(1) = 7 j#)=0+234c, +2:34-5cst+...+n(n—1)(n-2)(n- 3)Cnt” 44
A
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢, efc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).

n—1

d
v(f) = ;x(t) =0+c, +2¢,t +3cyt” +4c,t” +5ct™ + .. +ne 1" +
5
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2c, +2:3¢5t +3de,t” +4-5ct> + .t n(n—)e, "% +

Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get ¢c3 = %! J(0).
() = %a(t) =0+23¢; + 234yt +345ct” + ...+ n(n—1)(n—2)c, "> +
Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get ¢4 =4,i(0).
i(f) = % j)=0+234c, +2:345ct+..+n(n—1)(n—2)n-3)c " * +
Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(())t+ a(0)t* +3, j(O) +4, i(0)* +3, r(0)F + ...+%, xWe" + ]
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
_d _ 2 3 4 n—1
v(t)= Ex(t) =0+c¢ +2cyt+3c5t" +4cyt” +5¢st” +...+nc t” "+
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2c, +2:3¢5t +3de,t” +4-5ct> + .t n(n—)e, "% +

1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get c3 = 31 j(0).
d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3-4-505t2 +..+nn—-1)(n- 2)cnt"_3 —

Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get ¢4 =4,i(0).
i(t)= dij(f) =0+234c, +2345ct+ ...+ n(n—1)(n—2)(n— 3)cnt”_4 +
l

Gives Maclaurin (or Taylor) power series

x(2) = x(0) + v(0)t +3, a(0)t>|+3, j(O)E +3,i(0)* +3, r(0) + ... +% x"t" + ]

/

Good old UP | formula!
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢, efc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).

n—1

d
v(f) = ;x(t) =0+c, +2¢,t +3cyt” +4c,t” +5ct™ + .. +ne 1" +
5
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2c, +2:3¢5t +3de,t” +4-5ct> + .t n(n—)e, "% +

Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get ¢c3 = %! J(0).
() = %a(t) =0+23¢; + 234yt +345ct” + ...+ n(n—1)(n—2)c, "> +
Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get ¢4 =4,i(0).
i(f) = % j)=0+234c, +2:345ct+..+n(n—1)(n—2)n-3)c " * +
Gives Maclaurin (or Taylor) power series

x(2) = x(0) + v(0)t +3, a(0)t>|+3, j(O)E +3,i(0)* +3, r(0) + ... +% x"t" + ]

f Setting all iitial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....
Good old UP | formula!
gives exponential: €' =1+1+y, 17 43,17 3, 17 45+ r 1+
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But, how good are power series s

|'10,0

quartic

quadratic
(parabola)

Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(0)t+ a(0)t* +3, j(O) +4, i(0)* +3, r(0)F + ...+%, xWe" + ]

Setting all initial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....

gives exponential: €' =1+1+y, 17 43,17 3,17 45+ r 1+

Friday, March 9, 2012 20



How good are power series? Depends...

t2 ¢ ¢ ¢
COStE 1+O——+O+—+O——+O+§...
| | 20tl|1 |
2nd : 6 [ |° ' 1
[0th IStW
qu-adratlc
(pdrabola) '.
" Unit 1
| 13 t5 17 t9 Fig. 10.3

O+”O__+O+_+O__+O+E'“
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Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.
Imaginary numberi=v-1 powers have repeat-after-4-pattern: i’=1, i'=i, i’=-1, i’=-i, i*=1,etc...
e e 3 Y| A\
(i0) N (i0) N (i0) N (i0) L
2! 3! 4! 5!
6> .0 o 6>

—1+i0-— —i— +— +i— —.. (i=~-1imples:i'=i,i*=-1,i°=i,i*=+1,i’=i,..)
2! 31 4] 51

0° o* 0> O
:[1— + —...}+(i9—i—+i——...}
21 41 31 51

% =1+i0+

(From exponential series)
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Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.
Imaginary numberi=v-1 powers have repeat-after-4-pattern: i’=1, i’=i, i’=-1, ’=-i, i*=1,etc...
) NG 4 :\D
o) (6 G6)  @0)
2! 3! 4! 5!
> .0 o 6

% =1+i0+

(From exponential series)

=1tif-— —ios o+ i (i =~-1imples: i'=i, i*=-1,i°=i,i*=+1, i’ =i,..)
r x> xt o x®
ne . =l-—+——-—+
92 94 93 95 cosine . COS X : : :
=|l-——+——...|+|i0—i—+i——...| To match series for - 2t 416!
2! 4! 31 5! I
sine:sinx=x——+———++---
o\ 30 5T
eV = cos O +  isin® (a) x(t)=cos t AN

2--

Euler-DeMoivre Theorem

quartic

-‘;dratic
drabola)
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Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.

