Lecture 15 Revised 12.22.12 from 10.11.2012

Complex Variables, Series, and Field Coordinates II.

(Ch. 10 of Unit 1)

- 1. The Story of e (A Tale of Great \$Interest\$)
 - How good are those power series?

Taylor-Maclaurin series, imaginary interest, and complex exponentials

Lecture 14 Tue. 10.09 starts here

- 2. What good are complex exponentials?
 - Easy trig
 - Easy 2D vector analysis
 - Easy oscillator phase analysis
 - Easy rotation and "dot" or "cross" products
- 3. Easy 2D vector calculus
 - Easy 2D vector derivatives
 - Easy 2D source-free field theory
 - Easy 2D vector field-potential theory
- 4. Riemann-Cauchy relations (What's analytic? What's not?)
 - Easy 2D curvilinear coordinate discovery
 - Easy 2D circulation and flux integrals
 - Easy 2D monopole, dipole, and 2^n -pole analysis
 - Easy 2ⁿ-multipole field and potential expansion
 - Easy stereo-projection visualization
 - Cauchy integrals, Laurent-Maclaurin series
- 5. Mapping and Non-analytic 2D source field analysis

- 1. Complex numbers provide "automatic trigonometry"
- 2. Complex numbers add like vectors.
- 3. Complex exponentials Ae^{-iot} track position and velocity using Phasor Clock.
- 4. Complex products provide 2D rotation operations.
- 5. Complex products provide 2D "dot"(•) and "cross"(x) products.
- 6. Complex derivative contains "divergence" ($\nabla \cdot \mathbf{F}$) and "curl" ($\nabla \mathbf{x} \mathbf{F}$) of 2D vector field
- 7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]
- 8. Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials The half-n'-half results: (Riemann-Cauchy Derivative Relations)
- 9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
- 10. Complex integrals \int f(z)dz count 2D "circulation" (\int \mathbf{F} \cdot \mathbf{dr}) and "flux" (\int \mathbf{F} \time \mathbf{dr})
- 11. Complex integrals define 2D monopole fields and potentials
- 12. Complex derivatives give 2D dipole fields Lecture 15 Thur, 10.11
- 13. More derivatives give 2D 2^N-pole fields...
- starts here
- 14. ...and 2^N-pole multipole expansions of fields and potentials...
- 15. ...and Laurent Series...
- 16. ...and non-analytic source analysis.

6. Complex derivative contains "divergence" ($\nabla \cdot \mathbf{F}$) and "curl" ($\nabla \times \mathbf{F}$) of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*)$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$$

$$\frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$$

6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \times \mathbf{F})$ of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*)$$

$$\frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$$

$$z^* = x - iy \qquad y = \frac{1}{2} (z - z^*)$$

$$\frac{df}{dz^*} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} (f_x + if_y) = \frac{1}{2} (\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y})(f_x + if_y) = \frac{1}{2} (\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}) + \frac{i}{2} (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}) = \frac{1}{2} \nabla \cdot \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \times \mathbf{F})$ of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*)$$

$$\frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$$

$$z^* = x - iy \qquad y = \frac{1}{2}i (z - z^*)$$

$$\frac{df}{dz^*} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} (f_x + i f_y) = \frac{1}{2} (\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}) (f_x + i f_y) = \frac{1}{2} (\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}) + \frac{i}{2} (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}) = \frac{1}{2} \nabla \cdot \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all i's to -i) to give $f^*(z^*)$ for which $\frac{df}{dz} = 0$

6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \times \mathbf{F})$ of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*)$$

$$\frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$$

$$z^* = x - iy \qquad y = \frac{1}{2}i (z - z^*)$$

$$\frac{df}{dz^*} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} (f_x + i f_y) = \frac{1}{2} (\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}) (f_x + i f_y) = \frac{1}{2} (\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}) + \frac{i}{2} (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}) = \frac{1}{2} \nabla \cdot \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F} = 0]$ and $\nabla \mathbf{x} \mathbf{F} = 0$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all i's to -i) to give $f^*(z^*)$ for which $\frac{df}{dz}^* = 0$

For example: if $f(z)=a\cdot z$ then $f^*(z^*)=a\cdot z^*=a(x-iy)$ is not function of z so it has zero z-derivative.

