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Molecular Sym32. Molecular Symmetry and Dynamics

Molecules are aggregates of two or more nuclei
bound by at least one electron. The nuclei
of most stable molecules can be imagined
to be points in a more or less rigid body
whose relative positions are constrained by
an electronic bonding potential. This potential
depends strongly upon the electronic state as
described in Chapt. 31. Most of this discussion
is about stable molecules in their electronic
ground state. In Sect. 32.6 some comments are
made about molecules with excited, or “loose”,
parts.
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32.1 Dynamics and Spectra of Molecular Rotors
Motions that stretch or compress the bonds are called
vibrational motions, and give rise to spectral resonances
in the infrared region of the spectrum. Typical fun-
damental vibrational quanta (ν0) lie between 80 cm−1

(the lowest GeBr4 mode) and 3020 cm−1 (the high-
est CH4 mode). (A 1000 cm−1 wave has a wavelength
of 10 µm and a frequency defined by the speed of
light: 29.979 2458 THz.) Vibrational amplitudes are
usually tiny since zero-point motions or vibrations
involving one or two quanta (ν = 0, 1, 2, . . . ) are
constrained by the steep bonding potential to less
than a few percent of the bond lengths, but high
overtones may lead to dissociation, i. e., molecular
breakup.

Overall rotation of molecules in free space is un-
constrained, and gives rise to far-infrared or microwave
pure rotational transitions or sidebands on top of vi-
brational spectra. Typical rotational quanta (2B) lie
between 0.18 cm−1 (5.4 GHz) for SF6 and 10.6 cm−1

for CH4. Individual molecules are free to rotate or
translate as a whole while undergoing tiny but usually
rapid vibrations. Vibrating molecules may be thought
of as tumbling collections of masses held together by
‘springs’ (the electronic vibrational potential or force
field), and are called semirigid rotors. The coupling of
rotational and vibrational motion is called rovibrational
coupling and includes centrifugal and Coriolis coupling,
which will be introduced in Sect. 32.6.
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492 Part C Molecules

This discussion of molecular dynamics and spec-
tra mainly involves molecular rotation and prop-
erties of rotationally excited molecules, particu-
larly those with high rotational quantum number
J = 10–200. However, the discussion also applies
to molecules in excited vibrational states, and
even certain cases of molecules in excited elec-
tronic states. The analysis of vibronic (vibrational-
electronic), rovibrational (rotation–vibration), or rovi-
bronic (all three) types of excitation can be very
complicated [32.1–5] and is beyond the scope
of this article, but these problems can all ben-
efit from the elementary considerations described
here.

32.1.1 Rigid Rotors

As a first approximation, and for the purposes of dis-
cussing basic molecular dynamics and spectra, one may
ignore vibrations and model stable molecules as ‘stick-
and-ball’ structures or rigid rotors. Then the Hamiltonian
has just three terms:

H = AJ2
x + BJ2

y +CJ2
z . (32.1)

Here {Jx, Jy, Jz} are rotational angular momentum op-
erators, and the rotational constants are half the inverses
of the principal moments of inertia Iα of the body:

A = 1
2Ix

, B = 1
2Iy

, C = 1
2Iz

. (32.2)

This implies that the J-coordinate system being used
is a special one fixed to the rotor’s body and aligned
to its principal axes, an elementary body, or Eckart,
frame.

Many molecules, particularly all diatomic mol-
ecules, have two of these rotational constants equal, say,
A = B. Such rotors are called symmetric tops, and their
Hamiltonian can be written in terms of the square of
the total angular momentum J · J and one other body
component Jz as

H = BJ2
x + BJ2

y +CJ2
z

= BJ2
x + BJ2

y + BJ2
z + (C − B)J2

z

= B J · J + (C − B)J2
z (32.3)

This gives a simple formula for the symmetric top rota-
tional energy levels in terms of the quantum numbers J
for the total angular momentum and K for the body
z-component:

E(J, K) = BJ(J +1)+ (C − B)K2 (32.4)

However, this eigenvalue formula may be a little too
simple, since it hides the structure of the eigenstates or
eigenfunctions. Indeed, the full Schrödinger angular dif-
ferential equation based upon the Hamiltonian (32.1) is
more lengthy. One should remember that H is written in
a rotating body coordinate frame that must be connected
to a star-fixed, or laboratory, frame in order to get the
full theory.

32.1.2 Molecular States Inside and Out

Rotor angular momentum eigenfunctions can be ex-
pressed as continuous linear combinations of rotor
angular position states |αβγ ⟩ defined by Euler angles
of the lab azimuth α, the polar angle β of body z-axis,
and the body azimuth, or ‘gauge twist’, γ . The eigen-
functions are,

∣∣∣∣
J

MK

〉
=

√
2J +1
8π2

2π∫

0

dα

π∫

0

sin β dβ

×

2π∫

0

dγ DJ
MK

∗
(αβγ)|αβγ ⟩ , (32.5)

where the rotor wave functions DJ
MK

∗
are just the

conjugates of the Wigner rotation matrices described
in Sect. 32.3.1, and row and column indices M and K ,
respectively, are the lab and body components of the
angular momentum [32.5–7].

An important feature of polyatomic molecules is that
their angular momentum states have two kinds of az-
imuthal quantum numbers. In addition to the usual lab
component of momentum M associated with the lab co-
ordinate α (α and β are usually labeled ϕ and ϑ), there
is a body component K associated with the Euler co-
ordinate γ , the body azimuthal angle of the laboratory
Z-axis relative to the body z-axis.

The physics of atomic or diatomic angular momen-
tum states has no internal or “body” structure, so the
quantum number K is always zero. Unless one sets
K = 0, the energy formula (32.4) blows up for a point
particle because z-inertia for a point is zero and C is
infinite. Also, the dimension of the angular momen-
tum state multiplet of a given J is larger than the usual
(2J +1) found in atomic or diatomic molecular physics.
In polyatomic rotors, the number of states for each J is
(2J +1)2, since both quantum numbers M and K range
between -J and +J .

A further important feature is that the molecular rotor
wave functions contain, as a special (K = 0) case, all
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Molecular Symmetry and Dynamics 32.1 Dynamics and Spectra of Molecular Rotors 493

the usual atomic spherical harmonics Yl
m complete with

correct normalization and phase, since
√

4πYl
m(ϕϑ) = Dl

m0(ϕϑ·)∗
√

2l +1) . (32.6)

This is part of a powerful symmetry principle: group
representations are quantum wave functions, and sym-
metry analysis is an extension of Fourier analysis – not
just for translations as in Fourier’s original work, but for
any group of symmetry operations. The usual Fourier
coefficients eikx are replaced by the D functions in the
rotational Fourier transform embodied by (32.5).

Molecular rotational analysis displays another im-
portant but little known aspect of symmetry analysis in
general. For every group of symmetry operations, such
as the external lab-based rotations familiar to atomic
physics, there is an independent dual group of internal
or body-based operations. The external symmetry of the
environment or laboratory is independent of the internal
symmetry of the molecular body, and all the operations
of one commute with all those of the other. The mo-
lecular rotation group is thus written as an outer product
R(3)LAB⊗ R(3)BODY of the external and internal parts,
and the degeneracy associated with this group’s repre-
sentations for a single J is (2J +1)2 as mentioned above.
It is a special ⊗-product, however, since the J-number
is shared.

The inversion or parity operator I(r → −r) can be
defined to be the same for both lab and body frames.
Including I with the rotational group R(3) gives the
orthogonal group O(3) = R(3)⊗ {1, I}. If parity is con-
served (e.g., no weak neutral currents), the fundamental
molecular orthogonal group is O(3)LAB ⊗ O(3)BODY.

How this symmetry breaks down and which lev-
els split depends upon both the perturbative laboratory
environment and the internal molecular structure.
A spherical top Hamiltonian is (32.1) with A = B = C.
This has a full O(3)BODY (spherical) symmetry since it
is just B J · J. Given that the rotor is in an O(3)LAB labo-
ratory (empty space), the original symmetry O(3)LAB ⊗
O(3)BODY remains intact and the (2J +1)2 degener-
acy is to be expected. However, a symmetric rotor in
a lab vacuum has its internal symmetry broken down
to O(2)BODY if A = B ̸= C, and the energies given
by (32.4) consist of internal quantum singlets for K = 0
and ±K doublets for K ̸= 0. But each of these levels still
has a lab degeneracy of (2J +1) if O(3)LAB is still in
effect. So the (2J +1)2 level degeneracies are each split
into multiplets of degeneracy (2J +1) and 2(2J +1) for
K = 0 and K ̸= 0, respectively. The resulting levels are
often labeled Σ,Π,∆,Φ,Γ , . . . in a somewhat inap-

propriate analogy with the atomic s, p, d, f, g, . . . labels
of Bohr model electronic orbitals.

