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Relawavity: Introducing relativity and quantum theory by ruler & compass geometry of phase 
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A quantitatively precise and logically compelling Occam's Razor  introduction to special relativity and 1

quantum theory can be done with a few simple steps aided by ruler and compass. A number of concepts 
that students invariably find arbitrary, mysterious, or quasi-paradoxical are elegantly resolved. 

This development models pairs of laser beams or cavity modes that produce a Minkowski coordinate 
lattice geometry in space-time and a reciprocal lattice geometry in per-space-time (Fourier space). This 
leads to a revealing roadmap for classical mechanical and quantum variables that derives and clarifies 
their differential relations yet requires little more than high-school trigonometry. 
   
This geometric approach improves both conceptual visualization and the computational techniques for 
these subjects while showing they are really two sides of a single subject. Such a unified approach could 
allow these pillars of modern physics to be introduced earlier and in greater depth in the growing range 
of physics curricula. It also reveals heretofore hidden insight and provides new avenues for research. 

(First draft as of Jan. 10, 2017) 
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1. Introduction to relawavity        

For well over a century the introductory teaching of special relativity (SR) and quantum mechanics 
(QM) has been problematic for critically thinking students who seek conceptual comprehension. A 
paraphrasing of many such student comments might be, “I didn’t understand all that, but I don’t think 
our professor did, either!”   

In spite of such doubts, many thousands of students of physics, chemistry, engineering, and now even 
biological sciences have soldiered through SR and QM to create a vast technology based on them with 
new sciences still arising from these pillars of modern physics. Beginnings of QM by Planck  (1900), of 2

QM and SR by Einstein , ,  (1905), and QM matter waves by DeBroglie  (1923) were great advances in 3 4 5 6

a theory related to electromagnetic (EM) wave phenomena that still yields new applications and theory.    

Yet, doubts about establishing basic SR or QM axioms may cause enough discomfort for an SR or QM 
professor to exclaim, “Just trust me! This all works out in the end!” Such painful beginnings cannot be 
healthy for the science or for the society that supports it. Evidence of this is seen in the plethora of 
painful popular attempts to describe either SR or QM. All this begs us to apply Occam’s Razor1.  

The following article describes the result of decades long search  at the University of Arkansas for a 7

technically sweet front-end to modern SR and QM physics education as well as improved ways to 
develop classical mechanics (CM). The upshot is that SR and QM merge into a single subject and need 
not, indeed should not, continue to be taught separately. Space-time SR aberrations and related QM 
Lagrangian and Hamiltonian variables are constructed by a single elegant logic involving a few ruler 
and compass strokes derived from geometry of laser wave cavity interference. 

Such a simple development allows younger students to begin acquiring understanding of modern 
physics theory while relating it to classical geometry and mechanics going back to Thales (600 BCE), 
Euclid (300BCE), and Galileo (1500ACE). This effort extends work by the Feynman, Leighton, and 
Sands projects of 1964 at CalTech that gave The Feynman Lectures in Physics . 8

Full Disclosure: One of the authors (WGH) was a grad student of Richard P. Feynman and William G. 
Wagner (a co-author of Feynman’s text on Gravitation ) at CalTech and UCI between 1964 and 1968. 9

The current project began at Georgia Tech  in 1985 and continued at UAF from 2001 to the present . 10 11

In order to be self-contained, this exposition begins with a novel and refreshing geometric review of 
trigonometry of the six circular and six hyperbolic sine-tangent-secant and complimentary cosine-
cotangent-cosecant functions. The circular six are functions of unit-circle sector area σ while the 
hyperbolic six depend on unit-hyperbola sector area ρ and all reveal some little known relations.   

A “trigonometric road-map” (TRM) relates twelve trig functions and shows that hyperbolic sine and 
cosine sum and difference give the ± exponentials: ! . Hyperbolic functions with real 
exponential power series derived from interest-rate formulae are simpler than circular functions that 
involve the mysterious !  in complex exponentials ! . So the former serve to derive 
the latter in a first step to show the role of complex wave functions !  in QM and SR theory and 
how real exponentials !  rescale wavevector k, wave angular frequency ω, and wave amplitude A. 

e±ρ = coshρ ± sinhρ

i = -1 e± iσ=cosσ ±isinσ
Ae± i(kx−ωt )

e±ρ
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Later !  and !  are seen to be blue and red Relativistic Doppler shifts while σ is the stellar-aberration 
or waveguide-beam-entry angle . Both measure first order relativistic effects that are well known like 12

police Doppler radar. Second-order effects like Lorentz contraction are immeasurably tiny at terrestrial 
speeds and much more mysterious. Yet second-comes-first in standard  SR texts. Here a first-things-13

first approach based on Doppler shifts turns out to be clearer and quicker and a lot more revealing. 

This involves matching a “trigonometric road-map” (TRM) with a diagram of wave interference 
geometry for colliding laser plane waves that is named the “Relawavity Baseball-Diamond” (RBD). The 
RBD is constructed from real-wave zeros that trace space-time Minkowski grids. So the logic of this 
development involves comparing TRM geometry based on unassailable mathematical axioms with a 
RBD geometry of SR and QM wave mechanics based on potentially assailable physical axioms having 
several challenging issues including uncertainty, non-locality, and space-time aberration. 

The physical axioms for SR are picked with Occam’s razor1 in mind . Beside the time reversal 14

symmetry axiom there is one axiom that is (or should be) a classroom show-stopper. That axiom 
demands that the speed of light en vacuo be the same constant for all observers. We prefer to name this 
Evenson’s Axiom: All colors go the same speed c=299,792,458m·s-1 after Kenneth Evenson  who 15

measured c using overtones in a laser frequency chain in 1972. Later he worked to establish c as the 
definition of the meter, thus setting the stage for a precision revolution that included, among other 
things, ultra-high resolution laser spectroscopy, the Global Positioning System, and the LIGO projects. 

It is important to emphasize how counter-intuitive a super-constant c would be to Galileo and should be 
to anyone first dealing with SR. (It has been called the Roadrunner Axiom after Chuck Jones’ cartoons.) 
Galileo could be excused if he assumed c was infinite (c=∞) so then all would see the same c. But, how 
can a finite c be so regarded the same by all? A demystifying answer to this and other apparent 
paradoxes is based primarily on Doppler shifts. 

A prerequisite to deriving SR and QM fundamentals involves thought experiments with Evenson’s 
axiom that show why en vacuo c has to be constant. An ideal blue-green 600THz laser beam may be 
seen to lack a “birth certificate” in the sense that it might be made by an approaching laser operating 
below 600THz as well as a receding laser with output above 600THz. One needs to explain clearly why 
all υ=600THz beams share the same λ=0.5 µm wavelength of a co-moving 600THz laser and how this 
implies the same en vacuo speed c=λ·υ. 

Full understanding of Doppler effects requires a review of wave mechanics that follows the introduction 
of the geometry of the TRM and RBD. This involves two complimentary four-dimensional theaters, 
space-time (x,ct) and per-space-time (ck,ω). The first examples are limited to two-dimensional graphs of 
space-time (x,ct) and per-space-time (ck,ω). In later sections it will be shown that TRM plots occupy 
both (x,ct) and (ck,ω) as well as space-space (x,y) plots and per-space-per-space (ckx,cky) plots.  

Michelson and Morely  showed wave interference is a fine way to measure relativity of space-time. 16

Now relawavity shows wave interference is also a fine way to think about relative motion. By ruler & 
compass it derives and clarifies Lorentz-Einstein formulae, Lagrangians, Hamiltonians, Feynman 
diagrams, and Compton effects including wave frame dynamics for “Einstein elevator” acceleration.  

e+ρ e−ρ
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2. A novel review of trigonometry and previews of its applications 

Every scientific calculator has an SIN button and, as we tell our home-churched students, this is not such 
a bad thing. In fact it stands for Slope of INcline and (multiplied by 100) gives the percent of grade or 
ratio of altitude gained over road distance traveled along the freeway bypass around their town. Next to 
SIN is a COS or COmplimentary Slope giving ratio of level distance over road distance.  Fig. 1a is a plot 
of sine ( ! ) and cosine ( ! ) of angle ∠σ=36.87° that makes 3:4:5 triangles. Angle in radians 
σ= 0.6435=!  is also total sector area for a unit (B=1) circle. (That is π for σ=π.) Fig. 1 use a non-
standard convention to plot complimentary cosσ as a vertical projection while sinσ is horizontal. This is 
done to match Minkowski plots later on where space x is plotted on horizontal axis and time t on the 
vertical axis. It is complimentary to a standard Newtonian plot of x (vertical) versus time (horizontal).    
 The result of pressing a calculator TAN button for angle ∠σ=36.87° is the TANgent or tanσ=¾ 
(the ratio ! ) labeling the hypotenuse of a smaller 3:4:5 triangle on top of Fig. 1a. That tangent 
line is also the altitude of the largest 3:4:5 triangle in Fig. 1a, and it encloses the upper σ-sector. The 
three circular functions ! , ! , and !  are sufficient for elementary physics but it helps to have 
three more that are inverses of the primary three. The secant ( ! ), cosecant ( ! ), 
and cotangent ( ! ) as plotted in Fig. 1b to show two additional (and larger) 3:4:5 triangles. 
(Study carefully the mid and lower right hand side of Fig. 1b.) 

!  
Fig. 1. Circular TRM’s (a) Primary circular function triplet. (b) Full TRM sextet of circular functions.  

 A TRM suitable for SR and QM functions and theory involves replacing six circular functions in 
Fig. 1b with six hyperbolic functions as shown in Fig. 2 and Fig. 3 that play similar roles in labeling 
coordinates, tangents, and their intercepts around an equilateral hyperbola. Each circular function (such 
as ! ) is like an “urban dweller” that has a “country cousin” (for ! =! ) with same 
numerical value ( ! here) that is a function of hyperbolic sector area ( ! with angle!
in this example) as listed on top of Fig. 2 and plotted nearby. For each country-urban pair there is a 
flipped pair (here: ! ) that shares a value ( ! in that example) for the same hyper sector 
( ! or angle! ) and corresponding circle sector (σ=0.6435 or angle ∠σ=36.87° ). 
 A circle-hyperbolic (“urban-country”) pair !  and ! is listed on top left of 
Fig. 2 and plotted to the right below. (Fig.2 plots hyperbolic ρ-labels. Fig.1b plots circular σ-labels.)  
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 Total area ρ of sector pairs connecting opposite sides of a hyperbola is derived by an integral 
similar to one giving total sector area σ connecting sides of a circle. See (69) in Sec. 9. 

!  
Fig. 2 TRM Hyperbolic labeling of Fig. 1b.  

 Preparing TRM Fig.2 for SR and QM theory requires several more lines, circles, tangents, and 
intercepts that will label wave coordinates for SR and physical quantities for QM. The resulting TRM is 
Fig. 3. Most of the figure lies within a square with 45° diagonal OR. Sides of OR have length equal to 
base B times sum of hyperbolic sine and cosine that is a rising (+) exponential.  
        (1) 

To the left of OR’s base is a small square with 45° diagonal OL normal to OR. Sides of OL have length 
equal to base B times the difference of hyperbolic cosine and sine that is a decaying (-) exponential. 
        (2) 

In Fig. 3 a circle through point P of radius Bsinhρ bisects hyperbola baseline OB where square OL ends.  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!  
Fig. 3 More detailed TRM expanding hyperbolic labeling of Fig. 2.  

Vector OP in Fig.3 has components (x,y)P=(Bsinhρ, Bcoshρ) = (Btanσ, Bsecσ) at angle ∠ρ=ν=31°. Just 
below that is OS with components (x,y)S=(Bsinσ, Bcosσ) = (Btanhρ, Bsechρ) at angle ∠σ=36.87°. The 
circular sine-and-cosine of circle angle/area σ are natural coordinates for S on the B-circle while 
hyperbolic sine-and-cosine of hyperbola angle/area ρ are natural coordinates for P on the B-hyperbola. 
Either choice is correct for any point including G at (x,y)G=(Bcoshρ, Bsinhρ), a mirror reflection of P 
thru the 45° line OR. P is a tangent point for a line RPIP of slope tanhρ contacting the upper hyperbola. 
Similarly, G is a tangent point for a line RGIG of slope cothρ contacting the righthand hyperbola.  
 Tangent line RPIP crosses the vertical axis at a distance of Bsechρ from origin O and ends on 
horizontal axis at IP, a distance -Bcschρ from O. Tangent line RGIG ends on the vertical axis at IG a 
distance of -Bcschρ from origin O after crossing the horizontal axes at distance Bsechρ from O. 
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Complex algebra and calculus  
 Slopes, tangent points, and axis intercepts are the important geometric concepts for relawavity 
interference analysis that leads to SR and QM wave properties. The slope at P is derived in two distinct 
ways, first as a finite slope ratio ! , and second as an infinitesimal derivative ! . The first!  is the ratio 

for the triangle with |IPO| base Bcschρ and altitude Bsechρ supporting slope . The 
second ! analysis involves the algebra and calculus of Fig. 3 promised in the introduction. Before doing 
that, notice that the slope of the line OG is also ! , but line OP has inverse slope !
as does the vertical hyperbolic tangent line through point G.  
 Calculus of Fig. 3 geometry uses an infinite-n-compounding limit of the interest rate-r formula. 

    
      

(3) 

Infinite-n limit of binomial series is an exponential power-p series of (rt)p with 1/p! coefficients.  

  
   

(4a) 

  
   

(4b) 

Half-sum and half difference of  series define the hyperbolic cosine (cosh(rt)) and sine (sinh(rt)).  

     
  

(5a) 

      
  

(5b) 

Sum and difference gives equation (1) and (2) consistent with figures 2 and 3. Replacing rate r with 
imaginary rate ir where gives powers i0=1, i1=i, i2=-1, i3=-i, i4=1, i5=i, i6=-1, i7=-i,… that repeat 
sequence-(1,i,-1,-i) every 4th-power. Then hyper-sine-cosine becomes the circular-sine-cosine. 

 
  

(6a) 

 
  

(6b) 

Sum and difference of this pair gives the Euler-DeMoivre formulae. 
    (7) 

 This is used to make wave functions and phasors that help to visualize wave mechanics. 

Phasors and complex wave functions 
A single continuous wave or 1-CW is plotted as a complex phasor array in a space-time plot of Fig. 4. 
Einstein’s math teacher, Herman Minkowski , chose the space-time (x,ct) convention plotting space=x 17

in horizontal direction and c·time=ct along vertical axis. Lightspeed factor c makes the temporal ct-axis 
have the same spatial units as the x-axis and so the 1-CW moves along 45° lines of constant phase. Each 
phasor is like a clock sitting in a 300THz laser beam defined by wave function !  and its 
space and time derivatives. (General exponential derivative: ! follows from Eq.(4a).)   

Δy
Δx

dy
dx

Δy
Δx

altitude
base

sechρ
cschρ=

sinhρ
coshρ=tanhρ

dy
dx

sinhρ
coshρ=tanhρ

coshρ
sinhρ =cothρ

ert =n→∞
lim 1+ rt

n
⎛
⎝⎜

⎞
⎠⎟
n

 ert = 1+ rt + (rt)2

2
+ (rt)3

2⋅3
+ (rt)4

2⋅3⋅4
+ (rt)5

2⋅3⋅4⋅5
+ (rt)6

2⋅3⋅4⋅5⋅6
+ ...

e−rt = 1− rt + (rt)
2

2
− (rt)

3

2⋅3
+ (rt)

4

2⋅3⋅4
− (rt)5

2⋅3⋅4⋅5
+ (rt)6

2⋅3⋅4⋅5⋅6
− ...

e±rt

e+rt+e−rt

2
= 1     + (rt)2

2
       + (rt)4

2⋅3⋅4
       + (rt)6

2⋅3⋅4⋅5⋅6
− ...= cosh(rt)

e+rt−e−rt

2
=    rt          + (rt)3

2⋅3
       + (rt)5

2⋅3⋅4⋅5
+ ...             = sinh(rt)

i= -1

e+ i  rt+e− i  rt

2
= 1       − (rt)2

2
            + (rt)4

2⋅3⋅4
              − (rt)6

2⋅3⋅4⋅5⋅6
− ...= cosrt

e+ i  rt−e− i  rt

2
=      i rt           − i (rt)3

2⋅3
         + i (rt)5

2⋅3⋅4⋅5
− ...                 = isin rt

e+ iσ = cos(σ )+isin(σ ),                               e− iσ = cos(σ )− isin(σ ).