Imaginary numberi=v-1 powers have repeat-after-4-pattern: i’=1, i’=i, i’=-1, ’=-i, i*=1,etc...

| .92 .93 .94 .95
e =1+i0+ Go) +(l ) +(l ) +(l ) + (From exponential series)
2! 3! 41 5!
9? 0> o* 0
—1+i0—— —i— +— +i— —.. (i=~-1imples:i'=i,i’=-1,i°=-i,i*=+1,i"=i,...)
2! 3! 41 5!
r x> xt X
ne : =]l-—+———+
92 94 93 95 cosine . CoS X : : :
= 1-——+ +iO—i—+i——... To match series for < 2t 4l 6!
2! 4' 3! 5! TN
sine:sinx=x——+———+--.
B \ 30 5T
e? = cosB + i sin@ "*., (a) x(t)=cos t / ;"
Euler-DeMoivre Theorem | o /

quartic
Imaginary axis - . ~
. . . : 1 . . . : 1 | . 20t1} .
(z axzs) 6 \y Wm é\ j/

quadratlc 1
(parabola)

i0 . Unit 1
proee g :Z:re =Xty | . Fig. 10.3

\ (b) x(t) Esint_/ /

N N

l_l_t\

IlI

re' = rcos@+ isin®
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2. What Good Are Complex Exponentials?

Friday, March 9, 2012
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What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

ia b

Can't remember is cos(a+b) or sin(a+b)? Just factor @™ = &% ...

oy : :
ez(a b) _ e ezb

cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)
cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b/ /

Friday, March 9, 2012 26



What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"”

Can't remember is cos(a+b) or sin(a+b)? Just factor @™ = &% ...

oy : :
ez(a b) _ e ezb

cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)
cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b] /

2. Complex numbers add like vectors. zsum =z+z'=((x+iy) +x' +iy)=(x+x)+i(y+y)
zdiff =z—-z'=(x+tiy)-x'+iy)=x-x) tily-y)

(a)

y=ImZ—Z ,
/=Imz/ > -y
Y / 2 q)*

x=Rez x=RezZ’

|ZSUM| = J(z + z')*(z +7) = J(rei‘f’ + 1 e? )*(rei‘z’ + r’ei‘P') = J(re_i‘f’ +re” 9 )(rei¢ + r'ei¢')

- ‘/r2 24 rr'(ei(fp—fp') + e-i(fi’—fP’)) — ‘/r2 +r2+2m cos(¢p—¢’)  (quick derivation of Cosine Law)
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What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™ track position and velocity using Phasor Clock.
(a) Complex plane and unit vectors

imaginary . imaginary
axis o : e V2= 1 axis
ev=xt1y |
'y etMA=(1+)A2
=sin 0 .
v eiM=_] ]  real

v

e+i57t/4: e-i3n/4

= _(1+)N?2 eM2=_;
(b) Quantum Phasor Clock ¢y = Ae '@l = Acoswi—i ASinot=x+iy  Unit |
Fig. 10.5
Im Y |(The “Gonna’be”)
Re y
x(t) = Acosmt
Phase angle or Argument Re Y CARTESIAN
0=—w1 = ATAN[v(1)/0x(1)] (The “Is” )ICOMPONENTS
POLAR <+—ImVy
COMPONENTS Y(t)=v(t)/o= -Asinot
Magnitude or Modulus it
A=lyl= Vv Yy Ae
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What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™ track position and velocity using Phasor Clock.
(a) Complex plane and unit vectors

imaginary imaginary

axis e T 2=+i axis

eO=x+iy
/ ; ;%?in 0
v

:I:l'TC:_I

FIMA=(1+ N2
I

real

axis

> X—a | real
cos 0

e+i57t/4: e—i3n/4

= -(1+i)N?2

e

e

axis

A=(1-)N2

-iTC/ZZ_i

(b) Quantum Phasor Clock y = Ae il = Acosw i—i Asinot=x+iy

Im y

(The “Gonna’be”)