 $\mathbf{F}=(F_x,F_y)=(f_x^*,f_y^*)=(a\cdot x,-a\cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$$\nabla \bullet \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0$$

$$\nabla \times \mathbf{F}|_{Z \perp (x,y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$$

$$A \ DFL \ \text{field} \ \mathbf{F} \ (Divergence-Free-Laminar)$$

7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F} = 0 \text{ and } \nabla \mathbf{x} \mathbf{F} = 0]$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all i's to -i) to give $f^*(z^*)$ for which

For example: if $f(z)=a\cdot z$ then $f^*(z^*)=a\cdot z^*=a(x-iy)$ is not function of z so it has zero z-derivative.

 $\mathbf{F}=(F_x,F_y)=(f_x^*,f_y^*)=(a\cdot x,-a\cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$$\nabla \bullet \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0$$

$$\nabla \times \mathbf{F}|_{Z\perp(x,y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$$

 $\mathbf{F} = (f_{x}^{*}, f_{y}^{*}) = (a \cdot x, -a \cdot y)$ is a divergence-free laminar (DFL) field.

precursor to
Unit 1
Fig. 10.7

What Good are complex variables?

Easy 2D vector calculus

Easy 2D vector derivatives

Easy 2D source-free field theory

Easy 2D vector field-potential theory

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a scalar potential field Φ or a curl of a vector potential field **A**. $\mathbf{F} = \nabla \Phi$ $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a scalar potential field Φ or a curl of a vector potential field **A**. $\mathbf{F} = \nabla \Phi$ $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A} .

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

$$f(z) = \frac{d\phi}{dz}$$
 \Rightarrow $\phi =$ $+i$ $A = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2$

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A} .

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\Phi}_{=\frac{1}{2}} + i \underbrace{A}_{=\frac{1}{2}} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2 = \frac{1}{2} a(x + iy)^2$$

$$= \underbrace{\frac{1}{2} a(x^2 - y^2)}_{=\frac{1}{2}} + i \underbrace{axy}_{=\frac{1}{2}}$$

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A} .

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\Phi}_{=\frac{1}{2}} + i \underbrace{A}_{=\frac{1}{2}} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2 = \frac{1}{2} a(x + iy)^2$$

$$= \underbrace{\frac{1}{2} a(x^2 - y^2)}_{=\frac{1}{2}} + i \underbrace{axy}_{=\frac{1}{2}}$$

Saturday, December 22, 2012

Unit 1

Fig. 10.7

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a scalar potential field Φ or a curl of a vector potential field **A**.

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\Phi}_{=\frac{1}{2}} + i \underbrace{A}_{=\frac{1}{2}} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2 = \frac{1}{2} a(x + iy)^2$$

$$= \underbrace{\frac{1}{2} a(x^2 - y^2)}_{=\frac{1}{2}} + i \underbrace{axy}_{=\frac{1}{2}}$$

BONUS! Get a free coordinate system!

The (Φ, A) grid is a GCC coordinate system*:

$$q^{l} = \Phi = (x^{2}-y^{2})/2 = const.$$

$$q^{2} = A = (xy) = const.$$

*Actually it's OCC.

Unit 1 Fig. 10.7

What Good are complex variables?

Easy 2D vector calculus

Easy 2D vector derivatives

Easy 2D source-free field theory

Easy 2D vector field-potential theory

The half-n'-half results: (Riemann-Cauchy Derivative Relations)

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla_{\times \mathbf{A}} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial y} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial \mathbf{A}}{\partial y} - i\frac{\partial \mathbf{A}}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{\times} \mathbf{A}$$

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla_{\times A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial y} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{\times} \mathbf{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla_{\times A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial y} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{\times} \mathbf{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla_{\times A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial y} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{\times} \mathbf{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

Scalar static potential lines Φ =const. and vector flux potential lines \mathbf{A} =const. define DFL field-net.

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla_{\times A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial y} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)

The half-n'-half result
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial\Phi}{\partial x} + i\frac{\partial\Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{\times} \mathbf{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

Scalar static potential lines Φ =const. and vector flux potential lines \mathbf{A} =const. define DFL field-net.

The half-n'-half results

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \mathbf{\Phi}}{\partial x} = \frac{\partial \mathbf{A}}{\partial y} \quad \text{is:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial x} = \quad \frac{\partial \mathbf{Im}f(z)}{\partial y}$$
$$\frac{\partial \mathbf{\Phi}}{\partial y} = -\frac{\partial \mathbf{A}}{\partial x} \quad \text{is:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial y} = -\frac{\partial \mathbf{Im}f(z)}{\partial x}$$

Review (z,z^*) to (x,y) transformation relations

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function f(z)** of z = x + iy:

