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Rotational energy surfaces and high- J eigenvalue structure 
of polyatomic molecules 
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(Received 20 November 1983; accepted 2 February 1984) 

A rotational analog of the vibrational potential energy surface is introduced for describing the 
rotational fine structure of polyatomic molecules. Classical trajectories on rotational energy (RE) 
surfaces are related to quantum rotational eigenvalue structure. Interpretation of RE surfaces 
shows how very different types of molecules may undergo dynamical symmetry breaking and a 
corresponding clustering of rotational energy sublevels for high angular momentum (J> 10). 
Cluster splitting and spacing are calculated using semiclassical quantization methods. Some 
consequences of dynamical symmetry breaking such as mixing of nuclear spin species are 
discussed qualitatively. 

I. INTRODUCTION 

The detailed understanding of gas phase photochemis­
try and molecular dynamics should include a knowledge of 
the rotational behavior of polyatomic molecules. However, 
many polyatomic molecules tend to populate rotational 
states with fairly high angular momentum (J> 10); and for 
each J one expects, in general, to have a complex fine struc­
ture of rovibronic sublevels. Therefore, it is not surprising 
that the rotational dynamics of many polyatomic molecules 
are often treated only approximately or not at all. 

Since the discovery of infrared multiple-photon disso­
ciation of polyatomic molecules, there have been a signifi­
cant number of detailed infrared absorption studies of vibra­
tional fundamentals and overtones of SF I-II SI'F 12-15 

6' 4' 
CF 16,17 UF 18 d"1 "h .. h' 4' 6' an SImI ar eavy sp encal top mole-
cules. These studies required a very detailed knowledge of 
the rovibrational fine structure. Some surprising results of 
all these studies are experimental observations of spectral 
clustering effects. The high-J fine structure turns out to be 
much simpler than expected because most of the rovibra­
tional sublevels are "clustered" together into nearly degen­
erate multiplets. 19 There is a simple fine structure splitting 
between the clustered sublevels and a superfine structure 
s~lit~ing within the clusters themselves. This superfine split­
tIng IS often unresolved. The comparative simplicity of the 
cl~stered spectra leads to a relatively simple theory of dyna­
mIcal or "spontaneous" symmetry breaking which explains 
the form of superfine structure within the spectral clus­
ters.2~24 

Although dynamical symmetry breaking of rotational 
states was first noticed in spherical top molecules, it can 
happen even more readily (i.e., for lower angular momen­
tum) in molecules with less symmetry such as asymmetric 
top molecules. One objective of this article will be to show 
the generality of the clustering phenomenon by comparing 
these two different types of rotors. Indeed, we expect that the 

-) Presently on leave at the Theoretical Division, Los Alamos National Lab­
oratory, Los Alamos, NM 87545. 

spectra of heavy asymmetric top molecules, for which very 
high angular momentum states are populated, will be greatly 
simplified by dynamical symmetry breaking effects. Fur­
thermore, these effects should allow one to predict and un­
derstand rotational superfine structure of high-J levels in 
virtually all polyatomic molecules. 

To understand the consequences of dynamical symme­
try breaking in polyatomic molecules, we shall introduce in 
Sec. II the molecular rotational energy (RE) surface in ana­
logy to the general anharmonic vibrational potential energy 
(PE) surface. The RE surface allows one to picture the classi­
cal motion or trajectories of a rotating angular momentum 
vector J in the body frame. Such a picture enables one to 
analyze quantum rotational dynamics and spectra. 

We shall show in Sec. III that it is a simple matter, using 
the RE surface, to classically interpret the quantum fine and 
superfine structure. In Sec. IV, we show that this structure is 
easily calculated semiclassically. The fine structure splitting 
is calculated by quantizing the action for trajectories on the 
RE surface while the superfine cluster splitting is calculated 
from the tunneling integrals between equivalent classical 
trajectories. Since the tunneling involves purely kinetic 
terms in the Hamiltonian, it is a dynamical tunneling 
between trajectories about equivalent rotational axes in the 
body frame. For high-J, this tunneling is much easier to cal­
culate semiclassically than quantum mechanically. 

The semiclassical quantization on the RE surface 
makes use of the work of Colwell, Handy, and Miller,25 as 
well as earlier quantization schemes of King et al.26,27 and 
Born.28 Although the emphasis of Colwell et al. was for low­
J spectra of asymmetric top molecules, their methods are 
more accurate for high-J clusters in rigid asymmetric top 
spectra. We extend their usefulness here to deformable or 
semirigid molecules having arbitrary equilibrium structure 
or symmetry. This includes spectra of semirigid spherical 
top molecules. 

The symmetry labeling of clusters is discussed in Sec. V. 
The cluster labeling scheme depends on the symmetry 
breaking subgroup and its induced representations in the full 
group of the RE surface. We give examples of this math-

J. Chem. Phys. 80 (9),1 May 1984 0021-9606/84/094241-21 $02.1 0 © 1984 American Institute of Physics 4241 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  147.143.2.5

On: Tue, 23 Dec 2014 13:39:12



4242 W. G. Harter and C. W. Patterson: Rotational energy surfaces 

ematical structure as applied to asymmetric and spherical 
top molecules. 

There are some unexpected properties and effects asso­
ciated with dynamical symmetry breaking and superfine 
structure. As discussed in Sec. VI, one finds quantum rota­
tional levels belonging to different nuclear spin symmetry 
species (e.g., ortho and para species) within each superfine 
multiplet or cluster. Many clusters have superfine splittings 
between sublevels of less than a kilohertz in frequency. It is 
known that nuclear magnetic hyperfine splittings in many 
polyatomic molecules are usually several kilohertz or more. 
(Electric quadrupole splittings can be much more.) The pres­
ence of small superfine splitting allows for the strong reso­
nant mixing of different nuclear spin species. Thus, for many 
polyatomic molecules in high angular momentum states, the 
normally "forbidden" interspecies transitions can easily oc­
cur. 

Until recently, it was thought that such interspecies 
transitions would not occur. In fact, Herzberg has summar­
ized the prevailing opinion by stating the following selection 
rules. 29 

"As previously, transitions between rotational levels of 
different (overall) species are very strictly forbidden, 
since the coupling of the nuclear spin with the rest of the 
molecule is so extremely weak .... These selection rules 
hold even for collisions, and therefore any particular 
gas consists of as many almost nonconvertible modifica­
tions as there are rotational species of its molecules." 
However, the generally accepted rules do not account 

for the almost unavoidable mixing of nuclear spin species 
due to dynamical symmetry breaking for high J. With the 
basic understanding of superfine structure there came pre­
dictions24

•
3o of widespread and strong nuclear spin species 

mixing. The first spectroscopic evidence of such mixing was 
found by the Bordes and co-workers in SF 6 saturation ab­
sorption spectroscopy.31.32 

Very high resolution spectroscopic techniques such as 
those applied by Ch. Borde to SF 6 should soon be used in 
studies of a wide range of other polyatomic molecules. One 
objective of this article is to provide methods that may aid in 
the planning and interpretation of such detailed studies of 
molecular spectra. We provide methods for predicting and 
calculating fine and superfine rotational structure and its 
associated effects for polyatomic molecules in general. We 
shall describe a theory of dynamical symmetry breaking in 
which a rigid asymmetric top molecule can be treated on the 
same footing with a semirigid octahedral spherical top mole­
cule for which the spectral clustering is well known. There 
are then many examples of semirigid polyatomic molecules 
whose symmetry fall somewh~re in between those treated 
here. However, our examples of asymmetric and octahedral 
rotors should be sufficient to illustrate general methods and 
salient features of dynamical symmetry breaking. 

II. MOLECULAR DYNAMICS ON ROTATIONAL ENERGY 
(RE) SURFACES 

For understanding rotational fine structure of polyato­
mic molecules, it is helpful to introduce the concept of rota­
tional energy (RE) surfaces. The RE surfaces can be as useful 

for elucidating rotational sublevels and transitions as the 
molecular potential energy (PE) surfaces are for describing 
vibrational levels and their spectral structure. Comparisons 
between RE surfaces and more commonly known PE sur­
faces are made in Sec. II A. 

Examples of known RE surfaces are shown in Figs. I 
and 2. The two examples in Fig. 1 represent surfaces for a 
rigid symmetric and asymmetric top molecule, and the third 
example in Fig. 2 represents an octahedrally symmetric se­
mirigid spherical top molecule. These RE surfaces are ex­
plained qualitatively in Sec. II A and quantitatively in Sec. 
II B in terms of classical mechanics and Hamilton's equa­
tions. In Fig. 3 is shown a sketch of a more general RE sur­
face which is discussed briefly at the end of Sec. II B. 

A. Qualitative features of RE surfaces 

Since the early work of Born and Oppenheimer, the 
effective potential energy (PEl surface has been a key concept 
in molecular dynamics. The PE surface is supposed to repre­
sent the adiabatic energetics of a single energy-isolated elec­
tronic quantum state or level. The nuclear vibrational fre­
quencies are supposed to be low enough that the electronic 
wave undergoes adiabatic response to vibration. Generally, 
this means that the relevant vibrational spectra have much 
lower frequencies than those of the lowest electronic reson­
ances, i.e., the nuclei are much slower than the electrons. 

Generally, the PE surfaces for N nuclei occupy a 3N-6-
dimensional coordinate space. The six dimensions which are 
subtracted from the PE description represent translations 
and rotations. Our objective is to provide the three rotational 
degrees of freedom with effective adiabatic energy surfaces 
of their own which we call the RE surfaces. This will be 
possible whenever the rotational frequencies are much less 
than the lowest electronic or vibrational frequencies, i.e., 
when the rotational motion is much slower than vibrational 
or electronic motion. 

By analogy, one could expect an RE surface to repre­
sent the adiabatic energetics of a single energy-isolated vi­
bronic (electronic and vibrational) quantum level. For a free­
ly rotating molecule the total angular momentum J is a good 
quantum number as well. In the classical picture of rotation, 
there exists a laboratory fixed angular momentum vector J 
about which the molecular body may precess and nutate. 
The RE surface serves to track the motion of J in the molecu­
lar body frame using a form of spherical polar coordinates 
described below. Each point on the RE surface represents a 
direction J of the angular momentum J vector in the body 
frame. As the body rotates in the lab frame, the J vector 
moves from point to point on the RE surface in the body 
frame. At each point, the radial height of the RE surface is 
defined to be the adiabatic rotational energy (in arbitrary 
units), subject to the constraint that the magnitude IJI of 
angular momentum is constant. 

The adiabaticity conditions for validity of an RE sur­
face are analogous to the Born-Oppenheimer conditions for 
a PE surface. However, it is an electronic and vibrational 
(vibronic) wave function that must respond adiabatically to 
the rotational motion on a given RE surface. Each RE sur­
face belongs to a given set of electronic, vibrational, and total 
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(a) Prolate Symmetric Top (b) Asymmetric Top 
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angular momentum quantum labels E, v, and J, respectively. 
This means that all of the centrifugal or Coriolis distortions 
of the molecule must respond in phase, and keep up with the 
precessing rotational axis and associated J vector. Reso­
nance between rotational and vibronic motion must be negli­
gible. The energy difference between a given RE surface la­
beled by (E,V, J) and other (E',V', J) surfaces must be 
comparatively large in order to avoid resonances. 

In order to understand the meaning ofRE surfaces, it is 
helpful to develop their classical description in analogy to 
the classical description of PE surfaces. In particular, it is 
important to see how classical trajectories arise. 

For PE surfaces, the trajectories are bounded by a locus 
of classical turning points which are defined by the intersec-

FIG. 2. Rotational energy surface for semirigid octahedral spherical top 
molecule. Dotted lines indicated separatrices and dashed lines indicate tun­
neling paths for highest energy trajectories. 
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FIG. 1. Rotational energy surfaces for two 
types of molecules. (a) Rigid prolate symmet­
ric top RE surface. Contour lines correspond 
to angular momentum trajectories as de­
scribed in Sec. II. (b) Rigid asymmetric top RE 
surface. Dotted lines represent the separatrix 
curves which separate different types of tra­
jectories. Dashed lines correspond to merid­
ians of spherical energy surfaces which inter­
sect the highest energy trajectories. The y z 
meridian is a tunneling path described in Sec. 
IV. 

tion of the PE surface and the constant energy surface. A 
trajectory starting at such a point would initially move away 
from the constant-E line and "down" the PE surface. Al­
ways the momentum time derivative (p) points down the fall 
line ( - p equals the PE surface gradient), but the subsequent 
motion of the trajectory depends on the speed and shape of 
the surface. 

