
Abstract

A simple approximate scheme for treating molecular hyperfine structure is 
developed by taking account of energy-level clusters. Unitary tableau and 
frame transformation techniques are reintroduced. Model Hamiltonians for 
XY3, and XY4 (X spin-zero, Y spin-1/2) molecules are developed and solved 
in cluster bases which are appropriate for highly excited rotational states. 
Two cases emerge: Case (1) for which hyperfine splittings are smaller than 
the "superfine" cluster splittings and case (2) for which superfine
splittings are negligible or zero. The problem of correlating energy levels and 
states between cases (1) and (2) is solved. Since the XY4 problem in the 
elementary cluster bases reduces to (2×2) matrices at the worst, the physical 
interpretation of solutions is not difficult.
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A simple approximate scheme for treating molecular hyperfine structure is developed by taking account of
energy-level clusters. Unitary tableau and frame transformation techniques are reintroduced. Model
Hamiltonians for XY, and XY4 (X spin-zero, Y spin 1/2) molecules are developed and solved in cluster
bases which are appropriate for highly excited rotational states, Two cases emerge: Case (1) for which

hyperfine splittings are smaller than the "superfine" cluster splittings and case (2) for which superfine

splittings are negligible or zero. The problem of correlating energy levels and states between cases (1) and

(2) is solved. Since the XY, problem in the elementary cluster bases reduces to (2 )& 2) matrices at the worst,
the physical interpretation of solutions is not difficult,

I. INTRODUCTION.

Modern high-resolution laser spectroscopy has
opened up possibilities for understanding molecu-
lar structure and dynamics in greater detail than
was possible before. High-resolution spectra of
heavy symmetric molecules such as SF6, |F4,
SiF4, etc. , have stimulated the development of a
new quantum theory, of rotational and vibration-
al motion for the predominant cases of high angu-
lar momentum J. (In heavy molecules the states
most easily observed can have J ranging from
about 10 or 15 to over 100.) In this theory the
properties of energy level and spectral clusters
are exploited in order to simplify analysis and
calculations involving molecular Hamiltonians.
One result of cluster theory is a novel picture of
the rotational behavior of spherical top molecules
in which the rotational momentum vector becomes
"stuck" for awhile on a single internal symmetry
axis, and then "tunnels" more or less slowly to-
ward adjacent equivalent axes.

Examples of CF4 spectra are displayed in Fig. 1
starting with lower resolution and greater frequen-
cy scan at the top of the figure. Successively low-
er stages [(a)-(e)] of Fig. 1 show finer detail seen
at higher and higher resolution. The spectral
clusters or centrifugal fine structure are clearly
visible at stage (c) in the laser diode scan of
P(54) by McDowell et a/. The splitting of clusters
due to the angular momentum tunneling or molecu-
lar "tumbling" is shown at stage (d) in Fig. 1, and
this is called "superfine" structure. Superfine
structure has been seen in saturation absorption
spectra of SiF4, CH4, ' as well as SF6, ' and takes
very predictable forms. For example, consider
the cluster A&E&E marked "48" in Fig. 1(c). [The

number (n =48) is the approximate cluster mo-
mentum about the fourfold symmetry axes.] Since
there are six fourfold axes the rotational degen-
eracy of the cluster 'is six: 1 (for A&)+2 (for Z)
+ 3 {for E&), as first explained by Dorney and
Watson' who observed clusters in computer ex-
periments. However, a simple tunneling models
predicts a splitting of triplets&, F, and I

&
into

relative energies -4S:0:2S, where S is the tunnel-
ing amplitude between adjacent fourfold symmetry
axes. The (A&E&E) cluster appears again toward
the center of P(54) in Figs. 1(c)-1(d)atn =44, and
again toward the edge at ri = 52, i.e. , at all mo-
mentum values that equal zero-modulo-four. (ri

=Omod4. } Other clusters belong to other fourfold
axial momenta and to the threefold momentum
values on the right-hand side of P(54) in Figs.
1(c)-1(d}.3

For each type of cluster the tunneling amplitude
and corresponding superfine splitting decreases
nearly exponentially with the increasing axial mo-
mentum number n. These splittings can be de-
rived using approximate formulas4'" or else (for
J~ 100) obtained from Krohn's computer diagonal-
izations. ' For example the 4&E&Z splittings in
P(54) are several-hundred megahertz for n =44,
2.6 MHz for n=48, and 9.4&10 MHz for n=52.
Superfine tunneling amplitudes can easily vary
over 12 or 15 orders of magnitude within a single
P(J+1), Q(J), or R(J-1) manifold for higher val-
ues of total angular momentum J.

In this article the interaction between superfine
tumbling and nuclear hyperfine spin effects will
be discussed. Until recently the nuclear hyperfine
interactions have been thought to play a minor
role in the rotational behavior of large molecules.
The hyperfine splittings themselves are generally
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FIG. 1. Spectra of tetraQouromethane (CF4) [reprinted from Dimensions, 62/6 (1978)j. (a) CF4 vibrational structure
Iby B. Monostori and A. Weber, J. Chem. Phys. 33, 1867 (1960)] from Raman spectra; (b) v4 rotational structure [by
Alex Stein, Paul Rabinowitz, and Andrew Kalder, Exxon Labs (1977)] from Fourier transform spectra; 1.3 kPa, 10 cm
path, 293 E; (c) P(54) fine (centrifugal) structure (by B. S. McDowell, H. W. Galbraith, M. J. Reisfeld, and J. P. Al-
dridge, see also Ref. 2) from laser diode spectra; 280 Pa, 1 m path, 296'K; (d) superfine ("tumbling" ) structure. The
form of the cluster splitting is predicted by the quantum theory of clusters, but has not yet been observed in CF4.
However, the same structure has been seen in SiF4, CH4, and SFS,. (e) hyperfine {"nuclear spin") structure. The hy-
perfine structure falls into two cases: a "normal" case (1) in which the spin multiplets are well separated, and case
(2) where they overlap and may interact.
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a few kilohertz and could be seen only in the large
saturation absorption chambers used by Hall and
Borders to study CH, and by Borde and Borde to
study SF6. However, it may not take much of a
nuclear-spin-rotation interaction to affect a CF4
molecule which is in a cluster state having milli-
hextz superfine splittings! Even if no spin inter-
actions existed at all, a CF4 molecule set spinning
on one body axis could, depending on which quan-
tum states were chosen, easily stay on that axis
for seconds, minutes, or even years before
tumbling. Hence, even for the smallest hyperfine
interactions there will always be superfine clus-
ter states with which the spin states can interact
resonantly. Roughly speaking the spins can align
themselves with the body symmetry axis used by
the cluster state, and while acting like miniature
gyroscopes, they can further stabilize the mole-
cule against tumbling. ~'

Once a molecule becomes spin stabilized, the
spin-permutation states belonging to species labels
A&, 2, E, or E&, 2 may be mixed. This can happen
because certain identical nuclei which normally
permute freely amongst themselves, become
segregated once tumbling is quenched. To recover
a meaningful internal symmetry label of nuclear
permutational properties one must appeal to the
algebra of the spontaneously broken symmetry.
This requires an understanding of the effects of
combined centrifugal distortion and nuclear-spin-
rotation Hamiltonians as one effect becomes
stronger or weaker than the other.

The following sections will be devoted to obtain-
ing simple approximate eigensolutions of centrifu-
gal and nuclear-spin-rotation Hamiltonians, with
an emphasis on the physical understanding of the
results. We use three different theoretical meth-
ods which have recently seen considerable devel-
opment but have heretofore remained largely dis-
connected. The three areas, starting with the
most recently dev'eloped, are (i) the quantum the-
ory of level clusters, (ii) the theory of frame
transformation relations, and (iii) the theory of
Weyl or Young tableau labeling of permutation and
unitary states of several identical fermions or
bosons. The methods of level cluster theory are
described in Refs. 3-5, and applied to spectral
analysis in Ref. 16. The methods of frame trans-
formation theory are introduced and applied by
Pano and by Chang and Fano~v to diatomic and
symmetric top molecules, and generalized to
polyatomic molecules in Ref. 5. The methods of
permutation-group tableau labeling were intro-
duced by Young and Rutherford, Weyl, 9 and
later by Goddard for treating molecular electron-
ic orbitals. The development of unitary tableaus
as a calculus for matrix elements is treated in

Refs. 21-24„and is based upon mathematical
works of Weyl, Gelfand, Biedenharn, and
Louck. ' The application of tableaus to molecular
spin state and statistical weight calculations is
introduced in Ref. 5. (A similar treatment which
does not emphasize tableau calculus is given by
Galbraith. 8)

The present work complements previous treat-
ments of polyatomic molecular hyperfine struc-
ture. ~' It simplifies the analysis of states in-
volving large angular momentum which would
otherwise seem to require tedious numerical com-
putation. Certain of our simplifications resemble
those used by I evenson and Schawlowst to treat
rapidly rotating diatomic molecules. However,
our principle aim is to develop a polyatomic sym-
metry labeling scheme that is a useful generali-
zation of the diatomic "ortho" and "para" labeling.
This is particularly important in our case (2)
where centrifugal superfine and nuclear hyperfine
effects can combine to mix the standard rovibra-
tional species labels. So far, standard symmetry
labeling has been used by Quacks' to derive selec-
tion rules for chemically reactive scattering, but
no account of clustering or hyperfine structure
has been taken. Now we can begin to remedy this
situation with the help of this work and modern
laser spectroscopy.