First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$

This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

$$\frac{df}{dz^*} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) implies : \left(\frac{\partial f_x}{\partial x} = \frac{\partial f_y}{\partial y} \right) \quad and : \quad \frac{\partial f_y}{\partial x} = -\frac{\partial f_x}{\partial y}$$

$$\frac{df}{dz} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = \frac{\partial f_y}{\partial y} - i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = \frac{\partial}{\partial i y} (f_x + i f_y)$$

Saturday, December 22, 2012

21

Review (z,z^*) to (x,y) transformation relations

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function f(z)** of z = x + iy:

First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$

This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

$$\frac{df}{dz^*} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) implies : \left(\frac{\partial f_x}{\partial x} = \frac{\partial f_y}{\partial y} \right) \quad and : \quad \frac{\partial f_y}{\partial x} = -\frac{\partial f_x}{\partial y}$$

$$\frac{df}{dz} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = \frac{\partial f_y}{\partial y} - i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = \frac{\partial}{\partial i y} (f_x + i f_y)$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function f(z^*)** of $z^* = x - iy$:

First, $f(z^*)$ must <u>not</u> be a function of z=x+iy, that is: $\frac{df}{dz}=0$

This implies $f(z^*)$ satisfies differential equations we call **Anti-Riemann-Cauchy conditions**

$$\frac{df}{dz} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = implies : \frac{\partial f_x}{\partial x} = -\frac{\partial f_y}{\partial y} \quad and : \quad \frac{\partial f_y}{\partial x} = \frac{\partial f_x}{\partial y}$$

$$\frac{df}{dz^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = -\frac{\partial f_y}{\partial y} + i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = -\frac{\partial}{\partial i y} (f_x + i f_y)$$

Example: Is f(x,y) = 2x + iy an analytic function of z=z+iy?

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

f(x,y) = 2x + i4y = 2 (z+z*)/2 + i4(-i(z-z*)/2)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z*)/2 + i4(-i(z-z*)/2)$$
$$= z+z* + (2z-2z*)$$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 \frac{(z+z^*)}{2} + i4(-i(z-z^*)/2)$$

$$= z+z^* + (2z-2z^*)$$

$$= 3z-z^*$$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:
$$z = x + iy$$
 and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z*)/2 + i4(-i(z-z*)/2)$$

$$= z+z* + (2z-2z*)$$

$$= 3z-z*$$

A: NO! It's a function of z and z* so not analytic for either.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:
$$z = x + iy$$
 and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 \frac{(z+z^*)}{2} + i4(-i(z-z^*)/2)$$

$$= z+z^* + (2z-2z^*)$$

$$= 3z-z^*$$

A: NO! It's a function of z and z* so not analytic for either.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=z+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:
$$z = x + iy$$
 and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z*)/2 + i4(-i(z-z*)/2)$$

$$= z+z* + (2z-2z*)$$

$$= 3z-z*$$

A: NO! It's a function of z and z^* so not analytic for either.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=z+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is $s(x,y) = x^2-y^2 + 2ixy$ an analytic function of z=z+iy?

A: YES! $s(xy)=(x+iy)^2=z^2$ is analytic function of z. (Yay!)

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$

$$\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z)dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$$

$$\Delta \phi = \Delta \Phi + i \Delta A$$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$

$$\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$$

$$\Delta \phi = \Delta \Phi + i \Delta A$$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z)dz = \int (f^*(z^*))^* dz = \int (f^*(z^*))^* (dx + i dy) = \int (f_x^* + i f_y^*)^* (dx + i dy) = \int (f_x^* - i f_y^*) (dx + i dy)$$

$$= \int (f_x^* dx + f_y^* dy) + i \int (f_x^* dy - f_y^* dx)$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{S} \quad \text{where:} \quad d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$

$$\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z)dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[\mathbf{A}(x_2, y_2) - \mathbf{A}(x_1, y_1)]$$

$$\Delta \phi = \Delta \Phi + i \Delta \mathbf{A}$$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z)dz = \int \left(f^*(z^*)\right)^* dz = \int \left(f^*(z^*)\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* + i \, f_y^*\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* - i \, f_y^*\right) \left(dx + i \, dy\right)$$

$$= \int \left(f_x^* dx + f_y^* dy\right) + i \int \left(f_x^* dy - f_y^* dx\right)$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{s}$$
where: $d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$

F dr
Big F•dr

Real part $\int_1^2 \mathbf{F} \cdot d\mathbf{r} = \Delta \Phi$ sums \mathbf{F} projections *along* path $d\mathbf{r}$ that is, *circulation* on path to get $\Delta \Phi$.

