Singular motions of asymmetric rotators*
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An apparatus is described that shows clearly and quantitatively the spectacular motion of
free rotating rigid and semirigid bodies moving near their inertial singularities. A geometric
construction is shown that makes the theory of this motion clear.

I. INTRODUCTION

Determining the motion of a freely rotating body is one
of the most beautiful classical mechanics problems. The
solutions found by Euler, Poinsot, Routh, and others are
given in most modern advanced texts.!:2

However, there is still some difficulty in exhibiting the

. mathematical solutions and producing clear demonstrations
of them. The standard demonstration of a flipping tennis
racquet is completed so quickly that it appears to be a trick
(we assume that Skylab is not available for the experiment),
and the usual mathematical description involving the an-
gular velocity ellipsoid is more obscure than it needs to
be.

We describe a simple air support apparatus that provides
a spectacular and clear demonstration of the peculiar sin-
gular motions of an asymmetric rigid body. We show a
geometric construction involving a combination of the el-
lipsoids of angular velocity and angular momentum,
through which the motion may be understood more easily.
We use this to show how another type of peculiar motion
can occur for a semirigid body, and explain how this may
be demonstrated also.

The modifications of existing theory and experiments
which we describe do not represent a great change. (Air-
supported symmetric tops have been commercially available
for some years.) However, we find that the modifications
are well worth the little extra effort which they require.

II. REVIEW OF ROTATION THEORY

The standard vector definition of angular velocity w and
angu}ar momentum L for a rigid body of mass points m ; at
positions r; gives the following relations between them:

L= X(mr) =% 1 X (mw X rj),
J J

L= Zmil( 5o =10 - o). (1)

As described in many texts, this relation between L and
w is concisely expressed by the operation of the inertia tensor
I:

L=lew = ,Z mj[(rj crj)l— rir;] (2)

or by a matrix representation of I:

24 .2 oy e
L, y;i2 +z; Xjy; X;z; Wy
= . R~ 24,2 _y..
Ly ? m;j yixj  Xj*tz; ViZj Wy 3)
oy —y 24,2
L, zZjx; ziy;p x| e

Similarly, the kinetic energy E of the body is expressed
conveniently in terms of this inertia operator, and the an-
gular velocity vector:

E= (I/Z)ijl']'l'j= (1/2)ij(erj)(erj)
J J
=(1/2) S mjlo [r; X (@X 1)l = (1/2) w-l-w. (4)
j .

A convenient geometrical visualization of these equations
is due originally to Poinsot. There exists a coordinate system
(labeled as the principal body axes 1, 2, and 3) in which |
is diagonal and the kinetic-energy relation [Eq. (4)] be-
comes the standard equation of an ellipsoid.

I] 0 0 wi
E=(1/2w1r0=(1/2)|woiwrws3]|0 I, 0[]|w
0 0 13 w3

= (1/2) (11012 + Lwy? + I3032),
1= w,z/alz + wzz/azz + w32/a3?, aj = (2E/Ij)1/2. (5)
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Given that E is conserved, Eq. (5) demands that the ter-
minus of vector w lie on this ellipsoid, and this, in combi-
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Fig. 1. Geometry of tensors. The inertia tensors / and /~! define the w and
L ellipsoids respectively. For each vector w on the w ellipsoid, there is a
vector L = I'w on the L ellipsoid as sketched in the figure. L is normal to
the tangent plane at w and vice versa.
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Fig. 2. Constraints of motion.
The L vector is constrained by
energy and momentum conser-
vation to be at the intersection of
a sphere and the L ellipsoid in the
body coordinate system. The
constraint on L is then trans-
formed into a constraint on w.

nation with Eq. (2), restricts vector L to another ellipsoid
defined by

E=(1/2)L-I'-L
11_1 0 0 L,
=(1/2)|L1 L2L3| 0 12_1 0 L,
0 0 13_1 L3

= (1/2) (Li*/1) + Lo¥/I, + L3?/13),

1= Li%/A4,2 + L/ 42% + L3%/A432,
Now it is easy to visualize the relation between vectors
wand L at any instant. L is along the normal to the plane
tangent to the w ellipsoid [Eq. (5)] at w, and w is along the

normal to the plane tangent to the L ellipsoid [Eq. (6)] at
L. A two-dimensional sketch of this is given in Fig. 1. (This

construction is valid for any positive definite operators."

Treatment of other operators lends itself to similar con-
structions involving hyperboloids.)