ψ k,ω(x,t)=Ae
i(kx−ωt )

d
dt e

rt = rert



       �9

Fig. 4 Single Continuous Wave (1-CW) (a) A phasor clock wavefunction ψk,ω(x,ct). (b) Spacetime array of ψk,ω-phasors. 

 Phasor plots in Fig. 4 are re-oriented by 90° in a non-conventional way so the real axis points 
upward and the imaginary axis points to the left along beam-line. A ψkω pointing up corresponds to a 
Reψ-wave crest with phase angle kx-ωt =0, and where ψkω points down corresponds to a Reψ-wave 
trough with phase angle kx-ωt =π. In between is Imψ-crest with phase kx-ωt =π/2 or Im-ψ trough with 
phase angle kx-ωt =3π/2 . These half-π tracks locate (Reψkω=0)-lines such as the white line in lower 
right of Fig. 4b. (Reψkω=0)-lines lines mark (x,ct) grids in Sec. 4 and help visualize relativity effects. 
 Space and time derivatives of any phasor ! sheds some light on their behavior. 

    (8a) 

    (8b) 

(8b) shows imaginary part ! multiplied by ω is real part of t-derivative ! . Note 
that wave imaginary part Imψ in top of Fig. 4(b) is a quarter wavelength ahead of the real wave Reψ. 
This quite well matches an unfortunate mantra for US Stockholder-Driven corporations:  
  Imagination precedes Reality by exactly one Quarter! 
Needless to say, this rule does not always favor corporate research quality in the 21st century. 
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Nevertheless, the concept of wave phase, indeed, relative phase, is an important key to understanding 
relativity, quantum mechanics, and dynamics of any oscillating or “wavy” system. If the relative phase 
between a pair of kAB-coupled neighboring phasors is ΔΦ=ΦA-ΦB then the rate of A-to-B energy or 
action transfer is proportional to the product of amplitudes A·B with coupling kAB constant and sinΔΦ.  
   Transfer A-to-B ≈ kAB A·B·sinΔΦ 
So if phasor A is ahead (that is clockwise) relative to phasor B, then A is feeding energy (or action) to B, 
and vice versa, if B is ahead of A then B is feeding A.  
 In the beam phasor line of Fig. 4b each clock is ahead of the one to its right by ΔΦ but behind the 
one to its left by the same amount ΔΦ. So as the clocks turn clockwise the wave will move left-to-right 
and with it, presumably, its energy or action. No phasor grows or shrinks as it passes on all that it gets. 

The actual speed of the wave is found by more elementary considerations of phase. Simply 
setting the phase equal to a constant (like 0 or or π/2…in Fig. 4b) gives the equation for its path. 
   !  
The time coefficient ! is the 1-CW phase velocity that, in this case is that of light ! . In the (x,ct) plot 
of Fig. 4b this makes 45° paths. Definitions of wave parameters like ω=2πυ and k=2πκ follows in Sec. 3.    
 The concept of a 1-CW (that is a Single-Continuous-Wave) is greatly simplified here and in what 
follows. A CW-laser is standard jargon since the invention of the He-Ne laser in 1962. For our purposes 
of developing thought experiments we assume a perfect plane wave inside the beam such as is imagined 
in Fig. 4. The acronym CW can also mean Coherent Wave (elementary lasers are described by coherent 
states of photons) or Colored Wave (lasers are known for frequency or, if visible, color purity) or just 
plain Cosine Wave (that is the real part of the Complex Wave function Aei(kx-ωt).) 
 This is to distinguish from a PW (that is a Pulse-Wave or Packet-(of)-Waves or Particle-(like)-
Wave) that are made of many frequencies or colors combined to form localized “spikes” or pulses that 
act more like particles. Newton might have liked this kind of “corpuscles” if they had been available in 
18th century laboratories, but laser a CW would have given him “fits” as discussed in Sec. 6. 

A phasor clock has only one hand! 
 While 1-CW phasors can have great spectral purity and precision, the value of phase is only 
given modulo 2π. After each revolution by 2π the recoding of time just starts over again. It is just a 
second-hand with no minute-hand or hour-hand (or week-hand, or-year-hand, etc.) to extend the range of 
a temporal record that space-time plots like Fig. 4 can provide.  
 Evenson had to solve this in order to count 500-TeraHertz light waves and did so by producing 
harmonics and sub-harmonics using non-linearity of metal-insulator-metal diodes. Later work by 
Theodore Hensch and others involved PW lasers with enormous “frequency-combs” of precisely spaced 
coherent Fourier components, essentially a clock with a thousand hands.  

At c the phasor clocks freeze! 
 Fig. 4 can be viewed in some mind-bending ways. It is intended as a line of 20 phasor clocks 
attached to a CW laser with each turning at its ω=2π·300THz infrared frequency. Then each phase 
marches at the speed c of light through this line. Alternative extreme view has 20 frozen clocks being 
dragged past the laser at the speed c of light. (Actually we would need about 20-thousand clocks so 
every pixel has a clock reading the correct value of phase kx-ωt assigned to the (x,ct) pixel.) 

Between the above two extremes are slower-moving-than-c clock-trains turning at a slower-than-
ω angular frequency yet always leaving the same phase kx-ωt on each (x,ct) pixel! This bizarre property 
is due to phase invariance. [By the time you reach (23) in Sec. 4 all this should be clearer.] 

kx −ωt = const.      ⇒         x = ω
k t + const .

k  
ω
k

ω
k =c
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What’s waving? (…and what’s not?) 
 The most tenuous questions of light wave analysis lie in their axiomatic underpinnings. More 
simply, what is it that is waving up and down in the “Real part” Reψ and/or in its t-derivative (scaled by 
angular frequency ω) that is the “Imaginary part” Imψ plotted as sine-curves on the laser beam in Fig. 4? 
 The short answer is that Reψ represents the electric field or E-field, and Imψ represents ! , the 
time derivative ! of E scaled down by ω so the two form a quadrant of a rotating circular phasor ψ. That 
conforms to Maxwell’s physics of vector fields transverse to the beam direction k of wave propagation. 
Since it is impractical to draw E-vectors waving in and out of the page, we lay them onto the page going 
up and down in the direction of the time axis, and not where they should be.  
 This kind of plot does not spoil accuracy of later figures (Fig.9 and Fig. 10) since they will be 
tracing the zeros or nodes of Reψ waves at precisely the time instants that they occur. But, it does limit 
the display to the most elementary linear/plane polarized light wave, but this simplified stand-in for a 
real laser is enough to derive a wave-based formulation of elementary relativity and quantum theory. 
 Perhaps, it would be nice if light could be a 3-dimensional scalar wave such as the Ψ(x,y,z,t) that 
appear in many textbooks, but those are not the optical cards that Nature has dealt us. Indeed, that is also 
an oversimplified stand-in, as well. 
 Real IR-to-UV laser beams have less than micron wavelengths traveling through beams that have 
more than a millimeter-wide Guassian profile. That provides an ample region that is well described by a 
plane wave function ψω,k(x,t)=Aei(kx-ωt) if we avoid considering the complexity of possible polarization 
vector states normal to the beam axis k. 
 So the wave complex amplitude “waves” (that is, oscillates sinusoidally) as a function of space-
time independent variables (x,t). This happens while inverse-space and inverse-time wave parameters, 
such as ω and k described in following Sect. 3, do not “wave” at all. Instead they vary or “Doppler-shift” 
according to the velocity of source and observer but stay precisely fixed if that velocity is constant. 
 Understanding Doppler shift is an important key to understanding relativity and quantum theory, 
and this is where that begins.  
  

!E/ω
!E
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3. Space-time vs Per-space-time: Fourier’s keyboard of the Gods 
 Physics students have to learn proper names for most physical units such as a Joule of energy, a 
Newton of force, or a Watt of power. Surprisingly there are no such names attached to most fundamental 
units, those of time (second) and space (meter).  (One might argue for renaming the meter an Evenson 
after he helped redefine it. Or one could apply the name Trump to the 4.1-light year distance to the star 
α-Proxima, our nearest possibly habitable refuge from the former.) 
 Still, there are some more or less well established proper names for units of per-space-time. Most 
well known is the Hertz unit (1 per second=1s-1) named after Heinrich Hertz (1857-1894), an inventor of 
radio transmission. Less well known among atomic and molecular spectroscopists is the Kayser unit of 
(1 per centimeter=1cm-1) named after Heinrich Kayser (1853-1940) known for analyzing solar spectra. 
They were born only four years apart, but Hertz only lived 37 years while Kayser lived to 87. 
 These pioneers deserve a coordinate frame to compliment the Einstein-Minkowski (x,ct)-frame. 
(Herman Minkowski  (1864-1909) also died young at 45 shortly after failing to interest Einstein in his 18

space-time plot. This may be due to Prof. Herman’s calling Albert a “lazy dog” or another pejorative.) 
Fig. 5 relates a Kayser-Hertz (per-space κ, per-time υ) plot (on the left) to the usual (space x, time t) plot 
(on the right) that might be used to track water waves or sound waves. The primary objective of Fig. 5 is 
to review standard wave terms, notation, and velocity formulae. 
 A single Kayser-Hertz point or vector (κ� , υ� ) produces one continuous wave (1-CW) 
that fills space-time with a wave having (wavelength λ� , wave-period τ� ). Fig. 5 has 
wavenumber  κ= ! and wave-frequency υ =! in per-space-time. That 
is wavelength λ= ! as well as wave-period τ =!  per wave in space-time. 
Kayser-Hertz space is better known as Fourier space where one imagines as a “control-panel” or “key-
board” to produce waves in space-time. The name “Keyboard of the Gods” is coined to suggest that 
mortal musicians cannot control both frequency υ=1/τ and wavelength λ or wavenumber κ=1/λ. 
 The idea of mapping an entire space-time wave like the 300THz wave in Fig. 4 from a single 
Kaiser-Hertz point (κ� , υ� ) of Fourier space requires a stretch of imagination. A wavelength or 
period in Fig. 4 involves a 2π phasor revolution as defined by wavefunction ! whose 
parameters are angular frequency ω=2π υ and angular wavenumber k=2π κ or wavevector k=2π κ.  
 The letter k (or greek “kappa” κ) honors Kaiser, but Hertz is not so noticed. Instead the greek 
“nu” ν for number is used. Since ν is easily confused with velocity “v” we will use “omicron” (υ) for 
number υ of waves per second (frequency). Conventional Greek-L or “lambda” λ denotes wave-Length 
and Greek-T or “tau” stands for wave-Time period τ, again without a proper name. 
 Ideal Fourier models fix the (k, ω)=2π(κ, υ) points in per-space-per-time. That determines wave 
velocity v in space-time. Fig. 5 lower right corner has a space/time formula for v as slope of wave paths.  

   
  

(9) 

This often called phase velocity since it is the velocity of any particular phase, say zero phase:0=kx-ωt. 
Solving this gives velocity or slope equation !  that agrees with (9) and has space-time slope 
relative to the vertical (time t or period τ) axis in Fig. 5. (It is a less familiar kind of slope.)  
 A vertical velocity vector v in space-time (x,t) indicates a zero wave speed while a horizontal 
vector v indicates infinite speed v=∞. This inverts in per-space-per-time (k, ω) of Fig. 5 (left) where 
velocity is indicated by slope of v relative to the horizontal (wavenumber k=2πκ) axis. This is a more 
familiar kind of slope. A horizontal v has zero slope and indicates zero speed while vertical v is ∞. Soon 
there will be shown light wave examples of both these extremes!  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!   
Fig. 5 Comparing a wave point in Kaiser-Hertz per-space-time to its Minkowski space-time view of resulting wave. 

c-Scaled wave graphs and Doppler shifts 

Wave velocity v=!  is plotted with slope !  in per-space-per-time on lefthand side of Fig. 5 but the 
space-time slope on the righthand side has inverse ! slope relative to horizontal. If light speed is a super 
constant c=2.99792458·108ms-1 it is convenient to rescale (9) to make c be unit slope in either plot. 

   
   

(10) 

This was done in space-time (x,ct)-plot of Fig. 4 and now for per-space-time plot (ck,ω)=2π(cκ,υ) on the 
lefthand side of Fig. 6 with its corresponding (x,ct)-space-time plot on the righthand side. Frequency 
units of both per-space-time axes are the same υA=600THz units. The vertical υ-axis is directly so, but 
the horizontal cκ-axis is indirectly so and without the c-factor, the κ unit is κA=2·106 waves per meter.   
 The vertical time ctA axis of the (x,ct)=(λ,cτ) graph has the same ½-micron units of length that 
the horizontal space xA-axis has. Without the c-scale factor the unit of time is τA=  
The units are assigned to a full blue-green 600THz wave made of two half waves, 1-peak and 1-trough 
separated by two real wave zeros sin0 and sinπ. When sin0 paths hit the vertical time axis a “hit” is 
recorded on the time axis in Fig.6 at time units …,-2, -1, 0, +1, +2,…. each due to a period τA= . 
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 Now consider the more rapid succession of “hits” for a line sloping into the negative direction so 
it has head-on collisions with the sin0 paths at time units !  corresponding to a 
Doppler blue-shift factor of ! . Then 600THz shifts to ! . A less rapid frequency of “hits” 
occurs along the path moving to the right and having rear-end collisions at !
corresponding to a Doppler red-shift factor of ! . Then 600THz shifts to ! . 

!  
Fig. 6. Laser 600THz wave plots c-scaled (a) Per-space-per-time plot (cκ,υ) (b) Space-time plot (x,ct). 

 As will be shown, Doppler blue shift is limited only by infinite υ and a red shift only by zero υ in 
spite of the speed limit c for all hapless mortal travelers. If you go faster to the right (along light beam 
flow) the light becomes redder and weaker until it disappears. If you go faster to the left (against light 
beam flow) the light becomes bluer and stronger until you disappear! (Or die of γ-ray poisoning.) 

Evenson’s axiom and Doppler shifts 

 It has become traditional in quantum optics to imagine beams between a point B and a point A to 
be manned (or woman-ed) by live characters named Bob and Alice, respectively. Our Doppler thought 
experiment begins with Bob sitting stationary relative to Alice but millions of kilometers to the East of 
her (far right of Fig.7) with Alice's laser shining on Bob. Unbeknownst to Bob, Alice is able to tune the 
laser on her spaceship and plans to do so as she accelerates toward Bob. Alice has cleverly programmed 
the laser to tune its frequency down with each increase of her velocity so Bob continues to see an 
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unchanged 600 THz reading on his receiver-spectrometer. If Alice and Bob have a communication 
channel like a cell phone, Alice will also have to detune her end of that channel appropriately in order to 
not make Bob suspicious. (Bob assumes Alice is maintaining her stay-at-home role.) 

!  
Fig. 7 Alice’s 300THz laser approaches Bob. (a) Bob sees υ=600THz. (b) What λ=1/κ does Bob measure? 

