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Predictions are made for possible spectral patterns in rovibronic tine structure in high-resolution spectra of icosahedrally sym- 
metric molecules. Qualitative and semi-quantitative features are discussed which might help in identifying and assigning a com- 
plex spectrum. Interpretation of some features are made in terms of quantum and semi-classical dynamics. 

Recently there have been reports of a number of 
molecular structures which may have icosahedral 
symmetry. These include the recently synthesized 
dodecahedrane [ 1 ] ( CzOHZO), the tentatively iden- 
tified [ 21 Buckminsterfullerene (C&, as well as the 
better known [ 31 borohydride anion (Bi2H:2 ). 
While such highly symmetric structure is common in 
giant biochemical complexes such as virus heads, it 
is quite unusual to have icosahedral molecules which 
are amenable to gas phase infrared or Raman 
spectroscopy. 

We give here a qualitative and semi-quantitative 
description of the possible rovibrational spectral 
structures which might be observed using laser diode, 
waveguide laser saturation absorption, or other high- 
resolution infrared or non-linear optical spectro- 
scopic techniques. Certain spectral patterns and sub- 
patterns might be expected to arise repeatedly. Their 
appearance would provide unmistakable evidence of 
icosahedral symmetry and aid greatly in spectral 
assignment and analysis of the molecular dynamics. 

The spectral patterns described here are analogous 
to structures that have already been seen in other large 
spherical top molecules having tetrahedral, octahe- 
dral, or cubic symmetries. Laser spectra [ 4-6 ] of 
tetrafluoromethane (CF,), sulfur hexafluoride (SF,), 
and cubane (C,H,) exhibit prominent patterns and 
patterns within patterns which are called fine and 
superfine structure [ 7,8], respectively. The origin of 
these patterns can be simply related to the symmetry 
and rotational dynamics of the molecules in question 

[7,8]. The analysis of the octahedral spectral pat- 
terns is extended here to the icosahedral cases. 

Rotational fine structure patterns occur in the 
eigenvalue spectrum of symmetric tensor operators 
represented in a (2J+ 1 )-dimensional angular 
momentum basis for each value of total angular 
momentum J. The nature of the patterns becomes 
more evident as J increases. Some of the cubic pat- 
terns were first noticed by Lea, Leask and Wolf [ 91 
for J= 6-8. Later, more of the tine structure patterns 
were studied in computer generated tetrahedral ten- 
sor spectra up to J= 20 by Domey and Watson [ lo]. 
The detailed nature of the octahedral fine and super- 
fine patterns up to J= 100 was discussed by Fox et 
al. [ 111 and analyzed by Harter and Patterson [ 121. 

The icosahedral spectral structure discussed here 
will be that found in the eigenvalue spectrum of the 
following sixth-rank operator: 

T'6'=4~T~+fJ?(T~-T65). (1) 

This is the lowest-rank irreducible tensor operator 
having (non-trivially) icosahedral symmetry. (The 
next lowest icosahedral operator has tenth rank. ) We 
are assuming here that (1) will play a role in icosa- 
hedral rovibrational Hamiltonians which is similar 
to that which octahedral fourth-rank tensor opera- 
tors play in the SF6 and CsHs Hamiltonians. 

An example of a numerically derived eigenvalue 
or level spectrum of (1) for J= 100 is displayed in 
fig. 1. The computational methods are described in 
the appendix and in forthcoming works. In order to 
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Fig. 1. Eigenvalue spectrum of 6th-rank icosahedral tensor oper- 
ator Tc6). Values are normalized by deleting a factor of 
(J6) = [J(J+ 1 )I-‘. The first significant digits of clustered eigen- 
values which equal those of a top level are left blank in several 
cases. 

understand the eigenvalue structure it is helpful to 
use a rotational energy (RE) surface [ 7,8] such as is 
drawn in fig. 2. The RE surface is a polar plot in 
energy-angular momentum space of a tensor Ham- 
iltonian of the form 

H=BJ2+t066T(6’ , (2) 

where B and to66 are the rotational and tensor distor- 
tion constants, respectively. For purposes of plot- 
ting, the constants are set arbitrarily to B= 1 and 
to66 = 0.5. The T@’ is expressed in terms of polar Euler 

.J i 

.’ (Saddle pant) 