Only by perturbing the lab environment can one
reduce the O(3)LAB symmetry and split the M degen-
eracies. For example, a uniform electric field would
reduce the O(3)LAB to an O(2)LAB, giving Stark split-
tings which consist of external quantum singlets for
M = 0 and ±M doublets for M ̸= 0. A uniform magnetic
field would reduce the O(3)LAB to an R(2)LAB, giv-
ing Zeeman splittings into external quantum singlets for
each M. The analogy between atomic external field split-
ting and internal molecular rotational structure splitting
is sometimes a useful one and will be used later.

32.1.3 Rigid Asymmetric Rotor
Eigensolutions and Dynamics

The general case for the rigid rotor Hamiltonian (32.1)
has three unequal principal moments of inertia
(A ̸= B ̸= C). This is called the rigid asymmetric top
Hamiltonian, and provides a first approximation for
modeling rotation of low symmetry molecules, such
as H20. Also, a number of properties of its eigenso-
lutions are shared by more complicated systems. The
dynamics of an asymmetric top is quite remarkable, as
demonstrated by tossing a tennis racquet in the air, flat
side up. The corresponding quantum behavior of such
a molecule is also nontrivial.

Given the total angular momentum J, one may con-
struct a (2J +1)-dimensional matrix representation of
H using standard matrix elements of the angular mo-
mentum operators Jx , Jy, and Jz, as given in Chapt. 2.
The H matrix connects states with (2J +1)-different
body quantum numbers K(−J ≤ K ≤ J ), but the ma-
trix is independent of the lab quantum numbers M, so
there are (2J +1) identical H matrices; one for each
value of the lab quantum number M(−J ≤ K ≤ J ).

A plot of the 21 eigenvalues of (32.1) for J = 10
is shown in Fig. 32.1. Here, the constants are set to
A = 0.2 cm−1 and C = 0.6 cm−1, while B is varied be-
tween B = A, which corresponds to a prolate symmetric
top (an elongated cylindrical object) and B = C, which
corresponds to an oblate symmetric top (a flattened
cylindrical object or discus). For all B values between
those of A and C, the object is asymmetric.

The left hand end
(
A = B = 0.2 cm−1, C =

0.6 cm−1) of the plot in Fig. 32.1 corresponds to a pro-
late symmetric top. The symmetric top level spectrum
is given by (32.4). It consists of a lowest singlet state
corresponding to K = 0 and an ascending quadratic lad-
der of doublets corresponding to K = ±1,±2, . . . ,±J .
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Fig. 32.1 J = 10 eigenvalue plot for symmetric rigid rotors. (A = 0.2, C = 0.6 cm−1 A < B < C ). Prolate and oblate RE
surfaces are shown

The right hand end
(
A = 0.2 cm−1, B = C = 0.6 cm−1)

of the plot corresponds to an oblate symmetric top with
a descending quadratic ladder of levels, the K = 0 level
being highest. Also, the internal K -axis of quantization
switches from the body z-axis for

(
A = B = 0.2 cm−1,

C = 0.6 cm−1) to the body x-axis for
(
A = 0.2 cm−1,

B = C = 0.6 cm−1). Note that the lab M-degeneracy is
invisible here, but exists nevertheless.

For intermediate values of B, one has an asymmetric
top level structure and, strictly speaking, no single axis of
quantization. As a result, the eigenlevel spectrum is quite
different. A detailed display of asymmetric top levels for
the case

(
A = 0.2 cm−1, B = 0.4 cm−1, C = 0.6 cm−1)

is given at the bottom of Fig. 32.2. They are shown to cor-
respond to semiclassical orbits discussed in Sect. 32.2.
This example is the most asymmetric top, since param-
eter B has a value midway between the symmetric top
limits of B = A and B = C.

The twenty-one J = 10 asymmetric top levels are
arranged into roughly ten asymmetry doublets and one
singlet. This resembles the symmetric top levels except
that doublets are split by varying amounts, and the sin-
glet is isolated from the other levels in the middle of the
band instead of being crowded at the top or bottom. The
doublet splittings are magnified in circles drawn next to
the levels, and these indicate that the splitting decreases
quasi-exponentially with each doublet’s separation from
the central singlet.

An asymmetric doublet splitting is also called su-
perfine structure and can be viewed as the result
of a dynamic tunneling process in a semiclassical
model of rotation [32.8–10]. Such a model clarifies
the classical-quantum correspondence for polyatomic
rovibrational dynamics in general. It can also help
to derive simple approximations for eigenvalues and
eigenvectors.

32.2 Rotational Energy Surfaces and Semiclassical Rotational Dynamics
A semiclassical model of molecular rotation can be
based upon what is called a rotational energy surface
(RES) [32.7–14]. Examples of RES for an asymmetric
top are shown in Fig. 32.2, and for prolate and oblate
symmetric tops in Fig. 32.1. Each surface is a radial
plot of the classical energy derived from the Hamil-

tonian (32.1) as a function of the polar direction of the
classical angular momentum J-vector in the body frame.
The magnitude of J is fixed for each surface. Note that
the J-vector in the lab frame is a classical constant of the
motion if there are no external perturbations. However,
J may gyrate considerably in the moving body frame,
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Fig. 32.2 J = 10 rotational energy surface and related level spectrum for an asymmetric rigid rotator
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A = 0.2, B =
0.4, C = 0.6 cm−1)
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but its magnitude |J| stays the same in all frames for
free rotation.

An RES differs from what is called a constant en-
ergy surface (CES), which is obtained by simply plotting
E = H = const. in J-space using (32.1). A rigid rotor
CES is an ellipsoid covering a range of |J| values at
a single energy. An RE surface, on the other hand, is
a spherical harmonic plot at a single |J| value for a range
of energies. The latter is more appropriate for spectro-
scopic studies of fine structure, since one value of the
rotational quantum number J corresponds to a multiplet
of energy levels or transitions. An RES also shows loci
of high and low energy rotations. Also, it has roughly
the same shape as the body it represents, i. e., an RES is
long in the direction that the corresponding molecule is
long (but vice-versa for CES).

For a freely rotating molecule, the laboratory com-
ponents of the classical total angular momentum J are
constant. If one chooses to let J define the lab Z-axis,
then the direction of the J-vector in the body frame is
given by polar and body azimuthal coordinates β and γ ,
which are the second and third Euler angles, respec-
tively. (It is conventional to use the negatives −β and
−γ as polar coordinates, but this will not be necessary
here.) Then the body components of the J-vector are
written as

(
Jx = |J | sin β cos γ , Jy = |J | sin β sin γ ,

Jz = |J | cos β
)
, (32.7)

where the magnitude of the quantum value |J | =√
J(J +1) ∼= J + 1

2 .
Substituting this into the Hamiltonian (32.1) gives

an expression for the general rigid rotor RES radius in
polar coordinates:

E(β, γ) = ⟨H⟩ = J(J +1)

×
[
sin2 β

(
A cos2 γ + B sin2 γ

)
+C cos2 β

]
.

(32.8)

The prolate symmetric top (A = B < C) expression

E(β) = ⟨H⟩ = J(J +1)
[

B + (C − B) cos2 β
]

(32.9)

is independent of azimuthal angle γ . The 3-dimensional
plots of these expressions are shown in Figs. 32.1
and 32.2.

The RES have topography lines of constant en-
ergy (E = const.) that are the intersection of an RES
(constant |J|) with spheres of constant energy. The to-
pography lines are allowed classical paths of the angular

momentum J-vector in the body frame, since these paths
conserve both energy and momentum.

The trajectories in these figures are special ones.
They are the quantizing trajectories for total angular
momentum J = 10. For the prolate symmetric top, the
quantizing trajectories have integral values for the body
z-component K of angular momentum. According to the
Dirac vector model, angular momentum vectors trace out
a cone of altitude K and slant height |J | = √

J(J +1).
The quantizing polar angles Θ J

k are given by

Θ J
K = cos−1 K√

J(J +1)
(32.10)

(K = J, J −1, · · · ,−J ) .

These are the latitude angles of the paths on the RES
in Fig. 32.1 for K = 10, 9, 8, . . . ,−10. (For the oblate
RES, the angles are relative to the x-axis.) If β =

(
Θ J

K

)

is substituted into the symmetric top RES (32.9), the
result is

E
(
Θ J

K
) = J(J +1)B + (C − B) K2 , (32.11)

which is precisely the symmetric top eigenvalue (32.4).
The quantizing paths are circles lying at the intersec-
tions of the Dirac angular momentum cones and the
RES. The angle

(
Θ J

K

)
is a measure of the angular mo-

mentum uncertainty ∆Jx or ∆Jy transverse to the z-axis
of quantization. Clearly, K = ±J states have minimum
uncertainty.

For the asymmetric top, the classical paths that con-
serve both |J | and E are one of two types. First, there
are those pairs of equal-energy orbits that go around
the hills on the plus or minus end of the body z-axis,
which correspond to the ±K pairs of levels in the up-
per half of the level spectrum drawn in Fig. 32.2. Then
there are the pairs of levels belonging to the equal-energy
orbits in either of the two valleys surrounding the body
x-axis, which are associated with the pairs of levels in the
lower half of the level spectrum. Different eigensolutions
occupy different geography.

