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Wave Node Dynamics and Revival Symmetry in Quantum Rotors
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Symmetries and dynamics of wave nodes in space and time expose principles of quantum theory and its relativistic under-
pinning. Among these are key principles behind recently discovered dephasing and rephasing phenomena known as revivals.
A reexamination of basic Eberly revivals, Berry “quantum fractal” landscapes, and the “quantum carpets” of Schleich and
co-workers reveals a simple Farey arithmetic and Cn-group revival structure in one of the earliest quantum wave models, the
Bohr rotor. These principles may be useful for interpreting modern time-dependent rovibrational spectra. The nodal dynamics
of the Bohr rotor is seen to have a quasi-fractal structure similar to that of earlier systems involving chaotic circle maps. The
fractal structure is an overlay of discrete versions of Bohr’s rotor model. Each N -point Bohr rotor acts like a base-N quantum
“odometer” which performs rational fraction arithmetic. Such systems may have applications for optical information technology
and quantum computing. C⃝ 2001 Elsevier Science

Wave phase behavior in space and time is fundamental to
the understanding of physics and optics. Phase coherence has
been an important idea since Huygens developed the principles
of refraction in the late 1600s and it continues to be a basis of
the quantum theory of atomic, molecular, or optical nanostruc-
tures. Newton’s classical dynamics of the 1700s and the related
Hamilton–Jacobi least-action principles of the 1800s were, in
the mid-1900’s, seen by Dirac and Feynman to result from the
need for a stationary quantum phase. Only “right” paths which
“agree” on an extremal phase value are able to win a kind of
quantum lottery to exist while a vast majority of “wrong” paths
cancel each other out in a cacophonousmishmashofmismatched
phases.
Recently, the phenomena of rephasing or revival has arisen.

Quantum revivals, like classical chaos and fractals, are a class
of phenomena that many saw but few observed. Each has re-
quired modern computer simulations and graphics to make a
convincing case for its existence, but each was thought, at
first, to be an artifact of numerical code gone awry. Also, each
of these phenomena is inadequately described by Newtonian
differential continuum analysis but yields to discrete algebraic
or number-theoretic approaches. Finally, revivals are relevant
to a field entitled “quantum chaos,” thought by some to be an
oxymoron.
The term revival is a coinage by Eberly (1) to describe un-

expected rephasing that appeared in 1976 computer studies of
atom–quantum electrodynamics. For the next two decades there
were sporadic reports of revival phenomena including fractional
revivals in quantum treatments of simpler systems such as rotors
(2), anharmonic vibrators (3), Rydberg orbitals (4), or an infinite
square well or “particle-in-a-box” (5). A theory (6) of revivals
in 1989 was based on box waves. Finally, in 1996 and 1997,

Berry (7) and Schleich and co-workers (8, 9) used box wave
simulations to plot “quantum fractal” landscapes and “quantum
carpets” and thereby showed convincingly that revivals are a
phenomenon whose theory and applications needs to be more
deeply explored.
Thiswork analyzes revival phenomena using symmetry group

theory and a Farey arithmetic adapted from classical chaos the-
ory. This new approach, which utilizes space–time behavior of
wave phase-zeros or nodes, also suggests a kind of nanostructure
that may be a base-N quantum computer of rational numbers. It
also provides a wave-based derivation of special relativity that
has extraordinary simplicity and clarity.

TWO-COMPONENT NODAL DYNAMICS

To introduce wave zero behavior in space–time, consider an
interference of electromagnetic waves (photon or other mass-
0 particle waves) such as is shown in Fig. 1a. Here a left-
to-right-moving wave of amplitude A→= 0.7 collides with a
right-to-left-movingwave of greater amplitude A←=−0.9. The
result is a fixed wave envelope with standing wave ratio SWR of
valley : peak = (|A←|− |A→|)/(|A←| + |A→|)=−1 : 8 for the
wave magnitude |!| =√! ∗! which envelopes the real and
imaginary parts Re(!) and Im(!). Inside±|!| is a “galloping”
motion (10) of Re(!) and Im(!) which periodically exceeds
and falls below the speed c of light by factors of SWR−1 and
SWR. In the top frame of Fig. 1a, Re(!) is a wave galloping
at −8c through a narrow opening of the envelope. Galloping
motion is related to Kepler’s law where orbiting particles slow
at apogee and quicken at perigee (10).
Zeros of Re(!) are open or solid dots which zigzag in the

center space–time plot of Fig. 1a. First, Re(!) shrinks to go
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through the SWR passage at 8 times the speed of light (8c) in
about 1/9 of a period. Then it expands while coasting about 1/8
the speed of light (c/8) for a remaining 8/9 of a period. (Fig. 1a
bottom) For exceeding the speed limit c of light, relativity the-
orymandates severe consequences:wave zeros undergo death by
pair-annihilation followed by re-creation as described below by
another observer.Wave zeros of positive slope are the solid green
dots. Open red dots sit on zeros of negative slope which, tongue-
in-cheek, are called “anti-zeros” below. The average phase ve-
locity is that of light c = ω/k, but super-c zigags become time
switch-backs for amovingobserverwho, at velocityu = −3c/5,
sees a Doppler blue-shift factor of 2.0 for left-to-right light and
a red-shift factor of 1/2 = 0.5 right-to-left light (Fig. 1b). Each
speeding zero of Fig. 1a is seen by themoving observer (Fig. 1b)
to be at three places at times between “zero-anti-zero” creation
and annihilation. Zero-annihilation, creation, or both occur if
a red and green dot meet because, at that moment, a Re(!)
minimum, maximum, or inflection point, respectively, crosses
the x-axis.
If left and right amplitudes are made equal (A← = A→), as in

Fig. 1c, the creation and annihilation events become simultane-
ous and all zero-velocities become uniform constant velocities
according to the identity

1
2
ei(k→x−ω→t) − 1

2
ei(k←x−ω←t)

= iei
(k→+k← )x−(ω→+ω← )t

2 sin
(k→ − k←) x − (ω→ − ω←) t

2
. [1]

The exponential eiphase factor in [1] moves at a phase velocity

Vphase = ω→ + ω←

k→ + k←
. [2]

The sine factor moves at a group velocity

Vgroup = ω→ − ω←

k→ − k←
= Venvelope. [3]

For Fig. 1c the phase velocity is Vphase = 5c/3 by [2], and the
group-envelope travels at Vgroup = 3c/5 by [3], which is con-
sistent with speed u = −3c/5 of the observer relative to the
(SWR= 8)-standing-wave envelope in Fig. 1a.