Imaginary part $\int_{1}^{2} \mathbf{F} \cdot d\mathbf{S} = \Delta \mathbf{A}$ sums \mathbf{F} projection *across* path $d\mathbf{r}$ that is, *flux* thru surface elements $d\mathbf{S} = d\mathbf{r} \times \mathbf{e}_{\mathbf{Z}}$ normal to $d\mathbf{r}$ to get $\Delta \mathbf{A}$.

Here the scalar potential $\Phi = (x^2 - y^2)/2$ is stereo-plotted vs. (x,y)The $\Phi = (x^2 - y^2)/2 = const.$ curves are topography lines The A = (xy) = const. curves are streamlines normal to topography lines

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2}-y^{2})/2 = const.$$

$$q^{2} = A = (xy) = const.$$

*Actually it's OCC.

 $Metric tensor = \begin{pmatrix} g_{\Phi\Phi} & g_{\Phi A} \\ g_{A\Phi} & g_{AA} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A} \end{pmatrix} = \begin{pmatrix} r^{2} & 0 \\ 0 & r^{2} \end{pmatrix} \text{ where: } r^{2} = x^{2} + y^{2}$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2}-y^{2})/2 = const.$$

$$q^{2} = A = (xy) = const.$$

*Actually it's OCC.

$$Metric tensor = \begin{pmatrix} g_{\mathbf{\Phi}\mathbf{\Phi}} & g_{\mathbf{\Phi}A} \\ g_{A\mathbf{\Phi}} & g_{AA} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\mathbf{\Phi}} \cdot \mathbf{E}_{\mathbf{\Phi}} & \mathbf{E}_{\mathbf{\Phi}} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\mathbf{\Phi}} & \mathbf{E}_{A} \cdot \mathbf{E}_{A} \end{pmatrix} = \begin{pmatrix} r^{2} & 0 \\ 0 & r^{2} \end{pmatrix} \text{ where: } r^{2} = x^{2} + y^{2}$$

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} & axy \\ \frac{\partial \Phi}{\partial y} & axy \\ \frac{\partial \Phi}{\partial y} & axy \end{pmatrix} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} & axy \\ -ay \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F} \qquad \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y} \qquad \nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \Phi}{\partial y} & axy \\ -\frac{\partial \Phi}{\partial x} & axy \end{pmatrix} = \begin{pmatrix} \frac{\partial \Phi}{\partial y} & axy \\ -\frac{\partial \Phi}{\partial x} & axy \end{pmatrix} = \begin{pmatrix} ax \\ -\frac{\partial \Phi}{\partial y} & axy \end{pmatrix} = \mathbf{F}$$

$$\mathbf{E}_{\Phi} \bullet \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$
$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{I}$$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2}-y^{2})/2 = const.$$

$$q^{2} = A = (xy) = const.$$

*Actually it's OCC.

$$Kajobian = \begin{pmatrix} \frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y} \end{pmatrix} = \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \leftarrow \mathbf{E}^{\Phi}$$

$$Jacobian = \begin{pmatrix} \frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A} \end{pmatrix} = \frac{1}{r^{2}} \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$

$$\uparrow \qquad \uparrow$$

$$\mathbf{E} \quad \mathbf{E} \quad \mathbf{E}$$

$$Metric tensor = \begin{pmatrix} g_{\Phi\Phi} & g_{\Phi A} \\ g_{A\Phi} & g_{AA} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A} \end{pmatrix} = \begin{pmatrix} r^{2} & 0 \\ 0 & r^{2} \end{pmatrix} \text{ where: } r^{2} = x^{2} + y^{2}$$

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} \frac{a}{2} (x^2 - y^2) \\ \frac{\partial}{\partial y} \frac{a}{2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F}$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$
$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

or Riemann-Cauchy

Zero divergence requirement: $0 = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ potential Φ obeys Laplace equation

and so does A

39

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$
 $f(z) = \frac{a}{z} = az^{-1}$ Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$.

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$
 $f(z) = \frac{a}{z} = az^{-1}$ Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z)$$

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$
 $f(z) = \frac{a}{z} = az^{-1}$ Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$

$$= a\ln(r) + ia\theta$$

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$

$$f(z) = \frac{a}{z} = az^{-1}$$
 Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

(a) Unit Z-line-flux field f(z)=1/z

Lecture 14 Thur. 10.9 ends here

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$

$$f(z) = \frac{a}{z} = az^{-1}$$
 Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

(a) Unit Z-line-flux field f(z)=1/z

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$

$$f(z) = \frac{a}{z} = az^{-1}$$
 Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$

$$= a\ln(r) + ia\theta$$

A monopole field is the only power-law field whose integral (potential) depends on path of integration.