II. THEORY OF ROTATIONAL CLUSTER AND

NUCLEAR-SPIN STATES: AN XY3 EXAMPLE

A. Orbital states and permutational symmetry

It is convenient to start with a basis of rotational
N~"cluster" states I"„)which have total nuclear

angular momentum parity N' (N is labeled R for
"rotor" in many other works), laboratory-fixed

' azimuthal momentum m, and body-fixed momen-
tum component n, projected upon a certain in-
ternal axis (n is labeled K„ in many other works)
preselected according to arguments of cluster
theory. Each state I"„) is a combination of states
R(uPy) I 1) and I R(uPy) l 1) of.definite rotational.
position described by Euler angles (nPy) and the
absence or presence of inversion (I) from an
"original" state I 1) in which body axes (xyZ) co-
incide with lab axes (xyz). As explained in other
works' these states are obtained by applying or-
thogonal group (0~) projection operators (I'"„„)to
the original state I 1), i.e., let

~"..1) =I'".
~ 1)/ & [X]

=g J &(&Pr )&"' lo(&A')lo(&. P r) ~ 1&~ l&]

(2.1)

where "„are the irreducible representations of
03 and the integral sum is over all proper ortho-
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FIG. 2. XF3 molecule in twofold axial rotational states. (a) The 7 particles are labeled by letters a, b, and c, while

the states in which they may reside are nuxnbered 1, 2, or 3. The states are distinguishable while the particles are in-

distinguishable, and a given particle can reside just as well in any of the three states. State 3 is always closest to the

rotation axis. (b) Each permutation of particles between the states corresponds to a different direction for the twofold

rotation axis (()() )cith respect to the particles, a, h, and c. For each direction one defines a cluster base state )1), (2),
. . . , Is).

as weU as simple rotational properties

R(oOO) I 1)=8 "I' I"„1) (2.3}

with respect to internal rotations around the pre-
selected Z body axis.

States of rotation around a single internal body
axis (zQ are only approximate eigenstates if there
is any cluster splitting. Better approximations
are obtained by considering linear combinations of
states

of rotation about all symmetry axes equivalent' to
the primary z axis. The proper combinations may
be obtained by applying internal symmetry projec-
tors PI,"-)'(;) to the primary state I"„1),i.e. , let

=Q&((;"))(,)(i}rI" 1)(l' ~)/'g v%, (2.4)

where i are internal symmetry operations which
have the effect of changing the internal rotation
axis, , '~' are irreducible representations of an
appropriate finite internal symmetry group g of
order g, ,

l'" is the dimension of +'"', and R is
the norm. Note that internal operations always
commute with external ones (FR =Re)}

It is convenient to relate finite internal sym-
metry operations (r) with permutations, and then

gonal operators O(c(py} =R(spy), i.e. , all rota, -
tions, as well as all improper operators O(n py)
=I'R(opy) =R(&py) I, i.e. , all rotation inversions.
The resulting states have definite parity, i.e.,

I I
~'1) =+ I"'1) (2.2)

associate the representation labels lp) and (i) or
(jjwith arrangements of boxes called Young
frames and tableaus, respectively. This box no-
tation is one of the most powerful notational
schemes that has been developed for quantum
physics, and we shall attempt to show some of
its uses by examples.

As a simple example consider a C3„symmetric
ammonialike molecule XF3 as shown in Fig. 2.
Here it is assumed that twofold axes point along
centrifugal distortion extrema that are of suffi-
cient depth to "capture" the angular momentum
vector. It is not yet known what the conditions
must be in order to have twofold clusters3' in
spectra of symmetric top molecules. However,
there must exist a least upper bound for the N
quantum number beyond which twofold rotation
and related spectral clustering is present; this
is well-known behavior of a classical semirigid
C3„rotor. [For a prolate (Iz Is & Ic) top two——fold
rotational states would actually be lowest in en-
ergy. ] Nevertheless, the XF3 example is a good
tutorial device for explaining the use of cluster
theory in more complicated heavy spherical top
molecules where the clusters have shown up in
every spectrum of sufficient resolution taken so
far.

There are six states
)(I"„1),I"„rQ, I"„r ') I"'„v) I"„cr'), I"„c")3

for each value of momenta NP, m, and n. These
correspond. to each of six equivalent twofold axes
along which the momentum vector N could "stick, "
as indicated by arrows in Fig. 2(b}. Note that
each of these states may be obtained from the or-
iginal state I" 1) by a permutation of the F3 nu-
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clei g, g, or c in Fig. 2(a). For example, the
permutation (abc) moves (g) to where (b) was, (b)
to where (c) was, and (c) back to where (a) was.
In the original state i „1)nuclei (s} and (b) occupy
the "wing" states numbered 1 and 2, respectively,
in Fig. 2(a) where they sit away from the angular
momentum axis and hence they move faster than
nucleus (c) which sits in "apex" state 3 practically
on top of the N axis. However, in state I"„„rQ ob-
tained by permutation (@bc) we find that nucleus
(b) winds up in the apex state 3 [see. Figs. 2(a) and
2(b)]. Operation 7 =(gbc) can be thought of as a
120' internal rotation around the C3„ threefold
axis of the XF3 molecule. Operations such as o

=(gb) are planar reflections, i.e., 180' rotation
inversions.

One should not confuse the I.MN frame in Fig.
2(a) with an Eckart frame 3' The N axis always
stands for the axis of quantization for all the ap-
proximate cluster bases regardless of which nu-
clei reside in "pockets" or states 1, 2, or 3. The
states are distinguished by different physical
properties (viz. , states 1 and 2 give nuclei faster
rides than state 3) while nuclei are apart from
their spins quite identical. Hence the nuclear
labels a, g, and c must finally be summed to give
a physically meaningful quantum state. This is
indeed what happens when the Pauli principle is
invoked as we will see in Sec. IIB.

The representations G,'-,". of permutation group
S3 are labeled by Young frames of three boxes in
a row (3}, three boxes in a column (111},and an
arrangement $2, 1}with two boxeS in the first row
and one in the second. Normally, the representa-
tions (3}, {111},and (2, 1}would be called'&, A2,
andE, respectively, or else'. ', A. ", andE or
any of the many notations that exist in the litera-
ture. The Young frames and tableaus present the
opportunity to eliminate once and for all the con-
fusion and vagueness of proliferating group-theo-
retical and molecular-symmetry notations. Fur-
thermore, the tableaus become nomograms or
mnemonics for producing "on demand" the entries
to all sorts of character, representation, and
transformation tables that normally must be
stored in the back of textbooks; hence tableaus
minimize the chances for errors of typography
or mischosen phases. As an example the repre-
sentations '3', G ~~', and&~ '~' are derived in
Appendix A. The results are used in Eq. (2.4) to
give in Fig. 3 the "angular-momentum-tunneling"
wave states of a trigonal molecule. It is as im-
portant to make a distinction between the left (i}
and right Q}subindices of the projector P,"' in
Eq. (2.4} as it is to distinguish m and n in the 03
projector P"„,[Eq. (2.1)]. To emphasize the dif-
ference we generally replace the pm"ticle labels

a, b, and c in the right-hand Q} tableau by the
state labels of the state in which each particle xe-
sides in the original state, i.e., a-l, g-2 and
c-3. The right-hand g tableaus determine the
physically distinct (state) properties of the wave
function, while the left-band (i}tableaus merely
determine the properties of the wave function
vis-a-vis permutation of particles a
the language of Befs. 23 and 34 (in the latter the
order is reversed}, the left-hand indices (i) label
permutational group S„bases while the right-hand
indices (j) label unitary group U„bases. The gen-
eral problem treated there is that of n indistin-
guishable particles occupying ni distinguishable
states. Here we happen to have n=3 particles to
occupy the same number (m =3) of states, and we
do not consider -the possibility of more than one