NODAL COORDINATES AND QUANTUM DISPERSION

If Fig. 1a were a pure-standingwave (A← = A→, SWR= 0)
its zeros would trace a square space-time grid. Vertical ct-lines
(x = 0, ±π, ±2π, . . .) are traced at 1/2-wave intervals by
standingwave nodes.Horizontal x-lines (ct = 0, ±π, ±2π, . . .)
appear at 1/2-period instants when Re(!) is zero for all x ,
that is, when zeros go “infinitely fast.” The diamond-shaped
(x, ct) grid in Fig. 1c is the view by a (u = −3c/5)-moving
(x ′, ct ′)-observer of a square (x, ct) grid. The (x, ct) lines are
(u = 3c/5) Lorentz–Minkowski coordinates. As shown in
Appendix A, this provides a simple wave-based derivation (10)

of the relativistic Lorentz space-time coordinate transformation

x = (x ′ + (u/c)ct ′)/
√
1− u2/c2 [4a]

ct = ((u/c)x ′ + ct ′)/
√
1− u2/c2. [4b]

This also leads to a wave-based derivation (11) of DeBroglie–
Schrodinger quantum mechanics by relativistic symmetry argu-
ments.We sketch these arguments here. To simulate the velocity
u of a photon or particle distribution one boosts an observer to
velocity-u and deduces the matter-wave dispersion function
ω(k). For mass-0 photons, the frequency–wavevector dispersion
relation is linear: ω = ck since c = ω/k is the only possible
M = 0 phase velocity. For mass-M particles at rest, the Planck
energy–frequency E ′ = h-ω′ has a constant non-zero rest-frame
value h-ω′ = h-µ for zero wave vector (k ′ = 0). The k and ω

seen by an observer boosted to arbitrary velocity u are derived
in Appendix B and in the next equation below. The Einstein
rest-energy constant h-µ = Mc2 is derived in Appendix C.
Wave phase (kx − ωt) for an in vacuo matter wave of any

mass M is postulated to be a Lorentz invariant: (kx − ωt) =
(k ′x ′ − ω′t ′). So the wavevector–frequency pair (k, ω/c) or
(ck, ω) transforms like space–time (x, ct) and has an invariant
analogous to (x2 − c2t2) = (x ′2 − c2t ′2) for space-time:

(c2k2 − ω2) = (c2k ′2 − ω′2) = (0− (Mc2/h- )2). [5a]

Another invariant gives the desired dispersion ω(k):

ω2 = √ [(Mc2/h- )2 + (ck)2]. [5b]

Figure 2a shows a hyperbolic mass-M dispersion function ω(k).
Its asymptote is a “light cone” for M = 0 photons.
Finally, Planck’s postulate relates frequency to energy, E =

h-ω. The DeBroglie momentum relation p = h- k seen by a mov-
ing observer follows if Planck’s relation E = h-ω is true in all
frames. Rest-frame momentum–energy (cp′, E ′) = (0,Mc2) =
(ch- k ′, h-ω′) Lorentz transforms by [4] into (cp, E) = (ch- k, h-ω)
(see Appendix C):

p = h- k = Mu/
√
1− u2/c2 −→

u→0
Mu. [5c]

E = h-ω = Mc2/
√
1− u2/c2 −→

u→0
Mc2 + 1

2
Mu2. [5d]

At low speed u ≪ c, Newtonian momentumMu and KEMu2/2
emerge (Fig. 2b). The group velocity [3] emerges as the classical
“particle” speed since its value u is opposite to -u of the observer
relative to the k ′ = 0 rest-wave:

Vgroup = dω

dk
= dE

dp
= c2 p

E
= c2Mu/

√
1− u2/c2

Mc2/
√
1− u2/c2

= u. [6a]

Thewave phase velocity [2] is the inverse c2/u of u (in units of c)
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and faster than c as happens in Fig. 1c:

Vphase = ω

k
= c2

u
= c2

Vgroup
. [6b]

MULTICOMPONENT NODAL DYNAMICS: REVIVALS

Extending the preceding two-frequency-component wave-
node analysis to many Fourier components requires simplifica-
tion. Wave-zeros of Re(!) are very complex for many ω values,
so we plot zeros of magnitude |!| instead, as in Schleich’s quan-
tum carpets (8, 9) and Berry’s quantum fractal landscapes (7).
Figure 3 is space–time plots of multicomponent |!| similar to
Figs. 1a–1c, but the |!| zeros or low-|!| regions are plotted in
white or light shading. This is a difference between Fig. 3 and
earlier plots of probability |!|2 which tend to emphasize wave
peaks and show semiclassical particle trajectories. The plots in
Fig. 3 do not show particle paths as well; instead, they tend to
show zeros or where the particle is not.
Also, earlier work focused on a particle-in-a-box of widthW ,

while the plots in Fig. 3 are for a Bohr rotor or a particle-on-
a-ring of length L . The latter contains the former as a special
case if L = 2W , and the extra freedom aids a group analysis
done later. Here, the u ≪ c approximation in [5c] or Fig. 2b
gives the energy dispersion spectrum E = Mu2/2 = p2/2M ,
where wavevector km or momentum pm is quantized by ring-
L boundary conditions: pm = h- km = h- 2πm/L = hm/L . Here
m = 0, ±1, ±2, ±3, . . . are momentum quantum numbers and
h = 2πh- :

Em = (h- km)2/2M = m2(h)2/2ML2 = m2hυ1 = m2h-ω1. [7]

The fundamental Bohr frequency ω1 = 2πυ1 is the low-
est transition frequency υ1 = (E1 − E0)/h. Finally, to am-
plify |!|-zeros, the m-distribution is a zero-centered (m̄ = 0)
Gaussian-weighted window function of 1/2-width %m:

WG(m) = e−[(|m|−m̄)/%m]2 . [8a]

The resulting wave packet has the following space–time depen-
dence:

!(φ, t) = ⟨φ, t | !⟩ =
∞∑

m=−∞
WG(m)⟨φ, t | m⟩⟨m | φ0⟩

= 1
2π

∞∑

m=−∞
WG(m)ei(mφ−m2ω1t)e−imφ0 . [8b]

The initial (t = 0) wave for centered momentum (m̄ = 0) and
position (φ0 = 0) also becomes Gaussian for large %m:

!(φ, 0) = 1
2π

∞∑

m=−∞
e−m

2/%m2eimφ −−→
%m≫1

%m
2
√

π
e−(

%m
2 φ)2

= e−(
φ

%φ
)2

%φ
√

π
. [8c]

The angular position–momentum uncertainty relation is
%φ · %m = 2 = %x · %k. Three space–time plots are given in
Figs. 3a, 3b, and 3c, respectively, with decreasing momentum
half-width %m = 9, 3, and 1.5 and coarser spatial resolution
%φ/2π = 2%, 6%, and 12%. Each is plotted for a full time pe-
riod τ1 = 1/υ1 = 2π/ω1 after which it repeats. Figure 3a uses
a fine spatial resolution %x · = 0.02 which requires 9-quantum
excitation (%m = 9). It shows a labyrinth of increasingly fine
self-similar X-patterns or “Hofstadter braids” (12) seen in band
problems involving chiral or Zeeman effects (13). In the second
and third figures (3b and 3c), of lower excitation (%m = 3, and
1.5, respectively), the finerX-patterns begin to disappear leaving
one big X across Fig. 3c.