The analogous trajectory on the RE surface is compara­
tively simple since the rotational energy is entirely kinetic. 
The trajectory of the J unit vector must lie along the intersec­
tion of the RE surface and the constant energy sphere. (Re­
call that energy is plotted radially and so the constant energy 
surface is spherical.) In other words, classical J trajectories 
are simply the contour lines as shown on the sample RE 
surfaces in Figs. 1 and 2. The direction of the J vector is 
constrained to follow the contour line, i.e., it moves in a 
direction that is perpendicular to the fall line at each point on 
the RE surface. By considering Hamilton's equations, we 
will show that the speed of J is proportional to the slope of 
the RE surface in partial analogy to PE trajectories. 

Note that a RE surface is different from a constant ener­
gy (CE) surface. For some purposes, it is desirable to simply 
plot a CE surface in J space. For the rigid symmetric or 
asymmetric top, the CE surface is the angular momentum 
ellipsoid.33

•
34 This, in tum, can be related by tangent plane 

construction to the angular velocity ellipsoid which is the 
geometrical description used in most texts on rigid rota­
tional dynamics. 34 The intersection of a CE surface with 
constant J concentric spheres also produces possible J-vec­
tor trajectories in a way that is similar to the RE surface 
construction. The difference is that CE surfaces have the 
same energy but varying J = IJ I, while RE surfaces have the 
same J but different energy. For molecular fine structure 
spectroscopy the RE surfaces provide a more convenient for­
mat for displaying the motion of J vectors. 

Before considering the details of rotational coordinates 

J. Chern. Phys .• Vol. 80. No.9. 1 May 1984 
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(0) Body Frome View (J moving) (b) Lob Frome View (J fixed) 

.... 
J 

and momenta, it is perhaps useful to mention some further 
qualitative properties ofRE surfaces. RE surfaces often have 
a shape that is at least roughly similar to that of the molecule 
which they represent. For example, Fig. l(a) represents a 
rigid prolate symmetric top molecule whose long axis (and 
axis of minimum inertia) is the z axis, while the x and y axes 
have larger but equal inertia. As another example, Fig. lIb) 
represents a rigid asymmetric top molecule whose longest 
and shortest body axes are z and x, respectively. A planar 
ethylene-likeX2-Y Y-X2 moleculemighthaveaREsur­
face something like Fig. lIb) or Fig. 3(a) with thez axis along 
the Y Ybond and the x axis normal to the molecular plane. 
In Fig. lIb) the highest energies, and hence the lowest effec­
tive inertia, occur for rotations about the z axis. 

As a third example, Fig. 2 represents an octahedral XY6 

spherical top molecule such as SF6• IfSF6 were truly a rigid 
spherical top, then its RE surface would just be a sphere, and 
its spectral and dynamics might be much less interesting. 
Instead, the SF6 molecule is held together by radial S-F 
bonds that are much stronger than the angular F-F 
"bonds." Consequently, when the J vector is located near a 
threefold symmetric (1,1,1) axis, the molecule is more dis­
torted by centrifugal forces than when rotating (with the 
same IJI) around a fourfold symmetric (1,0,0) axis. This is 
indicated clearly by the presence of eight threefold symmet­
ric valleys and six fourfold symmetric hills on the RE surface 
in Fig. 2. 

It should be pointed out that molecular rotations in the 
opposite direction but with the same magnitUde IJI should 
have the same energy. This amounts to requiring that the 
Hamiltonian be invariant to time reversal or momentum in­
version (J- - J), and that a RE surface have inversion sym­
metry even if the actual molecule which it represents does 
not. Therefore, Fig. lIb) can also represent an asymmetric 
top molecule of the bentXYX form with the x axis normal to 

..... 
J 

FIG. 3. Rotational energy surface and associat­
ed rotational dynamics for a hypothetical semi­
rigid asymmetric molecule. (a) RE surface and 
trajectories are sketched in body frame. (b) Ro­
tational motion of an XY2 molecule associated 
with one comer trajectory is sketched in the lab­
oratory frame. 

the XYX plane and the y axis passing through Y. [In fact, the 
constants embodied in Fig. lIb) are fairly close to those of 
H20.] Similarly, Fig. 2 can also represent a tetrahedral XY4 

molecule. 

B. Quantitative analysis of RE surfaces for rigid and 
semirigid molecules 

The RE surfaces provide ways to visualize the dynami­
cal properties associated with model rotor Hamiltonians. 
Trajectories on the RE surfaces have to lie on curves corre­
sponding to the intersection of the RE surface with a con­
stant energy sphere as described previously. However, to un­
derstand the detailed time behavior on these trajectories 
requires solving Hamilton's equations as described in this 
section. Classical solutions of Hamilton's equations involv­
ing rigid and semirigid polyatomic molecules will be dis­
cussed. 

1. Rigid symmetric and asymmetriC top molecules 

The RE surfaces drawn in Figs. 1 (a) and 1 (b) are derived 
from a Hamiltonian of the form 

H=AJi +BJ~ +Cn, (2.1) 

where A, B, and C are molecular constants which are in­
versely proportional to the rotational inertia on the x, y, and 
z axes, respectively. Figure l(a) represents a prolate symmet­
ric top molecule in which A = B < C. Figure 1 (b) represents a 
most-asymmetric top molecule where B is half-way between 
A and C. 

As previously mentioned, the RE surface is a radial plot 
of the energy as a function of the direction of the vector 
( Jx , Jy , Jz) in the body frame subject to the constraint 

j2 = Ji + n + n = const. (2.2) 

This direction is in terms of body polar coordinates (y, /3) as 
defined in Appendix A. A convenient way to plot this is to 

J. Chern. Phys .• Vol. 80, No.9, 1 May 1984 
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first rewrite the Hamiltonian in terms of angular momentum 
spherical harmonics Y t(y, (3) or unit multipole functions 
C t(y, (3), where 

C t = (41r/2J + 1)1/2y t . (2.3) 
These provide one with explicit and well known functions of 
the Euler angles. For example, using the J = 2 or quadru­
pole functions we have 

C~ = (3 cos2 {3 - 1)12 = ( - Ji - Ij + 2J;)I(2J 2
) , 

(C~ + C 2
_ 2) = (sin2 {3 cos 2y)(3/2)112 

= (Ji - Ij)(3/2)1/2/J 2 
• 

One may then rewrite the general rigid rotor Hamiltonian as 
follows: 

H =J2[(A + B + C)l3] +J2[(2C -A - B)l3]C6 

+J2[(A -B)I~](C~ + C 2
_ 2 )· (2.4) 

The first term in Eq. (2.4) is the only nonzero term for a rigid 
spherical top molecule in which A = B = C. Only the first 
and second terms survive for a rigid symmetric top molecule 
in which A = B =1= C and the resulting RE surface is shown in 
Fig. l(a). Finally, the third term adds the asymmetry to give 
the rigid most-asymmetric top [B = (A + C )/2] RE surface 
shown in Fig. lib). 

In Fig. 1 we have plotted the constant energy contour 
lines for the symmetric and most-asymmetric top molecules 
using Eq. (2.4). The J vector must follow paths on these con­
tour lines. Indeed, for the symmetric top molecule, the J 
vector precesses around the circles on the RE surface shown 
in Fig. l(a). It is instructive to obtain the same results using 
Hamilton's equations. Using the Hamiltonian Eq. (2.1) with 
A = B =1= C, we may rewrite it in terms of Euler angles and the 
conjugate Euler momenta as described in Appendix A [see 
Eq. (All)]. We have 

H = B [(Ja - Jr cos{3f/(sin2 (3) + J~] + CJ; . (2.5) 

Hamilton's equations then give 

a= aH =2B(Ja-Jrcos{3)1(sin2{3), (2.6a) 
aJa 

. aH 
{3 = aJ = 2BJp , (2.6b) 

p 

aH 
y=-

aJr 

= - 2B (Ja - Jr cos {3 )cos {3 /(sin2 (3) 

+ 2CJr · 

(2.6c) 

We have shown in Appendix A that the RE contour 
lines define the loci of the lab axis in the body frame if the J 
vector is defined to be along the lab z axis. This is equivalent 
to demanding the following [using Eqs. (AlOHAll)]: 

Ja=Jz=J, Jp=O, Jr=Jz=Jcos{3. (2.7) 

This reduces the equations of motion above to the following: 

a = 2BJ, (2.8a) 

il = 0, (2.8b) 

r = 2( C - B ) J cos {3 . (2.8c) 

This verifies that the J vector does indeed trace a circu­
lar (i.e.,il = 0) cone in the body frame. For a prolate (C>B) 
top such as is represented by Fig. 1 (a), the precession is clock­
wise since Eq. (2.8c) implies r> 0, but the body azimuth an­
gle sense is reversed ( - y) as described in Appendix A. It is 
important to notice that the precessional frequency vanishes 
for J vectors on the equator ({3 = 7T/2) of a symmetric top. 
The equator is a line of fixed points indicated by (xxx) in Fig. 
l(a). The poles are fixed points, as well. 

An equatorial line of fixed points is the only part ofthe 
RE surface which remains for a diatomic rotor or a linear 
rotor in a 1: vibronic state. Any part of a linear rotor RE 
surface involving nonzero Jz component must approach in­
finity as the z moment of inertia vanishes or C_ 00 [see Eq. 
(2.1 )]. The elementary RE surface is meant to describe inter­
nal angular momentum trajectories and dynamics of nonlin­
ear polyatomic molecules. The classical J vector for a diato­
mic molecule must always be fixed in the body frame as well 
as in the lab frame. 

In general, the speed and direction with which a J vec­
tor moves along a given trajectory is determined by the slope 
or gradient of the energy surface at each point. This is ex­
pressed by Hamilton's equation for the angular velocity vec­
tor ro, 

aH 
(J). =- for i=x,y,z 

I aJ; 
(2.9a) 

or 

(2.9b) 

For a constant energy (CE) surface, ro is normal to the tan­
gent plane at each point. For RE surfaces this leads to the 
following left-handed nemonic: trajectories circulate clock­
wise around high points and counterclockwise around low 
points. 

The asymmetric top RE surface shown in Fig. 1 (b) has a 
high around the z axis and a low around the x axis. The sense 
of precession is clockwise around the x axis and counter­
clockwise around the z axis as shown in Fig. 1 (b). The x and Z 
neighborhoods are delineated by what are called separatrix 
trajectories. These are dotted trajectories which go over the 
saddle points on they axis in Fig. l(b). The saddle points are 
hyperbolic or unstable fixed points with zero slope but 
whose curvature is positive or negative depending on the 
direction in which it is measured. Trajectories in the neigh­
borhood of separatrices are associated with erratic (but not 
chaotic) motion and nonuniform time behavior.33

•
34 An 

asymmetric top molecule set in motion near a saddle point 
will spin for awhile and then precipitously flop almost COIn­

pletely over spinning around the opposite axis for awhile 
until repeating this process. 34 The period for the flopping 
process approaches infinity as the corresponding trajectory 
approaches the separatrix. A J vector exactly on a separatrix 
will never pass the next saddle point. It is interesting to note 
that the separatrices for a rigid asymmetric top are two cir­
cles which intersect at the saddle point on the y axis. The 
angle between each circle and the z axis is () = arc­
tan{ (B - C)/(A - B)] 112. 

