Lagrangian and Hamiltonian dynamics.
Living with duality in GCC cells and vectors Part I11.

(Ch. 12 of Unit 1)

0. Discussion of trajectory-contact-envelope problems/midterm exam <«——Topic for 3.01.2012

2. Examples of Hamiltonian dynamics and phase plots (_lTOpiCS for 3.05.2012

1D Pendulum and phase plot (Simulation)
Phase control (Simulation)

3. Exploring phase space and Lagrangian mechanics more deeply
A weird “derivation” of Lagrange's equations
Poincare identity and Action
How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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Say o=90° path rises to 1.0
then drops. When at y=1.0...
Q1. ...where is its focus?
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Say a=90° path rises to 1.0
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directrix for all-path envelope

Say a=90° path rises to 1. 2.0
then drops. When at y=1.0|..
Q1. ...where is its focus?
Q2 ...where is the blast wave? center falls a$ far as 90° ball rises)/

Q3. How high can 0=45° pathrise-2-t24st gt
Q4. Where on x-axis does o=45° path hi
Q5. Where is blast wave th ‘

Q6 Where 1s a=45° path fq
Q7 Guess for all-path envelope
and 1ts focus?/Aiy

Q7 Where is 0=45° “Kite” &g
Q8 Where is o=0%path fog
directrix?
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directrix for all-path envelope

Say o=90° path rises to 1. 2.0
then drops. When at y=1.0|..
Q1. ...where is its focus?
Q2 ...where 1s the blast wave? center falls af far as 90° ball rises)/ . .
directrix| for 0=90° and 45°and 0°

Q3. How high can 0=45° path-rise-?t23st gt
Q4. Where on x-axis does ¢=45° path hi
Q5. Where is blast wave th ‘
Q6 Where 1s a=45° path fq
Q7 Guess for all-path envelope

and its focus?Adix

Q7 Where 1s 0=45°
Q8 Where is 0=0°
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Exploding-starlet elliptical envelope
and contacting elliptical trajectories
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2. Examples of Hamiltonian dynamics and phase plots
»1D Pendulum and phase plot (Simulation)

Phase space control (Simulation)

Monday, March 5, 2012
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1D Pendulum and phase plot
(a) Force geometry (b) Energy geometry (c) Time geometry

=-MgRcos0

! /2(Mg/R)x2
~ Mgh

x=R sin®

x2=h(2R-h) ~ 2hR
(Euclid mean)

Lagrangian function L= KE - PE = T - U where potential energy is U(0) = —MgRcos0

L(0,0) = %192 —U(6) = %192 + MgRcos 0

Monday, March 5, 2012 11



1D Pendulum and phase plot
(a) Force geometry (b) Energy geometry (c) Time geometry

=-MgRcos0

! /2(Mg/R)x2
~ Mgh

x=R sin®

xX°=h(2R-h) ~ 2hR
(Euclid mean)

Lagrangian function L= KE - PE = T - U where potential energy is U(0) = —MgRcos0

L(0,0) = %19’2 ~U(6) = %192 + MgRcos 0

Hamiltonian function H= KE + PE = T +U where potential energy is U(B) = —MgR cos0

1 1
H(pgy,0) = Epgz +U(0) = Zpez — MgRcos6 = E =const.
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1D Pendulum and phase plot
(a) Force geometry (b) Energy geometry (c) Time geometry

=-MgRcos0

! /2(Mg/R)x2
~ Mgh

x=R sin®

xX°=h(2R-h) ~ 2hR
(Euclid mean)

Lagrangian function L= KE - PE = T - U where potential energy is U(0) = —MgRcos0

L(0,0) = %19’2 ~U(6) = %192 + MgRcos 0

Hamiltonian function H= KE + PE = T +U where potential energy is U(B) = —MgR cos0

1 1
H(pgy,0) = Epgz +U(0) = Zpez — MgRcos6 = E =const.

lmplleS Po = \/21(E+ MchosO)

Monday, March 5, 2012
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O=+1T

S(lddle S(lddle “ZgullflSmZ.?le }
Point . alancing
Point point)