SEMICLASSICAL THEORY: FAREY SUMS
AND QUANTUM SPEED LIMITS

Figure 3c provides a clue to the theory of revivals. Its X is like a
zero crossing in the Lorentz grid in Fig. 1c, but with momentum
values restricted by%m = 1.5 to only the first two levelsm = 0
and m = ±1, so the only possible group (or phase) velocities
according to [3] and [7] are V±1 = ±L/τ1, a Bohr length L per
Bohr time unit τ1:

V Bohrgroup(m ↔ n) = ωm − ωn

km − kn
= (m2 − n2)hυ1

(m − n)h/L

= (m + n)
L
τ1

= (m + n)V1. [9]

The X in Fig. 3c has two zeros doing one lap in opposite di-
rections around the Bohr ring in a Bohr period τ1. The packet
anti-nodes or “particles” do laps, too, but their paths are not con-
tiguous like those of zeros or nodes since anti-node amplitudes
fluctuate. (Anti-nodal revival peaks and phases are discussed
later.) |!|-nodes, being virtually dead, have an indestructibil-
ity not had by zeros of Re! which annihilate and re-create in
Fig. 1b.
Relaxing the momentum uncertainty %m allows more m-

values and wave velocities: ±V1, ±2V1, ±3V1, . . . , ranging up
to 2%mV1. By [9] the maximum lap rate or quantum speed-
limit is 2%m, i.e., twice the maximum |m|. Each velocity gives
a fractional lap time of 1/1, 1/2, 1/3, . . . , 1/(2%m) of the Bohr
period. Such fractions are written in the margins of Fig. 3 and
Fig. 4 at the pointwhere a lap trajectory passes the pointφ = ±π

opposite the origin φ = 0 of the wave packet. An nth multiple
n/D of an allowed fraction 1/D corresponds to the nth lap of a
wave node (“zero”) if D is odd or the nth lap of a wave anti-node
(“particle”) if D is even.
The n/D fractional lines in Fig. 4 highlight the wave paths

in Fig. 3a. As excitation%m increases, even-D “particle” paths
begin to show up as well, as dark shadows in between the
odd-D “zero” paths in Fig. 3a. Note a vertical zero-velocity path
up the center and edge. Also seen in a high-%m plot (Fig. 3a) are

C⃝ 2001 Elsevier Science
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FIG. 1. Two-Fourier-component wave phase dynamics for counterpropa-
gatingwaves. (a) Counterpropagatingwaveswith the samewavevector k and fre-
quency ω but differing amplitudes (A→ = 0.7, A← = 0.9 give SWR = 8) ex-
hibit a nonuniformly “galloping” phase velocity of zeros which ranges from c/8
to 8c. (b) Counterpropagating waves with different (Doppler-shifted) wavevec-
tors (k→ = 2k, k← = k/2) and frequencies (ω→ = 2ω, ω← = ω/2) anddiffer-
ing amplitudes (SWR = 8) exhibit creation and annihilation of zeros similar to
whatwould be seenby anobservermoving right to left at velocityu = −3/5c rel-
ative to Fig. 1a. (c) Counterpropagating waves with different (Doppler-shifted)
wavevectors (k→ = 2k, k← = k/2) and frequencies (ω→ = 2ω, ω← = ω/2)

FIG. 2. Vacuum electronic and photonic dispersion functions ω = ω(k)
or energy–momentum functions E = E(p). (a) Exact relativistic dispersion
ω = √[(mc2)2+ c2k2]. (b) Approximate (Newtonian) dispersion E = mc2 +
p2/2M .

but the same amplitudes (A→ = 0.8 = A← give SWR =∞) exhibit zerosmak-
ing a u = +3/5c Lorentz coordinate system relative to Fig. 1a. Lorentz ct-
coordinate lines are zeros going at the wave group velocity u = 3c/5, while the
Lorentz x-coordinate lines are zeros going at the wave phase velocity u = 5c/3.

C⃝ 2001 Elsevier Science
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FIG. 3. Multi-Fourier-component wave phase dynamics for counterprop-
agating waves. Each example starts with a Gaussian wavepacket of half-
width !x centered at angular point φ = 0 (bottom center) on a Bohr
ring of circumference 2π at t = 0 and returns to that point at time
t/τ1 = 1/1 (top center). At half-time t/τ1 = 1/2 the packet revives per-
fectly at angular point φ = ±π (center on either edge). At rational time
t/τ1 = n/d a kaleidoscope array of packets revives the nth time sepa-
rated by zeros (white spots) at angles φ = ±2π/d, ±4π/d, ±6π/d, . . . if
d = 0 mod 4, or φ = ±π/d, ±3π/d, ±5π/d, . . . if d = 1mod 4, or φ =
0, ±2π/d, ±4π/d, ±6π/d, . . . if d = 2 mod 4. Spots are resolvable if d does
not exceed the quantum group speed-limit of 2!m where !m is momentum
half-width. (a) Gaussian distribution with m̄ = 0,!m = 9 and!x = 0.02(2π ).
Quantum speed-limit: 2!m = 18. (b) Gaussian distribution with m̄ = 0,!m =
3 and !x = 0.06(2π ). Quantum speed-limit: 2!m = 6. (c) Gaussian dis-
tribution with m̄ = 0, !m = 1.5 and !x = 0.12(2π ). Quantum speed-limit:
2!m = 3.

C⃝ 2001 Elsevier Science
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FIG. 4. Solid lines (anti-nodal or “particle” paths) and dashed lines (nodal
or “zero” paths) correspond to dark and light paths, respectively, which make
up X-paths in the wave space–time plots of Fig. 3.

“particle” pahts with odd and even fractional slopes emanating
from the origin φ = 0 of the wave packet.
The geometry of generic group velocity rays is sketched in

Fig. 5 using two rays to form an asymmetric X around an in-
tersection. (A symmetric X has equal group speeds d1 and d2.)
Figure 3a is a patchwork of self-similar X patterns of nodal (odd-
dk) or anti-nodal (even-dk) rays. The equations for the two lines
in Fig. 5 are

φ/2 = −d1t + n1 + 1/2 φ/2 = d2t − n2 + 1/2. [10a]

Subtracting the first φ equation from the second gives the

FIG. 5. Generic X-path intersection based on Farey sum always locates the
position of a revival peak or zero.

intersection time for the center of the X:

t12−intersection = n2 + n1
d2 + d1

= n2
d2

⊕F
n1
d1

. [10b]

The resulting combination is called a Farey sum ⊕F of the ra-
tional fractions n1/d1 and n2/d2 after John Farey (14), an 1800s
geologist. The Farey sum has been used to analyze classically
“chaotic” or “fractal” structures (15), but its use in organiz-
ing quantum resonance structure is new. It begins with a fun-
damental Farey sum relating the beginning fraction (0/1) and
ending fraction (1/1) of the fundamental (0 ↔ 1) resonance
revival:

0
1

⊕F
1
1

= 1
2
. [11]

This is the instant t/τ1 = 1/2 for a half-time revival and the zero
at the center of the fundamental X in Fig. 3c. The fundamental
sum makes up the second row of a Farey tree (16) of such sums
shown in Table 1. The sums in the Dth row of a Farey tree are
an ordered set of all reduced fractions with denominator equal
to D or less. We may terminate the tree at D > 2#m when
denominator D exceeds the wave quantum speed limit 2#m of
[9]. Any finer revival peaks or zeros are unresolvable and more
energy is needed to see such finer X structure.
The tracking of crests or wave peaks yields information about

classical particle-like or group-wave motion. It is comforting to
see familiar classical paths in what is often bewildering quantum
cacophony but the clearest X-paths in Fig. 3a are zeros emanat-
ing from the point φ = ±π where the particle packet originally
was not. Quantumwave dynamics differs from classical dynam-
ics is that multiple Fourier components easily interfere much of
a wave to death. Most path phases lead to nonexistence except
near (rare) stationary-phase paths which may be familiar classi-
cal ones. This is what is responsible for the particle localization
that allows us to enjoy a Newtonian world and largely conceals
its quantum wave nature from us. Where the wave is not pro-
vides important quantum clues. One recalls Sherlock Holmes’
revelation that it is the “dog that did not bark” which solved a
mystery.