J. Chern. Phys., Vol. 80, No.9. 1 May 1984 
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2. Semirigid spherical top molecules 

The RE surface drawn in Fig. 2 is derived from a Ha­
miltonian of the form 

H = BJ2 + 10t044( J~ + J; + J~ - 3J4/5) , (2.10) 

where, again, the energy is plotted radially for constant 
J = jJj. The anisotropic or tensorial part of the Hamiltonian 
is the lowest degree nonspherical operator allowed by octa­
hedral symmetry. It may be written in terms of multipole 
functions Eq. (2.3) as follows: 

J~ +J~ +J~ x y z 

= (2r/5)[Cci + (5/14)I/Z(C! + C~4)] 
+ (3/5).14 = r(7 cos4/3 - 6 cosz /3 

+ sin4/3 cos 4y + 3)14 . (2.11) 

This form facilitates the plotting of the RE surface shown in 
Fig.2. 

As explained in the preceeding section, the J vectors 
precess in a clockwise sense around high points. For exam­
ple, J could go clockwise around any of the six fourfold sym­
metric hills on the X, .v, or z axes. The trajectories have an 
opposite or counterclockwise sense around the eight three­
fold symmetric valleys on the ( ± 1, ± 1, ± 1) axes. The se­
paratrix curves between the hills and valleys are indicated by 
dots ( ... ) in Fig. 2. They separate the threefold symmetric 
trajectories from the fourfold symmetric trajectories, and 
they intersect at saddle points on the 12 twofold symmetry 
axes (0, ± 1, ± 1), ( ± 1,0, ± 1), and ( ± 1, ± 1,0). It can be 
shown that the separatrices are four intersecting great circles 
on the energy sphere. The planes ofthese circles are perpen­
dicular to the threefold symmetry axes. 

As in the case of the asymmetric top, a classical J vector 
can never pass through a saddle point even though the separ­
atrix trajectory appears to do so. Also, J vectors on trajector­
ies near a separatrix may be delayed for long times while 
passing through the near zero slope neighborhood of a sad­
dle point. The amount of delay is very sensitive to the initial 
conditions near a separatrix. 

Unlike the rigid asymmetric top, the semirigid XY6 

spherical top does not have a single trajectory which circum­
navigates the RE surface. In other words, the classical semir­
igid XY6 molecule cannot ever roll completely over in the lab 
frame. All trajectories are confined to more or less smooth 
precession and nutation about a single threefold or fourfold 
symmetry axis. Interaxial or rollover motion in an XY6 mol­
ecule is due to quantum tunneling which will be discussed in 
Sec. IV. 

3. Semirigid asymmetric top molecules 

It is interesting to speculate on the possibilities of RE 
surface topography for deformable rotors. The rotational 
dynamics of molecules in higher J states require higher order 
tensor terms in their rotational Hamiltonians. The same may 
be true for light or floppy molecules, although one must be 
sure that the deformation follows the rotation adiabatically 
in order that an accurate theory can be based on isolated RE 
surfaces for each J value. 

In Fig. 3(a) is sketched an RE surface for an asymmetric 

top molecule where higher order tensor terms were included. 
The result is a new set of contour lines or trajectory orbits 
located in between the z- and .v-symmetry axes. In other 
words, the RE surface in Fig. 3 has "corners" which were 
absent in the rigid rotor RE surface seen in Fig. l(b). 

Figure 3(b) contains a sketch in the lab frame of the 
rotational motion of an XYz molecule corresponding to one 
of the corner trajectories on the hypothetical RE surface in 
the body frame. A molecule with such an RE surface trajec­
tory would precess around axes that were located at various 
nonsymmetry points in the body frame. 

It is beyond the scope ofthis work to discuss which RE 
surfaces are possible in general. The range of possibilities is 
great and will require a comprehensive study of the algebra 
and geometry of RE surfaces for higher order tensors appro­
priate for an asymmetric top molecule. Similar studies are 
needed for other symmetry types. 

III. DYNAMICAL SYMMETRY BREAKING AND 
CLASSICAL ROTATIONAL TRAJECTORIES OF 
POL YATOMIC MOLECULES 

In Sec. III below we compare rotational eigenvalue 
structures with classical trajectories for corresponding ener­
gies on RE surfaces. Comparison is also made between 
eigenvalues and trajectories for the two very disimilar cases 
represented by the completely asymmetric rigid rotor RE 
surface in Fig. l(b) and the high symmetry semirigid XY6 

rotor RE surface in Fig. 2. Despite their obvious differences, 
it can be demonstrated that both quantum rotors undergo 
similar dynamical symmetry breaking effects. The qualita­
tive classical nature of these effects can be described by sim­
ple methods given here. The quantitative semiclassical de­
tails are also quite simple to derive as explained in the 
following Sec. IV. 

A. Spectral clusters 

By computer one may diagonalize the rotational Ham­
iltonians for asymmetric and spherical top molecules given 
by Eqs. (2.1) and (2.10) using the rotor j J,k ) basis where k is 
the projection of the angular momentum about any body 
axis. An example of an eigenvalue spectrum is shown for a 
most-asymmetric rigid rotor with J = 10 in Fig. 4 and for a 
semirigid spherical rotor with J = 30 in Fig. 5. In both cases 
the total spectral degeneracy is simply 2J + 1. In the case of 
an asymmetric top with Dz symmetry we may label the rota­
tional sublevels by species A I' B I> A z, and Bz which are singly 
degenerate, while in the case of a spherical top with 0 sym­
metry we may label the rotational sublevels by speciesA I,A 2, 

E, T I , and Tz. These A, E, and Tsublevels are singly. doubly. 
and triply degenerate, respectively. Remarkably, most of the 
rotational fine structure in the spectra of Figs. 4 and 5 occur 
in clustered pairs or triplets of sublevels. The clusters of sub­
levels contain the rotational supe1jine structure. Most super­
fine structures in Figs. 4 and 5 require a large scale magnifi­
cation in order to resolve separate rotational sublevels within 
a cluster. This magnification is provided by the enlargement 
circles drawn next to the unresolved clusters. 
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W. G. Harter and C. W. Patterson: Rotational energy surfaces 4247 

The total degeneracy of each cluster corresponds to the 
number of distinct classical trajectories with the same energy 
on equivalent parts of the RE surface. To find the classical 
trajectories for a given cluster, one simply finds the loci of 
points with that cluster energy on the RE surface. This cor­
respondence is shown in Figs. 4 and 5. For example, the right 
most (B~ 1) cluster in Fig. 4 corresponds to the two smallest 
oval trajectories around the asymmetric body z and - z 
axes, while the rightmost (A2T2E) cluster in Fig. 5 corre­
sponds to the six smallest circular trajectories around each of 
the six body ± x, ± y, and ± z axes. The (B~ 1) cluster has 
twofold degeneracy while the (A2T2E) cluster has sixfold de­
generacy. Note in Figs. 4 and 5 that the total number of 
classical trajectories corresponding to discrete quantum en­
ergies is 2J + 1 as required. 

It is possible to pick an arbitrary cluster in Figs. 4 and 5 
and immediately form a classical picture of the molecule 
rotating at that energy. For example, the RE surface orienta-
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tion shown on the upper right-hand side of Fig. 5 actually 
corresponds to the J vector following the third highest tra­
jectory around the body z axis corresponding to the (ET1A 1) 
cluster indicated. Therefore, one could picture the body pre­
cessing and spinning counterclockwise around this fixed J 
vector in the laboratory frame in such a way that the J vector 
appear to precess clockwise around that third trajectory in 
the body frame. 

B. Classical and quantum clusters: Fine and superfine 
structures 

The fine and superfine spectral structure provides an 
indication of the time scales for J motion and deloca1ization. 
The frequency of classical J precession is roughly propor­
tional to the fine structure spacing between a given cluster 
and its neighbors. This follows from the relations between 
the classical precessional period and the action integrals de­
rived in the following section. As will be shown in Sec. IV, 
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FIG. 4. Rotational spectrum of a most­
asymmetric top molecule for J = 10 with 
the corresponding semiclassical trajectories. 
Rotational constants are for a hypothetical 
heavy asymmetric top with A = 0.2, 
B = 0.4, and C= 0.6 (in em-I). 
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4248 w. G. Harter and C. W. Patterson: Rotational energy surfaces 

the energies of the level clusters are derived semiclassically 
by requiring that the action integrals are multiples of inte­
gers, i.e., by the Bohr-Sommerfeld quantization condition 

A=nh. (3.1) 

Therefore, the classical frequency Vc is related to the inter­
cluster spacing .1E: 

v = aE ~.1E .1n ~.1E /h . (3.2) 
c aA .1n .1A 

On the other hand, the superfine structure or splitting 
within the cluster is related to the rate at which the J vector 
delocalizes or tunnels to other equivalent trajectories. As 
will be shown in Sec. IV, the cluster splittings and tunneling 
rates are inversely proportional to an exponential of an ac­
tion path integral across saddle points on the RE surface. 
Some typical paths are indicated by dashed (---) circles which 
lie on the energy sphere and connect equivalent trajectories 
in Figs. 4 and 5. Generally, intracluster splitting decreases 
exponentially as interconnecting paths become farther from 
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VISUALIZING THE J = 30 

LEVELS OF A 

SPHERICAL TOP 

~, 
I , " \ 

~~ 
I.OXI6~rii' 8.1 XIO~rii' 
C

3 
Clusters 

9.2XIO~rii' 

(ill) 
, I , , 

''( 

. 
N 
CD 

the saddle points. Hence, the extremal clusters in Figs. 4 and 
5 have extremely tiny superfine splittings. 

It is easy for superfine splittings to be extremely small at 
high J. Equivalently, the times can become very long for 
tunneling or tumbling between equivalent trajectories on dif­
ferent RE surface hills or valleys. The tunneling time can be 
so much longer than the times for any other processes in the 
molecule that it may not be worth considering the tunneling 
process at all. One can say that the molecule has a reduced 
symmetry or that it undergoes spontaneous symmetry 
breaking. One could then regard its wave function as having 
"collapsed" (in the sense of quantum measurement pro­
cesses) into a nearly stationary superposition of rotational 
eigenstates or a mixture of species in which the angular mo­
mentum J is localized more like a classical quantity. We 
shall show in Sec. IV that by calculating the action integrals 
indicated above, one can semiclassically determine the fine 
and superfine splittings quite accurately, thus avoiding the 
quantum mechanical diagonalizations needed for the spec­
tra in Figs. 4 and 5. 
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FIG. 5. Rotational spectrum of an octahe­
dral spherical top molecule for J = 30 with 
the corresponding semiclassical trajectories. 
Rotational constants are for SF 6 with 
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Spectrum is relative to BJ ( J + 11. 
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Near the separatrices or saddle point regions of Figs. 4 
and 5, there is a relatively small spectral region in which the 
clusters are well broken up. The trajectories near the separa­
trices are the least localized classical paths with the lowest 
classical precessional frequency. On the other hand, the 
quantum tunneling rates are the highest near saddle points 
since wave functions overlap strongly there. So upon ap­
proaching the separatrix energy of the quantum spectrum, 
one notices a more or less gradual reduction in intercluster 
or fine structure splitting. But, this is accompanied by an 
exponential increase in the intracluster or superfine struc­
ture splitting due to quantum tunneling or tumbling. The 
classical motion, quantum eigenvalues, and eigenfunctions 
are the most complicated, uneven, and difficult to picture in 
the separatrix region. 

The general tendency toward clustering is actually 
much greater in asymmetric rotor spectra than in the spheri­
cal rotors. One sees in Fig. 4 that an angular momentum of 
only J = 10 is enough to have some asymmetric top cluster 
whose superfine splittings are less than 10-6 times the fine 
structure splitting. By contrast, for spherical tops one needs 
angular quanta of J = 30 or higher in order to have compar­
ably small superfine to fine structure ratios (see Fig. 5). The 
greater tendency for clustering in asymmetric tops is a con­
sequence of the larger angle between equivalent rotational 
axes. For asymmetric tops this angle is 180· while for spheri­
cal tops the angle is 90· and 55· between fourfold axes and 
between threefold axes respectively. The greater angles cor­
respond to greater barrier integrals and exponentially 
smaller cluster splittings. As J increases, the superfine split­
tings decrease roughly exponentially while the fine structure 
spacing increases according to a power of J. 