/ 

Fig. 2. Rotational energy (RE) surface for 6th-rank icosahedral 
tensor operator and energy level curves. 5-fold symmetry hill 
regions are copied 12 times and correspond to C5 clusters of 12 
levels in fig. 1. 3-fold valley regions correspond to C, clusters of 
20 levels. 

angles (@= - y, 0 = -p) that define the direction of 
the classical Jvector which is assumed to be fixed on 
the laboratory z axis of quantization [ 71, 

T6(8, @)=&fi[(231 cos60 

-315 c0s4e+io5 c09e-5) 

-42 cos 8 sin50 cos g 

x(16cos4@-20cos2qS+5)]J6. (3) 

As explained in refs. [ 7,8] the RE surface topogra- 
phy lines or level curves correspond to possible tra- 
jectories traced by the angular momentum vector J 
in the molecule-fixed frame. (RE surface energy is 
plotted radially as a function of J direction and the 
magnitude 1 JI m J is assumed constant for each sur- 
face.) Among all possible classical trajectories are a 
finite set of approximately 2J+ 1 paths which satisfy 
certain quantization conditions. These quantizing 
level curves correspond to eigenlevels in the tensor 
spectrum. 
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Table 1 

(a) GcI (b) CscI 

0, 13 23 05 15 25 35 45 

A 1 1 

Tl 1 1 1 1 1 1 

T3 1 1 I 1 1 1 

G 2 1 1 1 1 1 1 

H 1 2 2 1 1 1 1 1 

One of the most noticeable features about the ten- 
sor level spectrum in fig. 1 is the grouping of levels 
belonging to different symmetry species into nearly 
degenerate clusters of 12 levels at high energies and 
20 levels at low energies. Group representation the- 
ory of the icosahedral group I involves irreducible 
representations or symmetry species A, T, , TJ, G, and 
H of degeneracy 1, 3, 3, 4, and 5, respectively. The 
much larger near-degeneracies of 12 or 20 corre- 
spond to 12 equivalent quantizing trajectories at a 
given energy on the RE-surface hills or to 20 equiva- 
lent valley trajectories belonging to the lowest energy 
levels. 

As explained in ref. [ 71 the larger near-degenera- 
ties are connected with induced representations. The 
1Zfold clusters are each labeled by one of the 12- 
dimensional representations {OStI, lStI, . . . . 4,tI) 
induced by irreducible representations OS, 15,..., or 4, 
of a local symmetry subgroup Cs. (The notation m, 
refers to a wave with (m)modulo( n) wavelengths on 
the unit circle.) Similarly, the 20-fold clusters are 
labeled by 20-dimensional representations induced 
by OJ, 1 J, or 23 of C3. The connection between induced 
and irreducible representations and the key to deter- 
mining the cluster structure is contained in simple 
correlation tables between I species and the species 
of C3 or Cs (see table 1). 

For an example of the application of this table con- 
sider the highest cluster in fig. 1, which belongs to 
angular momentum component K= J= 100 local- 
ized on a 5-fold symmetry axis through’one of the 12 
hills. Since this component is (O)mod( 5) (K= 
100 = 0,) it will give rise to 12 levels belonging to the 
I irreps contained in the O5 column of table lb, i.e. A, 
T,, TS, and H. The second highest cluster in fig. 1 
belongs to component K= 99 = 45 and contains irreps 
T,, G, and H in the 45 column. For the lowest energy 

components K=J= 100 and 99 localized on the 3- 
fold symmetry axis there will be 20 level clusters of 
type 1 3 and Oj, respectively. Cluster 1 3 has irreps T1, 
TJ, G, and H (twice), while O3 has A, T,, T3, G 
(twice) and H. These clusters are indicated at the low 
end of the spectrum in fig. 1. There are fewer clusters 
of local symmetry C3 than C, since the 3-fold sym- 
metric valleys occupy a much smaller phase-energy 
space than the 5-fold hills. 

The inter-cluster splitting in fig. 1 is called level 
fine structure while the (generally) much smaller 
intru-cluster splitting is called level superfine struc- 
ture. The fine structure splittings are approximately 
equal to the classical precessional rates of the J vec- 

tor at the corresponding energies. The superfine 
structure splittings are approximately proportional to 
quantum tunneling rates between wavepacket states 
localized on neighboring equivalent level curves. As 
explained in refs. [ 7,8], these tunneling rates decrease 
quasi-exponentially with increasing K, that is, when 
approaching hilltops or valley bottoms. Further- 
more, a definite ordering and spacing of superfine 
structure patterns is predicted by assuming that only 
the nearest neighbor tunneling amplitude S is non- 
zero. The resulting predictions for superfine spacings 
and splittings are given in fig. 3. The predictions may 
be compared with the numerically derived results for 
J= 100 given in fig. 1. 