- particle at a time occupying a given state.
As we will see the left-hand indices

abdac
c b

will be summed in a particular way to satisfy the
Pauli exclusion principle. Hence this twofold
"i degeneracy" is fictitious. However, the "j de-
generacy" associated with right-hand indices

Q}= — and
1 2 1

is quite real; it corresponds to inversion doublet
states. To see this note that the point group C3„
has three improper planar reflection operations
o, o', and o" which correspond to the three odd
elementary transposition permutations (ab), (bc),
and (gc), respectively. A plane reflection such as
& =(ab) is a product of inversion (I) with a 180'
rotation about the normal axis. In case of o the
rotation is R(0180'0) about the y or M axis in
Fig. 2 hence

(gb}=o =IR(0180' 0) =R(0180 0)T.
The effect of o on the original state I „„1)is the
following

o I"„1)=R(0180'0)I I „1)
=R(0180' 0)(-1)'I.".' 1)

=(-1}""'(-1)'l." .1), (2.
where the phase P(n) depends upon the choice of
convention for D matrices in Eq. (2.1). Our
choice gives

However, regardless of the choice for P(n) there
are two types of wave states; one for each choice
of parity P, and different choices can in general
give states of different energy.
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FIG. 3. Twofold cluster eigenstates and energy levels for XF3 molecule. (a) Tableau projectors give eigenstates
according to (2.4), and the angular momentum "wave picture" of the states depends on the parity according to (2.5a);
{b) Centrifugal tunneling matrix assumes a tunneling amplitude(s) between nearest-neighbor axes only. II is the "cen-
ter of gravity" of the cluster; (c) cluster level structure results from matrix (b) and eigenvectors (a).

To determine the energy levels in the cluster
approximation we construct an angular-momen-
tum-tunneling matrix in Fig. 3(b) by assuming
nonzero tunneling amplitudes (-S) to exist only
bebveen adjacent axes, i.e., only behveen axes 1 (2.6a)

and 2, 2 and 3, 3 and 4, etc, in Fig. 2(b). 1 et
cluster states I1} and )4) be

I1)= I" 1), 14) =R(0180'0) i „1)

( 1)e(n&) &+
1)
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whereupon all six cluster states are obtained by
rotations of the original state I 1)

I2) =r 'l4), i3) =el 1),

I5) =& 'Il), I6) =~i4) .
(2.6b)

NI)) a))
I

N ) a ))
n ()j n (~I

involving the Hamiltonian matrix in Fig. 3(b).

(2.'f)

B. Spin states and the Pauli principle

The general three-particle spin state will be
denoted by Is, s', s") which means nucleus a is in

The bases f I1), l2), I 3), . .. , I6)}differ at most by
phases from bases (11), lo'), I) ), . .. , Io')}, but

they are more convenient when improper reflec-
tions or inversion rotations are physically less
feasible than rotations. Then the rotational clus-
ter splitting '+ S and +2S dominates the inversion
splitting H' between doublet states of different
parity as shown in Fig. 3(c). The energy levels
shown there are obtained by substituting the
eigenvectors in Fig. 3(a) into a Schrodinger equa-
tion

state s, 5 in s', and t." in s". For spin- —,
' nuclei,

two base states "up" (0) and "down" (0) exist for
each nucleus, and so there are 23 = 8 spin base
states for the XF3 molecule if nucleus X has no

spin,
The tableau projection operators P~;}'~,} can be

used to produce definite total nuclear-spin I states

(2.6)

where the original spin states Is, s', s") are just
those for which s ~ s' ~ s", i.e., I &, &, &), I &, &, &),

I 0, 0, 0), or I 4, 0, 0). Applying the projection op-
erators in Appendix A to these states gives the
eight states shown in Fig. 4. It is shown in Refs.
20-23 that tableaus (3}and (2, 1}correspond to
total spin I= -2 and —,', respectively, while the
tableau (1,1,1}fails to produce any states since
totally antisymmetric combinations of three spin-
2 states must vanish. (In general, two-rowed
tableaus Q. , p~} give spin I= -,'(p& —p. 2) combina-
tions of n =p.

&
+ p. 2 spin- —,

' particles while three-
or-more-rowed tableaus contribute nothing. ) The
right-hand tableau index (k} of the (2, 1}) projector
has the g, b, and c labels replaced by the labels
of the states in which the respective particles are
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FIG. 4. XF3 spin states. '
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residing in the original state. For example,

(aj=

acting on {0,4, 4) is rewritten (kj = f . This nota-
tion by itself wiO be sufficient to define the physi-
cal properties of the state in E(I. (2.8); we can
just as well drop the I=-,', m, =- 2, and the left-
hand fij tableau index will be summed shortly to
satisfy the Pauli principle. Had we chosen the
other possibility

fuj= ' '-

for the right-hand index of the projector P[;~[,~
no(2i i]

new states would arise from action on (0, 4, 0),
and action on 10,0, 4) gives zero. (Indeed, (kj
= &~ is a null tableau; equal states cannot reside
together in a tableau column since columns stand
for antisymmetrization. )

Finally, Pauli antisymmetric states, which are
the only ones allowed for spin- —,

' Fermi particles,
are obtained from particular combinations of the

orbital states in E(l. (2.4) and the spin states in

E(I. (2.8). For each tableau (ij there is a conjugate
one denoted by (ij in which rows and columns are
switched. For example, we would have

, or JSj=(1,1,1j.
4

Pauli antisymmetric states are made of products
of states belonging to {(Lj and [()j orbit and spin
tableaus, respectively, as follows:

-1 '(
Z (

w l) /2 ! ~( '
) (

' )) ! (
'

) ( )

where l" is the dimension 5 of S„=SABIR/ j,
l"=n! /(product of Q j hook lengths), (2.9b)

and p, is the parity [(+) for even and (-) for odd]
of the permutation that converts tableau [ij into
the "first" one $i,j wherein the particle labe!s a,
5, c, are lexocographically inserted in frame

Some examples will be given now. The Q j
=(I, I, 1j state

(2.10}

requires no sum and obviously satisfies the Pauli
principle. The Q, j= $2, 1j state

N~ 1 2 00 1/
mn 8 0 1/

1 (X'y, lj
b 1 2

(2, 1j 1/2
a c

' b

(2, lj
a c 1 2 a (2.11)

ol

1f
2 'f

34
j.f

etc. The notation 24, for example, stands for
34

the completely antisymmetric sum

24 =Q 8) (r .„,,

x](r) . ! &, &, &)j (2.12}

is more complicated but can be shown to be Pauli
antisymmetric as well.

There j.s a convenient tableau formula ' for
relating orbit-spin states such as (2.9), (2.10),
or (2.11) to Slater determinant states. Examples
of Slater states are

over all permutations (r) of nuclei a, Q, and c
such that any nuclei in states 1 and 3 have spin
"up" (0) while any nucleus in state 2 always has
spin "down" ( 0). This Slater determinant state
j. k

24 would be written !(1')(2 )(8')) in the standard
34

notation of electronic orbital theory, however,
we prefer to reserve the horizontal formatfor the
Slater "permanent" state which will be needed to
describe Bose symmetrization of integral-spin
nuclei. Figure 5 shows how to relate orbit-spin
states to Slater states using the tableau "assembly
formula, " and an example relevant to the XF3
problem is worked out. The assembly formula
makes it possible to transform between the two
types of states [E(ls. (2.9) and (2.12)] without get-
ting involved in any sums over nt permutations.
The transformation is useful since Slater-type
states are convenient for constructing Hamiltonians
while orbit-spin states are convenient for describ-
ing eigenvectors.

It is instructive to use Fig. 5 to obtain the trans-
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,(
n

Example:

number

)L
n q( n $(

n&

p, )+pal+1 number p2
n$

P1-@2+2 )&

ni(

QA Q n/ QE

(numbe p I
. )) IIUmtlBP (/Jp-1

P1+Ps
o1

.2+ 2

/ i+Ps
(-1}

Q
5$

2$

1 f
20

p'kk1S$kzk5k)

FIG. 5. Assembly for-
mula for combining orbi-
tal and spin states. Each
column state {Slater de-
terminant) on the left-hand
side of the sample table
has a definite spin {arrow)
on each orbital state {num.—

ber). The formulas will
give the overlap of this
Slater state with a given
orbital tableau state if one
first writes the spin with-
in this orbital tableau in
exactly the same way.
Then one proceeds to. re-
move boxes with number-
ed spins starting with the
highest number{s). Each
"removal" gives a factor
depending on what is being
removed and where {cases
A-E). All of the numbers
in the formulas refer to
the condition of the tableau
just before the box out-
lined in the figure is re-
moved.