 Now suppose Alice pauses her acceleration at a velocity corresponding to an octave Doppler blue 
factor of b=2, that is, while Bob thinks he is still receiving her steady blue-green 600 THz laser beam, 
she has actually down-tuned her laser to an infrared 300 THz as in Fig. 7a. To check in with Bob, Alice 
must tune her phone receiver up by factor of 2 and her phone transmitter down by a factor of 2, just like 
her laser. (Tune-up-or-down by 2 is due to time reversal symmetry as explained below.) 
 Always the trickster, Alice asks Bob if he notices anything different about her laser beam. Bob 
replies, “It's still your beautiful blue-green and reads 600 THz to 18 digits.”  Alice says, “Okay, you’ve 
checked your frequency (υ)-meter, but what is your wavelength (λ)-measurement?” 
 Alice's leading question is a crucial one for relativity and quantum theory. She is asking if Bob is 
receiving some ‘phony’ kind of blue-green 600 THz, in this case, one that was produced by an infrared 
300 THz laser moving very rapidly toward Bob. And, more generally, one may ask, “How many kinds of 
‘phony’ blue-green, or of any other color or frequency, are possible in the vacuum of the universe?" One 
set of possibilities lies on the 600THz line of per-space-time (cκ,υ) plot in center of Fig. 7b and includes 
B (λ=1micron or κ=1·106m-1) thru C (λ= micron or κ=2·106m-1) to D (λ= micron or κ=3·106m-1). 
But, years of spectroscopy rule out ‘phony’ 600THz blue-green that do not have wavelength λ=!
micron. The only choice in Fig. 7b is C and only possible 600THz light speed is ! . 
 Alice could adjust her ship-and-laser to give any frequency to Bob’s frequency meter. So any 
light Bob sees must fall on the 45° line of the (cκ,υ) plot in Fig. 7b. This verifies Evenson’s Axiom 
requiring all 1-CW colors to march in lock-step at speed c. 

Alice: “Well, what is its wavelength λ, Bob!”

Bob: “ Alice! My frequency meter reads υ=600THz for your laser beam.

SOURCESOURCE RECEIVERRECEIVER

A really fast Alice shines her υ=300THz laser

600THz line600

500

400

300

700

800

frequency υ=ω/2π
(Inverse period υ=1/τ)

c·wavenumber c·κ=c·k/2π
(inverse wavelength κ=1/λ)

(ω = ck)
or

(υ = cκ)

C

900

λ= 1.00µm 0.50µm 0.33µm

κ= 1·106/m 2·106/m 3·106/m

THz

(a)

(b)

1
2

1
3

1
2

c= υ
κ = 600·1012

2·106 =3 ·108m·s−1



       �16
 A (cκ,υ) plot is also called a dispersion plot. Points lying below the 45° line (υ=cκ) belong to 
waves slower than vacuo light (υ/κ < c). Those above the line are faster than c (υ/κ > c). A waveform 
composed of sub or super luminal speeds would disperse, that is, super luminal components would 
outrun the sub luminal ones and thereby garble its initial waveform and information therein. Even a tiny 
frequency variation of speed c would give totally garbled light from galaxies millions (or billions!) of 
light-years away. (Goodbye Hubble images!) 

Rapidity and its Doppler shift arithmetic 

Thought experiments involving Doppler effects of relativistic quantum optics begs for a third member, 
Carla, on the SR optics team of Bob and Alice. Fig. 8 expands the Fig. 7 view in Bob’s frame with Alice 
approaching so Bob sees her infrared 300Thz source Doppler blue-shifted to green 600Thz. Carla is 
moving to the right more slowly than Alice so she also sees Alice’s 300Thz Doppler blue-shifted but 
only to red 400THz. A cartoon notation for speed shows υ-meter&reader leaning into their direction of 
motion and trailing “contrail” lines. The speeds imagined here a truly enormous. It is later shown that 
Bob’s Doppler shift of Alice’s 300THz to his 600THz means she is approaching him at ! . (At that 
speed she could circumnavigate the Earth more than 4 times per second!)  

!  
Fig. 8 Doppler 〈R|S〉 and Rapidity ρRS (a) Alice’s source and basic definitions. (b-c) Example of rapidity addition  
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 In Fig. 8a Doppler shift ratio is defined by ! . (Think R over S :! .) 
Also given is a definition of rapidity ρRS as the natural logarithm of Doppler ratio (ρRS =ln ). The 
ρRS definition simplifies arithmetic of high-speed velocity addition where, as shown later, velocity of 
R relative to S (in units of c) is hyper-tangent tanhρRS of their relative rapidity ρRS. (Here: .) 
  Fig. 8(b-c) shows how rapidity ! of Carla relative to Bob is the sum of rapidity ! of Carla 
relative to Alice and the rapidity !  of Alice relative to Bob. Graph of equivalent sum ! is in 
lower left of Fig. 8 and resembles Galilean velocity addition. However, ρ-sums are exact while Galileo’s 
v-sums are approximate and fail badly at high speeds. ρ-sums have ±sign rules: a (+)-sign for approach 
rapidity (blue shift) and (-)-sign for withdrawal rapidity (red shift). (Think of a friend’s arrival as 
positive ρ while departure is negative ρ.) Note υ-rule:! and ρ-rule:! in Fig.8.  

R S =υRECEIVER υSOURCE R/S
R S

uRS
tanh(ln2)= 3

5

ρCB ρCA
ρAB ρCA=ρCB+ρBA

A B =1/ B A ρAB=-ρBA
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4. Wave-zero 2-CW coordinate grids  
 Optical single-Continuous Waves (1-CW) obey Evenson’s Axiom and march lockstep en-vacuo 
at speed c with any and all other 1-CW going in a given direction ! . Observer’s motion along !  cannot 
alter 1-CW speed c, but will affect a 1st-order Doppler shift for both frequency  and wave-
vector !  in each 1-CW per-space-time vector ! . Following Fig. 8, observer motion along 

will shorten K by red-shift factor  while motion against  will lengthen K by blue-shift factor .  

  !  (11a)      !   (11b) 

 Fig. 9 has (x,ct)-plots of a head-on collision between wave eiR moving right from Alice in Fig. 9a 
and wave eiL moving left from Carla in Fig. 9c. It makes a wave-sum eiR+eiL for Bob shown in Fig. 9b.  
Alice’s wave has phase R=kx-ωt of a 1-CW moving rightward according to ! at speed ! . 
Carla’s wave has phase L=-kx-ωt of a 1-CW moving leftward according to ! . (It has a (-)k.) 
 In Fig. 9d is a (ck,ω)-plot of a pair of K-vectors, R from Alice and L from Carla, that make 
vectors and describing 2-Continuous Wave (2-CW) structure Bob sees in Fig. 9b.  

!  
Fig. 9 (x,ct) wave plots (a) Alice’s R-CW (b) Bob’s Group G over Phase P (c) Carla’s L-CW (d) (cκ,υ) plots of P over G 

Zeros of the real part of the 2-CW seen in Fig. 9b trace a space-time coordinate grid of white lines. In 
elementary algebra, zeros are found by factoring. Plane wave-sum eiR+eiL is factored as follows. 

 !     (12) 
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K red-shift⎯ →⎯⎯ ′K =e−ρK=(cke−ρ,ω e−ρ ) K blue-shift⎯ →⎯⎯⎯ ′K =e+ρK=(cke+ρ,ω e+ρ )
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Fig. 9b plots Real part of phase factor ! in dark blue and the Imaginary part in cyan. 
!  is x-independent but is amplitude-modulated by Group factor 2coskx, a time-independent 2-sided 
envelope. Group envelope zeros trace vertical coordinate lines in Fig. 9b and have zero x-velocity. This 
corresponds to a Group G-vector with zero slope in per-space-time plot of Fig. 9d. The Phase P-vector 
in Fig. 9d has infinite slope. This indicates an infinite velocity for phase zeros . They exhibit this every 19

½-period in (x,ct) plot Fig. 9b. Bob sees two “instantons” zip by in each period of ! . 
 Bob’s (cκ,υ) plot in Fig. 9b is what we call a “Relawavity Baseball-Diamond” (RBD). Origin is 
home-plate, the R-vector is the 1st-baseline, the L-vector is the 3rd-baseline, R+L points to 2nd-base, and 
Phase ! points to Pitcher’s mound, and Group !  points to center of a Grandstand. 
 A sheared RBD is in Fig. 10d. It has a Doppler blue-shift !  of Alice’s light to 1200THz 
(now 1st-baseline is twice as long) combined with a Doppler red-shift of Carla’s light to 300THz 
(now 3rd-baseline is half as long) . (cκ,υ)-plot geometry in Fig. 9d or Fig. 10d is reflected (literally, thru 
the diagonal) in the (x,ct)-plot in Fig. 9b or Fig. 10b, respectively. This is powerful! It’s a ruler&compass        
derivation of Alice and Carla space-time (x′,ct′) and per-space-time (cκ′,υ′) coordinates as seen by Bob 
speeding toward Alice (her beam blue-shifted to 1200Hz) and away from Carla (red shifted to 300THz) . 

!  
Fig.10 (x,ct) wave plots (a) Alice’s R′-CW (b) Bob’s Group G′ over Phase P′ (c) Carla’s L′-CW (d) (cκ,υ) plots of P′ over G′ 

Alice’s rightward blue-shifted wave plus Carla’s leftward red-shifted wave has factors like (12). 

    (13) 
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Zeros of Real parts of wave factors !  in (12) make a square “rest-frame” lattice in Fig. 9b. 
   (14a) 
   (14b) 
They are (x,ct) coordinate lines marking half-periods ! and half-wavelengths !  that lie 
mid-way between crests (lighter regions) and troughs (darker regions) in Fig. 9b. Its square lattice turns 
into a “moving-frame” rhombus lattice of Fig. 10b when the Doppler parameter ρAB is non-zero. Then 
Bob sees blue-shift going toward Alice’s υA-laser source and red-shift  
as he goes away from Carla’s υC-laser. Time inversion flips roles of receiver-source pairs. That flips ratio 
! while changing the ±sign of !  and relative velocity ! . 
 A single rhombus in “reciprocal” (cκ,υ)-per-space-time of Fig.10d has geometry similar to every 
rhombus cell of (x,ct) wave zeros in Fig. 10b. This geometry also relates ! to ! as shown below.   

Geometry of Minkowski phase and group wave-lattices 
 Bob sees Alice’s υA=600THz laser beam blue-shifted by as he approaches her. 
So a vector !  that Bob plots for Alice is her original vector !  doubled in length by the 
blue shift to  along the 1st baseline (45°) in Fig. 10d. This runs head-on into 
Carla’s υC=600THz laser beam that is red-shifted by  as Bob runs away from Carla. 
So her original vector  is halved in length to  along 3rd baseline (-45°). 
(Evenson’s axiom confines 1-CW light to 1st-baseline for positive κ and to 3rd-baseline for negative κ.)   
          Alice’s right-going vector R (Bob’s view R′) and Carla’s left-going vector L (Bob’s view L′) go 
according to (12) or (13) into a half-sum ! (Bob’s view ! )for phase wave factor.   

   

 

(15a) 

Group wave factor of (12) or (13) calls for a half-difference !  (Bob’s view ! ). 
   

   

 

(15b) 

The slope of Bob’s group vector G′ in (cκ,υ)-plot of Fig. 10d is actual group wave velocity in c-units. 

  
     

(16a) 

This is the speed !  of Alice and Carla’s group or envelope wave in Bob’s space-time plot of Fig. 10b.  
u/c is the conventional relativity-parameter !  for velocity of Alice and Carla relative to Bob. This 
group wave is, for Alice or Carla, a standing wave held by their laser cavities.  In the same picture is the 
much faster phase or carrier wave that Bob would (if he could!) record going ! faster than light. 

  
     

(16b) 

After Fig. 9b we noted “instantons” seen by Bob that had infinite phase velocity. That is what Alice or 
Carla see for phase velocity in Fig. 10b while Bob sees two or three phase-zero white lines intersecting 
the dark blue wave curves near the top of the figure. There they have slowed down to a super-luminal 
speed (16b) of ! . (P′ line slope is ! relative to x′-axis in Fig. 10b but it is ! relative to cκ′-axis in 
reciprocal Fig. 10d. Recall that P and G lines get switched between reciprocal spaces.)  
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 Fig. 11 shows detail in (a) per-Space-Time (cκ,υ) and (b) Space-Time (λ,cτ). In Fig. 11a, (cκ,υ)-
coordinates of P′ are proportional to ! and !  while (cκ,υ)-coordinates of G′ are 
proportional to !  and ! . In Fig. 11b, the interval between successive intercepts 
of P′-lines (or G′-lines) with the space x′-axis is proportional to wavelength !  (or ! ), and the 
corresponding intercepts with time ct′-axis give the period !  (or ! ).  
 Table 1. displays eight relawavity parameters including Doppler shifts and wave velocities given 
as functions of rapidity ρ and the old ! parameter. Numerical values for the ! case are at bottom.   

!  
 Fig. 11. Relawavity parameters given as ρ-functions as they appear in (a) Per-space-time and (b) Space-time 
Table 1. Relawavity parameter formulae. Last row gives numeric values for blue-shift ! =2 or !  

              !  

Note that the ratio in column-(1+n) is the inverse of the ratio in column-(8-n) for n<8. Some discussion 
is required of the Table 1 and plot thereof in Fig. 11 in order to avoid pitfalls in the application and 
interpretation of the ratios. This begins in the following section.  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Understanding relawavity parameters and Lorentz transformations 
Some of the parameters listed in Table 1 and plotted in Fig. 11 have famous names attached. In some 
cases there are several such names and contexts, and these will be recalled in due time. We begin with 
just two pairs of mutually reciprocal parameters sechρ and coshρ that show up in sophomore physics. 

   (17a)  
 

(17b) 

Sophomores learn two names: Lorentz length contraction and Einstein time dilation. Group velocity 
!  is related to !  in (16a). So the β-forms in (17a-b) follow by hyper-identity 
      ! .     (17c) 
More difficult is learning what lies under these “contractions” and “dilations” and realizing that they are 
primary (really secondary) effects of greater but not-quite-canceling Doppler contractions and dilations. 
 By now it should be clear that the hyper-trigonometry lessons in Fig. 2 and Fig. 3 have sechρ and 
coshρ functions along with R, L, P, and G points in precisely the places they appear in Fig. 10 or Fig. 11. 
(All involve 3:4:5 triangles and sechρ =! .) Fig. 11b has two parallel G′-lines (group velocity ! ) cross 
Bob’s x′-axis at x′=0 and x′= xA, respectively. So Alice’s standing wave is contracted to 80% (or ) of 
its original ! , that is, !  as listed in Table 1 (column-4) and Fig. 11b, and due to (17a). 
 Lorentz contraction comes with a well-worn paradox. Suppose Bob criticizes Alice for her 80% 
foreshortened meter-stick. (Actually, it is a micrometer stick if it holds two 600Thz standing !  
waves.) But, if Alice checks out Bob’s equipment as well as he did hers, then she could reply, “No Bob! 
You’re the one that’s 80% short of a full deck!” 
 So begins a physical lovers-quarrel made all the worse by the fact that both parties are right. This 
also questions a relawavity assumption that a Lorentz contraction of an ethereal light wave would imply 
the same contraction of a solid steel laser cavity set to precisely hold that wave. 
 This hi-lights a main point of relawavity: All things are wavelike as in quantum wavelike. The 
steel cavity obeys the same space-time rules as light itself while the standing wave in Alice’s laser is 
behaving like a tiny mass making its own frame. Furthermore, both the tiny wave and its steel cavity 
must contract together to keep the laser in resonance. Waves are very particular about resonance. 
   As the GPS and LIGO projects have shown, quantum interference can be excruciating exercise 
in precision of timing. While Lorentz contraction (17a) involves the “skin” or group-envelope of a wave, 
the υphase dilation effect embodied by (17b) involves the “guts” or phase frequency of a wave (and an old 
showman’s adage, “Timing is everything!”) It has no famous name so let’s call it the Planck frequency 
dilation effect since, as seen later, υphase is the “heartbeat” of quantum matter that gives it its energy. 
 Einstein time dilation is one of the more poorly explained effects since it involves Bob reading a 
moving clock (Alice’s in this case) located far down-track using co-observers (Bob’s in this case) that 
have clocks co-moving and synced with Bob’s. Imagine Alice’s clock in Fig. 11b to be passing thru 
point G′ at the instant Bob and observers occupy the horizontal dashed line where all their ct′ clocks 
read in Alice’s units. (τA =  femto seconds)  That is a 25% dilation of 1.0 that Alice’s clock will 
read at the right end of the dashed line. (Alice is crossing a P′ line that is all ct=1.) So from that scenario 
her clocks appear 25% slower than Bob’s. This is another lover’s quarrel like that of the Lorentz effect. 
 Since that P′ line Alice just crossed points back to Bob’s time of (ct′=- =0.8) she could claim to 
be even younger, 80% of Bob’s age. Time and space reading by non-local observers is problematic due 
to another 1st-order time shift (besides Doppler). It is future-to-past shift due to slope of P and G lines. 
As Alice passes Bob his observers further to her left get to look farther into Alice’s future while those 
further to her right can see farther into her past. This strange shift turns out to vary as x·sinhρ. 
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 The future-to-past time shift due to spatial position x is part of the famous  Lorentz space-time 20

! transformation. First, the relawavity!  per-space-time transformation 
(not properly due to Lorentz but quite similar in form) follows from definitions (15a) and (15b) of Bob’s 
phase vector P′ and group G′ vector in terms of Alice’s vectors of phase P and group G. 
  