C2 QUANTUM THEORY: BASE-2 STATES

Motion of anti-nodal revivals for a 2-level excitation such as
Fig. 3c are like beats of coupled pendulums (17, 18). Figure 6a
shows phasor pictures of 2-cyclic (C2) eigenstates. Phasor
“clocks” are phase-space plots of Re% vs. Im% for the wave-
function %(p) at each spatial point p = 0, 1. Re% is up, Im%

is to the left, and the area π |%|2 of the phasor is propor-
tional to probability |%|2 at point p. Each eigenstate phasor
rotates clockwise at its Bohr eigenfrequency ωm = m2ω1; i.e.,
%(t) = e−iωmt%(0). C2 eigenstates are even (02) = (+) or odd

C⃝ 2001 Elsevier Science
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TABLE 1
Farey Sum Tree

D ≤ 1
0
1

1
1

D ≤ 2
0
1

1
2

1
1

D ≤ 3
0
1

1
3

1
2

2
3

1
1

D ≤ 4
0
1

1
4

1
3

1
2

2
3

3
4

1
1

D ≤ 5
0
1

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1
1

D ≤ 6
0
1

1
6

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

5
6

1
1

D ≤ 7
0
1

1
7

1
6

1
5

1
4

2
7

1
3

2
5

3
7

1
2

4
7

3
5

2
3

5
7

3
4

4
5

5
6

6
7

1
1

D ≤ 8
0
1

1
8

1
7

1
6

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

5
6

6
7

7
8

1
1

Note.Row-D accumulates all reduced rational fractions n/d < 1 with denominator d less than or equal to D. It also lists the resolvable revivals with quantum
excitation index (2#m) less than or equal to D.

(12) = (−) parity:

|+⟩ = |02⟩ = (|x⟩ + |y⟩)/
√
2 [12a]

|−⟩ = |12⟩ = (|x⟩ − |y⟩)/
√
2. [12b]

|m2⟩ eigenfrequencies ωm are ω0 = 0 and ω1 = h/(2ML2) by
(7). |m2⟩ are+ or− combinations of a local oscillator base state
labeled |x⟩ = |r0⟩ (localized at spatial point p = 0 or φ = 0)
and a “flipped” base state |y⟩ = r|x⟩ = |r1⟩ (localized at point
p = 1 or φ = π ). States |+⟩ and |−⟩ are also eigenstates of C2
“flip” operator r defined by r|x⟩ = |y⟩ and r|y⟩ = |x⟩, that is,
r|+⟩ = +|+⟩, and r|−⟩ = −|−⟩. States |+⟩ and |−⟩ are analo-
gous to “slow” (+45◦) and “fast” (−45◦) optical plane polariza-
tion eigenstates, respectively (17).
An initial 50–50 combination of the |+⟩ and |−⟩ eigenstates

briefly recovers the first local base state |x⟩ = (|+⟩ + |−⟩)/√2
lying between |+⟩ and |−⟩ in Fig. 6b. Since the |−⟩-eigenstate
is faster than the |+⟩-eigenstate, the |x⟩-state “beats” or de-
phases periodically. At 1/4 of a beat period τ1, the fast |−⟩
phase is 90◦ ahead (clockwise is −i) of the slow |+⟩ giv-
ing a state |L⟩ = (|+⟩ − i |−⟩)/√2 shown in Fig. 6b by two
phasors of phase ±45◦. This is analogous to optical 1/4-wave
plates giving left-circular polarization. Then the fast eigenstate
goes 180◦ ahead to give the “flipped” local base state of y-
polarization |y⟩ = (|+⟩−|−⟩)/√2 in an optical analogy to ac-
tion of 1/2-wave plates. Still later is the right circular state |R⟩ =
(|+⟩ + i |−⟩)/√2 (Fig. 6b bottom). Finally, at time (1/1)τ1 the
initial |x⟩ state (top of Fig. 6b) would reappear beneath Fig. 6b
to repeat the revival sequence. In Fig. 6b, dotted lines making an
X are drawn around the phasors to connect places where wave
amplitude is low as on the X-pattern in Fig. 3c or at zeros in
Fig. 1c. Lowm-uncertainty (#m = 1.5) means the revival wave

is mostly a combination of the first two Bohr eigenlevels m = 0
and |m| = 1 having just two group (or phase) velocities +V1
and −V1.

CN QUANTUM THEORY: BASE-N STATES

By considering discrete wave states it is possible to divide and
conquer the continuous Bohr rotor wave spectral dynamics. The
preceding C2 treatment is analogous to the symmetry analysis
of a diatomic rotor or a pair of quantum dots. Now the analysis is
extended to that of the symmetryCN of homocyclicmolecules or
polygonal arrangements of identical quantum dots as sketched
in Fig. 7.
Understanding X-zero patterns and revivals at Farey level

D = 3 involves a base-3 basis {|03⟩|13⟩|23⟩} ofC3. The bra state
vectors {⟨03|⟨13|⟨23|} are drawn in Fig. 8a The C3 wave states
have quantized momentum m = 0, 1, and 2 modulo 3. ⟨13| and
⟨23| waves are like the Tesla 3-phase power transmission used
today. Each m labels a row of three phasors in Fig. 8a which
are like a discrete sampling of a wave in a Bohr level m = 0, 1,
or 2.
In Fig. 8b are 4-aryC4 base states ofm = 0, 1, 2 and 3modulo

4 quanta. In Fig. 9a are 5-aryC5 base states ofm = 0, 1, 2, 3, and
4 modulo 5 quanta, and Fig. 9b has 6-ary C6 bases of m = 0,
1, 2, 3, 4, and 5 modulo 6 quanta. These provide a basis for
describing levels D = 4, 5, and D = 6 of the Farey tree. Each
CN system can also be thought of as a base-N counter. A binary
C2 system can count only to 2, that is, 0 to 1. A CN system is
capable of revivals that count from 0 to N − 1.
The CN waves are bases of a finite and discrete Fourier anal-

ysis. EachCN table in Fig. 7 (if all divided by
√
N ) is anN-by-N

unitary (U (n)) transformation matrix ⟨p | m⟩ of a finite Fourier
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FIG. 6. The basic C2-group and phase dynamics of a fundamental
(!m = 1) revival such as in Fig. 3c. (a) C2-group characters (02) = (1, 1) and
(12) = (1, −1) are plotted as complexphasors and related to even- andodd-parity
eigenstates of a bilaterally symmetric coupled oscillator, pendulum system, or
optical birefringent system. (b) Initially local state (x) = (1, 0) is shown evolv-
ing through 1/4-fractional revival (L) = (1− i, i + i)/

√
2 to 1/2-time revival

(y) = (0, 1) to 3/4-fractional revival (R) = (1+ i, i − i)/
√
2) on its way to a

full revival of (x) = (1, 0).

transform:

⟨p | (m)N ⟩ = ei(pm/2πN )
√
N

= ⟨(m)N | p⟩∗ (p,m=0, 1, 2, . . . , N − 1). [13]

Each phasor in Fig. 8 or 9 sits at one of N equally spaced lat-
tice points p = 0, 1, . . . , N − 1 sketched in Fig. 7. Each phasor
gives for a discrete angular point p = 0, 1, 2, 3, . . . , N − 1 the
complex amplitude ψ±m(2πp/N ) = ⟨p | (m)N ⟩ = ⟨(m)N | p⟩∗
of a continuous running wave of a Bohr–Schrödinger eigenfunc-
tion ψ±m(φ). A real (cosine) part of the eigenfunction is drawn
for each eigenstate |(m)N ⟩ in Figs. 8a, 8b and Figs. 9a, 9b to
help connect it to the latter. The state notation (m)N labels these
waves andmaybe readm-modulo-N,meaning that allwaves hav-
ing m ± nN wavelengths or quanta are an identical state (m)N .
(They are Fourier aliases (m)N = (m ± nN )N .) In Fig. 7 each
one of N equally spaced lattice points p= 0, 1, 2, 3, . . . , N − 1,