The upper pairs of paths are seen to be distorted
versions of the prolate top orbits seen on the left-hand
side of Fig. 32.1, while the lower pairs are distorted ver-
sions of the oblate top orbits seen on the right-hand
side of Fig. 32.1. The distortion makes Jz deviate from
a constant K -value and corresponds to K -mixing in the
quantum states. This also shows that more than one
axis of quantization must be considered; the prolate-
like paths are based on the z-axis, while the oblate-like
paths belong to the body x-axis.

The two types of orbits, x and y, are separated by
what is called a separatrix curve, which crosses the sad-
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dle points on either side of the body y-axis. In the
example shown in Fig. 32.2, the separatrix is associ-
ated with a single level which separates the upper and
lower energy doublets. The doublets that are closer to
the separatrix level are split more than those which are
farther away. Apart from the splitting, the energy levels
can be obtained by generalized Bohr quantization of the
classical paths on the RES. The quantization condition
is,

∫
Jz dγ = K , (32.12a)

where

Jz =
√

J(J +1)
(
C cos2 γ + B sin2 γ

)
− E

(
C cos2 γ + B sin2 γ

)
− A

(32.12b)

follows from (32.7) and (32.8). The resulting EK -values
are obtained by iteration.

The doublet, or superfine, splitting is a quantum ef-
fect which may be associated with tunneling between
orbits that would have had equal energies EK in the
purely classical or semiclassical model. Approximate
tunneling rates are obtained from integrals over the sad-
dle point between each pair of equal-energy quantizing
paths. The K -th rate, or amplitude, is,

SK = νK e−PK , (32.13)

where

PK = (32.14)

i

γ+∫

γ−
dγ

√
J(J +1)

(
C cos2 γ + B sin2 γ

)
− EK(

C cos2 γ + B sin2 γ
)
− A

is the saddle path integral between the points of closest
approach, γ+ and γ−, and νK is the classical preces-
sion frequency or quantum level spacing around energy
level EK . Since there are two tunneling paths, the ampli-
tude SK is doubled in a tunneling Hamiltoni an matrix
for the K -th semiclassical doublet of z and −z = z paths:

⟨H⟩K =
(

EK 2SK

2SK EK

)
|z⟩
|z⟩

. (32.15)

The resulting tunneling energy eigensolutions are given
in Table 32.1.

A- or B-states correspond to symmetric and anti-
symmetric combinations of waves localized on the two
semiclassical paths. Rotational symmetry is considered
in Sect. 32.3.

The total doublet splitting is 4SK , and decreases
exponentially with the saddle path integral (32.14).
The superfine A–B splittings in Fig. 32.2 are seen to
range from several GHz near the separatrix down to
only 26 kHz for the highest-K doublets at the band
edges.

Meanwhile, the typical interdoublet level spacing
or classical precessional frequency is about 150 GHz
for the J = 10 levels shown in Fig. 32.2. This K -level
spacing is called rotational fine structure splitting, and
is also present in the symmetric top case. (The superfine
splitting of the symmetric top doublets is exactly zero,
since they have O(2)BODY symmetry if A = B or B = C.
In this case, all tunneling amplitudes cancel.)

The classical precession of J in the body frame
follows a “left-hand rule” similar to what meteorolo-
gists use to determine Northern Hemisphere cyclonic
rotation. A left “thumbs-down” or “low” has counter-
clockwise precession as does an oblate rotor valley, but
a prolate RES “high” supports clockwise motion just
like a weather “high”.

Finally, consider the spacing between adjacent
J-levels, which is called rotational structure, in a spec-
trum. This spacing is

E(J, K )− E(J −1, K ) = 2BJ , (32.16)

according to the symmetric top energy formulas (32.4).
For the example just treated, 2BJ is about 10 cm−1 or
300 GHz. This corresponds to the actual rotation fre-
quency of the body. It is the only kind of rotational
dynamics or spectrum that is possible for a simple di-
atomic rotor. A diatomic molecule, however, can have
internal electronic or nuclear spin rotation, which gives
an additional fine structure as discussed later [32.1,6,15].

To summarize, polyatomic molecules can be ex-
pected to exhibit all three types of rotational motion and
spectra (from faster to slower): rotational, precessional,
and precessional tunneling. These are related to three
kinds of spectral structure (from coarser to finer spec-
tra): rotational structure, fine structure, and superfine
structure, respectively. Again, this neglects internal ro-
tational and spin effects, which can have abnormally
strong rotational resonance coupling due to the superfine
structure [32.9,16]. Examples of this are discussed at the
end of this chapter.

Table 32.1 Tunneling energy eigensolutions

Eigenvectors |z⟩ |z ⟩ Eigenvalues

|A⟩ 1 1 E A(K) = EK +2SK

|B⟩ 1 −1 E B(K) = EK −2SK
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32.3 Symmetry of Molecular Rotors
Molecular rotational symmetry is most easily intro-
duced using examples of rigid rotors. Molecular rotor
structures may have more or less internal molecular
symmetry, depending on how their nuclei are positioned
relative to one another in the body frame. A molecule’s
rotational symmetry is described by one of the elemen-
tary rotational point symmetry groups. These are the
n-fold axial cyclic groups Cn and polygonal dihedral
groups Dn(n = 1, 2, . . . ), the tetrahedral group T , the
cubic-octahedral group O, or the icosahedral group Y .
All other point groups, such as Cnv, Td , and Oh , are
a combination of an elementary point group with the
inversion operation I(r → −r). Each of these groups
consist of operations which leave at least one point (ori-
gin) of a structure fixed while mapping identical atoms
or nuclei into each other in such a way that the appear-
ance of the structure is unchanged. The point groups are
subgroups of the nuclear permutation groups [32.17].

In other words, molecular symmetry is based upon
one of the most fundamental properties of atomic
physics: the absolute identity of all atoms or, more pre-
cisely, nuclei of a given atomic number Z and mass
number A. It is the identity of the so-called ‘elemen-
tary’ electronic and nucleonic constituent particles that
underlies the symmetry.

The Pauli principle states that all half-integer spin
particles are antisymmetrized with every other one of
their kind in the universe. The Pauli–Fermi antisym-
metrization principle and the related Bose–Einstein
symmetrization principle determine much of molecu-
lar symmetry and dynamics, just as the Pauli exclusion
principle is fundamental to electronic structure.

32.3.1 Asymmetric Rotor Symmetry Analysis

For an asymmetric rigid rotor, any rotation which inter-
changes x−, y−, or z-axes of the body cannot possibly
be a symmetry, since all three axes are assumed to have
different inertial constants. This restricts one to consider
only 180◦ rotations about the body axes, and these are
the elements of the rotor groups C2 and D2.

The two symmetry types for C2 are even (denoted
A or 02) and odd (denoted B or 12) with respect to
a 180◦ rotation. For D2, which is just C2 ⊗C2, the four

C2 1 R

A 1 1
B 1 −1

Table 32.2 Character table for
symmetry group C2

symmetry types are even-even (denoted A1), even-odd
(denoted A2), odd-even (denoted B1), and odd-odd (de-
noted B2) with respect to 180◦ rotations about the y- and
x-axes, respectively. (The z-symmetry is determined by
a product of the other two since Rz = Rx Ry.) This is
summarized in the character Tables 32.2 and 32.3.

The RES for the rigid rotor shown in Fig. 32.2 is in-
variant under 180◦ rotations about each of the three body
axes. Therefore, its Hamiltonian symmetry is D2 and its
quantum eigenlevels must correspond to one of the four
types listed under D2 in Table 32.3. The D2 symme-
try labels are called rotational (or in general rovibronic)
species of the molecular state. The species label the sym-
metry of a quantum wave function associated with a pair
of C2 symmetric semiclassical paths.

The classical J-paths come in D2 symmetric pairs,
but each individual classical J-path on the rigid rotor
RES has a C2 symmetry which is a subgroup of D2. Each
path in the valley around the x-axis is invariant under
just the 180◦ rotation around the x-axis. This is C2(x)
symmetry. The other member of its pair that goes around
the negative x-axis also has this local C2(x) symmetry.
The combined pair of paths has the full D2 symmetry but
classical mechanics does not permit occupation of two
separate paths. Multiple path occupation is a completely
quantum effect.

Similarly, each individual J-path on the hill around
the z-axis is invariant under just the 180◦ rotation around
the z-axis, so it has C2(z) symmetry as does the equiva-
lent path around the negative z-axis. Only the separatrix
has the full D2 symmetry, since its pairs are linked up
on the y-axis to form the boundary between the x and
z paths. No J-paths encircle the unstable y-axis since it
is a saddle point.