6=0
Stable
Point

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (0,pg)

I
H(pQ,Q):E:Epez—MgRCOSQ, or: pg =21(E + MgRcos)

Monday, March 5, 2012
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O=+1T

Sgggf f Saddle
Point
69 6=0
Stable
Point
Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (0,pg)

I
H(p9,9):E:Ep92—MgRCOSQ, or: pg =21(E + MgRcos)

Funny way to look at Hamilton's equations.

q J,H . .
= 3 H = ey X (—VH ) =(H-axis) x (fall line), where:
P g

(H-axis)=ey =€ X e,
(fall line)=-VH

(unstable

“balancing”

point)

Monday, March 5, 2012
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2. Examples of Hamiltonian dynamics and phase plots
1D Pendulum and phase plot (Simulation)

» Phase control (Simulation)

Monday, March 5, 2012
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U(Y)=(1/2)kY?+Mg Y
u=> /

u@)= (1/4)y° +y ,

/
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u=2 )
f)=-(172)y -1 S Su)=y
’ Unit 1
/ Fig. 7.4

y=-6  y=-5  y=- y=-3 0 y5-2 oy y=1  y=2  y=8
Ushifi= -(M2)? /2k SEREERTAS"

Simulation of atomic classical (or semi-classical) dynamics under varying phase control
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3. Exploring phase space and Lagrangian mechanics more deeply

» A weird “derivation” of Lagrange’s equations
Poincare identity and Action
How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Monday, March 5, 2012
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A strange “derivation” of Lagrange's equations by Calculus of Variation
Variational calculus finds extreme (minimum or maximum) values to entire integrals

Minimize (or maximize): §(q) = Jdt L(q(t),q'(t),t).

q(t)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points 7 and #,. There we demand it not vary at all.(1)

5‘](t0):():6qa1) (1)(7

S(g+6q)= jdt L(q.q, t)+g—L5q+g—L5q} where: 0g = %56]

Ist order L(q+(5q) approximate:
[p q q

Monday, March 5, 2012 19



A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

q(t)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

—0= «—
Ist order L(q+0q) C[Ppmxzmate 0q(ty)=0=0q(t) (1) / “dt dt/ X\

oL
S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 64:%&1 Replace 255 with < aL

q g J9q
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A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

q(t)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

N <
Ist order L(q +(5Q) C[Pl?roxzmate 0q(1,) = 0= 0q(1) (1) / dt dt/ 4\3\

S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 54:%&1 Replace @6(] with < aL
fo q /51 /
———
oL (Bngq} Jdt_(aL j

S(q+5q) = [di [L(q g,t)+——0q—— g

oq dt\ 9g g
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A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

q(t)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

—0= «—
Ist order L(q+0q) C[Ppmxzmate 0q(ty)=0=0q(t) (1) / ~dt dt/ X\

S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 64:%&1 Replace @6(] with < aL
to 7" % /
f oL d( JdL “ d(oL /
S(Q+5q)—fd’f[ q. qt)+a—q5q—z(a—q]5 } t{dta(a—q&zj

oL d (oL oL
= [ dr L( d _ S S
J rLla.d1) J {aq dt(@ﬂ qu[aq qj

Iy

Ly
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A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

..varied to:

q(1) q(1)+04(1)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

=0= «
Ist order L(q+6q) c[pproxzm 10 040)=0=54()) (1) / - dt/ g\é\

S(Q+5Q)=de L(qqt)+g—L5q+g—L5q} where: 6q':di5q Replace @6(] with < aL

t p /é; ! 0 /
1 L L ¢ d( oL
S(q+5q)=fdt[ qqt)+a—q5q—z(aq]5q}+ Idt ( j

i . oL d (oL AL At
= Jdt L(q,q.t)+ jd{aq — dt(aqﬂéw ‘4 tl
‘ 0

Third term vanishes by (1). This leaves first order variation: 8S=S(g+dq)- Jd {E)L d ( HSq
. dq

dq

Extreme value (actually minimum value) of S(g) occurs if and only if Lagrange equation 1s satisfied!
gL ] _%L_o Euler-Lagrange equation(s)
q