$$z = Re^{i\theta}$$

 $z = Re^{i\theta}$ path that goes N times $around \ origin \ (r=0) \ at$ $constant \ r = R.$

$$\Delta \phi = \oint f(z)dz = a \oint \frac{dz}{z} = a \int_{\theta=0}^{\theta=2\pi N} \frac{d(Re^{i\theta})}{Re^{i\theta}} = a \int_{\theta=0}^{\theta=2\pi N} id\theta = ai\theta \Big|_{0}^{2\pi N} = 2a\pi iN$$

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{l-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta}{2}}$$

$$\phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

This is like the derivative definition:

$$\frac{df}{dz} = \frac{f(z + \Delta) - f(z)}{\Delta}$$

$$\frac{df}{dz} = \frac{f(z + \frac{\Delta}{2}) - f(z - \frac{\Delta}{2})}{\Delta}$$

$$if \Delta \text{ is infinitesimal}$$

$$(\Delta \rightarrow 0)$$

So-called "physical dipole" has finite Δ

(+)(-) separation

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of $f^{l\text{-pole}}$ -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}}$$

$$\phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2\text{-pole}}$ that is the z-derivative of $f^{1\text{-pole}}$.

$$f^{2\text{-pole}} = \frac{-a}{z^2} = \frac{df^{1\text{-pole}}}{dz} = \frac{d\phi^{2\text{-pole}}}{dz} \qquad \qquad \phi^{2\text{-pole}} = \frac{a}{z} = \frac{d\phi^{1\text{-pole}}}{dz}$$

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}}$$

$$\phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2\text{-pole}}$ that is the z-derivative of $f^{1\text{-pole}}$.

$$f^{2\text{-pole}} = \frac{-a}{z^2} = \frac{df^{1\text{-pole}}}{dz} = \frac{d\phi^{2\text{-pole}}}{dz} \qquad \qquad \phi^{2\text{-pole}} = \frac{a}{z} = \frac{d\phi^{1\text{-pole}}}{dz}$$

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2\text{-pole}}$ that is the z-derivative of $f^{1\text{-pole}}$.

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz}$$
 $\phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$

A *point-dipole potential* $\phi^{2\text{-pole}}$ (whose *z*-derivative is $f^{2\text{-pole}}$) is a *z*-derivative of $\phi^{1\text{-pole}}$.

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + i\mathbf{A}^{2-pole}$$

A *point-dipole potential* $\phi^{2\text{-pole}}$ (whose z-derivative is $f^{2\text{-pole}}$) is a z-derivative of $\phi^{1\text{-pole}}$.

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} = \frac{ax}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + i \Lambda^{2-pole}$$

2^n -pole analysis (quadrupole: 2^2 =4-pole, octapole: 2^3 =8-pole, ..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of $f^{2\text{-pole}}$ and $\phi^{2\text{-pole}}$.

$$f^{4-pole} = \frac{a}{z^3} = \frac{1}{2} \frac{df^{2-pole}}{dz} = \frac{d\phi^{4-pole}}{dz}$$

$$\phi^{4-pole} = -\frac{a}{2z^2} = \frac{1}{2} \frac{d\phi^{2-pole}}{dz}$$

2^n -pole analysis (quadrupole: 2^2 =4-pole, octapole: 2^3 =8-pole, ..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of $f^{2\text{-pole}}$ and $\phi^{2\text{-pole}}$.

$$f^{4-pole} = \frac{a}{z^3} = \frac{1}{2} \frac{df^{2-pole}}{dz} = \frac{d\phi^{4-pole}}{dz}$$

$$\phi^{4-pole} = -\frac{a}{2z^2} = \frac{1}{2} \frac{d\phi^{2-pole}}{dz}$$

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

$$\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\dots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \qquad 2^6$$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole.

These are located at z=0 for m<0 and at $z=\infty$ for m>0.

$$\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + \frac{a_{-1} \ln z}{2} + \frac{a_{0}z}{2} + \frac{a_{1}}{2} z^{2} + \frac{a_{2}}{3} z^{3} + \dots$$

$$(octapole)_{0} \quad (dipole)_{\infty} \quad (quadrupole)_{\infty} \quad (octapole)_{\infty} \quad (a_{1} + a_{1} + a_{2} + a_{$$

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

$$\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\dots 2^2 \text{-pole} \quad 2^1 \text{-pole} \quad 2^1 \text{-pole} \quad 2^2 \text{-pole} \quad 2^3 \text{-pole} \quad 2^4 \text{-pole} \quad 2^5 \text{-pole} \quad 2^6 \text{-pole} \quad \dots$$

$$\text{(quadrupole)} \quad \text{(dipole)} \quad \text{(dipole)} \quad \text{(dipole)} \quad \text{(at } z = 0 \quad \text{at } z = \infty \quad \text{at } z = \infty$$

$$\phi(z) = \dots \frac{a_{-3}}{-2}z^{-2} + \frac{a_{-2}}{-1}z^{-1} + a_{-1}\ln z + a_0z + \frac{a_1}{2}z^2 + \frac{a_2}{3}z^3 + \frac{a_3}{4}z^4 + \frac{a_4}{5}z^5 + \frac{a_5}{6}z^6 + \dots$$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole.