142$ ~S 1k 2$ Q3$

formation

2

momentum operator is the sum

F=N+I (2.15)

24
1/v 2 1/v 2

-1/v 2 1/v 2

(2.13)

C. Angular momentum states and spin frame transformations

In the limit of weak spin-rotation coupling the
hyperfine eigenstates will be the following com-
binations:

from Slater states to "para" (singlet) and ortho
(triplet) states involving just two spin-& nuclei.

of nuclear rotor (N) and nuclear-spin (1) momen-
tum operators. For these states the N, I, and I'
quantum numbers are good as are the lab (z) com-
ponent f of E and the body (z) component I of N
(n is the cluster momentum number). The spin
states are assumed to have positive parity. The
spin momentum is quantized in the lab (z) axis.

If spin- rotation-induced hyperfine splitting equals
or exceeds the centrifugal superfine or cluster
splitting then states with the nuclear spins quan-
tized in the body frame become useful bases.
These states will be denoted by overlined (7, or
/k)) spin tableaus as in the following example:

N~Q)F~) P g I N F~N Q)f$)I (2.14) 1 2
~VH&h' r ;,)=. , —, ~~ „. ..,.(,),

of the orbit-spin states from Eq. (2.9), where
C'" are Clebsch-Gordan coefficients and the total

(2.16)

where f and f are lab and body components, re-
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n 3 f

(
N 1 2lE=N —1/2
nl3 f

(
N+»+1
2N+ 2

(// )//2

N —n+1

(/// „)//2

TABLE I. Spin frame relation for angular momentum
I=

Transformations between body spir states [Eq.
(2.16)] and lab spin states [Eq. (2.14)] are analog-
ous to the frame transformations bebveen states
belonging to different Hunds cases. These have
been exploited extensively by Pano and Chang'~ in
treatments of molecular electronic orbitals.
After the notational changes E -I, A -n„J-E,
and K -f in Eq. (3.6) of Ref. 5 the following rela-
tion results:

spective of the total momentum I', and nl is the
body component of the total nuclear spin. (n~ can
be read directly from the spin tableau ]kg.)

where [N]=2N+1 and [/]=2J+1. Two examples
of this relation are

N 1 2 F=N+1/2 /N+n +11~ 1 2 f7E=N+1/2 9l —n+1 ~ 1 2 f4 F=N+1/2
n 3 f ( 2N+2 / 3 7 f,f=n+1/2 I, 2N+2 3 0 f,f=n —1/2

N~ 1 2 F=N —1/2 fN-n ~~ 1 2 0 0E=N-1/2 (N+n ~ 1 2 f0 E=N-1/2
s 3 f 2N 3 0 f f =n+1/2 ( 2N 3 0 f g=n -1/2 (2.18)

while 1 2 ~,F=N —1/2) is very nearly equal to
3

the body spin "down" state 1 2

It is important to note that as the cluster approxi-
mation is approached, i.e., as n approaches N
and both become large, the "off-diagonal" parts
of this relation become less significant. Then the
lab spin state 1 2,E=N+1/2& is practically

3
the same as the body spin "up" state 1 2

3

One should also note that Eq. (2.18) is not an
orthogonal transformation. Instead the inverse of
Eq. (2.17) is

i9)C~&;,'/ .„,)=/II(~) c„-', "./„, .„i'„'0) ),
(2.19)

and this involves a sum over different N for the
same E. An example of an orthogonal transforma-
tion is given.

77E=N+1/2 1 2 0 4 E=N+1/2
f f=~+1/2 3 7 f f=n-1/2

N 1 2 E=N+1/2
n 3 f

N+1 1 2 E=N+1/2
n 3 f

(N+n+1 '"
li 2N+2

&N-n+ I '"
er-n+1 '"

N+&+1»'
(2.20)

TABLE II. Spin frame relations for angular momentum I=2.

N —Z =N+3/21
2

n —f
5'= N+ 1/2I

F =N- &/21

s =sr 3/2I-

1

~3

(N+ n+ l)(N+»+ 2)(N+n+ 3)
(2N+ 2)(2N+ 3)(2»+4)

3(N+n+ 1)(N+»+ 2)(N- n)
2N(2N+ 2) (2N+ 3)

3(N- n —1)(N- n)(N+n+ 1)
(2N- 1)(2N)(2N+ 2)

(N- n —2)(N- n —1)(N- n)
(2N —2)(2N-1)(2N)

1
2&tk
3

(
3(N+n+1)(N+n+2)(N-n+1) ' '

(2N+ 2)(2N+ 3)(2N+ 4)

(N- 3n)(N- 3n)(N+n+1) i/

2N(2N+ 2)(2N+ 3)

(N+ 3n+1)(N+ 3n+ l)(N- n)
(2N-1)2N(2N+ 2)

3(N- n —1)(N- n)(N+n)
(2N- 2)(2N- 1)2N
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Normally, one is not concerned about states of
different N in the elementary cluster approxima-
tions. Tables I and II give the desired frame
transformation relations between XF3 states of
the same N and n but different F=N + b. (&=
+-', -', ). Table I is a repeat of Eq. (2.18).

One should note that the permutational proper-
ties of orbit-spin states such as

1 2 40 1 2
3 4 3

do not depend on whether the spins are quantized
in the lab frame or in the body frame. The assem-
bly formula (Fig. 5) can be used to write

in terms of body-frame Slater states

17 17
20, 24, and 27
34 34 37

just the same as in the lab frame. Indeed, body-
frame Slater states are convenient bases for be-
ginning construction of Hamiltonian matrices as
seen in Sec. IID.

D. Methods for solving spin rotation Hamiltonians

Rather than giving a complete description of all
relevant spin rotation Hamiltonians me shall pick
examples from the collection of operators given
in the literature~~'30 which are sufficiently com-

plex to demonstrate the method for setting up ma-
trices in the cluster bases. Then the resulting
matrices will be solved in order to show the phy-
sical properties of the states in various cases.
One operator example is the tensor-spin-rotation
operator

Ht„——T Q [r(k) -r(j)] &&[av(k) -v(j)] I(k),
g, y=e, b, c

(2.21)

which represents the interaction between the spin
of nucleus (k} at position r(k) and the velocity v(j)
of charge around nucleus (j) at position r(j). The
coefficient g is meant to account for Thomas pre-
cession. Following Ref. 29 one expresses the ve-
locity in terms of angular velocity (&u} and mo-
mentum (N) of the frame, i.e., let

v(k} =v xr(k},
(2.22)

„-=~ N„Q)g=2~N&& (0-=2CN
where A„B, and C are the prinicpal molecular
rotation constants. (Two of these must be equal
in first approximation for an XF3 molecule. If we
consider twofold axial rotation as in Fig. 2, then
8 =C.) Then the Hamiltonian becomes

H„,=T + r -ark ~ r ' -rk
-[rU)-ar(k)][(rV) -r(k)) ~l} I(k),

(2.28)

In most elementary cluster approximations (ECA)
one need consider only terms involving the z com-
ponent of (d or N. The remaining terms are

H„,(ECA) =2CT N, (T(k)([x(j) —x(k)][x(j) ax(k)]+ [y(—j) —y(k)][y(j) —ay(k)]}
1

-[xU) -~(k)lg.(k)[xU) —ax(k)1+~(k)[y(j) -ay(k)]}), (2.24)

Table II. (t ontieued).

1

3

1

3

N —Z =N+3/21
2

n —f3

Z =N+ I/2I

& =N- &/2I

J =N-S/2J

{N-n+1){N-n+2)(N-n+3) '"
(2N+ 2)(2N+ 3)(2N+4)

3(N- n+ 1)(N- n+ 2)(N+ n)
2N(2N+ 2) (2N+ 3)

3(N+ n —1}(N+n)(N- n+ 1)
{mr-1)(2N)(2N+ 2)

)N + —2))N —1))N " )

)(2N- 2)(2N —1)2N

(
3{N-n+ 1)(N —n+ 2)(N+ n+ 1)

(2N+ 2)(2N+ 3)(2g+4)

(N+ 3n){N+3n)(N- n)
2N(2N+ 2)(»+ 3)

j

)N %)))N 3&))&' ))''--
(2N- 1)2N(2N+ 2)

3{N+n —1)(N+n}(N- n)
(2N —2)(2N- 1)2N
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+yI,(c)+ &[ i.-(a) +I.(b)]

+ &[I,(a) +I,(b)] + perm utations), (2.25)

where n, P, ... , etc. , depend upon the geometry
of the XF3 molecule, the molecular constant C,
and the Hamiltonian parameter T.

where now all operators are expressed in the
body frame. For the XF3 molecule stuck on two-
fold axes [see Fig. 2(a)] the following form of
H„,(ECA) results:

H„,(ECA on 2)

=Ã, (a.i,(c) + P[T,(a) +I (b)1

%hen evaluating this Hamiltonian in a Slater
body-spin bases

lk 17
2V, 24, ... , etc. ,

it is convenient to imagine that nuclei g, 5, and c
are in states 1, 2, and 3, respectively, as in Fig.
2(a). In this way one can ignore the equivalent
parts of a Hamiltonian operator such as Eq. (2.25)
which differ only by permutation of identical nu-
clei. The resulting Hamiltonian matrix is given
below.