Re y
x(t) = Acosmt

Phase angle or Argument Re Y CARTESIAN
O0=—m1 = ATAN[v(?)/0x(1)] w()h(The “Is») COMPONENTS
POLAR <—Im Y

COMPONENTS
Magnitude or Modulus

A:IwI:\/w*w

y(t)=v(t)/mw= -Asinwt

Unit 1
Fig. 10.5

Some Rect-vs-Polar relations worth remembering

(

Cartesian )
(x,y) form

.

4

*

v

re

re

E S
v =Rey(t) =x(1)= Acoswt=w+w
— b
v :Iml//(t)Zﬂz—Asina)tzw W
Y 0 2i

+i0 —iwt

=re = r(cos @t —ismmt)

—i0 _ _ +iwt

=re = r(cos @t +ismwt)

(7,0)

form

Polar )

-

r=A=lyl=w,2 vy 2=y
0 = —a)tzarctan(l//y/ v.)

_1, +i0 —i6
cosf=5(e"" +e )

- n_1 . +i0 —i0
sinf=5.(e”"” —e™")
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
¢z = (cosd + i sind):(x + iy)= x cosh — y sind + i (xsing +ycosd )

R, r = (xcos@—ysing)e +(xsinqb+ycosqb)éy

cos¢ —sing@ BN XCcos¢—ysin@
sing cos¢ J\y - xsing+ ycoso
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.

¢z = (cosd + i sind):(x + iy)= x cosh — y sind + i (xsing +ycosd )
R+¢-r =(xcos@—ysing)e +(xsin@+ ycos¢)ey
cos¢ —sing@ BN XCcos¢—ysin@
sing cos¢ J\y - xsing+ ycoso

i0

ei® acts on this: z=re to give this: € ¢z = re?¢®

Imaginary axis Imaginary axis

(i axis) (i axis)

\ V7 =re

z=re? = x+iy

z<p i0

(1 axis)

=r 9" =3 +iy
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cos® + i sin®)-(x + iy)= x cosd — y sing +i (xsing +ycosd)

R, or =(xcos¢— ysing)e +(xsin¢+ ycosqb)éy
(cosq) —sin (p}[x] 3 (x COs ¢ — ysin (p]
sing cos¢ J\y - xsing+ ycoso

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.
Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.
A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
=(AB,+A,B)+i(AB,— AB)=A*B+ilAXBl,

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.
A*B=(Ale%) (|B|ef)=|A|e”™ |B|ef =|A||B| PO
=|A||B|cos(Bp —6,)+i|A||B|sin(0p —60,) = A*B+ilAxBlz, ,
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cos® + i sin®)-(x + iy)= x cosd — y sing +i (xsing +ycosd)
R+¢-r =(xcos@—ysing)e +(xsin@+ ycosqb)ey

cos¢ —sing@ BN XCcos¢—ysin@
sing cos¢ J\y - xsing+ ycoso

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.

Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.

A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
=(AB,+A,B)+i(AB,— AB)=A*B+ilAXBl,

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.
A*B=(Ale%) (|B|ef)=|A|e”™ |B|ef =|A||B| PO
=|A||B|cos(Bp —6,)+i|A||B|sin(0p —60,) = A*B+ilAxBlz, ,

A *B=|A||B|cos(05—6,) |AXBI| =|A||B|sin(65 —6,)
=|A|cos6, |B|cosOg +|A|sin6, |B|sin Oy =|A|cos6, |B|sin6g —|A|sin6, | B|cos O
= A.B, + AyB, = A\B, -  AB,
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative g]; and “star” z*-derivative. ﬁg*
. 2 dpplying 42 dzox 'dzdy ~ 20x 20y

7 :x—iy y:%i (z —27%) chain-rule  (f _odx Jf _I_Qy of _1df _|_LQf
dz*  dz*dx ~ dz*dy = 20x 29y
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative g]; and “star” z*-derivative. ﬁg*

g 9 Y _L _idf
dz~ 0dzox dzdy ~ 20x 20y

df _odx of dy of _1df | idf
dz*  dz*dx ~ dz*dy = 20x 29y

Z =x+1y

7 =xX—1y

Derivative chain-ruie shows real part’of gf has 2D divergence Vef and imaginary part has curl V< f.
; CIstne =

of.  Ifv i Of, O\ 1 ‘
5)/} +ayy)+§(axy —éfyfx) =5 Vef +§IV><fIZl(x,y)