FIG. 8. The group character tables for (a) C3 and (b) C4 are analogous to
the C2 group character table in Fig. 6a. The group revival tables for (c) C3 and
(d) C4 are analogous to the C2 revival table in Fig. 6b. The C2 group revival
table is seen to be embedded in the revival table for C4.

is labeled by a pth power rp of a fundamental CN group rota-
tion r by angle 2π/N , that is, by r0 = 1, r1, r2, r3, . . . , rN−1,
rN = 1, respectively. This labeling notation simply lists the op-
erator elements of the cyclic CN symmetry group. The phasors
are graphical representations of the complex eigenvalues or
characters of the various cyclic groups. It should be noted that
the binary C2 phasor table (Fig. 6a) is embedded as a subset
in the C4 table of Fig. 8b since C2 is a subgroup of C4. C2 is
also seen in the C6 table (Fig. 9b) or any CN table of even-N
sinceC2 is a subgroup of allC2n . TheC6 table also has theC3 ta-
ble (Fig. 8a) embedded. (Cn is a subgroup ofCm ifm is divisible
by n.) Subgroup embedding helps explain the fine details of re-
vivals in Fig. 3 a. It also gives phase values that are not shown in
Fig. 3.

CN REVIVAL TABLES: BASE-N COUNTERS

For each subgroup embedding there is a corresponding
embedding of the CN revival tables shown in Figs. 8c, 8d
and Figs. 9c, 9d, obtained, as in Fig. 6b, by first summing
(times 1/

√
N ) all the rows of phasors in the character table C3,

C4, C5, or C6 of Figs. 8a, 8b and Figs. 9a, 9b, respectively. This
localizes 100% of the initial wave onto the first phasor position
state |x0⟩:

|x0(t = 0)⟩ =
N−1∑

m=0
|(m)N ⟩⟨(m)N | x0⟩ =

N−1∑

m=0
|(m)N ⟩/

√
N . [14]
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FIG. 9. The group character tables for (a) C5 and (b) C6 and revival tables
for (c) C5 and (d) C6. The C2 and C3 revival table is seen to be embedded in
the C6 table. Relevant group velocity lines are drawn to help relate the tables to
Figs. 3a, 3b, and 4.

Then each term |(m)N ⟩ in the sum [14] is allowed to advance
its phase e−iωmt = e−im2ω1t in discrete time fractions 1/N of a
Bohr period τ1 for N-odd or 1/2N of τ1 for N-even, that is,
through stroboscopic instants tυ :

|x0(tυ)⟩ =
N−1∑

m=0
e−im2ω1tυ |(m)N ⟩/

√
N ,

tυ =
{
υ τ1N = 2π υ

ω1N (υ = 1, 2, . . . , N − 1) for N − odd

υ τ1
2N = π υ

ω1N (υ = 1, 2, . . . , 2N − 1) for N − even.
[15]

For each stroboscopic instant or row in Figs. 8c, 8d or Figs. 9c,
9d there is an array of equally sized and equally spaced phasors,
that is, a kaleidoscopic phasor array of revivals. At each tυ ,
some phasors are revived, and the others, which lie between the
revived ones, are zeroed out.
An even-N = 2p revival table, such as N = 4 (Fig. 8b) or

N = 6 (Fig. 9b), has embedded the N = 2 revival or “beat”
table in Fig. 6b since C2 is a C2p subgroup. So it has a half-time
100% (single-peak) revival halfway around as well as 1/4-time
and 3/4-time 50% (double-peak) revivals for N = 2 at each
of the 1/4-lattice points, that is, for N = 6, at t = 3/12 and
t = 9/12, and for N = 4, at t = 2/8 and t = 6/8. (τ1 is the
time unit being used here.)

FIG. 10. The revival table for C15. The C3 and C5 revival tables are seen to
be embedded in the C15 table. The resulting zeros are indicators of the factors 3
and 5 of the integer N = 15.

An even-N revival table must start all over again at half-
time but shifted by φ = π to a point halfway around the ring
as required by CN symmetry and by C2 half-time 100% revival
at the half-way point p = N/2. So the C4 phasors below the
(p = 2, t = 2/4 = 1/2) point in Fig. 8d, namely, t = 5/8, 3/4,
and 7/8, must have positions, amplitudes, and phases relative to
the mid-point p = 2 that are identical to ones at t = 1/8, 1/4,
and 3/8, respectively, below the initial t = 0 = p point. Simi-
lar repetition is seen for N = 6 in Fig. 9d and for any even-N
revival table below t = 1/2. Because N = 6 is also divisible
by 3 there will be N = 3 revivals embedded at t = 4/12 = 1/3
and t = 8/12 = 2/3, and (relative to the 1/2-time revival) at
t = 1/3− 1/2 = −1/6 and t = 1/3+ 1/2 = 5/6 as well as at
t = 2/3− 1/2 = 1/6 and at t = 2/3+ 1/2 = 7/6. Phase angle
“combinations” for each time are unique as in a kind of quantum
“odometer.”
Odd-prime-N revival tables (e.g., N = 3 in Fig. 8a) lack em-

bedded structure. C3 has only a subgroup C1. Odd-prime-N
revival tables have N phasors of area 1/N at each of N − 1 frac-
tional revival times τ1/N to (N − 1)τ1/N . At t = 0 and t = τ1
a single area-1 phasor rises at φ = 0. In contrast, even num-
bers such as N = 4 and 6 in Fig. 8d or 9d have revivals of area
r/N for each subgroup CN/r of CN , beginning with C1 (r = N )
and C2 (r = N/2). (The only even-prime is N = 2.) For each
factor r of N , there will be arrays of Nr = N/r revival peaks
and N − Nr zeros which appear with the same times and phases
seen in the revival table for the subgroup CN/r = CNr . Phase
varies with phasor position ρ = 0, 1, 2, . . . , N − 1 according

C⃝ 2001 Elsevier Science



QUANTUM ROTORS 175

FIG. 7. Cyclic structures of C2, C3, C4, C5, and C6 symmetry. Tunneling
path amplitudes H2, H3, are sketched.

to ρ22π/N . (This is shown in Ref. (18).) Hence phase appears
nearly stationary around fundamental (single-peak) C1 and C2
revivals at (φ = 0, t = τ1) and (φ = π, t = τ1/2).
A given %m-wavepacket evolution such as in Figs. 3a–3c

may be characterized by an even integer nearest the quantum
speed-limit N≤ 2(%m). Each peak of resulting revival structure
is centered on a phasor in a revival table like Figs. 8d, 8c or
Figs. 9d, 9c for a Cn in the sequence CN ,CN−1,CN−2, . . . ,C2.
Each revival peak shape is a similarly shaped “clone” of the
initialGaussianwavepacket and its peak phase and amplitude are
those of its correspondingCn phasor at that space-time location.
Revival pattern complexity grows rapidly with %m and N

as larger Cn groups are added to the high end of the sequence
CN , CN−1,CN−2, . . . ,C2. Each increase in %m by 1 means N
increases by 2 and makes new (N + 1)-peak and (N + 2)-peak
revivals resolvable to give (N + 1)2 and (N + 2)2 new peaks
and zeros per unit space-time cell.
For %m = 1 or N = 2 there are only the C2 patterns of one-

or two-peak revivals as seen in Fig. 3c or Fig. 6. C2 patterns
are also the largest and most clearly resolvable patterns for
higher %m > 1, as seen in Figs. 3a and 3b. Finer patterns with
2%m∼ 4, 6, 8, 10, . . . peaks belong to evenC4,C6,C8,C10, . . .
revival tables, respectively. Even-N peaks are interspersed with
patterns of%m = 3, 5, 7, 9, . . . peaks seen, respectively, in odd
C3,C5,C7,C9, . . . revival tables.