Each classical J-path near the x- or z-axis belongs
to a particular K -value through the semiclassical quan-
tization conditions (32.12). Depending upon whether
the K -value is even (02) or odd (12), the correspond-
ing K -doublet is correlated with a pair of D2 species
as shown in the columns of the correlation tables
in Fig. 32.3. These three correlation tables give the axial

Table 32.3 Character table for symmetry group D2

D2 1 Rx Ry Rz

A1 1 1 1 1
A2 1 −1 1 −1
B1 1 1 −1 −1
B2 1 −1 −1 1
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Fig. 32.3 Tables of correlations between D2 symmetry species and the even (02) and odd (I2) symmetric species of
subgroups C2(x), C2(y), and C2(z)

180◦ rotational symmetry of each D2 species for rota-
tion near each body axis x, y and z, respectively, but
only the stable rotation axes x and z support stable path
doublets for this Hamiltonian (32.1).

For example, consider the K = 10 paths which lie
lowest in the x-axis valleys. Since K = 10 is even (02),

it is correlated with an A1 and B1 superfine doublet
[see the 02 column of the C2(x) table]. On the high
end near the z-axis hilltop, K = 10 gives rise to an A1
and B2 doublet [see the 02 column of the C2(z) table].
All the doublets in Fig. 32.2 may be assigned in this
way.

32.4 Tetrahedral-Octahedral Rotational Dynamics and Spectra
The highest symmetry rigid rotor is the spherical top for
which the three inertial constants are equal (A = B = C).
The spherical top Hamiltonian

H = B J · J

has the full R(3)LAB ⊗ R(3)BODY symmetry. With in-
version parity, the symmetry is O(3)LAB ⊗ O(3)BODY.
In any case, the J-levels are (2J +1)2-fold degener-
ate. The resulting BJ(J +1) energy expression is the
first approximation for molecules which have regular
polyhedral symmetry of, for example, a tetrahedron
(CF4), cube (C6H6), octahedron (SF6), dodecahedron
or icosahedron (C20H20, B12H12, or C60). Rigid regular

polyhedra have isotropic or equal inertial constants and
rotate just like they were perfectly spherical distributions
of mass.

However, no molecule can really have spherical
O(3)BODY symmetry; even molecules of the highest
symmetry contain a finite number of nuclear mass
points, and therefore have a finite internal point sym-
metry. Evidence of octahedral or tetrahedral symmetry
shows up in fine structure splittings analogous to those
for asymmetric tops. However, spherical top fine struc-
ture is due to symmetry breaking caused by anisotropic
or tensor rotational distortion. To discuss this, one needs
to consider what are called semirigid rotors.
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32.4.1 Semirigid Octahedral Rotors
and Centrifugal Tensor Hamiltonians

The lowest order tensor centrifugal distortion pertur-
bation has the same form for both tetrahedral and
octahedral molecules. It is simply a sum of fourth powers
of angular momentum operators given in the third term
below. The first two terms are the scalar rotor energy
and scalar centrifugal energy.

H = B |J |2 + D |J |4 +10t044

×
[

J4
x + J4

y + J4
z − (3/5)J4

]
. (32.17)

The tensor term includes the scalar (3/5)J4 to preserve
the center of gravity of the tensor level splitting. This
type of semirigid rotor Hamiltonian was first used in the
study of methane (CH4) spectra [32.18].

The scalar terms do not reduce the symmetry or
split the levels. The tensor term (t044) breaks the
molecular symmetry from O(3)LAB⊗ O(3)BODY to
the lower symmetry subgroup O(3)LAB ⊗ TdBODY, or
O(3)LAB ⊗ OhBODY, and splits the (2J +1)2-fold de-
generacy into intricate fine structure patterns which are
analogous to cubic crystal field splitting of atomic or-
bitals. The first calculations of the tensor spectrum were
done by direct numerical diagonalization [32.18–21]. As
a result, many of the subtle symmetry properties were
missed. The semiclassical analysis [32.22] described in
the following Sections exposes these properties.

32.4.2 Octahedral and Tetrahedral
Rotational Energy Surfaces

By substituting in (32.7) and plotting the energy as
a function of body polar angles β and γ , an RES is
obtained, two views of which are shown in Fig. 32.4.
Here the tensor term is exaggerated in order to exhibit
the topography clearly. (In (n = 0) SF6, the t044 coeffi-
cient is only about 5.44 Hz, while the rotational constant
is B = 0.09 cm−1. The t244 coefficient of (n = 1) SF6 is
much greater.)

A positive tensor coefficient (ta44 > 0) gives an oc-
tahedral shaped RES, as shown in Fig. 32.4. This is
appropriate for octahedral molecules since they are least
susceptible to distortion by rotations around the x-, y-,
and z-axes containing the strong radial bonds. Thus the
rotational energy is highest for a J-vector near one of
six body axes (±1, 0, 0), (0,±1, 0), or (0, 0,±1), i. e.,
one of the six RES hills in Fig. 32.4.

However, if the J-vector is set in any of the eight
interaxial directions (±1,±1,±1), the centrifugal force

will more easily bend the weaker angular bonds, raise the
molecular inertia, and lower the rotational energy. This
accounts for the eight valleys on the RES in Fig. 32.4.

A negative tensor coefficient (ta44 < 0) gives a cubic
shaped RES. This is usually appropriate for cubic and
tetrahedral molecules, since they are most susceptible
to distortion by rotations around the x-, y-, and z-axes
which lie between the strong radial bonds on the cubic
diagonals. Instead of six hills and eight valleys, one
finds six valleys and eight hills on the cubic RES. Both
freon CF4 and cubane C8H8 are examples of this type
of topology.

Note that a semirigid tetrahedral rotor may have the
same form of rotational Hamiltonian and RE surface as
a cubic rotor. The four tetrahedral atomic sites are in
the same directions as four of the eight cubic sites. The
other four cubic sites form an inverted tetrahedron of the
same shape.

If only tetrahedral symmetry were required, the
Hamiltonian could contain a third order tensor of the
form Jx Jy Jz . However, pure rotational Hamiltonians
must also satisfy time-reversal symmetry: the energy
for each J must be the same as for −J, and thus rota-
tional sense should not matter. This symmetry excludes
all odd powers of J. Simple rotor RES have inversion
symmetry even if their molecules do not. Compound ro-
tors containing spins or other rotors may have “lopsided”
pairs of RES as shown in Sect. 32.6.

32.4.3 Octahedral and Tetrahedral
Rotational Fine Structure

An example of rotational fine structure for angular mo-
mentum quantum number J = 30 is shown in Fig. 32.4.
The levels consist mainly of clusters of levels be-
longing to the octahedral symmetry species A1, A2,
E, T1, or T2. The characters of these species are
given in Table 32.4. (The tetrahedral Td group has
a similar table where T1 and T2 are often labeled F1
and F2).

The first column gives the dimension or degeneracy
of each species; A1, A2, are singlets, E is a doublet,

Table 32.4 Character table for symmetry group O

O 0◦ 120◦ 180◦ 90◦ 180◦

A1 1 O 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
T1 3 0 −1 1 −1
T2 3 0 −1 −1 1
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Fig. 32.4 J = 10 rotational energy surface related level spectrum for a semirigid octahedral or thetrahedral rotor

while T1 and T2 are triplets. These species form two
clusters (A1, T1, T2, A2) and (T2, E, T1) on the low

end of the spectrum and six clusters (T1, T2), (A2, T2,
E), (T1, T2), (E, T1, A1), (T1, T2), and (A2, T2, E) on
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the upper part of the spectrum. (See the right-hand side
of Fig. 32.4). Note that the total dimension or (near) de-
generacy for each of the two lower clusters is eight:
(1+3+3+1) and (3+2+3), while the upper clus-
ters each have a six-fold (near) degeneracy: (3+3),
(1+3+2), etc.

Each of the two lower eight-fold clusters can be as-
sociated with semiclassical quantizing paths in an RES
valley as shown in Fig. 32.4. The eight-fold dimension
or (near) degeneracy occurs because each quantizing
path is repeated eight times – once in each of the eight
identical valleys. Similarly, the six-fold cluster dimen-
sion occurs because there are six identical hills, and
each quantizing path is repeated six times around the
surface.

The majority of the paths lie on the hills because the
hills are bigger than the valleys. The hills subtend a half
angle of 35.3◦ to the separatrix, while the valleys only
have 19.5◦. To estimate the number of paths or clusters
in hills or valleys, the angular momentum cone angles
for J = 30 may be calculated using (32.10). The results
are displayed in Fig. 32.5. The results are consistent with
the spectrum in Fig. 32.4. Only the two highest K -values
of K = 29, 30 have cones small enough to fit in the
valleys, but the six states of K = 25–30 can all fit onto
the hills.

The angular momentum cone formula also provides
an estimate for each level cluster energy. The estimates
become more and more accurate as K increases (ap-
proaching J), while the uncertainty angle Θ J

K decreases.
Paths for higher K are more nearly circular and there-
fore more nearly correspond to symmetric top quantum
states of pure K . The paths on octahedral RE surfaces
are more nearly circular for a given K than are those
on the asymmetric top RE surface, and so the octahe-
dral rotor states can be better approximated by those of
a symmetric top.