 

  

(18a) 

  

 

 

(18b) 

This gives a matrix !  per-space-time transformation and its inverse ! . 

        
 

(19) 

You may re-order c-scaled vectors: ! transforms just like ! . 
 Bob’s P′ vector lies on a phase hyperbola it shares with Alice’s P and similarly for G′ and G.  

     (20a)       (20b) 

These are hyperbolas first plotted in Fig. 2 and 3. They are invariant to Lorentz-like transformation (18). 

Invariance of phase to Lorentz transformation 
 A laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of 
space (metric ruler) for giving time (wave period τ) and distance (wavelength λ) in Fig. 11b. A reading 
of phase !  by Alice at a space-time point must equal reading !  by Bob in spite of unequal readings 
(x,t) and (x′,t′) for that point and unequal readings (ω,k) and (ω′,k′) for a laser group-wave or its phase-
wave. (Here angular ! replace Kayser-Hertz !  to do phase calculations.)  
  
   

    
(21) 

Bob's (ω′,k′) components are in (15) or (18). Alice's (ω,k) are the same with ρ =0. This derives an 
Einstein-Lorentz Transformation (ELT) !  of  Bob's !  to Alice's ! . 
  
  
 

  

 

ELT matrix and inverse resolve Bob-Alice space-time (Fig. 11b) and matches per-space-time form (19). 

      
 

(22) 

Quite similar invariant hyperbolas appear in space-time. A key space-time ρ-invariant is proper time τ. 

    (23a)    (23b) 
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Thales-Euclid means and geometry of hyperbolic invariants 

 A reverse analysis of the Alice, Bob, and Carla laser thought experiment is instructive. Imagine 
as before, that Bob detects counter-propagating laser beams of frequency ωR going left-to-right (due to 
Alice's laser) and ωL going right-to-left (due to Carla's laser). We ask two questions:  
 (1.) To what velocity uE must Bob accelerate so he sees beams with equal frequency ωE?  
 (2.) What is that frequency ωE ? 
Query (1.) has a Jeopardy-style answer-by-question: What beam group velocity does Bob see? 

   
     

(24) 

Query (2.) similarly: What ωE is blue-shift bωL of ωL and red-shift ωR /b of ωR ? 

                                           (25) 

 is ratio of difference mean  to arithmetic mean . Frequency ωE =B  is 
the geometric mean  of left and right-moving frequencies defining the geometry in Fig.12 as 
detailed in Fig.12a.  Line sum of ωL = ωE e-ρ and ωL = ωE e+ρ is bisected at center C of a circle connecting 
shifted phase vector P′ to its original P.  
 Original P (Pitcher's mound) is the geometric mean point  at Alice's base frequency of 
B=υA=600THz. (Fig.12 units are 300 THz.). That lets you construct points  P′, P′′, P′′′,... on a hyperbola 
that all frames will claim to also be their 600 THz invariant curve. Geometry begins by choosing to prick 
a C-point ck′ with compass needle. Then compass pencil is set to point-P, and arc P P′ is drawn to the 
next hyperbola point ω′(k′) on the new axis ck′. (Arc is optional if graph paper locates vertical P′C line.) 
 Time-symmetry axiom (e-ρ e+ρ = r ·b =1) implies phase points P′, P′′, P′′′,…  lie upon equilateral 
hyperbolas (xy=const. or ! ) whose ±45° asymptotes frame Doppler-shifted rectangles that all 
have the same area ! of the initial (ρ=0) baseball diamond in Fig.9d. Fig. 12b shows plots of upper 
branches for two (ω′, ck′ )-hyperbolas belonging to constants ! and ! . This oblique ±45° view 
of the invariant hyperbolas emphasizes the Doppler shift (r·b =const.) relations that are not immediately 
obvious from the usual straight Cartesian invariant equations such as (23). 
 The geometry behind Fig. 12a or Fig. 12b is ancient and goes back to Thales of Miletus (circa 
600BCE) about three centuries before Euclid. Thales construction of means follows from his proof by 
symmetry that each point on a circle subtends a right (90°) angle which in turn is based on inscribed 
rectangles (dashed lines in Fig. 12). The same geometry applies to half-sum and half differences of 
phase angles involved in the wave interference sum sketched in Fig. 12c for each pair of phasors added 
in Fig. 12d. That is the geometry of factoring equations (12) and (13) giving Minkowski grids. 

Adding waves ψA and ψB gives new and valid ψAB = ψA +ψB  solution to Maxwell wave equations 
due to linearity of differential equations. Then one may entertain a Galilean relativity of phase angular 
velocity ω as sketched in Fig. 12e, a 2nd-Galileo-revenge, the 1st being ρ-addition in Fig. 8, another 
argument of wave function exponentials. So Galilean addition of linear velocity fails so that we may 
trust it when adding lightwave phase angular velocity ω. Would we have it any other way?    

uE =Vgroup =
ω group

kgroup
= ω R −ω L

kR − kL
= cω R −ω L

ω R +ω L

ω E=bω L=ω R/b   ⇒     b= ω R /ω L ⇒    ω E= ω R⋅ω L

Vgroup/c ω group=
ωR−ωL
2 ω phase=

ωR+ωL
2

ω R⋅ω L

ω R⋅ω L

1·4 =2

ω ′Rω ′L =ω A
2

2ω A
2

ω A=2 ω A=4



       �25

 
Fig. 12 (a)Thales-Euclid geometric and arithmetic means (b) Hyperbola construction step by circle radius CP′. 
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Fig. 12 (c) Sum ψAB = ψA +ψB.    (d) Sum of individual phasors.    (e) Phasor A moves relative to B and vice-versa.  

PW Sums of multiple CW harmonics and Doppler effects 
     A sum of n-CW harmonics (1υA,2υA,3υA,4υA,…nυA) traces a “baseball-diamond” lattice of PW (Pulse-
Wave) paths in space-time as shown in Fig. 12g. Crests in CW plot of Fig. 9 are PW peaks at baseline 
intersections that surround a flat diamond area in Fig. 12g where a CW trough was in Fig. 9. Fig. 12i 
shows a Doppler shifted version of PW diamonds made into equal area rectangles framed by ! and !  
paths drawn in Fig. 10 and Fig. 11a and sketched by dash-lines in Fig. 12i. 
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(f)              (g)           (h) 

Fig. 12 (f) Right moving PW k=2,4,6…    (g) Sum of colliding k=±2,±4,±6, PW.    (h) Left-moving PW k=-2,-4,-6…  

(i) 

  Fig. 12(i) Colliding PW of Fig. 12g as viewed in frame moving at u=3c/5.      
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5. Properties and applications of relawavity geometry 

The relawavity quantities q in Table 1 are dimensionless ratios qB/qA including 1-CW Doppler 
shifts (blue b=eρ and red r=1/b) and 2-CW phase or group wave-velocity Vgroup=1/Vphase, wavelength λ, 
wavenumber κ=1/λ, wave-period τ, or wave-frequency υ=1/τ, given for a frame moving at rapidity ρAB 
relative to a rest frame that starts with Alice’s value qA that Bob records as qB. Ratios are also functions 
of the conventional velocity parameter β=u/c where u=Vgroup is relative group velocity uAB. 
 Table 2 that follows this section includes the circular angle parameter σ that began the review of 
trigonometry. Here σ measures rotation of laser beams transverse to Bob’s x-axis instead of longitudinal 
Doppler shift eρ he sees going parallel to a beam. This σ is the stellar aberration angle and is the key 
parameter in a novel space-proper-time approach to relativity pioneered by Lewis Epstein . It is also 21

useful as the wave k-angle of Transverse-Electric (TE) waveguide and cavity modes. 
 
Space-proper-time plots and the stellar-aberration angle 
 Lewis C. Epstein  developed a novel approach to space-time relativity that uses the transverse 22

stellar aberration angle σ to define relative velocity by u =c sinσ as sketched in Fig.13. This is in place 
of longitudinal Doppler definition u =c tanhρ (16a) in terms of rapidity ρ as derived in (16a). 

   

        

  

  

!  
         Fig. 13 Stellar aberration angle σ of light beam normal to direction of velocity u. 

   This alternative to Minkowski-(x,ct)-plots involves flipping proper-time definition (23) as follows into 
a Cartesian Pythagorean relation. 
      (26) 
A Pythagorean geometry for space-proper-time or (x,cτ)-plots is shown by Fig. 14. There it is imagined 
all things travel at light-speed c including a stationary object (x′= 0) that “moves” parallel to the (cτ)-
axis. Moving object P is indicated by an vector (ct′ ) that is inclined at aberration angle σ and also grows 
at rate c as given by (26) with (x′ = u·t′ ). Both the longitudinal parameter ρ for hyperbolic geometry and 
the transverse σ for circular geometry are useful and insightful. Applications to wave guide and cavity 
relawavity and quantum wave mechanics follow a use of ρ and σ relations developed in Fig. 1 to Fig. 3. 
As group speed u becomes low (u<<c) both ρ and σ converge on the old parameter β=u/c. 

 (cτ )2 = (c ′t )2− ( ′x )2           ⇒        (cτ )2+ ( ′x )2 = (c ′t )2
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!  
            Fig. 14 Epstein space-proper-cτ geometry of relativistic effects in terms of ρ or σ. 

  Prime phase point P′ in Fig.15 at  is on Alice's υA-axis OP′ of 
slope cothρ. P′ is a hyperbolic tangent point for line LP′R of slope tanhρ=LL′/L′R with axis intercepts 
equal to |QO|=Bcschρ  and |AO|=Bsechρ. P′Q parallels G′ line of group cκA-axis. Prime stellar point S′ 
at coordinates (υ,cκ)=(Bsechρ,tanhρ) defines stellar ray OSk of slope cschρ . S is b-circle tangent point 
for line C′SY having slope -sinhρ = -|A′S|/|AS| with axis intercepts |C′O|=Bcoshρ and |OY|=Bcothρ.  
 All ρ-functions are related to σ-functions in Table 2 following a plot of them in Fig. 17.  

!  
Fig. 15.Bob-(υ′,cκ′ )-view of  Alice-(υA,cκA) tangent geometry and (inset) Occam-Sword pattern relates σ, ρ, and ν angles. 
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Applications that follow use a pattern-recognition aid labeled Occam'sSword in Fig.15(inset). It focuses 
mostly on geometry of  (sin ! tan) and (cos ! sec) columns of Table 2. The (cot ! csc) intercepts are 
outliers for low to moderate u/c values. The sword has a staircase whose steps belong to a (coshρ)n-
geometric series: (Bcoshρ,B,Bsecρ,...).  Multiplying series by tanhρ gives line (|C′P′|=Bsinhρ), then 
line(|PB|=Btanhρ), and lowest step (|AB′|=Btanhρ sechρ). Steps subtend a triple-cross-X-point of 
tangents C′XS, AXP′, and b-baseline PXB. Extensions of the tangents have κ-axis (cot! csc)-
intercepts on either side of the sword in Fig.15. The sword's leading k-edge defines wavevectors for 
waveguides and for free-electron lasers and this makes them easier to analyze and visualize. Compare 
Fig. 15 to Fig. 3.  

TE-Waveguide geometry 
 Consider a sum of plane waves with wave-vectors k(+)=(ksinσ,+kcosσ)=(kx,ky) pointing up in Fig. 
16a and k(-)=(ksinσ,-kcosσ)=(kx,ky) pointing down, each an angle ±σ relative to the y-axis in  Fig 16. 

       (27) 

The result in xy-plane is a Transverse-Electric-(TE)-mode E-field with plane-normal z-component Ez 
that vanishes on metallic floor and ceiling (y=±Y/2) of the waveguide. 

  
  

(28) 

Fig.16 shows two cases of lowest (n =1) guide modes with Occam-sword geometry. Projection Ycosσ of 
floor-to-ceiling Y onto k(±)-vectors is shown by right triangles at guide ends (28) to be , that is a half  
wave !  . Waveguide angle σ and  dispersion function υ(κ) follows. 

  
   

(29) 

Surprising insight into Fig.16 waves results if we note it is what Bob sees if Alice and Carla point their 
υA= 600THz 2-CW beam across Bob's x-line of motion at angle σ to y and not along x as in Fig. 9b. Bob 
can Doppler shift his wave-number κx and angle σ to zero and reduce frequency υ in (29) to υ = υA.  
 Then Bob will be co-moving with Alice and Carla and see Alice's k(+)-vector at zero aberration 
angle (σ = 0) if she is below Fig. 16 beaming straight up the y-axis. Meanwhile, Carla's k(-)-vector points 
straight down. For (σ = 0) the wave given by (28) is a y-standing wave of wavelength λA=2Y between 
Alice and Carla and not just a half-wave section (Y =! ) modeling a lowest mode of this xy-wave guide. 
 Ideally Alice and Carla's laser mode viewed along y looks like their x-standing wave in Fig.9b or 
Fig. 10b and appears the same over its x-beam-width by having zero x-wave number (κx = κA sinσ = 0). 
Zero-κx or infinite x-wavelength (λx = λA cscσ =∞) is a flat-line wave parallel to the x-axis oscillating at 
Alice's (or Carla's) 600THz frequency υA.  
 This x-flat wave is better known in wave guide theory as a cut-off-frequency mode where the cut-
off-frequency υCUTOFF = = υA is the lower bound to frequency that can enter a waveguide of width Y. 
In Fig. 16b it corresponds to dispersion function bottom point B (or P) that is well separated from its 
phase point P′ in the upper right of the figure. That separation |OC|=Bsinhρ =Btanσ gives a mode in Fig.
16a that is more robust than the near-cutoff mode in Fig. 16c having less |OC| and a more nearly vertical 
k-vector in Fig.16c-d. 

 !  !  !

 !

Ez (r,t)=e
i(k(+ )⋅r−ω⋅t )+ei(k

(− )⋅r−ω⋅t ) =ei(kx ⋅x−ω⋅t )[eiky⋅y+e− iky⋅y ]

Ez (r,t)=e
i(k⋅xsinσ −ω⋅t )2cos(kycosσ ) |

y=Y
2
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2
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�
Fig. 16 TE-Waveguide and Occam sword geometry for stellar angle (a-b) σ = 60° and (c-d) σ = 30°. 