To summarize, resolvable revival peaks and zeros for a given
N = 2(%m) occur at time fractions given by the D = N level
of a Farey tree and are located and described by overlapping
CN ,CN−1,CN−2, . . . ,Cn revival tables. Subgroups Cn of any
preceding CN ,CN−1, . . . are embedded in the latter. For exam-
ple, % ∼ 3 or N ∼ 6 revivals happen at time fractions in the
D = 6 row of the Farey tree. The%m∼ 3 revival peak and zero
structure plotted in Fig. 3b requires only C6, C5, and C4 tables
since C3, C2, and C1 are subgroups of C6 or C4.
Because revivals expose CN subgroups they can be made to

find factors of an integer N . For Cm to be a subgroup of CN ,
integer m must be a factor of N . Each revival table of Fig. 8d or
9d develops zeros at time row-t = ν/N if and only if ν and N
share a common factor. The odd-N = 3 or 5 revivals in Fig. 8c
or 9c have no zeros except in row ν = 1 and row ν = N since
these N are prime numbers which have no factors but 1 and N .
For odd-N that is composite (nonprime) such as N = 15, the
zeros show up on the atom or dot adjacent to the one on which
the initial wave packet begins as shown in Fig. 10. The factors
3 and 5 of 15 are indicated by the (p = 1)-column zeros seen
in rows ν = 3 and ν = 5, as well as ν = 6, 9, 10, 12, and (of
course) 15 = 0 mod 15, for a C15 revival in Fig. 10.

REVIVAL TABLE COMBINATION:
MULTIMODAL DISTRIBUTIONS

Cyclic CN symmetry requires that a cyclic reordering of
columns of a revival table, such as Fig. 10 or preceding ex-
amples, must also give a valid table. In other words, the phasor
at origin (p = 0) is only one of N points to start a revival packet.
Furthermore, linearity requires that a linear combination of such
tables be valid, as well. Vector addition of each phasor pair from
a pair of two overlapping revival tables gives a validmulti-modal
revival schedule. This explains how initial'(x, 0) packets have
their starting shapes “cloned” at fractional revivals.
A zero-centered (m̄ = 0) or mono-modal Gaussian (8a)

evolves only by %m-spreading. For m̄ > 0, the m-distribution
(Fig. 11 top) and'(x, t) for t > 0 are bimodal as two Gaussian
packets speed away from each other with group velocities of
±2m̄ while spreading at a rate 2%m. A (m̄ = 30, %m = 5)
space–time pattern in Fig. 10 has striated X -paths like Fig. 3c
along the semiclassical paths of Fig. 4. But there is little dis-
tinction between zero-paths and particle paths; the former have
a white (zero) center while the latter have a dark center.
Such bimodal evolution could be modeled discretely using

overlappingCN ,CN−1, . . . revival tables. It would be a crowded
array of CN phasors starting with N = 2(m̄ + %m)∼ 70 and
subgroups in a C70 sequence; with, perhaps, literally thousands
of phasor plots. Clearly, a semiclassical description (7–9) ismore
immediately useful here. Thepurely quantumeffects are reduced
to faint striations and fuzz patches in Fig. 11. However, the
fundamental quantum structure of the detailed evolution is no
less existent just because it is out of sight.
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CONCLUSION AND APPLICATIONS

The value of the CN models increases when the purely quan-
tum effects, particularly those of a single CN , are to be isolated.
One imagines having a discrete Bohr ring like those sketched,
in Fig. 7 composed of N atoms, quantum dots, optical fibers, or
Josephson circuits (19) homocyclically coupled is such a way
that the usual quadratic Bohr dispersion spectrum ωm = m2ω1
is obtained with a finite number N of states per band. As a
first approximation, such a ring has a Bloch dispersion spec-
trumωm = (H0 − 2H1 cos am) where H1 is the nearest-neighbor
coupling amplitude. Such a Bloch spectrum only approximates
a Bohr spectrum for low m-values, and so high-%m revivals
would decay eventually. However, by inserting cross-connecting
coupling paths H2, H3, H4, . . . , HN/2 , as shown in Fig. 7, it is
possible to achieve any spectrum, including m2, by adjusting
coefficients Hk in a Fourier series:

ωm = H0 − 2S1 cos am − 2H2 cos 2am
− 2H3 cos 3am . . . − HN/2 cos Nam/2.

A quadratic spectrum (Em = hυm2) is achieved for general N
by setting Hamiltonian parameters as follows:

hυm2 =
N−1∑

p=0
Hpe−ipm 2π

N , where Hp = hυ
N

∑

{m}
m2 eipm

2π
N .

[16]

For example, a 4-level N = 6 quadratic spectrum {E0 = 0,
E±1 = 12E±2 = 22, E3 = 32} involves six eigenstates, |(m)6⟩ =
|(0)6⟩, |(±1)6⟩, |(±2)6⟩, and |(3)6⟩, using the following coupling
amplitudes as given in the N = 6 row of Table 2:

TABLE 2
N-Discrete m2-Hamiltonian Coupling Coefficients

H0 H1 H2 H3 H4 H5 H6 H7 H8

N = 2 1/2 −1/2
N = 3 2/3 −1/3
N = 4 3/2 −1 1/2
N = 5 2 −1.1708 0.1708
N = 6 19/6 −2 2/3 −1/2
N = 7 4 −2.393 0.51 −0.1171
N = 8 11/2 −3.4142 1 −0.5858 1/2
N = 9 20/3 −4.0165 0.9270 −1/3 0.0895
N = 10 17/2 −5.2361 1.4472 −0.7639 0.5528 −1/2
N = 11 10 −6.0442 1.4391 −0.5733 0.2510 −0.0726
N = 12 73/6 −7.4641 2 −1 2/3 −0.5359 1/2
N = 13 14 −8.4766 2.0500 −0.8511 0.4194 −0.2028 0.06116
N = 14 33/2 −10.098 2.6560 −1.2862 0.8180 −0.6160 0.5260 −1/2
N = 15 57/3 −11.314 2.7611 −1.1708 0.6058 −1/3 0.1708 −0.0528
N = 16 43/2 −13.137 3.4142 −1.6199 1 0.7232 0.5858 −0.5198 1/2
N = 17 24 −14.557 3.5728 −1.5340 0.81413 −0.4732 0.2781 −0.1479 0.0465

Note.All devices have the same unit revival rate: hυ = 1.

H0=3.16, H1 =−2.0=H∗
5 , H2=0.67=H∗

4 , H3 =−0.5.

[17]

With the adjustments in Table 2 of Hk coupling, pure CN re-
vivals like those inFigs. 8–10would repeat at frequencyυ = h−1

until the coupling was turned off. Such a device would be an N -
ary counter as implied before. By incorporating the N -ring as the
crossection of a coaxial N -fiber cable, it would be possible for
the revival evolution to occur as an N -phase wave propagated
down the cable. Write–read and reprogramming could be ar-
ranged along the length of the cable through varied intracoaxial
coupling and intercoupling with other cables. The possibility of
storing, processing, and transporting quantum or classical N -ary
data for N ≫ 2 using just one kind of basic hardware may yet
warm the heart (and portfolio) of a future cyberentrepreneur.