Angular momentum cones for
J = 30

30

Θ = 10.3°  K = 30
Θ = 18.0°  K = 29
Θ = 23.3°  K = 28
Θ = 27.7°  K = 27
Θ = 31.5°  K = 26
Θ = 34.9°  K = 25
Θ = 38.1°  K = 24

3-fold
cutoff
19.5°

4-fold
cutoff
35.3°

Θ = arc cos [K/  J(J+1)]
30(31)

Fig. 32.5 J = 30 angular momentum cone half angles and octahe-
dral cutoffs

32.4.4 Octahedral Superfine Structure

The octahedral RES has many more local hills and
valleys and corresponding types of semiclassical paths
than are found on the rigid asymmetric top RES. The
tunneling between multiple paths produces an octahe-
dral superfine structure that is more complicated than
the asymmetric top doublets. Still, the same symmetry
correlations and tunneling mechanics may be used.

First, the octahedral symmetry must be correlated
with the local symmetry of the paths on the hills and in
the valleys. The hill paths have a C4 symmetry while
the valley paths have a local C3 symmetry. This is seen
most clearly for the low-K paths near the separatrix
which are less circular. The C3 and C4 correlations are
given in Fig. 32.6 with a sketch of the corresponding
molecular rotation for each type of path.

To find the octahedral species associated with a K3 =
30 path in a C3 valley one notes that 30 is 0 modulo 3.
Hence the desired species are found in the 03 column
of the C3 correlation table: (A1, A2, T1, T2). This is
what appears (not necessarily in that order) in the lower
left corner of Fig. 32.4. Similarly, the species (A2, E,
T2) for a K4 = 30 path on top of a C4 hill are found in
the 24 column of the C4 correlation table since 30 is 2
modulo 4; these appear on the other side of Fig. 32.4.
Clusters (T1, T2) for K4 = 29 and (A1, E, T1) for K4 =
28 are found in a similar manner.

A multiple path tunneling calculation analogous to
the one for rigid rotors can be applied to approximate oc-
tahedral superfine splittings. Consider the cluster (A1, E,
T1) for K4 = 28, for example. Six C4-symmetric paths
located on octahedral vertices on opposite sides of the x-,
y-, and z-axes may be labeled {|x⟩, |x̄⟩, |y⟩, |ȳ⟩, |z⟩, |z̄⟩}.
A tunneling matrix between the six paths follows:

⟨H⟩K4=28 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

H 0 S S S S
0 H S S S S
S S H 0 S S
S S 0 H S S
S S S S H 0
S S S S 0 H

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

|x⟩
|x⟩
|y⟩
|y⟩
|z⟩
|z⟩

,

(32.18)

where the tunneling amplitude between nearest neigh-
bor octahedral vertices is S, but is assumed to be zero
between antipodal vertices. The eigenvectors and eigen-
values for this matrix are given in the Table 32.5.

This predicts that the triplet (T1) level should fall be-
tween the singlet (A1) and the doublet (E) levels and
the singlet-triplet spacing (4S) should be twice the split-
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Fig. 32.6 Tables of correlations between 0 symmetry species and the cyclic axial symmetry species (K p means K mod p)
of subgroups C3, C2 and C4

ting (-2S) between the triplet and doublet. This 2 : 1
ratio is observed in the (E, T1, A1) and (A2, T2, E)
clusters which can be resolved and also in numerical
calculation [32.18–21].

The tunneling amplitudes can be calculated by a sep-
aratrix path integral analogous to the asymmetric top

Table 32.5 Eigenvectors and eigenvalues of the tunneling matrix for the (A1, E, T1) cluster with K = 28
Eigenvector |x⟩ |x⟩ |y⟩ |y⟩ |z⟩ |z⟩ Eigenvalue
√

6 |A1⟩ = 1 1 1 1 1 1 E A1 = H +4S√
12 |E, 1⟩ = 2 2 −1 −1 −1 −1 EE = H −2S

2 |E, 2⟩ = 0 0 1 1 −1 −1√
2 |T1, 1⟩ = 1 −1 0 0 0 0 ET1 = H√
2 |T1, 2⟩ = 0 0 1 −1 0 0√
2 |T1, 3⟩ = 0 0 0 0 1 −1

formula (32.13) [32.10, 11]. As shown in Fig. 32.4, the
tunneling rates or superfine splittings near the sep-
aratrix are ∼ 1 MHz, which is only slightly slower
than the classical precessional frequency. But as K ap-
proaches J on the hilltops, the tunneling rate slows down
to a few Hz.

32.5 High Resolution Rovibrational Structure
A display of spectral hierarchy for higher and higher
resolution is shown in Fig. 32.7 for the 630 cm−1 or
16 µm bands of CF4. This will serve to summarize

the possible rovibrational spectral structures and place
them in a larger context. The ν4 resonance in part (a)
corresponds to a dipole active n4 = 0 → 1 vibrational
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Fig. 32.7a–e Rovibrational structure in the 630 cm−1 or 16 µm bands of CF4 [32.16]. (a) Vibrational resonances and
band profiles. (Raman spectra from [32.23]). (b) Rotational P, Q, and R band structur corresponding to J → J −1,
J → J +1 transitions. (FTIR spectra from [32.24]). (c) P(54) rotational fine structure due to rotation–vibration coupling
and angular momentum precessional motion. (Laser diode spectra from [32.25]). (d) Superfine structure due to precessional
tunneling [32.26]. (e) Hyperfine structure due to nuclear spin precession [32.26]
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transition, and is just one of many vibrational structures
to study. The P(54) sideband resonance in part (b) cor-
responds to a (J = 54) → (J −1) rotational transition,
and is just one of hundreds of rotational structures to
study within the ν4 bands.

Each band is something like a Russian doll; it con-
tains structure within structure within structure down to
the resolution of few tens of Hz. Examples of rotational
fine and superfine structures described in Sect. 32.4
are shown in Fig. 32.7c, d, but even more resolution
is needed to see the hyperfine structure in Fig. 32.7e.
Such extremely high resolution has been reached with
a CO2 saturation absorption spectrometer [32.27, 28].
The 10 µm bands of SF6 and SiF4 have been studied in
this manner, the latter being similar to CF4 [32.26].

32.5.1 Tetrahedral Nuclear Hyperfine
Structure

High resolution spectral studies of SiF4 showed unantic-
ipated effects involving the four fluorine nuclear spin and
magnetic moments and their associated hyperfine states.
First, the Pauli principle restricts the nuclear spin multi-
plicity associated with each of the rotational symmetry
species in much the same way that atomic L − S coupled
states 2S+1L have certain spin multiplicities (2S+1) al-
lowed for a given orbital L species involving two or
more equivalent electrons. Second, since superfine split-
tings can easily be tiny, different spin species can end
up close enough that hyperfine interactions, however
small, can cause strongly resonant mixing of the nor-
mally inviolate species. Finally, a pure and simple form
of spontaneous symmetry breaking is observed in which
otherwise equivalent nuclei fall into different subsets
due to quantum rotor dynamics.

Connecting nuclear spin to rotational species is done
by correlating the full permutation symmetry (Sn for
XYn molecules) with the full molecular rotation and par-
ity symmetry [O(3)LAB ⊗ TdBODY for CF4 molecules or
O(3)LAB ⊗ OhBODY and for SF6]. For four spin-1/2 nu-
clei, the Pauli principle allows a spin of I = 2 and a spin
multiplicity of five (2I +1 = 5) for (J+, A2) or (J−, A1)
species, but excludes (J−, A2) or (J+, A1) species alto-
gether. The Pauli allowed spin for (J+, T1) or (J−, T2)
species is I = 1 with a multiplicity of three, but there are
no allowed (J+, T2) or (J−, T1) species. Finally, both
(J+, E) and (J−, E) belong to singlet spin I = 0 and
are singlet partners to an inversion doublet. (None of the
other species can have both + and − parity.)

The E inversion doublet is analogous to the doublet
in NH3 which is responsible for the ammonia maser.

However, NH3-type inversion is not feasible in CF4
or SiF4, and so the splitting of the E doublet in these
molecules is due to hyperfine resonance [32.9, 16, 23].

The Pauli analysis gives the number of hyperfine
lines that each species would exhibit if it were isolated
and resolved, as shown in the center of Fig. 32.7e. The
rotational singlets A1 and A2 have five lines each, the
rotational triplets T1 and T2 are spin triplets, and the
rotational doublet E is a spin singlet but an inversion
doublet. If the hyperfine structure of a given species A1,
A2, T1, T2, or E is not resolved, then their line heights
are proportional to their total spin weights of 5, 5, 3, 3,
and 2, respectively.

If the unresolved species are clustered, then the total
spin weights of each add to give a characteristic clus-
ter line height. The line heights of the C4 clusters (T1,
T2), (A2, T2, E), (T1, T2), (E, T1, A1) are 6, 10, 6, 10,
respectively. The line heights of the C3 clusters (A1,
T1, T2, A2), (T1, E, T2), (T1, E, T2) are 16, 8, 8, respec-
tively. This is roughly what is seen in the P(54) spectrum
in Fig. 32.7c.