These are located at z=0 for m<0 and at $z=\infty$ for m>0.

$$\phi(z) = \dots \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with z=w^{-1})$$

2^{n} -pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

$$\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\dots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \qquad 2^6$$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole.

These are located at z=0 for m<0 and at $z=\infty$ for m>0.

$$\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with z \to w)$$

$$= \dots \frac{a_2}{3} z^{-3} + \frac{a_1}{2} z^{-2} + \frac{a_0 z^{-1}}{2} - \frac{a_{-1} \ln z}{2} + \frac{a_{-2}}{2} z^2 + \frac{a_{-3}}{2} z^2 + \frac{a_{-4}}{2} z^3 + \dots$$

$$(with w = z^{-1})$$

$$\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$$

$$(octapole)_0 \quad (quadrupole)_0 \quad (dipole)_0 \quad (dipole)_\infty \quad (quadrupole)_\infty \quad (octapole)_\infty$$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with z \rightarrow w)$$

$$= \dots \frac{a_2}{3} z^{-2} + \frac{a_1}{2} z^{-2} + a_0 z^{-1} - a_{-1} \ln z + \frac{a_{-2}}{-1} z + \frac{a_{-3}}{-2} z^2 + \frac{a_{-4}}{-3} z^3 + \dots$$
 (with $w = z^{-1}$)

 $\phi(z) = \frac{a_{-3}}{-2} z^{-2}$ $f(z) = a_{-3} z^{-3}$ quadrupole field centered
at North Pole

is quadratic field
near South Pole $\phi(w) = a_0 w^2$ $f(w) = a_1 w$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

$$f(z) = ...a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + ...$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$

(but any contour that doesn't "touch a gives same answer)

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*.

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz ,$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz ,$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \dots, \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \dots, \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-a.

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

Of all 2^m -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \cdots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left[= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right]$$

Of all 2^m -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$

$$a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around
$$z=a$$
)
$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \cdots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

 $(quadrupole)_0$ $(dipole)_0$ (monopole) $(dipole)_\infty$ $(quadrupole)_\infty$ $(octapole)_\infty$ $(hexadecapole)_\infty$...

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$
moment
moment
moment

Saturday, December 22, 2012 74

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = \frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = \frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = \frac{\partial f_y(z)}{\partial y}$$

$$\frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial y} = -\frac{\partial \text{Im}\phi(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x}$$

RC applies to analytic potential $\phi(z) = \Phi + iA$ and analytic field $f(z) = f_x + if_y$ and any analytic function

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = \frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = \frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = \frac{\partial f_y(z)}{\partial y}$$

$$\frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial y} = -\frac{\partial \text{Im}\phi(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x}$$

RC applies to analytic potential $\phi(z) = \Phi + i A$ and analytic field $f(z) = f_x + i f_y$ and any analytic function Common notation for mapping: w(z) = u + i v

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial \mathbf{A}}{\partial y} \quad \text{is:} \quad \frac{\partial \mathbf{Re}\phi(z)}{\partial x} = \quad \frac{\partial \mathbf{Im}\phi(z)}{\partial y} \quad \text{or:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial x} = \quad \frac{\partial \mathbf{Im}f(z)}{\partial y} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial x} = \quad \frac{\partial f_y(z)}{\partial y} \\ \frac{\partial \Phi}{\partial y} = -\frac{\partial \mathbf{A}}{\partial x} \quad \text{is:} \quad \frac{\partial \mathbf{Re}\phi(z)}{\partial y} = -\frac{\partial \mathbf{Im}\phi(z)}{\partial x} \quad \text{or:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial y} = -\frac{\partial \mathbf{Im}f(z)}{\partial x} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x}$$

RC applies to analytic potential $\phi(z) = \Phi + i A$ and analytic field $f(z) = f_x + i f_y$ and any analytic function Common notation for mapping: w(z) = u + i v