(Ht. ,) =

17
24
3k

14
27
3 'f

17 14
27 27
34 34

nn/2+Pn yn/2i (5 -ie)n/2 —(5+iv)n/2
Pn —on/2 0 0

c(n/2 0
an/2

14
2k
34

17
24
34

14
2'f

34

0
0

—(6 + ie)n/2
(5 —ie)n/2

0
0

nn/2 —Pn

0 0
(5 -ie)n/2 -(5+ie)n/2

yn/2i O

O yn/2i
—nn/2 0

nn/2-

0
0
0
0

—(& + i~)n/2
(5 —ie)n/2

- un/2 Pn- (2.26)

1 2

3

Let us solve the preceding Hamiltonian matrix with only the
zero. Using the assembly formula this can be reexpressed in

1 =- - — 1
2 44k 2

1 2 44 1 3

3 3

1

3 3

constants c =2h/n, P =k/n, and the rest
the orbit-body-spin basis as follows.

(H'„) =

0

(2k -h)/3 v 2(2h -k)/3

v 2(2h —k)/3 (h + k)/3
(2.27)

(h —2k)/3 &2(2h —k)/3

&2(2h —k)/3 —(h + k)/3

The desired submatrices of the total Hamiltonian
1

+centrifugal ++sr

are obtained by first converting the (H'„) to block diagonal form using the frame transformation relations
in Tables I and II, and then inserting the centrifugal tunneling eigenvalues H' +2S, H'+S, etc. , - from Fig.
3 in the appropriate diagonal positions of each submatrix. For example the first block corresponding to
total momentum Il~ =(Ã+ ~)' is a 1 x1 block of value

1 1
2 (N+ )+ (( 3 (N + ) )=H +2S+ bii(h + 0) + btg(l't + k) — big(i't + k) —dig(5 +k)
3

,

3
(2.28)
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where b, &
is the (ij)th entry in Table II. Note that only the first three terms of E(I. (2.28) exist in the limit

of high N and n. Note the difference between positive and negative parity states 2 (N+ &) . The cen-
3

trifugal part changes from (H'+ 2S) to (H —2S). [Recall Fig. 3(c).]
The second block is a 3 x3 matrix corresponding to the three states having & =(N+ a) . e h«e

1

(N+ I/2)' (N+ 1/2)' 2 (N+ 1/2)'
3

(H)
E~=( //+i /2 &

H' +S+aggh
2-gg2h

H'+ S+a'„(2k —k)/3

+a'„(k -2k)/3
-ag4b, 2~2(2k —k)/3

-a42b»v 2(2k -k)/3

0

-a„b»v 2(2k —k)/3

—a 42b2q~2(2k —k)/3

H' + 2S +b2g(h, + k}/3

+b,', (k+k) -b'„(b+k)/3
—b,'4(k + k) (2.29)

where a;q is the (ij)th entry in Table I. Note that in the limit that a;, =5(~ ——b;, the angular momentum
blocks approach those in the orbit-body-spin representation of E(I. (2.27). The same applies to the re-
maining blocks given in the following two equations.

(N —1/2)

H'+S -a22h

+a2gh2

H'+ S+a22(k —2k)/3

+a2i(2k -k)/3

-a»b»v 2(2k -k)/3

-a~4b»v 2(2k -k)/3

1
2 (N-1/2)
3

-a»b»~2(2k —k)/3

-a2(b~2v 2(2k -k}/3

H' +2S —b»(k + k)/3

+ b2»(k+ k)/3 - b'„(k + k)

+ b'34(k + k) (2.30)

(
j. 1
2 ()(— / )')Hst 22 (N —3/2)') =H'+Rs —(4~(h+))+(4(h+t)+ —,'b( (h+ 2)

—',b(~g(k+k). -
3 3

(2.31)

The zero components in the off-diagonal parts of
(2.29) and (2.30) are nonzero for a general spin-
rotational Hamiltonian.

In Fig. 6 the eigenvalues of the centrifugal and
spin-rotation Hamiltonian matrices [E(ls. (2.28)-
(2.31)] are plotted as functions of the centrifugal
tunneling parameter S for fixed hyperfine parame-
ters h =2 and k =5. The high-momentum approxi-
mation g;, =6;, =b;,- is assumed. Also the normal
inversion splitting is set equal to zero, i.e., we
assume H'=H .

Despite this, there is still a splitting between
even and odd parity states (N + —,')' and (N +2) due

just to hyperfine interactions, as seen in Fig.
6(a). Even if the mass or body of the nuclei do

not undergo improper operations their spin states
may still be" traded. " The effect is a splitting be-

tween
1 3)and tableau states that zs

3
similar though not identical to "normal" inversion
splitting.

The complicated region of low centrifugal cluster
splitting (S& 4) is plotted in the enlarged Fig. 6(b).
This corresponds to the beginning of case (2) in
which the hyperfine splittings are larger than those
of the centrifugal cluster. Entering this region on
the right-band side of Fig. 6(b) are energy trajec-
tories labeled by body defined orbit-spin tableaus
described in the preceding Secs. II and III. Cer-
tain of these states mix strongly to form new
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(a)

Case 2
(See expanded

view below)
-l0

Case t

I 1 I 3l (N y )/2)+ ( N+ 1/2)—12.l

(N-t/z}+, ,$ N-t/g)

(N+~/2)-

(N+V2)
N t/2)

I I t I
i

I i, I r

i
I t

&0 20

Centrifugal Tunneling = S

gtt ajt

I)
'It

Ir 'I&

I(

I II
II

g

i. I ll

f

gtt~t

[&i~]
&

Q] &

gt t, att

0

FIG. 6. XF superhyperfine corre].ation between cases (1) and (2) for twofold level cluster. (a) Case (1); (b) case
2). Energy levels obtained from (2.28)—(2.31) are plotted as a function of the cluster tunneling Parameter (S) for fixed

Pseudospin rotation parameters g= 2 and k = 5. The high-momentum spin frame relations a;~ = ~sg=&ij are used, and
"real" inversion splitting is assumed zero (H'=H ).



19 THEORY OF HYPERFINE AND SUPERFINE LEVELS IN. . .
I

2291

eigenstates in the limit of case (2) as indicated on
the left-hand side of Fig. 6(b}. For example,

1
2 TV 4 and — mix strongly to make

1 3~~~

3
eigenvectors of the Hamiltonian submatrix in Eq.
(2.27). Using Slater determinant notation the hy-
perfine eigenstates have the following form: the
state

(2.32)

has energy k —h and the state

, ai + ~i=(-,)34 34

14
2f =

2
f7 13/4.

1

34

This is the origin of the "broken tableau" notation
used to denote the case (2} states on the left-hand
side of Fig. 6. Note that similar arguments can
be used for the analogous "down spin" cases in the
lower half of Fig. 6(b) as well as the negative-
parity states indicated by dotted lines in the figure.

By including the off-diagonal a;, and 5;, frame
transformation coefficients one obtains effects of
the spins "slipping" in the body frame. This may
be particularly important if the other hyperfine
terms belonging to coefficients y, 5, and & in Eqs.
(2.25} and (2.26) are to be included also. Roughly
speaking, these terms tend to cause the spins to
"cant, " i.e., line up with directions which slope
away from the body rotation axis (N} and lie in-
stead along the internal molecular magnetic field.

+ — 2

(2.33)

III. ROTATIONAL CLUSTER AND NUCLEAR

SPIN STATES IN XY4 MOLECULES

has energy h. The latter ends up being degener-
ate with the state

1 ~ 1 1 2
lf lf

(2.34}

1 1 1 10 1 14
W2 v2 v2 24 W2 24

3V 3F

2 ))134),
1f 1V

1 1, 1
20 +~2 '2F
37 3f

(2.35)

which is free from any rnixi due to the Hamilto-
1277

nian being studied here. [Note that . is
3

associated with a straight-line energy trajectory
in Fig. 6(b).]