The tendency for asymmetric top spectra to cluster can 
be clearly shown by varying the asymmetry ratios A :B:C in 
the Hamiltonian Eq. (2.1). The asymmetric top levels for 
J = 10 and J = 20 are plotted in Fig. 6 as a function of B for 
fixed A = 0.2 and C = 0.6 (in cm -I). The prolate and oblate 
symmetric top limits correspond to the left and right hand 
sides, respectively, of the level correlation diagrams. The se­
paratrix regions in which superfine splittings are comparable 
to fine structure spacing can be clearly seen along the dia-

gonals of these figures. In the separatrix regions, levels ab­
ruptly split from their cluster partner and move up or down 
in order to switch clusters; and the corresponding eigenfunc­
tions are unusually sensitive to changes in parameters. How­
ever, we note again that the classical motion is completely 
quasiperiodic even in the separatrix region. 

The separatrix region for the J = 10 correlation dia­
gram in Fig. 6(a) constitutes a small fraction of the spectrum 
and it is an even smaller fraction of the J = 20 spectra in Fig. 
6(b). In other words, a majority of rotational levels in the 
thermally accessible range of J values (J = 0 -20 for hy­
drides and J = 0 -100 for "heavy" complexes) are clustered 
and nearly evenly spaced. Even low-J levels exhibit some 
clustering, although one might not notice it as easily. In fact, 
one of the few texts which provides accurate correlation 
plots (using tables from King et al.f6.27 is Bohr and Mottle­
son's monograph on nuclear structure.35 

C_ Classical and quantum clusters: Good constants of 
motion 

There is an important difference between the asymme­
tric rotor model represented in Fig. 4 and the spherical rotor 
model represented in Fig. 5. This difference concerns the 
shape of the J-vector trajectories on the RE surfaces. The 
trajectories for the octahedral rotor are considerably more 
planar than those of the asymmetric rotor. Classically, this 
means that there is considerably more nutation in the asym­
metric rotor trajectories. For the spherical rotor, the body 
projection of angular momentum k is more likely to be a 
good constant of the motion. Hence, it is quantitatively use­
ful to label sixfold degenerate clusters in Fig. 5 by k4 = 30, 
29, ... and similarly, the eightfold degenerate clusters by 
k3 = 30, 29, 28 where k4 and k3 are the angular momentum 
projection about the fourfold and threefold symmetry axes, 
respectively. 

While it is conventional to label asymmetric top levels 
by k A or kc quantum numbers, or the angular momentum 
projection about theA or C axes respectively, it is clear from 
Figs. 4 and 5 that these quantum numbers are not as mean­
ingful as k4 or k3. Since their trajectories are not in a plane, 
their projections onto their central axes cover a wider range 
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FIG. 6. Level correlations of an asymmetric 
top molecule for (a) J = 10 and (b) J = 20. 
The constants A =0.2 cm- I and C=0.6 
cm - I are held fixed while B varies 
(A<B<C). All levels are clustered except 
along the diagonals ofthe plots correspond­
ing to the separatrix region on the RE sur­
face. 
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4250 w. G. Harter and C. W. Patterson: Rotational energy surfaces 

of k values and correspond to a large amount of nutational 
motion. This is consistent with the fact that most asymme­
tric top eigenvectors contain significant combinations of a 
correspondingly wide range of k bases. In contrast, the 
spherical top eigenvectors are comparatively sharp in k, and 
a cluster perturbation theory36.37 yields accurate approxima­
tions for rotational23 and rovibrationap6-38 eigenvalues. 
Spherical top molecules behave much like symmetric top 
molecules with k a nearly good quantum number about the 
fourfold and threefold symmetry axes. Thus, the trajectories 
on the fourfold symmetry axes in Fig. 5 are like the trajector­
ies of the prolate symmetric top in Fig. l(a) while the trajec­
tories on the threefold symmetry axes in Fig. 5 are like the 
trajectories of an oblate symmetric top. 

It is sometimes convenient to represent states of sharp J 
and k by angular momentum cones of altitude k and slant 

length N ( J + 1). These cones are the loci of the classical 
angular momentum vector subject to the constraints of the 
quantum angular momentum eigenvalues of the magnitude 
(J 2

) =J(J + l)andzcomponent( Jz) = k.Thebaseofthe 
cone represents the uncertainty of the x and y components of 
J, and the uncertainty is minimum for the substate with the 
highest z component (k = J). The other states belong to 
wider cones, and the cone's apex angle Ok for arbitrary k is 
given by 

Ok =cos-I[k/(J(J+ 1))1/2]. (3.3) 

The angular momentum cones provide an easy way to 
approximate high-J and high-k fine structure in SF 6 spectra. 
An example of J = 88 spectra4 is seen in Fig. 7 to fit rather 
closely to the intersections of the J = 88 cones39 and the XY6 
RE surface.40 Also, one can estimate the k values for which 
the three- or fourfold clusters terminate by finding the angles 
between the three- or fourfold axes and the nearest separa­
trices. Since the separatrix planes are normal to the threefold 

axes, a separatrix subtends an angle of cos-l..ff73 = 35.3° 
with the nearest fourfold axis and an angle of 

cos- I ~1/3 - 35.3° = 19.5" with the nearest threefold axis 
as shown in Fig. 7. These angles determine the cutoff values 
k4(last) = 72.3 and k3(last) = 83.4, corresponding to the lar­
gest cones that can fit in the regions around the fourfold and 
threefold axes defined by the separatrix. 

Actually, the cone diagram slightly underestimates the 
number of clusters for the octahedral spherical rotor. Close 
examination of the P (88) spectra reveals one or two "extra" 
clusters that manage to squeeze in on either side of the separ­
atrix region. This is understandable since they correspond to 
nonplanar trajectories near the separatrix for which k is not 
sharp, and cones are poor approximations of angular mo­
mentum loci. In contrast, an asymmetric rotor has many 
more clusters than predicted by a cone diagram since most of 
its eigenstates correspond to irregular nonplanar trajectories 
for which k is not sharp. 

Since asymmetric rotor clusters are all doublets, it is 
possible they might be confused with the well understood 
orbital doublets of sharp ± k quanta. This point of confu­
sion does not arise in the octahedral clusters since they are 
sextets and octets which cannot be confused with any nor­
mal orbital symmetry degeneracy. Nevertheless, it is useful 
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FIG. 7. The fine structure spectrum of P (88) for v. of SF 6 is correlated with 
the intersections of the RE surface and the J = 88 angular momentum 
cones. A cross section of the RE surface from Fig. 2 is shown which contains 
the two-, three-, and fourfold symmetry axes. Intersections of the sides of 
angular momentum cones approximates the energy levels and fine structure 
clusters in the spectrum (after Kim et uf. from Ref. 4.) The angle between the 
separatrix plane and the three- or fourfold axes determines the lowest mo­
mentum k3 or k. for the three- or fourfold clusters near the separatrix ener­
gy. 

to contrast the concept of orbital degeneracy due to symme­
try with the notion of cluster degeneracy associated with 
spontaneous or dynamical symmetry breaking. 

IV. SEMICLASSICAL QUANTIZATION OF ROTATIONAL 
CLUSTERS 

The RE surface provides the information for determin­
ing the appropriate axes for the semiclassical quantization. 
Since the total angular momentum J and its projection m 
about the lab z axis are good quantum numbers, it is only 
necessary to specify one other good quantum number. In this 
respect, the semiclassical quantization of rotational clusters 
is a one-dimensional problem for which quantization tech­
niques are highly developed. 

As we have seen, in the strict sense, only for the case of a 
symmetric top is k the remaining good quantum number. 
However, the body symmetry axes ofthe classical trajector­
ies on the asymmetric and octahedral RE surfaces still may 
be used as axes of semiclassical quantization for the cluster 
states. For the rigid asymmetric top, the axes of quantization 
are the body x and z axes as shown in Fig. 4, while for the 
semirigid spherical top the axes of quantization are the 
threefold and fourfold symmetry axes as shown in Fig. 5. 
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To determine the cluster energies or fine structure semi­
classically, we use the quantization condition 

A,. = f1T Jy(E,.)dr = 21T'n, n =J, J - 1, ... , (4.1) 

where J is the angular momentum about the body axis of 
quanti~tion. The energy E,. is varied until the quantization 
condition is met for a given n. 

The cluster splitting or superfine structure can be deter­
mined from the tunneling between equivalent classical tra­
jectories. The tunneling integral is again determined by the 
topology of the RE surface; the tunneling path is taken on 
the points between the equivalent trajectories nearest the se­
paratrix with constant energy. This corresponds to the path 
of steepest ascent and descent over the saddle point region of 
the separatrix. Such a path is shown in Fig. 4 by the dashed 
line through the Jy axis where the separatrix divides the 
equivalent trajectories about ± z for the highest energy clus­
ter of the asymmetric top. For the highest energy cluster of 
the spherical top, some tunneling paths are shown by the 
dashed lines in Fig. 5 over the separatrices dividing equiva­
lent trajectories about the ± x, ±)i, ± z axes. 

The superfine tunneling S,., between two equivalent 
trajectories of energy E,., is given by 

S = e-
181 

, (4.2) 
,. T 

where the period T of the two equivalent classical trajector­
ies is 

T= aA,. (4 .. 3) 
aE ' ,. 

and the tunneling integral () is given by 

() = i r Jy(E,.jdr. (4.4) 
Jpath 

The action J is conjugate to the angle r which now defines 
y • • 

the path over the saddle point between the two traJectones. 
For example, for the path in Fig. 4 between maximal energy 
trajectories, r is simply the angle about the x axis. whereas 
for the path in Fig. 5 on the left. r is the angle about the z axis. 

We shall now give examples of finding the semiclassical 
cluster energies E,. and tunneling S,. for asymmetric top and 
spherical top molecules. This corresponds to calculating the 
fine and superfine rotational structure without the need for 
diagonalizing the Hamiltonian. The accuracy of the semi­
classical energies improves with increasing J. 

Our treatment ofthe asymmetric top using the RE sur­
face is entirely equivalent to that of Colwell. Handy. and 
Miller,25 although their emphasis was on low-J levels and 
ours is on high-J levels for which both treatments are better 
adapted. To our knowledge, ours is the only complete semi­
classical treatment of semirigid spherical top molecules, al­
though approximate semiclassical expressions for the super­
fine splitting have been given by Watson.41 Our treatment 
using the RE surface makes calculating the semiclassical fine 
and superfine structure for other semirigid molecules 
straightforward. 

A. Semiclassical treatment of asymmetric top rotors 

In order to use Eq. (4.1) to determine the semiclassical 
cluster energies, we must first determine the angular mo-

mentum J about the z and x axes. First we use the Euler y 

angle coordinates to rewrite the body components of angular 
momentum 

Jx = - J sin {3 cos r , 
Jy = J sin {3 sin r , 
Jz = J cos{3==Jy • 

(4.5a) 

(4.5b) 

(4.5c) 

These relations simply redefine the body polar coordinates 
( - r, - (3) as explained in App~ndix A [see Eq. (All)]. Sub­
stituting these relations into the asymmetric top Hamilton­
ian Eq. (2.1 j, one obtains 

E = A (Jz - J;)cos2 r + B (J2 - J;)sin2 r + CJ;. (4.6) 

Solving for the r-conjugate momentum about the z axis 
yields 

Jy(Z axis) = I [ J2(A cosz r + B sin2 r) - E )I 

[A cosz r + B sin2 r - C] J 1/2. (4.7a) 

By exchanging A and C in the above equation, we also deter­
mine J y about the x axis. 

Jy(x axis) + I [ J2(C cos2 r + B sin2 r) - E]I 

[C cos2 r + B sin2 r -A] J 1/2. (4.7b) 

Substituting J y (Z axis) into Eq. (4.1). we can generate the 
semiclassical cluster energies about the z axis. These are 
compared in Table I to the quantum mechanical results of 
matrix diagonalization for J = 10 and J = 20 using molecu­
lar constants A = 0.2, B = 0.4, and C = 0.6 (in cm -I) for a 
heavy most-asymmetric top molecule. For the special case of 
the most-asymmetric top, the energies are symmetric about 
BJ( J + 1) so only the z-axis quantization is necessary. To 
obtain the most accurate results we let JZ-J( J + 1) for the 
semiclassical quantizations. Using Eq. (4.3), we may also cal­
culate trajectory periods simultaneously with their quan­
tized energies. These periods are then later used when calcu­
lating the tunneling S,.. 