 The tanσ-column of Table 2 represents the phase wave-number ratio κphase /κA of  Bob's κphase  to    
κA that Alice and Carla claim is their output. Later it is shown that |OC| = κx  is mode wave momentum 
while vertical interval |CP′|=Bcoshρ =B secσ = υphase or phase frequency ratio υphase/υA in Table 2 
correspond to mode carrier wave energy. These determine wave robustness and phase velocity Vphase /c 
is equal to their ratio υphase /κphase = λphase /τphase . 
 The importance of waveguide phase or carrier behavior is matched by that of group or signal 
wave dynamics. Each has six of twelve variables listed in Table 2.   Matching phase velocity Vphase/c = 
cothρ = cscσ is reciprocal to Vgroup /c = tanhρ = sinσ. Both are indicated by arrow lengths at the base of 
Occam Sword plots in Fig.16b or Fig.16d. The latter has Vgroup much lower than Vphase while the former 
has both closing in on light speed c. 
 Group velocity Vgroup equals projection c sinσ of  c -vector onto the waveguide x-axis. One may 
imagine a signal bouncing off guide floor or ceiling riding on the k-vectors normal to phase wavefronts 
moving at  speed c along k(+) or k(-) in Fig.16a or Fig.16c. So a signal wastes time bouncing around the 
guide x-axis while the phase crests proceed via a greater speed c cscσ. A signal may be imagined as an 
extra wrinkle in symmetry of identical wave crests due to lately added Fourier components limited by 
envelope group velocity as an established underlying phase maintains Evenson's c-lockstep. Per-space-
time (υ,cκx) geometry of Fig.16b or Fig.16d rules that of space-space (x,y) in Fig.16a or Fig.16c. 

Wave parameter variation with group velocity 
  As relative group velocity u/c or rapidity ρ grows, so do most of the eight wave-ratio variables 
listed in Table 2 with some approaching infinity while others approach zero. Fig.17 shows a plot of those 
eight quantities versus group velocity (u/c =Vgroup/c) with their values for u/c =3/5 appearing mid-plot 
in the order listed in Table 2.  

σ=30°

σ=60°

k(+)

k(+)

k(-)

k(-)

k(+)

k(-)!phase
2

!phase
2

k

ugroup uphase

σ=30°

k

! ugroup uphase

σ=60°A

C ′ P ′

P

A

C ′
P

A′O

O

C

A′C

S

Vgroup
=c tanh ρ
=c sin σ

υCUTOFF
=B =υA
=c/2Y 

Dispersion
function

υ=cκ=B cosh ρ

Vphase
=c coth ρ
=c csc σ

Vphase= 2c

!phase=
B
3

Vphase=
2
3
cVgroup=

c 3
2

!phase= B 3

y axis

x axis

y axis

x axis

y= +Y
2

y= +Y
2

y= !Y
2

y= !Y
2

λphase
=Bcsch ρ
=Bcot σ

Y

Y λ 
⁄ 2

λ ⁄ 
2

σ

σ

kk
k

υA=c/2Y 

frequency

υ

wavenumber
cκ

cκ

(a) (b)

(c)

(d)KEY: 
Re E phase        k-vectors and rays            wave-fronts
wave zeros        upward   downward         crest   trough

Vgroup=
c
2

k̂



       �32
 There near u/c =3/5 = 0.6, the function pair cschρ and coshρ and pair sechρ and sinh ρ are close 
to their respective crossing points one above the other on the vertical line u/c = G- where the sub-unit 
Golden Mean is G- = . is a root pair with G+ =  
 The  sech-sinh pair cross at the Golden Root !  and csch-cosh pair cross at inverse 
root of G+. The cschρ and tanhρ  pair cross at plot point ( ). The 
sinh-coth pair cross at ( ! ). 
 Between the “Golden” intersections are three more crossing points on the vertical line ! . 
They are sech-tanh at ! , csch-sinh at y=1, and cosh-coth at ! . Crossings correspond to a 
singular case of symmetry in a trigonometric map like Fig. 15. 

�
Fig. 17. Plot of Table 2 ratios values versus group velocity u/c. (List is labeled for u/c = 3/5.) 
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Table 2. Relawavity ratios versus rapidity-ρ, guide angle-σ, and β=u/c 
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6. Relativity gives basic wave mechanics of matter 
Since the last century, fundamental developments of quantum mechanics have relied on concepts from 
advanced classical mechanics of Lagrange, Hamilton, Legendre, Jacobi, and Poincare that were 
developed mostly in the preceding(19th) century. The latter contain a formidable web of formalism using 
ecclesiastical terms such as canonical that once implied higher levels of truthiness, but for modern 
physics students, they mean not so much. 
 Below is a simpler approach that connects wave geometry of Sec.4 to 16th through 18th century 
mechanics of Galileo, Kepler, and Newton and then derives mechanics fundamentals for the 20th and 21st 
centuries. It also clarifies some 19th century concepts that are often explained poorly or not at all. This 
includes Legendre contact transformations, canonical momentum, Poincare invariant action, and 
Hamilton-Jacobi equations. Understanding of these difficult classical ideas and connections is helped by 
wave geometry or relawavity. 
 2-CW geometry of Fig. 15 has hyperbolic coordinates of phase frequency υphase=Bcoshρ and c-
scaled wave number cκphase =Bsinhρ with slope equal to group velocity Vgroup/c=u/c=tanhρ. Each 
depends on rapidity ρ that approaches u/c for Galilean-Newtonian speeds u- c.  

    
   

     

(30) 

At these low speeds κphase  and υphase are functions of group velocity u=cρ or u2=c2ρ2. The hyperbolic 
base coefficient B has frequency units (1Hz =1s-1) of υphase and cκphase so B/c2 multiplies u2 and u. 
  
     (31) 

From freshman physics is recalled kinetic energy KE=const.+ Mu2 and Galilean momentum p=Mu. 
One Joule·s scale factor h=Mc2/B gives υphase energy units and κphase momentum units. Then these wave 
coordinates give classical KE and p formulas. But, an annoying (and large) constant Mc2 is added to KE! 
    
  

   
(32) 

    
One may ask, “Is this just a lucky coincidence?”  
 The answer involves the base or bottom value B=υA of Alice's frequency hyperbola. It is also 
Bob's bottom due to hyperbola invariance to ELT. The constant const.=hB=hυA=Mc2 may be the most 
famous formula in physics. Here it is Einstein's rest-mass-energy equation. It is an add-on to Newton's 
kinetic energy Mu2 that is perhaps the second most famous physics formula. This add-on does not 
contradict Newton's result. Physical effects depend only on difference or change of energy so any add-on 
constant (const.) has no observable effect. The question of false coincidence criticizes (32) for Galilean-
Newtonian formulas valid only at low velocity (u c) and low ρ. The approximate υphase and κphase in 
(32) need to be replaced by Table 2 formulas υphase =Bcoshρ and cκphase = Bsinhρ  that hold for all ρ. 

  

  

(33) 

 ≪

 

υ phase= Bcoshρ ≈ B + 1
2 Bρ

2 (for u≪ c)
cκ phase = Bsinhρ ≈ Bρ   (for u≪ c)
u/c  = tanhρ ≈ ρ     (for u≪ c)

 υ phase ≈ B + 1
2 [B/c2]u2 ⇐ for (u≪ c)⇒ κ phase ≈ [B/c2]u

1
2

 
hυ phase ≈ Mc

2 + 1
2
Mu2 ⇐ for (u≪ c)⇒ hκ phase ≈ M u

1
2

 ≪

E = hυ phase = Mc
2 coshρ ⇐ for all ρ ⇒ p = hκ phase = Mcsinhρ

= Mc2

1− u2/c2
⇐ for u<c ⇒ = Mu

1− u2/c2
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 The old-fashioned β=u/c form of coshρ (Table 2) is Einstein  1905 total energy formula. Later 23

in 1923, DeBroglie gives wave momentum formula  that has a β=u/c form for sinhρ, too. 24

Three lines above derive both ρ-forms from Table 2. This allows physics students to enjoy one-button-
press calculator-recall as well as the geometric and algebraic elegance of relawavity discussed below. 
 Underlying (33) is considerable physics and mystery of “scale factor” h (or ! ) the Planck 
constant  h=6.62607·10-34 Joule·sec that appears in his cavity energy axiom EN=hNυ. Thus (33) gives 
just the lowest quantum level (N =1) of Planck's axiom . (Modern form EN=!Nω has angular frequency 25

ω=2πυ and angular !=1.05·10-34Js.)  A quick-fix replaces h with hN, but underlying quantum oscillator 
theory of electromagnetic cavity waves still needs to be discussed.  
 So far, the only axioms needed by SR results (33) are Evenson's (All colors go c!) and time 
reversal symmetry following Fig.7 and Fig. 8.  These involve space, time, frequency and phase factors 
of plane light waves that are sufficient to develop the special relativity theory. But this phase approach 
has so far ignored amplitude factor A of light wave ! . While phase factor ! describes 
the quality aspects of the light, an amplitude factor A describes the quantity of light, or more to the point, 
an average number N of quanta or photons in a wave having the N factor of Planck's axiom. Raising N 
raises overall phase frequency Nυphase and in proportion, both total energy hNυphase and total wave 
quantum-mass ! . (As seen below, this “light-weight” is tiny unless N is astronomical.) 
 The logical efficiency of optical axioms leading to (33) sheds some light on the three of the most 
logically opaque concepts of physics, namely energy, momentum and mass by expressing them as phase 
frequency υ (inverse time τ) and wavenumber κ (inverse length λ). Perhaps, the terms energy and 
momentum could someday go the way of phlogiston!  

What is energy? 
   Once I asked a professor lecturing on energy, “What is Energy?” He replied, “It measures ability to do 
Work.” So, I asked, “What is Work?” He replied, “Well, it's Energy, of course!" 
 Probably, he would give the same circular logic if asked about momentum, another sine qua non 
of basic physics. A favorite flippant response to E and p questions is that momentum is the “Bang” and 
energy is the $Buck$ that pays for it. ($1.00=10kWHr is close to national average.) This makes sense 
given an (unfortunate) U.S expression “Get more bang for your buck!" but only on the 4th of July. 
 Wave energy and momentum results (33)  defeat such circular logic by showing how energy E is 
proportional to temporal frequency (υphase waves per second) and momentum pα is proportional spatial 
frequency (κphase waves per meter in direction α). One should note the ratio of momentum p and energy 
E in (33) is !  . It is a wave velocity relation for any scale-factor h (or hN).  
 The answer in (33) for wave energy inside Alice's laser cavity is a product of her quantum tick-
rate υphase=υA =600THz, scale factor h (actually hN), and Einstein dilation factor coshρ that is cosh0=1 
for her and coshρ =!  for Bob in Fig.10b. Bob might complain about her ! -shortened wavelength 
!  instead of complimenting her for !  more wave energy. (When you can't 
say something nice...) Bob may not see her considerable increase of momentum from zero (sinh0=0) to 
    ! . 
He could be excused for overlooking such a tiny momentum. ( p has a ! -factor that E lacks.) 
    !  
 A most remarkable thing about  (energy, momentum) ! relations (33) (now with hN 
in for h) and the Alice-Bob story is that (33) applies not just to Alice's light wave but also to its laser 
cavity frame. (Recall discussion after Fig.11.) In fact any mass M (including Alice and Bob themselves) 
is made of waves with an internal “heartbeat” frequency υphase= that is incredibly fast due to the 
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c2-factor and tiny Planck-h divisor. Also, Alice's light wave with υphase=υA has a mass  that 
is incredibly tiny here due to both a tiny Planck-h factor and enormous c2-divisor. 

What's the matter with energy? 
   Evenson axioms of optical dispersion and time symmetry imply a 2-CW light geometry that leads 
directly to exact mass-energy-momentum and frequency relations (33) with low-speed approximations 
(32). A light wave with rest mass and rest energy proportional to a proper invariant phase frequency  
    υphase=υA=υ′A  
is effectively a quantum matter wave that, due to its phase frequency, acquires intrinsic rest mass 
     ! . 
 In so doing, concepts of mass or matter lose classical permanence and become fungible. We 
define three types of mass Mrest , Mmom , and Meff  distinguished by their dependence on rapidity ρ or 
velocity u. The first is Mrest = . The other two approach Mrest at low u c.  
 Einstein rest mass ! is invariant to ρ. It labels a hyperbola with a bottom base level B. 
     ! . 
This label is respected by all observers including Alice and Bob. Each mode A of Alice's cavity has a 
stack of  N=1,2,3,... hyperbolas, one for each quantum number N-value.  
  
   !              (34) 
          

(E, cp)-space  hyperbola !   in Fig. 18 is a plot of an exact Einstein-Planck matter 
wave dispersion (33). The inset is a plot of approximation (31) for low p  and u- c. Properties and 
pitfalls of this Bohr -Schrodinger  approximation to quantum theory are discussed later. 26 27

 The second type of mass Mmom is momentum-mass defined by ratio p/u of relativistic momentum 
p=Mc sinh from (33) with group velocity u=c tanhρ. Mmom satisfies Galileo's very old quasi-definition 
p=Mmom u, but now using the newly defined relativistic wave quantities. 

   
   

(35) 

   !  

The third type of mass Meff is effective-mass defined by ratio dp/du of change of momentum p=Mcsinhρ 
from (33) with change of group velocity . Meff  satisfies Newton's quite old definition 
F=Meff a, but now using relativistic wave quantities. 

   
  

(36) 

Another derivation of Meff  uses group velocity  as the independent variable. 

   

    

(37) 
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!  
Fig. 18 (a) Einstein-Planck energy-momentum dispersion (b) Bohr-Schrodinger approximation 

Group velocity and its tangent geometry is a crucial but hidden part of the matter wave theory. Physicists 
tend to commit to memory a derivative formula ! for group velocity and forget !  that is a 
finite-difference formula from which the former is derived. This may give wrong results since the latter 
is exact for discrete frequency spectra while the former may be ill-defined. The wave Minkowski 
coordinate geometry starts with half-difference ratios to give V′group in primary u-formulae (15) and (16). 

   
     

(38) 

What follows in Fig. 10 through Fig. 12 and Fig. 15 is based entirely upon the more reliable finite-
difference definition !   that gives exactly desired slope.  
 Nevertheless, Nature is kind to derivative definition ! as seen in Fig.15. There hyperbolic 
tangent slope of line RL with altitude !  and base !  has a finite-difference slope 
exactly equal to the derivative of the hyperbola at tangent point P′ on phase velocity line OP′. Geometry 
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of Doppler action (38) is at play. That slope  equals V′group =u and is the velocity of Alice relative 
to Bob. It is also related to the momentum/energy ratio !  noted before. 

   
     

(39) 

As slope !  of dispersion hyperbola ! affects velocity u and relations with momentum p, so does 
curvature !  affect acceleration a and its relation to force F or momentum time rate of change !  in the 
effective-mass Meff equations (36) and (37). One is inclined to regard Meff as a quantum mechanical 
result since it is a product of Planck constant h with inverse ! , the approximate Radius of Curvature 
RoC=! of dispersion function ! . Geometry of a dispersion hyperbola !  is such that its 
bottom (ρ =0 =u) radius of curvature RoC equals the rest frequency !    that is labeled as the 
b-circle radius B in Fig.15. Hyperbola curvature decreases as ρ increases, and so its RoC and Meff  grow 
according to (52) and (53) in proportion to exponential !   as velocity u approaches c, three times 
faster than the  for high-ρ growth of momentum mass Mmom in (35). 

How light is light? 
 Since 1-CW dispersion !  is flat, its RoC and photon effective mass are infinite ! . 
This is consistent with the Evenson's axiom prohibiting c-acceleration. (All colors always go c.) The 
other extreme is photon rest mass which is zero ! . Between these extremes, photon momentum-
mass ! depends on quality, that is, CW color or frequency υ. 
   !  
   

    
(40) 

   !  
Newton's Optics text is famous for his rejection of wave nature of light in favor of a corpuscular one. 
He described interference effects as light's ‘fits.’ Perhaps, light having three mass values in (39) would, 
for Newton, verify its schizophrenic insanity. Also, the fact that 2-CW 600THz cavity momentum p 
must average to zero while each photon adds a tiny mass ! , might support his corpuscular view. 

  !  

A 1-CW state has zero ! , but (N=1)-photon momentum (33) is a non-zero quantity ! . 

  !  