In the limit of case (2) the molecule becomes
stuck on a single twofold axis. The nucleus
stranded in state 13) on the apex of the triangle
is prohibited from ever trading with any of the
nuclei in states I 1) or 12) rotating around with the
base of the triangle. The case (2) hyperfine eigen-
functions [Egs. (2.32)-(2.34)] have precisely the
form that one gets by excluding the nucleus in the
third state from orbital symmetrization. By using
the assembly formula (Fig. 5} or Eq. (2.13}one
finds the following equivalent expressions for the
hyperfine eigenfunctions in which only the parti-
cles in the first and second states are symmetrized

The methods introduced in Sec. II by way of the
XY3 molecular example will now be applied to the
cluster states of the tetrahedral (XF4) molecule.
The fourfold clusters [see the left-hand two-thirds
of Figs, 1(c) and 1(d}]are the most common ones.
Also, they require slightly more complicated alge-
bra for the hyperfine theory. In addition, they
generally have the smallest superfine splittings
and so more fourfold than threefold clusters will
fall into case (2}. Hence, we shall concentrate
our analysis on fourfold clusters.

However, the ground vibronic states of heavy
tetrahedral molecules (CF4, SiF4, etc.} have even
finer fine structure than the excited states and
correspondingly smaller superfine splittings.
Therefore, we expect to find more case (2) clus-
ters there including many more of the threefold
variety. Also, some of the light tetrahedral mole-
cules (CH4, SiH4, GeH4, CD4, . ..) have significant
amounts of a sixth-rank centrifugal distortion per-
turbation, and this relative contribution grows
with J roughly as 8 /J =7 . If the sixth-rank con-
tribution is positive as it is in v3 (3.39 pm) in CH4
then the effect is to produce more abnormally
tight and even degenerate fourfold clusters at the
expense of the threefold clusters. 38 (Extraordinary
cloister spectra can occur even at low J. Even
twofold clusters appear. ) However, if the sixth-
rank contribution is negative the number of three-
fold clusters may grow at the expense of the four-
fold ones. Then some rather unusual cases can
arise which are outside of the scope of this arti-
cle ~
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~~JI 8
g/ /& + ~~ M

0 ]

Ii2 = (bc)
i'za = (abd)
IRi =(acdb}

2
le =(adc)

li4 = (bd}
r4 = (acd)
IR, = (adcb)
r, = (abc}

(b)

O
/b----

= (a)(b)(c)(d)
.IRs= (acbd )

Rs=(ab} (cd)
IR~~= {ad bc )

Iia = (ac)
= (bdc)

& rR&= obcd
ra = (adb)

Iie = (ad)
I6& qa = (abd}

IR, = {acdb)
= (adc}

Rz= (ac) (bd)

Ii&= (cd}

R, = (ad}(bc}
lie= (ab)

FIG. 7. X'F molecule in fourfold axial rotational states. (a) Y particles are labeled by letters and states by numbers
as in Fig. 2(a);-(b) each coset of tetrahedral symmetry operations or permutations corresponds to a different direction
for the fourfold rotation axis (Ã& with respect to the Y nuclei, and to a different cluster base state I l&, 12&, . . . , I s& .

A. Fourfold cluster bases

As explained in Ref. 3 fourfold clusters are as-
sociated with rapid rotation around fourfold (C,,}
symmetry axes as shown in Fig. 7(a). The cluster
splitting is due to tunneling of the angular momen-
tum vector between the six different fourfold axes
indicated in Fig. 7(b). Roughly two types of four-
fold clusters exist depending on the cluster mo-
mentum component n. If n is odd the clusters have
a T& ST, doublet structure, while if n is even they
are triplets: A2 6T2 SE if n= 2 mod 4, and A &

ST& SE if n =0 mod 4. We shall concentrate on
the A& 6T& SE triplets.

04't O Q I Tj,SE clusters

As explained in Ref. 3 the six cluster states
for n=0 mod 4 form the basis of an induced rep-
resentation 04 4 0which reduces to three irreducible
components. There is the single component A& of
tunneling energy (H —4S), the triply degenerate
component Tt of energy (H), and the doubly degen-
erate component E of energy (H+ 2S). We shall
review the structure and meaning of the induced
representation and its reduction by critically ex-
amining the projection operators in Eq. (2. 4) as
they apply to this problem. Before we begin,

note that the 2:j. superfine cluster splitting is a
result of having only "nearest-neighbor" tunneling
amplitudes (-S) between axis states Il& —16& in
Fig. 7(b). Apparently this assumption is correct
for fourth rank as well as fourth-plus-sixth rank
centrifugal distortion operators. 3

The desired eigencombinations of states 11)-16)
are obtained by applying permutation or point
group projectors P;"i [recall Eq. (2.4}] to the ini-
tial state

Il)= I" I)

for which n-=-0 mod 4. In this case, there are
four times as many symmetry-group operators as
cluster states. Hence each cluster state I c& be-
longs to a particular "coset" I, (C4;}of four opera-
tions shown next to that state in Fig. 7(b). [In the
figure the connection behveen permutations
(abc. ..) and a previous notation3 for cubic-tetra-
hedral point group operations is made. ] The sum
in Eq. (2.4) over all 24 elements 4 of the tetra-
hedral group may be shortened to a sum over just
one "leader" element l, chosen arbitrarily from
each coset. To achieve this simplification one
must examine the sum over just the elements in
the invariance subgroup C4; ——fl, IRB,R3, IR3) asso-
ciated with the original state 11) in Fig. 7(b), i.e.,
the first four terms in projector st.
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(8.2)

I mm (») (g)) =&(» )(» ) I mn 1)/& =(I /24& ){SI»)(»)(1)1+S(» «(&)(IR2)IR2+S(&)(»)(R2)R2 +S( I (y)(IR2)IR2) I 1) + ' ' '

=(& /248t )(S(»')'(»)(I)+(-I) SI»)'(»)(IR2)+S(»)'(q)(R2)+(-I) SI»c)'(»)(IR2))11)+. . .
=(I " /6& )SI;)(~)(—,'[1+(-1)IR2+R2+(- l)~IR2])l I) +

P' = —,'[1 + (- I)~IR2 +R2+ (- 1}IR22]

[here c = (0»}]which have diagonal form
lt

~ ~ ~ ~ ~ ~

0

(8.8)

In the last two steps Eqs. (2.1) and (2,2) were used
with n = ~+ and n=0 mod 4. Now the trick is to
pick only those representations S'",(P'} of the in-
variance subgroup projection operator

1 2
3 4

S(2, 2 I (pc) 1
0

1 3
2 4

(S.Va)

while for negative parity [(-1)~=-1], one finds

1 2 1 3
3 4 2 4

S( c I (Fc)
0

(3.4) S(42) (pc)
0

0'I)
1 j

(S.Vb)

S(u)(R )

D '(R;) 0

D (R;) (8.5a)

Then the only surviving eigenstates will be those
belonging to Q] associated with nonzero or unit
components on the diagonal of S("' (P'). The di-
agonal form (8.4} is achieved automatically by any
representation that is reduced with respect to the
invariance subgroup ( R;), i.e., for which

~ ~ ~ ~ ~ ~

Hence the X1'4 E-type "inversion doublet" consists
of states

1 2 p N 1 3Fc=N') and
2

Fc=N ) .
mg mn 2 4

'=

The total spin of the conjugate spin tableau state
I,",} is zero, hence each state is a hyperfine sing-
let.

The T& representation T& belonging to tableau
()» j=(2, 1, 1] is in reduced form with respect to
the threefold axial invariance subgroup when rep-
resented in the tableau basis

0 D'(R; )
1 2 1 3 1 4

or
S(")k(invariance subgroup)

=D'SD SD 6 ~ ~ ~ (3.5b)

(8 6)

[indeed, these observations constitute a direct
proof of the Frobenius reciprocity theorem. The
theorem states that the number f'(()»}4(sub-
group)) of times D' appears in the reduction of
S'"l Shall equal the number f'cl(CN(grOup)) Of

times + " appears in the induced representation
(8.6).]