Coincidentally, because of the DZh symmetry of the RE 
surface, we may use Eqs. (4.7a) and (4.7b) to calculate the 
tunneling between the x-axis trajectories and between the z­
axis trajectories, respectively. That is, to calculate tunneling 
between 'i-axis trajectories in Fig. 4, we use a r path about the 
x axis and vice versa. The conjugate momentum J y is imagi­
nary on its path over the separatrix saddle points for con­
stant energy E,. of the cluster. The limits of integration are 
determined by the condition J y = O. The tunneling S,. 
between equivalent trajectories is compared to the quantum 
mechanical results in Table I. 

We have chosen to treat the most-asymmetric top, 
where the asymmetry parameterK = (2B - A - C)/(A - C) 
is zero, in order to test our semiclassical methods. A mole­
cule with K = 0 is farthest from the symmetric top limit 
K = ± 1 where k = Jz is a good quantum number. However, 
Eqs. (4.7a) and (4.7b) are equally applicable regardless of K 

since the positions of the saddle points remain unchanged. 
That is, the topology of the RE surface is independent of the 
asymmetry parameter and the axes of quantization remain 
the same. Only the positions of the contour lines change with 
K. 
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TABLE I. Semiclassical quantization for asymmetric top (in cm - I). 

En (QM)· En (SC)b Sn(QM)· Sn(SC)b 

n(Z) J= 10 

10 63.181 63.176 2.16X 10-7 1.96X 10- 7 

9 57.851 57.842 1.93 X 10-5 1.87X 10-5 

8 53.147 53.133 6.98X 10-4 6.91 X 10-4 

7 49.113 49.084 1.27X 10-2 1.29 X 10- 2 

6 45.833 45.781 1.11 X 10- 1 1.20X 10- 1 

n(Z) J=20 

20 246.352 246.347 1.25xlO- 14 

19 235.360 235.354 2.84X 10- 12 2.66X 10- 12 

18 224.977 224.970 2.55X 10- 10 2.49 X 10- 10 

17 215.214 215.205 1.42 X 10-" 1.40 X 10-" 
16 206.083 206.071 5.33X 10- 7 5.29X 10- 7 

15 197.603 197.586 1.41 X 10-5 1.41 X 10-5 

14 189.801 189.777 2.71 X 10-4 2.72X 10-4 

13 182.721 182.684 3.76X 10-3 3.80X 10-3 

12 176.448 176.382 3.64X 10- 2 3.75X 10- 2 

11 171.132 171.029 2.18XIO- 1 2.38 X 10- 1 

aQM-Quantum mechanical diagonalization. 
b SC-Semiclassical treatment. 

The overall splitting of cluster levels is detennined by 
the number of equivalent trajectories and the possible tun­
neling for each trajectory. Thus if states 11) and 12) corre­
spond to two equivalent trajectories in Fig. 4, we have that 
(lIBI!) = (2IBI2) =E and (lIB 12) = (2IBll) =2S. 
The 2S arises from the fact that there are two equivalent 
tunneling paths between 11) and 12) through the saddle 
points on the y and - y axes. Thus for these two states, the 
effective Hamiltonian becomes 

Diagonalizing, we find eigenvalues 

A =E±2S, 

so the overall splitting of the cluster levels is 4S. 

(4.8) 

(4.9) 

TheJ = 20 extremal cluster in Table I with n = 20 has a 
tunneling 2S of only 2.5 X 10- 14 cm- I

. This corresponds to 
the molecule spending 22 min rotating about its z axis before 
tunneling to the - z axes. Because of symmetry (K = 0), the 
extremal cluster with nIx axis) = 20 will have the same tun­
neling rate. We were unable to calculate the quantum me-

1 

chanical tunneling for this cluster because of the limited pre­
cision (16 significant figures) of our computer calculation. 
For physical processes which occur in time scales less than 
22 min, as do hyperfine interactions, the molecule in this 
cluster state can be treated as rotating about the fixed z sym­
metry axes with reduces symmetry. As we shall see in Sec. 
VI, this can lead to the mixing of symmetry species within a 
cluster due to the hyperfine interaction. 

B. Semiclassical treatment of spherical top rotors 

We may use Eq. (4.1) to detennine the semiclassical 
cluster energies for the spherical top rotor by finding the 
conjugate momentum J y about the fourfold and threefold 
symmetry axes. The spherical top Hamiltonian in Eq. (2.10) 
is written so that Jz is along a fourfold symmetry axis. We 
may transfonn to new coordinates: 

Ji = (Jx -Jy )N2, 

J; = (Jx + Jy - 2Jz )lJ6 , 
J ~ = (Jx + Jy + J:z )/v1 , 

(4.10) 

such that the new J ~ lies along the threefold symmetry axis. 
In tenns of these new body angular momenta, the spherical 
top Hamiltonian becomes (dropping the prime) 

B = BJ 2 + lOt044 [( J~ + J;)/2 + J;/3 + nn 
+ 2J~J~ + 2Jp~ + 4(3J~JyJ:z 
-Jpz)l3Y2 - 3J4/5] . (4.11) 

Using Eqs. (4.5) to rewrite the body components of an­
gular momentum in tenns of Euler angles, the spherical top 
energy is 

E = BJ 2 + 10t044 [ J~(COS4 r + sin4 r + 1) 

- 2J2 J~(COS4 r + sin4 r) 
+ J4(COS

4 r + sin4 r - 3/5)] 

(Jy is about the fourfold symmetry axis) 

and 

E =BJ2 + lOt044 [ -7J~/6+J2J~ 

+ (2Y2/3)Jy( J2 - J~f/2 sin 3r - J4/1O] 

(4. 12a) 

(Jy is about the threefold symmetry axis) . (4.12b) 

Solving Eq. (4. 12a) for Jy(fourfold), we have 

J ± = {J 2(COS4 r + sin4 r) + [E(cos4 r + sin4 
r + 1) - J4(COS4 

r + sin4 
r)] 1/2}112 , 

Y cos4 r + sin4 r + I 
(4.13) 

where 

E = (E - BJ 2 + 3J4/5)1lOt044' 

Equation (4. 12b) cannot be solved for Jy(threefold) in closed 
fonn and must be solved numerically. Substituting the val­
ues of Jy into Eq. (4.1), we can calculate the actionAn and the 
semiclassical cluster energies En. We use the real solution 
J:: in Eq. (4.13) for the fourfold cluster energies. The semi­
classical energies are compared with the eigenenergies in Ta­
ble II for J = 30 and J = 88.42 We use the known value of 

I 
t044 = 5.44 Hz for SF6 which has been detennined both from 
crossover resonances in the CO2 saturation spectra of Bor­
de/I and from forbidden transitions in the Doppler-free 
two-photon spectra ofHerlemontY Energies in Table II are 
given with respect to BJ 2 where B = 0.091 083 cm - 1.8 

The quantization occurs for integers 
n4 = k4 = J,J - 1, ... or n3 = k3 = J,J - 1, ... until the Jvec­
tor crosses a separatrix on the RE surface and is no longer on 
a trajectory about its axis of quantization for fourfold or 
threefold clusters, respectively (see Fig. 7). As in the case of 
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TABLE II. Semiclassical quantization for spherical top (cm - 1). 

E.(QM)a E.(sqb S.(QM)" 

n, J=30 

30 5.31 X 10-' 5.29xl0-4 2.63X 10- 11 

29 3.54 3.53 9.55X 10- 10 

28 2.04 2.03 1.53X 10-8 

27 0.80 0.79 1.42 X 10-7 

26 -0.20 -0.22 8.32X 10-7 

25 -0.97 -1.00 2.34X 10-6 

n3 

30 - 3.57X 10-4 - 3.54X 10-4 1.75 X 10-7 

29 - 2.48 -2.44 2.D2XIO- 6 

28 - 1.68 - 1.66 6.59X 10-6 

n, J=88 

88 4.206 X 10-2 4.205 X 10- 2 1.73 X 10- 23 

87 3.728 3.727 2.17X 10- 21 

86 3.275 3.273 1.31 X 10- 19 

85 2.845 2.844 5.12X 10- 18 

84 2.440 2.438 1.44 X 10- 16 

83 2.056 2.055 3.12X 10- 15 

82 1.695 1.694 5.41 X 10- 14 

81 1.356 1.355 7.71 X 10- 13 

80 1.038 1.037 9.19XIO- 12 

79 0.741 0.739 9.30XIO- 11 

78 0.463 0.462 8.04 X 10- 10 

77 0.205 0.204 5.99X 10-9 

76 - 0.033 -0.034 3.86X 10-8 

75 - 0.252 - 0.254 2.15X 10-7 

74 - 0.452 - 0.454 1.04 X 10- 6 

73 - 0.633 - 0.636 4.23 X 10-6 

72 -0.794 - 0.798 1.44 X 10-5 

71 - 0.933 - 0.939 4.46 X 10- 5 

n3 

88 - 2.806X 10-2 - 2.804 X 10- 2 1.24 X 10- 11 

87 - 2.493 - 2.491 6.06X 10- 10 

86 - 2.204 - 2.201 1.37 X 10-8 

85 - 1.938 - 1.935 1.90 X 10-7 

84 - 1.697 - 1.693 1.79 X 10-6 

83 - 1.482 - 1.477 1.17 X 10-5 

82 - 1.297 - 1.290 5.07X 10-5 

81 - 1.146 - 1.141 1.48 X 10-4 

aQM-Quantum mechanical diagonalization (Ref. 42). 
b SC-Semiclassical treatment. 

the asymmetric top, we let J 2 --+J (J + I). Again, we may si­
multaneously calculate the period T for the quantized semi­
classical trajectory using Eq. (4.3). 

In order to determine the tunneling between two equi­
valent trajectories for the spherical top rotor, we must first 
transform Jz so it is perpendicular to the axes of quantization 
of the two trajectories such that the conjugate angle r de­
scribes a path over the saddle point on the separatrix 
between the two trajectories. In the case of tunneling 
between two fourfold symmetry trajectories, Jz is trans­
formed by 90· to another fourfold symmetry axis and Eq. 
(4. 12a) may be used again to solve for Jy • In this case, the 
solution J ;- in Eq. (4.13) is imaginary over the path between 
equivalent fourfold trajectories and is used in Eq. (4.4) to 
calculate the tunneling integral B. The limits of integration 
are determined by the condition J ;- = o. 

In the case of tunneling between two threefold symme­
try trajectories, we transform Jz to a perpendicular twofold 
symmetry axis giving 

2.50X 10- 11 

9.57X 10- 10 

1.56 X 10-8 

1.47 X 10-7 

8.65X 10-7 

3.20X 10-6 

1.68 X 10- 7 

2.15 X 10-6 

7.40X 10-6 

1.62x 10- 23 

2.13X 10- 21 

1.30 X 10- 19 

5.11 X 10- 18 

1.44 X 10- 16 

3.13X 10- 15 

5.44X 10- 1
' 

7.77XIO- 13 

9.28X 10- 12 

9.40X 10- 11 

8.15X 10- 10 

6.09X 10-9 

3.93X 10-8 

2.20X 10-7 

1.06 X 10-6 

4.42 X 10-6 

1.56 X 10-5 

4.54X 10- 5 

I.17X 10- 11 

5.97X 10- 10 

1.37 X 10-8 

1.94 X 10-7 

1.82X 10-6 

1.22X 10-5 

5.63X 10-5 

1.50 X 10-4 

E =BJ 2 + lOt044[J~/2 +J; +J;/2 + 3J~Ji 
- 3J4/5] = BJ 2 + lOt044[J~(cos4 r 
+ 2 sin4 r - 6 cos2 r)/2 - J~J2(COS4 r 
+ 2 sin4 r - 3 cos2 r) 
+ J4(COS4 r + 2 sin4 r - 6/5)/2] , (4.14) 

which may be readily solved for J y to calculate the tunneling 
integral B. 