To do this we compare ratios of differences for 
neighboring eigenlevels. For example, the 0, cluster 
is predicted by fig. 3 to have tunneling ratios of 

A-T, 5-Js 
T,-~ = y-+ =0.8541 , 

T1-H ‘+fi&j18(-~ 
m=Jci * * (4) 

The highest O5 cluster which can be readily resolved 
with IBM double precision is the K= 95 = 0, cluster 
in fig. 1. The numerical ratios 0.8539 and 2.6177 
agree to within about 0.01% with the simple formu- 
las. The lowest 1 3 cluster is predicted by fig. 3 to have 
tunneling ratios that involve peculiar combinations 
of ,/? and fi as given by the following: 

389 



Volume 132, number 4,.5 CHEMICAL PHYSICS LETTERS 19 December I986 

G+= (1 +y’5)/2 

Fig. 3. Detailed superfine structure of (a) C3 clusters and (b) Cs 
clusters. Level splittings for each I-symmetry species is given rel- 
ative to the ctuster center of gravity in terms of its nearest neigh- 
bor tunneling amplitude S. Ordering is appropriate for even J, 
and is inverted for odd J. 

H-T, -4-b&&3 
r,-c = T =0.6663, 

Tj -G 5-a 
G-H = V =1.0608. (5) 

These predictions agree to within about 2% with the 
numerical ratios 1.440, 0.6666, and 1.078 derived 
from the computed levels at the bottom of fig. 1. We 
surmise that the poorer agreement for the C3 clusters 
is due to higher-order tunneling caused by their tra- 
jectory confinement and close proximity to the 
boundary or separatrix between CS and Cs levels. 

The separatrix energy is just above the energy of 
the valley bottoms which are the sites of 3-fold sym- 
metry axes as seen in fig. 2. In contrast, the hilltop 
sites for the 5-fold symmetry axes are much farther 
above the separatrix. The separatrix connects 30 sad- 
dle points which are sites of 2-fold symmetry axes. 
To compute the classical energy of the valleys, separ- 
atrix, or hilltops one may substitute the polar coor- 
dinates of any 3-fold, 2-fold, or 5-fold axis 
respectively, into ( 3) for F6)( 19, $). The results are 

P’(f&, #,)=T’“‘(37.38”, 0°) , 

= -&./KP ) 

= -0.36851 J6 , 

TC6)(0,, d2)=T’6’(31.72”, ISO’), 

=-&fiJ6, 

= - 0.20729 J6 , 

P’(8,, @5)=Tf6f(00 0°) , t 

=&/xi6 , 

=0.66332 J6 . 

It is seen that the valley and hill energies bracket the 
low and high ends of the level spectrum in fig, 1, and 
that the separatrix energy is about where the level 
clusters dissolve from type CS into type Cg_ In the 
separatrix region tunneling dominates and is indis- 
tinguishable from semi-classical precessional motion. 

While separatrix levels may appear to be confused 
about their C3 or C5 identity, they still maintain a 
particular ordering that is common to all regions of 
the spectrum. The ordering was partly defined by the 
splitting predictions of either C3 or C5 given in fig, 
3a or fig. 3b. This leads to a relatively simple “code 
wheel” shown in fig. 4. The wheel gives the order and 
qualitative form of icosahedral F) spectrum for all 
values of J. It is only necessary to calculate 
(J)mod(lO) and (J)mod(6) andlocate these num- 
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J= 4mod10=4.14. 