5S=0
2( dq
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A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

..varied to:

q(1) q(1)+04(1)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

—0= «—
Ist order L(q+0q) C[Ppmxzmate 0q(ty)=0=0q(t) (1) / ~dt dt/ X\

S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 6q':di5q Replace @6(] with < aL

, J e ’ oL\
1 L L ¢ d( oL
S(q+5q)=J.dt[ qqt)+a—q5q—z(aq]5q}+ Idt ( )

i . oL d (oL L At
= Jdt L(q,q.t)+ jd{aq — dt(aqﬂéw ‘4 tl
‘ 0

Third term vanishes by (1). This leaves first order variation: 8S=S(g+dq)- Jd FL d ( ﬂ&]
. dq

dq
Extreme value (actually minimum value) of S(g) occurs if and only if Lagrange equation 1s satisfied!

g;)_g_g -0 Euler-Lagrange equation(s)

But, WHY is nature so inclined to fly JUST SO as to minimize the Lagrangian L =T - U???

oS = O:>(

Monday, March 5, 2012 24



3. Exploring phase space and Lagrangian mechanics more deeply
A weird “derivation” of Lagrange s equations

» Poincare identity and Action

How Classicists might have “derived” quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

Ldt = pev-dt — H-dt = pedr — H-dt (VZ % implies: v-dt=dr

)

Monday, March 5, 2012
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

‘dt = pev-dt — H-dt = pedr — H-dt (VZ % implies: V-dl‘ZdI‘)

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = [-dt =pedr — H-dt where: [ = %

Monday, March 5, 2012 27



Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

L'dt:I)'V'dt—H'dt:podr_H.dt V:d_l‘

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = ﬁ

dt

Unit 2 shows E)eBmglie law p:hlaand Elanck law H :haamake quantum plane wave phase P:
©=S/h= | Ldtlh

Monday, March 5, 2012 28



Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

L'dt:I)'V'dt—H'dt:podr_H.dt V:d_l‘

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = ﬁ

dt

Unit 2 shows E)eBmglie law p:hlaand Elanck law H :haamakelquantum pWe O |

® = S/h = j L-dt/h

. S e
l//(l‘,t)zelS/h _ iper=tn)ih _ i(ker—0-1)
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

L'dt:p°V°dt—H°dt:podr_H.dt V:d_l‘

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = ﬁ

dt

Unit 2 shows E)eBmglie law p:hlaand Elanck law H :h@makelquantum pWe O |

® = S/h = j L-dt/h

. S e
l//(l‘,t)zelS/h _ iper=tn)ih _ i(ker—0-1)

Q:When is the Action-differential dS integrable? aw
A: Differential dIV=f.(x,y)dx+f,(x,y)dy is integrable to a W(x,y) if: f, ——and Sy = %
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.
Ldt =pev-dt — H-dt = pedr — H- dt V=

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = %

Unit 2 shows E)eBmglie law p:hlaand Elanck law H :haamakelquantum pWe O |

® = S/h = j L-dt/h

1S/h i(per—H-t)/h [(Ker—w-t
l/f(l‘ o t) =€ =€ (p ) =€ ( ) Similar to conditions
for integrating work
differential dW=fdr
Q:When is the Action-differential dS integrable? aw | o2t potential W(r).

A: Differential dIV=f.(x,y)dx+f,(x,y)dy 1s integrable to a W(x,y) if: f. = —and f, = That condition is no
dy curl allowed. Vxf=0

or 0-symmetry of W:
off, oW o'W _df,
dy dyox oOxdy Ox
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.
Ldt =pev-dt — H-dt = pedr — H- dt V=