I=d (i) =38+ =
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gJ; and “star” z*-derivative. ﬁg*

g 9 Y _L _idf
dz~ 0dzox dzdy ~ 20x 20y

df _odx of dy of _1df | idf
dz*  dz*dx ~ dz*dy ~ 20x 20y

Z =x+1y

7 =xX—1y

Derivative chain-ruie shows real part’of i_ll'f has 2D divergence Vef and imaginary part has curl V< f.
; CIstne =

of.  Ifv i Of, O\ 1 ‘
éff +ayy)+§(axy —éfyfx) =5 Vef +§IV><fIZl(x’y)

I=d (i) =38+ =

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which gf —0-
e
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gJ; and “star” z*-derivative. ﬁg*

g 9 Y _L _idf
dz~ 0dzox dzdy ~ 20x 20y

df _odx of dy of _1df | idf
dz*  dz*dx ~ dz*dy ~ 20x 20y

Z =x+1y

7 =xX—1y

Derivative chain-ruie shows real part’of i_ll'f has 2D divergence Vef and imaginary part has curl V< f.
; CIstne =

5"“—\/‘/\‘\

V=4 (f+if,)=3- zay)(f +if,) =5 +ay)+2(ax ):%Vof%IfoIZl(x’y)

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f(z), conjugate it (change all i’s to —i) to give /" (z*) for which gf -0
<

For example: if f{z)=a'z then f*(z*)=a-z*=a(x-iy) is not function of z so it has zero z-derivative.
F=(Fx,Fy)=(f3)=(ax,-a'y) has zero divergence: VeF=0 and has zero curl: IVxFI=0.

oF, OF. 8( —ay) dF(ax)
=0 VT T T e oy

oF
Ve — BF; , a(ax) BF( —ay)

ox By ox dy

=0

Friday, March 9, 2012



What Good Are Complex Exponentials? (contd.)
7. (contd.) Invent source-free 2D vector fields [V+*F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f{z), conjugate it (change all i’s to —) to give f*(z*) for which

For example, if f(z)=az then f (z*)=a-z*=a(x-iy) is not function of z so it has zero z-derivative.
F=(Fx,Fy)=(~f)=(ax,-a'y) has zero divergence: VeF=0 and has zero curl: IVXFI=0.

F=(f"v.fy) =(ax,-a'y) is a divergence-free laminar (DFL) field.

*

df _
dz

O .

precursor to
Unit 1
Fig. 10.7
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a vector potential field A.
F=VO F= VXA

A complex potential O(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢ (z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d 0*/dz* giving DF'L field F.
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
Any DFL field F is a gradient of a scalar potential field ® or a curl of a vector potential field A.
F=VO F=VxA
A complex potential O(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢ (z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d 0*/dz* giving DF'L field F.
To find ¢=D+iA integrate f(z)=az to get ¢ and isolate real (Re¢p=>) and imaginary (Imdp=A) parts.
¢ = ) +1 A=jf-dz=jaz-dz=%azzzéa(x+iy)2

A A
=% a(xz—yz) +1 axy
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO F=Vx
A complex potential §(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢ (z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d 0*/dz* giving DF'L field F.

To find ¢p=D+iA integrate f(z)=az to get ¢ and isolate real (Redp=>P) and imaginary (Imop=A) parts.
¢= o i :jf‘dZZJaZ‘dZZ%azz=%a(x+iy)2

A
~

" 2 2
=5 a(x”—y7) +i

T T_l 1 ]|
ik

1T

ILh

3
2

Field:

I (z¥)=z%=x-iy
Fey)=(x,-y)

Potential:
0(z)=2’
:X2-y2+i
= O +i

Lh

T

]
iLh

TrrrroIrrrTrr
»
~—

Friday, March 9, 2012



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO F=Vx

A complex potential §(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢ (z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d 0*/dz* giving DF'L field F.

To find ¢=D+iA integrate f(z)=az to get ¢ and isolate real (Re¢p=>) and imaginary (Imdp=A) parts.