J=3modl0=3,13, 

Fig. 4. Code ring for icosahedral symmetry content in angular 
momentum J levels. Ordering and clusterings of levels for Tc6) 
Hamiltonian are indicated for all J. J=30 corresponds to one 
complete revolution plus an A singlet, and spans a 60-dimen- 
sional regular representation of I plus a scalar. Note that ordering 
for even J is opposite to that for odd J. 

bers on the outside and inside arrows, respectively. 
The outside arrow indicates the beginning of the 
sequence starting from the highest level and points 
to which C5 cluster that level belongs. The inside 
arrow does the same starting from lowest level in a 
C3 cluster. For example, J= 24 = (4)mod( 10) starts 
with 45 cluster (GHTr ) and ends at the J=24= 
(O)mod( 6) arrow with a O3 cluster. The J=24 
sequence would then be from top to bottom: 
(GHT,L (HTsG)3, WV3GGHT,N~,. SOme 

clusters such as Oa in J=24 may be only partially 
formed if they are near the separatrix and some “loose 
levels” will always be present in this region. For low 
J( J< 12) most of the levels are unclustered, but the 
ordering is always maintained. 

This concludes a preliminary description of the 

Appendix 

qualitative properties of icosahedral Tc6) values. The 
quantitative properties depend upon molecular con- 
stants such as B and to66 for the vibrational ground 
state Hamiltonian (2) and a multitude of excited 
state parameters. The B values or inverse inertial 
constants are relatively easy to estimate and they 
provide an estimate of the equilibrium distribution 
of J values. For example, C6o is thought to have a 
radius of 3.5 A. This leads to an estimated B value 
approximately 23 times that of SF6. ( BSF6 =0.091 
cm-‘, rsF6 = 1.6 A.) The most populated J values of 
SF6 are around J=48 at 300 K with the highest 
observed fine structure at Jx 150. For C60 these 
numbers should be multiplied by fl or almost 5. 

The values of tensor parameters such as toe6 are 
much more difficult to estimate since they depend 
upon vibrational anharmonicity. The tine structure 
splittings are proportional to products of the param- 
eter with high powers of J, e.g. t066J6, tz46J4, and so 
forth. This combined with a probability for high J 
values increases the likelihood for observing icosa- 
hedral tine structure. 

A final point concerns the nuclear spin statistical 
weights and underlying hyperfine structure [ 131. This 
will be discussed in future works. Preliminary results 
indicate that icosahedral structures with non-zero 
spins have relatively little variation of statistical 
weights from cluster to cluster. Complex cubic struc- 
tures like cubane (C,H,) show this [ 81. At the other 
extreme are spin-zero species such as C6o (assuming 
all carbon-12). This will be analogous to the tetra- 
hedral osmium tetroxide Os04 in which only the 
clusters with A species show up. Finally, the spec- 
troscopy and dynamics of slightly broken symmetry 
species like i2(& 14C would be extremely interesting. 

We would like to thank Bill Ashmore for help in 
the computation using IBM ACRITH programs. This 
research was supported in part by National Science 
Foundation grant PHY-8696052 in theoretical 
physics. 

Exact numerical diagonalization or approximate calculation of T (6) fine structure uses matrix element for- 
mulas based on Wigner 3-j coefficients, 
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For q=O (AI ) are approximately the same as the P6(cos 8) Legendre polynomial, 

( &IT;! ~~~~6~cos~)) ~~~=~~~~~~~l~]~~Z- 

The necessary coeffkients are as follows: 

6J J 

0 M -M > 

=(- I).‘-M 
-20(J+3:-2)+84M2(5f4+IOf3-2~-25Jf-f4)-420M4(3J1+3J-7)+924~ 

QJ+ 7:5)$” I bw 

6J J 

5 M -(M+S) > 

2M+J ll!(J-M+O:-4)(J+M+5:1) 
=(+-MT 

(2J+7:-5) ’ 
(A3) 

where 

fx+n:m)~(Xcn)(X+n-1)(X+n-2)...(_~~pn). WI 

Combining ( A2 f with ( 1) gives the diagonal matrix elements (MS & = N) which are approximate S-fold cius- 
ter level values, 

e~_~o,&~)+/i-i( JK,lrF;I &> , K,=J,J-1,J-2,...>[J(J+1)]1’2 cos(26.57”). 

Approximate 3-fold values are 

(A5) 

e~.,,(K,)=&j% ( &IT:f&) 7 &=J,J-l,f-2,... ~fJfJcr)~‘“cos(lO.gl*). fA@ 

Approximate &cutoff angles are determined by separatrix angles on RE surface f 7 ] a For J= 100 the cutoff 
predictions are K$“‘%= 90 and Ks-““ff= 99. This is confirmed by fig. 1” 
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