For example, the T~ representation Z belonging
to tableau ()»)= f2, 2) happens to already be in re-
duced form with respect to the fourfold axial in-
variance subgroup. For positive parity [(-1)
=1], one finds [here c =(0,) again]

It is in this way that the Q]th components of the
eigenstate I"„„I';))»,I) are associated with the (c)th
induced representation

D 0(molecular symmetry group)

In Appendix B, it is transformed to the fourfold
basis gx], [y],[z]). In this basis one finds

[~] b] [~]

(0 0 0)
S" '"[F']= 0 0 0

0 0

(3.6)

where

F»=(N+I)', ¹,»(N-1)'- (3.9)

The representation T2 belonging to tableau (3, IJ

for positive parity [(-1)c=1] and a, zero matrix
results for negative parity. The conjugate spin
state's are a triplet (I,'"), l,"'), I,"')) of spin (I= 1},
and so the only hyperfine triplet in the 0440 cluster
consists of the positive parity states

~P ~P PP 2 1 yP

mn f mn v6
4

~8
3 f[,] = 2 +
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is spin--,' forbidden (tableaus such as 0 corre-

spond to null states as explained in Sec. II 8), and

so the states (3.9) are inversion singlets. How-

ever, the 7.'&T2 pair gives rise to inversion doub-
lets in spin-1 molecules such as CD4. (See Ref.
5, pp. 66 and 75 for examples of spin-1 levels. )

Finally, the representation g2 belonging to
tableau (1,1, 1,1)gives the following representa-
tion

(3.10)

for negative parity and a null result for positive
parity. The conjugate tableau spin states are a
quintet

]l 44&&), I &&&&), t &&&0), I &&4k), f kk&&))

Once again, a "partner" representation, in this
case it is A, =

i
1 [ 2 ] 3 ] 4 [, is spin--, forbidden

(it would take spin $ to activate the A&), and so
the states (3.11) are inversion singlets. Note that
conventional labeling schemes would name the
three components of the 0400 cluster as E, T&,
and A&. %e see that a more accurate labeling is
E', T,', andA2, or better still, the unambiguous
tableau labels in the preceding equations. (A
comparison of tableau and standard symmetry
labels is contained in Ref. 5.)

Now it is clear that the Hamiltonian representa-
tions in the 0440 cluster' basis will require diag-
onalization of just two 2&2 matrices formed be-
tween the two F =N states (Z and T&) and be-
tween the two F =N states (Z andA2). Neither
the pair of I' =N+ 1 states nor the pair of I =N
-'1 states (T& and A, ) can interact via a Hamilto-
nian which has overall spatial. inversion symmetry.
(The parity changing effects of weak nuclear inter-
actions are neglected here. ) Consider the standard
spin-rotation Hamiltonian which has the form de-
rived using (2.21), namely,

of spin (I=2), and so the only hyperfine quintet in
the 0400 cluster consists of negative parity states

H„=AN, [I,(1)+T(2) +I,(3) +I,(4)]

+BN,[-I„(1)+I,(1)+T„(2)-T(2) +I,(3)

+T,(3) —I„(4)—T,(4)] (3.12)
1

mn 3
4

1
2 F~=(N~2), (N~1), or

mn 3 f
4

/

(3.11)
1

in the elementary cluster approximation in which
one drops all N„and N, terms which connect differ-
ent clusters. The matrix of this Hamiltonian in
the Slater basis is shown below in (3.13) for the
first 11 of the 16 states

14
24
30

14 1f 17 1&

27 2$ 2& 2&
37 3$ 3& 3$
47 47 47

14
24
3f

1$ 10
2f 2k
3f 37
47 4V

1%
27
34
4%

14
2f
34
47

2a —be be ho. —bo,

0 0

0 be, -be,
0 —bo'. 0 bn

(II„,) =
0 —bn 0 be
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Here we let a =nA, 5 =nB, and a, = —,'(1 +i)=e'"~4/&2. Also some pseudo-spin-spin exchange
parameters I, J, E, and E are introduced. Spin-
spin effects would be smaller than spin-rotation
effects by a factor equal to the cluster momentum
(Pl,) =n-10-100) even if spin-spin and spin-rota-
tion interaction constants were comparable. We
include the spin-spin components to show the ef-
fects of differences in spin-exchange rates be-
tween nuclei across (Z) and along (E) the rotation
axis, as well as differences between energies of

1

spins paired across (I) and along (J) this axis.
As in Sec. IID the next step is to use the assem-

bly formula (Fig. 5) to arrive at the orbit spin
basis. Tables III(a} and III(b) give the bases that
are directly useful for threefold cluster calcula-
tions. To obtain useful fourfold states one must
include the transformation from Appendix B for
the f, p, f=(2, 1,13 tableau states. The results are
listed in Tables IV(a) and IV(b). Finally the orbit
spin matrices for even parity (3.14}and odd parity
(3.15}states are obtained as in Sec. II

0

(H„,)' =
0

(3.14)

1 1 1

3 3 3
4 4 4

1

4

(H...) =

I/3+ 2z/3

+$(Z + 2E)

&2(Z —1

+2E -2E)/S

2I/3+v/3 0

+2E/3 -2E

(3.15)

Note that the tensor spin-rotation operator fails to
give any off-diagonal matrix components whatso-
ever, i.e., the coefficient 5 =Bn does not appear.
Except for the presumably small pseudo-spin-
spin coefficients the Hamiltonian is diagonal in the
elementary (0400} cluster basis. (However, real
spin-spin interaction would give some additional
off-diagonal components. )

To complete the problem one still needs to take
account of the spin-frame transformation relations
as was done in Secs. IIC and IID. The necessary
coefficients are contained in Tables V and VI. As
in the XFS example, one finds that only the diagon-
al components contribute significantly in the limit
of high N and n-¹This is also the limit in which
the tunneling parameter 8 and associated energy
splittings

(E' IH„„,IZ'} =H'+ 2S,

(Tg IH,„„,IT)) =H',

(A2 IH~„, IA~) ~H -4S
(s.15)

between cluster components become smaller than
the hyperfine splittings determined by g =An, I,
J, etc. This is case (2).

The limiting approach to case (2) is shown by
the energy-level correlation diagram in Fig. 8.
Here we choose 8 and E to be negligibly small but
keep I=-J=-,a. The resulting case (2) eigenvec-
tors are most easily understood in terms of broken
tableau notation introduced at the end of Sec. IID,
and are drawn next to their corresponding energy
levels on the left-hand side of Fig. 8. In the case-
(2) limit one may suppose that the permutations
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Q

bG

Q
Ca0

'U

0
E40

9
~~
Q0

G4
Cd

~~
Q)

Cd

0

0
Q

Q

g

1

Qm

I

CO

Il

Z
a CQ

F"
Q

Cd

0
~ a.
M

BS
Q

Q '8

Fv

0
Cd

~~
Q fH

C4

Cd Cd

p Cd

b m

~ o
QF

m ~
m H

$

N

V

~ ca/~[



THEORY OF HYPERFINE AND SUPERFINE LEVELS IN. . .

between nuclei in "bottom" states (1 and 2} and
those in "top" states (3 and 4) are no longer
feasible, i.e., XY4 has become a pair of diatomic
X2 molecules as far as permutations are con-
cerned.

By expressing the eigenvectors of (3.14) and

(3.15} in terms of partially symmetrized or broken
tableau one obtains (3.17)-(3.19) below using
Tables Ill, IV, and Eq. (2.13). The first three
states cannot mix with any others in the cluster.

1

4

(3.17a)

+ '~t v 2, (3.17b)

(3.17c)

The form of the next four eigenstates depends on
spin Hamiltonian, however. For our choice we
have

1 2 ~ 3 4

1
2 1 3 TI 1 2

&5 24 ~f W3 3
4

(3.ISa)

(3.18b}

cg
j

of energy J, and

v2,
(3.19a}

1
—1 1 3 V7 2 2
v3 2474 v6 3

(3.19b)
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TABLE IV. (T&, (2, 1, I)) states transformed to appropriate fourfold cluster form. The
transformation (Bl) was applied to the (2, 1, lj states in Table II.

(a)

i tfjt

1&

2&

3f
4)

1/2 1 2

2&

3t
—1/2 -1/2

1&

2t
3t 1/2 -1/2 -1/2

1t
2& -1/2 1/2 -1j'2

(b)

1&

2&

4t

0 1/ 2

2&

4t

1/ 2

2&

3t
4. )

1&

2~

4$

1)
2&

3 II

4)

1&

2&

1/W2
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TABI E V. Spin frame relations for angular rnornentum I=1.

N tF =N+1
n — f

(N+n+ 1)(N+n+ 2)
(2N+ 2) (2N+ 3)

{N-n){N+n+1) &'~'

N(2N+ 2)

(
(N -n —1){N-n) II

2N(2N —1)

( btÃ+„+1)(b' —„1))I
(2m+ 2)(2N+ 3)

2n2 )i!2-
l(N(2N+2) )I

2(N+n)(N-n) '~'
2N(2N —1)

( (N- n + 1)(N- n + 2) l~
~ 2

(2N+ 2)(2N+ 3) )(

~&(N+n)(N-n+1) )'"
N(2N+ 2) )

~t' (N+n-1){N+n) I'~'
2N(2N —1) )

of energy I. The remaining three states are just
the down-spin images of (3.17).