As in the case of the asymmetric top, we use the tunnel­
ing between equivalent trajectories to calculate the cluster 
splitting. By diagonalizing the tunneling matrix as was done 
for Eq. (4.8), we find the following cluster splittings22

-
24

: 

Fourfold splittings Threefold splittings 
(AJTJE): 6S, (T2ETJ): 4S, 

(T2Td: 4S, (AJTJT~2): 6S. 
(4.15) 

(ET~2): 6S. 
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Using these splittings, we compare in Table II the semiclassi­
cal tunneling between fourfold and between threefold trajec­
tories with those tunnelings calculated from the matrix dia­
gonalization ofEq. (2.10). The matrix diagonaIizations were 
performed with double precision so that the extremely small 
splittings could be calculated.42 

Note that the ratio of superfine splitting to fine struc­
ture splitting in the asymmetric top for J = 10 is less than 
that in the spherical top for J = 30 when comparing extre­
mal clusters energies. The greater tendency for clustering in 
asymmetric tops than in spherical tops was discussed in the 
previous section. Also, the extremal fourfold cluster for 
J = 88 in Table II has a superfine splitting of less than 
2X 10-23 cm- I corresponding to less than one tumble in 
50000 yr! 

V. SYMMETRY ANALYSIS OF SPECTRAL CLUSTERS 

We review procedures in this section for determining 
how molecular symmetry species will be grouped into a giv­
en set of rotational energy level clusters. The procedures are 
based upon the theory of coset spaces and induced represen­
tations, as was applied to octahedral XY6 rotational clusters 
in previous works.21

-
24 Here we review and clarify the proce­

dures while applying them to the clusters associated with the 
molecules XY2 and XY6• 

Rotational cluster symmetry analysis is based upon a 
correlation of symmetry species or irreducible representa­
tions of two symmetry groups. One is the symmetry of the 
RE surface, and the other is the local symmetry of a given 
classical trajectory. First, let us denote by R the global rota­
tional symmetry group of an RE surface. For example, 
R = D2 = 11,Rx,Ry,Rz: J is the rotational symmetry of the 
asymmetric RE surface shown in Fig. l(b), where R x' Ry , 

and Rz are 180· rotations around the three principal axes. 
The characters of D2 are given in Table III. Secondly, let us 
denote by T the local rotational symmetry of a particular 
classical trajectory. For example, each trajectory which en­
closes the z axis has a local symmetry T = C2(z) = 11 ,Rz J, 
i.e., each one is invariant to a 180· rotation around the body z 
axis. 

A classical trajectory symmetry Tmust be a proper sub­
group of the RE surface symmetry R (i.e., TCR ). Only the 
separatrix curves [these are represented by dotted ( ... ) lines in 
Figs. 1 and 2] actually have the full symmetry of the RE 
surface. However, we noted in Sec. II that a single classical 
separatrix trajectory is restricted to move only in one direc­
tion on a small part of the separatrix in between saddle 
points. Therefore, individual separatrix trajectories have 

TABLE III. Characters for D2 and C2, symmetry. 

A, 
A2 
B, 
B2 

1 
-1 

1 
-1 

even less symmetry than the neighboring trajectories which 
they separate. 

Finally, the correlation between the irreducible repre­
sentations of Rand T symmetry determines the allowed 
cluster structures. It is convenient to express these correla­
tions in table form in which the rows are labeled by the high­
er R-symmetry species, and the columns are labeled by the 
lower T-symmetry species. For example, the T = C2(z) sym­
metry has odd and even species which are labeled by O2 and 
12 (zero-mod-two and one-mod-two), respectively, at the 
head of the columns of the third C2(z) correlation table in 
Fig. 8. Note that the even O2 column of this table is correlated 
to the (A I,B2) pair of D2 species while the odd 12 column has 
the (A 2,BIl pair. This implies that clusters associated with z 
rotation will involve (A I,B2) pairs or (A 2,BIl pairs for states 
which are mixtures of k quanta that are even or odd, respec­
tively. This is what occurs on the right-hand side of the 
asymmetric top level spectra in Fig. 4. Note that the highest 
level belongs to an even (A I ,B2) cluster since J = k = lOis an 
even integer. Similarly, the clusters associated with x rota­
tion will involve (AI,BIl pairs and (A 2,B2 ) pairs for states 
which are mixtures of k quanta that are even or odd, respec­
tively, as seen on the left-hand side ofEg. 4. 

All three different x, y, and z rotational C2 subgroups 
are correlated with the asymmetric top D2 symmetry in Fig. 
8. Next to each correlation table is a classical sketch of XY2 

rotational motion that would be associated with dynamical­
ly broken symmetry or species mixing in each case. 

The simplest asymmetric prototypical molecule is the 
rigid XY2 complex, and it will be used to demonstrate the 
symmetry analysis. It should be noted that XY2 molecular 
rotational and full point symmetries are C2 and C2v , respec­
tively, while its RE surface symmetries are D2 and D2h , re­
spectively. The consequences of including full point symme­
try will be more fully discussed in the following Sec. VI. 

Only two of the three kinds of rotational symmetry 
breaking actually appear in the rigid asymmetric top spec­
trum of Fig. 4. The C2( y)-type of clusters corresponding to 
(A I' A21 and (B I ,B2) pairs cannot occur as long as they axis is 
on a saddle point or anywhere on a separatrix. However, it 
would be possible for a nonrigid XY2 molecule to have an RE 
surface with split separatrices which had orbits around the y 
axes as well as the x and z axes. 

In fact, one cannot rule out the possibility of semirigid 
asymmetric RE surfaces in which hills or valleys occurred 
away from symmetry axes or reflection planes as in Fig. 3(a). 
Then a rotational or rotation-inversion cluster state could 
involve a mixture of all four D2 species or even all eight D2h 

species. This would be the case if the dynamical symmetry 

Ry R, 
Ry IR, 

1 1 
1 -1 

-1 -1 
-1 1 
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FIG. 8. Symmetry correlations for an asymmetric top with RE surface sym­
metry D2 and each of its three twofold subgroups e2(x). e2( yl. and e2(z). 
The columns of each table give the number of each D2 species involved in a 
particular type of cluster after dynamical symmetry breaking. An XY2 mo­
lecular model is shown executing the classical rotation which would corre­
spond to the dynamical symmetry breaking for each case. 

broken state corresponds to a classical RE surface trajectory 
with no symmetry at all. 

It is instructive to compare D2 correlations with sym­
metry correlations which lead to the predictions of octahe­
dral XY6 spectral clusters. Three important types of octahe­
drally (R = 0) symmetric XY6 symmetry breaking are 
represented in Fig. 9, and they are analogous to the corre­
sponding XY2 symmetry breaking represented in Fig. 8. 
Again, only the first and third types of symmetry breaking, 
T = C3 and C4 , are applicable to the RE surface trajectories 
and energy level clusters represented in Fig. 5. The XY6 se­
paratrix motion associated with the second or C2-type of 
symmetry breaking in Fig. 9 fails to yield clusters just as it 
did for XY2 motion. The circulating trajectories on the RE 
surface in Fig. 5 either have a local symmetry of C3 or else C . 
Hamiltonians which lead to C2 symmetric trajectories i;­
clude Coriolis effects36 or higher rank distortion tensors.44 

TheXY6 spectral clusters in Fig. 5 are labeled by modu­
larity indices (03,13,23) and (04,14,24,34) for clusters associat-

03 (3 23 

A, I 

A2 I 

E I I 
TI I I I 

T2 I I I 

A, I 
A2 I 

E I 
TI I I 

T2 I I I 

FIG. 9. Symmetry correlations for an octahedral spherical top with RE 
surface symmc:trY 0 and each of its subgroups e,. e2• and e4• The columns 
of each table give the number of.each octahedral species involved in a parti­
cular t~ of cluster an~ dynamtcal symmetry breaking. An XY6 molecular 
model IS shown executmg the classical rotation which would correspond to 
the dynamical symmetry breaking for each case. 

ed with C3 and C4 symmetry, respectively. For example, the 
lowest threefold or C3 symmetric trajectory has J = k3 = 30, 
and therefore it belongs to the representations of 0 correlat­
ed with the zero-mod-three 03 representation of C3 , i.e., the 
first column of the left-hand table in Fig. 9. This corresponds 
to the (A 1> T

"
T2, A 2) cluster on the lower left-hand side of 

Fig. 5. The fourfold cluster on the right-hand side of the 
same figure also corresponds to the highest possible 
J = k4 = 30 value of angular momentum projection, but it 
belongs to the C4 symmetric two-mod-four 24 cluster. From 
the third column of the right-hand table in Fig. 9, one ob­
tains the symmetry content of this cluster. This corresponds 
to the (A 2,T2,E) cluster on the lower right-hand side of Fig. 5. 
The same procedure yields each successive cluster for each 
k4 or k3 value less than J = 30 until the cluster cutoff occurs 
at the separatrix angle as described previously. 

It is appropriate to comment here on the relation 
between internal or dynamical symmetry breaking which 
leads to level clustering, and the ordinary external or applied 
symmetry breaking which leads to level splitting. An exam­
ple of the latter would be the Zeeman splitting of an atomic p 
orbital or octahedral T, triplet into three levels of magnetic 
quanta m = 1=13=14, m = 0=03=04, and 
m = - 1=23=34, respectively. If the Zeeman B field were 
applied along the octahedral C3 or C4 axes, the Hamiltonian 
would be reduced from octahedral 0 symmetry to C3 or C4 
symmetry, respectively. The corresponding level splitting is 
expressed by the following correlations: TI-D3 + 13 + 23 of 
C3 and TI-D4 + 14 + 34 of C4. These correlations are ex­
pressed in the fourth (T,) rows of the C3 and C4 tables in Fig. 
9. 

These examples show that the splitting of orbital degen­
eracy due to applied symmetry breaking and the clustering 
due to dynamical or spontaneous symmetry breaking corre­
spond to two sides of the same correlation table. The math­
ematical explanation of this is based upon the Frobenius 
reciprocity theorem.45 The theorem has had a long history of 
application to problems involving Lorentz groups,45 crystal 

45.46 space groups, symmetry groups of floppy molecules,47-49 
molecular vibrations, 50 and molecular orbitals. 50 The reci­
procity theorem and induced representations playa role in 
the study of vibrational overtones.51 Clusters corresponding 
to local modes appear in vibrational overtones of XY6 spec­
tra, and models have been studied for levels as high as 20V3•

39 

Recently, Kellman has applied the reciprocity theorem and 
related dynamical symmetry breaking theory in a tunneling 
model of benzene overtones and local modes.52 

VI. PERMUTATIONAL SYMMETRY BREAKING AND 
SUPERHYPERFINE STRUCTURE 

About four years ago, the spectroscopy group estab­
lished by Christian Borde found the first spectroscopic evi­
dence of strong spin species mixing in SF 6 saturation absorp­
tion spectra using ultrastable CO2 lasers.31 Their techniques 
allowed them to detect mixing even in some cases where 
hyperfioe resolution was not achieved. Jacques and Borde 
confirmed that species within clusters were mixed by per­
forming detailed numerical diagonalizations of rovibra­
tional-hyperfine tensor Hamiltonians and was able to com-
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puter synthesize the laser spectra.31.32 More recently, the 
Borde group53 has improved their resolution to better than 
1.5 kHz and they have found many examples of hyperfine 
dominated clusters in what has been called superhyperjine 
structure.54.55 Bordes conclusions can be summarized by 
the following excerpt from the introduction to their recent 
article3z: "Let us emphasize that, as a consequence of these 
mixings, superfine and hyperfine structures cannot be treat­
ed separately". We show in this section that the importance 
of superhyperfine structure is not restricted to spherical top 
molecules but is important to other symmetry types includ­
ing asymmetric top molecules. 

In order to study superhyperfine effects, it is useful to 
extend the symmetry correlations given in the preceding sec­
tion to groups which include operations outside of the rota­
tional subgroups. In Sec. II it was noted that an RE surface 
always has inversion symmetry C; = { 1,1 J, where I repre­
sents inversion of points through the origin. Therefore, if the 
rotational symmetry of the RE surface is R, then its full 
rotation-inversion symmetry will be isomorphic to 
R; = R XC;. Furthermore, a semirigid molecule has a mo­
lecular point symmetry S which depends on its geometrical 
and permutational structure, and generally S is a subgroup 
ofR;. 