In the form !  Galileo's p=MV is exact for light. It is another “Galilean Revenge” like the exact 
Galilean addition (Fig. 8) of rapidity ρ and of phase angular velocity ω (Fig. 9). Photons are light! With 
numbers so tiny it is a wonder subtle relativistic or quantum effects were ever noticed. That is so, unless 
the photon quantum number N is huge as in thermonuclear blast  or a star .  28 29

 Then light can be many tons! 
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7. Relawavity geometry of Hamiltonian and Lagrangian functions 

    The 2-CW matter-wave in Fig. 9 has a rest frame with origin ! and !  where the 
invariant phase function !  reduces to ! , a product of its proper or base 
frequency !  defined after (32) with proper time t′=τ  defined by (23). The (x,t)-differential 
of phase is reduced as well to a similar negative mass-frequency (ϖ)-term. 

    
    

(41) 

A proper-time interval dτ dilates to ρ-moving frame time interval dt by Einstein dilation relations. 

  
   

(42) 

One of the more interesting tales of modern physics is a first meeting  between Dirac  and the younger 30 31

Richard Feynman . Both had been working on aspects of quantum phase and classical Lagrangian 32

mechanics. Dirac mused about some formulas in one of his papers that showed similarities between a 
Lagrangian function and quantum phase. Feynman said abruptly, “That's because the Lagrangian is 
quantum phase!” That was a fairly radical bit of insight for the time. It needs its geometry clarified. 

Phase, action, and Lagrangian functions 

   Feynman's observation needs some adjustment for units since Lagrangian L has Joule units of energy 
while phase Φ is a dimensionless invariant. A quantity S called Action is quantum phase Φ scaled by 
Planck's angular constant !  and is the following time integral of L. 

  
   

(43) 

Differentials of action and phase (40) with time (41) combine to re-express Ldt. 

     (44) 

From ρ-frame time derivative dt/dτ (40) arises the Lagrangian in terms of rapidity ρ or stellar angle σ. 

       (45) 

Table 2 supplies identity sechρ = cosσ for L in (44) and tanhρ = sinσ for group velocity u. 
          (46) 

A classical convention has Lagrangian L be explicit function of velocity. This is consistent with the low- 
approximation to Lagrangian (44) that recovers the Newtonian  term in (32). 

       (47) 

 A following discussion of explicit functionality for Hamiltonian H(p) and Lagrangian L(u) 
involves the geometry of Legendre contact transformation depicted in Fig. 19a-b below and a Fig. 20 
that follows. 
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!  
Fig. 19 (a) Slope u/c and intercept -L of H(p)-tangent LP′ give (u,L) point S on L(u)-circle.  
(b) Slope cp and intercept H of L(u)-tangent C′S give (p,H) point P′ on H(p)-hyperbola. 
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Hamiltonian functions, Poincare invariants, and Legendre contact transformation 

       The invariant phase differential (40) with an ! -factor as in (43) is a key relation. 
         (48) 

Energy ! and momentum !  from (33) for N=1 are used. 

  
    

(49) 

Here energy E is identified with Hamiltonian function H. Results include the classical Poincare 
differential invariant  Ldt=pdx-Hdt  and the Legendre transform L=pu-H between Lagrangian L and 
Hamiltonian H. Remarkably, it shows L/Mc2 is the negative reciprocal of H/Mc2. 

  
   

   (50a) 

      (50b) 

    
 Except for a (-)sign, H and L are co-inverse (cos,sec)-cousin functions (mid-columns of Table 2). 
So are Einstein t-dilation and Lorentz x-contraction, respectively. H is explicit function of momentum p 
and L is explicit function of velocity u. So are u and p a 1st cousin (sin,tan) pair in Table 2. 

  
      

(51a) 

         (51b) 

Legendre contact transformation H(cp)=pu-L=cpu/c-L uses slope u/c and intercept -L of tangent line LR 
contacting H-hyperbola in Fig. 19a to locate contact point L(u) of Lagrangian plot. Inverse Legendre 
contact transformation L(u)=pu-H uses slope p and intercept H of stellar tangent line C′SY contacting 
the L-circle in Fig. 19b to locate point H(p) of Hamiltonian plot. This construction is further clarified by 
separate plots of H(p) in Fig. 20a and L(u) in Fig. 20b. 
 Tangent contact transformation is a concept based upon wave properties and goes back to the 
Huygens and Hamilton principles discussed below. The basics of this lie in construction of space-time 
(x,ct) wave-grids given frequency-k-vectors (υ,cκ) like P′ and G′ in Fig. 10. Each P′ or G′  coordinate 
pair (υ,cκ) determines lines with speed υ/κ and t-intercept spacing τ= 1/υ on ct-axis while x-intercept 
spacing is λ=1/κ on x-axis. These phase and group grid lines make Minkowski zero-line coordinates. 
 This geometry applies as well to energy-momentum (E,cp)=h(υ,cκ)=!(ω,ck) spaces. Functional 
dependence of wave grid spacing and slopes determines classical variables, equations of motion, as well 
as functional non-dependence. For example, Lagrangian L is an explicit function of velocity u but not 
momentum p, that is, ! . Hamiltonian H is explicit function of momentum p but not velocity u, that 
is, . Such 0th-equations combined with L=pu-H give 1st-Hamilton and 1st-Lagrange equations.  

       (52a)           (52b) 

 !

 dS ≡ Ldt ≡ !dΦ = !kdx − !ωdt

 E=hυ phase=!ω =H  p=hκ phase=!k

 
dS ≡ Ldt ≡ !dΦ = pdx − Hdt ⇒ L = p dx

dt
− H = p "x − H

 
H = !ω =  Mc2 coshρ =  Mc2 secσ =  Mc2

1−u2/c2

 L = ! "Φ = −Mc2sechρ = −Mc2 cosσ = −Mc2 1−u2/c2

 
cp =!ck=Mc2 sinhρ = Mc2tanσ = Mcu

1−u2/c2

u ≡Vgroup = c tanhρ = csinσ

∂L
∂ p=0

∂H
∂u =0

0 =∂L
∂p

= ∂
∂p
(pu-H )⇒ u = ∂H

∂p 1st equation
Hamilto ′n s( ) 0 =∂H

∂u
= ∂
∂u
(pu-L)⇒ p=∂L

∂u 1st equation
Lagrange( )



       �42

!  
Fig. 20 Relativistic Legendre contact transformation between (a)Hamiltonian H(p) (b) Lagrangian L(u). 

 In Fig.19a slope of H(p)-hyperbola at tangent contact point P′ is group velocity u/c=tanhρ=sinσ=3/5. 
In Fig.19b slope of -L(u)-circle at tangent point S is momentum cp =Bsinhρ =Btanσ =(Mc2)¾ with a 
minus (-) sign. This minus sign in (49b) for Lagrangian L=-Mc2 cosσ, for example, is a result of (-) in 
basic phase (kx-ωt)) and phasor conventions. (We like phasor clocks to turn clockwise ! , too.) 
 For a low-(ρ≈u/c) approximate Lagrangian (46), one may drop the -Mc2 term and just keep the 
Newtonian kinetic energy term ( ) that is equal to the corresponding kinetic term (p2/2M) in the 
approximate Hamiltonian. Of course, p2/2M reduces to if approximate momentum p=Mu is used, 
so students are well to ask, “Why are we so fussy about having only momentum p-dependence of H and 
only velocity u-dependence of L?” 
 It is true that Hamiltonian H(p) hyperbola minimum in Fig. 19 and Fig. 20a are nearly identical 
to the Lagrangian L(u) circle minimum in Fig. 19b that lies below Fig.20b. There both curves are nearly 
parabolic. But, at higher speeds the Lagrangian L(u) approaches zero precipitously as stellar angle σ 
approaches π/2 and velocity u approaches c. Meanwhile, Hamiltonian H(p)=Bcoshρ and its momentum 
p=Bsinhρ each approach Beρ/2 as rapidity ρ grows without bound. 
 So it should be clear that hyperbolic “Country-cousin” functions involving rapidity ρ and 
momentum p must share a Hamiltonian with infinite horizon, while circular “City-cousin” functions of 
the very restricted stellar angle -π < σ < π and velocity -c < u < c must share a localized Lagrangian that 
is the keeper of quantum phase. 
 The third (csc,cot)-cousin pair λphase=Bcschρ=Bcotσ and Vphase=Bcothρ=Bcscσ from Table 2 do 
not appear in any discussions of classical correspondence. Instead, these describe the phase part or 
“quantum guts” of a 2-CW internal structure, and as such were nonexistent for 19-century classicists, 
and one might add, still today a bit sketchy and hard to observe. Now υphase is seen as the “heartbeat” of 
quantum physics one may note DeBroglie wavelength λphase and velocity Vphase in Fig. 21 at the lower 
edges of geometric constructions just inside the Doppler blue shift (b=eρ)-bottom line of the R box. 
 One may compare Fig. 21 to Trigonometry Maps (TM) in Fig. 3. They share points P=! (R+L) 
and G=! (R-L). Fig. 3 exhibits fundamental and ancient geometry with triangular relations that have 
fundamental roles in Fig. 21 in describing a relawavity of relativistic quantum mechanics. 
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!
 Fig. 21 Geometric elements of positive-energy relativistic quantum mechanics. 

Hamilton-Jacobi quantization 
 Invariant phase Φ or action S differential (47) and (48) are integrable under certain conditions. 
        (53) 

That is each coefficient of a differential term dq in dS must be a corresponding partial derivative ! . 

    
      

(54) 

These are known as Hamilton-Jacobi equations for the phase action function S. Classical HJ-action 
theory was intended to analyze families of trajectories (PW or particle paths). Dirac and Feynman 
related this to matter-wave mechanics (CW phase paths) by proposing approximate semi-classical 
wavefunction Ψ based on Lagrangian action S=!Φ in its phase. 

          (55) 
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 Approximation symbol (≈) indicates that phase but not amplitude is expected to vary here. The 
HJ form !  turns x-derivative of Ψ into standard quantum p-operator form ! . 

  
    

(56a) 

The HJ form ! turns t-derivative of Ψ similarly into Hamiltonian operator ! . 

  
    

(56b) 

Action integral S=∫ Ldt is to be minimized. Feynman'’s interpretation of this is depicted in Fig. 22. 
Any mass M appears to fly so that its phase proper time τ is maximized. The proper mass-energy 
frequency ϖ = Mc2/  is constant for a mass M. Minimizing -ϖτ is thus the same as maximizing +τ. 
Clocks near light cone tick slowly compared ones near max-τ. Those on light cone do not tick! 

!  
Fig. 22 Feynman's flying clock contest winner has the greatest advance of time.  

 One may explain how a flying mass finds and follows its max-τ path by imagining it is first a 
wave that could spread Huygen's wavelets out over many paths. But, an interference of Huygen wavelets 
favors stationary and extreme phase. This quickly builds constructive interference in the stationary phase 
regions where the the fastest possible clock path lies. Nearby paths contain a continuum of non-extreme 
or non-stationary wavelet phase that interfere destructively to crush wave amplitude off the well-beaten 
max-τ path as sketched in Fig. 23. 
 The very “best” are so-called stationary-phase rays that are extremes in phase and thereby satisfy 
Hamilton's Least-Action Principle requiring that S=∫ Ldt is minimum for “true” classical trajectories. 
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This in turn enforces Poincare invariance by eliminating, by de-phasing, any “false” or non-classical 
paths because they do not have an invariant (and thereby stationary) phase. So “bad” rays” cancel each 
other in a cacophonous mish-mash of mismatched phases. 

!  
Fig. 23 Quantum waves interfere constructively on “True” path but mostly cancel elsewhere. 

 Each Huygen wavelet in Fig. 23 is tangent to the next wavefront being produced. That contact 
point is precisely on a ray or true classical trajectory path of minimum action and on the resulting “best” 
wavefront. Time evolution from any wavefront to the next is thus a contact transformation between  two 
wavefronts described by this geometry of Huygens Principle. 
        Thus a Newtonian clockwork-world appears to be the perennial cosmic gambling-house winner in a 
kind of wave dynamical lottery on an underlying wave fabric. Einstein'’s God may not play dice , but 33

some persistently wavelike entities seem to be gaming at enormous Mc2/ -rates down in the cellar! And 
in so doing, geometric order is created out of chaos.   
 It is ironic that Evenson and other metrologists have made the greatest advances of precision in 
human history, not with metal bars or ironclad classical mechanics, but by using the most ethereal and 
dicey stuff in the universe, light waves. This motivates a view of classical matter or particle mechanics 
that is more simply and elegantly done by its relation to light and its built-in relativity, resonance, and 
quantization that occurs when waves are subject to boundary conditions or otherwise confined. While 
Newton was grousing about “fits” of light, perhaps his crazy stuff was just trying to tell him something! 
 Derivation of quantum phenomena using a classical particle paradigm seems as silly now as 
deriving Newtonian results from an Aristotelian paradigm. It now seems much more likely that particles 
are made by waves, optical or otherwise, rather than vice versa as Newton believed. Also, CW trumps 
PW as CW axioms of Evenson (All colors go c.) and Doppler time-reversal (r=1/b) can easily derive 
Lorentz-Einstein-Minkowski algebra and geometry summarized in Table 2 and re-derive exact relations 
(33) for relativity and quantum wave mechanics using geometry summarized in Fig. 21. 

“False” paths:
Mostly destructive
interference

Stationary phase
gives a“True” path:
by constructive
interference

“False” paths

“False” paths:
Mostly destructive
interference

 !



       �46
8. Relawavity geometry of quantum transitions 
  Preceding theory uses combinations of states ! or wavefunctions !  of an ideal 
optical cavity that are quantized by quantum mode numbers n for phase and photon numbers N for 
amplitude.  This leads to geometry of elementary quantum transitions that involve change or transition 
of one such state into another. Such a discussion begins with symmetry and related conservation rules 
that restrict such transitions.  

Symmetry and conservation principles 
    In Newtonian mechanics the first law or axiom is one of momentum conservation. Such physical 
axioms, by definition, have only experimental proof or justification. Logical proof or disproof is 
possible only if an older theory like classical mechanics becomes undermined by a more general theory 
like relativity or quantum mechanics having finer axioms. Then an older axiom might be proved 
using newer and more basic axioms, or else it might be disproved or reduced to an approximate or 
conditional result. 
 Patient teachers respect critically thinking students having doubt about the classical momentum 
conservation law. Indeed, How does Nature avoid losing even the tiniest bit of a momentum current 
however large it may be? This seems miraculous as does conservation of energy, though the latter is a 
classically provable result of the former given time reversal symmetry. 
 So it provides pedagogical relief to unite momentum and energy conservation rules in the wave 
nature of light seemingly shared by all matter. Newton’s momentum axiom replaced by Evenson CW 
axiom gives Einsein-Planck-DeBroglie results (33) that match momentum p to phase wavenumber 
vector κ=k/2π scaled in h or Nh units while doing the same to energy E and phase frequency υ.  
 A rough statement of how CW axioms undermine or “prove” p-or-E conservation axioms is that  
their conservation is required by wave coherence and so p =hκ and E=hυ must be conserved, too. 
However, this oversimplifies deeper concepts of symmetry logic, a kind of “grown-up” geometry. 
 CW axioms are symmetry principles due to the Lorentz-Poincare isotropy of space-time. That 
invokes invariance to a translation !  that has plane wave eigenfunctions !  and 
eigenstates  with roots-of-unity eigenvalues as in the bra-ket relations below. 
 

  
(57) 

The relations apply also to N-factor (or “N-particle”) states ! where exponents 
add ! -values of each constituent to a total K-vector !  with a total frequency 

 to give the -eigenvalue in exponential form . 
 T-symmetry requires quantum time evolution operator U not be affected by T movement. This 
means !  and U commute with T (UT = TU for any T). So transition matrix !   
equals ! , and relations (56) yield (K,Ω) conservation rules: (K′,Ω′) = (K,Ω). 