Now if no torques are applied to the spinning body, then
its L vector must keep a constant direction in the laboratory
(x,y,z) coordinate frame, and a constant length in all coo-
riginal coordinate systems including the body axes (1,2,3).
The latter constraint restricts vector L to the line of inter-
section between the L ellipsoid and a sphere of radius | L],
and as shown in Fig. 2, this constrains the body axis motion
of vector w to some curve (called a polhode) on the w ellip-
soid. A family of polhodes shown in Fig. 3 are produced by
trying various values | L| with E held constant.

“The spatial or laboratory constraints and the energy
equations [Egs. (5) and (6)] together demand that the plane
normal to L (and tangent to the w ellipsoid) be fixed in space
at a constant distance from body center:

wl*w=w+L=2E. _ @)

All this leaves the w ellipsoid to roll around between two
parallel space fixed planes as shown in Fig. 4. Since w al-
ways defines the point of tangency, the w ellipsoid rolls

THE SINGULAR
POLHODE

. Fig. 3. Polhodes. A family of constraint curves for the vector w in the body
system, or “polhodes,” are separated into two distinct groups by a curve
called the singular polhode.
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without slipping. Indeed, if one were to fashion an ellipsoid
of iron stuck between two parallel magnetic pole faces, an
analog of the motion would result. (It is interesting to show
that an asymmetric solid homogeneous elliptical body could
never be its own inertial w ellipsoid, so the mathematical
model requires some static friction for it to move “cor-
rectly.”)

III. DEMONSTRATION APPARATUS

In order to demonstrate the peculiarities of the rigid body
motion with a physical model, we put brass pins and bolts
in billiard balls and floated them on air bearing supports
(Fig. 5). Some of the most spectacular effects occur when
the moments of inertia are all different (/; < I, < I3) but
not very different. An arrangement that accomplishes this
is shown in Fig. 5.

I4E/ILI

Fig. 4. Model of rotational motion near the singular polhode.
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Fig. 5. Demonstration aparatus. Rigid body experiment. Machined aluminum base is bolted to Plexiglas column with ring seal between the connecting
air passages. Billiard ball containing two orthogonal press-fit brass rods rides on a cushion of air provided by a pressure source. (Less than 2 psi pressure
is needed if the ball is balanced and the pocket fits it well.) When each brass rod is turned, a small (No. 70-80) hole should be drilled into the center
of either end to serve as receptacles for a pin point. The ball can be started rotating by hand precisely on the desired axis using the pin point as an initial
bearing. Spectacular reversals occur when the 2 axis is tried. The 1 and 3 axes are stable. Semirigid body experiment. The same construction is made

except that a balanced, 1%- to 13-in.-long segment is cut out of the 1-axis brass rod leaving a cylindrical cavity inside the ball. Mercury can be injected
through a pinhole in one rod end while trapped air escapes at the opposite end until the cavity is completely full, and the holes may then be sealed. Because

the fluid may dissipate energy, only the 3 axis is a stable rotation axis.

Plastic billiard balls are the least expensive round and
balanced objects we found readily available. They are
comparatively easy to machine on a lathe and can be filled
with various balanced masses, magnets, liquids, springs, or
whatever one finds to be potentially instructive.

The simple model shown in Fig. 5 has the moments of
inertia given approximately by

Iy = QM /5 + my/3)R2 + mri2/2 + mory?/4,
Iy=(2M/5+ mi/3)R? + mory?/2 + myri2/4, (8)
I3=02M/5+ mi/3 + ma/3)R2+ mri2/4 + myrs?/4,

where m; and m- are the masses of the two transverse metal
bolts, less the mass of corresponding equal volumes of
plastic, and 7; and r; are their radii. (We ignore the extra
inertia due to counting the bolt intersection twice, and that
which is lost by filling the ends to conform to the
sphere.)

The balls we used had radius R = 2!, in. and mass M =
115 g. The rotator with the longest time constant (see Sec.
IV) had bolts of radii », = Y in. and 7, = 6 in. made of
brass having a density of 8.40 g/cm3. The inertia values
obtained are I; = 396 gcm?, I, = 524 g cm?,and I3 = 533
g cm?2,

Now, if the initial rotation axis w(0) = W is set on or near
the +2 axis or anywhere on or near the so-called singular
polhode of Fig. 3, an extraordinary rotation results. The top
will appear to rotate smoothly for some time (this time in-
terval is calculated in Sec. IV), after which it will suddenly
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reverse itself to settle the —2 axis for a similar length of
time, followed by reversal, rotation, reversal, etc. One may
set whatever initial axis is desired with some accuracy by
drilling tiny pin pockets at select points on the surface of the
ball or into the brass rods near the 2 axis. The results of
various initial conditions are discussed below.