: 1 2 _1 . 2
(b:[ P . +i A=[f-dz=[az-dz=5 az” =5 a(x +iy) BONUS!
:% a(x® —y?) +i Get a free
L= coordinate
:E system!
l_'. A
F The (D,A) grid 1s a GCC
Fl coordinate system™:
‘E = q’= o :(XZ-)/Z)/2 = const.
_t- - ! g°= A = (xy) = const.
- g Loge L *Actually it’s OCC.

Field:
fE=zr=xiy

Fry=(x,-y)
Potential:

0(z)=2

Lh

T

]
iLh

:X2-y2+i
= O +i

TrrrroIrrrTrr
»
~—
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

9® A
Derivative 4% has 2D gradient v = [g’; ]of scalar @ and curl vx A:[ a;A

dy “y

of vector A (and they re equall)

A
(. A\ /- A

d % _d : 1,0 ,.0 . 1,00, .00\ ,1,0dA .9JA\ _1 1
gz*(b :c_iz* (D—iA) :§(5x+la_y)(q)_lA) =§(§x +la_y )+§(5y —lgx)ZEV(D +§VXA
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

9® A
Derivative 4% has 2D gradient v = [3’; ]of scalar @ and curl vx A:{ a;A

dy “y

of vector A (and they re equall)

A
d .+ _d N . Ay _170® 9@\ [ 1,0A .9A\ _1 I
gz*(b :c_iz* (D—iA) =5 (gx-l-la—y)((l)—lA) =5 (5x +la_y )+§ (5y —135, ) =5 VO 5 VXA

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.
JoL> dA

Derivative ¢ 3 - has 2D gradient v = [g’; ]of scalar @ and curl vx A_[ )

dy dy

of vector A (and they re equall)

/- N\

i 0" = e (P—iA)= =1 +za ND—iA) z(ax+aayq))+2(a —id=tvao+lvxa

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: || ¢ = D +i A The half-n’-half result

1,2 2
find: = a(x” —y") +i axy or find: l

%‘D 3 Q(Xz — yz) l ax 5 5 axy
2 ax

V(I) — a);) — axa ) ’ — ( ]: F VXA = ay = ay = ( ]: F
» ) (e =) ) =@y 5 ) \faw) 79
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
...and either one (or half-n’-halfl) works just as well.

oD

2
Derivative 4% has 2D gradient Vq"{ifp ]of scalar @ and curl vy _[ ay J of vector A (and they re equal!)

dy

L ¢ =4 (@-iA)=h @ +i2 XD-iA) =5GP +i8%) 41 (3 -id) =LV +1Vx

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: ¢ = 0] +1 The half-n’-half result
find: =5 a(x* —y%) +i :
JD da, 2 2 d d
> (X7 =y7) l 9 9
) st ) - 5 ) (Haw)
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD JdA
Derivative 4% has 2D gradient v = [g’; ]of scalar @ and curl VxA_[ ” of vector A (and they re equal!)
” A 2 The half-n*- result
d @\, 1/0A .0A _1 I
L (b (CI) IA)= =5 (8 +’a ND—iA)= =5 (ax +1 ay )+2( —135, ) =5 VO +5 VXA
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO
Given ¢: || ¢ = 0] +i A The half-n*-half result
find: =5 a(x” —y%) +i axy :
oD da, 2 2 oA )
o —x—(x -y ) l 3 = axy
Vo= 8= 2T :(ax]:F vxa=| ¥ |2 :(“XJZF
w) G- - ) (Ba) -
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
The half-n’-half results
are called

Riemann-Cauchy
Derivative Relations

Field: t 05 L5 Qq) J— QA iS. aRef(Z) lef(z)
fE)=zr=x-iy v ox ~ dy || ox dy

F (x,y)f(x;'y) E—f

wos : 9P _ _9A . .|| Ref(x) _ _ Imf(z)
=x’-p?+i =& ay ax ’ ay o a.x

- D +i .
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z; is potential difference Ad=b(z2)- O(z1)

Ag = ¢(Zz) (P(Z )= Jf(Z)dZ_q)(xzayz) CI)(xl,yl)+z[A(x2,y2) A(xpyl)]
21 — — ee———
AQ = AD +1 AA

In DFL field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
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