APPENDIX A

Wave-Based Derivation of Relativistic Transformations

Amoving optical wave source of frequency ω0 such as an ar-
gon laser will be received with a Doppler blue-shifted frequency
ω1 = f ω0 if it is approaching at velocity u. Relativistic symme-
try requires that this frequency factor f be dependent only on
the relative velocity u between transmitter and receiver. Further-
more, the relationω1 = f ω0 must hold if time is reversed, so the
relative velocity is reversed (u → −u), as are the roles of trans-
mitter and receiver. Thus a wave source of frequency ω1 will be
received at a Doppler red-shifted frequency ω0 = ω1/ f as the
receiver–transmitter pair recede from each other at velocity−u.
This sets up the situations depicted in Fig. A.1. Two identi-

cal argon lasers point at each other in Fig. A.1a and produce a
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FIG. 11. Bimodal Gaussian distribution with m̄ = 30, !m = 5 and !x = 0.04(2π ). Quantum speed limit for spreading: 2!m = 10. Average packet speed:
m̄ = 30.
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FIGURE A.1
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standing wave space–time pattern. Boosting both lasers to the
right at velocity u, or what is equivalent, boosting the ob-
server to the left with velocity −u gives a blue-shifted fre-
quency ω→ = f ω0 from the left laser and a red-shifted fre-
quency ω← = ω0/ f from the right laser as in Fig. A.1b:

ω→ = f ω0 ω← = ω0/ f. [A.1a]

Wavevectors are likewise shifted in order to keep the phase speed
c of light the same for all colors:

k→ = f k0 k← = −k0/ f. [A.1b]

This is a relativistic postulate: “throwing” light changes its color
but not its speed c:

c = ω0/k0 = ω→/k→ = −ω←/k←. [A.1c]

The right-hand laser emits to the left, and so its wavevector
is negative. This yields the phase velocity indicated by “fast”
trajectory lines in the space–time graphs of Fig. 1c and Fig.A.1c.
A light phase speed c = ω0/k0 is used:

Vphase = ω→ + ω←

k→ + k←
= f + 1/ f

f − 1/ f

(
ω0

k0

)
= f 2 + 1

f 2 − 1
c. [A.2]

The group velocity corresponds to “slow” trajectory lines in the
space–time graphs of Fig. 1c and Fig. A.1c:

Vgroup=
ω→ − ω←

k→ − k←
= f − 1/ f

f + 1/ f

(
ω0

k0

)
= f 2 − 1

f 2 + 1
c = u. [A.3]

Note that the standing-wave group envelope, stationary in the
laser frame, moves at velocity u in the observer’s frame. Solving
(A.3) for the frequency shift factor f gives the well-known rel-
ativistic Doppler formula

f 2 = 1+ u/c
1− u/c

= 1+ β

1− β
, f =

√
1+ β

1− β
. [A.4]

The standard shorthand β = u/c for the relativity parameter
is used. Frequency shifts of f = 2 and f = 1/2 in Fig. A.1c
correspond toβ = 3/5 andβ = −3/5, that is, relative separation
or closure rates that are 60% of the speed of light.
The wave-zero space–time trajectories in Fig. A.1c are the

images of a square standing-wave grid as seen by a moving
observer. It is as though the lasers are optically “computing”
a space–time grid for all possible observers by simply fixing
a standing wave # between them so #-zeros draw their own
Cartesian (x ′, ct ′)-grid:

#Standing = #Cartesian = 1
2
ei(k0x ′−ω0t ′) − 1

2
ei(−k0x ′−ω0t ′)

= ie−iω0t
′ sin k0x ′. [A.5a]

This is a special case of Eq. [1] (repeated below) if the ob-
server (x, ct)-frame is the same as the laser (x ′, ct ′)-frame, that
is, there is no Doppler shift ( f = 1). Otherwise, #-zeros draw
a Minkowski (x ′, ct ′)-grid of Fig. 1c or Fig. A.1c in the ob-
server’s (x, ct)-frame using zeros of the general Minkowski
wave #Minkowski given here:

#Minkowski = 1
2
ei(k→x−ω→t) − 1

2
ei(k←x−ω←t)

= iei
(k→+k← )x−(ω→+ω← )t

2

× sin (k→ − k←) x − (ω→ − ω←) t
2

. [A.5b]

The first standing wave zero of [A.5a] to the right of the origin in
the laser frame has an x ′ value for which k0x ′ = π . The observer
sees this as a “slow” (Vgroup = 3c/5) groupwave nodemoving so
that the groupphase in [A.5b] isπ , too. This gives an equation for
a line of constant x ′ parallel to the ct ′-time-axis in the observer’s
(x, ct)-frame. Group zeros stand still in the laser (x ′, ct ′)-frame
(SWR= 0) and track “resting” phase zeros:

k0x ′ = const. = (k→ − k←)x − (ω→ − ω←)t
2

= π. [A.6a]

Space axis lines (t ′ = const.) are “fast” zeros (Vphase = 5c/3) of
Re#Minkowski where the Re(ieiphase) is zero:

−ω0 t ′=−k0 ct ′= const.=
(k→+ k←)x − (ω→+ ω←)t

2
=π.

[A.6b]

This gives an equation for a line of constant t ′ parallel to the
laser’s x ′-space-axis in the observer’s (x, ct) frame. Phase zeros
go infinitely fast in the laser (x ′, ct ′)-frame (1/SWR =∞). [A.6]
holds for all values of (const.).
Using [A.1] with [A.4] in [A.6] gives the Einstein–Lorentz

transformation equations [4] of special relativity. The result
is immediately given in standard form with β = u/c = tanh θ

defining a hyperbolic angle θ :

x ′ = ( f + 1/ f )x − ( f − 1/ f )(ω0/k0)t
2

= x − β ct
√
1− β2

= x cosh θ − ct sinh θ [A.7a]

ct ′ = −( f − 1/ f )x + ( f + 1/ f )(ω0/k0)t
2

= −βx + ct
√
1− β2

= −x sinh θ + ct cosh θ . [A.7b]

The laser’s square (x, ct)-grid squares become (x ′, ct ′)-
diamonds as the first quadrant diagonals stretch by the Doppler
factor f = 2 and the second quadrant diagonals shrink by the
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same factor. Thus, area of a given square is invariant to boost
velocity u. Grid area invariance makes the points on the coordi-
nate axes follow equilateral hyperbolas. This is more easily seen
using coordinate axes (v = x + ct, w = x − ct) oriented along
the ±45◦-diagonals. (These are Finkelstein (21) coordinates.)
A rectangle defined by (v = 0, w = B), (v = A, w = 0), (v = 0,
w = 0), and (v = A, w = B) maintains its area only if its corner
(v = A, w = B) satisfies the following as velocity u varies:

vw = AB = const. = (x + ct)(x − ct) = (x)2 − (ct)2. [A.8]

Note that the hyperbolas (x)2 − (ct)2 = 0, ±1, ±2, . . . plotted
in Fig. A.1c are tangent to grid lines. This is an important feature
of the geometry and kinematics of relativistic dispersion since
tangents represent group velocity.