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial x} = \quad \frac{\partial \text{Im}\phi(z)}{\partial y} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial x} = \quad \frac{\partial \text{Im}f(z)}{\partial y} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial x} = \quad \frac{\partial f_y(z)}{\partial y} \\ \frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial y} = -\frac{\partial \text{Im}\phi(z)}{\partial x} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x}$$

RC applies to analytic potential $\phi(z) = \Phi + iA$ and analytic field $f(z) = f_x + if_y$ and any analytic function Common notation for mapping: w(z) = u + iv

$$w = u + i v$$
 $space$

u

Complex derivative for mapping:

$$\frac{dw}{dz} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (u + iv) = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$
$$= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

Complex derivative abs-square:

$$\left| \frac{dw}{dz} \right|^2 = \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 = \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2$$

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = \frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = \frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = \frac{\partial f_y(z)}{\partial y}$$

$$\frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial y} = -\frac{\partial \text{Im}\phi(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x}$$

RC applies to analytic potential $\phi(z) = \Phi + iA$ and analytic field $f(z) = f_x + if_y$ and any analytic function Common notation for mapping: w(z) = u + iv

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial \mathbf{A}}{\partial y} \quad \text{is:} \quad \frac{\partial \mathbf{Re}\phi(z)}{\partial x} = \quad \frac{\partial \mathbf{Im}\phi(z)}{\partial y} \quad \text{or:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial x} = \quad \frac{\partial \mathbf{Im}f(z)}{\partial y} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial x} = \quad \frac{\partial f_y(z)}{\partial y} = \frac{\partial f_y(z)}{\partial y} \quad \text{or:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial y} = -\frac{\partial \mathbf{Im}f(z)}{\partial x} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x}$$

RC applies to analytic potential $\phi(z) = \Phi + iA$ and analytic field $f(z) = f_x + if_y$ and any analytic function Common notation for mapping: w(z) = u + iv

Important result:

$$w = \frac{u}{i} + i v$$

$$space$$

$$dw = \sqrt{J} \cdot e^{i\theta} \cdot dz$$

$$is scaled rotation of dz$$

Jacobian for mapping is scaled rotation:

Jacobian for mapping is scaled rotation:
$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dx$$

$$dv = \frac{\partial v}{\partial$$

Complex derivative for mapping:

$$\frac{dw}{dz} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (u + iv) = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$
$$= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

Complex derivative abs-square:

$$\left| \frac{dw}{dz} \right|^2 = \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 = \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 = \det |J|$$

...equals Jacobian Determinant

$w(z) = z^2$ gives parabolic OCC

$w(z) = z^2$ gives parabolic OCC

Inverse: $z(w) = w^{1/2}$ gives hyperbolic OCC

$w(z) = z^2$ gives parabolic OCC

Inverse: $z(w) = w^{1/2}$ gives hyperbolic OCC

$$w = (u + iv) = z^2 = (x + iy)^2$$
 is analytic function of z and w
Expansion: $u = x^2 - y^2$ and $v = 2xy$ may be solved using $|w| = |z^2| = |z|^2$

Expansion:
$$|w| = \sqrt{u^2 + v^2} = x^2 + y^2 = |z|^2$$

Solution: $x^2 = \frac{u + \sqrt{u^2 + v^2}}{2}$ $y^2 = \frac{-u + \sqrt{u^2 + v^2}}{2}$

$$\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} \mathbf{\bar{E}}^u \\ \mathbf{\bar{E}}^v \end{bmatrix} = \begin{bmatrix} 2x & -2y \\ +2y & 2x \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = (\mathbf{\bar{E}}_u \quad \mathbf{\bar{E}}_v) = \frac{\begin{pmatrix} 2x & +2y \\ -2y & 2x \end{pmatrix}}{4(x^2 + y^2)}$$

Non-analytic potential, force, and source field functions

A general 2D complex field may have:

- 1. non-analytic potential field function $\phi(z,z^*)=\Phi(x,y)+iA(x,y)$,
- 2. non-analytic force field function $f(z,z^*) = f_X(x,y) + if_Y(x,y)$,
- 3. non-analytic source distribution function $s(z,z^*) = \rho(x,y) + i I(x,y)$.