 
  

(58) 

T-symmetry implies total energy E=!Ω and total momentum P=!K conservation for ideal CW states. 
However, laboratory CW have momentum uncertainty Δk=1/Δx due to finite beam size Δx and energy 
uncertainty ΔE=!Δω=!/Δτ due to finite lifetime Δτ. Newton'’s 1st-law is verified only to the extent 
that lifetime or beam-width accommodates greater numbers of wavelengths or wave periods. 
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Single-photon transitions and Feynman diagram geometry 

   The geometric analysis of photon-affiliated transitions begins with the simple Doppler shifted or 
Lorentz transformed “baseball-diamond” geometry shown in Fig. 24. Most figures showing this 
geometry so far, including Fig. 15, Fig. 12 and the original Fig. 10, are drawn for velocity u/c=3/5 or 
Doppler shift b=2. Here, Fig. 24 uses odd values b=3/2 or u/c=5/13 to avoid distracting crossings found 
in Fig. 17 level plot. The Planck-Einstein-DeBroglie relation (33) is labeled by energy E=!Ω plotted 
versus c-scaled momentum cp=!ck so that both have the same dimensions of energy.  
Photon transitions obey rocket-science formula 
 Tiny photon momentum p=!k needs a c-factor to show up in plots. Also, Fig. 24 is bisected by a 
wavy right-angle HP′K inscribed in a g-circle that represents photon (ω,ck)-vectors connecting levels of 
high-state at rest frequency ωh=3, middle-state at ωm=2, and low-state  at ωℓ=4/3. Each 
frequency relates to one above it (or below it) by blue-shift factor e+ρ =3/2 (or red-shift factor e-ρ =2/3). 
Thus the middle frequency ωm=2 is the geometric mean  of those above and below. 

  
   

(59) 

Wavy segment HP′ represents a photon of energy ! that would be emitted in a 
transition from a stationary mass ! at point H to a mass !  moving with rapidity ρ 
at point P′. Implicit in Fig. 24 is the choice of right-to-left direction for the outgoing photon momentum

recoiling left-to-right by just enough to conserve momentum as (57) requires. Mass MH 
loses energy (frequency) equal to momentum (wavevector) of outgoing photon. Since MH is initially 
stationary, it must lose energy by reducing rest-mass from MH to MP  by Doppler shift ratio e+ρ. 

      !       (60) 

A rest mass formula results for recoil rapidity ρ with a simple low-ρ (ρ≈u/c)-approximation. 

     
    

(61) 

Interestingly, this quantum recoil formula is reminiscent of a famous rocket formula. 

     
     

(62) 

One might recall a  popular expression, “This isn't rocket science!” Usual notions are that quantum 
transitions are infinite discrete “jumps” with emitted (or absorbed) photons acting like bullets. This 
appears wrong-headed in light of a more complete relativistic picture of an atom or nucleus in (60). It 
gradually exhales its mass like a rocket with an optical exhaust velocity of c.  
 One may also recall classical Lorentz resonance models of atomic transitions. Lorentz of ELT 
did non-relativistic theory to show atoms undergo over 105 oscillations during decay lifetimes of roughly 
10-8 seconds, hardly ∞-jumps. Nuclear transitions may involve much greater frequency and mass-energy 
phase velocity ! , but an atomic transition with THz beats !  has a tiny recoil 
downshift δ due to the atom getting tiny photon recoil momentum. (Lorentz did not consider δ.) The 
exact δ in Fig. 24 is the height of point P′ above ωm-baseline, and !δ is KE acquired by mid-mass MP.  

  
  

(63) 
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Recoil momentum p of the deflated MP is exactly  with !ωm = MPc2 and MPc= !ωm/c. 

!  
 Fig. 24 Energy-momentum diagram for 1-photon transition H-to-P′ having recoil u/c=5/13. 

 The H-to-P′ transition just discussed could be followed by a P′-to-K transition with forward 
emission of a photon with the same energy and further reduction of mass from MP′ to a stationary mass 
MK. Lowest energy level !ωℓ = MK c2 in Fig. 25 has frequency ωℓ = 4/3 and zero momentum due to its 
leftward recoil from rightward emitted photon. 
 Feynman diagrams in right-hand inset panels of Fig. 25 are scale models of photon energy-
momentum kab-vectors emitted from head of initial mass-MA,KA-vector on the tail point of recoiling 
mass-MB,KB-vector. One may imagine per-space-time (ω,k) diagrams as space-time (x,ct) mass and 
photon tracks due to Fourier reciprocity demonstrated in Fig. 10 and Fig. 11. Also K-vectors rearrange 
into head-to-tail zero-sum triangles representing energy-momentum conservation demanded by (57).  
Geometric level and transition sequences 
 Level sequence {…, ωℓ, ωm, ωh,…} in (58) is part of an infinite geometric series having blue-
shift ratio b=e+ρ =3/2 or red-shift ratio r=e-ρ =2/3 ranging from 0 to ∞. The energy Em=!ωm or frequency 
ωm value labeling hyperbola-ωm may be scaled to give an infinite sequence based on ratio b1=3/2=r -1. 
       (64) 
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!  
 Fig. 25 Feynman diagrams of 1-photon transitions connecting 3-levels ωh, ωm, and ωℓ. 

 This labels a geometric sequence stack of hyperbolas shown in Fig.26. Meanwhile, rapidity !  
labeling velocity line-(u/c=5/13) is boosted thru a sequence of ρp-values  
and defines p-points of momentum (where: ρp = p·ρ) on each bqωm-hyperbola. 
 The result is a lattice in Fig. 26 of transition points Pp,q=(cpp,q ,Eq) that are scaling-and-Lorentz-
boost-equivalent to the point P=P0,0 at the center of Fig. 24 and Fig. 25 or else the point P′=P1,0 that is 
the center of transitions in those figures. Choice of origin is quite arbitrary in a symmetry manifold 
defined by group operations. The ±45°-light-cone boundaries and their intersection (cp,E)=(0,0) lie 
outside of this open set of Pp,q points. The choice of the base Doppler ratio b=e+ρ is also arbitrary 
and may be irrational. However, a rational b guarantees all 16 functions in Table.2 are also rational. The 
lattice in Fig. 26 may be viewed at ±45° as a quasi-Cartesian grid of lines. Each line is positioned 
according to rest-frequency power ωmeqρ at its meeting point on the vertical ω-axis (or 2nd-base of a 
Doppler baseball diamond) as shown in Fig 27. The +45° R-axis (1st-baseline) is marked-off by 
sequence ωR=ωmeRρ (R=-2,-1,0,1,2...) and the -45° L-axis (3rd-baseline) is marked-off by sequence 
ωL=ωmeLρ (L=-2,-1,0,1,2...). (Here base constants b=eρ=  and ωm=2 are fixed.) At the intersections of R 
and L grid-lines are discrete transition (p,q)-points Pp,q. 
  
           (65) 
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Fig.26. Rapidity-ρp=pρ and rest-frequency-ωmeqρ and Pp,q-lattice based on integer powers of b=eρ= . 

Half-sum-and-difference transition web 
Each coordinate point is related by half-sum and half-difference coordinate transformations. 

  
    

(66) 

These are integer versions of the phase and group relations (13) and (15) to right and left laser K-
vectors, yet another result of factoring optical wave coordinate functions.  The geometric structure 
represented here might become a useful basis for a kind of lattice-gauge theory to explore cavity 
quantum electro-dynamics (CQED) or pseudo-relativistic theories of graphene gauge dynamics. Such a 
structure offers a possible solution to the flaw that made Feynman path integration so difficult due its 
uncountable universe of possible paths. The structure in Fig. 27 offers a labeling of every discrete path 
and state by an operation in a discrete subgroup of the continuous Poincare-Lorentz group (PLG) that 
has a discrete Poincare-Lorentz algebra (PLA). The discrete paths may be made as fine as desired so that 
each PLA becomes a larger and better approximation to the parent PLG. Each PLA has a discrete 
spectral decomposition that could derive and solve a range of Hamiltonian eigensolutions and transition 
amplitudes parametrized by discrete paths.  

3
2

p = R − L
2

, q = R + L
2

⇔ R = p + q , L = q − p

Kmωm = 2

e2ρωm = 9
4

e−2ρωm=
8
9

e3ρωm = 27
8

 
ω =e

−ρωm=
4
3

e2ρωmsinhρ

eρωmsinhρ

ωmsinhρ

eρωmsinh2ρ

P1,1

slo
pe
co
th
ρ

slo
pe
co
th
2ρ

slo
pe
co
th
3ρ

P1, −2

P2,1

P3,1

P1, 0

P2, 0

P3, 0

P1, −1

P1, 2

P2, 2

P2, −1

P−1, 1

P−1, 0

 cp =ck
Doppler RED factor: Doppler BLUE factor: 3

2
= e+ρ2

3
= e−ρ

high = ωh

mid = ωm

 low = ω 

K

P3, −1

P2, −2

P3, −2

ω h=e
ρωm = 3



       �51

!  
Fig. 27 Hyperbolic lattice of (p,q)-transition points for base b=eρ= and half-sum-difference coordinate relations. 

9. Accelerated frames and optical Einstein-elevator  

   Fig. 9b and Fig. 10b show Lorentz-Minkowski space-time frames made by a 2-CW pair of lasers. Fig.
9b shows a Cartesian (x,ct)-grid made as Alice's and Carla's lasers collide 600THz beams. Fig. 10b 
shows Bob's view of Alice closing at u/c=3/5 with her laser beam Doppler blue-shifted by an octave 
factor (B|A)=2=e+ρ to 1200THz and Carla going away at  u/c=-3/5 with her beam Doppler red-shifted 
by (B|C)=1/2=e-ρ to 300THz. If Bob attenuates Alice's beam E-field amplitude by 1/2 so its amplitude 
matches Carla's then he may see the Alice-Carla (x,ct)-grid in Fig. 9b form the Minkowski (x′,ct′ )-grid 
shown in Fig. 10b. 
 Alice and Carla can provide Bob with the same ρ=ln2=0.69 grid without expending the energy 
needed to move their lasers to enormous speeds of u/c=3/5 relative to him. Instead they may be at 
rest in his frame and gradually tune up or up-chirp Alice's laser from υA=600THz to e+ρυA=1200THz 
while Carla is down-chirping from υA to υAe-ρ=300THz.  
 This opens the possibility of projecting accelerating frames for optical “Einstein elevators” with 
curving space-time coordinates that span a finite region between the lasers for a finite time interval. One 
may imagine Bob has a space ship that accelerates to a velocity u=ctanhρ that Doppler shifts the Alice 
and Carla beams back to their initial green frequency υA=600THz. (Or else, an excited atom b could be 
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imagined to be trapped in a single group-wave anti-node space-time cell so b accelerates with that cell 
while staying in resonance with the cell's constant phase frequency υA.) 
 The instantaneous velocity u of Bob (or the atom b) relative to Alice and Carla depends on their 
chirp factors e±ρ that vary with rapidity ρ. Bob can find his ρ relative to Alice if she broadcasts a fixed 
frequency υA that he sees at υB=υAe-ρ. Rapidity is a function ρ =ρ(τ) of proper time τ for Bob (or atom b) 
and τ is related by (41) to time t for Alice or Carla.  

 
  

(67a) 

Integrating the relations (66a) gives Bob's time-space path (ct, x) as seen by Alice or Carla. 
   

    
(67b) 

The simple case with constant rapidity ρ = const. gives a Minkowski τ-axis of slope x/ct = sinhρ/coshρ. 
        (67c) 

This case is sketched in Fig. 28a as a tiny CW Minkowski frame at the intersection of paths of PW light 
waves from Alice and Carla. This repeats the situation described for Fig. 10. 

!  
  Fig. 28 Space-time laser-formed paths of constant g-acceleration (a) g=0, (b) g=9.8m/s2 

  
Fig. 28b path has constant acceleration g=9.8m/s2 where rapidity is linear in Bob's proper time cρ = gτ. 

 
 

(68) 

Recall that low rapidity (ρ � 1) is approximated by u/c, and so setting cρ equal to gτ gives the classical 
uniform acceleration equation u=gτ. The resulting space-time path shown in Fig. 28b is a hyperbola of  
radius a=c2/g . That radius is enormous unless “gravity” g is also enormous. For terrestrial g=9.8m/s2 =9.8 
the radius is a=0.97LightYr. However, a traveler with even this small 1g acceleration can, over several 
years, rack up considerable light-year mileage. One should recall both coshρ and sinhρ contain eρ. 
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 After the first year of τ1=3.15·107sec. the rapidity is ρ1=gτ1/c=1.03 giving an x-coordinate of 
x=a cosh(gτ1/c)=1.53 LightYr with a total mileage of  x-a=0.56 LightYr. But, after 21years (the age of 
legality) x balloons to x=a cosh(21gτ1/c) =1.22·109 LightYr! Now hyperbolic radius a is an insignificant 
part of a billion light-year journey. After 25 years (about the age of Einstein as he developed relativity 
theory) the mileage is 76 billion light-years, well beyond age-of-universe estimates in the frame of 
Alice. (Who, by then has long since passed away in the lab frame. Why did she have to stay at home?). 
 The geometric and exponential behavior of relativistic Doppler components dominates this 
example of space-time inflation and takes Alice-Bob sagas beyond any realm of possibility. Still it is 
instructive to explore such surprising thought experiments as far as possible and note the asymptotic 
extremes of scaling and curvature. Recall that rapidity ρ is defined in Fig. 2b as twice the area subtended 
by a unit hyperbola, its radius vector, and the horizontal axis. Half that is the area α shaded in Fig 29a.  

 
 

(69) 

Coordinates x=acoshρ and ct=asinhρ from (68) are used. (Circle area is α=r2σ/2.) Hyperbolic radius 
r0=a=c2/g then gives c-scaled proper time cτ1 as a radius·rapidity product aρ1.    
            (70) 

!  
Fig. 29 (a) Constant-gq=c2/aq paths proper time vs area (b)  qAl=-1, qBob=0, qCarl=1 vary ρp=pρ1=pln(3/2) from p =-1 to 3.  
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 Colliding Alice-versus-Carla laser beams in Fig. 28b are detailed in Fig.29b, a plot of an inertial 
space-time (x,ct)-frame with Alice and Carla sitting on left or right sides, respectively. Alice gradually 
up-tunes from infrared while Carla just as gradually down-tunes from ultra-violet. They start their beams 
over a year before and time their tuning so the central GREEN (lab frequency υ0=600THz) beam-pair 
meets at t0=0 on the x-axis at x0=a0 where Bob is briefly stationary but accelerating right at his constant 
g0=c2/a0. (See Fig. 29b. Tuning is gradual but only two other tuning paths are plotted and labeled.) 
 The right-hand RED (lab frequency υ1=υ0 ) beam-pair meet at t0=0 on the x-axis at the point 
x1=a1=a0 where Bob's companion Carl is also briefly stationary but accelerating right at g1=c2/a1.  
The left-hand BLUE (lab frequency υ-1=υ0 ) beam-pair meet at t0=0 on the x-axis at the point 
x-1=a-1=a0 where Bob's companion Al is also briefly stationary but accelerating right at g-1=c2/a-1. 
 Bob and his companions share a line of rising slope x/ct=cothρ as they travel up their respective 
hyperbolic paths in Fig. 29b according to (67). All points on such a line share the same rapidity ρ and 
the same tangent slope dx/dct=tanhρ or lab velocity u/c, and so Al, Bob, and Carl on the ρ1-line in Fig. 
29b apply the same Doppler blue-shift factor b1= to light they meet head-on and the same red-shift 
factor r1= to light that catches them from behind. Thus Bob down-shifts Carla's blue beam from its 
lab BLUE frequency υBLUE=υ0 to his observed GREEN υ0=600THz and up-shifts Carla's red beam 
from its lab RED frequency υBLUE=υ0 to the same base frequency υ0=600THz. 
 This is consistent with Alice and Carla's original plan for Bob on an optically accelerated 
“Einstein elevator” but now it includes two companions Al and Carl that travel in spatial lock-step 
beside Bob in Fig. 29b with Al maintaining a fixed distance Δa0=a0-a-1 below Bob as Carl maintains a  
larger fixed distance Δa1=a1-a0 = Δa0 above Bob (As plotted in their frames of equal rapidity ρ1.) 
 Meanwhile, the lab x-view in Fig. 29b clearly shows their relative spatial separations suffering 
Lorentz contraction. Each hyperbolic path is invariant so a boost in rapidity by Δρ moves any of its 
points of rapidity ρp to ρp+Δρ on the same hyperbola. 
 While Al, Bob, and Carl maintain initial spatial separations tallied by Alice and Carla at zero 
rapidity or velocity ρ0 =0=u0/c,  they do not maintain equal proper time-τ readings. According to (70) 
proper time cτp,q  on hyperbola-q is a product of its radius aq = a0 with rapidity ρp = pρ1 for any given 
p-line shared by travelers q=-1, 0, and +1, namely, Al, Bob, and Carl.   
     (71) 