One should be aware that there are several different 
treatments of rotation-inversion and permutation opera­
tions, and that different rules and physical interpretations 
exist for similar symmetry labels. The most widely used 
scheme for rovibrational spectroscopy is the permutation 
inversion (PI) approach which is treated in a review56 and 
textbook57 by Bunker. In discussions of superfine, hyperfine, 
and dynamical symmetry breaking effects, a modified ap­
proach is used which seems to be simpler and more powerful 
for these purposes. This nonstandard approach was taken 
independently by Berge~8 and the authors.24.54.55 Several 
approaches to symmetry analysis have been compared in a 
recent monograph by Ezra59 who preferred the nonstandard 
approach used here. 

The labels of symmetry species in the modified scheme 
consist of two parts: an external or laboratory part associat­
ed with 0(3) (lab) and an internal or molecular structure part 
associated with 0(3) (body). We denote the combined symme­
try of the two parts by 0(3)*0(3)60 to indicate the internal and 
external parts share the same representation label J P, which 
consists of total angular momentum and inversion parity 
(JP=0+,0-,I+,I-,2+,2-,etc.). For a freely rotating se­
mirigid molecule, the external symmetry remains 0(3). How­
ever, for the bent XY2 molecule the internal point symmetry 
group is S ==,=Czv = { 1,IRx ,Ry,lRz J, where IRx and IRz are 
reflections through they z andxy planes, respectively as seen 
in Fig. 8. Thus, the internal part consists of labels 
A I.A2,BI,B2 which must be correlated with speciesJ P of 0(3) 
to determine representations ofO(3)*C 2v' This is fundamen­
tal to the understanding of the superhyperfine structure of 
the XYz asymmetric top molecule. 

The characters of Czv are given in Table III. Two of the 
representations, namely A 1 and B I' can be related with per­
mutational symmetry and antisymmetry, respectively, ac­
cording to the sign of Ry and IR. operations which permute 

the Y nuclei. Since the IRx reflection in the molecular plane 
has no effect on the bare XY2 rotor, only the symmetry spe­
cies A I and B I which have unit character for this operation 
are allowed. The A2 and B2 species which have ambiguous 
permutational symmetry are excluded as labels of the bare 
XYz rotor. 

The permutational symmetry determines which nu­
clear spin or hyperfine states are associated with species A I 
or B 1• For Fermi or half-integral-spin Y nuclei in XYz, the 
total nuclear wave function must be antisymmetric. Then 
symmetric A I species must have antisymmetric or para spin 
functions, while antisymmetric B I species must have sym­
metric or ortho spin functions. For Bose or integral-spin nu­
clei the opposite is true. 

Well known Fermi and Bose cases are H20 (H 
spin = 1/2) and D 20 (D spin = 1). Ortho and para water 
(H20) correspond to B I and A I species with total nuclear 
spins of 1=1 and 1=0, respectively. Para heavy water 
(DzO) corresponds to BI species with a nuclear spin triplet 
(I = 1) and ortho heavy water to species A I with a spin sextet 
(I = 0,2).24 

For predicting superhyperfine mixing, one must find 
which combinations ofO(3)*C2v labeled states are allowed in 
a given cluster. To do this we must compare the characters of 
symmetry operations of C2v in the basis I J P,k ) of 0(3) with 
those in Table III. We define the basis of 0(3) to be even and 
odd functions of k, namely 

[J P,k (7) = [J P,k) + ( - 1),,1J P, - k) . (6.1) 

These are standing wave states for which the expectation 
( Jz) for the rotational angular momentum is zero. In this 
0(3) basis we have the following characters for CZv operations 
using the standard D matrices and the conventions defined 
in Appendix A: 

(JRx) =pu( - 1)), 

(Ry) =0'( _1)J+k, 

(JR,) =p( - I)k. 

(6.2a) 

(6.2b) 

(6.2c) 

Comparing to the characters of C2v in Table III we find 
the following correlations for clusters about the z axis: 

J even: IAI,02)~[ J+,k +), 

[BI'Oz)~[ J -,k -) , 
IAI,Iz)~1 J-,k -), 

IBI,Iz)~1 J+,k +) . 

J odd: IAI,02)~[ J+,k -), 

IBI,02)~1 J-,k +), 
[AI,I2)~[ J-,k +) , 

[BI,I2)~[ J+,k -) . 

(6.3a) 

(6.3b) 

For clusters about the x axis, we exchange z~x in Table III 
which corresponds to exchanging species BI~B2' This in 
tum is equivalent to exchanging J P~ -P in Eqs. (6.3) for 
correlations to B I' Correlations to A I remain the same for 
clusters about the x axis. 

Equations (6.3) determine the parity p and the internal 
C2v labels of the cluster states for a givenJ and k according to 
the overall symmetry O(3)*C 2v labels. For theXY2 example, 
it is easy to make a connection between the O(3)*C 2v labels 
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and the standard rotation symmetry labels given previously 
in Sec. V. For these labels we only considered the "feasible" 
operations ofOz which ignore the inversion operation I. This 
has the effect for the characters in Table III of multiplying by 
the inversion speciesAz ofC2v when correlatingtoJ - of 0(3). 
Thus the labels (lO+*A I) and (lQ+*Bd correspond to con­
ventional species Al and B I , respectively, while the labels 
(lO-*Ad and (lO-*Bd correspond to conventional species 
Az and Bz, respectively. The z-axis cluster sequence implied 
by Eqs. (6.3) is consistent with the Oz labeled sequence 
(AIBz), (AzB I), (A IB2), ... obtained on the right-hand side of 
Fig. 4 using the correlation table in Fig. 8. 

The same type of full point symmetry correlations 
yields the 0(3 )*C 2v labels of the x-axis cluster sequence. The 
results for J = 10, starting with the lowest energy cluster in 
Fig. 4 are {(lO+*Ad(lOHBIll, {(lO-*AI)(lO-*BI)J, 
{(lOHAI)(lO+*Bd}, ... which is consistent with the O 2 la­
beled sequence (AIBd, (A2B2)' (AIBI)'''' shown on the left­
hand side of Fig. 4. 

Importantly, the full O( 3)* C 2v symmetry labeling can be 
used to rule out the possibility for hyperfine mixing in cer­
tain types of clusters. For example, all the z-axis clusters for 
XY2 contain pairs of states with opposite parity. In the ab­
sence of collisions or other external perturbations, the con­
servation of parity would prohibit the ortho and para species 
in i-axis clusters from being perturbed by nuclear spin-rota­
tion interactions. 

On the other hand, the x-axis-type clusters contain 
artha and para species with the same overall parity. For these 
clusters there are no symmetry selection rules which would 
prohibit hyperfine mixing. The mixing effect of the nuclear 
spin rotation interaction depends on the detailed rotational 
and spin dynamics. It is instructive to compare the x-axis 
rotation depicted in Fig. 8 with the y- and z-axis rotation 
associated with cluster pairs of opposite parity. If one imag­
ines the nuclei are geometrical points, then an x-axis rotation 
by 180" is the same as an inversion. This is not the case for the 
y or z axis rotational motion. The classical y or z axis rota­
tional motion [or, equivalently, moving wave quantum 
states with nonzero expectation values (Jy ) = k 2( y) or 
( Jz) = k2(z)] must involve mixed inversion parity, and thus 
the y- and z-type clusters contain species of opposite parity. 
Only the y- and z-type standing wave states [such as Eq. (6.1)] 
have definite + or - inversion parity and each corre­
sponds to a different artha or para species. 

One should notice that the z-type rotational motion 
shown in Fig. 8 puts the identical Y nuclei in nonoverlapping 
orbits, i.e., they tend to be permutationally isolated. This by 
itself is enough to guarantee that the permutational symme­
try species are mixed. However, as we noted, it also involves 
mixing parity so that parity conserving perturbations such as 
hyperfine interactions cannot cause such mixing by them­
selves. On the other hand, all of the XY6 motions in Fig. 9 
correspond to permutational isolation which can be accom­
plished with or without parity mixing, and therefore all these 
clusters must undergo hyperfine mixing when the superfine 
splitting is less than the hyperfine splitting. For the x-type 
XY2 clusters, hyperfine mixing is not forbidden by parity 
conservation, but neither is it required by permutational 

considerations since the Y nuclei may move in overlapping 
orbits as shown in Fig. 8. 

We now consider some more extreme forms of rota­
tional symmetry breaking and hyperfine mixing than those 
which occur in the x-axis cluster examples just treated. Ex­
treme forms of symmetry breaking occur when the classical 
trajectories put equivalent nuclei into orbits which are physi­
cally very different or which isolate the nuclei into permuta­
tional subsets which do not overlap appreciably. This might 
happen to an XY2 molecule, e.g., if it fell into a rotational 
state associated with the classical motion depicted in Fig. 3. 
The quantum state corresponding to this motion would be a 
combination of the four clustered species (A IB IA2B2)' i.e., 
the states occuring in the correlation of O2 with the trivial C I 
symmetry. (A standing wave version ofthis state which had 
definite parity would be a combination of the artha and para 
pair A I and B I or else the pair A 2 and B2.) 

Part of the symmetry breaking is connected with the 
difference in physical environments which the two identical 
nuclei find themselves in Fig. 3(b). One nucleus finds itself 
close to the rotational axis and revolving in the lab around a 
smaller circle [circle 1 in Fig. 3(b)] than the other nucleus 
[circle 2 in Fig. 3(b) is the larger one]. Presumably, the nu­
cleus in state 1 would experience a different magnetic field 
than the one in state 2. 

Another part of the symmetry breaking is connected 
with the permutational isolation or reduced overlap between 
the identical particles. If the superfine splittings are negligi­
ble, then the molecule cannot tunnel or tumble into one of 
the other equivalent dynamical configurations which might 
allow the Y nuclei to overlap and trade positions in the labo­
ratory. 

Of course, one can never know which of the two Y nu­
clei is in rotational state I or state 2 since they carry no 
permanent markings that distinguish them. However, if the 
Y nuclei have a nonzero intrinsic spin, then this may serve as 
a temporary marking device. For spin-l/2 nuclei, it is rela­
tively easy to see how such a marking can lead to a mixing of 
para A I and artha B 1 species. 

Consider the m I = 0 states of the para and artha ~e­
cies. The para state has a symmetrized A 1 spatial part 11!EI) 
with an antisymmetrized spin part 183), which is a zero total 
spin I = 0 singlet. The artha state has an antisymmetrized B 1 

spatial part lIB) with a symmetrized spin part I [illJ) which 
is part of a unit total spin I = 1 triplet. These may be related 
to Slater determinant states in which the spin up or down 
serves as a marker. One such state is the following: 

in which the nucleus in state 1 has spin up while the one in 
state 2 has spin down. This is likely to have a different energy 
than the reverse state 

since the magnetic environment for state 1 is likely to differ 
from that of state 2. If the difference is large compared to the 
superfine splitting of A I and B 1 species, then the eigenstates 

J. Chem. Phys., Vol. 80, No.9, 1 May 1984 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  147.143.2.5

On: Tue, 23 Dec 2014 13:39:12



4258 W. G. Harter and C. W. Patterson: Rotational energy surfaces 

will be (AIBI) mixtures similar to Eqs. (6.4) and (6.5). 
Some conditions for superhyperfine mixing which are 

sufficient but not necessary have been described above. A 
complete description of mixing conditions is obviously be­
yond the scope of this paper. For each class of RE surface 
trajectories (this classification presents a formidable task in 
itself), one must consider the effects of all possible spin-rota­
tion and spin-spin interactions for a given polyatomic mole­
cule. This needs to be accompanied by spectroscopy that is as 
detailed and comprehensive as that which was done for SF 6 

and related molecules. 
However, at least two necessary conditions for colli­

sion-free or spontaneous species mixing have emerged. One 
is that at least two species in a cluster must have the same 
parity. Parity was shown to be a key consideration in SF6 

superhyperfine spectroscopy. 31.32.54.55 The other condition is 
that superfine or cluster splitting be comparable to or 
smaller than the hyperfine splitting. 