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS

dS = ldt =pedr — H-dt where: [ = m

Unit 2 shows E)eBmglie law p:hlaand Elanck law H :haamakelquantum pwme D |
K

® = S/h = j L-dt/h

iS/h i(per—/H-t)/h i(ker—m-t
l/j(r,t) = € = € (p ) = € ( ) Similar to conditions
for integrating work
differential dW=fdr
Q: When 1s the Action-differential dS integrable? aw to get potential W(r).
A: Difterential dIV=f(x,y)dx+f,(x,y)dy 1s integrable to a W(x,y) if: 1. = —and f, = That condition is no
dy curl allowed. Vxf=0
aS aS or 0-symmetry of W:
dS 1s integrable if: [—: p| and: | —=— oF, W W o,
al' at dy dyox oxdy ox

These conditions are known as Jacobi-Hamilton equations
32
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3. Exploring phase space and Lagrangian mechanics more deeply

A weird “derivation” of Lagrange's equations
Poincare identity and Action
How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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How Jacobi-Hamilton could have “derived” Schrodinger equations

(Given “quantum wave”)

() =e

dS 1s integrable if{a—S: pJ and: [B—S: — ]
or ot

These conditions are known as Jacobi-Hamilton equations

1S /h — ei(p-r—H-t)/h — ei(k-r—a)-t)

Monday, March 5, 2012
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How Jacobi-Hamilton could have “derived” Schrodinger equations

(Given “quantum wave ")

l//(r H=e¢e

dS 1s integrable if: [BS pj and: [B—S: — j
or ot

These conditions are known as Jacobi-Hamilton equations

i1S/h — ei(p-r—H-t)/h — ei(k-r—a)-t)

Iry Is' r-derivative of wave |

3, 0 n  O(iS/h) Sisih ds

= = o = /T
or o V0= or e or (l )8 wr.n)
0 | "5 D A
—y(r,t)=(i/h)py(r,t) or: |——wy(r,t)=py(r,t)
or i dr )
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How Jacobi-Hamilton could have “derived” Schrodinger equations

(Given “quantum Wave ")

l//(r H=e¢e

dS 1s integrable if: (BS pJ and: [B—S: — j
or ot

These conditions are known as Jacobi-Hamilton equations

i1S/h — ei(p-r—H-t)/h — ei(k-r—a)-t)

Iry Is' r-derivative of wave |

a a iS/h a(lS/h) lS/h aS
il — — / R
= w(r,t)= = - = (i )8 y(r,z)
) | X k
a—rt/f(r,t)=(l/ h)pw(r,t) or: oY) =py(r)
Try I’ t-derivative of wave | ) ’
0 d s a(iS / h) o511 ds
- , e — /h
= w(r,t) = Y =(i/h)—= o y(r,r)
- 3 B

=(i/n)(=H )y(r,t) or: iha—l//(r,t):Hl//(r,t)

\_ 4 J
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3. Exploring phase space and Lagrangian mechanics more deeply

A weird “derivation” of Lagrange's equations
Poincare identity and Action
How Classicists might have “derived” quantum equations

» Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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Huygen s contact transformations enforce minimum action

Each point ri on a wavefront “broadcasts” in all directions.
Only minimum action path interferes constructively

r n
gl_lme'fﬁdelfendsm 61530? 3S’H — J‘podl’ S,/(r,r)=30 Time-dependent action Sp = J- (p-dl' — H-dt)
vHamitton's redaucea action ro (Hamilton’s principle action) g,
1s a purely spatial integral . S (ry1)=20 is space-time integral .

Sy(ryr)=10
r
1‘20 30
‘ | ‘
% L_'
Optimal path F30
ptimal path rg to rag :
accumulates 2 ,Unlt I
=TtLeast action possible) (T 10:7)ET0 Fig. 12.12

Non-optimal path r( to ry

seamies /| Subn=20

Monday, March 5, 2012
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Huygen s contact transformations enforce minimum action

Each point ri on a wavefront “broadcasts” in all directions.
Only minimum action path interferes constructively

n

r
eadatsctn s, = [t S Tnedpenionacion 5, = | (v~ 1)
\ | cal int | I (Hamilton’s principle action) r,
15 a purely spalial Infegral . Sy(ryr)=20 is space-time integral .
IS \ryry )/ 7 - :
_ H\'0"1 )= IS(rn.tnr )/ ]
<r1‘r0>—e (rom) Sy(ry)=10 <r1,tl‘r0,t0>=e (g-to7114 )