32.5.2 Superhyperfine Structure
and Spontaneous Symmetry
Breaking

The superfine cluster splittings (2S, 4S, etc.) are propor-
tional to the J-precessional tunneling or ‘tumbling’ rates
between equivalent C3 or C4 symmetry axes, and they
decrease with increasing K3 or K4. At some point, the
superfine splittings decrease to less than the hyperfine
splittings which are actually increasing with K . The re-
sulting collision of superfine and hyperfine structure has
been called superhyperfine structure or Case 2 clusters.
The following is a rough sketch of the phenomenology
of this very complex effect, using the results of Pfis-
ter [32.26].

As long as the tunneling rates are > 1 MHz, the
nuclear spins will tend to average over spherical top
motion. The spins couple into states of good total nu-
clear spin I , which in turn couple weakly with the overall
angular momentum and with well defined rovibrational
species A1, A2, T1, T2, or E as described above. The re-
sulting coupling is called Case 1, and is analogous to LS
coupling in atoms.

Stick figures for two examples of spectra observed
by Pfister [32.26] are shown in Fig. 32.8a and b. The first
Case 1 cluster, shown in (a), is a C4 type (04) cluster (A1,
T1, E), which was solved in Table 32.6. The other Case
1 cluster, shown in (b), is a C3 type (±13) cluster (T1,
E, T2) (recall the C3 correlations in Fig. 32.3). They are
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Fig. 32.8a–d Stick sketches for example of superfine
and hyperfine spectral structure found by Pfister [32.26];
(a),(b) Case 1 clusters (high tunneling amplitude S);
(c),(d) Case 2 clusters (low tunneling amplitude S)

similar to the corresponding sketches in Fig. 32.7e. One
notable difference is that the inversion doublet shows
little or no splitting in the (A1, T1, E) cluster, but does
split in the (T1, E, T2) cluster.

When the tunneling rates fall below 10 or 20 kHz,
the angular momentum can remain near a particular C3
or C4 symmetry axis for a time longer than the nu-
clear spin precession rates. Spin precession rates and
the corresponding hyperfine splittings are ≈ 50 kHz,
and increase with K . Hence, there is plenty of time
for each of the nuclear spins to align or anti-align with
the C3 or C4 symmetry axes of rotation. This is called
Case 2 coupling, and the resulting spectrum resembles
that of an NMR scan of the nuclei, but here the mag-
netic field is provided by the molecule’s own body frame
rotation.

If SiF4 rotates uniformly about one C4 symmetry
axis, then all four F nuclei occupy equivalent positions
at the same average distance from the rotation axis and
experience the same local magnetic fields. The mol-
ecule can be thought of as a paired diatomic F2–F2 rotor
with each one symmetrized or antisymmetrized so as
to make the whole state symmetric. Table 32.6 shows
the spin-1/2 base states arranged horizontally accord-
ing to the total projection Iz of nuclear spins on the C4
axis. Horizontal arrays (↑↓) of spins denote symmetric
states, while vertical arrays (↕) denote antisymmetric
spin states.

The hyperfine energy is approximately propor-
tional to the projection Iz . The resulting spectrum

Table 32.6 Spin − 1
2 basis states for SiF4 rotating about

a C4 symmetry axis

Iz = 2 Iz = 1 Iz = 0 Iz = −1 Iz = −2
∣∣∣∣
↑ ↑
↓ ↓

〉

|↑↓ ↑↓⟩
|↑↓ ↑↑⟩ |↓↓ ↑↑⟩ |↓↓ ↑↓⟩

|↑↑ ↑↑⟩ |↑↑ ↑↓⟩ |↑↑ ↓↓⟩ |↑↓ ↓↓⟩ |↓↓ ↓↓⟩

is (1, 2, 4, 2, 1)-degenerate pyramid of equally spaced
lines as shown in Fig. 32.8c. Four spin-1/2 states without
symmetry restrictions would give the standard binomial
(1, 4, 6, 4, 1)-degeneracy seen in NMR spectra.

If the molecule settles upon C3 symmetry axes of
rotation, the situation is markedly different. The four
nuclei no longer occupy equivalent positions. One nu-
cleus sits on the rotation axis, while the other three nuclei
occupy equivalent off-axis positions. The off-axis nuclei
experience a different local magnetic field than the sin-
gle on-axis nucleus (Fig. 32.8d). From the spectrum, it
appears that the spin-up to spin-down energy difference
is much greater for the lone on-axis nucleus than for
the three equatorial nuclei, whose spin states form the
energy quartet {|↑↑↑⟩ , |↑↑↓⟩ , |↑↓↓⟩ , |↓↓↓⟩}. The on-
axis nucleus has an energy doublet with a large splitting,
so that the four nuclei together give a doublet of quartets
as shown in the figure.

If the off-axis nuclei had experienced the greatest
splitting, then the spectrum would have been a quartet
of doublets instead of a doublet of quartets. Something
like this does occur in the SF6 superhyperfine struc-
ture, which shows a quintet of triplets for a Case-2
C4-symmetry cluster. For either one of these molecules,
it is remarkable how different the rovibrational ‘chem-
ical shifts’ can become for equivalent symmetry sites.
The result is a microscopic example of spontaneous
symmetry breaking.

32.5.3 Extreme Molecular Symmetry Effects

The most common high symmetry molecules belong to
either the tetrahedral Td or cubic-octahedral O groups.
Until the recent discovery of fullerenes and the structure
of virus coats, the occurrence of molecular point groups
of icosahedral symmetry was thought to be rare or non-
existent in nature [32.24, 25].

For an extreme example of symmetry breaking ef-
fects, consider the Buckminsterfullerene or Buckyball
molecule C60 which has the highest possible molecular
point symmetry Yh . A semiclassical approach to rota-
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tional symmetry and dynamics is useful here since the
rotational quantum constant is so small for the fullerenes
(for C60 2B = 0.0056 cm−1 or 168 MHz) [32.29–31].

Since there are two isotopes 12C (nuclear spin 0)
and 13C (nuclear spin 1/2) it is possible to have a Bose-
symmetric molecule (12C60), or Fermi-symmetric
molecule (13C60), or many broken-symmetry combin-
ations (12Cx

13C60−x ). The most likely combination is
12C59

13C, which has no rotational symmetry at all, only
one reflection plane. This may be the most extreme ex-
ample of molecular isotopic symmetry breaking; it goes
from the highest possible symmetry Yh to one of the
lowest, Ch .

The Fermi-symmetric molecule 13C60 has ten times
as many rotating spin-1/2 nuclei as SF6, and 210 times
as many hyperfine states, or about 1.15 × 1018 spin states
distributed among 10 symmetry species [32.32]. In con-
trast,the Bose-symmetric molecule 12C60 has only one
spin symmetry species allowed by the Bose exclusion
principle: A1g. It provides an even more extreme ex-
ample of Bose exclusion than the Os16O4 molecule. In
all, 119 of the 120 Yh rovibrational symmetry states are
Bose-excluded, giving 12C60 an extraordinarily sparse
rotational structure. However, it only takes the addi-
tion of a single neutron to make 12C59

13C. Then all the
excluded rovibrational states must return!

32.6 Composite Rotors and Multiple RES
So far, the discussion has focused on Hamiltonians and
RES involving functions of even mulipolarity, i. e., con-
stant (k = 0), quadrupole (k = 2), hexadecapole (k = 4),
while ignoring odd functions, i. e., dipole (k = 1), oc-
tupole (k = 3), for reasons of time-reversal symmetry.
However, for composite “rotor-rotors” any mulitpolarity
is possible, and the dipole is of primary utility.

A composite rotor is one composed of two or more
objects with more or less independent angular momenta.
This could be a molecule with attached methyl (CH3)
“gyro” or “pinwheel” sub-rotors, a system of consid-
erable biological interest. It could be a molecule with
a vibration or “phonon” excitation that couples strongly
to rotation. Also, any nuclear or electronic spin with
significant coupling may be regarded as an elemen-
tary sub-rotor. The classical analogy is a spacecraft with
gyros on board.

A rotor–rotor Hamiltonian has the general interac-
tion form

Hrotor R+S = HrotorR + HrotorS + VRS . (32.19)

A useful approximation assumes that rotor S, the
“gyro”, is fastened to the frame of rotor R, so that the
interaction VRS becomes a constraint, does no work,
and is thus assumed to be zero. An asymmetric top with
body-fixed spin has the Hamiltonian

HR+S(Body-fixed) = AR2
x + BR2

y +C R2
z + HrotorS

+ (∼ 0) , (32.20a)

which is a modified version of (32.1). The total
angular momentum of the system is a conserved
vectorJ = R+ S in the lab-frame and a conserved mag-
nitude |J| in the rotor-R body frame. So we use

R = J − S in place of R:

HR,S(fixed) = A (Jx − Sx)
2 + B

(
Jy − Sy

)2

+C (Jz − Sz)
2 + HrotorS

= AJ2
x + B J2

y +C J2
z −2AJx Sx

−2B Jy Sy −2C Jz Sz + H ′
rotorS

.