A very interesting effect can occur when a rotator such
as the one in Fig. 5 is loaded along one axis with a fluid such
as mercury. Supposing again that the three principal inertia
satisfy I < I, < I3, we would expect for a rigid body that
axes 1 and 3 were stable while 2 behaved extraordinarily.
However, with energy dissipation through the fluid occur-
ring, we find that an initial  that points near the 1 axis will,
if not perfectly centered, move away from that axis, pass
quickly through the vicinity of the 2 axis, and settle finally
into the 3 axis where it will remain. One can see that this

" catastrophic overturning must occur because E decreases

while L, assuming no external torques, remains a constant
vector. The L ellipse in Fig. 2, shrinks until it just fits inside
the L sphere. Indeed, the “ground state” value for E is
| L|2/2I5. The dissipating fluid will be rotating rigidly at this
point and no further energy can be lost. This upsetting effect
brought the untimely end to the useful life of a satellite
several years ago.3

In either of the experiments described here, it is inter-
esting to put a dot of fluorescent paint on the initial axis, and
illuminate the moving ball with an uv lamp. A time exposure
photograph of one reversal shows a logarithmic spiral.
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IV. CALCULATING TIME BETWEEN
REVERSALS

If one could adjust the initial w vector to be exactly on the
2 axis, a rigid freely rotating body with I; < I, < I'5 would
remain in uniform rotation about the axis forever. However,
any deviation or disturbance would precipitate an over-
turning. We now see how long it takes this body to overturn
when the initial w makes a small angle e with the 2 axis.

The Euler equation for the motion of the rigid body is
given by :

L=wXL, 9)
which takes the following form for the 2 component:
(;)2+ w1w3(11 —13)/12 =0. (10)

Solving Eq. (10) for w = w, using Egs. (5) and (6), we obtain
the following:

@ =(a—bw?)2(c —dw?)VI,(I,I3)1/2, (11)
where the constants a—d [Eq. (12)] depend on initial con-
ditions and the inertial moments as follows:

a= 2EI3 __LZ’ b= ]2(13 - 12),
c=L?=2El, d=1L,-1),
a= 12([3 - 12)W2 cos? €,
c=[I,(I = I) cos? e + I3(I3 — I) sin2 W2, (12)
where we have assumed initial conditions
w1(0) =0, wy(0)=Wcose, w3(0)=Wsine. (13)
Equation (11) is that of an elliptic function as given
by
{= < INDYE ) 1/2
(I3 = I)(L? - 2EI)

4 dQ
X
‘I(; (1 — 92)1/2(1 — k292)1/2 ’ (14)
where the following substitutions were made:
k = (ad/bc)'?, w= (a/b)'/2Q = QW cose. (15)

A further substitution Q = sin¢ reduces the integral in Eq.
(14) to the following customary form of the elliptic func-
tion:

fﬂ dQ
0 (1 — 92)1/2(1 — k292)1/2

¢ do 1,
=j; T gA= T (@R, (16)

Equation (16) gives the quarter-cycle period if the inte-
gration limit is set to unity, Q' = 1, which is equivalent to
setting ¢’ = w/2 in Eq. (16). The latter integral is tabulated
commonly.

Using Egs. (12), (14), and (16), we obtain the following
equation for a half-cycle period, i.e., the time for one re-
versal:
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Fig. 6. Exact solutions. The motion of the w vector for an asymmetric
and a not-so-asymmetric body are compared. Various polhodes are shown
on the left-hand side while the corresponding time behavior is plotted on
the right-hand side.

=

S

X( 11,15 )1/2
(13 —12)[12(12 "Il) cos? € +I3(I3 '—11) sin? E]

X sn~! (g, k), (17a)

2 < 11, )1/2 —1 (71’ >
t—>— sn - k), 17b
W \I3— L)(I,— 1)) 2 (170)
where

k= ( I(I, = 1) )72
12(12 - Il) cos? e + 13(13 - I]) sin? 6/

COS ¢,

(18a)
k=1 = (I/I)[(I3 — 1)/(I> = I)](€%/2). (18b)

The limiting forms [Egs. (17) and (18b)] become good
approximations for e < 10°. The approximate number of
revolutions accomplished by a body before it overturns is

given by the product of W/2x, the number of revolutions
per second, and the right-hand side of Eq. (17b). Exact
solutions for various /; and e are displayed in Fig. 6.

If one desires to increase the reversal time, it should be
done through the first factor in Eq. (17b). The integral in
the second factor is usually only as large as 7 or 8 in our
experiments (e = 10° gives 3.1, ¢ = 1° gives 5.4, and ¢ = 0°
1” gives 9.5). This is a good demonstration of the behavior
of an elliptic function near its singularity.
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Brazil. )
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