VII. CONCLUSIONS AND FUTURE WORK 

We have shown how RE surfaces can be used to under­
stand the complex rotational fine, superfine, and superhy­
perfine structure of semirigid polyatomic rotors. We have 
focused attention on the energy levels of rotations and vibra­
tion-rotations that can adequately be described by a single 
isolated RE surface, and we have discussed the most elemen­
tary form of semiclassical eigenvalue calculations for asym­
metric and octahedrally symmetric rotors. We have made 
analogies between the RE surface as it applies to rotational 
levels and the well-known concept of the PE surface which 
applies to vibrational levels. 

Analogies between RE and PE surfaces continue to be 
valuable as we contemplate future work. More advanced se­
miclassical theory is leading to methods for deriving eigen­
functions, transition rates, and detailed intra- and intermole­
cular dynamics as well as more accurate eigenvalues. We are 
encouraged by the success of Heller, Davis, and De Leon61 in 
finding eigenfunctions and transitions on anharmonic PE 
surfaces using wave packet or coherent state propagation. 
Blanco and Heller have also begun to consider simple rovi­
brational models using a combination of rotational projec­
tion and wave packet propagation.62 It should be possible to 
extend these methods to the domain of RE surfaces so that a 
more detailed description of rovibronic dynamics can be 
made. 

The detailed dynamics of even the simplest rotor mod­
els still hold some unanswered questions. One question in­
volves various forms of rotational relaxation or angular mo­
mentum delocalization. We have discussed the precession 
and tunneling processes in Sec. III B, and related them to 
fine and superfine structure, respectively. However, there is 
another form of delocalization which will occur even at high 
J and far from any separatrices. This has to do with the 
second energy derivative of the action, i.e., with the gradual 
change in intercluster spacing or fine structure with energy. 
Uneven fine structure should be associated with a gradual 
dephasing and spreading of an angular momentum wave 
packet or quasicoherent state. Only quantum systems with 
exactly equally spaced energy levels can be expected to be-

have coherently forever, like a harmonic oscillator. This lack 
of coherence applies even to the simplest rigid symmetric 
rotor [recall Fig. I(a)] since its Hamiltonian varies quadrati­
cally with angular momentum. The spreading, as well as 
possible remergence of rotational wave packets, needs to be 
understood. 

The problems associated with multiple RE surfaces are 
being explored. The crossing or near avoided crossing of two 
or more RE surfaces would lead to resonance effects analo­
gous to the Jahn-Teller-Renner effects associated with the 
crossing of two PE surfaces. Such crossings of RE surfaces 
would provide a detailed semiclassical framework for visual­
izing complex rovibrational or rovibronic interactions. De­
velopment of multiple RE surface representations should be 
useful for studying molecules which are floppy or highly 
excited. Also, an analogy with the Franck-Condon principle 
for PE surfaces can be made for transitions between RE sur­
faces as well. 

A general introduction to the effects of spectral cluster­
ing should probably mention something about collisions, 
since, for one thing, they were mentioned in the introductory 
quote by Herzberg.29 Since the concept of rotational species 
needs to be modified in the presence of clusters, it is likely 
that detailed properties and selection rules for collisions or 
reactions would be affected as well. Curl, Kasper, and 
Pitzer63 considered spin species conversion through "acci­
dental" degeneracies in an early paper on spin state equilibri­
um and nonmagnetic collisions. However, they did not have 
knowledge of either the extent or the details of rotational 
superfine structure. Now that this is coming available, it 
should be possible to make more precise predictions using 
their theory. It should also be possible to modify spin species 
selection rules developed by Quack64 for chemically reactive 
scattering. So far, dynamical symmetric breaking effects 
have not been considered in these rules. 

In summary, there is considerable evidence for unex­
pected structural details in rotational, rovibrational, and ro­
vibronic spectra of polyatomic molecules. The potential ap­
plications and fundamental importance of these details 
makes it worthwhile to build a theoretical framework with 
which to understand them. 
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APPENDIX A 

1. Angular coordinates for RE surface analysis 

We shall try to present a physically intuitive review of 
the coordinates and momenta for rotational dynamics in 
general and RE surface theory in particular. To facilitate 
this approach we shall reintroduce a mechanical analog de­
vice shown in Fig. 10 for elucidating Euler angles. 24

•
65 The 

device serves to define Euler angles in a nonabstract way and 
show that they are natural choices. 

The Euler device (Fig. 10) consists offour frames: a lab 
of (x) frame, an (x') frame, an (x") frame, and a body or (x) 
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FRAME 

FlO. 10. Mechanical definition of Euler coordinates for RE surface me­
chanics. Laboratory and body views of the body and lab zeniths are shown 
in respective insets. The RE surface coordinates are based on the body view. 

2. Rotation transformation between lab and body 

frame, with each of the first three frames connected to the 
next one in the sequence by one of three pivots. Each of the 
three pivots have an angular dial which displays one of the 
Euler angles a, {3, or y. Euler angles so defined are clearly 
holonomic (i.e., integrable) coordinates whose values depend 
only on orientations of the four frames relative to chosen dial 
zero points and not on the path or order of operations which 
led to an orientation. 

The choice of dial zero points is based upon conventions 
for labeling axes and is of one of the sources of confusion 
about Euler angles. The choice is made in Fig. 10 so that the 
pair (a, {3) are polar coordinates (i.e., azimuth and polar an­
gle, respectively) of the body zenith (Z = X3 axis) in the lab 
frame, and the pair ( - y, - {3) are polar coordinates of the 
lab zenith (z = X3 axis) in the body frame. The insets in Fig. 
10 show the lab and body views separately. (Note that an 
azimuth angle is a longitude measured counterclockwise 
from an x axis. The complement of a latitude is a polar angle 
measured from the z axis.) 

In the case of classical free rotation, one may choose the 
lab-fixed angular momentum vector J to be fixed along the 
lab z = X3 axis. Then the coordinate pair ( - y, - {3 ) will be 
the azimuth and polar angles, respectively, for points on an 
RE surface. The angular momentum trajectory in 
( - y, - {3) space will be along an RE surface topography 
line as previously explained. For this choice of J, the effect of 
a-angle rotation does not manifest itself on the classical tra­
jectory in body ( - y, - {3) space since then a is just the 
"twist" of the z axis as it moves along an RE topography line. 
For other choices of J in the lab, the z-axis trajectory in body 
( - y, - {3) space will be a quasicycloidic nutation around 
the precession path of an RE topography line. 

The vector rotation transformation between frames is very well known, and rederivation is given here solely to maintain 
the continuity of development based on Fig. 10. A lab rotation operator R (a, {3,y) may be defined using an ordered set of lab 
based operations which set the Euler dials from (0,0,0) to (a, {3,y). Ordering becomes important for noncommuting fixed base 
operations. R (a {3y) equals a product of a y rotation around the lab z = X3 axis, followed by a{3 rotation around by y = X 2 axis, 
followed by an a rotation around the z = X3 axis as shown in Fig. 11. 

The matrix representation of this product is 

(R (a {3y) = (:~:: ~:!:a ~) ( CO~{3 
° ° 1 - sin{3 ° 

° 

(

XI 
XI cos a cos{3 cos y - sin a sin y 
X2 sin a cos {3 cos y + cos a sin y 

X3 - sin {3 cos y 

3. Angular velocities and momenta for RE surface 
analysis 

sin {3 ) (c~S y ° smy 
cos{3 ° 

X2 

- siny 

cos y 

° ~) 
- cos a cos{3 sin y - sin a cos y 

- sin a cos {3 sin y + cos a cos y 
sin{3sin y 

drl =drl +00 Xr 
dt x dt x' a , 

where 

X3 ) cos a sin{3 

sin a sin{3 

cos{3 

The kinematics of a rotating frame may also be de­
scribed by successive combination of three simple rotations. 
The time derivative of any vector (r) in the lab x frame can be 
written in terms of a time derivative viewed in the x' frame as 
follows: 

= a( - sin {3 cos rXl + sin {3 sin rX2 

+ COS/3i3) 
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THIRD 
ROTATION R(aOO) 

SECOND 
ROTATION R(0,80) 

AROUND t 
-~--=I 
LAB Y- AXIS 

is the a-dial angular velocity vector. [Equation (A2) is used 
to get the body representation.] A similar relation for the X'­

frame derivative in terms of the x" -frame derivative is 

dr I = dr I + (J)/3 X r , 
dt x' dt XU 

where 

(J)/3 = /3 ( - sin aXl + cos ax2 ) = /3 (sin!'il + cos r x2) 

(A3) 

is the P angular velocity as seen by examining Fig. ta. Final­
ly, the x" -frame derivative can be written in terms of the 
body x-frame derivative 

dr I = dr I + (J)y X r , 
dt XU dt x 

where 

(J)y = r(cos a sin P Xl + sin a sin pX2 

+ cos px3 ) = Yx3 
is the r angular velocity. 

(A4) 

Combining Eqs. (A2)-(A4) gives the total angular veloc­
ity (J) of the body x-frame relative to the lab x frame, i.e., 

dr I = dr I + (J) X r , (A5a) 
dt x dt x 

where 
(J) = (J)a + (J)/3 + (J)y • (A5b) 

This yields the following relations between the Euler angular 
velocities and the lab components of (J): 

(:}G 
- sin a cooamnp)n 
cos a sinasinp 1, 

0 cosp r 
(A6a) n c~s~ootP - sin a cotP 

:)(~) . -sma cos a 
P = 

sin a . cos a 
r sinp sinp 

(A6b) 

The same relations for the body components are as follows: 

(

cux) ( - .sin p.cos r sin r 
CUy = smpsmr cosr 
CUz cosp 0 

(A6c) 

FIRST 
ROTATION R(OOy) 

AROUND W.LAB Z-AXIS 
FIG. II. Operational definition of Euler coordi­
nates. Ordered rotational sequence 
R (aOO)R (opO)R (OOr) = R (aPr) of lab-based 
operations orients the body into the (aPr) posi­
tion relative to the lab. Only rotations about the 
lab y and z axes are used. 

(
il) (_ c~sr 
/3 = .sm P 
. smr 
r cotpcos r 

sin r 
sinp 

cos r 
- cotpsin r 

(A6d) 

These relations allow one to relate the canonical lab 
based angular momenta 

J = aH J = aH J = aH 
x 'Y 'z..:J acux aCUy UCUz 

(A7) 

and the body based angular momenta 

J- = aH, J- = aH, J- = aH 
x y Z!l acux aCUy UCUz 

(A8) 

to the Euler canonical momenta. 

J - aH J - aH J = aH (A9) a-ail' /3-0/3' y or' 
Applying the chain rule and Eq. (A6b) one derives the lab 
based momenta 

- cos a cotP - sin a 
cos a 

G): sinp G) - sin a cotP 
sin a 

cos a 
sinp 

0 0 

(Ata) 

Similarly, using Eq. (A6d) one obtains body based momenta 

_ cosr 
sin r cotP cos r 

G) G)~ 
sinp 

sin r cosr - cotpsin r 
sinp 

0 0 

(All) 

The same relations apply to the quantum angular mo­
mentum operators. The Euler momentum operators may be 
represented by partial derivatives with respect to Euler an­
gles. 

Ja = (h Ii) ~ , J/3 = (h Ii) ~, Jy = (h Ii) ~ . aa ap ar 
(A12) 

Such simple representations of the lab or body momentum 
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operators are not as useful since the angular coordinates con­
jugate to Jx' Jy' or Jz are not holonomically defined. 

Nevertheless, by using Eqs. (AlO) and (All), one veri­
fies that the lab operators satisfy standard commutation re­
lations 

[ Jx' Jy ] = ih Jz (and cyclically), (A13) 

while the body operators satisfy reversed relations24
•
33: 

[ Jx ' Jy ] = - ih Jz (and cyclically). 

The two sets are mutually commuting,35.36 i.e., 

[ Jx.Jy ] =0, etc. 

(A14) 

(AlS) 

It is easy to see that the Euler momenta [Eq. (A 12)] are com­
mutative, i.e., 

(A16) 

This is consistent with the independence of the three dials in 
Fig. lO. 
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