Hyperbolas of smaller radius aq have proportionally slower local or proper time evolution and 
proportionally greater acceleration gq=c2/aq hence more curvature of hyperbolas closer to origin in Fig.
29. Indeed, each (q,p)-cell has the same number of wavelengths and wave-periods packed into a tighter 
space-time as the radius aq is reduced.  
 The hyperbolic acceleration geometry of space-time in Fig. 29b has similar geometry (rotated by 
90°) to that of Compton scattering in per-space-time of Fig. 27, but the physics is inverted. A boost of 
Bob (q=0) from ρ0 to ρ1 (p=0→1) in Fig. 29b corresponds to a Compton transition of a rest-mass q=0 
from ρ0 to ρ1 in Fig. 27. Increased energy E=hυ and momentum p=hκ on reciprocal (E,cp) lattice Fig. 
27 is decreased wave length λ=1/κ and wave period τ=1/υ for space-time (x,ct) in Fig. 29. And vice-
versa, a low-hyper-radius aq=c2/gq or high acceleration gq=c2/aq in Fig. 29 has high energy E (or 
frequency υ) and momentum p (or wavenumber κ) in Fig.27. 
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 This mythical odyssey of intrepid accelerating voyagers (Al, Bob, and Carl) depends on optical 
metrology provided by a pair of laser-chirping Sirens (Alice and Carla) stationed for years at the left and 
right edges of Fig. 28b and Fig. 29b. While Carla leisurely de-tunes her right-to-left beam, Alice tries to 
meet an impossible up-tuning schedule of her left-to-right beam, planned to end with an exponential 
chirp and explosion of infinite frequency at ct=0. Her ct0=-a0 emission of frequency υ0=600THz hits 
Bob at x=a0, one of a geometric sequence of frequencies υq/υ0= emitted at times  
ctq=  to hit a point at ct=0. (The geometric ratio in Fig. 29b is 
! and arbitrarily chosen to provide a lattice in the (x,ct)-continuum.) 
 No light emitted by Alice after t=0 can reach Al, Bob, Carl or any fellow traveler-q maintaining 
enough  acceleration to stay under hyperbolic asymptote or “event-horizon” x=ct in Fig. 29b. Carla, the 
right-to-left half of this 2-CW metrology, hits the same q-points !  on the ct=0-line (x-
axis)with the same frequencies !  that Alice sent to each traveler-(q). She can continue hitting 
Carl(traveler q=1) at (q,p)-points (1,1) and (1,2) with beams that later hit Bob (traveler q=0) at (q,p)-
points (0,1), (0,2) and (0,3) and Al (traveler q=-1) at (q,p)--points (-1,2), (-1,3) and (-1,4). However, 
Carl passes Carla soon thereafter (upper right hand corner of Fig. 29b) and so also will Bob followed by 
Al. Thus laser coordination by either Siren, Alice or Carla, is quite restricted in its coverage.  

!  
  Fig. 30 CW Doppler and PW radar metrology for frame of constant acceleration g=9.8m·s-2. 
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Metrology in accelerated frames 
   Accelerated frame metrology of space, time, and relative velocity is quite counter-intuitive and easily 
misinterpreted. The space-time grid of CW and PW paths provided by Alice and Carla in Fig. 28b (and 
with greater detail in Fig. 29b) help to analyze what Al, Bob, and Carl might be able to observe at each 
(q,p)-intersection of light beams sent by Alice and Carla. 
 Let us assume each intersection marks colliding pulse waves (PW) that are separated by the same 
number N of CW wavelengths in space and N wave periods in time. In Fig. 30 the CW paths for N=4 are 
drawn as the finer CW grid for the sake of clarity, but it should be evident that increasing integer scale N 
sharpens the space-time fine-grid precision. 
 The course-grid defined by integer coordinates (q,p) mark equally spaced proper time p-instants 
cτq,p=aqρp along the q-path hyperbola of traveler q according to (70). Bob (q=0), starting from his origin 
(p=0) at rest in Fig. 30, accelerates past his proper time points cτ0,p=a0ρ1(0,1,2,3,4) before exiting at the 
very top of the plot. Bob sees the same proper time interval cτ0,1=a0ρ1 between each of his p-instants 
wherein he gains the same unit ρ1=ln(3/2)=0.405 of rapidity per interval or velocity u/c=tanhρ1=0.385. 
The distance x traveled in inertial frame (x,ct) of Fig. 30 grows only quadratically at first but soon 
explodes exponentially due to hyperbolic cosine x=a0coshρ in (67). 
 Meanwhile, Bob's companions, Al (q=-1) and Carl (q=+1), also see equal proper time intervals 
between p-points, but each cτq,p is proportional to qth hyperbolic radial constant . So Al's proper 
time interval !  is (2/3) of Bob's interval while Carl's interval !  is 
(3/2)-times greater. But, each traveler gains the same rapidity ρ1=ln(3/2)=0.405 in each interval. 
 Having uniform proper Δτq-intervals allows spatial intervals between each pair of accelerating 
neighbors to be easily measured by radar echo ranging. A dash-line rectangle connecting [q,p]-points 
[0,0], [1,1], [0,2], and [-1,1] outlines paths of Bob's radar pulses he might send rightward (That is “up” 
in his perceived “gravity” field.) from [0,0] to reflect from Carl at [1,1] and leftward (that is down-field) 
to reflect from Al at [-1,1]. Both pulses return to Bob simultaneously at [2,2] at precisely ! or 
two “ticks” of his proper time given in distance units. (a0=0.97lt-yr derived by (68) for g=9.8m·s-2.) 
 Thus Bob finds a radar-range distance ! for Al below him and a distance 

of equal distance for Carl above him. Bob gets the same ±a0ρ1 distances if he 
sends out radar pulses one “tick” earlier from the [0,-1] point (below [0,0] and not visible in Fig. 30) that 
return to him simultaneously two “ticks” later at point [0,1].  
 If Bob's radar pulses could echo off next-nearest neighbor's paths having radius ! or
!  then they would return four “ticks” later  at [0,4] (as shown in Fig. 30) or six “ticks” later at 
[0,6] (not shown in Fig. 30). Such echo range values would indicate uniformly spaced neighbors at 
constant positions ±a0ρ1, ±2a0ρ1, and ±3a0ρ1, above and below Bob. Such uniformity of spacing seems 
paradoxical in light of a decidedly non-uniform spacing of neighbor-q positions ! on the 
x-axis of Alice and Carla's inertial frame at time ct =0 (and rapidity ρ = 0). They see a geometric series 

 of hyperbolic radii that includes Bob's radius a0 at origin [0,0]. 
 However, the initial (ct=0)-spacing of travelers, that is !  in Alice's inertial 
frame, is to 1st-order in ρ1, a uniform  Δaq=a0ρ1 that agrees with Bob's radar-range values. Later, as 
traveler-q gains speed according to its respective acceleration gq=c2/aq , Alice will see neighbor intervals 
Lorentz contract non-uniformly by  Δaqsechρp factors.  
 When a neighbor-q of Bob sends his own inquiring radar-echo ranging pulses he will get results 
that differ by the same exponential factor relating his proper time value τq,p to the corresponding 
value τ0,p for Bob intercepting echo-return-p. Bob's radar-range intervals are all seen by up-stairs 
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neighbor-(+|q|), to be uniformly expanded by ! , while down-stairs neighbor-(-|q|), sees them 
uniformly contracted by ! .  
 Consider Doppler blue-shifts ! seen by Bob for CW light sent by up-stairs neighbor-(+|q|) or 
a red-shift ! for a down-stairs neighbor-(-|q|) source. Each light beam on ±45°-paths in Fig.29b is a 
copy of laser light sent much earlier by Alice (+45°) or Carla (-45°) and Doppler-shifted due to Bob's 
velocity so that he always sees a fixed green from either direction. Al and Carl are similarly seeing fixed 
colors as long as they can maintain their respective accelerations gq=g-1 and gq=g+1 through a field of up-
chirped frequency sent by Alice and down-chirped frequency sent by Carla. 
 Thus each traveler only sends or receives its unique frequency: blue for Al, green for Bob, and 
red for Carl. So Bob always receives a green from Al down-stairs that is Doppler red-shifted by !  
from Al's blue or else a green from Carl up-stairs that is blue-shifted by ! from Carl's red. It might 
seem travelers sharing a line of equal rapidity ρ and fixed radar-range separation should see no Doppler 
shift between them, that is (R|S)=1.  
 However, each ±45°-path connects a [q,p]-point to the nearest up-stairs [q+1,p±1]-points of 
traveler q+1who deals in reduced frequency and to the nearest down-stairs [q-1,p±1]-points of traveler 
q-1 who deals in  higher frequency. In each case rapidity differs by one ρ1-unit implying a Doppler blue-
shift factor ! for light is falling down-stairs or a Doppler red-shift factor ! for light having to rise 
up-stairs. Travelers must have identical and constant rapidity for their shifts to go away. 
  
Mechanics in accelerated frames 
   The curved space-time in Fig.30 and Fig. 31 facilitate tracking light waves going back-and-forth 
between the co-accelerating travelers Al(q=-1), Bob(q=0), Carl(q=1) and Don(q=2) and reconciling 
them to Alice and Carla with their inertial frame laser sources. The same may be done for freely flying 
massive objects that travelers might drop or throw at each other. A simple example involves travelers 
dropping objects on downstairs companions at just the moment they all have zero velocity in the inertial 
(x,ct) frame. Alice and Carla would see such objects to be stationary and represented by vertical lines 
parallel to their inertial ct-axis as shown in Fig. 31. 
 Each object dropped by traveler-(q=Q) will hit (or pass closely by) traveler-(q=Q-1) then 
traveler-(q=Q-2) and so forth as seen by examples in Fig. 31. The first example has Don(q=2) drop 
something onto Carl(q=1), Bob(q=0), and Al(q=-1) as is indicated at the top of the figure. Don's object 
hits Carl (or as witnessed by Alice and Carla: Carl hits Don's stationary object.) when Carl's x-coordinate 
equals a2 of Don's object.  
  !     (72a) 
This is solved for the relative rapidity !  between Carl and Don's “falling” object. 

  !     (72b) 
Course-grid scale factor !  yields high relative velocity. So, one hopes Don's object misses Carl. 
But, then it falls toward Bob (q=0) and Al (q=-1) with an ever increasing relative velocities. 
  !       (72c) 
  !      (72d) 

From  Fig. 31 it is seen that Don's object hits (or passes) Carl with the same relative speed that Carl's 
object hits Bob or that Bob's object hits Al. These hits (or passings) lie on a single line of rapidity 

 as seen by generalizing (72a). 

e+qρ1
e−qρ1

e+qρ1
e−qρ1

e−qρ1
e+qρ1

e+qρ1 e−qρ1

x2HIT1= a2= a0e
2ρ1= xCarl= a1 coshρ2HIT1= a0e

ρ1 coshρ2HIT1
ρ2HIT1

ρ2HIT1= cosh
−1eρ1= cosh−1 3

2 =0.962⇒ u2HIT1= 0.745c
eρ1=3/2

ρ2HIT0= cosh−1e2ρ1=1.451 ⇒ u2HIT0= 0.896c
ρ2HIT−1= cosh

−1e3ρ1=1.887⇒ u2HIT−1= 0.955c

ρ2HIT1=ρ1HIT0=ρ0HIT−1



       �58
  !      (73a) 

Thus rapidity ! and its hyper-cosine vary with the q-index difference (Q-q). 

   !         (73b) 

!  
  Fig. 31 Space-time paths of dropped objects hitting accelerating travelers. 

The [q,p] points or dots in Fig. 31 mark intersections of light rays or massive objects with members of a 
fleet of co-accelerating ships (q =...-2,-1,0,1,2,...) located at each moment (p =...-2,-1,0,1,2,...) on a line 
of equal rapidity ρp = pρ1 or velocity up=c tanhρp with low-q ships accelerating more in the (x,ct) frame 
to have the same velocity up as their neighbors by gaining it sooner in local time τ or inertial time t than 
their high-q “upstairs” neighbors. Light acquires Doppler shift !  in “falling” from a traveler to 
one below. A mass shifts its phase frequency υphase and Hamiltonian in the Planck-
law equation (33) by ! according to (73b). 
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The Purest Light and a Wave-Resonance Hero – Ken Evenson (1932-2002) 
      When travelers punch up their GPS coordinates they owe a debt of gratitude to an under sung hero who, 
alongside his colleagues and students, often toiled 18 hour days deep inside a laser laboratory lit only by the 
purest light in the universe. 
      Ken was an “Indiana Jones” of modern physics. While he may never have been called “Montana Ken,” such a 
name would describe a real life hero from Bozeman, Montana, whose extraordinary accomplishments in many 
ways surpass the fictional characters in cinematic thrillers like Raiders of the Lost Arc.  
      Indeed, there were some exciting real life moments shared by his wife Vera, one together with Ken in a canoe 
literally inches from the hundred-foot drop-off of Brazil’s largest waterfall. But, such outdoor exploits, of which 
Ken had many, pale in the light of an in-the-lab brilliance and courage that profoundly enriched the world.  
      Ken is one of few researchers and perhaps the only physicist to be twice listed in the Guinness Book of 
Records. The listings are not for jungle exploits but for his lab’s highest frequency measurement and for a speed 
of light determination that made c many times more precise due to his lab’s pioneering work with John Hall in 
laser resonance and metrology†.  
      The meter-kilogram-second (mks) system of units underwent a redefinition largely because of these efforts. 
Thereafter, the speed of light c was set to 299,792,458ms-1. The meter was defined in terms of c, instead of the 
other way around since his time precision had so far trumped that for distance. Without such resonance precision, 
the Global Positioning System (GPS), the first large-scale wave space-time coordinate system, would have been 
much less practical. 
      Ken’s courage and persistence at the Time and Frequency Division of the Boulder Laboratories in the 
National Bureau of Standards (now the National Institute of Standards and Technology or NIST) are legendary as 
are his railings against boneheaded administrators who seemed bent on thwarting his best efforts. Undaunted, 
Ken’s lab painstakingly exploited the resonance properties of metal-insulator diodes, and succeeded in literally 
counting the waves of near-infrared radiation and eventually visible light itself. 
      Those who knew Ken miss him terribly. But, his indelible legacy resonates today as ultra-precise atomic and 
molecular wave and pulse quantum optics continue to advance and provide heretofore unimaginable capability. 
Our quality of life depends on their metrology through the Quality and Finesse of the resonant oscillators that are 
the heartbeats of our technology.  
      Before being taken by Lou Gehrig’s disease, Ken began ultra-precise laser spectroscopy of unusual molecules 
such as HO2, the radical cousin of the more common H2O. Like Ken, such radical molecules affect us as much or 
more than better known ones. But also like Ken, they toil in obscurity, illuminated only by the purest light in the 
universe. 
In 2005 the Nobel Prize in physics was awarded to Glauber, Hall, and Hensch†† for laser optics and metrology.  
† K. M. Evenson, J.S. Wells, F.R. Peterson, B.L. Danielson, G.W. Day, R.L. Barger and J.L. Hall, Phys. Rev. Letters 29, 1346(1972). 
†† The Nobel Prize in Physics, 2005. http://nobelprize.org/  

http://nobelprize.org/
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