(32.20b)

The gyro spin components Sa are first treated as constant
classical parameters Sa:

HR,S(fixed) = const. 1−2ASx Jx −2BSy Jy −2CSz Jz

+ AJ2
x + B J2

y +C J2
z

= M0T0
0 +

∑
d

DdT1
d +

∑
q

QqT2
q .

(32.20c)

This is a simple Hamiltonian multipole tensor op-
erator expansion having here just a monopole T0

0 term,
three dipole T1

a terms, and two quadrupole T2
q terms.

Figure 32.9 shows these three tensor terms, where each
graph is a radial plot of a spherical harmonic function
Yk

q (φ,Φ) representing a tensor operator Tk
q . The tensor

components are

T0
0 =

J2
x + J2

y + J2
z

3
(32.21a)

T1
x = Jx =

T 1
+1 + T 1

−1√
2

T1
y = Jy =

T 1
+1 − T 1

−1

i
√

2
T1

z = Jz = T1
0 (32.21b)
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a) b) c)Monopole Dipole Quadrupole

T 0
0 T 1

x T 2
0

T 1
y

T 1
z

2z2– x2–y2

T 2
+2 – T 2

–2

3(x2–y2)

Fig. 32.9a–c The six lowest order RES components
needed to describe rigid gyro-motors

T2
zz =

2J2
z − J2

x − J2
y

2
= T2

0

T2
x2−y2 = J2

x − J2
y =

2
(
T2

2 − T2
−2

)
√

6
(32.21c)

The constant coefficients or moments indicate the
strength of each multipole symmetry:

M0 = A + B +C +3H ′
rotorS

(32.22a)

Dx = −2ASx ,

Dy = −2BSy ,

Dz = −2CSz (32.22b)

Qzz = (2C − A − B) /6

Qx2−y2 = (A − B) /2 (32.22c)

The scalar monopole RES (a) is a sphere, the vector
dipole RES (b) are bi-spheres pointing along Cartesian
axes, and the RES (c) resemble quadrupole antenna
patterns. Also, Fig. 32.9a–c plot the six s, p, and d
Bohr–Schrödinger orbitals that are analogs for the six
octahedral J-tunneling states listed in Table 32.5.

The asymmetric and symmetric rotor Hamil-
tonians (32.1) and (32.1) are combinations of
a monopole (32.21a), which by itself makes a spher-
ical rotor, and varying amounts of the two quadrupole

terms (32.21c) to give the rigid rotor RES pic-
tured in Figs. 32.1 and Fig. 32.2. The Q coefficients
in (32.22c) are both zero for a spherical top
(A = B = C), but only one is zero for a symmetric top
(A = B).

Combining the monopole (32.21a) with the
dipole terms (32.21b) gives the gyro-rotor Hamilto-
nian (32.20b) for a spherical rotor (A = B = C):

H = const+ BJ2 − gµS · J , (32.23)

where −gµ = 2A = 2B = 2C. This Hamiltonian re-
sembles a dipole potential −m · B for a magnetic
moment m = gJ that precesses clockwise around a lab-
fixed magnetic field B = µS. (The PE is least for J
along S.)

The Hamiltonian (32.23) is a simple example of
Coriolis rotational energy. It is least for J along S, where
|R| = |J − S| and the rotor kinetic energy BR2 are least.
(Magnitudes |J | and |S| are constant here.) The spher-
ical rotor-gyro RES in Fig. 32.10 has a minimum along
the body-axis +S and a maximum along −S, where BR2

is greatest.
As is the case for the rigid solid rotors in Figs. 32.1

and Fig. 32.2, the RES topography lines determine the
precession J-paths in the body frame, wherein gyro-S
is fixed, as shown in Fig. 32.10. The left-hand rule gives
the sense of the J-precession in the body S-frame, i. e.,
all J precess counterclockwise relative to the “low” on
the +S-axis, or clockwise relative to the “high” on the
−S-axis. In the lab, S precesses in a clockwise manner
around a fixed J.

Precessing
J vector

Linear
harmonic
precession
spectra

Lowest RE
for gyro-rotor
at North pole
fixed point

Highest RE for gyro-rotor
at South pole fixed point

S

Fig. 32.10 The spherical gyro-rotor RES is a cardioid of
revolution around gyro spin S
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Gyro-RES differ from solid rotor RES, which have
two opposite “highs” and/or two opposite “lows” sepa-
rated by saddle fixed points where the precessional flow
direction reverses, as seen in Fig. 32.2. The gyro-RES
in Fig. 32.10 has no saddle fixed points, and thus has only
one “high” and one direction of flow with the same har-
monic precession frequency for all J-vectors between
the high +S and low −S-axes. This is because the spec-
trum of the gyro-rotor Hamiltonian (32.23) is harmonic,
or linear, in the K :

〈
J
K

∣∣∣ H
∣∣∣J
K

〉
= const.+ BJ(J +1)−2BK . (32.24)

In contrast, even the symmetric rigid rotor spec-
trum (32.4) is quadratic in K . Other rotors shown
in Figs. 32.2 and Fig. 32.4 have levels that have an even
more nonlinear spacing.

32.6.1 3D-Rotor and 2D-Oscillator Analogy

Linear levels are usually associated with harmonic
oscillators not rotors, but the gyro-rotor’s linear spec-
trum highlights a 160-year-old analogy between the
motions of 3D rotors and 2D vibrations [32.33–45].
Stokes [32.35] first described 2D electric vibration or
optical polarization, by a 3D vector that became known
as the Stokes vector S, and later as the “spin” S.
The Stokes spin was based on Hamilton’s quater-
nions qµ [32.33,34]. The Pauli spinors σµ = iqµ [32.36]
were defined, 83 years later, as components of a general
2D Hermitian matrix H . Spinors square to the unit ma-
trix

(
σ2

µ = 1 = σ0
)
, while quaternions square to –1. The

3D Hamiltonian is

H =
(

A B − iC
B + iC D

)

= A + D
2

σ0 + A − D
2

σA + BσB +CσC , (32.25)

where

σ0 =
(

1 0
0 1

)
, σA =

(
1 0
0 −1

)
,

σB =
(

0 1
1 0

)
, σC =

(
0 −i
i 0

)
.

The 3D-component labels A−D
2 (Asymmetric-

diagonal), B (Bilateral-balanced), and C (Circular-
Coriolis) are ABC mnemonics for Pauli’s z, x, and y,
respectively. The 2D operator H has a 1+ S · J form of

the Coriolis coupling Hamiltonian (32.23):

H = S01+ SA JA + SB JB + SC JC

= S0 J0 + S · J , (32.26)

where

J0 = 1 , JA = σA

2
, JB = σB

2
, JC = σC

2
,

and

S0 = (A +D)/2 , SA = (A −D) , SB = 2B ,

SC = 2C .

The elementary 2D-oscillator ladder operators a†,
and a make the 2D-3D theory more powerful. This is
known as the Jordan–Schwinger map [32.37–39] be-
tween 2D oscillation and 3D rotation. In terms of the
ladder operators

J0 = N = a†1a1 +a†2a2 , JA = 1
2

(
a†1a1 −a†2a2

)
,

JB = 1
2

(
a†1a2 +a†2a1

)
, JC = −i

2

(
a†1a2 −a†2a1

)
.

(32.27)

where

a†1a1 =
(

1 0
0 0

)
, a†1a2 =

(
0 1
0 0

)
,

a†2a1 =
(

0 0
1 0

)
, a†2a2 =

(
0 0
0 1

)
.

The a†a-algebra gives Schwinger’s 3D angular mo-
mentum raising and lowering operators J+ = JB +
iJC = a†1a2 and J− = JB − iJC = a†2a1, where in two
dimensions 1 and 2 are spin-up (+ /2) and spin-down
(− /2), instead of the x-and y-polarized states envi-
sioned by Stokes.

The angular 3D ladder operation is replaced by
a simpler 2D oscillator operation:

J+|n1n2⟩ = a1
†a2 |n1n2⟩ =

√
n1 +1

√
n2 |n1 +1, n2 −1⟩ ,

J− |n1n2⟩ = a†2a1 |n1n2⟩ =
√

n1
√

n2 +1 |n1 −1, n2 +1⟩ . (32.28)

The 2D oscillator states are labeled by the to-
tal number N = (n1 + n2) of quanta and the net
quantum population ∆N = (n1 −n2). The 3D angular
momentum states

∣∣J
K

〉
are labeled by the total mo-

mentum J = N/2 = (n1 +n2)/2 and the z-component
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K = ∆N/2 = (n1 −−n2)/2, just half (or η/2) of N
and ∆N .

|n1, n2⟩ =

(
a†1

)n1
(

a†2
)n2

√
n1!n2!

|0, 0⟩ =

∣∣∣J
K

〉
=

(
a†1

)J+K (
a†2

)J−K

√
(J + K)! (J − K)! |0, 0⟩ , (32.29)

where

n1 = J + K , n2 = J − K .