Source definitions are made to generalize the f^* field equations (10.33) based on relations (10.31) and (10.32).

$$2\frac{df^*}{dz} = s^*(z, z^*)$$

$$2\frac{df}{dz^*} = s(z, z^*)$$

Field equations for the potentials are like (10.33) with an extra factor of 2.

$$2\frac{d\phi}{dz} = f(z,z^*)$$

$$2\frac{d\phi^*}{dz^*} = f^*(z,z^*)$$

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms.

$$s^{*}(z,z^{*}) = 2\frac{df^{*}}{dz} = \left[\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right] \left[f_{x}^{*}(x,y) + if_{y}^{*}(x,y)\right] = \rho - iI, \quad \text{where: } f_{x}^{*} = f_{x}, \text{ and: } f_{y}^{*} = -f_{y}$$

$$= \left[\frac{\partial f_{x}^{*}}{\partial x} + \frac{\partial f_{y}^{*}}{\partial y}\right] + i\left[\frac{\partial f_{y}^{*}}{\partial x} - \frac{\partial f_{x}^{*}}{\partial y}\right] = \left[\nabla \bullet \mathbf{f}^{*}\right] + i\left[\nabla \times \mathbf{f}^{*}\right]_{Z}$$

Real part: Poisson scalar source equation (charge density ρ). Imaginary part: Biot-Savart vector source equation (current density I) $\nabla \bullet \mathbf{f}^* = \rho$ $\nabla \times \mathbf{f}^* = -I$

Field equations (10.47) expand into Re and Im parts; x and y components of grad Φ and $\text{curl} A_Z$ from potential $\phi = \Phi + iA$ or $\phi^* = \Phi - iA$.

$$f^{*}(z,z^{*}) = 2\frac{d\phi^{*}}{dz^{*}} = \left[\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right] (\Phi - iA) = f_{x}^{*} + if_{y}^{*}$$
$$= \left[\frac{\partial\Phi}{\partial x} + i\frac{\partial\Phi}{\partial y}\right] + \left[\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}\right] = \left[\nabla\Phi\right] + \left[\nabla\times\mathbf{A}_{z}\right]$$

Two parts: gradient of scalar potential called the *longitudinal field* $\mathbf{f}_{\mathbf{L}}^*$ and curl of a vector potential called the *transverse field* $\mathbf{f}_{\mathbf{T}}^*$.

$$\mathbf{f}^* = \mathbf{f}_L^* + \mathbf{f}_T^*$$

$$\mathbf{f}_L^* = \nabla \times \mathbf{A}$$

(For source-free analytic functions these two fields are identical.)

Field equations

Newton equations

Example 1

Consider a non-analytic field $f(z) = (z^*)^2$ or $f^*(z) = z^2$.

The non-analytic potential function follows by integrating

$$s^*(z,z^*) = 2\frac{df^*}{dz} = 4z = 4x + i4y,$$

$$or: \quad \rho = 4x, \quad and: \quad I = -4y.$$

$$\phi(z,z^*) = \frac{1}{2} \int f(z) dz = \frac{1}{2} \int (z^*)^2 dz = \frac{z(z^*)^2}{2} = \frac{(x+iy)(x^2-y^2-i2xy)}{2},$$

$$or: \quad \Phi = \frac{x^3 + xy^2}{2}, \quad and: \quad A = \frac{-y^3 - yx^2}{2}.$$

The longitudinal field f_{T}^{*} is quite different from the transverse field f_{L}^{*} .

$$\mathbf{f}_{\mathbf{L}}^{*} = \nabla \Phi = \nabla \left(\frac{x^{3} + xy^{2}}{2} \right) = \begin{pmatrix} \frac{3x^{2} + y^{2}}{2} \\ xy \end{pmatrix}, \quad \mathbf{f}_{\mathbf{T}}^{*} = \nabla \times \mathbf{A} = \nabla \times \left(\frac{-y^{3} - yx^{2}}{2} \mathbf{e}_{\mathbf{z}} \right) = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{-3y^{2} - x^{2}}{2} \\ xy \end{pmatrix}.$$

The longitudinal field \mathbf{f}_{L}^{*} has no curl and the transverse field \mathbf{f}_{T}^{*} has no divergence. The sum field has both making a violent storm, indeed, as shown by a plot of in Fig. 10.17.

$$\mathbf{f}^* = \mathbf{f}_{\mathbf{L}}^* + \mathbf{f}_{\mathbf{T}}^* = \begin{pmatrix} \frac{3x^2 + y^2}{2} \\ xy \end{pmatrix} + \begin{pmatrix} \frac{-3y^2 - x^2}{2} \\ xy \end{pmatrix} = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}, \quad \nabla \cdot \mathbf{f}^* = \nabla \cdot \mathbf{f}_{\mathbf{L}}^* = 4x = \rho, \quad \nabla \times \mathbf{f}^* = \nabla \times \mathbf{f}_{\mathbf{T}}^* = 4y = -I.$$