In Fig. 8 we assume that inversion splitting is
zero, i.e., th taJI=H in (3.16). This is equiva-
lent to prohibiting the nuclear masses from per-
forming an odd permutation such as (ab}. Never-
theless, we note that the

~12 13~34'24)
inversion doublet is split by hyperfine spin-spin
splitting is ($J—,'I+ 3E +4F—). F—urthermore, if
the spin exchange E and I' are nonzero the degen-
eracy between positive and negative parity doub-
lets in extreme case (2) on the left-hand side of
Fig. 8 will be lifted. In other words, the exchange
of either nuclear-spin states or the nuclei them-
selves will split "inversion doublets. "

f) (3)[1]

.b. )

a b a c

bf)(2, 1)[1] 0

should not be overlooked. First, the tableaus are
arranged so that if you delete the most recently
added particle [for S& it is (e)] the resulting sub-
tableaus indicate the subgroup representations on
the diagonal as in the following:

APPENDIX A: IRREDUCIBLE REPRESENTATIONS AND

PROJECTION OPERATORS OF PERMUTATION GROUPS S„

The representations of the order-2 permutation
group S2 =[1=(a)(b), (ab)] given by (Al) below are
well known,

bD(heidi)[1] (1)

&'"[(~f )]=(1),

S""l(ab)j=(I,),
&"'"[(~)(&)]= (1}, (Al)
~(1, i)[( f )] ( 1)

though the tableau notation is seldom emphasized.
The horizontal (vertical) tableaus correspond to
symmetrizing (antisymmetrizing) projection oper-
ators

[Note the

a . a c(in - and
b c

(A3b)

However, for more complicated permutation
groups, starting with

(A2)

SB = jl =(a)(b)(c), (ab), (bc},(ac), (abc), (acb))

the power and convenience of the tableau coding

which gives the (-1) in each case for S2 permuta-
tion (gb).] Second, the Yamanouchi tableau formu-
la given in Fig. 9 and explained in the caption
allows one to quickly compute the representation
of the permutation involving the two most recently
added particles. [for S3 it is (bc)] and hence all



23QQ %ILLIAM G. HARTER AND CHRIS %. PATTERSON 19

other permutations as well. For S3, Fig. 9 gives

+

S

K
~M

0
~H

0
bL)

Q

O

Y4
E

~H

bD

"U
0
Q

C4

E0
O

C
Cd

Cd
O

G4
Cd

h00

0

II

v

E
3
EI0
2
Cd

Q

0
m ~

+
0
Cd

+
Cd

+

S4 ~
+

g +

e +~

H

CvS

+

CO

I

II

Cd

+

CO

I

II

I

II

+

I!

LQ

+

II

I»
I»

I

I»

l~

I»

I

gg

+ 5

CD

+
C)

l

CQ

+

+

~ ~

+

+.

CO

+

I

+
+

CQ

+

I

Cg

C)
+

CQ

II il

+

CD

I

CO

I

+

I

I

cu

I I

II II

I)
!vS)

~' ""[(bc)l= (-l) (ASc)

1 1

&""[(abc)]= 23 -2
~(1.1~1)[( bc)] (i) . (ASe)

u")[( b)] =(i),
I

S) tz "[(acb)]=

u"' "[(acb)]=(&) .
The projection operators are given by

~(+)
&t )( ) =, K+I ) (Jl[&)]@)S! (p)

where /
" is the dimension of N "'. For example,

combining (AS) and (A4), we have

(A4}

=2/S! [2(1)—(ac) —(abc) + 2(ab)
a b a

c —(acb) —(bc)]/2,
(A5)

p(2, 1]

a c a b

b c

=-2/S! [-(ac}+(abc)

-(acb)+ (bc)]v S/2,

which are used in Fig. 3.
Some examples of

84 ——fl, rt =(abc), Izz =(cd), IRz ——(acbd), . ..)
representations which are used in Sec. IG are given
below.

and matrix multiplication [viz. , (ac) =(ab)(bc}(ab),
(abc) =(ab)(ac), and (acb) =(ac)(ab)] gives the rest:

&("[(ac)]=(l),
i 1~" "((ac)I=,' *, '),-Z&3 2

(ASd)
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Case 2

Oq '10
CLUSTER

Case 1

Tableaus of
Orbit Spin

g4 hi

Total Angular
Momentum

(Parity)

(F)

FP= J+

J

Standard
Symmetry /abets

- .tf. ti-'ti ~

, tf i&

Qig~ QQ4~

gn Iti~ Qttlll-QNI»

Ittlw Elugtt. ,

t 4j 2 lk & I
+~2~ J

~ ~FP= ( J+ t)+

J+
~t

r
r~l h + (J —t)

El El

, Fp=(J+Z)

(J+l)

f ) I I

J

1/8/
t ill /r /

(J-&) gr
I

/
/(J-z)

FIG. 8. XF4 superhyperfine correlation bebveen cases (1) and (2) for (04)+ 0 cluster. Energy levels obtained from
(3.14)-(3.16) are plotted as a function of the cluster tunneling parameter {8)for fixed spin-rotation parameter a and
fixed pseudo-spin-spin parameters I=-J'=4 a, E= O=I'. Real inversion splitting is assumed zero (H'=H ).
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+jp) "-— ~(1,i, 4, i }
I:p3

e d) b d)
a b

c
d

a c a

[(acbd)] (' ')

—1/2 -v3/2
[(abc)]

fl 0 0)
0 1 0

(0 01~
t -1/2 —W3/2 0)

~ Va/2 -1/2 0 I

0 0 11
0 —v 3/3 —v 6/3)

i
v3/3 2/3 -v2/3

,(v 6/3 —v 2/3 1/3

(A6a)

(A6b)

(A6c)

Note S3 irreducible representation bases
I

aa b a c
c '

b c
"inside" the (2, 1, 1] tableaus locate these repre-
sentations in reduced block diagonal form in
(A6a) and (A6b).

n-I
n

IM n I

APPENDIX B: THREEFOLD-TO-FOURFOLD

TRANSFORM ATION S

The structure of the tableaus guarantees that

$4 representations are already in block diagonalized
reduced form with respect to Sz=(1,(ab), (bc), ...}
as well as S, = (1,(ab)j. Physically, this means
that the T„-S4 representations are already in re-
duced form with respect to a threefold axial sub-

I
group Cz„-Sz-—fl, c,v, ...].

For applications in Sec. IH we need representa-
tions that are reduced with respect to the fourfold
axial subgroup

Dz, =(1,IR»Rz, IRz, R,', Rz, Izz, Iz4)

= (1,(acbd), (ab)(cd), (ad bc), (Izc)(bd),

(bzd)(bc), (cd), (ab)].

of Sn

D(n, n-t) =

(5+ I)(d-I)- Itd
d2

d
'

d

'a d

'W3 b

C,
(Bla)

Clearly from (A6c) the representation & ' ' is
not in this form, although S ' and X) ' ' ' are.(2, 2) (i.i, i, i)

(For%) Iz'z'z'zI or%)' I this is trivially so.) How-

ever, the following orthogonal transformation
produces bases which are in Dz& reduced form:

d I)(d-I)
Iid

d2

EXAMPLE: I 2131 I 2I4l I 2151 I l3141 I 5151 I 4151
4 & 5 2 2

'Tl

of S5

D(4,5) =

- I/4 l I5/4

QI5/4 I/4

- l~4 &15~4

~15' I~4

FIG. 9. Yamanouchi formulas for permutation opera-
tors. Integer d is the "city block" distance between n
and n —I blocks, i.e.', the minimum number of streets
to be crossed when traveling from one to the other.
Note that when numbers n and n —1 are ordered smaller
above larger, the permutation is negative (antisymme-
tric if d=1), and positive (symmetric if d=1) when the
smaller number is left of the larger number. (The n —1will
never be above and left of n since that arrangement
would be "nonlexical. ")
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a b

c

g d

&3
C

' 8 C

re b

Q d

+~ b ~

C

&[&1& &b]& &[&]&

(0 0
& &[i& or (abc)]= 1 0 0

(0 1 0)

~[ ]& ~b]& ~[ ]&

(O -1 0)
S &[IR& or (gcbd)]= 1 0 0

0 0

Examples of the resulting representation are the
following:

and these are just the well-known cubic polar-
vector or tetrahedral axial-vector representations.
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