’W“ ..because action is
)(‘v,‘ - quantum wave phase

Optimal path F
ptimal path rg to ry :
accumulates 20 .Unlt 1
east action possible) (T 10:7)ET0 Flg. 12.12

Non-optimal path rg to rag

seamies /| Subn=20

Feynman's path-sum closure relfestign

)= Z,ei(SH(roir')JrSH("':rl))/h _ JASulom ) _ (1],

e ) Iy

5 (r,
r
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3. Exploring phase space and Lagrangian mechanics more deeply

A weird “derivation” of Lagrange's equations
Poincare identity and Action
How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action
» How to do quantum mechanics if you only know classical mechanics
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How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S,/ in amplitude to be an integral multiple n of 2w after a
closed loop integral S, (r,:r,)= j ‘pedr . Theintegern (n =0, 1, 2,...) is a quantum number.

1= <r0‘r0> = eiSH(rO:rO)/h =% for X, =2nhn=hn

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the
current accumulated value of action Sy(0 - r)/h. Adjust energy to quantized pattern (if closed system™)

Su(0:1)=Sp(0,0:x,¢t)+Ht= [ Ldt + Ht.
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How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S,/ in amplitude to be an integral multiple n of 2w after a
closed loop integral S, (r,:r,)= j ‘pedr . Theintegern (n =0, 1, 2,...) is a quantum number.

]=<r0‘r0>:e

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the
current accumulated value of action Sy(0 - r)/h. Adjust energy to quantized pattern (if closed system™)

iSpy(roxo )/ =M1 for: 2y =2nhn=hn

Su(0:1)=Sp(0,0:x,¢t)+Ht= [ Ldt + Ht.

The hue should represent the phase angle Sy (0 : r)/i modulo 2x as, for example,

O=red, , , 3n/4=green, (opposite of red), Sn/4=indigo, 3n/2=blue, , and 2m=red (full color circle).
Interpolating action on a palette of 32 colors is enough precision for low quanta.

Monday, March 5, 2012
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How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S,/ in amplitude to be an integral multiple n of 2w after a
closed loop integral S, (r,:r,)= j ‘pedr . Theintegern (n =0, 1, 2,...) is a quantum number.

1= {ry|ry) = S0V Gy g s =

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the
current accumulated value of action Sy(0 - r)/h. Adjust energy to quantized pattern (if closed system™)

Su(0:1)=Sp(0,0:x,¢t)+Ht= [ Ldt + Ht.

The hue should represent the phase angle Sy (0 : r)/i modulo 2x as, for example,

O=red, , , 3n/4=green, (opposite of red), S7/4=indigo, 3m/2=blue, , and 2m=red (full color circle).
Interpolating action on a palette of 32 colors is enough precision for low quanta.

*open system has continuous energy

Unit 1
Fig.
12.13
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A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=pedr-/ldt .
v _dr H o
phase — dt_ p _k

Quantum “phase wavefronts”
(b) Sp=0.35 (c) Sp=0.4
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A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=pedr-/ldt .

dr H o

Vphase - dt - p k

This 1s quite the opposite of classical particle velocity which 1s quantum group velocity.

Quantum “phase wavefronts”
(b) Sp=0.35
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(c) Sy=0.4
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dr l,._8H_8a)
dp ok

Note: This is Hamilton’s 15t Equation
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A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=pedr-/ldt .
v _dr H o
phase — dt_ p _k
This 1s quite the opposite of classical particle velocity which 1s quantum group velocity.

€€ b4 dl' aH aa)
uantum hase wavefronts - —y= —

(b) Sp=0.35 (c) Sy=0.4 dp Ik

Note: This is Hamilton’s 15t Equation

Classical “blast wavefronts”

(b) T=1.0

Unit 1 | .:55.::_::::}}_-__
Fig. 12.15

lower Vphase down heroii higher Vgroup down hel’e :
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