From this Schwinger [32.38] rederived the Wigner
matrices DJ

MK (αβγ ), which appear in (32.5) and (32.6),
and the Wigner–Eckart or Clebsch–Gordan matrix val-
ues. This helps clarify the approximation of these values
by (J, K)−cone levels around RES hills or valleys
[recall (32.10) and (32.11)], since

〈
J ′

K

∣∣∣T k
0

∣∣∣ J
K

〉
= CkJJ

0KK ⟨J ∥k∥ J⟩ ∼ DJ
JK

(
Θ J

K

)
.

32.6.2 Gyro-Rotors
and 2D-Local Mode Analogy

The 2D–3D analogy provides insight into spin [32.40–
42] and rovibrational dynamics [32.40–45], as well as
having computational value. Consider extending a sin-
gle 2D-oscillator-rotor analogy in the Stokes model to

S

BA

–B fixed pt.
Anti-symmetric
normal mode

+B fixed pt.
Symmetric
normal mode

C (or y)

S

TT0
(0)+ Dy

(1)Ty
(1)+ Q0

(2)T0
(2)

Symmetric
normal
mode
becomes
unstable

+A fixed pt.
Local Mode-1

–A fixed pt.
Local Mode-2

a) b) c)Spherical gyro-rotor
or normal " B-modes

Perturbed gyro-rotor
or “soft”  + B-mode

Symmetric gyro-rotor
or local " A-mode
normal –B-mode

(or z) (or x)

TT0
(0)+ Dy

(1)Ty
(1)

Fig. 32.11a–c A spherical gyro-rotor becomes a symmetric gyro-rotor by adding T2
0

a model of two 1D oscillators with coordinates x1 = x
and x2 = y.

Identical side-by-side oscillators have bilateral
B-symmetry. The Hamiltonian HB commutes with the
matrices σB (+45◦ mirror reflection of axes ±x!±y)
and −σB (−45◦ mirror reflection of axes ∓x!±y),
both of which switch oscillators. A first-order bilat-
eral Hamiltonian is HB = 2BσB. This is analogous to
a gyro rotor T1

x with S along the B-axis, as shown
in Fig. 32.11a. (The added unit operator T0

0 shifts levels,
but does not affect eigenstates.)

The eigenstates of HB are the symmetric and anti-
symmetric normal modes that belong to the fixed points
on the S-vector or ±B-axes of the 3D Stokes space.
If instead, the S-vector lies on the A-axis, the Hamil-
tonian is an asymmetric diagonal HA = 2AσA matrix.
From (32.25) we see that the operator σA reflects y into
−y but leaves x alone, so that the eigenvectors of HA
are localized on the x-oscillator or the y-oscillator, but
not on both. Such motions are local modes, but they are
not modes of HB since it does not commute with HA.

If the vector J is on the +A-axis (local x-mode),
the Hamiltonian HB rotates J to the −C-axis, then to
the −A-axis (local y-mode), then to the +C-axis, and
then back to the +A-axis. This J-path is the equator
of Fig. 32.11a. The ±C-axes label circular polariza-
tion with right and left chirality, respectively. Twice
during a B-beat, J passes the ±C-axes, where one vi-
brator’s phase is 90◦ ahead and resonantly pumping
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the other. Such bilateral beat and resonant transfer is
disrupted by adding anharmonic T2

0 or T2
±2 terms to

the B-symmetry terms T1
x and T0

0 . Adding T2
0 causes

B-circles in Fig. 32.11(a) to distort near the B-axis, as
shown in Fig. 32.11b–c.

In molecular rotation theory, the T2
0 and T0

0 terms
comprise the initial unperturbed Hamiltonian (32.3) of
a symmetric top, while the gyro terms T1

q are viewed as
perturbations in (32.20), due to an “on-board” gyro rotor.
For vibration theory, the T1

q terms make up a normal-
mode Hamiltonian, and the T2

0 term is viewed as an
anharmonic perturbation.

The effect of T2
0 , seen in Fig. 32.11c, is to replace

the stable fixed point +B (representing the (+)-normal
mode) by a saddle point as B bifurcates (splits) into
a pair of fixed points that head toward the ±A-axes.
So one normal mode dies and begets two stable local
modes, wherein one mass may keep its energy, and not
lose it to the other through the usual B-beating process.
(The A-modes become anharmonically detuned.)

Pairs of classical modes, each localized on differ-
ent sides of the RES in Fig. 32.11, are analogous to
the asymmetric top ±K -precession pairs in Fig. 32.2
with degenerate energy in a classical RES picture. The
quantum-tunneling Hamiltonian (32.15) splits each tra-
jectory pair into a superfine doublet with (±)-eigenstates
sharing both RES paths, as seen in Table 32.1. The quan-
tum gyro-spin doublets also share ±J components both
up and down the A-axis, as seen in Fig. 32.11c.

a) Composite "S rotational
energy surface

b) c)Forward gyro-spin
+S = (1, 1, 1)

Time reversed gyro
–S = (–1, –1, –1)

S

Jz

–S

Jy

Jx

S

J R

JR

–S

Fig. 32.12a–c Asymmetric gyro-rotor RES (classical body-fixed-spin case); (a) Composite ±S; (b) Forward spin ±S;
(c) Reversed spin −S

32.6.3 Multiple Gyro-Rotor RES
and Eigensurfaces

While simple quantum rotors delocalize J to multiple
RES paths, a gyro-rotor J may delocalize to mul-
tiple paths and surfaces. Gyro-rotor RES vary with S,
and if S is a quantum spin, the possibility arises for
a distribution over multiple RES [32.46, 47]. A sim-
ple quantum theory of S allows both +S and −S at
once. The RES for each is plotted one on top of the
other, as in Fig. 32.12a, while component RES are shown
in Fig. 32.12b for +S and in Fig. 32.12c for −S. An
energy sphere is shown intersecting an RES pair for
an asymmetric gyro-rotor. If the spin S is set to zero,
the pair of RES collapses into a rigid asymmetric top
RES, shown in Fig. 32.2, having angular inversion (time-
reversal J → −J) and D2h reflection symmetry. The
composite RES in Fig. 32.12a has inversion symmetry,
but lacks reflection symmetry. Its parts in Fig. 32.12b
and c have neither inversion nor reflection symmetry if
gyro-spins ±S are off-axis.

The gyro-rotor Hamiltonian (32.20) allows tunnel-
ing or mixing of multiple RES. A two-state spin−1/2
gyro-spin model has a 2⊗2 Hamiltonian matrix and two
base-RES:

Hgyro = M0 J · J + Dx Sx Jx + Dy Sy Jy + Dz Sz Jz

+ Qxx J2
x + Qyy J2

y + Qzz J2
z (32.30)
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As in (32.7), J is approximated by classical vector
components in the body frame:

(
Jx = |J | sin β cos γ , Jy = |J | sin β sin γ ,

Jz = |J | cos β
)

. (32.31a)

But the gyro-spin S uses its quantum representation S =
|S|σ/2 =

√
3σ/2 from (32.25):

〈
Hgyro

〉
= M0 J2 + Qxx J2

x + Qyy J2
y + Qzz J2

z

+ Dx |S| σx Jx + Dy |S| σy Jy + Dz |S| σz Jz

=
(

h (J)+ Dz |S| Jz |S| (Dx Jx − iDy Jy
)

|S| (Dx Jx + iDy Jy
)

h (J)− Dz |S| Jz

)

=

⎛

⎜⎜⎜⎝

h (J)+dz cos β
(
dx cos γ − idy sin γ

)

× sin β
(
dx cos γ + idy sin γ

)
h (J)−dz cos β

× sin β

⎞

⎟⎟⎟⎠
,

(32.31b)

where

h (J) = M0 J2 + Qxx J2
x + Qyy J2

y + Qzz J2
z

and

dµ = Dµ|S||J | . (32.31c)

The dynamics generated by Hamiltonian approx-
imations such as (32.31b) are analogous to other
semiclassical approximations, such as the Maxwell–
Bloch model of an atom in a cavity. Their solutions
are very complicated and often chaotic. The classical
variable (J in this case) follows phase contours on
a changing RES that depends on the instantaneous ex-
pectation values of the quantum variables (S in this
case), which in turn vary according to the instantaneous
classical variables.

In spite of this complexity, semiclassical spectra
may be approximated using RES pairs obtained from
eigenvalues of a 2⊗2 matrix such as (32.31b) for each
classical angular orientation (βγ) of the J-vector in the
body frame [32.46,47]. The results are pairs of surfaces
roughly like those in Fig. 32.12a, but without the inter-
section lines. The Wigner non-crossing effect prevents
degeneracy, except at isolated points.

Near-crossing RES are the rotational equivalent
of near-crossing vibrational-potential energy surfaces
(VES) described in treatments of Jahn–Teller ef-
fects [32.48, 49]. The classical, semiclassical, and
quantum theory for such loosely-bound or fluxional sys-
tems is still inits infancy, but is potentially a very rich
source of new effects.
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