APPENDIX B

Wave-Based Derivation of Wavevector-Frequency
Transformation

A key axiom for wave-based relativity theory is the demand
for phase invariance. The main idea is that light waves them-
selves are suitable clocks for the Einstein theory. Each “tick” of
a phase clock is a proper event; a particular reading on a wave
phase clock that can be “stamped” so all observersmust agree on
it. In fact this is one of the principles behind the GPS or Global
Positioning System.
For a plane wave ei(kx−ωt), the phase is the argument of the

exponential. In fact, its invariance equation

kx − ωt = k ′x ′ − ω′t ′ [B.1]

was used to derive the Lorentz relations [A.6] and [A.7].
Equation [B.1] is analogous to space–time invariant relations

x1x2 − ct1ct2 = x ′1x
′
2 − ct ′1ct ′2 [B.2a]

or the hyperbolic sections [A.8] of the light cone

(x)2 − (ct)2 = (x ′)2 − (ct ′)2, [B.2b]

which follow from [A.7]. Equations [B.1] and [B.2] are re-
lated to the constancy of the speed of light (c = ω/k = ω′/k ′).
Finally, invariance of kx −ωt = kx − (ω/c)(ct) implies that
wavevector–frequency variables (k, ω/c) or (kc, ω) must
Lorentz transform just like space–time variables (x, ct) or
(x/c, t); that is, in analogy to [A.7] one has

ck′ = ck − βω
√
1− β2

= ck cosh θ − ω sinh θ [B.3a]

and

ω′ = −β ck + ω
√
1− β2

= −ck sinh θ + ω cosh θ . [B.3b]

This implies the (kc, ω) pair have their own hyperbolic invariant
(see Fig. 2a),

(kc)2 − (ω)2 = (k ′c)2 − (ω′)2 = −µ2 = const. [B.4]

For light, [B.4] is a trivial result of c-constancy (c = ω/k =
ω′/k ′). (The invariant constant µ is zero for a light cone.) How-
ever, the phase invariance axiom [B.1] applies to more than
electromagnetic waves, as described below.

APPENDIX C

Wave-Based Derivation of Relativistic
Quantum Kinematics

Relativistic symmetry requires that phase invariance [B.1]
and relations [B.3] through [B.4] apply to matter waves as well
as light waves. For matter, however, the hyperbolic invariant
[B.4] is nonzero; that is, it will be a nondegenerate hyperbola in
(kc, ω)-space:

(ω)2 − (kc)2 = (ω′)2 − (k ′c)2 = µ2 > 0. [C.1]

For each matter wave there exists a frame in which the wavevec-
tor k is zero; that is, (k ′c, ω′) = (k0c, ω0) = (0, µ). This is called
the rest-frame of the matter or “particle.” The invariant constant
µ = ω0 turns out to be related to the rest mass, inertia, and rest
energy of a particle, three quite distinct physical quantities.
Inverting [B.3] shows how such a “rest wave” ((k ′c, ω′) =

(0, µ)) appears if boosted to velocity u = βc:

ck = ck ′ + βω′
√
1− β2

= 0+ µu/c
√
1− (u/c)2

= µ
u
c
− 1
2
µ

(
u
c

)3
[C.2a]

ω = βck ′ + ω′
√
1− β2

= 0+ µ
√
1− (u/c)2

= µ + 1
2
µ

(
u
c

)2
+ · · · .

[C.2b]

Planck’s axiom supposes the equivalence of energy and fre-
quency (E = h-ω). This is applied to [C.2b]:

E = h-ω = h-µ + 1
2
h-µ

(
u
c

)2
+ · · · . [C.3]

Applying the invariant constant µ to the Einstein rest energy–
frequency Mc2/h- leads to a familiar 1

2Mu2 variation for
Newtonian particle energy for subrelativistic particle velocity
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u ≪ c. Added to this is a constant rest energy Mc2:

E = h-ω = Mc2 + 1
2
Mu2 + · · · . [C.4]

Setting µ = Mc2/h- in the k-expression [C.2a] yields Galilean–
Newtonian momentum p = Mu to first order in u/c:

h- k = Mu + 1
2
Mc2

(
u
c

)3
+ · · · . [C.5]

This completes the Einstein–DeBroglie formula for the relativis-
tic quantum particle momentum–wavevector:

p = h- k = Mu
√
1− (u/c)2

. [C.6a]

The Einstein–Planck energy formula for relativistic energy–
frequency follows, too:

E = h-ω = Mc2
√
1− (u/c)2

. [C.6b]

The momentum equation [C.6a] and energy equation [C.6b] are
solved for the boost or group velocity u:

u
c

=
√
E2 − (Mc2)2

E
= cp

E
= cp

√
(Mc2)2 + (cp)2

. [C.7]

The preceding uses the energy–momentum invariant derived
from Eq. [C.1] or [B.4]:

E2 − (cp)2 = (Mc2)2 = µ2h- 2 [C.8a]

E = h-ω =
√
(Mc2)2 + (cp)2 =

√
(Mc2)2 + (ch- k)2. [C.8b]

The latter equation is the universal dispersion function ω(k)
which determines phase and group velocities:

Vphase = ω

k
= E

p
= c2

u
[C.9a]

Vgroup = dω

dk
= dE

dp
= c2 p

E
= u. [C.9b]

Nonrelativistic approximations of energy, such as [C.4] or
Fig. 2b, may leave out the Mc2 term since neither absolute en-
ergy nor absolute phase is physically observable. Only energy
difference is physically important for classical mechanics, and
only relative phase and phase velocity are observed in quantum
mechanics.Neglecting a constant term such asMc2 in energy ex-
pression [C.4] does not change the group velocity dω/dk = u
or any observable wave behavior given by the probability en-
velope # ∗# Eq. [1]. The # ∗#-envelope always has group
velocity u according to Eqs. [3] and [6a]. (Recall Fig. 1c.) On

the other hand, phase velocity ω/k is reduced by neglecting
Mc2 and changes from an enormous value c2/u to a value
of u/2 that is quite small in the nonrelativistic limit u ≪ c;
indeed, it becomes smaller by roughly half the group velocity.
This, however, is consistent with classical physics or with ex-
periments based on observing # ∗# since the phase of Eq. [1]
cancels out of # ∗#, and so absolute phase velocity is not
observable.
Classical mechanics is concerned only with particle velocity

u and momentum p, which are directly proportional to the wave
group velocity. (Relativistic phase velocity c2/u is inversely pro-
portional to group velocity u.) The rate of change (dp/dt =
h- dk/dt) of momentum is proportional to applied force in quan-
tum as well as classical dynamics. The proportionality constant
is called effective mass Meff or local inertia:

Meff = F
a

=
h- dkdt( dVgroup
dt

) =
h- dkdt( dVgroup
dk

dk
dt

)

= h-
( d2ω
dk2

) = 1
( d2E
dp2

) = M
(1− β2)3/2

. [C.10]

So effective mass is inversely proportional to the curvature
of the dispersion function. This result may seem paradoxical
in light of the observation that a photon dispersion function is
a straight line (ω = c|k|), so its effective mass would seem to
be infinite. But photon group and phase velocity never change
no matter how large the “force” is, and so the photon’s effective
mass is indeed infinite. Furthermore, as an electron or any other
particle nears the speed of light, its effective mass also ap-
proaches infinity.
What we call the mass M of a particle is really its rest mass,

that is, its effective mass at zero wavevector (k = 0). The photon
dispersion function (ω = c|k|) has a kink with infinite curvature
at the origin, so its rest mass, according to Eq. [C.11], is indeed
zero. Physically, a (k = 0)–photon corresponds to a uniform
static electric field. However, the very slightest boost of such a
system will suddenly result in a finite wavevector with speed c.
This behavior is consistent with a zero mass and infinite accel-
eration for the electric rest-wave as it becomes a normal light
wave. After the tiny boost the light wave has infinite inertia and
zero acceleration, as usual.
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